1,617 research outputs found

    Growing a Tree in the Forest: Constructing Folksonomies by Integrating Structured Metadata

    Full text link
    Many social Web sites allow users to annotate the content with descriptive metadata, such as tags, and more recently to organize content hierarchically. These types of structured metadata provide valuable evidence for learning how a community organizes knowledge. For instance, we can aggregate many personal hierarchies into a common taxonomy, also known as a folksonomy, that will aid users in visualizing and browsing social content, and also to help them in organizing their own content. However, learning from social metadata presents several challenges, since it is sparse, shallow, ambiguous, noisy, and inconsistent. We describe an approach to folksonomy learning based on relational clustering, which exploits structured metadata contained in personal hierarchies. Our approach clusters similar hierarchies using their structure and tag statistics, then incrementally weaves them into a deeper, bushier tree. We study folksonomy learning using social metadata extracted from the photo-sharing site Flickr, and demonstrate that the proposed approach addresses the challenges. Moreover, comparing to previous work, the approach produces larger, more accurate folksonomies, and in addition, scales better.Comment: 10 pages, To appear in the Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD) 201

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Personalizing Interactions with Information Systems

    Get PDF
    Personalization constitutes the mechanisms and technologies necessary to customize information access to the end-user. It can be defined as the automatic adjustment of information content, structure, and presentation tailored to the individual. In this chapter, we study personalization from the viewpoint of personalizing interaction. The survey covers mechanisms for information-finding on the web, advanced information retrieval systems, dialog-based applications, and mobile access paradigms. Specific emphasis is placed on studying how users interact with an information system and how the system can encourage and foster interaction. This helps bring out the role of the personalization system as a facilitator which reconciles the user’s mental model with the underlying information system’s organization. Three tiers of personalization systems are presented, paying careful attention to interaction considerations. These tiers show how progressive levels of sophistication in interaction can be achieved. The chapter also surveys systems support technologies and niche application domains

    Aggregation-Based Feature Invention and Relational

    Get PDF
    Due to interest in social and economic networks, relational modeling is attracting increasing attention. The field of relational data mining/learning, which traditionally was dominated by logic-based approaches, has recently been extended by adapting learning methods such as naive Bayes, Baysian networks and decision trees to relational tasks. One aspect inherent to all methods of model induction from relational data is the construction of features through the aggregation of sets. The theoretical part of this work (1) presents an ontology of relational concepts of increasing complexity, (2) derives classes of aggregation operators that are needed to learn these concepts, and (3) classifies relational domains based on relational schema characteristics such as cardinality. We then present a new class of aggregation functions, ones that are particularly well suited for relational classification and class probability estimation. The empirical part of this paper demonstrates on real domain the effects on the system performance of different aggregation methods on different relational concepts. The results suggest that more complex aggregation methods can significantly increase generalization performance and that, in particular, task-specific aggregation can simplify relational prediction tasks into well-understood propositional learning problems.Information Systems Working Papers Serie

    Treatment of imprecision in data repositories with the aid of KNOLAP

    Get PDF
    Traditional data repositories introduced for the needs of business processing, typically focus on the storage and querying of crisp domains of data. As a result, current commercial data repositories have no facilities for either storing or querying imprecise/ approximate data. No significant attempt has been made for a generic and applicationindependent representation of value imprecision mainly as a property of axes of analysis and also as part of dynamic environment, where potential users may wish to define their “own” axes of analysis for querying either precise or imprecise facts. In such cases, measured values and facts are characterised by descriptive values drawn from a number of dimensions, whereas values of a dimension are organised as hierarchical levels. A solution named H-IFS is presented that allows the representation of flexible hierarchies as part of the dimension structures. An extended multidimensional model named IF-Cube is put forward, which allows the representation of imprecision in facts and dimensions and answering of queries based on imprecise hierarchical preferences. Based on the H-IFS and IF-Cube concepts, a post relational OLAP environment is delivered, the implementation of which is DBMS independent and its performance solely dependent on the underlying DBMS engine

    Multidimensional ontology modeling of human digital ecosystems affected by social behavioural data patterns

    Get PDF
    Relational and hierarchical data modeling studies are carried out, using simple and explicit comparison based ontology. The comparison is basically performed on relationally and hierarchically structured data entities/dimensions.This methodology is adopted to understand the human ecosystem that is affected by human behavioural and social disorder data patterns. For example, the comparison may be made among human systems, which could be between male and female, fat and slim, disabled and normal (physical impairment), again normal and abnormal (psychological), smokers and non-smokers and among different age group domains.There could be different hierarchies among which, different super-type dimensions are conceptualized into several subtype dimensions and integrated them by connecting the interrelated several common data attributes. Domain ontologies are built based on the known-knowledge mining and thus unknownrelationships are modeled that are affected by social behaviour data patterns. This study is useful in understanding human situations, behavioral patterns and social ecology that can facilitate health and medical practitioners, social workers and psychologists, while treating their patients and clients
    • …
    corecore