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Abstract 

Abstract 

 

Traditional data repositories introduced for the needs of business 

processing, typically focus on the storage and querying of crisp 

domains of data. As a result ,  current commercial data repositories 

have no facilities for either storing or querying imprecise/  

approximate data.  

No significant at tempt has been made for a generic and application- 

independent representation of value imprecision mainly as a 

property of axes of analysis and also as part of dynamic 

environment, where potential users may wish to define their “own” 

axes of analysis for querying either precise or imprecise facts. In 

such cases, measured values and facts are characterised by 

descriptive values drawn from a number of dimensions, whereas 

values of  a dimension are organised as hierarchical levels.  

 A solution named H-IFS is presented that allows the representation 

of flexible hierarchies as part of the dimension structures. An 

extended multidimensional model named IF-Cube is  put forward, 

which allows the representation of imprecision in facts and 

dimensions and answering of queries based on imprecise 

hierarchical preferences. Based on the H-IFS and IF-Cube 

concepts, a post relational OLAP environment is delivered, the 

implementation of which is DBMS independent and its performance 

solely dependent on the underlying DBMS engine.    
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“Begin at the beginning and go on ‘till you come to the end: then stop” 

Lewis Carroll, Alice's Adventures in Wonderland. 
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1.1 Research Objectives 

 

The research objectives of this thesis can be defined with respect to 

levels of data and concepts.  

• At the level of data, domain dimensions are generalized by 

utilising the proposed notion of H-IFS, a branch of 

Intuitionistic Fuzzy Logic and Sets that allows users to 

modify the axis of analysis/dimensions on the basis of its 

definit ion domain so different users can define the whole set  

of dimensions differently and not just to alter the linguistic 

definit ion of a dimension attribute.  

• When it comes to query languages, a set of H-IFS based 

OLAP operators are proposed that allow users to identify the 

subgroup or data-cube that  satisfies exactly a given request , 

while an enhanced subgroup or data-cube al lows users to 

extract results previously unknown to them due to the 

enhancement of the query conditions and grouping statements. 

• A the concept level , a meta-model is put forward that captures 

imprecision as part  of the structural elements of a generic 

multidimensional OLAP architecture and it  would be used as 

a guide for developing an ad-hoc uti lity that could be 

implemented on top of any of the commercially available 

Database Management Systems (DBMS).” 
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1.2 Treatment of Imprecision in Data Repositories 

 

Traditional data repositories introduced for the needs of business 

processing,  typically focus on the storage and querying of 

crisp/precise domains of data.  As a result,  current data repositories 

[1] have no facilities for either storing or querying 

imprecise/approximate data. However, when somebody considers 

scientific data (i .e. medical data, sensor data etc) value imprecision 

is inherited to scientific measurements.  

At the same time, data repositories are expected to cope with the 

accommodation of amalgamated/integrated data.  Such data is  

organised around several axes of analysis (dimensions). Dimensions 

are likely to be defined differently according to different groups of 

users, based ei ther on rigid or flexible hierarchies.   

Clearly,  data repositories need to have build-in support for value 

imprecision with reference to their storage capabilit ies. When it  

comes to analysis/querying, support  for dimensions defined on 

flexible hierarchies is expected. With respect to answering,  

responses could be a close approximation of the real value and the 

focus is on determining the accuracy of the answer, rather than 

finding the exact answer.  
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1.3 Data Imprecision in Perception 

 

There have been many attempts to classify various possible kinds of 

imprecise information. The concern is mainly on the classification 

[2-4] of imprecise information coming ei ther from the data 

engineering, or database/data management research. It  is suggested 

that  imprecision can be a property of data since:  

• Data might be missing or unavailable (incomplete data).  

• Data might be present but unreliable or ambiguous due to 

measurement errors, multiple confl ict ing errors and so forth.  

• Data may simply be the user’s best guess.  

• Data may be based on defaults and the defaults may have 

exceptions.   

 A quantisation of a value; for example,  the body temperature of a 

patient  is  quantised as being “normal”, “a mild fever”,  “a fever”,  “a 

severe fever “ and the limits are not  precise.  

Measurement errors can be interpreted only as human errors. The 

limits and tolerance of an instrument are well defined by the 

manufacturer. Furthermore it  is recognised that imprecision maybe 

[5] related with the occurrence or the existence of an event. The 

reasons for this  type of uncertainty are:   

• Expert’s  belief in an event. One may have difficulty 

justifying such a belief.  

• An exception to a general rule. The general  rule may be 

unknown, or it  may be known but too complex to be 
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efficiently implemented. A simpler rule is used, but it  may be 

inexact or inefficient. In cases of artefacts or outl iers, a pre-

processing effort should be performed to remove them, as this  

will computationally and practically expensive to model 

them, assuming there is no loss of domain knowledge.  

A diagrammatic synopsis of the different causes of uncertainty is 

presented in “Figure 1-1”.  

The belief that indicates the occurrence of an event, and the 

likelihood of when did an event occur may be not exactly known, 

thus introducing either “factual” or “temporal” imprecision.  

However the existence of either “factual” or “temporal” imprecision 

is emphasizing the need to consider multidimensionali ty as an 

information property of imprecise information [6].  

 

 

Figure 1-1: “Imprec ision /  Uncer tainty”  

 

A formal language for representing knowledge should be based on a 

conceptual formalism, otherwise knowledge representation may st ill  

Data 

Imprecise Data 

Imperfect Data Perfect Data 

Incomplete Data 

Uncertain Knowledge 
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be ambiguous, since there is  no description on specifying the 

ambiguous information elements found during the execution of the 

knowledge acquisition process. Treating imprecision at the data 

level without taking into account any conceptual perspective is  

meaningless, since an imprecise data value does not give any 

indication about the rat ionale of its generation.  

Flexible/Intel ligent information system must be able to represent  

imprecision at two distinct levels:  

• the level of Knowledge/Concepts.  

• the level of Data.    

Ideally, intelligent/flexible information systems should contain 

models and information extraction mechanisms in representing or 

querying imprecise information both at the conceptual and the data 

level.    
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1.4 Imprecision in Databases 

 

Imprecision is  the part ial  knowledge of the true value of the real 

world.  It  is essentially an epistemic property caused by lack of 

information. Imprecision in a database context and at the instance 

or data level is  synonymous to “objective ignorance” and it  is  

“context dependent”.  In that sense, imprecision in databases covers 

the case where the value of an attribute is given, but not as a 

“single/atomic” value.  

Considering the query mechanism of a DBMS, it  can also be 

deduced that imprecision at the information extraction level is  

synonymous to “subjective ignorance”. This occurs due to the fact  

that the query mechanism has to make a subjective opinion on a set  

of facts that  is not  definitely established.      

With reference to [7], ignorance is divided into objective forms of 

ignorance and subjective forms of ignorance. The distinctions 

between these categories are vague and it  could be argued that  there 

may be an interrelationship between them, since an encoded form of 

objective ignorance may generate a subjective form of ignorance, as 

the information extraction system (i.e. a query mechanism) is not 

precise about the available information.  

Objective ignorance states that imprecision related to randomness is  

an objective property,  and the term “likes” qualifies an event that  

will probably occur.  The occurrence of an event “that is likely”, is 

independent of one’s opinion about the occurrence of the event. It  is  

an objective property of the cause that generates an event.  
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Subjective ignorance is related to an agent’s belief about the true 

value of the information, as derived from existing information.  
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1.5 Definition of Ignorant Information 

 

In this section will be defined what is meant by “Ignorant  

Information” [8-15].  The definition of ignorant is , perhaps, too 

concise; it  is defined as “not complete”.  The definition of complete 

is of more help; complete means entire or whole .  An object, then, is  

ignorant as opposed to an object that is  entire or whole [16-42]. The 

ignorant object  is missing something from its more complete 

partner. For instance, the fact “temperature 20º”, is more complete 

from one which asserts the temperature to be 20º º, or a fact  

which states that  it  could be any temperature.  

The informal definit ion of ignorant information is that information 

is ignorant because it  is missing something from a more complete 

information, and adding the missing information – which may be 

unavailable – can ease the imprecision/ignorance property.  It  is  

very important to note that information is  ignorant only with respect  

to more complete information (which in turn could be ignorant with 

respect to still  other information).  

Let it  be assumed that a fact  is represented by a relation .  Each fact  

instance (tuple) corresponds to a multiset  of values. A database, D ,  

is a set of facts, {F1 ,  …, Fn}. The meaning of a database D  is  

denoted as [D]  and is represented as a set of facts instances [ f] , 

where the meaning of each fact depends on the population of fact  

instances, which in general is a multiset . Each fact in the database 

models everything that is known about the modelled world.  

4±
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Each fact instance in the database has two potential interpretations:  

a definite  interpretat ion and a possible  interpretat ion. The definite 

interpretation is al l  the information that that fact definitely 

represents, while the possible interpretation is everything that the 

fact  possibly represents.  

The fact instances related to a fact are denoted by [ f]  = {f1 ,  …, fn}, 

and d f  is the complete fact instance. Based on [15] the definite  and 

possible  interpretat ion of a fact instance is defined as follows: 

 

Definition 1.4.1.  The definite information of a fact instance [ f] 

writ ten def f ,  is  

def f  ≡ d f  ∩ f i ,  

 where  f i  ∈  [ f] , ∩ is set intersection.  

 

Definition 1.4.2.  The possible information, writ ten poss f ,   

poss f  ≡ d f  ∪ f i  − def f ,  

where f i  ∈  [ f] , ∪  is  set union. 

 

The formal definit ion of ignorant/ imprecise information in a fact  

instance is related to its possible and definite information. A fact 

instance can be ignorant/imprecise with respect to another fact  

instance.  
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Definition 1.4.3.  A fact instance [ f]  is ignorant/imprecise with 

respect to a fact f ’
 (writ ten f  < f’) i f  

 ((deff ⊂  deff’) ∧ (possf ⊆  possf’)) ∨ ((deff ⊆  deff’) ∧ (possf ⊂  possf’)) 

 

The definition states that f  is ignorant/imprecise with respect to f ’  i f  

i t  contains either less definite information or more possible 

information. The uti lity of these definitions is  explained with the 

aid of an example.  Consider the following fact instances of the 

sample fact “employment” abbreviated as:  

[F = emp(Employee-name)],  

f1  = {emp  (John)},  

f2  = {emp (John), emp (Anne)},  

f3  ={emp  (John),  emp (Anne),  emp (Adam)} .  

 

The definite and possible information in these facts is given below. 

def f 1  = {emp (John)},   poss f 1  = ∅ ,  

def f 2  = ∅ ,   poss f 2  = {emp  (John),  emp (Anne)},  

def f 3  = ∅ ,   poss f 3  = {emp  (John) ,  emp (Anne), emp (Adam)}. 

 

Thus, f2  is ignorant/ imprecise with respect to f1  because it  has both 

more possible information and less definite information. Similarly 
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f3  is ignorant with respect to f2  but only because it  has more 

possible information. 

Ignorant  information is present at the database level as well  as at 

the fact level  (a database is a set of facts). For example,  a database 

that contains two facts is imprecise with respect to another 

database, which stores those two facts plus a third. Ignorance at the 

database level  is defined below. 

 

Definition 1.4.4.  A database D  is ignorant/imprecise with respect to 

another database D’ if  

(∀  F i  ∈  D)  ((∃  Fc∈  D’)(F i  < Fc))  

 

This definition underlines that the incomplete database is missing 

information from its more complete partner. Imprecision at the 

schema level will not be explored further, since it  is believed that 

the existence of the uncertainty as a property of data is independent 

of schema incompleteness.  
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1.6 Imprecision in OLAP & Data-Warehouses 

 

The mult i-dimensional view [43-46] of the data is an essential  

requirement of OLAP systems. The functionality requirements are 

divided into four categories:   

Data Cube Operations: In this category, slice, dice, drill -down and 

roll-up operations are the most important. Slicing is the operation 

of selecting the dimensions used to view the cube. It  is analogous to 

the selection operation in relational algebra. Dicing is the operation 

of selecting actual  positions or values on a dimension. Roll-up is  

the operation of increasing the granulari ty along one or more 

dimensions. Drill-down is the converse operation of decreasing the 

granularity.   

Aggregation Operations:  functionality requirements refer to SQL 

type aggregate operators like (MIN, MAX, SUM, AVG, COUNT).  

Handling of Imprecise data:  This category includes well-defined 

mechanism for representing, modifying and transforming imprecise 

data consistently within the model as well as in associated 

operations.   

Imprecision is persistent all  over the real world. There are several 

sources of imprecision.  In empirical si tuations, imprecision is  a 

result of measurement errors and limits of measuring instruments. 

When measuring the distances between galaxies, for example, the 

limitat ion of instruments used wil l introduce imprecision. The same 
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applies to measurements of very small distances – the microscopic 

world.  The natural  language also contains ambiguity and vagueness.   

A simple OLAP application for business competi tion analysis would 

need to handle imprecision in the data. For example, i f a firm wants 

to construct a data-warehouse to store the estimated sales of 

competi tor products over a period of time, the data will  necessarily 

contain some imprecision.  Similarly,  weekly forecasts of sales 

normally contain imprecision and when collected for a period of 

time, the data-warehouse will contain uncertainty measures for each 

forecast made. Such data-warehouse can be used to analyse the 

accuracy of the models used to forecast and compare them with 

actual sales to tune the models in order to better forecast.   

Consider the following aggregated wine-sales data in the form of a 

fact  table, “Figure 1-2”.  

• Fact-P1: represents the summarised sales of red wines 

(Bordeaux, Merlot) across the East Region (Dover,  

Canterbury).  

• Fact-P2: represents the summarised sales of white Muscat in 

the town of Canterbury.  

• Fact-P3: represents the summarised sales of White Bordeaux, 

across the East  Region (Dover, Canterbury).  

• Fact-P4: represents the summarised sales of white Muscat in 

the town of Bristol.  

• Fact-P5: represents the summarised sales of red Merlot in the 

town of Cardiff.  

• Fact-P6: represents the summarised sales of white Bordeaux 

in the town of Bristol. 

• Fact-P7: represents the summarised sales of red Bordeaux in 

the town of Cardiff.  
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• Fact-P8: represents the summarised sales of white wines 

(Bordeaux, Muscat) in Cardiff.  

 

 

Figure 1-2:  Aggregated Sales Data 

 

Consider the query asking for the sales of red Bordeaux in the East 

Region, or the sales of white Bordeaux in Dover.  

Existing OLAP tools cannot provide answers based on the semantics 

of possible worlds. Thus, they cannot provide possible answers, as 

part of a query request . In [47] an efficient QC-tree structure is  

proposed that allows the preservation of the cubic structure and its 

structural semantics while rolling or drill ing down along the axes of 

analysis. One could possible expand the QC-tree structure to 

operate over imprecise dimensional domains but in its current  form, 

it  cannot be utilized immediately for defining imprecise OLAP 
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query conditions or grouping statements.  In effect,  the semantics of 

possible worlds cannot be accommodated directly by the QC 

structure in its current form as propose in [47].        

Current OLAP database vendors can only deal with precise data 

domains and dimensions and are not designed to cope with the 

semantics of possible worlds or with change in dimensions. 

Research efforts were made by [48] and [49] trying to address the 

issue of designing an OLAP engine that can cope with the semantics 

of possible worlds and to that  extent with imprecise data. 

Extensions of the OLAP operators that would be able to deal with 

imprecise data based on the semantics of possible worlds wil l also 

require the extension of the underlying data model, cube model and 

its dimensions.  

Handling of “Kind-of” Relations:  Based on the initiatory 

framework for hierarchical aggregation proposed by [50] new 

multidimensional  models are proposed by [49], [51], [52] and others 

that can manage imprecision both in the dimensions and the facts as 

it  is claimed. However, approaches proposed by [49], [51], [52] can 

only support linguistic imprecision at  the levels of facts and 

dimensions.  Linguistic imprecision is  related usually to fuzzy 

functions defined behind a linguistic term i.e. high or low but such 

approaches do not  support imprecision on the definition domain of a 

hierarchical concept/dimension.  Moreover in terms of the cubic 

model [62] functions can be used only as  measures while according 

to [49],[51],[52] same fuzzy linguist ic functions can be used as 

measures as well as dimension attributes, obviously measures and 

dimensions are semantically different  and should not be confused. 

Moreover [51] is  ignoring the fact  the OLAP is used to set  the axis 

of analysis before applying data mining. It  should not be ignored 
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that  OLAP allows us to verify patterns of behaviour, while data-

mining is focused on identifying patterns of behaviour.  

This thesis is delivering an approach based on the notion of H-IFS 

that  al lows users to modify the axis of analysis/dimensions on the 

basis of its definition domain so different users can define the 

whole set of dimensions differently and not  just to al ter the 

linguistic definition of a dimension attribute as  proposed by 

[49],[51],[50]. Moreover,  the H-IFS OLAP approach and queries 

can be performed on top of existing OLAP servers without requiring 

new indexing schemes as in the case of [49]. In part icular, the 

propagation of preference or possibility degrees in a hierarchy that  

is proposed here, is in adequacy with the object  model, in which a 

query on a given class is also addressed to the subclasses of that  

class.  To this extent , the concept of   “Hierarchical Intuitionistic 

Fuzzy Sets, H-IFS” is proposed and investigated. In the work shown 

here, the “kind-of” relation defines the hierarchical links. The 

membership of an element in “H-IFS” has consequences on the 

membership of its sub elements in this Intuitionistic fuzzy set. “H-

IFS” that have the same closure define equivalence classes, and 

each class has a unique particular representative, called “minimal 

IFS”.   
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1.7 Conclusions and Chapter’s Overview 

 

In this  chapter, the meaning of imprecise/ignorant  information in 

relational databases was defined, and the proposed extensions to the 

relational data model that can represent and retrieve incomplete  

information were classified. There are many different kinds of 

ignorant information including information that is fuzzy, imprecise, 

indeterminate,  indefinite, missing, partial,  possible,  probabilistic,  

unknown, uncertain, or vague. Each variety of ignorant information 

will be explored in detail below. Because there are so many 

different flavours of ignorant information, there have been many 

proposed extensions of the relational model to support  

ignorant/imprecise information. To make sense of the multi tude, a 

taxonomy will be provided that brands each proposed extension in a 

general class of ignorant information models. Also a connection 

between the dual properties of uncertainty/imprecision will be 

provided. 

First,  “imprecise/ignorant” conflicting information is defined and a 

formal notation for describing databases that contain imperfect 

information will be build. Next, the formal definit ion of the kinds 

of ignorant  information found in the literature will be applied.  

In Chapter 2, the various kinds of value imprecision will be 

described and the meaning of each type given, in the context  of the 

formal model semantics. The discussion will be focused on 

imprecise information stored as attribute values, which is  called 

“value imprecision” in the context of data repositories and online 
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analytical processing (OLAP). It  is pointed out that  in the case of 

OLAP, value imprecision has a double-sided effect since it  

influences the representation needs for the facts as well  as for the 

dimensions of the multidimensional  paradigm.  

Chapter 3 brings forward a solution named H-IFS that allows the 

representation of flexible hierarchies as part of the dimensional  

structures,  allowing thus users to define the axis of analysis 

according to their requirements.  

Chapter 4 delivers an extended mult idimensional model named “IF-

Cube” that allows for the representation of imprecise facts and the 

answering of queries based on user-defined hierarchical preferences 

with the aid of H-IFS. 

Chapter 5 reveals the metadata of the model and delivers the IF-

Oracle ad-hoc util ity that is implemented on top of Oracle-10G. IF-

Oracle utilizes the concepts of H-IFS and IF-Cube as part of the 

data definit ion and manipulation language allowing, thus, users to 

redefine the axis of analysis and retrieve answers closer to their 

intent or perception of the reality.  During the implementation of IF-

Oracle ad-hoc utility, emphasis will be given to the implementation 

of such scheme and its compatibility with the current SQL standard 

and data support offered by database and OLAP vendors.  The 

performance of the IF-Oracle ad-hoc utility is solely dependable, 

due to lack of standardisation across database vendors,  on the 

number of dimensions supported by the back-end Database/OLAP 

server employed on a particular organisation.   

Overall ,  this thesis is about embedding precise or imprecise data 

and knowledge as part  of an extended OLAP environment, 

christened Knowledge based OLAP or KNOLAP.   



Treatment Of Imprecision In Data Repositories With The Aid Of KNOLAP 

Imprecision and OLAP Data Models 

 

 
                       Ermir Rogova, PhD Thesis, University of Westminster, London                          20 

 

"It is the mark of an instructed mind to rest satisfied with the degree of precision 
which the nature of the subject admits and not to seek exactness when only an 

approximation of the truth is possible."   

Aristotle 

 

 

Chapter Two 

2. Imprecision and OLAP Data Models 

 

2.1 OLAP Data Models 

2.2 Common models of imprecision in ROLAP 

2.2.1 Ignorance and Probabilistic values 

2.2.2 Imprecision and Fuzzy values 

2.2.3 Imprecision and Null  values 

2.3 Common Models of imprecision in MOLAP 

2.4 Remarks on OLAP and Imprecision 

2.4.1 Initial  Approaches to OLAP and Imprecision 

2.4.2 Current Issues to OLAP and Imprecision 

2.5 Introducing KNOLAP 
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2.1 OLAP Data Models 

 

Online analytical  processing,  or OLAP, is an approach to quickly 

answer multi-dimensional analytical queries. OLAP is part of a 

broader category of business intelligence, which also encompasses 

relational querying and data mining. OLAP offers a single subject-

oriented source for analysing summary data based on various 

dimensions. It  is assumed in multidimensional data analysis that a 

query needs summary data related to a specific subject and i t  must 

consider the data in respect of certain entit ies. Summary data is 

usually numerical  and measurable.  Therefore, the attributes 

representing them are often called measure attributes. The entities 

on the basis of which summary data is analysed are called 

dimensions,  represented by dimension attributes. By selecting the 

specific dimensions through which summary data is analysed one 

can obtain a view into summary data.  

When it  comes to OLAP data models, there are two base models in 

use [53]. Those are: ROLAP – short  for Relational On-Line 

Processing, and MOLAP, which stands for Multidimensional On-

Line Processing. The combination of both models offers an 

alternative model known as HOLAP, which combines features from 

both basic models,  and stands for Hybrid On-Line Processing.  The 

HOLAP approach, allows the model designer to decide which 

port ion of the data will be stored in MOLAP and which in ROLAP. 

Both models have their own strengths and weaknesses. ROLAP was 

first introduced, mainly by commercial vendors like Oracle,  DB2, 
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etc. and utilizes their powerful indexing systems and query 

optimisation algorithms developed for relational databases.  Thus, 

ROLAP is considered to be more scalable in handling large data 

volumes, especially models with dimensions with very high 

cardinality.  This is because the data itself  is stored on relational  

databases and manipulated to give the appearance of OLAP 

functions like slicing and dicing.   

The strength of ROLAP is inherited by the relational databases 

system, which lies on its solid relational  database theory. Hence, i t  

can cope with very large amounts of data and also makes use of the 

functionalities of the relational model. On the other hand, precisely 

because it  is build on top of a relational model, it  suffers from 

performance issues when it  comes to aggregated tables.  ROLAP 

relies on the general purpose database for querying and caching, 

and therefore several  special  techniques employed by MOLAP tools, 

such as special hierarchical indexing, were not available until  

recent  improvements in OLAP server models.   

The HQC [54] is  an approach in which hierarchical dimensions are 

introduced and the size of data cube is reduced to minimal in order 

to deliver better query performance.  By using hierarchical  

dimensions, the size of HQC can be reduced without information 

being lost.  However, current  HOLAP servers offered by the main 

database vendors have addressed the needs for special hierarchical  

indexing. Another weakness, again associated with SQL, would be 

the shortcoming of SQL operators when i t  comes to performing 

complex calculations.  

The figure below shows a simple example of the ROLAP model in 

the form of a star schema. The star schema is a way of 

implementing multi-dimensional  database (MDDB) functionality 
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using a mainstream relat ional database. Given the typical  

commitment to relational databases of most organisations, a 

specialised multidimensional DBMS is likely to be both expensive 

and inconvenient .  

 

Figure 2-1 :  An example  of  a  S tar Schema 

 

In MOLAP, the data is not stored in a relational database. Instead, 

it  is stored in multidimensional cubes/arrays. This structure gives 

MOLAP the advantage of performance,  when it  comes to query 

execution – especial ly for queries containing aggregate operators –   

as the data-cube is  build for the very purpose of being able to  

perform operations l ike slicing and dicing with ease, as well as the 

advantage of being able to perform complex calculations. This is  

because all of complex calculations are made when the cube is first  

generated, therefore, these complex calculations are not  only 

doable, [43] but  they also take a fraction of t ime to display.   
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A disadvantage of this model would be that  it  is  limited in the 

amount of data i t  can handle.  It  is very compact for low dimension 

data sets. As all  the calculations are performed when the data-cube 

is built ,  i t  is not possible to include a large amount of data in the 

cube itself. The cube could be derived from a large amount of data,  

but only a summary level  of information will  be included in the 

cube itself. MOLAP is an important application on 

multidimensional data-warehouse. For the cube with d dimensions, 

it  can generate 2d cuboids. However, in a high-dimensional cube, it  

might not  be practical to build all  these cuboids.  

In [55] a method is  proposed that parti tion the high dimensional  

data cube into shell  mini-cubes.  The proposed data allocation and 

processing model also supports parallel I/O and parallel processing 

as well as load balancing for disks and processors, relevant to grid 

environments that ut ilize online analytical processing.  

A MOLAP example with the same dimensions and measures as the 

previous one is shown in the picture below. 

 

Figure 2-2 :   An example of  the MOLAP data -cube  
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As both ROLAP and MOLAP models are being used in marketing, 

management reporting, business process management, budgeting and 

forecasting, financial report ing and similar areas, it  is only natural 

that there has been research conducted in effort to enable these 

models to capture and deal with imprecision, when i t  comes to data 

analysis. In such environments, there is  a need to allow decision 

makers to describe facts using abstract human concepts.  

Furthermore, query answers should not be restricted to one 

categorical association, simply because different fragments of the 

organisation may treat same data from different points of view when 

it  comes to analysis.   

In the next sections,  various approaches for treating imprecision in 

ROLAP and MOLAP data environments will be reviewed. 
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2.2 Common models of imprecision in ROLAP 

 

In any extended relational environment, one may dist inguish three 

models for treating imprecision at the attribute level, as listed 

below: 

• Probabilistic values 

• Fuzzy Values 

• Null values  

 

 

2.2.1 Ignorance and Probabilistic values 

 

Probabilistic information is a deviation of ignorant/imprecise 

information.  A probabilistic data value is  a set of alternatives. Each 

alternative has an associated probabil ity that it  is the attribute value 

[16, 17, 18]. For example, in a “wines” database, assume that  

Merlot’s price is not  known exactly,  but there is  55%-65% certainty 

that it  is £8 and 30%-40% certainty that it  is £10. Merlot’s price is 

a probabilistic value; the value exists, i t  is a value from a known 

subset of the attribute domain. It  is exactly one value, and it  is 

known that some alternatives are more l ikely than others. In some 

models, one of the members of the set of alternatives could be an 

unknown value [19] , in which case the associated probabil ity is  

distributed uniformly over the elements in the domain.  
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To represent a probabilistic fact using the multi-set (bag) notation, 

the probabil ity of an al ternative is proportional to the membership 

rat io of that alternative in the multi-set, adjusted by ±e  to reflect a 

possible margin of error, or missing probability α.  

The interpretation for the missing probabilities is that they could be 

distributed over the entire set of realisat ions of the at tributes [20] 

including the ones that already appear in the relation. In that case,  

the imprecision associated with the attribute values for tuples that 

appear in the relat ion are represented by probabili ty intervals, and 

not point estimates. So if f i  is an alternative, fact instance is F  with 

probability p  then:  

[max (0,  p-e),  min(1,  p+(e+α)]
.
 {  f i  }∈  F 

 

For example if [F = Stock (Wine-Name, Price)]:  f2  is an instance or 

situation of F.  

f2  = {Merlot  (8, 10)} 

 

Situation f2  could arise if,  for instance, 20 people are polled to 

estimate Merlot’s price for the upcoming year. Thus, the multiset or 

bag that represents the domain price consists of 20 members/values. 

Twelve people estimate Merlot’s price of £10 corresponding to 

point est imate of p=0.60=60%. Seven people estimate Merlot’s 

price of £8 corresponding to point estimate of p=0.35=35%. One 

person has not been contacted, thus presented as null value in a 

multi-set notation corresponding point-missing probability of 

α=0.05=5%. All  people accept that there may be a marginal  error in 
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their predictions of e=0.05=5%. Therefore, there are two different  

alternatives for the upcoming price of Merlot:  

8/[max(0, p-e) , min(1,  p+(e+α)]  = 

 8/[max(0, 0.35-0.05), min(1,  0.35+(0.05+0.05)] = 8/[0.30, 0.45] 

 

Similarly,  the probability for the upcoming price of £ 10 is  

 10/ [0.55, 0.7].  

Hence,  f2  implies possible information:  

{[0.55, 0.7](Merlot , 10), [0.3, 0.45](Merlot, 8)}.  

 

2.2.2 Imprecision and Fuzzy values 

 

Another variety of ignorant/imprecise information is fuzzy set 

information. A fuzzy set is a set of possibilities. Each possibility is 

a maybe  value,  that  is ,  may belong to the set  or it  may not .   The 

possibility that it  does  belong is  known as the degree of 

membership .  The degree is a value between 0 and 1 inclusive. A 

fuzzy set  can be an attribute value [21].  

The meaning of a fuzzy set  value in a multi-set  notation is  similar 

to the meaning of a probabilist ic value [22, 23]. But a possibility  is 

a subset of the attribute domain, rather than just an element of that  

domain.  If  the degree of membership is ignored,  then the meaning 

of a fact instance f i  with a fuzzy set value, with N members is given 

by a multiset with 2
N

 members. For example:   
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f2  = {Merlot  (8, 10)} 

 

For the moment let’s set aside the degree of membership for 8 and 

10. Then, the meaning of  f2  is {{Merlot(8, 10)}, {(Merlot(8)},  

{(Merlot(10)}, {(Merlot( )}}. If  it  needs to be expressed that £8 is  

the price of Merlot’s , with degree of membership 0.35 and that  £10 

is the price of Merlot’s with degree of membership 0.65 then the 

meaning of f2  is  {0.35{Merlot  (8,  10)}, 0.35{Merlot (8)}, 

0.65{Merlot (10)}} 

The distinction between probabilistic and fuzzy attribute-values is a 

controversial issue. However, it  can be safely concluded that the 

meaning of a probabilistic value is a subset of the meaning of a 

fuzzy value. In the probabilist ic meaning, only the singleton sets 

are retained as elements.  

Much of the previous research on value imprecision is  related to the 

semantics and issues of null values.  

 

2.2.3 Imprecision and Null values 

 

A null value represents an unknown attribute value. It  is a value that  

is known to exist ,  but the actual value is unknown. The unknown 

value is assumed to be a valid attribute value, that is, some value in  

the domain of that at tribute. This is a very common kind-of ignorant  

information. An ignorant value has various names in the literature 
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including unknown null [24], missing null [25], and existential null 

[26]. 

The meaning of a fact, F ,  with an unknown attribute value over an 

attribute domain of cardinality N  is  a multiset with N  members; 

each member is a set containing an F  instance, with the unknown 

value replacing a different value from the attribute domain. For 

example,  assume f2  = {Merlot (⊥)} where (⊥  represents an unknown 

value over a domain {8, 10}),  then the meaning f2  of is:  

 

f2  = {{Merlot (8)},  {Merlot  (10)}} 

 

This corresponds to the notion that a fact with an unknown value is 

incomplete, compared to a fact where that unknown value is no 

longer unknown, but  is now known to be a specific value (i .e.  f1  = 

{{Merlot (8)}).  

Another generalisation of an unknown fact is a disjunctive fact [27],  

also known as indefinite information [28]. A disjunctive fact is a 

logical “OR”  applied to fact instances. Let F  be an inclusive 

disjunctive fact with N  disjuncts. The meaning of F  is given by a 

multiset with N  members; each member is a set, containing one 

disjunct . For example, the price of Merlot may be £8 or £10. (i .e.” 

Merlot  (8),  Merlot (10)”).  

The disjunction could be exclusive  [29] or inclusive [30].  If  it  is an 

exclusive disjunction, one and only one disjunct is t rue. The 

meaning of an exclusive disjunctive fact  is the same as that  of an 

imprecise value. Let f2  = {{Merlot (8)}, {Merlot (10)}} be an 
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exclusive disjunctive, then the meaning of f2  is f2  = {Merlot (8)} ∨  

{Merlot (10)}.   

The meaning of an inclusive disjunctive fact is somewhat different  

than that of its exclusive complement, where at least  one alternative 

may be true. Let F  be an inclusive disjunctive fact with N  disjuncts.  

The meaning of F  is  given by a multiset  with 2
N

-1 members;  each 

member is a unique subset  of disjuncts. For example, let’s  assume 

the inclusive disjunct f2  = {Merlot (8) {Merlot (10)}, then the 

meaning of f2 ,  is f2  = {{Merlot (8)}, {Merlot (10)}, {Merlot (8), 

Merlot (10)}}, excluding the fact, {{Merlot (⊥)}. The empty (⊥) 

attribute represents the situation where a fact instance exists, but  

does not have a part icular attribute value.  

A maybe value is an attribute value, which may or may not exist 

[31]. If  it  does exist,  the value is known. A maybe tuple or  fact-

instance is similar to a maybe value ,  but the entire tuple might not  

be a part of the relation. Maybe tuples  are produced when one 

disjunct  of an inclusive disjunctive fact-instance is found to be true.  

A combination of inclusive disjunctive fact instance  and a maybe 

fact instance  can determine the semantics of open information or 

nulls  [32].  The denotation of an open null  is exact to inclusive 

disjunctive information with the addition of the empty set as a 

possible value. That  is, the attribute value may not exist,  could be 

exactly one value, or could be many values. For example,  in the 

“wines” database, an open value could be used to present Merlot  

prices. This value means that Merlot price possibly had a past 

record, (this  could be the first  appearance in the market);  Merlot 

price may be one or many. The open value covers al l these 

possibilities. A generalisation of open information is possible 

information [33] (this differs from the use of the term “possible” 
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here). Possible information  is an attribute value whose existence is  

undetermined, but if it  does exist,  i t  could be multiple values from a 

subset of the attribute domain.  

A no information value is a combination of an open value and an 

unknown value [34] . The no information  value restricts  an open 

value to resemble an unknown value. A no information  value may 

not exist,  but  if it  does,  then it  is a single value, which is  unknown, 

rather than possibly many values. The meaning of a no information 

value is similar to that of an unknown  value with the inclusion of 

the addition of the empty set  as a possible value.  

Unknown, partially known, open, no information ,  and maybe  null 

values are different interpretations of a null value. There are other 

null value interpretations, but none of these is a kind-of well  

cognisant  information.  

An inapplicable or does not exist null  is a very common null value. 

An inapplicable null ,  appearing as an attribute value, means that an 

attribute does not have a value [35]. An inapplicable value neither 

contains nor represents any ignorance; it  is known that the at tribute 

value does not exist .  Inapplicable values indicate that the schema, 

usually for reasons of efficiency or clari ty,  does not adequately 

model the data. The relation containing the inapplicable value can 

always be decomposed into an equivalent  set  of relations that do not 

contain it .  Hence the presence of inapplicable values indicates 

inadequacies in the schema, but does not imply that information is 

being incompletely encoded. A single null value is  often 

semantically overloaded to mean either an unknown value or an 

inapplicable value [36] in which case i t  is  no information null .  
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In summary, post relational database environments are capturing 

imprecision with the aid of a set of al ternatives or possibilities.  

Alternatives or possibilities can be expressed with the aid of 

weights or non-weights.    

Weights play an important role in some data models. They are 

typically normalised values in the range [0,  1]. Weights are 

assigned to individual al ternatives or individual possibilities of an 

incomplete value. For an alternative, a weight gives the chance or 

probability that the alternative is the actual value. For a possibility,  

a weight indicates the likelihood that the possibility is an actual 

value.  

The un-weighted school is an important  special case of the weighted 

school.  The un-weighted school is mainly expressed by the different  

value semantics that  are expressed with the aid of different type of 

“null” values [14]. An appropriate weighting scheme can usually be 

used to encode un-weighted information using uniform weights.  

However, the query evaluation semantics with weighted imprecise 

information differs substantially from that with un-weighted 

information since queries need to be able to utilize the weighted 

information. Un-weighted, means not only that weights are not  

present,  but also that query evaluation semantics make no use of 

weights.  

Un-weighted imprecise information may be either unrestricted or 

restricted .  By restricted it  is meant that  the value of each 

possibility or alternative is restricted to a subset of the at tribute 

domain. The subset to which it  is restricted must be encoded as part 

of the imprecise information in the value (if it  were kept in the 

schema, the restrict ion would simply be to the domain of the 

attribute). OLAP queries must take into account the restriction 
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during query evaluation. An unrestricted value has no such 

constraints.   

The three different models for representing ignorance at the data 

level have been presented with reference to the semantics of 

definite and possible information.  
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2.3 Common Models of Imprecision in MOLAP 

 

The need for flexible systems to manage value imprecision has been 

the focus for database researchers, mainly at theoretical level  and in 

the context of the relational model. There have been two approaches 

when it  comes to modelling value imprecision.  One approach uses 

the probabilist ic model to capture, define and process value 

imprecision. The other approach uses fuzzy modelling for achieving 

the same results.   

New multidimensional models are proposed by [49], [51], [52] and 

[56] but can only support l inguistic imprecision at the levels of 

facts and dimensions. Such approaches do not support imprecision 

on the definit ion domain of a hierarchical concept/dimension. [49], 

[51], [52] and [56] do not allow users to modify/change the axis of 

analysis/dimensions on the basis of its definition domain so 

different users can define the whole set  of dimensions differently 

and not just alter the linguistic definition of a dimension at tribute. 

Moreover,  OLAP query execution cannot be performed on top of 

commercial  OLAP servers without requiring new indexing schemes.   

At the same time OLAP, technology required [62] the extension of  

the relational systems with the inclusion of the data-cube and 

operators to operate over i t .  Alternatively,  new models [46]  were 

proposed to support OLAP based querying on top of 

multidimensional  views.  
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In OLAP based systems, when it  comes to the model level , support  

for value imprecision will be required at the fact level  as well  at  the 

level of dimensions with the support  of flexible hierarchies.   

An interest ing approach was used by [57] to address the issue of 

dealing with imprecise data in OLAP. A “deputy mechanism” is 

employed that was first introduced by [58] for use in an Object-

Oriented model, and then extended by the inclusion of two new 

concepts: deputy classes and deputy objects.  In this  model, any real  

world entity is abstracted as an object, with a unique identifier and 

with attributes and methods that are used to describe its properties 

and behaviours. Objects with common attributes and methods are 

then grouped into separate classes. An object can have one or more 

deputy objects, and the deputy objects can have their own deputy 

objects as well.  Deputy objects can selectively inherit attributes and 

methods from their source object(s) as well as extend their own 

attributes and methods. The deputy objects sharing the same schema 

are defined by a deputy class.  Then, the standard OLAP data model 

is extended to represent  imprecise data and composite measures.   

In [57], probabilistic weights are assigned to objects in a process 

they call  “deputy al location operation”.  A range of extended query 

operators (computation join, union, and match join) is defined. The 

implementation of the above functions in object deputy database 

was done by:  defining the grammar of the statements in parser, so 

the system can understand the meaning of the statements and 

extending the analyser, which can transform the commands into 

standard query structures.  The metadata of classes is stored in 

system catalogues. The process of defining OLAP was done in 4 

steps:  
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• Store basic information into od_class (a catalogue that holds 

basic schema information)  and get a unique class OID, 

• Check up the deputy operator rule.  There are some deputy 

rule (allocation, match join, union, etc.) It  must follow 

certain restrictions according to the declared deputy mode. 

For example, sub-queries shouldn’t appear in the deputy rule 

of the group operator; the join operator needs at least two 

classes to join.    

• Extract  the schema of deputy class.  Each target  expression in 

the operator rule defines the schema, whose name and data 

type is  the same as that of the expression result .  This 

information will be stored in catalog od_attribute.  

• Creating deputy objects. Finally, system will execute the 

operator rule to create deputy objects for the created deputy 

class.    

 

By doing this, it  is  clearly shown that  the deputy mechanism is 

more flexible than the traditional inheritance mechanism, and that it  

can also improve query performance.  

While the allocation of probabilistic weights was proven somewhat 

effective, the fact remains that they [57] expect the user to offer the 

domain knowledge and part icipate in the formulation of the OLAP 

query. This knowledge is not incorporated anywhere in the 

multidimensional structure. As a matter of fact , there was no 

structure in place that could accommodate the knowledge required 

to perform the weight distribution. Furthermore, the list of 

operators is very short and does not include all the basic operators 

that is required in order to process the imprecise data in the 

repository.    
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In [59], the OLAP model is extended to represent imprecision and 

uncertainty by introducing an allocation-based approach to the 

semantics of aggregation queries. They employ the following 

“criterions”:    

• consistency  – that  accounts for the relationship between 

similar queries issued at related nodes in a domain hierarchy, 

and is  supposed to act as a intuition to users’ expectation as 

they navigate the hierarchy.  

• faithfulness  – that captures the intuition that more precise 

data should lead to better results,  and 

• correlation-preservation  – as a requirement that stat istical 

properties of the data should not be affected by the allocation 

of ambiguous records.  

 

In [59], the OLAP model is extended as following: in order to 

model imprecision, dimension attributes are assigned as leaf-level  

values from the underlying domain hierarchy and then introduce a 

new “kind-of” measure attribute that represents uncertainty. It  sees 

an uncertain value as a range of possible values together with their 

belief in the likelihood of each possible measure. Hence, a value for 

an uncertain measure is represented as a “probabil ity distribution 

function over values from an associated ‘base’ domain”.  

Furthermore, the extended operators (SUM, COUNT, AVERAGE 

and LINOP-linear operator) are defined in order to cope with 

alternative values.  

Even though this methodology yields some interesting results, i t  

fai ls to address the issues of imprecision and user preference at the 

hierarchical level .  
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Motivated by the increasing use of OLAP technology for medical  

applications, [60] investigate how to solve one of the most common 

problems with medical data,  imprecision generated due to the use of 

multiple hierarchies with different data granularities. The approach 

described in [60] generally uses the concept of data granularity to 

handle imprecision in the data. A multidimensional data model is  

presented and an associated algebraic query language that facilitates 

the formal denti tion of the imprecise concepts. Data imprecision is 

handled by testing if the data is precise enough to answer a query 

precisely. If this is not the case, an al ternative query that might be 

answered precisely is suggested. If the user chooses to proceed with 

the original query,  the imprecision is reflected in the grouping of 

data, as well as in the computation of the aggregate functions. The 

user is presented with the three different results.  The conservative 

answer includes only what is known to be true, the liberal answer 

includes everything that  might be true, while the weighted answer 

includes everything that might be true, but gives precise data higher 

weights than imprecise data. Along with the computation of 

aggregates,  a separate computation of the precision of the result is 

carried out . As part of the imprecise query execution, the non-

definite answer is  presented to the user.  

Compared to previous approaches to handling imprecision, [60] 

provides a different point  of view as it  shows how existing concepts 

and techniques from multidimensional databases, such as 

granularities and pre-aggregation, can be maximally re-used to also 

support  imprecision.  This yields an interesting approach that can be 

implemented using current MOLAP technology. As MOLAP 

involves pre-aggregated data, i t  would be interesting to see a more 

theoretical investigation of implementation of this technique.   
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The presented technique is  applicable for the common cases where 

the data has a degree of imprecision that cannot be ignored, but data 

precision in any given dimension is expected to be higher than the 

precision requested by the queries. If the data is highly imprecise, 

this technique will not be so helpful, as ill  defined data can only 

produce vague answers. This proposal, [60], fails to address 

imprecision at the conceptual level  and provide “single-value” 

aggregation functions like MIN and MAX, which unlike other 

aggregation functions, are not readily sensitive to weighting. A 

single-value function would return only one value as a result  of the 

query, like the highest, the lowest, the average or the sum of values 

of a specific domain, unlike multi-value functions that can return 

multiple answers. Another issue, not addressed, would be to al low 

the user to reformulate the query according to their axis of 

preference or to seek and obtain more precise data from outside 

sources.  

In [61] a Probabilist ic Multidimensional  data model similar to the 

multidimensional data model in [62] and the probabilist ic relational  

model in [63, 64] has been introduced. This model addresses the 

shortcomings in the OLAP model proposed by [62] by incorporating 

probability into the model. The probabilistic model in [64] provides 

a guideline in incorporating this , which was followed by [61]. In  

this model, each cell in the cube is  stamped with probability 

measure pS .  The probability stamp represents strength of the belief 

that there exists a real world object with given cell values. This is 

in contrast to the [62] model where a cell with a set of values 

represents existence of a real world object  with certainty.  As 

probability is being used to indicate the measure of the strength of 

belief, i ts domain is  [0,1].When pS is 0,  the real world object does 

not exist and when  it  is  1, i t  exists for certain. When it  is  0, the 
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cell values for that object are not represented. When i t  is 1, the pS 

is not  written explicitly in the cube cell.  In this case, the model 

reduces to the [62] model. The authors also extend the algebra from 

the algebra provided for data cubes by [62]. The main shortcoming 

of [64] is that it  does not allow for user involvement when it  comes 

to flexibili ty on query preference or axis of analysis.  
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2.4 Remarks on OLAP and Imprecision 

 

2.4.1 Initial Approaches to OLAP and Imprecision 

 

Databases are one form of modelling the aspects of the real  world.  

The specific segment of the real world,  which a specific database 

models, is called the enterprise. Nearly all present  databases model 

enterprises that  are crisp.  A crisp enterprise is one that is  highly 

quantifiable - all  relationships are fixed and all attributes have one 

value. The case of precise-enterprise and precise-data includes 

virtually all  database systems in widespread use. In query language,  

the issue is whether a particular data item matches a query term 

when it  is not identical to the term. There is a need for a simple 

query language, in which a user can indicate the degree of  

relaxation permitted to achieve a match.  Even with data having no 

imprecision,  such a query language would be useful .  

However, it  was and still  is the precise enterprise and imprecise 

data that inspired one of the earl iest seminal  papers on uncertainty 

in relational databases [8]. The key notion is that while only one 

value applies to the enterprise, the database extension may contain a 

set.  The classical approach is to reduce retrieval  to 3-valuelogic [9]  

whether the query language is crisp or not. Each database object is  

surely ,  maybe ,  or surely not  response to the query.  

The appropriate branch of post relational database systems that  

deals with problems of this nature is  possibility or probability 

theory.  The application to the precise-enterprise and imprecise-data  
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is obvious. The value in the database is a possibil ity or probabili ty 

distribution that is  taken to mean the limits of knowledge 

concerning the actual value as correctly pointed by [10] . The 

ultimate goal  of the flexible-based model is  to provide more 

information about the data retrieved in the maybe  category.  

The relat ional database model [11] has been proved to be a fruitful  

paradigm for database research and commercial applications. The 

relational model blends conceptual simplicity with a solid 

theoretical foundation, and has an efficient implementation [12]. 

But, as originally formulated, the relational model could not 

represent  or query value imprecision.   

Considering al l the problems and architectural issues related with 

the representat ion of value imprecision at the database level , it 

could be concluded that up to now value imprecision representation 

was mainly an implementation issue,  therefore solutions were 

domain-problem oriented and dependent rather than trying to 

capture imprecision as a direct mapping between the perceived real 

world and its  computer representation. The emphasis was on 

constructing either weighted  or unweighted  models to capture 

imprecise information.  
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2.4.2 Current Issues to OLAP and Imprecision 

 

Current research issues for OLAP systems can be summarised as 

follows: 

• Flexible models are required to support value imprecision 

at fact/data level as well as at  the dimension level with the 

provision of flexible dimensions.  

• Flexibility should not be eliminated at the structural level.  

It  should be allowed also at the query level . Users should 

be allowed to synthesise their own model of dimensions 

for analysis purposes based on existing structure. 

Dimensions may be based in either rigid or flexible 

hierarchies.  

 

The answer to the issues explained above is an enhanced OLAP 

model that was christened KNOLAP, short for Knowledge-based 

OLAP. This model will be introduced next but will be thoroughly 

discussed throughout this  thesis .  
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2.5 Introducing KNOLAP 

 

In the bibliography concerning the introduction of fuzzy methods 

for replacing unknown values with the aid of background 

knowledge, several issues have been dealt with, but are quite distant  

from what is proposed here.  There are be two main categories of 

papers noted, especially in recent research.  

In studies about possibilistic ontologies [65], each term of the 

ontology is considered as a linguistic label and has an associated 

fuzzy description.  Fuzzy pattern matching between different  

ontologies is then computed using these fuzzy descriptions. This 

approach is related to those concerning the introduction of fuzzy 

attribute values in the object  relational model [66].  

Also, studies about fuzzy thesauri have discussed different natures 

of relations between concepts. Fuzzy thesauri have been considered,  

for instance, in [67].  

Work reported in [68, 69] in parallel to the framework in this thesis,  

considers the problem of obtaining a family of fuzzy clusters with 

clear overlapping by allowing objects to fully belong to several  

classes.  In this framework, the hesi tation margin [70, 71, 72]  

denoting to what extent the overlapping occurs was not considered 

and cannot be represented directly in the fuzzy hierarchies,  

classes/clusters. As a result,  the ordering and ranking of the query 

results  will differ.  Furthermore,  different types of background 

knowledge will be put in use in order to restrict the scope of the 

query and the number of answers.  
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Realising a flexible OLAP environment where value imprecision is 

accommodated at the level of models, give users much more 

flexibility when queries are imposed and at the same time expands 

the range of answers obtained in respond to those queries.  Thus,  

main issues to be resolved in this thesis are:  

• Imprecision at the level of multidimensional models:  the 

semantics of value imprecision have been defined with regard to 

the main structures of multidimensional  modelling (dimensions,  

hierarchies, facts) and the interrelat ionships between them.  

• Users or different applications should be able to define their own 

axes of analysis.  This is  achieved in two parts. On one hand the 

model has to deal with imprecise data. By “dealing with”, i t  is 

meant to not only provide premises for storing the imprecise 

values, but also to process them, perform various OLAP 

operations on these sets of data and try to get a meaningful  

answer back. In order to do so, it  was required to extend the 

normal OLAP operators,  as they cannot cope with imprecise 

data. The detai led work can be seen on chapter four. On the 

other hand, the model devised here should be able to handle 

imprecise hierarchies and dimensions. This would make the 

model flexible and able to deal with perceptions and concepts, as 

well as being much better at incorporating hierarchies from 

multiple sources. This was achieved by employing H-IFS 

(Hierarchical Intuitionistic Fuzzy Sets) which will be covered on 

chapter three. In summary the model should be able to operate on 

various si tuations. These would cover cases  having:  

o Well defined hierarchies/dimensions and precise data 

o Well defined hierarchies/dimensions and imprecise data 

o  Concept based hierarchies/dimensions and precise data 

o Concept based hierarchies/dimensions and imprecise data 
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• Flexible Non-Deterministic Query System:   this  wil l allow the 

querying at the fact level with the assistance of OLAP operators 

after being re-defined with the aid of Intuitionistic fuzzy logic 

[73]. More specifically, the introduction of the automatic 

analysis of queries according to concepts defined as part of a  

knowledge-based hierarchy in order to guide the query answering 

as part of an integrated database environment with the aid of  

Hierarchical Intuitionistic fuzzy sets, H-IFS. 

 

Overall ,  a unique ontological approach for the treatment of value 

imprecision is proposed, with regards to multidimensional  

modelling and flexible structuring of user defined versions of 

measures based on rigid or flexible hierarchies.    
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“The hierarchy of relations, from the molecular structure of carbon to the 
equilibrium of the species and ecological whole, will perhaps be the  

leading idea of the future.”  

Joseph Needham 

 

 

Chapter Three 

 

3. Hierarchical Intuitionistic Fuzzy Sets 

(H-IFS) 

 

3.1 The Case for H-IFS 

3.2 Multidimensional  schemas 

3.3 Intuitionistic Fuzzy Sets and Hierarchical-IFS 

3.3.1 IFS – Atanassov’s Sets 

3.3.2 The Notion of H-IFS 

3.3.3 Obtaining the Minimal H-IFS 

3.4 Representing H-IFS as Concept Relations 

3.5 Generalised IFS-Comparison to H-IFS 

3.6 Conclusions 
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3.1 The Case for H-IFS 

 

Over the past years there has been an increasing interest in 

expressing user or domain preferences [74] inside database queries.  

First,  i t  appeared to be desirable property of a query system to offer 

more expressive query languages that can be closer to user’s intent.  

Second, a classical  query in the sense of relat ional paradigm may 

also have a restricted answer or sometimes an empty set of answers, 

while a relaxed version of the query enhanced with background or 

domain knowledge might be matched by some items in the database.  

Frequently,  integrated DBMS’s contain incomplete data which can 

be represented using hierarchical background knowledge in order to 

declare support contained in subsets of the domain. These subsets 

may be represented in the database as partial values, which are 

derived from background knowledge using conceptual  modelling to 

re-engineer the integrated DBMS.  

Concerning query enhancement, several  works such as [75] use a 

lattice of concepts to generalize unsolvable queries. An extended 

relational model for assigning possible values to an attribute value 

has been proposed by [76].  This approach [76], may be used either 

to answer queries for decision making or for the extraction of 

answers and knowledge from relational  databases. It is therefore 

important that  appropriate functionality is provided for database 

systems to handle such information.  

In studies about possibilistic ontologies [77], each term of an 

ontology is considered as a linguistic label and has an associated 
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fuzzy description.  Fuzzy pattern matching between different  

ontologies is then computed using these fuzzy descriptions.  

Studies about fuzzy thesauri have discussed different natures of 

relations between concepts. Fuzzy thesauri have been considered,  

for instance, in [78].   

Recently, in OLAP systems, a need has been identified for 

enhancing the query scope with the aid of “kind-of” relations that  

describe knowledge as well as ordering of the elements of a domain 

or a hierarchical universe. However,  no significant attempt has been 

made for a generic representation of value imprecision,  mainly as a 

property of axes of analysis and also as part of a dynamic 

environment, where potential users may wish to define their “own” 

axes of analysis for querying either precise or imprecise facts. To 

put it  differently,  various users may wish to define their own 

dimensions of analysis based on a multidimensional model [79, 80,  

81].  

In such cases as [79, 80, 81] measured values and facts are 

characterised by descriptive values drawn from a number of 

dimensions,  whereas values of a dimension are organised in a 

containment type hierarchy. This need is even more obvious with 

the move from the classical DBMS environments to multi-source 

integrated environments, where concept based OLAP is the main 

query answering system. 
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3.2 Multidimensional schemas

 

A multidimensional  model is  made of the business process that  one 

wishes to analyse,  the involved dimensions/

analysis [43] which are constructed in a hierarchic

measures that hold the quantifying at tributes. Multidimensional  

models can be represented 

therefore they are 

schema, respectively.

An example of the st

how this model is constru

table or process named as sale, which contains al l  the measures in 

the model,  in this  case,  

dimension/entities tables,

star, in this case Store, Product 

Figure 3-1
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Multidimensional schemas 

A multidimensional  model is  made of the business process that  one 

nalyse,  the involved dimensions/entities or axis of 

analysis [43] which are constructed in a hierarchical fashion, and of 

measures that hold the quantifying at tributes. Multidimensional  

models can be represented in the form of a star or a snowflake;  

therefore they are called a star and snowflake multidimensional  

schema, respectively. 

An example of the star schema is  shown below, where it  can be seen 

how this model is constructed. In the middle of the star is 

table or process named as sale, which contains al l  the measures in 

the model,  in this  case,  Units and Amount  as well as foreign keys to 

entities tables,  which form the axis of analysis of the 

Store, Product and Time. 

1:   An example of  a  Mult id imensiona l  Star Schema
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A multidimensional  model is  made of the business process that  one 

entities or axis of 

al fashion, and of 

measures that hold the quantifying at tributes. Multidimensional  

of a star or a snowflake;  

star and snowflake multidimensional  

below, where it  can be seen 

cted. In the middle of the star is the fact  

table or process named as sale, which contains al l  the measures in 

as well as foreign keys to 

which form the axis of analysis of the 

 

An example of  a  Mult id imensiona l  Star Schema 
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All four elements in this structure are relations connected by means 

of 1-to-many relationship types. The Fact relation contains a 

composite primary key, which is composed of several foreign keys -  

one for each dimension relation - and an attribute for each measure 

that uses these dimensions. This is where the process to be analysed 

is contained. 

The Dimension relations are where the information for each 

dimension is contained. Each level of a hierarchy is represented by 

an attribute on the respective relation.  

Dimensions allow the user to modify the axis of analysis when i t  

comes to OLAP queries with the aid of hierarchies. In standard 

OLAP environments,  hierarchies are fixed, meaning that the users 

are not  allowed to modify the axis of analysis by incorporating 

external domain knowledge [82, 83, 84] relevant to the analysis. If  

the users were to be allowed to import  external domain knowledge 

in the form of hierarchies,  then imprecision is  bound to be an issue 

mainly because:  

• Merging multiple hierarchies from different sources cannot 

be achieved, in most cases, by direct mapping. Instead, an 

approximation is  required.  

• Even if there are no multiple hierarchies, users may wish to 

modify the axis of analysis by incorporating their own 

concepts.  

From the above example, it  can be seen that  the dimension relations 

are not on the third normal form (3NF) as described in [43],  thus, 

hierarchies are not levelled directly.  Queries would have to specify 

the level.  
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When the 3NF is applied to dimensions,  the hierarchies now branch 

out into several tables – because of the normalization process –,  

each level representing aggregates.  The structure now resembles a 

snowflake,  as it  can be seen in the example below.  

 

Figure 3-2 :   An example of  a  Mult id imensiona l  Snowflake  Schema 
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These two schemas differ in the way they represent hierarchies of 

dimensions. It  is this  particular bit of information that is of interest.  

This is because the evidence suggests that there has been no 

research made on the presumption that the hierarchy of the 

dimensions may involve imprecision. Yet, i f one would take a 

moment to think about cases of merging hierarchies from different 

sources, or the fact  that hierarchies could be based on the user’s 

concepts of what that hierarchy is , or even the simplest case of  

taking into account user’s preferences on the axis of analysis, one 

would come into conclusion that imprecision in hierarchies of 

dimensions is unavoidable.  

Currently,  when using available OLAP tools in the cases of merging 

two or more sources,  the data is first cleansed, reformatted and then 

imported into the new structure. However, during this process, the 

data that doesn’t fit  the pre-agreed dimensional structures is 

discarded [43].  

In the context of this thesis, the terms of the hierarchy are not 

fuzzy. These observations led us to introduce the concept of closure 

of the H-IFS, which is a developed form defined on the whole 

hierarchy. The definition domains of the Hierarchical  Intuitionistic 

Fuzzy sets (H-IFS) proposed below are subsets of hierarchies 

composed of elements partially-ordered by the “kind-of” relation.  

Intuitively,  in the closure of the H-IFS, the “kind-of” relat ion is  

taken into account by propagating the degree associated with an 

element to its  sub-elements,  as more specific elements in the 

hierarchy.  
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Based on the above observations, in this chapter,  the focus is on 

incorporating hierarchical preferences in OLAP systems, expressed 

in the form of background domain-knowledge with the aim on 

enhancing the OLAP query scope and in return getting an answer 

that  is closer to user’s intent.  

The rest of this chapter is  organized as follows: 

• Section 3.3 outlines the principles of the IFS and delivers the 

basic definitions and propert ies of the H-IFS. 

• Section 3.4 delivers the representation of a H-IFS with the aid of 

concept based relations.  
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3.3 Intuitionistic Fuzzy Sets and Hierarchical-IFS 

 

3.3.1 IFS – Atanassov’s Sets 

Each element of an Intuitionistic fuzzy [85, 86] set  has degrees of 

membership or truth  (µ) and non-membership or falsity (ν),  which 

don’t sum up to 1.0 thus leaving a degree of hesitation margin (π).  

As opposed to the classical definition of a fuzzy set  given by  

A′ = { }XxxxA A ∈><= |)(,
~

µ  

 

where ]1,0[)( ∈xAµ  is the membership function of the fuzzy set A′, an 

Intuitionistic fuzzy set   A is given by:  

{ }XxxxxA AA ∈><= |)(),(, νµ  

]1;0[: →XAµ  and ]1;0[: →XAν  

 

such that  1)()(0 ≤+≤ xx AA νµ  and ]1;0[: →XAµ , ]1;0[: →XAν  denote a 

degree of membership and a degree of non-membership of x∈A, 

respectively.  Obviously, each fuzzy set may be represented by the 

following Intuitionistic fuzzy set :  

{ }XxxxxA AA ∈>−<= |)(1),(, µµ  
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For each Intuitionistic fuzzy set in X, let’s  call 

)()(1)( xxx AAA νµπ −−=  an Intuitionistic fuzzy index (or a hesitation 

margin) of x ∈ A which expresses a lack of knowledge of whether x 

belongs to A or not. For each Ax∈ 1)(0 ≤≤ xAπ  

Definition1.  Let A and B be two Intuitionistic fuzzy sets defined on 

a domain X.  A is included in B (denoted A ⊆  B) if and only if their 

membership functions and non-membership functions satisfy the 

condition:   

(∀Χ∈X) (µA(x) ≤  µB(x) & νA(x) ≥  νB(x)) 

Two scalar measures are classically used in classical  fuzzy pattern 

matching to evaluate the compatibility between an i ll-known datum 

and a flexible query,  known as:  

a possibility degree of matching, Π  (Q/D)      

a necessity degree of matching, N (Q/D)    

Definition 2 .  Let Q and D be two Intuitionistic Fuzzy Sets defined 

on a domain X and representing, respectively,  a flexible query and 

an ill-known datum. 

The possibility degree of matching between Q and D, denoted 

Π(Q/D), is  an “optimistic” degree of overlapping that measures the 

maximum compatibil ity between Q and D, and is  defined by:  

))(),(1max(inf)),(),(1min(sup)/( xxxxDQП DDXxQQ
Xx

νννν −−=
∈∈

 

 

The necessity degree of matching between Q and D, denoted 

N(Q/D),  is  a “pessimistic” degree of inclusion that  estimates the 
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extent  to which it  is certain that D is  compatible with Q, and is 

defined by:  

))(1),(min(sup)),(1),(max(inf)/( xxxxDQN DD
Xx

QQXx
µµµµ −−=

∈∈
 

The problem occurring from defining Intuitionist ic Fuzzy Sets 

based on the “kind-of” relation is that two different Intuitionistic 

Fuzzy Sets on the same hierarchy do not  necessarily have the same 

definit ion domain, which means they cannot be compared using the 

classic comparison operations Π(Q/D), N(Q/D),  for this reason the 

notion of H-IFS is provided below.  

 

3.3.2 The Notion of H-IFS 

 

The definition domains of the hierarchical fuzzy sets [79, 80, 81, 

84] that are proposed below are subsets of hierarchies composed of 

elements part ially ordered by the “kind-of” relat ion. An element l i  

is more general than an element l j  (denoted l i  ~ l j),  i f l i  is a 

predecessor of I in the part ial order induced by the “kind-of” 

relation of the hierarchy. An example of such a hierarchy is given in 

“Figure 3-3”. An Hierarchical Intuitionistic Fuzzy Set is then 

defined as follows: 

“An H-IFS is an IFS whose definition domain is a subset of the 

elements of a finite hierarchy partially ordered by the kind-of 

relation”.  

Definition 3. Let F be a H-IFS defined on a subset D of the 

elements of a hierarchy L. Its degree is denoted as <µ ,  ν>. The 
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closure of F, denoted clos(F), is a H-IFS defined on the whole set of 

elements of L and its   degree  <µ ,  ν>c l os ( F)  is defined as follows: 

For each element l  of L, let SL= {l1 ,  ….,ln} be the set of the smallest  

super-elements in D.  

If SL  is not empty,  

>=<><
≤≤≤≤

)(min),(max)(,
11

)( iniiniLFclos LLS νµνµ  

else 

>=<>< 0,0)(, )( LFclos Sνµ  

In other words, the closure of a H-IFS F is buil t  according to the 

following rules. For each element l1  of L: 

• If  l I  belongs to F, then l I  keeps the same degree in the closure 

of F (case where SL= {  l I  }).  

• If  l I  has a unique smallest super-element l1  in F, then the 

degree associated with l I  is  propagated to L in the closure of 

F,  SL= {  l1  } with l1  >  l I)  

• If  L has several smallest super-elements {l1 ,  ….,ln}  in F, with 

different degrees, a choice has to be made concerning the 

degree that will  be associated with l I  in the closure. The 

proposit ion put  forward in definition 3, consists  of choosing 

the maximum degree of validity {µ} and minimum degree of 

non validity {v} associated with {l1 ,  …,ln} .  It  is referred to as 

the Optimistic strategy .  

 

A Pessimist ic strategy  can also be utilized,  which consists of 

choosing the minimum degree of validity {µ} and maximum degree 

of non validi ty {v} associated with {l1 ,  …,ln} .  
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Alternatively, an Average strategy could be utilized, which consists 

of calculating the IF-Average and applying i t  to the degrees of 

validity {µ} and non-validi ty {v}. 

It  has been observed that two different H-IFSs, defined on the same 

hierarchy, can have the same closure, as in the following example:  

 

The H-IFSs: Q={Wine<1,0>, Red Wine<0.7,0.1>, Rose Wine<1,0>, 

White Wine <0.4,0.3>} and   

R ={Wine<1,0>, Red Wine<0.7,0.1>, Rose Wine<1,0>, Pinot 

<0.4,0.3>} have the same closure,  represented in “Figure 3-3” 

below. Such H-IFSs form equivalence classes with respect to their 

closures.  

 

Figure 3-3 :   Common closure of  the  H-IFS’s Q and R  

 

Definition 4.  Two H-IFSs Q and R, defined on the same hierarchy, 

are said to be equivalent  Q≡R if and only if they have the same 

closure.  

 Wine   
<1.0, 0.0>   

Red wine 

 <0.7, 0.1>  

Muscat  
<0.7, 0.1>   

  Rose wine

  <1.0, 0.0>  
White wine 

 <0.4, 0.3>   

Pinot   
<1.0, 0.0>   
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Property: Let Q and R be two equivalent  Intuitionistic hierarchical  

fuzzy sets. If  l I  ∈  dom(Q) ∩  dom(R ),  then  <µ ,ν>(Q.l I) = 

<µ ,ν>(R.l I)  

Proof:  According to the definition of the closure of a H-IFS F, 

(definition 3) ,  the closure of F preserves the degrees that are 

specified in F. As Q and R have the same closure (by definit ion of 

the equivalence), an element that belongs to Q and R necessarily 

has the same degree <µ ,ν> in both.  

It  can be noted that R contains the same element as Q with the same 

<µ ,ν>, and also one more element Pinot<1,0>. The <µ ,ν> associated 

with this  additional  element is the same as in the closure of Q.   

Then it  can be said that  the element,  Pinot<1,0> is derivable in R 

through Q. The same conclusions can be drawn in the case of 

Muscat  <0.7, 0.1>  

Definition 5.  Let F be a hierarchical  fuzzy set , with dom(F) = {l1 ,  

….,ln}, and F-k  the  H-IFS resulting from the restrict ion of F to the 

domain dom(F) \ {lk}, lk  is deducible in F if:  

<µ ,  ν>clos ( F-k )  (lk) = <µ ,  ν>clos ( F)  ( lk)  

 

As a first intuition, i t  can be said that removing a derivable element 

from a hierarchical  fuzzy set allows one to el iminate redundant  

information. But, an element being derivable in F does not 

necessari ly mean that removing it  from F will  have no consequence 

on the closure: removing k from F will not impact the degree 

associated with k itself in the closure, but it  may impact the degrees 

of the sub-elements of k in the closure.  
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For instance, i f the element Rose Wine is derivable in Q, according 

to definition 5 ,  removing Rose Wine <1,0> from Q would not  

modify the degree of Rose Wine itself in the result ing closure, but 

it  could modify the degree of its sub-element Pinot.  Thus, Rose 

Wine <1,0> cannot be derived or removed. This remark leads us to 

the following definit ion of a minimal hierarchical fuzzy set.  

Definition 6.  In a given equivalence class (that is, for a given 

closure C), a hierarchical fuzzy set is said to be minimal  if i ts 

closure is C and if none of the elements of i ts domain is derivable .  

 

3.3.3 Obtaining the Minimal H-IFS 

 

Step 1:  Assign Min-H-IFS ←  ∅ .   Establish an order so that the sub-

elements {l1 ,…,ln} of the hierarchy L are examined after its super-

elements.   

Step 2:  Let l1  be the first element and (l1)/<µµµµ ,  νννν> ≠  (l1)/<0, 0> then 

add l1  to Min-H-IFS and  <µµµµ ,  νννν>c l o s (Mi n-H I FS)  (l1)= (l1)/<µµµµ ,  νννν> .  

Step 3:  Let  us assume that  K elements of the hierarchy L satisfy the 

condition  <µµµµ ,  νννν>c l o s(Mi n -HIF S)  (l i)=(l i)/<µµµµ ,  νννν>. In this case the Min-

H-IFS do not change.  Otherwise go to next element  lk+1  and 

execute Step  4.  

Step 4:  The lk+1 /<µµµµ  k+1 ,  νννν  k+1> associated with lk+1 .  In this case lk+1  

is added to Min-H-IFS with the corresponding <µµµµ  k+1 ,  νννν  k+1>.  

Step 5:  Repeat steps three and four until  clos ( Mi n- HIFS )=C .  
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For instance the H-IFSs  S1  and S2  are minimal  (none of their 

elements is derivable). They cannot be reduced further.  

 

S1= Wine<1,0> 

S2={Wine<1,0>, Red Wine<0.7,0.1>,  Pinot<1,0>, White Wine <0.4, 

0.3>} 
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3.4 Representing H-IFS as Concept Relations 

 

The structure of any H-IFS can be described by a domain concept 

relation DCR = (Concept, Element), where each tuple describes a 

relation between elements of the domain on different levels. The 

DCR can be used in calculating recursively [26] the different  

summarisat ion or selection paths as follows: 

xnnx DCRDCRPATH ><}2|)2...(1{ >−=←  

 

If  n≤2, then DCR becomes the Path table as it  describes al l  

summarisat ion and selection paths. These are entries to a knowledge 

table that holds the metadata on parent-child relationships. An 

example is presented below. 

 

DCR 

Concept  Element 

Wine <1.0, 0 .0> Rose Wine <1.0, 0 .0> 

Wine <1.0, 0 .0> Red Wine <0.7, 0 .1> 

Wine <1.0, 0 .0> White Wine <0.4, 0 .3> 

Rose Wine <1.0, 0.0> Pinot <1.0,  0.0> 

Red Wine <0.7, 0 .1> Pinot <1.0,  0.0> 

Red Wine <0.7, 0 .1> Muscat <0.7, 0 .1> 

White Wine <0.4, 0.3> Muscat <0.7, 0 .1> 

Table 3-1:  Domain Concept  Rela t ion 
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Table 3.1 shows how the Wine hierarchy knowledge table is kept.  

Paths are created by running a recursive query that  reflects the 

‘PATH’ algebraic statement. The sample hierarchical IFS comprises  

of 3 levels, thus calling for the SQL-like query as below: 

SELECT A.Concept as Grand-concept, b.concept, b.element 

FROM DCR as A, DCR as B 

WHERE A.child=B.parent; 

 

This query will produce the paths shown in ‘Table 3-2”,  which 

presents a pictorial  view of the four distinct summarisation and 

selection paths. These paths will be used in fuzzy queries to extract 

answers that could be either definite or possible. This will be 

realised with the aid of the predicate (θ) .A predicate (θ) involves a 

set of atomic predicates (θ1 ,  …, θn  )   associated with the aid of 

logical operators p ( i .e. ∧ ,  ∨ ,  etc.).  Consider a predicate θ  that 

takes the value “Red Wine”,  θ  = “Red Wine”.  

 

Path 

Grand-concept  Concept  Element Path Colour 

Wine 

<1.0, 0 .0> 

Rose Wine 

<1.0, 0 .0> 

Pinot 

<1.0, 0 .0> 

Red 

Wine 

<1.0, 0 .0> 

Red Wine  

<0.7, 0 .1> 

Pinot 

<1.0, 0 .0> 

Blue 

Wine 

<1.0, 0 .0> 

Red Wine  

<0.7, 0 .1> 

Muscat  

<0.7, 0 .1> 

Green 

Wine  

<1.0, 0 .0> 

White Wine  

<1.0, 0 .0> 

Muscat  

<0.7, 0 .1> 

Brown 

Table 3-2:   Path table  
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After utilizing the IFS hierarchy presented in “Figure 3-4”, this 

predicate can be reconstructed as follows: 

θ  = θ1  ∨  θ2  ∨ . . .  ∨  θn  

 

In the example at hand, θ1=”Red Wine”, θ2=”Pinot” and 

θn=”Muscat”. The reconstructed predicate θ  = (Red Wine ∨  Pinot ∨  

Muscat) al lows the query mechanism to not only definite answers,  

but also possible answers [84].  

 

Figure 3-4 :   P ictor ial  representat ion of  paths  

 

In terms a query retrieving data from a summary table, the output 

contains not only records that match the initial condit ion, but also 

those that satisfy the reconstructed predicate. Consider the case 

where no records sat isfy the initial selection condition (Red Wine). 

Traditional aggregation query would have returned no answer,  

however, based on the approach put forward in this thesis, the 

extended query would even in this case, return an answer, though 
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only a possible one,  with a specific belief and disbelief <µ ,  ν> . It  

will  point to those records that satisfy the reconstructed predicate θ ,  

more specifically,  “Pinot and Muscat”.   

Following the representation of H-IFS as concept relations and the 

definit ion of summarisation paths, there is still  a need to extend the 

traditional aggregation operators in order to cope with flexible 

hierarchies of data organisations, as part of the standard OLAP 

operators (see Chapter 4) .  
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3.5 Generalised IFS Comparison to H-IFS  

 

The concept of H-IFS was further extended in [87, 88] to allow the 

representation of hierarchical orderings between different universes.   

Let E be a fixed universe and let A be an Intuitionist ic Fuzzy Set  

IFS over E. Let F be another universe and let the set E be an IFS 

over F having the form: 

}|)(),(,{ FyyyyE EE ∈〉〈= νµ  

Therefore the element X∈E has the form (see [88] ): 

})(),(,|))(),(,(

),)(),(,(,)(),(,{

],1,0[]1,0[

,)(),(,

Eyyyyyy

yyyyyyA
Fx

yyyx

EEEEA

EEAEE

EE

∈〉〈〉〉〈

〉〈〉〈〈=

××∈

〉〈=

νµνµν

νµµνµ

νµ

 

 

Let  A/E  stands for “A is an IFS over E". If  the degrees of 

membership and non-membership of an element y to a set A in the 

frames of a universe E are µA(y) and νA(y) and the element 

,)(),(, 〉〈 yyy AA νµ has degrees of membership and non membership to 

the set E within the universe F are µE(y) and νE(y),  then the 

following can be defined:  

}|)().(),().(,{ FyyyyyyA AEAE ∈〉〈= ννµµ  
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When the universe is ordered, e.g. ,  by relation ≤ the set A is called 

[79] an “IFS over a universe with hierarchical structure (H-IFS)" .  

In [88] generalised IFS over Hierarchical Universes IFS transform 

some ideas and results from [85], [86].  

Based on [87] Let E be a finite universe defined as follows: 

}}},{{,,{},,{},,{,,,{ 31213121321 eeeeeeeeeeeE =  

Therefore, the IFS A over E will  have the form: 

}}}),{,,({}),,{,,({},{,,{

,}),({}),,({},{,}),({}),,({},{

,)(),(,,)(),(,,)(),(,{

312131213121

313131212121

333222111

〉〈

〉〈〉〈

〉〈〉〈〉〈=

eeeeeeeeeeee

eeeeeeeeeeee

eeeeeeeeeA

AA

AAAA

AAAAAA

νµ

νµνµ

νµνµνµ

 

There is an order between some of the elements of E, e.g.  for i  = 1, 

2, 3 :  e i  = i ,  this order is  (≤ or <) but it  cannot be extend over the 

rest E-elements. If  the order is ⊂ ,  i t  will  be valid for fourth and 

sixth elements of E, but will not  be possible for the rest E-elements.  

Based on [87],  for H-IFS E that has n  levels and for every natural  

number i  ≤ n  one can introduce set support i(E) that contains all  E-

elements that are from i-th level  and that  are not sets of elements of 

(i+1) level.    

Let E be a finite or infinite set and let  for each its element e:  µA(e) 

and νA(e) exist.  By analogy with [85] the set A/E/support(E) can be 

reconstructed,  as shown below: 
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}))(),(),(min()),(),(),(max(}},,e{,,e{

,))(),(min()),(),(max(},,e{

,))(),(min()),(),(max(},,e{,)(),(,e

,)(),(,e,)(),(,e{support(E)][/

32132131,21,

313131,

212121,333,

222111,
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〉〈
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eeeeeeee

eeeee

eeeeeee
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AAAAAA

AAAA

AAAAAA

AAAA
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νµνµ

 

}))(),(),(max()),(),(),(min(}},,e{,,e{

,))(),(max()),(),(min(},,e{

,))(),(max()),(),(min(},,e{,)(),(,e

,)(),(,e,)(),(,e{support(E)][/
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The following assert ion is valid: for each IFS A over E:  

A/E[pessimistic]support(E) ⊂  A/E[average]support(E) ⊂  

A/E[optimistic]support(E) 
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Generalised IFS offer a broader extension in terms of representing 

richer domain or user defined hierarchical preferences. However it  

has to be noted that Generalised IFS may be proven too demanding 

to be represented and handled as part of existing MOLAP tools,  

when it  is known that some of the current MOLAP tools can handle 

only up to ten dimensions.  

H-IFS are better suited for use in OLAP environments since queries 

are defined on top of “kind-of” hierarchies. Furthermore, queries 

utilize the concept of minimal H-IFS, ensuring thus successful 

query execution.  

Generalises IFS are more appropriate for Mediator integration 

environments consisting of hierarchies of Mediators where there is  

a need [87] for more complex domain hierarchical preferences.   
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3.6 Conclusions 

 

 In this chapter, the concept of closure of an Intuitionistic fuzzy set 

over a universe that has a hierarchical structure was defined.  

Intuitively, in the closure of this Intuit ionistic fuzzy set, the “kind-

of” relat ion is  taken into account by propagating the degree 

associated with an element to its sub-elements in the hierarchy. The 

automatic recommendation of analysis is introduced according to 

the concepts defined as part of domain description, in order to guide 

query answering with the aid of hierarchical Intuitionistic fuzzy 

sets.   

The proposed methodology aims at expanding user preferences,  

expressed when defining a query,  in order to obtain related and 

complementary answers. This is likely to be a useful tool for OLAP 

and knowledge discovery in, for example, data mediators or data-

warehouses,  where queries are expressing hierarchical perception-

based user preferences.  

In term of data representation, the new proposed structure would 

resemble a snowflake schema. However, there would be a 

significant change.  The expanded axis of analysis may not be 

normalised dimensions, instead, every dimension would have linked 

to it  the knowledge tables involved in their definit ion.  

Accommodating imprecision or user preferences at the level of the 

dimensions or axis of analysis as part of a multidimensional model 

can be achieved with the aid of H-IFS. Overall,  in terms of data 

representation,  the following cases can be accommodated:  
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• Crisp dimensions and precise data 

• H-IFS based hierarchies/dimensions and precise data 

 However, in order to have full representation of imprecision as part  

of multidimensional  model, it  should also allow the modell ing of  

the following cases:  

• Well defined hierarchies/dimensions and imprecise data 

• H-IFS based hierarchies/dimensions and imprecise data 

In order to achieve the accommodation of imprecision at the level  

of facts/data, it  becomes clear that there is a need to extend the 

standard cubic model and the related OLAP operators. In Chapter 

four,  a cubic model christened the IF-Cube is delivered.  This allows 

the representation of imprecision at the data level. At the same 

time, the basic cubic operators are extended with the aid of 

Intuitionistic Fuzzy Logic. The delivery of the IF-Cube model in 

conjunction with the utilisation of the H-IFS caters for a complete 

treatment of imprecision, both at the level of dimensions and that of 

the data as part of an extended OLAP environment.  
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“Knowledge, a rude unprofitable mass, the mere materials with which wisdom 
builds, till smoothed and squared and fitted to its place, does but encumber  

whom it seems to enrich.” 

William Cowper 

 

 

 

Chapter Four 

 

4. KNOLAP – The IF-Cube and IF-Operators 

 

4.1 Semantics of the IF-Cube vs. Crisp Cube 

4.1.1 Overview of the Cube Model 

4.1.2 Semantics of the IF-Cube 

4.2 IF-cubic operators vs. normal cubic operators 

4.2.1 Overview of the cubic operators 

4.2.2 The IF-cubic operators 

4.3 Conclusions 

 

  



Treatment Of Imprecision In Data Repositories With The Aid Of KNOLAP 

KNOLAP – The IF-Cube and IF-Operators 

 

 
                       Ermir Rogova, PhD Thesis, University of Westminster, London                          75 

 

Since the emergence of the OLAP technology, [43] different  

proposals have been made to give support to different types of data 

and application purposes.  One of these is to extend the relational  

model (ROLAP) to support  the structures and operations typical of 

OLAP. Further approaches [89, 90]  were based on extended 

relational systems to represent data-cubes and operate over them. 

Another approach would be to develop new models using a 

multidimensional-cubic view of the data [62].  

Nowadays, information and knowledge-based systems need to 

manage imprecision in the data,  and more flexible structures are 

needed to represent the analysis domain. Models have been 

proposed for managing imprecision, as part of an incomplete data-

cube [91], in the facts and the definition of facts using different  

levels in the dimensions [92].  

Nevertheless, these models continue to use inflexible hierarchies,  

thus making it  difficult to merge reconcilable data from different 

sources with some incompatibili ties in their schemata.  These 

incompatibilities arise due to different perceptions/views about a 

particular modelling reality.  

In addressing the problem of representing flexible hierarchies, here 

is proposed a new multidimensional model that is able to deal with 

imprecision over conceptual hierarchies utilising the concept of H-

IFS (see Chapter 3) .   
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The use of conceptual hierarchies or H-IFS enables one to:  

• define the structures of a dimension in a more perceptive way 

to the final user, thus allowing a more perceptive use of the 

system.  

• query information from different sources or even utilize 

domain preferences and enhance the description of 

hierarchies, thereby getting more knowledgeable query 

results . H-IFS is  a unique way for incorporating “kind-of” 

relations, or conceptual hierarchies as part of a Knowledge 

based OLAP analysis (KNOLAP). 

In the following sections, OLAP foundations are reviewed and a 

model aimed at resolving imprecision at the “Cube” or data level is  

proposed. The semantics of the Intuitionistic fuzzy cubic 

representation are introduced in contrast to the basic 

multidimensional-cubic structures. Overall ,  the introduced 

Intuitionistic Fuzzy cubic representation [82], [83] allows users to 

deal with imprecision not only at  the level  of dimensions with the 

aid of H-IFS but also at the level of facts or data. The basic cubic 

operators are extended and enhanced [85], [86], with the aid of 

Intuitionistic Fuzzy Logic.    
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4.1 Semantics of the IF-Cube vs. Crisp Cube 

 

In this section the semantics of Multidimensional modelling and 

Intuitionistic Fuzzy Logic are reviewed, and based on these a 

unique concept named Intuitionistic Fuzzy Cube (IF-Cube) is  

proposed. The IF-Cube, in conjunction with the util isation of H-IFS, 

allows users to model the following cases: 

• Well defined hierarchies/dimensions and imprecise data 

• H-IFS based hierarchies/dimensions and imprecise data 

 

4.1.1 Overview of the Cube Model 

 

A logical model that influences both the database design and the 

query engines is the multidimensional-cubic view of data in a  

warehouse. In a multidimensional data model, there is a set of 

numeric measures that are the objects of analysis. Examples of such 

measures are total sales, available budget, etc. Each of the numeric 

measures depends on a set of dimensions,  which provide the context 

for the measure. The attributes of a dimension may be related via a 

hierarchy of relationships. In the above example, the product name 

is related to its category and the industry attribute through a 

hierarchical relationship,  (see “Figure 4-1”).  
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Figure 4-1 :   Cube 'Sa les'  -  Rig id  Hierarchies  

   

A cubic structure [62] is defined as a 4-tuple <D, M, A, F> where 

the four components indicate the characteristics of the cube. These 

characteristics are:  

• a set of n dimensions D = {d1 ,d2 ,…,dn} where each d i  is a 

dimension name, extracted from a domain domd i m ( i ) .   

• a set of k measures M = {m1 ,m2 ,…,mk} where each m i  is a 

measure name, extracted from a domain domm ea su r e( i ) .   

• The set of dimension names and measures names are disjoint;  

i .e. D ∩ M = 0.  

• A set of t  attributes A = {a1 ,  a2 ,…,a t} where each a i  is an 

attribute name, extracted from a domain doma t t r ( i ) .   

• A one-to-many mapping F:D�A, i.e. there exists, 

corresponding to each dimension, a set  of attributes.  
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H ie r a r c h ic a l s u m m a r iz a t io n  p a th s

I n d u s t r y    R e g io n          Y e a r

C a te g o r y    C o u n t r y   Q u a r t e r

P r o d u c t       C it y      M o n th     W e e k

O f f ic e          D a y

In d u s t r y    R e g io n          Y e a r

C a te g o r y    C o u n t r y   Q u a r t e r

P r o d u c t       C it y      M o n th     W e e k

O f f ic e          D a y
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4.1.2 Semantics of the IF-Cube 

 

In contrast, an IF-Cube  is  an abstract structure that  serves as the 

foundation for the multidimensional data cube model. Cube C is 

defined as a five-tuple (D, l ,  F, O, H)  where:  

• D  is  a set of dimensions 

• l   is a set of levels l1 ,…, ln ,  

• A dimension  d i  = (l  ≤ O, l┴ ,  l┬)  dom(d i) where  l  = l i  i=1.. .n.      

• l i  is a set  of values and l i  ∩ l j  = {},  

• ≤ O is a partial order between the elements of l .  

• To identify the level  l  of a dimension, dl  is used as part of a 

hierarchy.  

   l┴:  base level  l┬:  top level  

for each pair of levels l i  and l j   there exist  the relation:  

µ i j  :  l i  ×  l j  �  [0,1]     ν i j  : l i  ×  l j  �  [0,1]    0 < µ i j  +  ν i j  < 1 

• F   is a set of fact instances with schema: F = {<x, µF(x) ,  

νF(x)>| x∈ X }, where x=<att1 ,…,attn>  is an ordered tuple 

belonging to a given universe X,  µF(x) and νF(x)  are the 

degree of membership and non-membership of x  in the fact  

table F respectively.  

• H  is an object type history that corresponds to a cubic 

structure( l ,  F, O, H ′  ) which allows the tracing back the 

evolution of a cubic structure after performing a set of 

operators i .e. aggregation.  
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The example below provides a sample imprecise cube (D, l,  F, O, 

H) i.e. sales and a conceptual  flexible hierarchy product with 

reference to wine consist ing of   l i ,…,ln   levels with respective 

levels of membership and non membership <  µ i j  ν i j ,  >  .  

 

Figure 4-2 :  Imprec ise  cube 'Sa les'    Figure 4-3 :  H- IFS Hierarchy 'Wine’  

 

The defined IF OLAP Cube and the proposed OLAP operators make 

it  possible to do the following:  

• accommodate imprecise facts.   

• utilize conceptual hierarchies defined as H-IFS  used for 

aggregation purposes in the cases of roll-up and roll-down 

operations.   

• offer a unique feature such as keeping track of the history 

when there is movement between different levels of a 

hierarchical order.   

 

In the next section,  first the current  cubic operators are reviewed 

and then the IF-Operators are explained. These operators have been 

extended and redefined in order to cope with or mult idimensional  

model.   

    

PRODUCT

  
  

T IME

  

LOCA TION

 

2003 
  Lon

 

P4 
  

P3 
  

1000 
  

    850

 

        1250          1100

 

<µ=0.5

  
    <µ=0.75    <µ=0.75     <µ=0.8

  
ν=0.25

  
     ν=0.2

  
        ν=0.15       ν=0.2

  
  
720

 

    980

 

        530

 

            680

  
<µ=0.4 

  
    <µ=0.5      <µ=0.4      <µ=0.8

  
ν=0.2

  
     ν=0.1

  
        ν=0.2         ν=0.1

  
  
1150 

  
    2400 

  
        2000          780 

 

<µ=0.5 
  

    <µ=0.2      <µ=0.7      <µ=0.6

  
ν=0.4

  
     ν=0.6

  
        ν=0.1         ν=0.2

  
  
1020 

  
    3020 

  
        4050          2200

 

<µ=0.85

 

    <µ=0.45    <µ=0.2      <µ=0.5

  
ν=0.1

  
     ν=0.28       ν=0.7         ν=0.5

  
  
  

P2 
  

P1 
  

Oslo 
  

Rio

  
Cape 

 

2004 
  

2002 
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4.2 IF-cubic operators vs. normal cubic operators 

 

In the previous section, i t  was shown how the proposed IF-cube 

differs from the original cube and that i t  can be made to 

accommodate imprecision, both on the data level and on the 

conceptual  level.  However, the ability to store the data is only a  

small part of the problem. The difficulty stands with the ability to 

process such data, as the original cubical operators have not been 

designed to process imprecise information. In the subsections 

below, first the original operators wil l be shown and then the new 

IF-Operators presented, which will be able to deal with the new 

multidimensional  structure.    

 

4.2.1 Overview of the cubic operators 

 

The cubic model proposed in [62], which is considered by many 

OLAP experts to be the fundamental one when it  comes to the cubic 

model, also describes the algebraic operators necessary for the 

functioning of the multidimensional  cube that have been adopted 

widely. Below is shown a brief description of these operators, the 

full  descriptions of which can be found on [62].   

Restriction (σσσσ):  This operator restricts the values on one or more 

dimensions. It  has an atomic predicate ,  denoted by p ,  that is a 

logical  expression involving a single dimension or a compound 
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predicate ,  denoted by P  the is  an expression involving a set of 

atomic predicates.  

Mathematical  notation: σp(C i)=Co  

Example: σ (y e a r=2 0 0 9 )  (Sales) 

 

Aggregation (α):  This operator performs aggregation on one or 

more dimensions. This operator is based on relational aggregate 

functions (e.g. SUM AVG MAX) and al lows these functions to be 

applied to cubes with one or more dimensions specified as grouping 

attributes .   

Mathematical  notation: α h ,m,  S  (C I)=CO  

Example: α [ S UM (a mo u n t ) , {p ro d u c t_ n a me ,  y e a r} ](Sales)  

 

Cartesian product (×):  This is a binary operator that can be used to 

relate two cubes.  

Mathematical  notation: C I1  × C I2  = CO  

 

Join (|× |): The join operator is a special case of the Cartesian 

product  operator that  is used to relate two cubes having one or more 

dimensions in common and having identical mapping from the 

common dimensions to the respective attribute sets  of these 

dimensions.    

Mathematical  notation::  C1  |×| C2  = σp(C1×C2)  where p is the 

predicate and C1and C2  are the two cubes.  



Treatment Of Imprecision In Data Repositories With The Aid Of KNOLAP 

KNOLAP – The IF-Cube and IF-Operators 

 

 
                       Ermir Rogova, PhD Thesis, University of Westminster, London                          83 

 

Union (∪∪∪∪  ):  This operator finds the union of two input cubes. If ,  

for example, two cubes Sales_Engand and Sales_Wales  contain the 

sales figures corresponding to the respective regions, and the user 

would like to consolidate the data for both regions into a single 

cube.  This would be achieved by using the union operator.  

Mathematical  notation: C I1  ∪  C I2  = CO  

 

Difference ( - ):  This operator finds the difference of two cubes. If ,  

for example,  two cubes Sales_England  and Sales_London  contain 

sales figures corresponding to the England and London, and the user 

would wish to remove London figures from the England cube. This 

would be achieved using the difference operator.  

Mathematical  notation: C I1  - C I2  = CO  

 

4.2.2 The IF-cubic operators 

 

In this section the IF-Cubic operators are defined and explained. 

Each operator is presented in the following format: the operator’s 

name, symbol,  textual  description, input, output,  mathematical 

description and an example of the operator.  

Basic operators 

Selection (Σ): The selection  operator selects a set of fact-instances 

from a cubic structure that sat isfy a predicate (θ) . A predicate (θ) 

involves a set of atomic predicates (θ1 ,  …, θn)  associated with the 
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aid of logical operators p (i .e. ∧ ,  ∨ ,  etc.) .  Only the cells that satisfy 

the predicate p are captured into the result cube. If θ’  is an 

Intuitionistic fuzzy predicate, then the set  of possible facts that  

satisfy the θ   should carry a degree of membership µ  and non-

membership ν  expressed as  fol lows:  

F = {<x, min(µF(x) ,  µ(θ(x))),  max(νF(x),  ν(θ(x))))>  | x∈  X }  

 

Thus the resulting cube populated with fact instances that  either 

satisfy the predicate (θ)  completely or to some degree of certainty.  

Where  π = 1 – (µ + ν) and acts as an index of the uncertainty,  i .e. 

the higher the value of π,  the more uncertain the fact  instance is , 

even though it  may entail  the same level  of membership µ. 

Input:    C i  = (D, l ,  F ,  O ,  H) and the predicate θ .  

Output:   Co=  (D ,  l ,  Fo ,  O ,  H) ,  where  

 Fo  F and Fo={ f  |  (f  F) (f  satisfies θ)}.  

Mathematical  notation: .  

 

Example: Find the sales amount of 1000 with membership of 

greater than 0.4 and non-membership of less than 0.3 for all  

products in all  cit ies during 2004:4  

Σ (a m ou n t =1 0 0 0  ∧  (µ >0 .4   ∧   ν <0 .3 )   ∧  yea r=2 0 0 4  )(Sales)=CR esu l t  

 

Cubic Projection (Π): In cubic instances that hold non-

deterministic facts,  there can be no projecting-out of any of 

individual domains. The reason behind this statement is that  unlike 

deterministic cubes,  in non-deterministic ones the membership and 

⊆ ∈ ∧

( )i oC C
θ

=∑
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non-membership of a fact  instance determines the likelihood of all  

domains involved in that cube/fact instance. Hence, projecting out a 

domain,  would result  in loss of information.  

Input:    C i  = (D ,  l ,  F ,  O ,  H) .  

Output:   Co= (D ,  l ,  F ,  O ,  H) .  

Mathematical  notation: ΠF  (C i) = Co .  

Example:   Project the cube from the previous example:  

Π (Sa l es )  (  Σ (a mou n t =1 0 0 0  ∧  (µ =0 .4   ∧   ν =0 .3 )   ∧  yea r= 2 0 0 4  )(Sales))=CR e su l t  

 

Basic Cubic Product (⊗⊗⊗⊗):  This is a binary operator C i 1  ⊗ C i 2 .  It  is  

used to relate two cubes C i 1  and C i 2  assuming that D1   D2  and O1 ,  

O2  are reconcilable part ial  orders. Thus,  l1 ,  l2  could lead to 1o  being 

a ragged hierarchy.  

Input:  C i 1  = (D1 ,  l1 ,  F1 ,  O1 ,  H1)  and C i 2  = (D2 ,  l2 ,  F2 ,  O2 ,  H2).  

Output: Co= (Do ,  lo ,  Fo ,  Oo ,  Ho),  where  

 Do= D1  ∪  D2 ,  lo= l1  ∪  l2 ,  Oo= O1  ∪  O2 ,   Ho= H1  ∪ H2 ,    

Fo= F1  ×  F2  =              

={<<x ,  y>,min(µ f 1(x) , µ f 2(y)) , max(ν f 1(x),  ν f 2(y))> |<x, y> ∈  X×Y}.  

Mathematical  notation: C i 1  ⊗ C i 2  = Co .  

 

Example:  Consider the two cubes one wants to relate,  

C i 1 :  CSa l es  and C i 2 :  CDi sc ou n t s .   

CDi sc ou n t s  has the same dimensions as CSa l es  except the measure 

amount is not sale but is a discount. In that case the cubic product 

of these two, would be:  

CSa l es  ⊗  CDi sc ou n t s  = CR esu l t  

⊆
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ProdID  StoreID  Amount  <µ ,  ν>  

P1 S1 10 0.7,  0 .2  

P2 S2 15 0.5,  0 .5  

  

⊗  

  

ProdID StoreID Discount  <µ ,  ν> 

P2 S1 2 0.5,  0 .5  

P3 S3 5 0.3,  0 .3  

 
 

⇓  
  

 

S.Prod  

ID  

S.Store  

ID  

S.Amount  D.Prod  

ID  

D.Store  

ID  

Discount  <µ ,  ν>  

P1 S1 10 P2 S1 2 0.5,  0 .5  

P1 S1 10 P3 S3 5 0.3,  0 .3  

P2 S2 15 P2 S1 2 0.5,  0 .5  

P2 S2 15 P3 S3 5 0.3,  0 .5  

Table 4-1:  Cubic product  

 

Union (∪∪∪∪  ): The union operator is  a binary operator that  finds the 

union of two cubes.  C i 1  and  C i 2  have to be union compatible. The 

operator also coalesces the value-equivalent facts using the 

minimum membership and maximum non-membership.  

Input:  C i 1  = (D1 ,  11 ,  F1 ,  O1 ,  H1)  and C i 2  = (D2 ,  l2 ,  F2 ,  O2 ,  H2) .  

Output: Co= (Do ,  lo ,  Fo ,  Oo ,  Ho),  where 

  Do  = D1  = D2 ,   lo= l1  = l2 ,   

Oo= O1  = O2 ,    Ho= H1  =  H2 ,     

Fo= F1  ∪ F2   = 

={<x,max(µF1(x),µF 2(x)) ,min(νF1(x) ,νF2(x))>  | x ∈  X}.  

Mathematical  notation:   C i 1  ∪ C i 2  = Co .  
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Example:  Consider the two cubes one want to relate,  

C i 1 :  CSa l es_ No r t h  and C i 2 :  CSa l es_ Sou t h ,   

in that case the union of these two cubes would be:   

CSa l es_ No r t h   ∪  CSa l es_ S ou t h  = CR esu l t  

ProdID  StoreID  Amount  <µ ,  ν>  

P1 S1 10 0.7,  0 .2  

P2 S2 15 0.5,  0 .5  

 ∪    

ProdID StoreID Amount <µ ,  ν> 

P1 S1 10 0.5,  0 .5  

P3 S3 5 0.3,  0 .3  

  

⇓  

  

S.ProdID  S.Store ID  S.Amount  <µ ,  ν>  

P1 S1 10 0.7,  0 .2  

P2 S2 15 0.5,  0 .5  

P1 S1 10 0.5,  0 .5  

P3 S3 5 0.3,  0 .3  

  

⇓  

  

S.ProdID  S.StoreID  S.Amount  <µ ,  ν>  

P1 S1 10 0.7,  0 .2  

P2 S2 15 0.5,  0 .5  

P3 S3 5 0.3,  0 .3  

 

Table 4-2:  Union opera tor example  
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Difference (-): The difference operator is a binary operator that the 

difference of two cubes. It  is similar to the difference operator in 

relational algebra. C i 1  and  C i 2  have to be union compatible. The 

difference operator removes the portion of the cube C i 1  that is  

common to both cubes.  

Input:  C i 1  = (D1 ,  l1 ,  F1 ,  O1 ,  H1)  and C i 2  = (D2 ,  l2 ,  F2 ,  O2 ,  H2).  

Output: Co  = (Do ,  lo ,  Fo ,  Oo ,  Ho),  where 

  Do  = D1  = D2 ,  lo  = l1  = l2 ,  Oo= O1  = O2 ,    

Ho= H1  =  H2 ,     

Fo= F1  ∩ F2  = {<x ,  min(µF1(x) ,µF2(x)) ,  max(νF1(x) ,νF2(x))> | x  ∈  

X}. 

Mathematical  notation: C i 1  – C i 2  = Co .  

 

Example:  Consider the two cubes one wants to relate,  

C i 1 :  CSa l es_ No r t h  and C i 2 :  CSa l es_ Sou t h ,  

in that case the difference between North and South sale cubes 

would be:    

CSa l es_ No r t h   – CSa l es_ S ou t h  = CR esu l t  

 

ProdID  StoreID  Amount  <µ ,  ν>  

P1 S1 10 0.7,  0 .2  

P2 S2 15 0.5,  0 .5  

 _   

 

ProdID  StoreID  Amount  <µ ,  ν>  

P1 S1 10 0.5,  0 .5  

P3 S3 5 0.3,  0 .3  
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⇓  

 

S.ProdID  S.StoreID  S.Amount  <µ ,  ν>  

P1 S1 10 0.7,  0 .2  

P2 S2 15 0.5,  0 .5  

P1 S1 10 0.5,  0 .5  

 

⇓  

S.ProdID  S.StoreID  S.Amount  <µ ,  ν>  

P1 S1 10 0.5,  0 .5  

P2 S2 15 0.5,  0 .5  

 

Table 4-3:   Difference opera tor  example  

     

Extended Operators 

 

Join (Θ): The join operator relates two cubes having one or more 

dimensions in common ,  and having identical  mappings from 

common dimensions to the respective attribute sets  of these 

dimensions.  This operation can be expressed using Cubic Product  

operation.  

C i 1  = (D1 ,  l1 ,  F1 ,  O1 ,  H1)  and C i 2  = (D2 ,  l2 ,  F2 ,  O2 ,  H2) are 

candidates to join if   D1  ∩ D2  ≠ 0.  

Input:  C i 1  = (D1 ,  11 ,  F1 ,  O1 ,  H1)  and C i 2  = (D2 ,  l2 ,  F2 ,  O2 ,  H2) .  

Output: Co= (Do ,  lo ,  Fo ,  Oo ,  Ho).  

Mathematical  notation: C i 1  Θ  C i 2  = σp(C i 1   C i 2).  

 

⊗
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Example:  Consider the two cubes one wants to relate, C i 1 :  CSa l es  

and C i 2 :  CDi sc ou n t s .  CDi sc ou n t s  has the same dimensions as CSa l es  except 

the measure amount is not sale but is  a discount.   

Also there is a predicate p= (S.ProdID = D.ProdID ∧  S.StoreID = 

D.StoreID) .  In that case the join of these two, would be:  

CSa l es  Θ  CDi sc ou n t s  = CR esu l t .  

ProdID  StoreID  Amount  <µ ,  ν>  

P1 S1 10 0.7,  0 .2  

P2 S2 15 0.5,  0 .5  

 Θ    

ProdID StoreID Discount  <µ ,  ν> 

P1 S1 2 0.5,  0 .5  

P3 S3 5 0.3,  0 .3  

  

⇓  

  

 

S.ProdID  S.StoreID  S.Amount  D.Discount  <µ, ν>  

P1 S1 10 2 0.5,  0 .5  

 

Table 4-4:   Join opera tor example  

 

Aggregation (A): The aggregation operator performs aggregation on 

one or more dimensional attributes uti lizing Intuit ionistic Fuzzy 

functions such as IFSS UM ,  IFSAV G ,  IFSM IN ,  IFSM AX .  An aggregation 

operator A  is a function A(G) ,  where G = {<x, µF(x) ,  νF(x)>| x∈  X},   

where x=<att1 ,  …, attn>  is an ordered tuple, belonging to a given 

universe X, {att1 ,  …, attn} is the set of at tributes of the elements of 

X,  µF(x)  and  νF(x)   are the degree of membership and non-

membership of x.  
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The result is a bag of the type {<x ′ ,  µF(x ′) ,  νF(x ′)> | x ′∈ X} .To this 

extent , the bag is a group of elements that  can be duplicated and 

each one has a degree of µ  and ν .   

Input:  C i  = (D ,  l ,  F ,  O ,  H)  and the function A(G) . 

Output: Co  = (D ,  lo ,  Fo ,  Oo ,  Ho) .   

 

The definition of aggregation operator points to the need of 

defining the IFS extensions for tradit ional group operators such as 

SUM, AVG, MIN and MAX.  

 

 

Group Operations & Operators 

 

In this section an investigation is made on how traditional group 

operations can be redefined to cope with the IFS  representation of 

data. Note that the introduction of the IF facts influence the 

evaluation of aggregates at different levels: 

• Will the result over which the aggregate is  performed be 

either crisp or Intuit ionistic Fuzzy?  

• What is the meaning of the result after the IF aggregation is  

performed? 

Using the standard definitions for the group operators (SUM, AVG, 

MIN and MAX) as foundations, their IF extensions and meaning is  

provided. 
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IFSSUM  : The IFS su m  aggregate, like its standard counterpart, is only 

defined for numeric domains. Given a fact F  defined on the schema 

X(att1 ,  …, attn),  let attn -1  defined on the domain U={u1 ,  …, un} .  The 

fact F  consists of fact instances f i  with 1  ≤  i  ≤  m .  The fact instances 

f i  are assumed to take Intuitionistic fuzzy values for the at tribute 

attn -1  for i  = 1  to  m   

f i  [attn -1]  = {<µ i(uk i) ,  ν i(uk i)>/  uk i  | 1 ≤  k i  ≤  n}. 

The IFS su m  of the attribute attn -1  of the fact table F  is defined by:  
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Example:  IFSS UM((Amount)(ProdID))  

= {<0.8,  0.1>/ 100} + {(<0.4, 0.2>/110),  (<0.3, 0.2>/120)} +  

     +{(<0.5,  0.3>/130),  (<0.5,  0.1>/120)} 

={(<0.8∧0.4,0.1∧0.2>/100+110),(<0.8∧0.3,0.1∧0.2>/100+120)}+ 

+{<0.5, 0.3>/130, <0.5, 0.1>/120} 

={(<0.4, 0.2>/210),(<0.3, 0.2>/220)}+{<0.5,  0.3>/130, 

<0.5, 0.1>/120} 

={(<0.4∧0.5,0.2∧0.3>/210+130),(<0.4∧0.5,0.2∧0.1>/210+120), 

(<0.3∧0.5,0.2∧0.3>/220+130),(<0.3∧0.5,0.2∧0.1>/220+120) 

={(<0.4, 0.3>/340), (<0.4, 0.2>/330),  (<0.3, 0.3>/350),  

(<0.3, 0.2>/340)} 

={(<0.3, 0.3>/340), (<0.4, 0.2>/330),  (<0.3, 0.3>/350)}.  
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IFSA VG : The IFSAVG  aggregate, like its standard counterpart , is only 

defined for numeric domains. This aggregate makes use of the 

IFSS UM  that was discussed previously and the standard COUNT.   The 

IFSA VG  can be defined as:  

 

IFSA VG((attn -1)(F) = IFSS UM((attn -1)(F))  /  COUNT((attn -1)(F)).  

 

Example:         IFSAV G((Amount)(ProdID))  

=IFSS UM((Amount)(ProdID))/  COUNT((Amount)(ProdID))  

={(<0.3, 0.3>/340), (<0.4, 0.2>/330),  (<0.3, 0.3>/350)}/3 

 ={(<0.3, 0.3>/113.33),  (<0.4,  0.2>/110),  (<0.3, 0.3>/ 116.66)}.  

 

 

IFSM A X  : The IFSM AX  aggregate,  like i ts standard counterpart, is  

only defined for numeric domains.  Given a fact F  defined on the 

schema X(att1 ,  …,attn), let  at  n -1  defined on the domain U={u1 ,  …, 

un) .  The fact F  consists of fact instances f i  with 1 ≤  i  ≤  m .  The fact  

instances f i  are assumed to take intuitionistic fuzzy values for the 

attribute attn -1  for i  = 1 to  m    

f i[attn -1]  = {<µ i(uk i),  ν i(uk i)>/  uk i  |  1 ≤  k i   ≤  n}.  

 

The IFS su m  of the attribute attn -1  of the fact table F  is defined by:  
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Example: IFSM AX((Amount)(ProdID))  

IFSM AX  =  

={<0.8, 0.1>/100}, {(<0.4, 0.2>/110), (<0.3, 0.2>/120)},  

{(<0.5, 0.3>/130),  (<0.5,  0.1>/120)};  

= {(<0.8∧0.4, 0.1∧0.2>/max(100,110)), 

(<0.8∧0.3,0.1∧0.2>/max(100,120)},   

{<0.5,  0.3>/130, <0.5, 0.1>/120}; 

= {(<0.4, 0.2>/110),  (<0.3, 0.2>/120)},  {<0.5, 0.3>/130,  

<0.5, 0.1>/120}; 

= {(<0.4∧0.5, 0.2∧0.3>/max(110,130)),  

(<0.4∧0.5,  0.2∧0.1>/max(110,120)), 

(<0.3∧0.5,0.2∧0.3>/max(120,130)),  

(<0.3∧0.5,0.2∧0.1>/max(120, 120)) 

= {(<0.4, 0.3>/130),  (<0.4, 0.2>/120), (<0.3, 0.3>/130),   

(<0.3, 0.2>/120)} 

= {(<0.3, 0.3>/130),  (<0.3, 0.2>/120)}.  

 

 

IFSM IN: The IFSM IN  aggregate, like its standard counterpart , is only 

defined for numeric domains. Given a fact F  defined on the schema 

X(att1 ,  …,attn), let attn -1  defined on the domain U={u1 ,  …, un) .  The 

fact F  consists  of fact instances f i  with 1 ≤   i  ≤   m .  The fact 

instances f i  are assumed to take intuitionistic fuzzy values for the 

attribute attn -1  for i  = 1 to m  therefore f i[attn -1]  = {<µ i(uk i) , ν i(uk i)>/  

uk i  |  1 ≤  k i  ≤  n}. The IFS su m  of the attribute attn -1  of the fact table F  

is defined by:  
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It  can be observed that the IFSM IN  is extended in the same manner as 

IFSM AX  aggregate except for replacing the symbol max  in the IFSM AX  

definit ion with min .  

The definition of the extended group operations makes it  possible to 

define the extended group operators Roll up (∆∆∆∆),  and Roll  Down 

(Ω) .  

 

Roll up (∆∆∆∆): The result of applying Roll up over dimension d i  at 

level dl r  using the aggregation operator A over a datacube C i  = (D i ,  

l i ,  F i ,  O ,  H i)  is another datacube Co  = (Do ,  lo ,  Fo ,  O ,  Ho) .  

Input:   C i  = (D i ,  l i ,  F i ,  O ,  H i).  

Output:  Co  = (Do ,  lo ,  Fo ,  O ,  Ho).  

 

An object of type history is a recursive structure:  

H = {
 

ω  is the ini tial state of the cube  

(l ,  D ,  A ,  H’) is  the state of the cube after  

performing an operation on the cube 

 

The structured history of the datacube allows the storing of all  the 

information when applying Roll up and the recall of it  back when 

Roll Down  is performed. In order to be able to apply the operation 

of Roll  Up the IFSS U M  aggregation operator needs to be put to use.  
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Roll Down (Ω): This operator performs the opposite function of the 

Roll Up  operator. It  is used to roll down from the higher levels of 

the hierarchy with a greater degree of generalization, to the leaves 

with the greater degree of precision. The result  of applying Roll  

Down  over a datacube C i  = (D ,  l ,  F ,  O ,  H)  having H  = (l’,  D’ ,  A’,  

H’) is another datacube Co  = (D’ , l’,  F’, O ,  H’).  

Input:  C i  = (D ,  l ,  F ,  O ,  H) .   

Output: Co  = (D’, l’,  F’ ,  O ,  H’) where F’�  set of fact instances 

defined by operator A. 

 

To this extent , the Roll Down  operative makes use of the recursive 

history structure previously created after performing the Roll Up  

operator.  
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4.3 Conclusions 

  

In this chapter the context of value imprecision was revised, as part 

of an MOLAP based environment.  A new approach for extending the 

MOLAP model was presented, so that it  can include treatment of  

value uncertainty as part of a multidimensional model, inhabited by 

concepts and flexible hierarchical  structures of organization.  A new 

multidimensional-cubic model named the IF-Cube was introduced, 

which is able to operate over data with imprecision either in the 

facts or in the dimensional hierarchies.  

The main contribution of this new multidimensional-cubic model is  

that is able to operate over data with imprecision in the facts and 

the summarisation hierarchies. Classical models imposed a rigid 

structure that made the models present  difficulties when merging 

information from different  but  still  reconcilable sources.  

These features are inexistent in current  OLAP tools. Furthermore, it  

has been noticed that  the IF-Cube can be used for the representation 

of Intuitionistic fuzzy linguist ic terms. 

In order to further clarify the structure of the model presented here,  

chapter five will describe the metadata of the model and also 

introduce a case study, the Vitis Vinifera  (the ontology of the 

common grape vine) domain. This case of multidimensional  

modelling is  put  through an H-IFS based ad-hoc utility christened 

“IF-Oracle”.  
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"Burgundy for Kings, Champagne for Duchesses, and claret for Gentlemen." 

French Proverb 

 

 

 

 

Chapter Five 
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5.1 Conceptual Modelling 

 

An approach is presented towards the problem of encoding value 

and imprecision in OLAP systems. The nature of value imprecision 

is specified and a conceptual model is built  that can capture the 

semantics of value imprecision.  

This section presents the properties for a conceptual formalism that 

will capture value imprecision. A conceptual model should present  

value imprecision at three levels of abstraction, which are:  

• The instance level , which contains the actual facts that wil l  

populate the data repository.  

• The specificat ion level  which still  is application dependent 

but of a higher level; i t  describes classes of objects rather 

than individual data items. 

• The concept level or meta-model level, where the basic 

concepts and their inter-relationship is described. The meta-

model level is application independent.  

A conceptual  model for representing value imprecision must 

perceive the following properties:  

• Powerful, Simple and Formal:  How much expressive power 

a conceptual model should support?  High expressive power 

may lead to complexity and eventually to rejection of the 

model. Simplicity implies that the number of concepts should 

be kept small. Further on, the definitions of the concepts 

(primitive notions) should be as close as possible to the real  
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world concepts. For specificat ions to be ambiguous they have 

to rely on a sound formal definition. This is the point  where 

meta-modelling is useful.  

With regards to the multidimensional property of imprecision, two 

more features can be added, named belief and knowledge 

representation.  However, it  has to be emphasised that knowledge 

representation is related to the instance level  only;  

• Belief:  is expressed formally as the measure related with the 

might happen ability or tendency of things to occur. In this 

thesis belief indicates possible ways to interpret and map the 

semantics of the kind-of relation (see chapter 3).  

• Knowledge Representation:  The issue here is whether the 

model can represent  the “kind-of” relations as summarisat ion 

paths that  will allow users to define their own axes of 

analysis when it  comes to OLAP analysis (see chapter 4).  

At this point the first considerations for a conceptual formalism will 

be defined that will enable a common framework for value 

imprecision in OLAP based environments or tools.  
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5.2 Meta-model of the KNOLAP approach 

 

Modelling for OLAP could be viewed [93] from a conceptual  and a 

logical  perspective. To this extent , there is no accepted conceptual  

modelling language for OLAP semantics.  Instead, the debate is  

dominated by a broad variety of models for multidimensional 

structures [93]. Actually, no in-depth analysis has been carried out  

which relates syntax and semantics of the multidimensional  query 

languages regarding the underlying universe of discourse.    

Multidimensional models consist of quantifying and qualifying data.  

The former, often referred to as measures, represent values of 

relevant objects of an application domain (e.g. sales/turnover).  

Measures are qualified through dimensions, describing the selected 

viewpoints (e.g. time, region, and customer), leading to concrete 

information. Combining quantifying and qualifying data results in a 

cube-fact,  which represents both.  

Dimensions consist  of dimensional nodes which are regularly 

organised into hierarchies,  following the mechanism of defining set  

memberships.  A hierarchy results from creating sets of elements.  

The grouping of elements or sets should be guided by some type of 

set definition. Hierarchies model granular elements which are on the 

same level of the hierarchy. A repetit ive application of the grouping 

leads to three possible types of hierarchical levels.  First ,  a level  

could contain all elements. As it  contains al l  available elements, 

this level is called elementary level. Second, a level root could 

contain only one set  which all other elements are subordinated to.  
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And last, there can be intermediate levels, residing in-between. 

Hierarchies enable the changing of the level of detail of a business 

object that is being represented, adapting views according to the 

actual information requirements.  

Then, i t  has to be considered whether the concepts of the business 

process/facts may benefit from H-IFS labelling. An Intuit ionistic 

fuzzy dimension is actually an extension of a crisp dimension. For  

each crisp dimensional  instance,  Intuit ionistic Fuzzy weights are 

associated with the aid of H-IFS closure (see section 3.3.2). For 

example,  consider the wine dimension. A typical wine dimension 

may have the product level, the category level, and the subcategory 

level. In many cases, a wine subcategory can belong to several  

product categories. For example, Muscat can be considered either 

red or white wine. Therefore, the user can associate the "wine" 

product subcategory to several product categories and assign 

different membership, non-membership and hesitation degrees to 

each wine category.   
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Figure 5-1 :  KNOLAP Meta-model  

 

The meaning behind the Intuitionistic fuzzy hierarchy is  that the 

child and parent  levels will  have a many-to-many relationship as 

seen in “Figure 5-1”.  This kind-of relationship is not common in the 

classical DW but [43] did mention the feasibility of such a 

relationship in a DW. The solution for this problem is adding a 

"summarisation paths" object between the parent and child levels. 

The summarisation table holds combinations of the parent and the 

Crisp Values Imprecise Values 

Data Domain Involves Is 
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Organised Process/Fact Dimension 

 

Hierarchical level 
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child level and, in addition, the different membership, non

membership and hesitations degrees are added between the different  

level items. The specification of an Intuitionist ic fuzzy hierarchy is  

based on the utilisation of the minimal H

In the next sections the proposed KNOLAP meta

architecture are util ize

Vinifera domain and for implementing an

Oracle” that allows expression of value imprecision at the level of 

domain hierarchies.

With respect to the KNOLA

5-2”,  OLAP query execution occurs

• The user provides an OLAP query to be answered and a set of 

dimensions related to the submitted query.  Dimensions are 

defined according to user’s perceptions given a set of entities 

involved in the analysis.
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child level and, in addition, the different membership, non

membership and hesitations degrees are added between the different  

items. The specification of an Intuitionist ic fuzzy hierarchy is  

based on the utilisation of the minimal H-IFS (see section 3.3

In the next sections the proposed KNOLAP meta-model 

util ized for the purposes of analysis of the Vit

domain and for implementing an ad-hoc utility 

that allows expression of value imprecision at the level of 

domain hierarchies.  

With respect to the KNOLAP architecture as presented in “F

, OLAP query execution occurs as follows: 

The user provides an OLAP query to be answered and a set of 

dimensions related to the submitted query.  Dimensions are 

defined according to user’s perceptions given a set of entities 

involved in the analysis.  

Figure 5-2 :  KNOLAP archi tecture  
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child level and, in addition, the different membership, non-

membership and hesitations degrees are added between the different  

items. The specification of an Intuitionist ic fuzzy hierarchy is  

see section 3.3) . 

model and its  

d for the purposes of analysis of the Vitis 

hoc utility called ”IF-

that allows expression of value imprecision at the level of 

P architecture as presented in “Figure  

The user provides an OLAP query to be answered and a set of 

dimensions related to the submitted query.  Dimensions are 

defined according to user’s perceptions given a set of entities 
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• Conditions and grouping sets in the OLAP query are 

transformed into H-IFS generalized conditions and grouping 

sets. H-IFS generalized condition point  to possible 

summarization paths involved in the definition of a 

dimension. 

• Summarization paths express hierarchical weighted 

knowledge (H-IFS) involved in the definition of a dimension 

and thus in the query conditions and grouping statements.  

• Generalized H-IFS conditions and grouping statements as part  

of an OLAP query are submitted as weighted conjunctive 

queries to the underlying OLAP database server.  

• As soon as the query execution is  over, the user will receive 

an answer to its ini t ial query that consists of two parts; the 

definite and the possible. The definite part identifies the 

subgroup or data-cube that satisfies exactly the given request,  

while the possible part identifies an enhanced subgroup or 

data-cube that allows users to extract results previously 

unknown to them due to the enhancement of the query 

conditions and grouping statements.   
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5.3 Introduction of the Vitis Vinifera Domain 

 

The Vit is Vinifera domain is a case of multidimensional modelling,  

according to Multidimensional paradigm [43]. Further analysis of 

the Vitis  Vinifera domain will  require operations to aggregate based 

on levels of aggregation al ternatively known as dimension 

hierarchies. So,  improving query answers process involves well 

defined and rich hierarchies [94]. Then the main task is on 

addressing the following question/issue,  “How to define dimension 

hierarchies”? 

 

There are several possible approaches in developing a hierarchy: 

A top-down development process starts  with the definit ion of the 

most general concepts in the domain and subsequent specialization 

of the concepts.  

A bottom-up development process starts  with the definition of the 

most specific elements, the leaves of the hierarchy, with subsequent 

grouping of these classes into more general concepts.  

 

A combination development process is a combination of the top-

down and bottom-up approaches: first the more significant concepts 

are defined and then they are generalised or specialised 

appropriately.  To start with,  a few top-level concepts such as Wine,  

and a few specific concepts, such as Syrah are considered.  Then 

they are related to a middle-level  concept, such as Rhone.  

 

This is not a simple task for the following reasons:  

• Hierarchies could not be specified as many terms and data 

required by users are not included in the operational sources,  

i .e. consider a wine-sales database.  
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• Some kind of guidance is needed to enrich hierarchies by 

adding levels of aggregation, when referring to complex 

modelling domains like Vitis Vinifera.  

• There is a need to include knowledge provided by the Vitis  

Vinifera domain in order to improve the quality of dimension 

hierarchies. This will allow the inclusion of new hierarchy 

aggregation levels, which in return will  allow DWH’s (Data-

Warehouse – a collection of integrated multisource data) 

users to achieve their analysis information needs and better 

support  the query answering process.  

 

5.3.1 A proposed solution 

 

Automatically complete hierarchies using relationships among 

concepts provided by an H-IFS [94] for the following reasons:  

• Dimension hierarchies represent semantic relations between 

values. i .e. Red Bordeaux  are Red wines.  

• H-IFS can express generalisat ion of two important properties: 

“is-a-kind-of” and aggregation or “is-a-part-of”. For example, 

Cabernet Sauvignon, Cabernet Franc and Merlot are kind-of 

Bordeaux Grapes and they are part of Red Bordeaux wines.  

• These semantic relat ions allow us to organize concepts into 

hierarchical structures. The “kind-of” and “is part of” 

relations between concepts are of interest here,  as they are 

the most useful relationships in a dimension hierarchy, and 

could be used to extend dimension hierarchies.  

• In this  context, H-IFS, which are more generally used to 

represent concepts whose borders are not strictly delimited, 

can be used to define flexible selection criteria, by 
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associating a preference with every candidate value.  The 

hierarchical structure can be used to enhance the users’ 

queries in case of empty answers, while respecting the 

preference order defined by the users in their selection 

cri teria.  

 

In the Vit is Vinifera domain, the following are possible competency 

questions:  

• Is  Muscat a Red or White wine? 

• Is  Bordeaux a Red or White wine? 

• Which wines, red or white are increasing in popularity?  

 

In providing an answer to these questions/queries one has to 

recognise that off-the-shelf products cannot answer the above 

questions simply because hierarchies provide only levels of 

summarisat ion but not any knowledge about the domain. On the 

other hand, H-IFS provide an ontological view of the modelled 

domain as well as efficient ways of summarising operational  data as 

part of data-warehouse.  

 

The H-IFS structure for Vitis  Vinifera Domain has been constructed 

as follows: applying elementary generalisation of the init ial  set of 

an H-IFS structure into H-IFS of extended structure to create a new 

hierarchy level. The process is repeated until  the required level of 

aggregation is  achieved.  

 

Thus, the first elementary generalisation for the H-IFS structure for 

Vitis Vinifera domain starts at level n-3. This elementary 

generalisation allows us to relate grape varieties as “kind-of” 

regional  wine types. This corresponds to the level  n-2 of the H-IFS.  

The second elementary generalisation starts at level n-2.  This 

consecutive elementary generalisation al lows us to relate regional  
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wine types as kind-of the general type wines (Black, Rose,  White,  

Red). This corresponds to the level n-1 of the H-IFS. If one wishes 

to further generalise the n-1 H-IFS, then the next elementary 

generalisation, level  n, will produce the whole production for al l  

types of wines.  

 

The next section presents an OLAP querying mechanism that  

utilizes knowledge in the form of H-IFS for the Vitis  Vinifera 

domain.  
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5.4 Querying the Vitis Vinifera Domain

 

Let’s consider a sample multidimensional model, 

“Figure 5-3” in the form of a star schema that descr

Vitis  Vinifera type wines.

 

Considering the Wine Sales star schema and the product dimension, 

the at tribute H-Name corresponds to 

for Vitis Vinifera domain.  So far no fuzziness with respect to data 

displayed in “Figure 5

  

 

At the same time let

dimensional approach which is  the subject  area that is  most  
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Querying the Vitis Vinifera Domain 

consider a sample multidimensional model, 

in the form of a star schema that describes sales of the 

Vitis  Vinifera type wines.  

Considering the Wine Sales star schema and the product dimension, 

Name corresponds to “Figure 5-5”, H-

for Vitis Vinifera domain.  So far no fuzziness with respect to data 

igure 5-3”.   

Figure 5-3 :  Sample  of  a  Star schema 

At the same time let’s recall  the main focus of the multi

dimensional approach which is  the subject  area that is  most  

Treatment Of Imprecision In Data Repositories With The Aid Of KNOLAP 

f Westminster, London                          110 

 

consider a sample multidimensional model, depicted in 

ibes sales of the 

Considering the Wine Sales star schema and the product dimension, 

- IFS structure 

for Vitis Vinifera domain.  So far no fuzziness with respect to data 

 

recall  the main focus of the multi-

dimensional approach which is  the subject  area that is  most  
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important for analysis in this case sales of bottled wines. To this 

extent  let us consider the following questions:   

• Which wines, red or white are increasing in popularity?  

• Is  Muscat a Red or White wine? 

 

Traditional OLAP tools like Oracle Express, etc. are currently not 

capable of answering this query for the following reason: 

• By observing the Name attribute in “Figure 5-3”, it  can be 

seen that there are no direct matches for red or white wine. So 

a tradit ional OLAP query will return no answers for question 

I.  Similarly, question II cannot be answered by traditional  

OLAP tools because Muscat type wines can either be 

classified as red or white.   

 

The following diagram, “Figure 5-4”,  represents the query dilemmas 

for a traditional OLAP Tools.  

 

 

Figure 5-4 :  Al locat ion st ra tegies  

 

• Bottles B1 Red Bordeaux, B4 Merlot can be classified as Red 

Bordeaux or Red wines with absolute certainty.  

• Bottles B6 Pinot Gris, B5p Sauvignon and B7 are White Wine 

Types, for sure.  Only bottle B7 is White Bordeaux. Bottle 

B5p, Sauvignon can be either classified as White Bordeaux or 
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as Chateau d 'Yquem, B8. Chateau d 'Yquem is a White wine 

but not a White Bordeaux 

• Bottles B2p, known as Muscat can be either Red or White 

wines.  

The above queries show the importance of H-IFS for two reasons,  

firstly they allow us to extend the scope of the query and secondly 

they permit us to consider mixed concepts i .e. Muscat when the 

queries above are answered. 

At this point it  is important to estimate the total confidence in B5p 

being White Bordeaux or as Chateau d 'Yquem. Similarly,  the total 

confidence in B2p needs to be estimated,  being white or red wine.  

The measure can be formulated as following: 

 

 

 

C Ip, Region1 =
Sum|Region1|

Sum|Region1| +  Sum |Region2|

Ip ∉ Sum|Region|C Ip, Region1 ==
Sum|Region1|

Sum|Region1| +  Sum |Region2|

Ip ∉ Sum|Region|

C B2p, White  Wine

C B2p, Red Wine

=

|B8|

|B8| + |B7|

C B5p, Chateau d'Yquem
=

|400|

|400| + |600|

= 4

10

=
|B7|

|B7| +|B8| 

C B5p, White Bordeaux
=

|600|

|600| +|400| 

= 6

10

=
|B1|+|B4|

|B1|+|B4|+|B5|+|B6| +|B7| +|B8|

=
|1160|

|1160| +|1400| 

= 116

256

=
|B5|+|B6| +|B7| +|B8|

|B1|+|B4|+|B5|+|B6| +|B7| +|B8|

=
|1400|

|1160| +|1400| 

= 140

256

C B2p, White  Wine

C B2p, Red Wine

==

|B8|

|B8| + |B7|

C B5p, Chateau d'Yquem
==

|400|

|400| + |600|

== 4

10

==
|B7|

|B7| +|B8| 

C B5p, White Bordeaux
==

|600|

|600| +|400| 

== 6

10

==
|B1|+|B4|

|B1|+|B4|+|B5|+|B6| +|B7| +|B8|

==
|1160|

|1160| +|1400| 

== 116

256

==
|B5|+|B6| +|B7| +|B8|

|B1|+|B4|+|B5|+|B6| +|B7| +|B8|

==
|1400|

|1160| +|1400| 

== 140

256
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As an alternative for the Sum, the Count measure can be utilized. 

The measure can be formulated by using the following rationale:  

Bottle B5p is disputed by two “regions”: White Bordeaux and 

Chateau d 'Yquem. So the confidence that B5p is a kind-of Chateau 

d 'Yquem is the sum of sales for Chateau d 'Yquem over the sum of 

all  sales for White Bordeaux and Chateau d 'Yquem. The i tem of 

dispute B5p is excluded from the sum.  The same applies for Bottle 

B2p. 

The estimations below are based on the sample data from “Figure 5-

3”.  

When it  comes to White Bordeaux and Chateau d’Yquem, the 

following stands true: it  is known for certain that there are 600 

bottles of White Bordeaux and possibly more, with a confidence of 

6/10,  out of 200 Sauvignon.  Therefore:  

 

 

 

As far as Chateau d’Yquem is concerned, there are 400 bottles there 

for certain and possibly more with a confidence of 4/10 out of 200 

Sauvignon.  

 

 

 

 

 
µWhite Bordeaux, White Wine ==

600

1856

= 0.32 ==
120

1856

= 0.07πWhite Bordeaux, White Wine

 
µ Chateau d’Yquem, White Wine ==

400

1856

= 0.21 ==
80

1856

= 0.04
π Chateau d’Yquem, White wine
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Based on the above calculations, a weighted H-IFS sub-domain can 

be built ,  “Figure 5-5” suitable for modell ing and querying needs of 

complex/mixed concepts and sample data of the star schema 

displayed in “Figure 5-3”.  

 

Figure 5-5 :  The Vit is  Vinifera H-IFS 

 

Based on the H-IFS domain presented above and data from the star 

schema of “Figure 5-3”, an OLAP querying mechanism will be 

presented, capable of dealing with mixed concepts, knowledge and 

summarising data according to a specified level. The hierarchy used 

to represent the data, as well as to express queries in the retrieval  

system, is organized into a hierarchy of terms that corresponds to 

the taxonomy derived from the Vitis  Vinifera Domain.  

Further on, the main concepts involved in the designing and 

implementation the “IF-Oracle” ad-hoc utility will  be presented and 

discussed, so that there can be a demonstration of the potential of 
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“IF-Oracle” utility when i t  comes to query answering that requires 

utilisation of the domain knowledge in order to receive answer close 

to the user’s intent.  Finally a conclusion is  presented and future 

research aims and targets are put forward.  

‘IF-Oracle’ has been implemented on top of Oracle10g and allows 

one to:  

• Define an H-IFS hierarchy  

• Incorporate hierarchical knowledge in the form of H-IFS as 

part of the standard SQL queries.  

• Enhance the scope of query answers against the Oracle10g 

standard query answers.  
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5.4.1 The IF-Oracle, a

 

IF-Oracle [84] has been developed using Visual Studio.Net as an 

ad-hoc utility that  is at tached to and enhances Oracle10g DBMS 

query capabilities.  For demonstrating the functionality

let’s consider a sample multidimensional model, 

the form of a star schema that describes sales of Vitis Vinifera type 

wines.  

“Figure 5-6” shows a sub

Vitis Vinifera domain for 

tree structure view as displayed in IF

tree representation.

 

 

Figure 

 

Treatment Of Imprecision In Data Repositories With The Aid Of KNOLAP

Implementing the KNOLAP architecture 

 

Ermir Rogova, PhD Thesis, University of Westminster, London                

Oracle, an H-IFS Based Ad-Hoc Utility 

4] has been developed using Visual Studio.Net as an 

hoc utility that  is at tached to and enhances Oracle10g DBMS 

query capabilities.  For demonstrating the functionality

let’s consider a sample multidimensional model, “Figure 5

the form of a star schema that describes sales of Vitis Vinifera type 

shows a sub-hierarchy that  has been derived from the 

Vitis Vinifera domain for testing purposes. On the left

tree structure view as displayed in IF-Oracle, while on the right its 

tree representation. 

    

Figure 5-6:  Vit i s  Vini fera sub-hierarchy v iews

Wine 

Red White 

Red Bordeaux 

Merlot 

Medit. 

Muscat 

White 

Bordeaux 

Muscat Sauvignon 

Alsace
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Hoc Utility  

4] has been developed using Visual Studio.Net as an 

hoc utility that  is at tached to and enhances Oracle10g DBMS 

query capabilities.  For demonstrating the functionality of IF-Oracle 

Figure 5-3”,  in 

the form of a star schema that describes sales of Vitis Vinifera type 

hierarchy that  has been derived from the 

purposes. On the left is shown the 

Oracle, while on the right its 

hierarchy v iews  

Rose 

Alsace 

Pinot Gris 

Friuli 
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After forming the structur

Oracle10g, the calculation of the hierarchical closure of the H

and its  weights is performed.

The user now has the choice of selecting three different strategies:  

Optimistic, Pessimistic 

Let’s assume that the user’s interest lays on finding information 

about Red, White and Brown wines.  

“Figure 5-7” below, shows the hierarchy after weights have been 

calculated and assigned reflecting the user’s intent .

 

Figure 5-7

 

It  can be observed that the principle of the H

definition 3)  has been preserved when propagating the degree of 

validity {µ} and non

elements by using the optimistic strategy.

The degree of validi ty and non

as follows: 
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After forming the structure and storing it  as a concept relat ion in 

Oracle10g, the calculation of the hierarchical closure of the H

and its  weights is performed. 

The user now has the choice of selecting three different strategies:  

Optimistic, Pessimistic or  Average  as defined on section 3.3.2.

Let’s assume that the user’s interest lays on finding information 

about Red, White and Brown wines.   

below, shows the hierarchy after weights have been 

calculated and assigned reflecting the user’s intent .  

 

7:  Viti s  Vinifera sub-hierarchy v iew with weights

It  can be observed that the principle of the H-IFS closure 

has been preserved when propagating the degree of 

and non-validity {ν} from super-elements to sub

elements by using the optimistic strategy.  

The degree of validi ty and non-validity <µ ,  ν>  and π are calculated 
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e and storing it  as a concept relat ion in 

Oracle10g, the calculation of the hierarchical closure of the H-IFS 

The user now has the choice of selecting three different strategies:  

n section 3.3.2. 

Let’s assume that the user’s interest lays on finding information 

below, shows the hierarchy after weights have been 

hierarchy v iew with weights  

IFS closure (see 

has been preserved when propagating the degree of 

elements to sub-

are calculated 
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Where c l  corresponds to those elements from the fact table that 

absolutely satisfy the selection cri teria with reference to a node in 

the hierarchy. C l -1

on a lower level that  sat isfy the selection condition to some extent.  

It  is  obvious that: 

After adding the hierarchy into the repository and automatically 

calculating the weights for the requested nodes, the user can utilize 

the ad-hoc interface for execution of queries either in standard SQL 

or make use of the enhanced Select  clause and features that IF

Oracle provides.  

“Figure 5-8” shows the results of a user request for “Red” wine 

executed in standard SQL provided by Oracle10g.

Figure 

 

 |c
µ= 
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     π=1- (µ+ν)  

corresponds to those elements from the fact table that 

absolutely satisfy the selection cri teria with reference to a node in 

1  represents the children elements of that s

on a lower level that  sat isfy the selection condition to some extent.  

  

π=1- (µ+ν)  

After adding the hierarchy into the repository and automatically 

calculating the weights for the requested nodes, the user can utilize 

interface for execution of queries either in standard SQL 

or make use of the enhanced Select  clause and features that IF

shows the results of a user request for “Red” wine 

executed in standard SQL provided by Oracle10g. 

ure 5-8 :   Standard SQL output  for “Red” wine

 

|cl| 
|cl-1| 

|¬cl| 
  |cl-1| 

ν= 
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corresponds to those elements from the fact table that 

absolutely satisfy the selection cri teria with reference to a node in 

children elements of that selection 

on a lower level that  sat isfy the selection condition to some extent.  

After adding the hierarchy into the repository and automatically 

calculating the weights for the requested nodes, the user can utilize 

interface for execution of queries either in standard SQL 

or make use of the enhanced Select  clause and features that IF-

shows the results of a user request for “Red” wine 

 

:   Standard SQL output  for “Red” wine  
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In contrast, “Figure 5-9” shows the output after executing the same 

query,  but this t ime using the IF-Oracle utility.  

 

 

Figure 5-9 :   Enhanced SQL output  for “Red”  wine  

 

By comparing the two figures, one can observe that IF-Oracle 

produces a knowledge-based answer instead of mindlessly matching 

the records against the word “Red”. 

The results show that IF-Oracle not only retrieves sales of “Red” 

bottles, but also sales of bottles that are classified as red wines by 

the knowledge represented in the H-IFS hierarchy as “Merlot”, “Red 

Bordeaux”, “Muscat”, etc. with indicative degrees of <µ ,  ν> 

relevant to the user’s preference.  
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5.5 Conclusions 

 

A context for capturing and representing the semantics of value 

imprecision under three levels of abstraction, the meta-model level,  

the specification level and the instance level has been delivered. In 

this way the propert ies of value imprecision can be captured and 

formally defined, verified at the meta-model level. A specification 

level has been delivered, enabling users or application designers to 

express the imprecision semantics in a simple and formal way. A 

post-relational environment for handling uncertainty has been 

defined. 

The focus is on delivering an OLAP architecture that allows the 

integration of hierarchical preferences expressed in the form of 

background/domain-knowledge, with the aim on enhancing the 

query scope and in return receiving a richer answer, closer to user 

requests. This thesis provided means of using background 

knowledge to re-engineer query processing and answering with the 

aid of H-IFS and Intuitionistic Fuzzy relational representation. The 

hierarchical links defined on the basis of the H-IFS closure 

represent  knowledge in the form of enhanced “kind-of, ≤” relation.  

The membership of an element in an H-IFS has consequences on the 

membership and non-membership of its  sub-elements in this  set.  

This chapter has demonstrated the simplicity and implementation-

abili ty of the H-IFS notion by adding an ad-hoc utility ‘IF-Oracle’ 

in Oracle10g that allowed the enrichment of the scope of query and 

the return of answers closer to user’s intent  and preferences, even 

when answers are not obvious when using the standard SQL 

provided by Oracle10g.  
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“I think and think for months and years. Ninety-nine times, the conclusion is false. 
The hundredth time I am right.” 

Albert Einstein 

 

 

 

Chapter Six 

 

6. Conclusions and further research 

 

6.1 Short  Summary 

6.2 Contributions 

6.3 Limitations and Future Work 
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6.1 Short Summary 

 

In Chapter 1 the meaning of imprecise/ignorant information in data 

repositories was defined. Proposed extensions to the relational data 

model so that it  can represent and retrieve such information were 

examined. Various kinds of imprecise information were explored,  

such as: fuzzy, missing, partial,  possible,  probabilistic, unknown.  

In Chapter 2 the various kinds of value imprecision were described 

along with their meaning in the context  of a formal model.  Value 

imprecision  is positioned in the context of data repositories as part 

of an at tribute-value and On-Line Analytical Processing (OLAP), as 

part of the axis of analysis/dimensions.  

In Chapter 3 a unique solution was brought forward that allowed the 

representation of flexible user-defined hierarchies as part of the 

dimension structures. This solution was defined as “Hierarchical-

Intuitionistic-Fuzzy-Sets” or “H-IFS”, an extension of the 

Intuitionistic Fuzzy Sets.  

In Chapter 4 the issue of representing imprecise facts and the 

answering of queries based on user-defined hierarchical preferences 

was dealt by delivering an extended multidimensional model and 

query operators named the “IF-Cube”.  

In Chapter 5 the KNOLAP conceptual formalism was revealed,  

which put forward a common framework for defining value 

imprecision with respect to multidimensional modelling propert ies.  

Based on the KNOLAP conceptual formalism, the “IF-Oracle” ad-

hoc utility was delivered. IF-Oracle utilized the concepts of H-IFS 
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and IF-Cube as part of the data definition and manipulation 

language, allowing thus the encoding of imprecision either as part  

of the attribute values or the axis of analysis/dimensions.   
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6.2 Contributions 

 

This thesis  provided a theoretical framework of using background 

knowledge to re-engineer query processing and answering with the 

aid of H-IFS and Intuitionistic Fuzzy relational representation. The 

hierarchical links defined on the basis of the H-IFS closure 

represent  knowledge in the form of enhanced “kind-of, ≤” relation.   

The automatic recommendation of analysis was introduced 

according to the concepts defined as part of domain description in 

order to guide query answering with the aid of Hierarchical 

Intuitionistic Fuzzy Sets (H-IFS), an extension of the Intuitionistic 

Fuzzy Sets. Accommodating imprecision or user preferences at the 

level of the dimensions or axis of analysis as part  of a 

multidimensional model can be achieved with the aid of H-IFS. 

Furthermore, based on the concept of minimal H-IFS it  is  ensured 

that queries utilize the minimum number of predicates when it  

comes to query formulation prior to execution. In terms of data 

representation when it  comes to OLAP analysis, the following cases 

can be accommodated: 

• Crisp dimensions and precise data 

• H-IFS based hierarchies/dimensions and precise data 

• Crisp hierarchies/dimensions and imprecise data 

• H-IFS based hierarchies/dimensions and imprecise data 

  

In order to achieve the accommodation of imprecision at the level  

of facts/data, it  became clear that there is a need to extend the 
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standard cubic model and the related OLAP-query operators.  A new 

approach for extending the MOLAP model was presented, so that it  

can include treatment of value imprecision as part of a 

multidimensional model inhabited by concepts and non-rigid 

hierarchical structures of organisation. A new multidimensional-

cubic model named the IF-Cube was introduced, which is able to 

operate over data with imprecision either in the facts or in the 

dimensional hierarchies.   

A conceptual formalism known as the KNOLAP meta-model for 

capturing and representing the semantics of value imprecision with 

the aid of three levels of abstraction, the meta-model level, the 

specificat ion level and the instance level  has been delivered. In this  

way the properties of value imprecision can be captured and 

formally defined, verified at the meta-model level. A specification 

level has been delivered, enabling users or application designers to 

express the imprecision semantics, in a simple and formal way. The 

delivered IF-Oracle ad-hoc uti lity is a realisation of the KNOLAP 

meta-model. The focus is on delivering an OLAP architecture that  

allows the integration of hierarchical preferences expressed in the 

form of background domain-knowledge with the aim on enhancing 

the query scope and in return receiving a richer answer, closer to 

user intents and preferences.  
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6.3 Limitations and Future Work 

 

In order to implement the concept of H-IFS and the IF-Cube model,  

a platform was required which would provide a DW, OLAP 

browsing, based on the fundamental  concept of possible worlds.  

Commercial tools did not fit  the need for customised software that  

supports OLAP processing based on the concept of possible worlds.  

The IF-Oracle ad-hoc utility allows OLAP processing with the 

retrieval of not only definite answers but also possible answers, so 

it  complies with the fundamental concept of possible worlds when it  

comes to query answering.  The IF-Oracle ad-hoc utility is  currently 

implemented on top of Oracle-10g and in general can be used as an 

ad-hoc utility to any of the existing OLAP servers. However as an 

ad-hoc utility,  IF-Oracle’s modelling and query processing power is  

dependent on the underlying OLAP-database engine. Some MOLAP 

products have difficulty updating and querying models with more 

than ten dimensions.  The possibility of building a dedicated OLAP 

engine customised to the semantics of possible worlds, although is  

semantically desirable, in practice will be proven to be a very costly 

effort in terms of data storage and indexing structures with little 

chances to compete successfully against existing commercial OLAP 

engines and Database vendors.  The IF-Oracle utility currently 

ensures that queries utilize the minimum number of predicates, with 

the aid of minimal H-IFS, when it  comes to query formulation prior 

to execution.  
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In terms of future work,  one could further equip the IF-Oracle 

utility with a collection of global predicates to describe the overall  

Data-warehouse contents and validate user queries before 

formulation and execution.   This is quite important for achieving 

better query performance since it  wil l  stop the formulation of  

meaningless queries.  For this reason, the IF-Oracle architecture can 

be equipped further with a repository that contains various 

constraints (i .e.  Intuit ionistic Fuzzy Range Constraints,  

Intuitionistic Fuzzy Functional Dependencies,  etc) that are related 

to the information sources that participate on the Data-warehouse 

environment. Furthermore, one could envisage the incorporation of 

online data sources to further enrich the quality of an H-IFS based 

environment.  

Considering the problem of evolution in data-warehouses, most of 

the current OLAP systems report data in the most recent analysis 

structure. However, working only with the latest  version hides the 

existence of evolution and information that may be critical for data 

analysis. H-IFS can potentially act as a suitable medium for 

building a structured version of dimensions, allowing thus users to 

have a view of the evolution of the enterprise performance or 

achievements over the time. 

Overall it  can be said that contributions of this thesis can be 

utilized in querying answering systems for encoding domain 

knowledge and then utilising i t  for further enhancing the query 

formulation and answers obtained from current querying tools.  
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