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Abstract— Relational and hierarchical data modeling stud-

ies are carried out, using simple and explicit comparison based 
ontology. The comparison is basically performed on relation-
ally and hierarchically structured data entities/dimensions. 
This methodology is adopted to understand the human ecosys-
tem that is affected by human behavioural and social disorder 
data patterns. For example, the comparison may be made 
among human systems, which could be between male and fe-
male, fat and slim, disabled and normal (physical impair-
ment), again normal and abnormal (psychological), smokers 
and non-smokers and among different age group domains. 
There could be different hierarchies among which, different 
super-type dimensions are conceptualized into several sub-
type dimensions and integrated them by connecting the inter-
related several common data attributes. Domain ontologies 
are built based on the known-knowledge mining and thus un-
known relationships are modeled that are affected by social 
behaviour data patterns. This study is useful in understanding 
human situations, behavioral patterns and social ecology that 
can facilitate health and medical practitioners, social workers 
and psychologists, while treating their patients and clients. 
 

Index Terms— Ontology, digital ecosystems, social behav-
ioural patterns, health and medicine. 

I. INTRODUCTION 

Human ecosystems do not exist independently, but inter-
act in a complex web of human and ecological relationships 
connecting all (human) ecosystems to make up the bio-
sphere [1]. As represented in Fig. 1, it is a complex system 
of relationships, in which humans interact. These relation-
ships exist in relational as well as nested hierarchies within 
several worldly contexts and domains. Humans individually 
or in aggregates behave differently in different contexts and 
domains based on language, culture, social, psychological 
and geographic locations in which these individuals or 
groups live. A household or university or an office may be 
examples of human systems in which several relationships 
are built with social systems to achieve certain social objec-
tives or purposes. 

Groups of humans, based on gender, body postures, skin 
colour, disability, marital status, occupation, poverty, habits 
and age are criteria and that can facilitate a more logical 
organization and physical representation of all relevant data 
in different conceptual and knowledge domains. An ontol-
ogy is a specification of this conceptualization [2], describ-
ing such concepts and relationships that exist among hu-
mans. Groups or classifications can channel into a particu-
lar ecosystem based on the entities, dimensions and attrib-
utes.  

II. PROBLEM STATEMENT 

Data integration is a significant issue in the context of 
integrating wide variety and types of multidimensional 
data. Human and social ecosystems possess multidimen-
sional data attributes along with their instances. Connecting 
these systems and extracting knowledge that can be inter-
preted by health, medical professionals and social workers 
is a real problem issue. 

Families interact with the environment to form and make 
up an ecosystem. Families make good use of (as well as for 
society) biological sustenance, economic maintenance and 
balance the psycho-social functions. All individuals, fami-
lies as a group, irrespective of their identity, are interde-
pendent, especially on the usage of earth’s resources. Con-
sequently a balance between cooperation and integration of 
the ecosystem, satisfying the demands and needs of indi-
viduals and also respecting family institution as a social 
system/entity, their autonomy and freedom, is sought. Ei-
ther as individual or group of individuals, human behaviour 
is connected to different dimensions of society. It is signifi-
cant to understand and model these interdependent human 
situations from data patterns (Fig. 1). 
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Fig. 1: Process model of domain otology 
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Human behavioural patterns are also unpredictable. In 
the ecologically integrated environment, these behavioural 
patterns (eco-pattern) have definite impacts on individual or 
among individuals. Humans express or react with a variety 
of emotions and feelings. Medical practitioners, social 
workers and psychologists, daily treat numerous people 
with abnormal behavioural patterns. These patients are enti-
ties, or described as conceptualization of several dimen-
sions with several attributes, based on their sex, body pos-
tures, skin colour, habits (living styles, including food hab-
its) and age. There may be volumes of data items and in-
stances associated with these dimensions for several people 
and their associated behaviour or emotion attributes. Behav-
iour, emotion, greed, anger, sorrow, happiness dimensions 
which contribute to ecology, are interconnected to different 
dimensions and associated within human ecosystem. Each 
character or property which is scalable is considered as a 
dimension. All these dimensions are grouped into generali-
zation and specialization categories. Manually handling 
these volumes of data and accessing them from different 
web and on-line/off-line sources are tedious processes. Au-
thors propose ontology based data warehousing and mining 
to analyze these data for several categories and behavioural 
patterns, from several web sources more systematically in a 
way to ensure interoperability of conceptualizations. These 
human data patterns, human-ecological (interconnected) 
data patterns are integrated in a warehouse environment for 
data mining. Domain ontologies are designed for knowl-
edge sharing and reuse among different contexts and do-
mains, besides maintaining semantics. 

III. PREVIOUS LITERATURE 

Ecology associated with human emotional patterns has 
been well demonstrated in [1] narrating basic elements and 
causative factors of ecology. Management of ecology and 
issues surrounding human ecosystems have been discussed 
in [4]. Several domain ontologies relevant to medical and 
other engineering applications have been investigated by 
[5] and [8], demonstrating several multidimensional data 
structuring and data integration issues. 

IV. METHODOLOGY AND FRAMEWORK 

Data integration is a characteristic solution in digital sys-
tem framework. Several attributes are conceptualized in 
these diversified multidimensional data structures of differ-
ent domain ontologies. Digital ecosystem in the context of 
ecology, surrounding the human-being is essentially creat-
ing value by making connections between human-being and 
ecology of social behaviour domain. These domains could 
be generalization of gender, human body posture, skin 
color, food habits and age, and in the context of social 
ecology, any specific activity/action or business (different 
domains) within which human-being is connected. These 
are all embedded in a networked society which can be 
simulated in different IT collaborative frameworks. The re-
lationships between human-being and ecology are concep-
tualized in multiple scalable dimensions; and each of which 
have definite interaction with other dimensions and attribu-
tion to different scales. In the context of multidimensional 
ecology, time and space are significant scalable dimensions. 

Relational and hierarchical ontologies are proposed. As 

demonstrated in Fig. 1, several concepts are drawn from 
entities and dimensions based on comparison, differential, 
similarity, parallelism to develop relational and hierarchical 
ontologies. The comparison based approach is more spe-
cific and explicit, in which several properties of different 
data dimensions are compared. In other words, this ap-
proach compares data instances of attributes of multiple 
dimensions taken from several relational and hierarchical 
data structural models warehoused in an integrated envi-
ronment (Fig. 2). In the case of differential concept, differ-
ent instances (may be different in unique attributes) are 
drawn based on attribute/property strengths and sizes. The 
similarity concept is drawn from same data attribute prop-
erty strengths and magnitudes. The attributes based on par-
allelism concept are drawn that are comparable to each 
other. Again, these concepts may have several permutations 
and combinations among themselves, based on logic, scale 
and context, based on which attributes and dimensions are 
conceptualized. 

 

RDBMS

Human Ecosystem 
Data Instances 

Data Warehouse

Gender 
DB

Body Size 
DB

Food Habit
 DB

Human Ecosystem 
Ontology Database

Entities/Objects Relationships

Attributes

Representation

Human Ecosystem data warehouse 

H
um

an E
cosystem

 D
ata O

ntology M
odeling

E
xc

ha
ng

e 
pr

oc
es

s

Data acquisition

Logical D
ata structuring

Data Mining Human Ecology Data-instances Process Model

da
ta

 e
xt

ra
ct

io
n

Positional 
DB

Period
 DB

Age DB

Heterogeneous 
Data Sources

Ontology structures

Hierarchical

Relational

Vertical

Horizontal

Lateral

 
Fig. 2: An integrated ontology framework for building Human Ecosystem 

A. Components, Objectives & Dimensions of Ecosystems 

Adaptation is a continuing process in an integrated sys-
tem (ecosystem) -each and every element contributing to 
the integrated ecosystem “respond, change, develop, and 
act-on and modify its environment.” Measures and scales 
are significant indicators for social attainment and content-
ment. For example, there are socially defined and achiev-
able goals which possess social values such as doctors treat-
ing patients, or need and desire fulfilment, rather than being 
outputs from the ecosystems. Social workers provide ser-
vices to variety of their customers to full their needs that 
attain their survival goals. Entities that are inherited from 
an integrated and holistic approach preserve bio-diversity 
from genetic (generalization, in top/down hierarchy) to 
community level (specialization). These are open, dynamic 
and complex systems. The components of this system focus 
on dynamic interrelations, including social, biological, po-
litical, economical and physical features. Humans are parts 
of ecosystems with dynamic interrelations. Broad spatial 
and temporal dimensions are attributable to scaling these 
ecosystems. Several institutions, individuals and groups are 
parts of these ecosystems.  

4th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2010) 
© 2010 IEEE.

499



 
 

 

Male and female entities and their attributes can be ‘in 
common’ and ‘uncommon’. Humans of ‘skinny’ and ‘fatty’ 
postures are other entities. Human emotions and feelings 
are behavioural attributes, having definite measure and 
scales. Documenting, acquiring these dimensions and at-
tributes and logically organizing them are part of current 
scope of work. All these dimensions and attributes are hier-
archical (Fig.3) and relational in nature. 
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Fig. 3: Construction of hierarchical relationships from ontology storages  

B. Multidimensional-base ontology modeling 

Attributes are used under different contextual situations 
and semantics, such as scalable, similar, equivalent, corre-
sponding, analogous, matching, and comparable to build 
relationships among data entities or dimensions of sex, body 
postures, skin, habits and age attributes of human ecosys-
tems. For example, similar sex matching attributes modeled 
as comparable is a composite ontology in which conceptu-
alized multiple dimensions and their associated attributes 
are inherited. Short height or tall person has scalable attrib-
ute too. 
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Fig. 4: Fact table identification process; multidimensional view of ware-

house 
“Break in the chains of the infections” and “denormliza-

tion of relationships” have similar analogies, may be in dif-
ferent domains, and specific data relationships are built 
within a multidimensional data model environment within 
the same analogy and context. This approach is more com-
patible and accommodative to a data warehousing ap-
proach. All the data dimensions that are deduced through 
this conceptualization are logical and validated within fine-

grained data structuring approach as shown in Fig. 4. 
In Fig. 5, the data connectivity between two different 

eco-systems is conceptualized thus establishing unknown 
relationships. As demonstrated in Figs. 6-7, star schemas 
narrate the age-behaviour eco-system models, based on de-
duced and validated multiple data dimensions (from Fig. 4) 
hierarchies. Key data attributes and their instances have 
been used to model human eco-systems with some in-
stances being shown in Table 1. 
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Fig. 5: Logically connected two ecosystems  

 
Table1: Hierarchies for each dimension (with instances) of the current data 

warehouse 
Period-dimension: 
  hour<day<month<year 
location-dimension:  
  location-probe<city<state<region<country 
age-dimension: 
  (infant, teen, adult, old) € all (age) 
  (13, 14, ….19) € teen  
  (45, …, 50, 55) € old  
  (20, 21, 22, …, 30) € adult 
  (1, 2, …4, 5,…10)   € infant 
gender-dimension: 
  (male, female) € all (gender) 
  (10%, 20%, … 35%, 40% ... 55%) € male 
  (50%, …, 45%, 60%) € male 
  (35%, 23%, 45%, … 35%) € male 
  (11%, 35%, … 25%) € female 

C. Data Mining and Knowledge Interpretation 

Analogous to Global Positioning System (GPS) in global 
space domain, human anatomy is also described with sev-
eral individual positioning sub-systems of human ecosys-
tem domain, in which different dimensions are inherently 
positioned in human anatomy super-type knowledge do-
mains. To this extent, more research work is in progress. 
However, the data views extracted from the human eco-
system data warehouse are interpreted for knowledge map-
ping in the following sections. 
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Fig. 6: Age domain Multidimensional Ontology connecting two different 

fact tables 
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Fig. 7: Multidimensional star schema model narrating attribute dimensions 

Factors affecting human ecosystem are scalable and 
measurable both qualitatively and quantitatively. These fac-
tors influence human anatomy [8] and the surrounding eco-
system, which is in turn interconnected through integrated 
domain ontologies. The knowledge mapped from these in-
tegrated frameworks is interpreted into measurable and 
scalable data views (Fig. 8). Semantic Web has standard-
ized common domain ontologies that share and express 
worldly knowledge through comparison, similarity, differ-
ential and parallelism logics. In other words, knowledge 
building process may take advantage of domain ontologies 
and domain knowledge embedded within integrated human 
anatomy – ecosystem – ontology framework. Three main 
operations can be deduced [13], in data preparation stage, 
human anatomy ontologies are integrated with ecosystems 
by means of their heterogeneous data instances and appro-
priately guide the selection of data views to be mined. Dur-
ing data mining stage, domain knowledge is allowed with 
specification of constraints for directing the data mining 
procedures, for example narrowing of searching process. 
During interpretation stage (Fig. 8), domain experts of hu-
man anatomy and ecosystems validate and visualize the ex-
tracted data views. 
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Fig. 8: Knowledge Discovery from Multidimensional Data warehouse 

 
As a part of knowledge building process, it is important 

to understand the logically organized data dimensions. A 
constellation schema is prepared with human eco-system 
data instances as demonstrated in Fig. 9, interpreting multi-
ple data instances. 

Knowledge-base structure models: A humanecosys-
tem_socialecosystem structure model Z for L (logic) is a 5-
tuple (POSITION, AGE, GENDER, SKIN_COLOR, FOOD_HABIT, 
PERIOD). Social Ecosystem Model Structure Z1 for L1 
(Logic1) is a 5-tuple (POSITION, EMOTIONAL, GREEDY, 
ANGER, SORROW, HAPPYNESS, PERIOD) Here S = 
U{(POSITION, AGE) R1}and U {(AGE, GENDER) R2} are do-
mains of Z structure, and consists of the union of two mu-
tually disjoint sets (POSITION, AGE), R1 and (AGE, GENDER), 
R2. (POSITION, AGE) is a set of individual entities of S and R 
is a set of relationships between (POSITION, AGE) and (AGE, 
GENDER) entities. R is partitioned in different ways as de-
signer wanted it as R1 and R2, since the prior entity combi-
nations are logically related.  
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Fig. 9: A constellation schema connecting human and behaviour ecosys-

tems 
If this 2-tuple is to be interconnected, it could be done 

through relational or hierarchical relationships, such as: 
S = U{(POSITION, AGE)R1} and U {(EMOTIONAL, 
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GREEDY)R2} are other domain of Z1 structure and consists 
of union of two mutually disjoint sets (POSITION, AGE), R1 
and (EMOTIONAL, GREEDY), R2. (POSITION, AGE) is a set of 
individual entities of S and R is a set of relationships be-
tween (POSITION, AGE) and (EMOTIONAL, GREEDY) entities. 
R is partitioned in different ways as designer wanted it as 
R1 and R2, since the priority entity combinations are logi-
cally related. 

Another structural model, anatomyStruc-
ture_unitInfection representing a region (A) composite (at 
generalization level) of all anatomy units is about locating 
an infection point (specialization level) in a anatomy sys-
tem. 

 
Anatomy=(A1, A2, A3… Ai); i=Anatomy unit numbers; A=Anatomy 
units 
Am = U {(L1D, L2D…LmD) + (L1S, L2S…LmS)}; 
Lm.n=U {(Pm, (n, n+1, n+2) Pm, (n+3, n+4, n+5) Pm, (n+6, n+7, n+8) .)}; 
U= union; L = location; P = point; D = detection point; S = source point 
m = number of treatment lines and n = number of infection/treatment 
points on each treatment line. 

Data preparation – or pre-processing is aimed at quality 
controlling the data, data cleaning, transformation, reduc-
tion and data integration. Each has an impact on the other, 
when data inconsistencies are detected and rectified. Data 
integration is done using data warehousing approach, com-
bined with ontology based multidimensional domain on-
tologies. Logically warehoused data are normalized (or de-
normalized for fine-grained structures), integrated and 
smoothed [9], which are ready for processing by data min-
ing algorithms. Different data relationships are conceptual-
ized [5], interpreted among several data attribute of human 
ecosystems. These ontologies are also responsible manipu-
lating conceptualization and contextualization of data trans-
formation processes. Ontology facilitates logical descrip-
tion of data, in away to reduce the number of dimensions 
without altering the integrity of original datasets.  

Strategies that include reduction of data are data cube 
aggregation, dimension reduction, data discretization, and 
data selection. 

Data cube aggregation produces data cubes for storing 
multidimensional aggregated data (e.g. extracted from a 
data warehouse) for OLAP (On-Line Analytical Process-
ing) analysis [6]. For example, data on human relationships 
and socio-behavioural data held on millions of items, are 
aggregated into each specific domain ontologies. 

A 3-dimensional data cube is created for a star-schema, 
which contains 12 x 8 x 7 = 672 cells. Stored within each 
cell is a behavioural data instance within a given category 
of human ecosystem for each month. If an average percent-
age emotional behaviour among an age group is to be com-
puted, the cube contains a count representing these attrib-
utes. Some data views drawn from the cube are shown in 
Fig. 10. Each attribute of an OLAP cube may have one or 
more associated conceptualized hierarchies with multidi-
mensional data structuring. 

Dimension reduction leads to the encoding of data in a 
reduced format, with or without loss with respect to the 
original data set. For example, similarity dimension analy-
sis is used for dimensionality reduction that applies to pro-
jections of initial data onto a space of similar dimensions. 
Again these similar dimensions are segregated as per their 
scale and magnitude.  
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Fig. 10: Data views representation from multidimensional human and be-

havioral ecosystems 
Data discretization is used to minimize number of di-

mensions (as per logical organization of their attributes, 
which can classify to a meaningful group) of each entity 
and consequently help interpretation of mining results. 
These classifications could as per scalable dimensions. In 
such cases, the range of attribute can be divided into several 
intervals (by means of histograms), which can further be 
iteratively aggregated into larger intervals. Scales are data 
dependent. If user has much understanding of the data at-
tributes, an appropriate scale can be defined. 

Data selection aims at identifying appropriate subsets 
among the initial set of attributes. This operation can be 
performed with the help of heuristic methods based on tests 
of significance or entropy-based attribute evaluation [13] 
measures such as the information gain. Data selection is 
one of the data reduction methods. 

V. RESULTS AND DISCUSSION 

In the digital world, human ecosystem is essentially 
about creating value by making connections between hu-
man and social ecosystems in different domains through 
support of different forms of collaborative IT frameworks 
such as data warehousing and data mining integrated ap-
proaches. Dimensions are subset, discretized and reduced to 
finer and specialized level.  
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Fig. 11a: Data View showing similarity and scalable data properties in 

different regions (age vs. literacy) 
The dimension data instances plotted in bubble plots 

have different scales, similarities and also dis-similarities. 
As demonstrated in Fig. 11 different attribute combinations 
have been plotted such as, age vs. literacy, occupation vs. 
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poverty and poverty vs. emotion. Different groups and sub-
sets of dimensions have been identified with respect to geo-
graphic dimensions. 

Similar, dis-similar and scalable bubbles represent sev-
eral dimensional magnitudes and the aggregations of these 
groups of dimensional attributes. 
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Fig. 11b: Data view showing similarity and scalable data properties in dif-

ferent regions (occupation vs. poverty) 
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Fig. 11c: Data view showing similarity and scalable data properties in dif-

ferent regions (poverty vs. emotion) 
In recent years, increasing use of high dimensional data 

that occupy large number of database tables with millions 
of rows/columns is getting popular. Also, large competitive 
demand for rapid build and deploy data-driven analysis is 
increasing with several data mining algorithms and solu-
tions. A third trend is presenting the analysis of results to 
end-users in a form that can be easily interpreted to im-
prove decision making. Ontology based data mining can 
emphasize scalable, reliable, fully automated and interpret-
able data structures that can address the data analysis chal-
lenges. 

VI. CONCLUSIONS AND RECOMMENDATIONS 

Ontology based data warehousing appears to be highly 
effective, due to fine grained data structuring, effective data 
integration and interoperability of data dimensions in dif-
ferent application scenarios. Ontology handles conceptuali-
zation; contextualization and semantics among conceptual-
ized data attribute relationships. Knowledge building from 
these approaches is effective and efficient. Data models de-
scribed in the present case study are more flexible. Main 

emphasis is model building will be addressing to develop-
ment of data mining approaches, which are highly auto-
mated, scalable, and reliable. Analysis of domain ontolo-
gies and thus interpreting domain knowledge are more chal-
lenging issues. 

VII. SCOPE AND FUTURE WORK 

Ontology models deduced in the paper have a scope of 
being extended to other areas of socio-economic systems, 
actually, any integrated system that is compatible to envi-
ronment system, has a common base to many other eco-
systems. The next article elaborates on some of the chal-
lenges that will need to be addressed to enable a whole new 
set of exemplary applications. Research is in progress, in 
designing and implementing the domain ontologies and 
their models in predicting climate changes and thus weather 
models. 
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