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Abstract

Tag recommendation is focused on recommending useful tags to a user who is

annotating a Web resource. A relevant research issue is the recommendation

of additional tags to partially annotated resources, which may be based on

either personalized or collective knowledge. However, since the annotation

process is usually not driven by any controlled vocabulary, the collections of

user-specific and collective annotations are often very sparse. Indeed, the dis-

covery of the most significant associations among tags becomes a challenging

task.

This paper presents a novel personalized tag recommendation system that

discovers and exploits generalized association rules, i.e., tag correlations hold-

ing at different abstraction levels, to identify additional pertinent tags to
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suggest. The use of generalized rules relevantly improves the effectiveness of

traditional rule-based systems in coping with sparse tag collections, because

(i) correlations hidden at the level of individual tags may be anyhow figured

out at higher abstraction levels and (ii) low level tag associations discovered

from collective data may be exploited to specialize high level associations

discovered in the user-specific context.

The effectiveness of the proposed system has been validated against other

personalized approaches on real-life and benchmark collections retrieved from

the popular photo-sharing system Flickr.

Keywords: Tag recommendation, Generalized association, rule mining,

Flickr

1. Introduction

Recommender systems help users find desirable products or services by

analyzing user profiles and their similarities, or by finding products that are

similar to those the users expressed interest in. The diffusion of the col-

laborative tagging systems (e.g., Del.icio.us1, Flickr2, Zooomr3) has recently

focused the attention of the research community on the problem of tag rec-

ommendation. Tags are keywords that provide meaningful descriptors of a

Web resources. Recommending tags to a user who is annotating a resource

is a challenging research issue that has been recently investigated in differ-

ent real-life contexts (e.g., photo annotation [9, 26], blog post tagging [21],

1http://delicious.com Last accessed: 25 June 2012
2http://www.flickr.com Last accessed: 25 June 2012
3http://www.zooomr.com Last accessed: 25 June 2012
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bookmark tagging [12]).

Given a set of user-defined tags, a relevant research issue is the recom-

mendation of additional tags to partially annotated Web resources. Accom-

plishing this task effectively has the twofold aim at automating the annota-

tion process by suggesting to the user an ordered set of pertinent tags and

improving the effectiveness and the efficiency of querying retrieval systems

(e.g., [2, 6, 7]. Recommendation of additional tags may be either exclusively

based on collective knowledge, i.e., independently of the knowledge about

the user who annotated the resources [12, 26, 15], or personalized [9, 21].

To figure out valuable correlations between previously annotated and rec-

ommendable tags rule-based approaches have shown to achieve fairly good

performance against probabilistic and co-occurrence-based machine learning

strategies [12]. To enhance the performance of the tag recommendation sys-

tems in the context of photo tag recommendation, the combined usage of

user-specific and collective knowledge has also been recently addressed [23].

However, the lack of a controlled vocabulary from which tags could be se-

lected during the annotation process makes the sets of previously assigned

annotations very sparse [12, 26] and, thus, unsuitable for being successfully

coped with most of the information retrieval and data mining techniques.

This paper presents a novel rule-based recommendation system that ad-

dresses the task of recommending additional tags to partially annotated

Flickr photos by combining the knowledge provided by the personal and

collective contexts, i.e, the history of the past personal and collective photo

annotations. To address this issue, it discovers and exploits high level tag

correlations, in the form of generalized association rules, from the collections
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of the past user annotations. To the best of our knowledge, this is the first

attempt to exploit generalized rules in tag recommendation. Generalized as-

sociation rules X → Y represent correlations among tag sets X and Y such

that (i) frequently occur in the analyzed dataset, i.e., the observed frequency

(the support) of X ∪ Y is above a given threshold, (ii) almost hold in the

source data, i.e., the strength of the implication between X and Y (the con-

fidence) is higher than a given threshold, and (iii) may also include items

belonging to different abstraction levels (i.e., tags may be generalized as the

corresponding categories). The use of tag generalization hierarchies allows

the discovery of relevant tag associations that may remain hidden at the level

of individual tags. Hence, it may effectively counteract the issue of data spar-

sity, thus, allowing the recommendation of meaningful and pertinent tags, as

shown in the experimental evaluation (see Section 4). In the following the

use of generalized rules in tag recommendation is explained with the help of

a running example.

Motivating example 1. Consider a photo, published on Flickr, of the Guild-

hall, which is a famous building situated in the center of London (U.K.).

Our goal is to recommend to a given user pertinent additional photo tags

to annotate, knowing that his first user-specified annotation is London. A

graphical representation of the considered use-case is shown in Figure 1. To

perform tag recommendation, we exclusively consider, as preliminary step,

the collection of the past user-specified annotations (i.e., the personal knowl-

edge base) while temporarily disregarding the collective knowledge provided

by annotations made by the other system users. A traditional association

rule mining process may discover the rule {London} → {Guildhall}, where
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Figure 1: Example of use-case.

London and Guildhall are tags. Since the user has already annotated the

photo with the tag London, Guildhall is an example of subsequent tag to

recommend. The quality of the proposed recommendation could be evalu-

ated in terms of well-known rule quality indexes (e.g., the rule support and

confidence [1]). As discussed in [12], the analysis of the strength of the dis-

covered implications is the core part of rule-based recommendation systems.

In particular, frequent and high-confidence rules are deemed the most re-

liable ones for being used in tag recommendation. Enforcing a minimum

frequency of occurrence of the selected rules reduces the sensitivity of the

rule-based model to noise and data overfitting, However, data sparsity still

makes the discovery of potentially relevant rules a computationally intensive

task, because specific rules often occur rarely in the analyzed data [12, 15].
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The use of generalization hierarchies built over the history tags, as the ones

reported in Figure 1, may allow the generation of high level tag associations

that occur more frequently than their low level versions. For instance, by

aggregating the tag London into the corresponding state U.K. the general-

ized (high level) rule {U.K.} → {Guildhall} may prompt the suggestion of

the same annotation while considering a higher level view of the analyzed

pattern.

To discriminate among potentially pertinent tags, two distinct rule sets

are generated: (i) a user-specific rule set, which represents the personalized

knowledge base and includes (generalized) rules extracted from the past an-

notations made by the user to which the recommendation is targeted, and (ii)

a collective rule set, which represents the collective knowledge and includes

(generalized) rules mined from the past annotations made by the other users.

Tags mainly referable to user-specific rules are deemed the most suitable ones

for additional tag recommendation. However, their significance strictly de-

pends on user activeness and ability in photo tagging [23]. To overcome this

issue, in our system we consider tag recommendations based on collective

knowledge as well. Collective knowledge also plays a key role in specializing

high level associations discovered from the user-specific context, as shown in

the following example.

Motivating example 2. Consider again the use-case shown in Figure 1. Sup-

pose now that the first user-specified annotations are London and Roman age.

If the rule {London, Roman age} → {Monument} is selected from the user-

specified rule set, any descendant of Monument (e.g., Colosseum, Guildhall)

is an eligible tag to recommend. The presence in the collective rule set of the
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rule {London, Roman age} → {Guildhall} may push the recommendation of

the tag Guildhall as deemed worthy of notice by the community.

The effectiveness of the proposed system has been validated on real-life

and benchmark photo collections retrieved from Flickr. The use of general-

ized rules allows significantly improving the performance of state-of-the-art

approaches.

This paper is organized as follows. Section 2 overviews most relevant

related works concerning tag recommendation and generalization rule mining.

Section 3 presents the architecture of the proposed recommender system and

describes its main blocks. Section 4 assesses the effectiveness of the system

in providing personalized tag recommendations based on both user-defined

tags and collective knowledge, while Section 5 draws conclusions and presents

future developments of this work.

2. Previous work

The success of social networks and online communities has relevantly

increased the attention to the problem of recommending Web resource anno-

tations, i.e., the tags. Tag recommendation systems focus on suggesting tags

to a user who is annotating a resource by combining the information coming

from one or more contexts. In particular, collective tag recommendation ana-

lyzes the knowledge provided by the past resource annotations independently

of the user who annotated each resource [12, 26, 15], while personalized tag

recommendation addresses tag recommendation by considering the user con-

text [9, 21]. This paper addresses tag recommendation by combining both

personalized and collective knowledge.
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A significant research effort has been devoted to personalized tag recom-

mendation. For instance, in [21] the author presents a collaborative filtering

method to address personalized blog post tag recommendation. It analyzes

the information about users behaviors, activities, or preferences to predict

what users will like based on their similarity to other users. Analogously

to most of the collaborative filtering methods (e.g., [25]), it assumes that

similar users share similar tastes. Similarity between posts, users, and tags

is evaluated by exploiting information retrieval techniques. In [14] the com-

bination of a graph-based and collaborative filtering method is proposed. A

User-Resource-Tag (URT) graph is indexed by means of an ad-hoc indexing

strategy derived from the popular PageRank algorithm [4]. To reduce the

sparsity of the generated graphs, the use of Singular Value Decomposition

(SVD) methods has been also investigated [30]. Differently, the application

of content-based strategies has been studied in [16, 5, 17]. They focus on rec-

ommending tags that are similar to those that a user annotated in the past

(or is annotating in the present). For instance, in [5] the authors present an

application for large scale automatic generation of personalized annotations.

They automatically select from the main Web page keywords personalized

tags based on their relevance to the content of both the considered page and

the other documents residing on the surfer’s Desktop. Similarly, in [16, 10, 18]

multimedia content related to the annotated Web resource is analyzed and

used to drive the tag recommendation process. For instance, in [10, 18] the

information discovered from both Web page content and related annotations

is exploited for tag recommendation purposes, while, in [16], the authors

analyze interpersonal relations, image text, and visual content together. Dif-
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ferently, in [17] an hybrid collaborative filtering method is proposed and

integrated in a scalable architecture. The issue of interactive Flickr tag rec-

ommendation is addressed in [9]. Suggested tags are first selected from the set

of previously assigned ones based on co-occurrence measures. Next, based on

the recommendation, the candidate set is narrowed down to make the sugges-

tion more specific. However, co-occurrence methods are challenged by data

sparsity as either the computational complexity may increase exponentially

with the number of tags or the score associated with each tag may be not

directly comparable. Unlike previous approaches, to counteract the sparsity

of the tag collections this paper proposes to exploit generalized rules.

A parallel issue has been devoted to collective tag recommendation [12,

15, 26, 17]. For instance, in [26], additional tags are recommended to partially

annotated Flickr photo by using co-occurrence measures to analyze the col-

lective knowledge. The work proposed in [23] extends the previous system by

analyzing the knowledge coming from different contextual layers, including

the personal and the collective ones. Differently, authors in [12] reformulate

the task of content-based tag recommendation as a (supervised) classification

problem. Using page text, anchor text, surrounding hosts, and available tag

information as training data, they train a classifier for each tag they want to

predict. Even though their approach is able to achieve fairly high precision,

the overall training time may become significant when the cardinality of the

considered tags increases. This work is also the first attempt to address col-

lective tag recommendation by means of association rules. Association rules

allow the discovery of strong tag associations that may be profitably exploited

in tag recommendation. Similarly, other approaches (e.g., [19]) focus on rule-
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based collective tag recommendation. However, the commonly high sparsity

of the collections of past annotations limits the effectiveness of the proposed

approaches as the most specific (and possibly interesting) rules may remain

hidden. This paper proposes to overcome the above issue by discovering tag

associations at different abstraction levels. To the best of our knowledge,

this is the first attempt to exploit generalized rules in tag recommendation.

Authors in [15] also address the same issue by adopting an approach based

on Latent Dirichlet Allocation (LDA). The proposed strategy is proved to

very effective in tackling the cold start problem for tagging new resources

for which no tag has been assigned yet. Differently, this paper specifically

addresses personalized tag recommendation of partially annotated resources.

In recent years, a notable research effort has been devoted to discovering

generalized association rules from (possibly large) data collections. Gener-

alized association rules have been first introduced in [27] in the context of

market basket analysis as an extension of the traditional association rule

mining task [1]. By evaluating a set of hierarchies of aggregation built over

the data items, items belonging to the source data are aggregated based on

different granularity concepts. Each generalized rule, which is a high level

representation of a “lower level” rule, provides a higher level view of a pattern

hidden in the analyzed data. The first generalized association rule mining

algorithm [27] follows the traditional two-process for generalized rule min-

ing: (i) frequent generalized itemset mining, driven by a minimum support

threshold, and (ii) generalized rule generation, from the previously mined

frequent itemsets, driven by a minimum confidence threshold. Candidate

frequent itemsets are generated by exhaustively evaluating the generaliza-
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tion hierarchies. To reduce the complexity and improve the efficiency of

the mining process, several optimizations strategies and more efficient algo-

rithms have been proposed [20, 22, 28, 27, 11, 29, 3]. This paper discovers

and exploits generalized rules in personalized tag recommendation by adopt-

ing an Apriori-based strategy [27] that integrates, as itemset mining step,

the approach recently proposed in [3].

3. The recommendation system

This paper presents a novel personalized photo tag recommendation sys-

tem. Given a photo and a set of user-defined tags, the system proposes novel

pertinent tags to assign to the photo based on both the user-specific prefer-

ences (i.e., the tags already annotated by the same user to any photo) and

the remaining part of collective knowledge (i.e., the annotations provided by

the other users). Its main architectural blocks are shown in Figure 2. A brief

description of each block follows.

Preprocessing. This block aims at making the collections of the previous

tag annotations suitable for the generalized rule mining process. The tag set

is tailored to a transactional data format, where each transaction corresponds

to the annotations performed by a user to a given photo and includes the

corresponding set of assigned tags. Over the history tag collection a set of

generalization hierarchies is also derived from the established Wordnet lexical

database [32].

Generalized association rule mining. This block focuses on discovering

high level tag correlations, in the form of generalized association rules, from

the transactional representation of the tag set. The available tag general-
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Figure 2: The recommendation system architecture

ization hierarchies are also evaluated to discover tag correlations at different

abstraction levels. Two distinct rule sets are generated: (i) a user-specific

rule set, which includes generalized rules extracted from the past annotations

made by the user to which the recommendation is targeted, (ii) a collective

rule set, which includes generalized rules mined from the past annotations

made by the other users.

Tag selection and ranking. Given a photo and a set of tags already

assigned by the user, this block aims at generating a ranked list of additional

tags to suggest. To this aim, from the user-specific and collective rule sets

generalized rules pertinent to the already assigned tags are selected. The

ranked list of suggested tags is derived from the set of selected rules based

on their main quality indexes.
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This section is organized as follows. Section 3.1 formally states the rec-

ommendation task addressed by this paper, while Sections 3.2, 3.3, and 3.4

thoroughly describe the main blocks of the recommendation system sepa-

rately.

3.1. Problem statement

Given a set of photos P , a set of tags T , and a set of users U the ternary

relation X = P × T × U represents the user assignments of tags in T to

photos in P . The set τ(pi,uj) ⊆ T includes the tags assigned by user uj ∈ U

to pi ∈ P and could be defined as follows:

τ(pi, uj) = πtσpi,uj
X (1)

where π and σ are the commonly used projection and selection primitive

operators of the relational algebra [8].

To discriminate between past assignments made by the user uj and col-

lective ones (i.e., ¬uj), the ternary relation X may be partitioned as follows:

X(uj) = πtσuj
X (2)

X(¬uj) = πtσU\uj
X (3)

We denote as user-specific and collective knowledge bases the sets X(uj)

and X(¬uj) such that X(uj) ∪ X(¬uj)=X. Given a set τ(pi,uj) of user-

defined tags and the user-specific and collective knowledge bases X(uj) and

X(¬uj), the personalized tag recommendation task addressed by this work

focuses on suggesting to user uj new tags in T \ τ(pi,uj) for a photo pi.
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3.2. Preprocessing

Flickr is an online photo-sharing system whose resources are commonly

annotated by the system users. The analysis of the past photo annotations

is crucial for recommending novel tags to users who are annotating a photo.

However, data retrieved from the Web is commonly unsuitable for being di-

rectly analyzed by means of data mining algorithms. Indeed, a preprocessing

step is needed to tailor the retrieved tag sets to a suitable data format.

To enable the association rule mining process, the collection of past Flickr

photo annotations is tailored to a transactional data format. A transactional

dataset is a set of transactions, where each transaction is a set of items

of arbitrary size. To map a tag set to a transactional data format, the

annotations made by a user to a given photo are considered as a transaction

composed of the set of (not repeated) assigned tags. A more formal definition

of the transactional tag set is given in the following.

Definition 1. Transactional tag set. Let X = P × T ×U be the ternary

relation representing the assignments of tags in T made by users in U to

photos in P . Let τ(pi,uj) ⊆ T be the set of all (distinct) tags assigned by

user uj ∈ U to pi ∈ P . A transactional tag set T is a set of transactions,

where each transaction corresponds to a set τ(pi, uj) for a certain combination

of user uj ∈ U and photo pi ∈ P occurring in X.

For instance, if the user uj assigns to the photo pi the tags Guildhall and

London the corresponding transaction is τ(pi, uj)={Guildhall, London}. The

transactional tag set T including the set of all distinct τ(pi, uj) occurring in

X is the full list of all past photo annotations.
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Given a user uj to which the personalized tag recommendation is targeted,

the transactional tag set T is partitioned between the annotations made by

uj and not, i.e., distinct transactional representations of X(uj) and X(¬uj),

denoted as T (u|) and T (¬u|) throughout the paper, are generated. The

separate analysis of T (u|) and T (¬u|) allows the discovery of both user-

specific and collective tag associations, in the form of generalized rules.

To enable the process of generalized rule mining from T (u|) and T (¬u|),

a set of hierarchies of aggregations (i.e., the generalization hierarchies) is

built over the transaction tag set T .

Definition 2. Generalization hierarchy. Let T be the set of tags occur-

ring in the transactional tag set T . A generalization hierarchy GH built over

T is a predefined hierarchy of aggregations over T . The leaves of GH are all

the tags in T . Each non-leaf node in GH is an aggregation of all its children.

The root node (denoted as ⊥) aggregates all the tags occurring in T .

The Wordnet lexical database [32] is queried to retrieve the most relevant

semantic relationships holding between a tag in T and any other term. More

specifically, the following semantic relationships are considered: hyponyms

(i.e., is-a-subtype-of relationships) and meronyms (is-part-of relationships).

Terms to which any selected relationship is directed are considered as gener-

alizations of the original tag. For instance, consider the example tag London.

If the following semantic relationship is retrieved from the Wordnet database

<London> is-part-of <U.K.>

then the term London is selected as the upper level generalization of the tag

U.K.. Next, the database querying process is deepened to find possible upper
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level aggregations (e.g., <U.K.> is-part-of <Europe>). The above proce-

dure allows the construction of meaningful generalized hierarchies, according

to definition 2, built over a given transactional tag set. Extracts of some

example generalization hierarchies are reported in Figure 1. The generaliza-

tion hierarchies will be used to drive the generalized rule mining process, as

described in the following.

3.3. Generalized association rule mining

This block focuses on discovering high level associations, in the form

of generalized association rules, from the transactional tag sets T (u|) and

T (¬u|). Association rules represent significant correlations among the ana-

lyzed data [1]. More specifically, an association rule is an implication A ⇒ B,

where A and B are itemsets, i.e., sets of data items. In the transactional

representation of the tag set, items are tags in T associated with any photo

included in the collection.

Generalized association rules [27] are rules that may include items at

higher levels of abstraction, i.e., the generalized items. By considering the

generalization hierarchies built over the transactional tag set (Cf. defini-

tion 2), any concept that aggregates one or more tags in T at a higher

abstraction level is considered as a generalized item. For instance, consider

again the semantic relationship <London> is-part-of <U.K.>. If London

is a tag (item) that occurs in the transactional tag set, U.K. is an example

of generalized item. Similarly, generalized itemsets are itemsets (tag sets)

including at most one generalized item (e.g., {Guildhall, U.K.}). A more

formal definition follows.
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Definition 3. Generalized itemset. Let T be a transactional tag set and

T the corresponding item domain, i.e., the set of tags occurring in T . Let ρ

= {GH1, . . ., GHm} be a set of generalization hierarchies built over T and

E the set of generalized items (high level tag aggregations) derived by all the

generalization hierarchies in ρ. A generalized itemset I is a subset of T
⋃
E

including at least one generalized item (high level tag aggregation) in E.

Generalized itemsets are characterized by a notable quality index, i.e.,

the support, which is defined in terms of the itemset coverage with respect

to the analyzed data.

Definition 4. Generalized itemset coverage. Let T be a transactional

tag set and ρ a set of generalization hierarchies. A (generalized) itemset I

covers a given transaction tr ∈ T if all its (possibly generalized) items (tags)

x ∈ I are either included in tr or ancestors (generalizations) of items (tags)

i ∈ tr with respect to ρ.

The support of a (generalized) itemset I is given by the ratio between the

number of transactions tr ∈ T covered by I and the cardinality of T .

A (generalized) itemset I is said to be a descendant of another generalized

itemset Y if (i) I and Y have the same length and (ii) for each item y ∈ Y

there exists at least an item i ∈ I that is a descendant of y.

The concept of generalized association rule extends traditional associa-

tion rules to the case in which they may include either generalized or not

generalized itemsets. A more formal definition follows.

Definition 5. Generalized association rule. Let A and B be two (gen-

eralized) itemsets. A generalized association rule is represented in the form

17



R : A ⇒ B, where A and B are the body and the head of the rule respectively.

A andB are also denoted as antecedent and consequent of the generalized rule

A ⇒ B. Generalized association rule extraction is commonly driven by rule

support and confidence quality indexes. While the support index represents

the observed frequency of occurrence of the rule in the transactional tag set,

the confidence index represents the rule strength.

Definition 6. Generalized association rule support. Let T be a trans-

actional tag set and ρ a set of generalization hierarchies. The support of

a generalized rule R : A ⇒ B is defined as the support (i.e., the observed

frequency) of A ∪B in T .

Definition 7. Generalized association rule confidence. Let T be a

transactional tag set and ρ a set of generalization hierarchies. The confidence

of a rule R : A ⇒ B is the conditional probability of occurrence in T of the

generalized itemset B given the generalized itemset A.

For instance, the generalized association rule {U.K.}→ {Guildhall} (s=10%,c=88%)

states that the tag generalization U.K. co-occurs with the tag Guildhall in

10% of the transactions (annotations) of the collection and the implication

holds in 88% of the cases.

To address generalized association rule mining task [27] from the tag

history collections T (u|) and T (¬u|), we performed the traditional two-step

process: (i) generalized itemset mining, driven by a minimum support thresh-

old minsup and (ii) generalized association rule generation, from the set of

previously extracted itemsets, driven by a minimum confidence threshold
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minconf. A generalized association rule is said to be strong if it satisfies

both minsup and minconf.

Given a set of generalization hierarchies built over the tags in X, a min-

imum support threshold minsup, and a minimum confidence threshold min-

conf, the generalized rule mining process is performed on T (u|) and T (¬u|)

separately. More specifically, given a photo pi, a user uj, and a set of user-

specific tags τ(pi,uj), the main idea behind our approach is to treat strong

high level correlations related to the annotations made by the user uj differ-

ently from that made by the other users. To this aim, two distinct rule sets

are generated: (i) a user-specific rule set, which includes all strong general-

ized rules extracted from the past annotations made by the user to which the

recommendation is targeted, (ii) a collective rule set, which includes all strong

generalized rules mined from the past annotations made by the other users.

To accomplish the generalized itemset mining task efficiently and effectively,

we exploit our implementation of a recently proposed mining algorithm, i.e.,

the GenIO algorithm [3]. A brief description of the adopted algorithm is

given in Section 3.3.1.

3.3.1. The GenIO Algorithm

GenIO [3] is a generalized itemset mining algorithm that addresses the

discovery of a smart subset of all the possible frequent (generalized) itemsets.

Given a source dataset, a set of generalization hierarchies ρ, and a minimum

support threshold minsup it discovers all frequent not generalized itemsets

and all frequent generalized itemsets having at least an infrequent descen-

dant, i.e., a descendant that does not satisfy minsup. To achieve this goal,

the generalization process is support-driven, i.e., it generalizes an itemset
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only if it is infrequent with respect to the minimum support threshold. A

more through description of the main algorithm steps follows.

GenIO is an Apriori-based algorithm [1] that performs a level-wise item-

set generation. More specifically, at arbitrary iteration k, the Apriori-based

itemset mining steps are the following: (i) candidate generation, in which all

possible k-itemsets are generated from the (k − 1)-itemsets and (ii) candi-

date pruning, which is based on the property that all the subsets of frequent

itemsets must also be frequent in the source data, to early discard candidate

itemsets that cannot be frequent. Candidate generation is known to be the

most computationally and memory intensive step The actual candidate sup-

port value is counted by performing a dataset scan. GenIO follows the same

level-wise pattern. However, it manages rare itemsets by lazily evaluating the

given generalization hierarchies. The generalization process is performed by

applying on each item (tag) contained in an (infrequent) itemset I the corre-

sponding generalization hierarchies. All itemsets obtained by replacing one

or more items in I with their generalized versions are generalized itemsets of

I. Hence, the generalization process on itemset I potentially generates a set

of generalized itemsets. The generalization process of I is triggered if and

only if I is infrequent with respect to the minimum support threshold. Since

the GenIO algorithm has been first proposed in the context of structured

datasets, a few straightforward modifications to the original algorithm have

been adopted to make it applicable to transactional data as well.

3.3.2. Rule generation

The generalized rule generation task entails the discovery of all gener-

alized association rules satisfying a minimum confidence threshold minconf,
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starting from the set of frequent (generalized) itemsets discovered by the

GenIO algorithm.

The proposed recommendation system accomplishes the rule generation

task by performing the second step of the traditional Apriori algorithm [1].

To achieve this goal, we exploited our more efficient implementation of the

generalized rule generation procedure first proposed in [27].

3.4. Tag selection and ranking

Given a photo pi, a set of user-defined tags τ(pi,uj) assigned by user uj to

pi, and the sets of generalized rules RT (u|) and RT (¬u|) mined, respectively,

from T (u|) and T (¬u|), this block entails the selection and the ranking of

the additional tags to recommend to uj for pi. For the sake of clarity, in

the following we discuss how to effectively tackle the selection and ranking

problems separately.

3.4.1. Selection

The selection step focuses on selecting additional tags to suggest to user

uj for the partially annotated photo pi from the rules belonging to the user-

specific and the collective rule sets RT (u|) or RT (¬u|). A pseudo-code of the

selection procedure is given in Algorithm 1.

To select tags that are strongly associated with the user-specified ones,

only a subset of the extracted rules is deemed worth considering for additional

tag recommendation. More specifically, the strong generalized rules in RT (u|)

and RT (¬u|) whose rule antecedent covers, at any level of abstraction, the

user-specified tag set τ(pi,uj) or any of its subsets are selected and included

in the corresponding rule sets covered rules(uj) and covered rules(¬uj) (see
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Algorithm 1 Tag selection
Input: the user-specific rule set RT (u|)

, the collective rule set RT (¬u|)
, and the user-specified tags

τ(pi,uj)

Output: the tag selection C

1: covered rules(uj) = select pertinent user-specific rules(RT (u|)
, τ(pi,uj))

2: covered rules(¬uj) = select pertinent collective rules(RT (¬u|)
, τ(pi,uj))

3: for all user-specific rules R in covered rules(uj) do

4: insert tags in R.consequent into C

5: for all generalized tags g in C do

6: for all collective rules R2 in covered rules(¬uj) do

7: if R2.consequent includes any tag t∗ in g.leafdescendant then

8: insert t∗ in C

9: end if

10: end for

11: end for

12: end for

13: remove generalized tags from C

14: return C

lines 1-2). According to Definition 4, the coverage of (a portion of) the tag

set τ(pi,uj) may be due to the presence in the rule antecedent of either an

exact matching (i.e., the same tags) or one of its generalized versions. Any

rule that does not fulfill the above-mentioned constraint is not considered in

subsequent analysis.

Consider, for instance, a photo pi annotated by the user uj with the tag

London. In Table 1 is reported the selection of generalized rules taken from

the set of rules mined from, respectively, the past user annotations T (uj) and

T (¬uj) by exploiting the generalization hierarchies reported in Figure 1 and

by enforcing, respectively, a minimum support threshold equal to 1% and a

minimum confidence threshold equal to 50%. Notice that any selected rule
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Table 1: Generalized rules used for recommending to user uj tags subsequent to Rome.

ID Generalized rule Support Confidence

(%) (%)

Annotations made by user uj

1 {London} ⇒ {Guildhall} 2.5% 100%

2 {London} ⇒ {Historical age} 1.4% 85%

3 {U.K.} ⇒ {Royal family} 1.8% 91%

Annotations made by the other users

4 {London} ⇒ {Guildhall, Royal family} 1.5% 95%

5 {U.K.} ⇒ {Roman Age} 1.3% 80%

6 {London} ⇒ {Tourism} 1.2% 72%

contains the tag London or its generalization U.K. as rule antecedent. Con-

sider now the case in which the set of user-specified tags τ(pi,uj) is {London,

Roman age}. Rules including either {London, Roman age}, {U.K., Ro-

man age}, {London, Historical age}, or {U.K., Historical age} as rule an-

tecedent are considered as well together with that covering only one of the

user-specified tags London or Roman age or their relative generalizations.

Not generalized tags belonging to the consequent of the selected user-

specific or collective rules in RT (u|) or RT (¬u|) are eligible tags to recommend.

Since we consider the tag associations mainly referable to the user-specific

context the most reliable ones for personalized tag recommendation, we first

select the collection C of generalized and not generalized tags contained in

the consequent of any rule in RT (u|) (line 4). Then, we refine the selec-

tion by replacing generalized tags with the most pertinent not generalized
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descendants derivable from the collective knowledge base (line 8).

Recalling the previous example, the set C of candidate tags is first ini-

tialized as follows: {Guildhall, Historical age, Royal family}. Readers could

notice that Guildhall and Royal family are tags, while Historical age is an

upper level generalization. Since the generalization Historical age could not

directly recommended, it is replaced with one (or more) of its low level tags.

The selection of the eligible descendants of any generalization in C is driven

by the collective knowledge. For instance, since, among the two low level

descendants of Historical age (i.e., the tags Roman Age and Modern age),

only Roman Age occurs at least once in the consequent of any of the selected

collective rules in RT (¬u|) (see Table 1), the tag Historical age is exclusively

replaced by its leaf descendant Roman Age, as it is strongly recommended

by the community.

The selection procedure performs two nested loops. The outer loop

(lines 5-11) iterates over the generalizations occurring in the candidate set

C, while the inner one (lines 6-10) iterates over the collective rule sets and

selects the leaf descendants of any generalization in C. While leaf descen-

dants are included in C as pertinent additional tags to recommend (line 8),

any generalization in C is discarded (line 13). Finally, the updated set C of

selected candidate tags is returned (line 14).

3.4.2. Ranking

The last but not the least task in tag recommendation is the ranking

of the candidate recommendable tags in C. Tag ranking should reflect (i)

the tag significance with respect to the user-defined tags in τ(pi,uj), (ii) the

tag relevance according to the past user-specific preferences, and (iii) the
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tag relevance based on the past collective knowledge related to other system

users.

To evaluate the significance with respect to τ(pi,uj) we propose a tag

ranking strategy that considers the interestingness of the rules in RT (u|) and

RT (¬u|) from which they have been selected. Generalized rule interestingness

is evaluated in terms of its confidence index value [1], i.e., the rule strength

in the analyzed dataset (Cf. Definition 7) in both the personal and collective

knowledge base.

Formally speaking, let c ∈ C be an arbitrary candidate tag and Rc
T (u|)

⊆

RT (u|), R
c
T (¬u|)

⊆ RT (¬u|) be, respectively, the subsets of rules in RT (u|) and

RT (¬u|) whose antecedent covers c (at any level of abstraction). The ranking

score of c in T (u|) and T (¬u|) is defined as the average confidence of the

rules in Rc
T (u|)

and Rc
T (¬u|)

, respectively.

rankscore(c, T (u|)) =

∑
∇u|∈R

c
T (u|)

co\{(∇u|)

|Rc
T (u|)

|

rankscore(c, T (¬u|)) =

∑
∇¬u|∈R

c
T (¬u|)

co\{(∇u|)

|Rc
T (¬u|)

|

Roughly speaking, the ranking scores rankscore(c, T (u|)) and rankscore(c, T (¬u|))

reflect the average significance of the tag c in the personal and collective con-

texts. To combine the individual tag ranks achieved in different contexts

in a unified ranking list we adopted an aggregation method based on the

Borda Count group consensus function [31]. The chosen approach first as-

signs descending integer scores to the elements of each individual rank and

then combines the voting scores to generate a unique ranking. To effectively

25



deal with ranking lists of different lengths, in our Borda Count implementa-

tion we assign to the first element of each rank the same value equal to the

length of the longest of all the input ranks.

The recommendation system returns the ranked list of candidate tags in

C produced by the Borda Count method.

4. Experimental results

We performed a large set of experiments addressing the following issues:

(i) a performance comparison between our system and a set of recently pro-

posed methods, (ii) a discussion about the impact of the generalization pro-

cess on the recommendation performance, (iii) an analysis of a real-life use-

case for our system and the discovered generalized tag associations, and (iv)

the analysis of the impact of the main system parameters on the recommen-

dation performance.

This section is organized as follows. Section 4.1 describes the charac-

teristics of the photo collections exploited in the experimental evaluation.

Section 4.2 presents the experimental design and introduces the evaluation

metrics adopted for performance evaluation. Section 4.3 compares the results

achieved by our system with both different versions of the recently proposed

approach [23] and a baseline version of our system that does not exploit gen-

eralized rules. Section 4.4 validates the applicability of our approach on an

example of real-life use-case. Finally, Section 4.5 analyzes the impact of the

main system parameters and the data distribution on the recommendation

performance.
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4.1. Photo collections

To test recommendation system performance, we used a benchmark and

a real-life dataset.

The used benchmark dataset is the MIR Flickr 2008 image collection,

which was offered by the LIACS Medialab at Leiden University and intro-

duced by the ACM MIR Committee in 2008 [13]. It collects 25,000 images

and the related annotating users and tags.

The real-life collection is generated by retrieving, by means of the Flickr

APIs, 5,000 real photos. The selected photos were chosen based on a series

of high level geographical topics, i.e., New York, San Francisco, London, and

Vancouver. The retrieved dataset is made available for research purposes.

Since for both the benchmark and the real-life datasets the majority (i.e,

around 80%) of the contained photos have at least 5 tags, to perform a fair

performance evaluation (see Section 4.2) we focus our analysis on this photo

subset.

By following the strategy described in Section 3.2 a set of generalization

hierarchies is derived from the Wordnet lexical database over the collected

photo tags. A portion of one of the generated generalization hierarchies is

reported in Figure 3.

4.2. Experimental design

Our system retrieves a ranked list of pertinent additional tags based on

the extracted frequent generalized rules to tackle the tag recommendation

ranking problem. Given a photo pi and a set of user-defined tags τ(pi,uj),

the system has to recommend tags that describe the photo based on both
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Figure 3: Portion of an example generalization hierarchy built over the photo collection

tags

user-specific and collective past annotations. To perform personalized rec-

ommendation, from both the tested photo collections the user-specific anno-

tations made by 10 users who annotated at least 15 photos are considered

separately. Once a user-specific annotation subset is selected, the rest of the

collection is considered as the collective set. For each analyzed user collec-

tion, the evaluation process performs a hold-out train-test validation, i.e., the

user-specific collection is partitioned in a training set, including the 75% of

the whole annotations, whereas the remaining part is chosen as test set. To

evaluate the additional tag recommendation performance of our system, for

each test photo two random tags are selected as initial (user-specified) tag

set and the recommended tag list is compared with the held-out test tags.

A recommended tag is judged as correct if it is present in the held-out set.

Since held-out tags need not to be the only tags that could be assigned to

the photo, the evaluation method actually gives a lower bound of the system

performance.

To evaluate the performance of both our recommendation system and
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its competitors, we exploited three standard information retrieval metrics,

previously adopted in [26, 23] in the context of additional Flickr tag recom-

mendation. The selected measures are deemed suitable for evaluating the

system performance at different aspects. Let Q be the set of relevant tags,

i.e. the tags really assigned by the user to the test photo, and C the tag

set recommended by the system under evaluation. The adopted evaluation

measures are defined as follows.

Mean Reciprocal Rank (MRR). This measure captures the ability of the

system to return a relevant tag (i.e., a held-out tag) at the top of the ranking.

The measure is averaged over all the photos in the testing collection and is

computed by:

MRR = maxq∈Q
1

cq
(4)

where cq is the rank achieved by the relevant tag q.

Success at rank k (S@k). This measure evaluates the probability of finding

a relevant tag among the top-k recommended tags. It is averaged over all

the test photos and is defined as follows:

S@k =

1 if Q ∩ Ck 6= ∅,

0 otherwise

(5)

where q ∈ Q is a relevant tag and Ck is the set of the top-k recommended

tags.

Precision at rank k (P@k). This metric evaluates the percentage of

relevant tags over the set of retrieved ones. The measure, averaged over all

test photos, is defined as follows:
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P@k =
|Q ∩ Ck|

|Q|
(6)

Notice that the combined use of precision and success highlights the sys-

tem ability to get a set of tags that is globally appreciable from the user’s

point of view, while MRR measures the quality of the top tag selection. To

perform a fair evaluation, on each test photo measure estimates are averaged

over several runs, where, within each run, a different (randomly generated)

held-out tag set ranking is considered.

4.3. Performance comparison

The aim of this section is twofold. First, it experimentally demonstrates

the effectiveness of our system against a state-of-the-art approach. Secondly,

it evaluates the impact of the generalization process on the recommendation

performance. To achieve these goals, we compared the performance of our

system, in terms of the evaluation metrics described in Section 4.2, on both

benchmark and real-life datasets with: (i) five different variants of the re-

cently proposed personalized Flickr tag recommendation system [23], which

specifically addresses the problem of additional photo tag recommendation

given a set of user-specified tags, and (ii) a baseline version of our approach,

which does not exploit generalized knowledge.

The system presented in [23] is a personalized recommender system that

proposes additional photo tags, pertinent to a number of different user con-

texts, among which the personal and the collective ones. The system gen-

erates a list of recommendable tags based on a probabilistic co-occurrence

measure for each context and then aggregates the results achieved within
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each context in a final recommended list by exploiting the Borda Count

group consensus function [31]. To the best of our knowledge, it is the most

recent work proposed on the topic of personalized additional Flickr tag rec-

ommendation. To perform a fair comparison, we evaluated the performance

of the approach presented in [23] (denoted as Probabilistic prediction in the

following) when coping with the combination of collective and personalized

contexts. Moreover, within each context (personalized or collective), we

tested different co-occurrence measures as well. More specifically, we also

integrated and tested four co-occurrence measures, i.e., Sum, V ote, Sum+

(Sum + Promotion), and V ote+ (Vote + Promotion), previously proposed

by the same authors in [26] in the context of collective additional tag recom-

mendation. The additional measures are taken as representatives of different

co-occurrence measures that could be adopted to aggregate and select tags

pertinent to each context.

To demonstrate the usefulness of generalized rules in tag recommenda-

tion, we also compared the performance of our system with that of a base-

line version, which exploits traditional (not generalized) association rules [1]

solely. More specifically, the baseline method performs the same steps of

the proposed approach, while disregarding the use of tag generalizations in

discovering significant tag associations (see Section 3.4.1).

To test the performance of our approach we consider as standard con-

figurations for the tested datasets the following settings: minsup=50% and

minconf=40% for the real-life dataset andminsup=20% andminconf=35%

for the benchmark dataset. A more detailed analysis of the impact of the

above-mentioned parameters on the proposed recommendation performance
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is reported in Section 4.5. Even for the baseline version of our system

we tested several support and confidence threshold values. For the sake

of brevity, in the following we select as representative and report just the

configuration that achieved the best results in terms of MMR measure (i.e.,

minimum support and confidence thresholds equal to 50%).

The overall results achieved by the performance evaluation session on

the real-life and the benchmark datasets are summarized in Tables 2 and 3,

respectively. They report the success and the precision at ranks from 1 to

5 (i.e., S@k, P@k k ∈ [1,5]) as well as the Mean Reciprocal Rank (MRR)

achieved by both our system and all the tested competitors. Similarly to what

previously done in [26, 23], for the sake of brevity we choose not to report

ranks with k higher than 5. To validate the statistical significance of the

achieved performance improvements the Student t-test has been adopted [24]

by using as p-value 0.05. Significant worsening in the comparisons between

our system and the other tested competitors are starred in Tables 2 and 3.

For each tested measure, the result(s) of the best system(s) is written in

boldface.

Our recommendation system significantly outperforms both its baseline

version and all the other tested competitors in terms of MRR, S@1, S@2,

and P@k (for any tested value of k) on the real-life dataset and in terms of

MRR, S@k, and P@k for k > 1 on the benchmark dataset. Furthermore, it

performs as good as Probabilistic prediction [23], V ote+, Sum, and Sum+ in

terms of S@k for k ≥ 3 on the real-life dataset and as good as Probabilistic

prediction in terms of P@1/S@1 on the benchmark dataset. Performance

improvements in terms of P@k remain statistically significant for for any
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k ≤ 9 on the real-life dataset, while in terms of P@k and S@k they are

significant for any tested value of k in the range [2,10] on the benchmark

dataset.

To have a deep insight into the achieved results, in Figures 4 and 5 we

also plot the variations of the precision and the success at rank k by varying

k in the range [1,5] for the real-life and the benchmark datasets, respectively.

Results achieved on the real-life crawled data show that our approach per-

forms best for any tested value of k in terms of precision at rank k (see

Figure 4(b)). Furthermore, it also performs best for k equal to 1 and 2 in

terms of success, while its performance is comparable to the one of the other

approaches for k ≥ 3. A slightly different performance trend comes out on

the benchmark dataset. Our system is slightly less accurate than its best

competitor in first tag prediction, while it performs significantly better than

all the others (including Probabilistic prediction) in recommending all the

subsequent tags.

In summary, results show that our approach, on average, selects the most

suitable recommendable tags at the top of the ranking and precisely identify

the potential user interests.

4.4. Real-life use-case

In this section we analyze the results achieved by our system in a real-

life use-case. Consider a user that is annotating a Flickr photo of the St.
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Table 2: Real-life dataset. Performance comparison in terms of S@k, P@k, and MRR

metrics. Statistically relevant worsening in the comparisons between our system and the

other approaches are starred.

Probabilistic Prediction Vote Vote+ Sum Sum+ Baseline Generalized rule-based

Precision at rank k

P@1 0.6956* 0.5652* 0.6521* 0.6086* 0.6086* 0.6956* 0.8044

P@2 0.6195* 0.4782* 0.5543* 0.5760* 0.5543* 0.6630* 0.7282

P@3 0.5434* 0.4202* 0.5289* 0.5000* 0.5434* 0.6086* 0.6667

P@4 0.4619* 0.3858* 0.4619* 0.4891* 0.4782* 0.5434* 0.6087

P@5 0.4434* 0.3869* 0.4173* 0.4739* 0.4391* 0.4826* 0.5304

Success at rank k

S@1 0.6956* 0.5652* 0.6521* 0.6086* 0.6086* 0.6956* 0.8044

S@2 0.8043* 0.7608* 0.8043* 0.7826* 0.8043* 0.7608* 0.8478

S@3 0.8478 0.7826* 0.8260 0.8043* 0.8260 0.7608* 0.8478

S@4 0.8478 0.8043 0.8478 0.8478 0.8478 0.7826* 0.8478

S@5 0.8478 0.8260 0.8478 0.8478 0.8478 0.7826* 0.8478

MRR

0.7681* 0.6837* 0.7429* 0.7159* 0.7219* 0.7337* 0.8261
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Table 3: Benchmark dataset. Performance comparison in terms of S@k, P@k, and MRR

metrics. Statistically relevant worsening in the comparisons between our system and the

other approaches are starred.

Probabilistic Prediction Vote Vote+ Sum Sum+ Baseline Generalized rule-based

Precision at rank k

P@1 0.7660 0.4468* 0.4894* 0.4681* 0.4894* 0.5319* 0.7447

P@2 0.6809 0.3936* 0.4255* 0.3936* 0.4255* 0.4787* 0.6996

P@3 0.6170* 0.3333* 0.3759* 0.3475* 0.3789* 0.4468* 0.6383

P@4 0.5638* 0.2979* 0.3298* 0.3032* 0.3298* 0.3989* 0.5904

P@5 0.4978* 0.2681* 0.2851* 0.2638* 0.2851* 0.3574* 0.5191

Success at rank k

S@1 0.7660 0.4468* 0.4894* 0.4681* 0.4894* 0.5319* 0.7447

S@2 0.7872* 0.4894* 0.5106* 0.4894* 0.5106* 0.5957* 0.8723

S@3 0.8298* 0.5106* 0.5319* 0.5106* 0.5319* 0.5957* 0.8936

S@4 0.8298* 0.5106* 0.5319* 0.5106* 0.5319* 0.5957* 0.8936

S@5 0.8298* 0.5106* 0.5319* 0.5106* 0.5319* 0.5957* 0.8936

MRR

0.7908* 0.4752* 0.5071* 0.4858* 0.5071* 0.5638* 0.8156
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Figure 4: Real-life dataset. Performance comparison by varying the reference rank k.

36



 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1  2  3  4  5

P
re

ci
si

on
 a

t r
an

k 
k 

(P
@

k)

k

Probabilistic
Vote

Vote+
Sum

Sum+
Baseline

Generalized

(a) Precision at rank k (P@k).

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  2  3  4  5

S
uc

ce
ss

 a
t r

an
k 

k 
(S

@
k)

k

Probabilistic
Vote

Vote+
Sum

Sum+
Baseline

Generalized

(b) Success at rank k (P@k).

Figure 5: Benchmark dataset. Performance comparison by varying the reference rank k.
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Mary Church, located at the Financial District of San Francisco (California,

U.S.A.) nearby the Financial Center. The photo is taken from the real-life

photo collection described in Section 4.1. Over the photo annotations a set

of generalization hierarchies, whose extract is shown in Figure 3, is built by

our recommendation system (see Section 3.2).

The user is interested in tagging the photo with good descriptors so that

the Flickr querying system may effectively retrieve its content based on the

user-provided information. Suppose that the user has already annotated

the photo with the following tags τ(pi, uj)={St. Mary Square, Financial

District}. The system analyzes the user-specific and collective knowledge

bases to suggest additional tags to recommend. By setting the standard

configuration (minimum support threshold minsup=50%, minimum confi-

dence threshold minconf=40%) the following strong rule is discovered by

our system from the collective transactional tag set:

A) {St. Mary Square, Financial District} ⇒ {Financial center} (support

= 40%, confidence = 100%).

Hence, Financial center is a candidate additional tag to recommend sug-

gested by the community. However, due to the sparsity of the user-specific

knowledge base none of the not generalized rules includes {St. Mary Square,

Financial District} as rule antecedent since the combination of the two tags

rarely occurs in the analyzed collection. Nevertheless, the following strong

generalized rules are extracted:

B) {San Francisco Bay, Financial District} ⇒ {St. Mary} (support =

42%, confidence = 99%)
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C) {San Francisco Bay, Financial District} ⇒ {Business} (support =

55%, confidence = 100%)

Both rules represent correlations between the previously assigned and

the potentially relevant future tag annotations at a higher abstraction level.

Rule (A) suggests the recommendation of the pertinent tag St. Mary as

additional tag, while rule (B) highlights a high level tag category that is

worth considering in the recommendation process. In particular, the latter

rule states that, among the past user annotations, a correlation between the

category Business and the previously annotated tags holds. Indeed, the user

would willingly annotate the photo with a tag belonging to that category.

The knowledge about the community behavior addresses the system to rec-

ommend the tag Financial center as it is a lower level descendant of the

category Business.

4.5. Parameter analysis

We also analyzed the impact of the main system parameters on the tag

recommendation performance. To this aim, in Figures 7(a) and 7(b) we plot

the average MRR, S@1/P@1, and P@5 measures, as representatives among

all the tested measures (see Section 4.2), achieved by our system on the

real-life collection by varying the minimum support and confidence threshold

enforced during the generalized rule mining process, respectively. Curves, not

reported here for the sake of brevity, relative to different evaluation measures

and dataset show similar trends.

When relatively high support thresholds (e.g., 70%) are enforced, the per-

centage of not generalized rules is quite limited (e.g., 13% of the user-specific
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rule set mined from the training photo collection described in Section 4.1)

and many informative rules (generalized and not) are discarded. Never-

theless, the use of generalizations may prevent the discarding of the most

informative recurrences thanks to the extraction of high level associations

from the user-specific knowledge base. In the opposite case, i.e., when rel-

atively low support thresholds (e.g., 20%) are enforced, many low level tag

associations become frequent (e.g., 1.0% of the user-specific rule set from the

same training data) and, thus, are extracted by our system. However, the

sparsity of the analyzed tag collections still left some of the most peculiar

associations among tags hidden. Aggregating tags into high level categories

allows achieving the best balancing between specialization and generaliza-

tion of the discovered associations and, thus, improves recommender system

performance.

The confidence threshold may slightly affect the recommendation sys-

tem performance. By enforcing very low confidence threshold values (e.g.,

30%), a large amount of (possibly misleading) low-confidence rules is se-

lected. Indeed, the quality of the rule-based model, at the top of which the

recommendation system is built, worsens. Differently, when increasing the

confidence threshold a more selective pruning of the low quality rules may

allow enhancing the recommender system performance. As an extreme case,

when enforcing very high confidence thresholds (e.g., 90%), rule pruning se-

lectivity becomes too high to generate a considerable amount of interesting

patterns.

Best values of support and confidence threshold actually depend on the

analyzed data distribution. For instance, when coping with the benchmark
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dataset the best minimum support threshold values are around 20%, because

the analyzed dataset is relatively sparse.

Success at rank k (e.g., see S@5 in Figures 7(a) and 7(b)) is shown to be,

on average, less affected by support and confidence thresholds than precision

at rank k, because the probability of finding a relevant tag in the top-k

recommended tags is more weakly influenced by the rule-based model quality

than the percentage of retrieved relevant tags.

5. Conclusions and future work

This paper presents a novel personalized tag recommendation system that

performs additional tag recommendations to partially annotated Flickr pho-

tos by exploiting generalized association rules extracted from the collections

of the past personal and collective annotations. The use of high level asso-

ciations is focused on counteracting the impact of data sparsity as it may

highlight correlations among tags that could remain hidden at the level of

individual tags.

A set of experiments has been conducted on real-life Flickr photo collec-

tions. The effectiveness of the proposed approach has been validated against

a recently proposed tag recommendation system. Experiments show that the

use of the generalizations in rule-based tag recommendation yields significant

performance improvements.

Our system has so far not been concerned with the analysis of the tex-

tual content related to the annotated Web resources (e.g., photo descrip-

tions, related blogs or articles). We plan to extend it by also considering the

user-generated textual content coming from social networks and online com-
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Figure 6: Parameter analysis. MRR, S@1/P@1, and P@5 measures.
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munities. Furthermore, to take the evolution of photo annotations over time

we will investigate the integration of incremental rule mining approaches as

well.
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