706 research outputs found

    Stealthy Sensor Attacks for Plants Modeled by Labeled Petri Nets

    Get PDF
    The problem of stealthy sensor attacks for labeled Petri nets is considered. An operator observes the plant to establish if a set of critical markings has been reached. The attacker can corrupt the sensor channels that transmit the sensor readings, making the operator incapable to establish when a critical marking is reached. We first construct the stealthy attack Petri net that keeps into account the real plant evolutions observed by the attacker and the corrupted plant evolutions observed by the operator. Starting from the reachability graph of the stealthy attack Petri net, an attack structure is defined: it describes all possible attacks. The supremal stealthy attack substructure can be obtained by appropriately trimming the attack structure. An attack function is effective if the supremal stealthy attack substructure contains a state whose first element is a critical marking and the second element is a noncritical marking

    Minimum Initial Marking Estimation in Labeled Petri Nets With Unobservable Transitions

    Get PDF
    In the literature, researchers have been studying the minimum initial marking (MIM) estimation problem in the labeled Petri nets with observable transitions. This paper extends the results to labeled Petri nets with unobservable transitions (with certain special structure) and proposes algorithms for the MIM estimation (MIM-UT). In particular, we assume that the Petri net structure is given and the unobservable transitions in the net are contact-free. Based on the observation of a sequence of labels, our objective is to find the set of MIM(s) that is(are) able to produce this sequence and has(have) the smallest total number of tokens. An algorithm is developed to find the set of MIM(s) with polynomial complexity in the length of the observed label sequence. Two heuristic algorithms are also proposed to reduce the computational complexity. An illustrative example is also provided to demonstrate the proposed algorithms and compare their performance

    VERIFICATION AND APPLICATION OF DETECTABILITY BASED ON PETRI NETS

    Get PDF
    In many real-world systems, due to limitations of sensors or constraints of the environment, the system dynamics is usually not perfectly known. However, the state information of the system is usually crucial for the purpose of decision making. The state of the system needs to be determined in many applications. Due to its importance, the state estimation problem has received considerable attention in the discrete event system (DES) community. Recently, the state estimation problem has been studied systematically in the framework of detectability. The detectability properties characterize the possibility to determine the current and the subsequent states of a system after the observation of a finite number of events generated by the system. To model and analyze practical systems, powerful DES models are needed to describe the different observation behaviors of the system. Secondly, due to the state explosion problem, analysis methods that rely on exhaustively enumerating all possible states are not applicable for practical systems. It is necessary to develop more efficient and achievable verification methods for detectability. Furthermore, in this thesis, efficient detectability verification methods using Petri nets are investigated, then detectability is extended to a more general definition (C-detectability) that only requires that a given set of crucial states can be distinguished from other states. Formal definitions and efficient verification methods for C-detectability properties are proposed. Finally, C-detectability is applied to the railway signal system to verify the feasibility of this property: 1. Four types of detectability are extended from finite automata to labeled Petri nets. In particular, strong detectability, weak detectability, periodically strong detectability, and periodically weak detectability are formally defined in labeled Petri nets. 2. Based on the notion of basis reachability graph (BRG), a practically efficient approach (the BRG-observer method) to verify the four detectability properties in bounded labeled Petri nets is proposed. Using basis markings, there is no need to enumerate all the markings that are consistent with an observation. It has been shown by other researchers that the size of the BRG is usually much smaller than the size of the reachability graph (RG). Thus, the method improves the analysis efficiency and avoids the state space explosion problem. 3. Three novel approaches for the verification of the strong detectability and periodically strong detectability are proposed, which use three different structures whose construction has a polynomial complexity. Moreover, rather than computing all cycles of the structure at hand, which is NP-hard, it is shown that strong detectability can be verified looking at the strongly connected components whose computation also has a polynomial complexity. As a result, they have lower computational complexity than other methods in the literature. 4. Detectability could be too restrictive in real applications. Thus, detectability is extended to C-detectability that only requires that a given set of crucial states can be distinguished from other states. Four types of C-detectability are defined in the framework of labeled Petri nets. Moreover, efficient approaches are proposed to verify such properties in the case of bounded labeled Petri net systems based on the BRG. 5. Finally, a general modeling framework of railway systems is presented for the states estimation using labeled Petri nets. Then, C-detectability is applied to railway signal systems to verify its feasibility in the real-world system. Taking the RBC handover procedure in the Chinese train control system level 3 (CTCS-3) as an example, the RBC handover procedure is modeled using labeled Petri nets. Then based on the proposed approaches, it is shown that that the RBC handover procedure satisfies strongly C-detectability

    On functional module detection in metabolic networks

    Get PDF
    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models

    Aligning observed and modeled behavior

    Get PDF

    Acta Cybernetica : Tomus 4. Fasciculus 2.

    Get PDF
    corecore