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Abstract

Aligning Observed and Modeled Behavior

The availability of process models and event logs is rapidly increasing as more and more
business processes are supported by IT. On the one hand, most organizations make sub-
stantial efforts to document their processes, while on the other hand, these processes
leave footprints in their information systems. Although it is possible to extract event logs
from today’s systems, the relation between event logs and process models is often identi-
fied using heuristics that may yield misleading insights. In this thesis, techniques to align
event logs and process models are explored. Based on the obtained alignments, various
analysis techniques are developed. The techniques are evaluated against both artificial
and real-life process models and event logs.

A memory-efficient technique to compute alignments between event logs and pro-
cess models has been developed. Given an event log and a process model, low-level
deviations, i.e., observed activities that are not allowed according to the model and the
other way around, are explicitly identified. The technique can also be used to identify
high-level deviations such as swapped and replaced activities.

Our technique is applied to problems occurring in different domains. Unlike earlier
approaches, alignment-based conformance checking techniques are shown to be robust
against peculiarities of process models, such as duplicate and invisible tasks. Alignment-
based conformance metrics, such as fitness and precision, are shown to be more intuitive
and can deal with multiple level of noise in event logs. Various visualizations of align-
ments provide powerful diagnostics to identify the context of frequently occurring devia-
tions between process executions and prescribed process models. Applying data mining
techniques to alignments yields root causes of deviations between the observed behavior
in an event log and the modeled behavior in a process model. Alignments also improve
the robustness of performance measurements based on event logs and process models,
even if the logs are deviating from the models.

From a computational point of view, computing alignments is extremely expensive.
However, the obtained results indicate that alignments not only provide a theoretically
solid basis for analysis based on both models and process executions, but are also able to
handle problems of real-life complexity.
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Chapter 1

Overview

The increased level of competition between organizations forces individual organizations
to perform in the best way possible. Many approaches to improve performance of organi-
zations such as Six Sigma [123], Total Quality Management [132], and Business Process
Re-engineering [73] show that efficient business processes are one of the keys to improve
their overall performance. Therefore, it is no surprise that Business Process Management
(BPM) has become one of the top concerns for many organizations nowadays. Consult-
ing firms such as Gartner even put business process as one of the top 5 concerns for
organizations for the last 7 years consecutively [113,126-128,159].

A business process is a set of activities that are performed and need to be coordinated
in an organizational and technical environment to realize a business goal [205]. A busi-
ness process can be as simple as two activities performed in a sequence, or it can be
as complex and involve hundreds of activities to be performed in parallel with possible
synchronization and loops. Regardless of their size, documentation of business processes
— particularly in form of process models — is important in many organizations. Such docu-
mentation provides an effective and efficient way to get insights into business processes.
Process models are also often useful for analysis purposes. Moreover, recent laws and
regulations such as Sarbanes-Oxley may enforce organizations to document their pro-
cesses.

The rapidly changing business environment forces people and organizations to be
highly flexible and allow deviations from documented process models. For example, a
patient handling process in a hospital normally starts with the registration of a patient
followed by a general examination before any further action is performed. However, in
case of emergency, a patient of the hospital may go directly to operation table and skip
both registration and general examination. Hence, the execution of the process may not
always conform to its model. Deviations from a prescribed process model influence the
correctness of all analysis based on the models. Therefore, it is important to align the
observed behavior occurring in reality to the ones described in process models.

Many organizations nowadays use information systems to support their business pro-
cess. Such systems typically log all events that occurred during process executions, i.e.,
they record all observed behavior. This information can be exploited to identify deviations
to documented process models and further extended to provide other types of analysis.

In this thesis, we focus on the analysis based on alignments between the observed behav-
ior in event logs and the modeled behavior in process models. Alignments provide insights
into deviations that can be exploited further for deviation analysis. In this chapter, we
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Figure 1.1: Business Process Management Lifecycle [185,205].

describe the context of our research. First, we provide an overview of Business Pro-
cess Management (BPM) and the advancement of data-oriented analysis approaches in
Section 1.1 and Section 1.2. This provides the necessary background of our research.
Section 1.3 explains the Process Mining research area and positions this thesis within the
area. The research challenges addressed in this thesis are explained briefly in Section 1.4.
Section 1.5 highlights the contributions and describes the structure of this thesis.

1.1 Business Process Management

The idea to support business processes emerged in late 1970s. Zisman [210] investigated
an office automation approach to improve performance of business processes. Howevet,
the absence of computer networks made it impossible to develop these ideas any further
at the time they were presented. Only in late 90s, the concepts could be fully imple-
mented in form of Workflow Management Systems (WFMS) [186]. Workflow supports
the automation of a business process, in whole or part, during which documents, infor-
mation or tasks are passed from one participant to another for action, according to a set
of procedural rules [96]. WFM emphasizes the use of software to support the execution
of operational processes [185]. Workflow Management Systems (WFMS) [96] are the
software products to realize such support.

Experience shows that a WFMS alone is not sufficient to support organizations during
the whole life-cycle of business processes. In particular, WFM does not support diagno-
sis of executed business process. Thus, Business Process Management (BPM) emerged as
an extension of WFM. BPM covers all areas covered by WFM and some other important
areas that were not (fully) covered by WFM. While WFM emphasizes mostly on configu-
ration phase, BPM covers all phases of business process life-cycle as shown in Figure 1.1.
BPM supports business processes using methods, techniques, and software to design,
enact, control, and analyze operational processes involving humans, organizations, ap-
plications, documents and other sources of information [185]. In the design phase, the
processes are (re-)designed and analyzed. Designs are implemented in the configura-
tion phase by configuring an information system that supports business process. Such a
system is called a Process-Aware Information System [60]. The enactment phase starts
when business process are executed using the configured systems. Finally, operational
processes are analyzed in the diagnosis phase to identify problems and possible improve-
ments.

Business Process Analysis (BPA) techniques are covered by BPM but not by WFM. BPA
focuses on the diagnosis phase of BPM life-cycle. Business Activity Monitoring (BAM) is
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Figure 1.2: Petri net model for handling patients in a hospital.

an emerging area in BPA that uses data logged by information systems to diagnose oper-
ational processes. Process model often plays a crucial role in BPA. Process models show
how activities in the process must be performed. They provide insights into business
processes and means of analysis. Moreover, process models can be used to enact process
executions [83].

A process model can be formal (i.e., having clear definition and semantics) or in-
formal. Formal models are unambiguous and often supported by analysis techniques
and tools [167]. However, such models can be overly complex as all details need to be
modeled explicitly. In contrast, informal models may ignore some details and hence are
perceived to be simpler. However, this also means that such models can be ambiguous
and even yield misleading insights. For analysis purposes, models expressed in terms
of a formal process modeling language are often more valuable than informal ones. In
addition, graphical models are often preferred over ones without as they are easier to be
communicated.

Petri nets [119] are an example of a formal process modeling language supported by
many analysis techniques while providing a clear graphical notation. Figure 1.2 shows
an example of a patient handling process in a hospital, modeled in terms of a Petri net.
Rectangular nodes are called transitions, while circular nodes are called places. Arcs show
dependencies between transitions. Tokens reside in places. The distribution of tokens in
places defines the state of the process. A transition in a Petri net is typically labeled over
an activity. However, a transition in a Petri net may also have been introduced for routing
purposes only. In a Petri net, a transition can be executed, i.e., fired, if all input places of
the transition have tokens.

Figure 1.2 shows that a patient must first register (register) and then make an ap-
pointment for a lab test (lab test). Then, a doctor decides (decide) whether the patient
needs to have another test, go for a surgery (surgery), or go home immediately. A patient
who undergoes a surgery must stay temporarily in the hospital (bedrest) until the doctor
decides what to do next. Before the patient goes home, he needs to pay his bill (pay). The
process ends when an administration officer of the hospital archives the whole treatment
(archive). If a registered patient does not show up during a scheduled lab test, the pro-
cess for the patient terminates automatically after a certain time has passed. Transition
labeled timeout in Figure 1.2 is a routing transition that explicitly models the automated
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termination. Occurrences of routing transitions are typically not observed by information
systems, thus they are invisible. We use black-colored transitions to mark such invisible
transitions in a Petri net. Besides modeling the possible routings of a process, invisible
transitions are also used to model activities that may change the state of processes but
not directly observable from information systems. For example in Figure 1.2, a doctor
may consult some specialists (consult specialists) as many times as needed before making
any decisions. Activity consult specialists is typically performed without any support from
the hospital’s information systems, thus it is not observable and hence modeled as an
invisible transition.

A formal process model such as the one shown in Figure 1.2 allows for many types
of analysis in various phases of BPM lifecycle. In the design phase, undesired properties
such as deadlocks and live-locks can be identified from the model. Simulations can be
performed to determine the expected time needed to finish an instance of the process.
Such analysis can be used to ensure that a certain level of quality is met before the con-
figuration phase is started. In the enactment phase, some recommendations regarding
the selection of the transitions to fire next can be given based on both the model and
historical information. In the diagnosis phase, comparison between recorded process
executions with the model may reveal deviations and frequently executed activities.

1.2 Data Analysis

The rapid evolution of digital technology in the past three decades has brought us into
the so-called “big data” era. For example, Obama’s government recently announced that
big data in size of terabytes (102 bytes) is generated daily from experiments in the office
of Basic of Energy Sciences. E-bay, the online auction and web shopping company, pro-
cesses around 50 petabytes daily — or 50 quadrillion bytes [92]. Facebook, the popular
social media company, processes more than 500 terabytes of data daily [163]. Torrents
of digital data are generated daily and will continue to grow exponentially for the fore-
seeable future [103]. Furthermore, they are available in various forms. Transactions,
logs, click streams, sensor data, audio, video, and texts are some types of data that are
now available in massive quantities.

Information systems nowadays often record events that occurred during business pro-
cess executions, thus providing an abundance of historical data on how processes were
performed. A study reported in [158] shows that the top three sources of big data are
transactions, log data, and events. All of them are often generated as a by-product of pro-
cess executions. The same report also shows that data mining, visualization, predictive
modeling, and optimization are the four most frequently used techniques to analyze big
data after querying and report. Note that all techniques can be related to process anal-
ysis, but none of them takes the process model explicitly into account. Data mining is a
field of study that covers various approaches to extract knowledge from large amounts of
data [78]. It involves techniques such as machine learning and data visualization. Pre-
dictive modeling covers various approaches based on statistics to predict future behavior
based on historical data, while optimization techniques cover various ways to obtain a
mathematical model in order to identify variable values that maximize/minimize target
formula.

Thus, there is an abundance of process-related data that offers a wealth of informa-
tion for todays organizations, but it is rarely exploited to provide meaningful insights on
business processes. As a consequence, the analysis results may be incomprehensive. In



Table 1.1: Example of an event log

Caseid | Eventid Properties
Timestamp Activity | Resource | Transaction Type
1 1023 20-10-2013 11:50 | register John complete

1024 22-10-2013 08:10 | lab test Tifania complete
1025 22-10-2013 10:04 | decide Fitriani complete

1026 22-10-2013 10:20 | payment | Arya complete
1027 23-10-2013 08:05 | archive Kate complete
2 1028 20-10-2013 12:15 | register John complete

1029 22-10-2013 09:10 | lab test Tifania complete
1030 22-10-2013 10:00 | decide Fitriani complete

1031 25-10-2013 08:00 | surgery Jim complete
1032 25-10-2013 08:45 | bedrest Kate complete
1033 25-10-2013 09:10 | decide Fitriani complete
1034 25-10-2013 10:10 | payment | Arya complete
1035 25-10-2013 12:10 | archive Kate complete
3 1036 20-10-2013 13:30 | register John complete

1037 20-10-2013 13:40 | surgery Tifania complete
1038 20-10-2013 14:40 | bedrest Johann complete
1039 20-10-2013 15:30 | decide Fitriani complete
1040 23-10-2013 08:00 | lab test Tifania complete

1041 23-10-2013 09:30 | payment | Arya complete
1042 23-10-2013 10:00 | archive Kate complete

4 1043 20-10-2013 10:50 | register John complete

business processes, activities are related one after another. A non-optimal execution of
an activity in a process may influence the execution of other activities within the same
process. Suppose that an activity in a process takes much longer than other activities
in the same process, i.e., the activity is a bottleneck in the process. The causes of such
a bottleneck may not be directly related to the activity, but can also be related to other
activities that are executed before it. Without considering the process behind the activity,
the root cause of such a bottleneck may not be correctly identified.

1.3 Process Mining

Process mining bridges the gap between the process-oriented nature of BPM and the
data-oriented nature of machine learning/data mining. The starting point of process
mining is the observed behavior of process executions, stored in so-called event logs. Ta-
ble 1.1 shows an example of an event log of the patient handling process shown in
Figure 1.2. Note that all events are already grouped per case. In this example, the com-
pletion of each activity is recorded as an event in the log. The additional information
related to the execution such as the resource, timestamp, and case ID of the event may
also be recorded as shown in Table 1.1.

Process mining is a research discipline that discovers, monitors, and improves real
processes (not the assumed processes) by extracting knowledge from event logs readily
available from today’s systems [171]. Figure 1.3 shows an overview of the research area
covered by process mining. As shown, process mining links the modeled behavior on
one hand and the observed behavior on the other hand. There are three types of process
mining techniques: discovery, conformance, and enhancement.
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Figure 1.3: Three types of process mining techniques: (1) Discovery, (2) Conformance, and (3) Enhancement
[171].

e A process discovery technique takes an event log as input and produces a model that
best describes the behavior observed in the log. For example, the « algorithm [1]
constructs a Petri net model from an event log. The goal of process discovery
techniques is not limited to constructing models that show the control-flow of ac-
tivities, but also other dimensions such as uncovering the social network between
resources that perform activities [182]. Process discovery techniques are mostly
useful to provide insights into what occurs in reality.

e Conformance checking techniques take a process model and an event log of the same
process as input. Conformance checking compares the observed behavior in the log
with the behavior allowed by the model. If the model allows for more behavior than
the behavior observed in the log or vice versa, the log is said to be not conforming
to the model. An example of a conformance checking technique is the token-based
replay approach described in [151]. Conformance checking techniques are mostly
useful in situations where process models do not strictly enforce process executions,
i.e., deviations to prescribed process model may occur. Such techniques can be
used to identify where and when deviations occur, and measure the severity of such
deviations.

e An enhancement technique takes both an event log and a process model to extend
or improve the model with information extracted from the log. There are various
types of enhancement that one can perform, such as repairing a process model to
better reflect reality. Given a Petri net and an event log, the model repair approach
described in [62] adds extra transitions to the original net to better reflect the
observed behavior in the log. Another type of enhancement is the extension of
process models with information extracted from event logs. An example of such an
enhancement is the approach to derive a simulation model, given a process model
and an event log of the same process [149]. For example, durations, allocations,
rules, and routing probabilities are learned from the event log.
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Figure 1.4: Replay maps logged events to transitions in Petri nets. The log and net are taken from Table 1.1
and Figure 1.2 respectively.

1.4 Challenges in Conformance and Enhancement

In this thesis, we focus on two types of process mining: conformance and enhancement.
Hence, we assume that a process model and an event log are given. The model may have
been discovered through process discovery or made by hand. One of the main challenges
to perform both conformance checking and enhancement is to find the best way in which
observed behavior in event logs can be replayed on process models. Suppose that we
consider process models in the form of Petri nets. Replay takes an event log and a Petri
net and maps occurrences of events in the log to transition executions in the net. In a
situation where the net is relatively simple and only allows for the behavior observed
in the event log and vice versa, mapping events to transitions is trivial. Problems arise
when the observed behavior in the log is not following the same behavior as the behavior
allowed by the net. Take for example a fragment of an event log and a net in Figure 1.4.
The execution of the first event with label register in the log is allowed according to the
net, but the net does not allow for the execution of transition labeled surgery directly
after the transition labeled register. A question that one may naturally ask in such a
situation is how to continue replay if the events are not allowed according to the model.

Another challenge of replay is to deal with peculiarities of process models. A Petri net
may have multiple transitions with the same label, i.e., duplicate transitions. Figure 1.4
is an example of such a net. There are two transitions in the net labeled lab test, i.e., two
transitions have the same label. For any event labeled lab test in the log, it is not always
trivial to determine which transitions it should be mapped to. Other problems may arise
due to invisible transitions. Replay should also be able to identify the occurrence of
invisible transitions based on observed behavior in the log. Take for example the net in
Figure 1.4. Suppose that a patient made a registration but he didn’t show up for the
scheduled lab test. According to the net, the transition labeled timeout can be fired and
hence the patient handling terminates properly. A proper replay approach should be able
to identify that a timeout occurred in such a case. Recall that invisible transitions are not
observable, hence they are not recorded in event logs. Nevertheless, it is often possible
to infer their presence.

With the availability of large and complex processes, enabling replay for such pro-
cesses also becomes a challenge from a performance point of view. More and more
process models are constructed with complex control flow patterns. The reasonably
cheap price for digital storage motivates many organizations to record torrents of data.
Showing meaningful insights into executions of a process based on such a big data is
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non-trivial, especially in cases where deviations occur in many states of the process.

Given an event log and a process model, a replay technique is required to perform
conformance checking but it is not sufficient to measure the degree of deviations between
the log and the model. Such metrics are particularly useful to compare how good a model
is in comparison with other models that also aim to describe the behavior recorded in
the log. Genetic process discovery algorithms, e.g., [47], rely on conformance metrics to
construct a “good” process model from a given event log. Such measurements are also
useful to quantify the degree of confidence in all log-model-based analysis results. Fur-
thermore, if deviations exist, another important challenge to tackle is to provide reliable
diagnostics describing deviations. Diagnostic information on deviations, e.g., transitions
that are skipped, patterns of reoccurring deviations, etc., provide insights into possible
causes of deviations. With such insights, either some actions can be taken to prevent
further deviations or models can be repaired to better reflect reality. Auditors, security
analysts, and business process analysts are some parties that can gain the most benefits
from such insights.

Performance measurement is a crucial aspect for many organizations. In organiza-
tions where BAM applications are used to monitor process executions and executions
strictly follow predefined process models, performance values can be measured trivially
and projected onto the models to identify bottlenecks in the overall process. However, in
systems where deviations occur, measuring performance is far from trivial. Some activ-
ities may be skipped, thus events may occur in a different order than the ones allowed
by prescribed process models. Measuring performance based on the order of events and
projecting the result to process models may yield misleading results. Therefore, the main
challenge in measuring performance is how to deal with deviations.

1.5 Contribution and Thesis Structure

The contributions in this thesis can be summarized as follows.

e A robust approach to replay event logs on process models. Given an event log and
a Petri net, we show in this thesis that it is possible to align observed behavior
in the log to the net such that the alignment provides a robust mapping between
events in the log and transitions in the model even in the presence of invisible
and duplicate transitions in the net. Furthermore, the approach shows explicitly
where, when, and why deviations occur, thus providing a basis for further analy-
sis. A memory-efficient approach to compute alignment has been invented to enable
alignment-based analysis for complex and large-sized logs and models. The ap-
proach is extendable to also show high-level deviations, e.g., replaced transitions
and swapped activities.

e A set of conformance metrics based on alignments. Given an event log and a Petri
net, these metrics yield intuitive insights into the conformance between the log and
the net even if the log is non fitting.

e A set of visualization techniques to diagnose root cause of deviations. Each visu-
alization shows different insights regarding deviations (e.g., frequently occurring
deviations, context of deviations, or detailed information on deviation per case).
They are complementary and altogether offer powerful analysis tools to diagnose
the root causes of deviations.

e A robust performance measurement approach based on alignments. Given an event
log and a Petri net, we show that performance can be measured accurately from
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Figure 1.5: Thesis structure.

them even if the log is not perfectly fitting.

All of the introduced techniques have been designed and implemented in ProM 6, an
open source process mining framework!.

Figure 1.5 shows the structure of this thesis. It is divided into four main parts. The
first part, Part I, provides an introduction to this thesis. It consists of an introduction
(Chapter 1) and preliminaries (Chapter 2).

Part II explain alignment-related concepts and their computation. Chapter 3 discusses
existing approaches to compare observed and aligned behavior and motivates why an
approach based on alignments was chosen. Furthermore, it provides a formalization of
the notion of alignments. Efficient approaches to compute alignments are explained in
Chapter 4. Chapter 5 presents possible extensions to the basic alignment concepts. In
particular, deviations at higher levels of granularity (i.e., pattern-based deviations) are
investigated.

Part III describes various applications of alignments. Chapter 6 explains how align-
ments are formalized and how they are constructed using so-called “oracle” functions.
In Chapter 7, we describe approaches to measure conformance between event logs and
process models using alignments. Chapter 8 explains alignment-based visualizations that
can be used to provide insights into deviations. An approach to robustly measure perfor-
mance based on event logs and process models is given in Chapter 9.

Isee http://www.processmining.org
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Part IV concludes the thesis. Chapter 10 summarizes the main results and discusses
possible extensions of the work presented in this thesis.



Chapter 2

Preliminaries

This chapter introduces the notations that are used in the remainder of this thesis. Basic
notations are introduced in Section 2.1. Section 2.2 introduces various notations for
graphs. The event log notion is formalized in Section 2.3. An overview of Petri nets and
related concepts is provided in Section 2.4, while other process modeling formalisms are
explained in Section 2.5.

2.1 Basic Notations

In this section, we introduce the basic notations for sets, functions, matrices, vectors,
sequences, multisets, and tuples.

Definition 2.1.1 (Sets and Functions)

A set is a possibly infinite collection of elements. We denote a finite set by listing its
elements between braces, e.g., a set A with elements a, b and ¢ is denoted as {a, b, c}.
The empty set, i.e., the set with no elements, is denoted by (. Let A = {ay,...,a,} be a
set of size n € IN. |A| = n denotes the size of set A and P(A) is the powerset of set A,
€.g., P({CL, b}) = {(Z)v {CL}, {b}7 {a’ b}}

Let A = {a,b,¢,d} and B = {a,c,d,e} be non-empty sets. The union of A and
B, denoted A U B is the set containing all elements of either A or B, e.g., AUB =
{a,b,c,d,e}. The intersection if A and B, denoted A N B, is the set containing elements
of both A and B, e.g., AN B = {a, ¢,d}. The difference between A and B, denoted A\ B
is the set containing all elements of A that does not exists in B, e.g., A\ B = {b}.

Let A and B be non-empty sets. A function f from A to B, denoted f : A — B, is
a relation from A to B, where every element of A is associated to an element of B. A
partial function g is a relation from A to B, denoted ¢ : A /4 B, where some elements of
A is associated to elements of B, i.e., ¢ may be undefined for some elements of A. For
all (partial) functions f, Dom(f) and Rng(f) denote the domain and range of function f
respectively.

Function f is surjective if for all b € B, there exists a € A such that f(a) = b. fisan
injective function if for all a,a’ € A : f(a) = f(a’) implies a = o’. Function f is bijective
if it is both surjective and injective.

We assume all sets to be totally ordered, i.e., for any set A = {a1,...,q4/}, We
assume a bijection A : A — {1,...,|A|} exists, and for all 1 < ¢ < |A|, we write A[i] as
a shorthand for A=%(i). idzOf (a;, A) denotes the ordering of a; € A in set A, such that
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for all A[d], idzOf (A[i], A) = i. The ordering of elements in a set is respected by all of
its subsets, i.e., for all A’ C A, for all a;,a; € A’ where idzOf(a;, A) < idzOf(a;, A) :
idzOf (a;, A’) < idzOf (a;, A").

J

In the remainder of this thesis, we typically use uppercase letters to denote sets and
lowercase letters to denote the elements of that set. IV is the set of natural number, i.e.,
IN = {0,1,...}, R is the set of all non-negative real values, and IR" is the set of all
non-negative real values without 0, i.e., RT™ = IR\ {0} .

Definition 2.1.2 (Matrix and Vector)

A matrix is a square of array of numbers. Let [M] be a matrix of size m x n. [M], ;
denotes the element of matrix [M] in the i-th row and j-th column where 1 < ¢ < m and
1<j <n.[M]" of size n x m is the transpose of [M] such that forall 1 <i < m,1 < j <

n: M, = M7,

Let \[ 1] and \[Mz] be a pair of matrices with the same size m x n. The addition of two
matrices [M;] and [M2], denoted [M;] + [M2] = [M3] such that forall 1 <i < m,1 <
J < n,[Ms]; ; = [Mi]; ; + [Mz], ;. Substraction two matrices is defined in the same way
as addition by replacing summation ‘+’ with substraction ‘. The dot product of [M;] and
[Mo], denoted [My] - [Ma] = 3, <,c ;<0 M - [Ma],

Let [M4] be a matrix of size n X o. The cross product of [M;] and [My] is a matrix
[M5] of size m x o, denoted [M;] x [My] = [M5], such thatforall1 <i <m,1 < j <
0, [M5]‘i,j =Y [Mngr : ‘[M‘l]r,j'

A row vector ¥ of size m is a matrix of size 1 x m. Similarly, a column vector w of size
n is a matrix of size n x 1. v; and w; refer to the value of the i-th column in ¢ and the
value of the i-th row in @ respectively. J

Definition 2.1.3 (Sequences)

Let A be a set. A* denotes the set of all finite sequences over A. () denotes an empty
sequence. A sequence o = (o[l],...o[n]) can be represented by listing its elements
between angled brackets, where oi] refers to the i-th element of a sequence and |o| =n
denotes the length of 0. For all a € A, 0(a) counts the number of occurrences of « in o,
ie.o(a) =|{1 <i<|o||oli] =a}.

Concatenation of two sequences ¢ and ¢’ is denoted with o - ¢’. Similarly, concatena-
tion of an element a € A and a sequence o is denoted a - 0. Prefix sequences are denoted
with <, such that o < ¢’ if and only if there is a sequence ¢” # () witho’ =0 - "

When we iterate over a € o, we refer to each unique element in the sequence o, e.g.,
forall f: A — IN, 3., fla) =3 <<, flofi]). Forall A" C A, oy denotes the
projection of a sequence o € A on 4', e.g., (a,a,b,¢) ¢, ., = (a,a,c). The parikh vector
7 of a sequence o over A is a column vector, such that ¢ = (o(A[1]),...,o(A[|A]])7,
i.e., Vi<i<|a| 0 = o(A[i]). The sequence of set A, denoted seq(A), contains all elements
of A based on their ordering, i.e., seq(A) € A* |seq(A)] = |A| and for all 1 < ¢ <
|Al, seq(A)[i] = Ali]. Forall o € A*and 1 <i < j < |o] : 0y;. ;) denotes the subsequence
of o from index i to j, i.e., oy;. ;) = (o[i],ofi +-1]...0[j]). rv(o) denotes the reverse of
sequence o, i.e., rv(o) = {(o||a]], ..., o[1]).

Definition 2.1.4 (Multi-sets(bags))
Let A be a set. A multi-set m over A is a function m : A — IN. B(A) denotes the set of
all multi-sets over a finite domain A. We write e.g., m = [a, b?] for a multi-set m over A
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where a,b € A,m(a) = 1,m(b) = 2, and m(c) = 0 for all c € A\ {a,b}. Furthermore, a
set S C A can be viewed as a bag where each element occurs once, i.e., m : S — {1}.

Let m; € B(A) and my € B(A) be two multi-sets. We denote the union of two
multi-sets mg = mj W mo, i.e., mg € B(A) where for all a € A : ms(a) = mi(a) +
mz(a). The difference between two multi-sets is denoted ms = m; — ms such that for
all a € A: ms(a) = max (0, m1(a) —ma(a)). The presence of an element in a multi-set
(a € myp) < (m(a) > 0), the notion of submulti-sets (ma < my) < Voeca ma(a) < my(a),
and the size of multi-sets |m| are defined in a straightforward way, e.g., |[a, b?, ¢°]| = 8.
When enumerating elements of a multi-set, we do it for each element uniquely, e.g.,
Donefazpr ez M = 2a+3b+2c. For all set S C A, [a € S] denotes a multi-set that contains
all elements of S precisely one, e.g., [z € {a,b, c}] = [a,b, ¢]. Similarly, for all sequences
o € A* [a € o] denotes a multi-set of all elements in o, e.g., [z € (a,b,b,¢,d,a)] =
[a?,b%, ¢, d].

The parikh vector 17 of m is a column vector, such that 7 = (m(A[1]),...,m(A[|A]])7,
i.e., Vi<i<ja) m; = m(A[i]). Forall A" C A, m 4 € B(A) denotes the projection of m to
domain A’, such thatforalla’ € A’,m a/(a’) = m(a’) and m 4/ (b') = 0foralld’ € A\ A,

|

Definition 2.1.5 (Tuple)

Let A be asetand let¢ = (a1,a2,...,a,) € A X ... x A be a tuple of n elements. m;(¢)
refers to the i-th element of tuple ¢, e.g., Let (a,b) € A x A be a tuple of 2 elements
(i.e., pair), m1((a,b)) = a and m2((a, b)) = b. We generalize this notation to sequences of
tuples, e.g., for all o € (A x A)*,m;(0) = (m;i(c[1]),...,m(o[|o]]))- J

2.2 Graphs

Process models are represented in terms of graphs and have a corresponding graphical
representation. A graph consists of nodes and arcs that connect them. A directed graph is
a graph whose edges have directions. In this thesis, we consider graphs whose arcs have
both directions and labels. Such graphs are called labeled directed graphs. We formalize
labeled directed graphs as follows.

Definition 2.2.1 (Labeled Directed Graphs)
A labeled directed graph is a tuple DG = (NG, EG, LG) where NG is a set of nodes, LG
is a set of labels, and FG C NG x LG x NG is a set of labeled edges. N

Many real-life problems are solved by modeling them as graph-related problems and
then applying graph-related techniques. For example, the technique to find a shortest
path between two nodes in a graph and find a shortest path to visit all nodes in a graph
underlies many navigation systems, distribution planning, and network design we have
nowadays. One of the basic concepts in graph theory is the connection between nodes,
i.e., path, which is formalized as follows.

Definition 2.2.2 (Path)

Let DG = (NG, EG,LG) be a labeled directed graph. For all nodes n,n’ € NG, a
path from n to n’ is a sequence of edges o0 € EG*, where ¢ = () =— n = n’ and
oc# () = m(o[l]) =n,ms3(cl|o|]) =n',and for all 1 < i < |o| : w3(o[i]) = w1 (ai + 1]).
U pe(n,n') is the set of all paths from n to n’ in DG. The annotation DG can be omitted
if the context is clear. J
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Most path-related problems require a distance notion between nodes, e.g., finding a
path that connect two nodes with the shortest distance. We formalize the distance of
path and shortest path as follows.

Definition 2.2.3 (Distance of path, Shortest path)

Let DG = (NG, EG, LG) be a labeled directed graph. Let dist : EG — IR be a dis-
tance function. The distance of a path dist(o) is the sum of distances of all edges on
the path o where we abuse the distance function notation dist, such that dist(c) =
21<j<|o| dist(clj]). A path o € ¥(n,n') is a shortest path from n to n’ if for all o’ €
U(n,n'), dist(o) < dist(o”). J

Given a graph, a distance function, a source node, and a set of target nodes in the
graph, there are various approaches to find a shortest path from the source node to a
target node. One of the most efficient approach to compute such shortest distance is
the A* algorithm [50,81]. The algorithm works in a breadth-first search manner while
utilizing an estimation function to prune paths that can not lead to solutions.

Algorithm 1 shows a pseudocode of the A* algorithm. Given a directed graph, a
source node, a set of target nodes, and an estimation function, the A* works by visiting
a node in the graph and explore its direct successors iteratively until the visited node is
a target node. In the first iteration, it visits the source node of the graph, explores all
direct successors of the node, and then put them in a priority queue (see line 1-2). In the
consecutive iterations, the algorithm visits a candidate node in the queue that most likely
reaches the target node with the shortest distance (see line 4), explores all of its direct
successors, and puts them in the queue (see line 13 and 18). For each queued node, the
algorithm keeps track of (1) the shortest distance to reach the node from the source node,
and (2) its direct node predecessor in a shortest path from the source node to the node
(seeline 11-12, 16-17). In each iteration, if there are multiple “best” candidates then one
of them is selected randomly. If the selected candidate is a target node, the iterations
stop and the path to reach the target node is constructed by recursively iterating the
stored predecessors of the target node (see line 5-7).

Any estimation function used by the A* algorithm needs to be both admissible and
consistent [50,81]. We formalize the notions as follows:

Definition 2.2.4 (Admissible, consistent, and permissible function)

Let DG = (NG, EG, LG) be a labeled directed graph and let dist : EG — IR be a distance
function. A function h(pg,¢ist) : NG x P(NG) — IR is admissible for DG and dist if and
only if for all n € NG, N; C NG :

) h(DG,dist)(n, Nt) = 400 lf for all ng € Nt : \I/DG(n,nt) = @, and
® h(pa,dist)(n, Ny) < dist(o) for all ny € Ny, 0 € Vpg(n,n;) otherwise.

h(pa,aist) is consistent if and only if for all (n,l,n") € EG,N; C NG : hpg(n, Ny) <
dist((n,l,n’)) + hpa(n', Ny). Furthermore, h(pg, 4ist) is permissible for DG and dist if it
is both admissible and consistent.

In the remainder of this thesis, we omit the annotations DG and dist from h if the
context is clear. Furthermore, if there is only one target node (i.e., |[N;| = 1) and the
context is clear, we omit the powerset of nodes in the signature of the function, i.e., we
write permissible function 4’ : NG — IR instead of h : NG x P(NG) — IR such that for
alln € NG : h'(n) = h(n, Ny) with N; = {n;},n; € NG. N
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Algorithm 1: Pseudocode of the A* algorithm

AW N =

(9]

10
11

12

13
14
15
16
17
18
19
20
21
22

Initialize priority queue pqueue with the source node;
visitedNodesSet < 0 ;
while pqueue is not empty do

currNode < best candidate node in pqueue (node with the minimum total
distance+underestimation to the nearest target node);
if currNode € the set of all target nodes then

recursively iterate the predecessors of currNode until the source node to
obtain a shortest path;
return the shortest path;
Ise
forall succNode € set of all successors of currNode do
if succNode € visitedNodesSet then
if (stored best distance to reach succNode) > (current distance to
reach succNode) then
replace the values of stored best predecessor and total distance
for succNode with the current ones;
add succNode to pqueue;
end
else

visitedNodesSet « visitedNodesSet U {succNode};
store predecessor and total distance to reach succNode;
add succNode to pqueue;
end
end
end
end
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Figure 2.1: Top Left: a directed graph where all arcs have distance 1. The remainder of the figure shows how
the A* algorithm explores the nodes of the graph in each iteration to find a shortest path from the source node
to the target node of the graph, using a permissible function that always returns O for all nodes.
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Figure 2.2: Top Left: the same directed graph where all arcs have distance 1 as shown in Figure 2.1. The
remainder of the figure shows how the A* algorithm explores the nodes of the graph in each iteration to find
a shortest path from the source node to the target node of the graph, using a permissible function that returns
accurate distances to the target node (i.e., for any node in the graph, the function returns the shortest distance
from the node to the target node or +oo if there is no path from the node to the target node). Fewer iterations
are needed and fewer states need to be queued to find the same shortest path compared to the one shown in
Figure 2.1.

It is easy to see that a function that always return O is a permissible function. Fig-
ure 2.1 illustrates how the A* algorithm works in a graph using a permissible function
that always return 0. The number assigned to a node in the node exploration graph
shows the visit ordering of the node. The highlighted path in the node exploration graph
is the shortest path identified by the algorithm. Using such a permissible function, the
algorithm works in a breadth-first search manner. All nodes with lower minimum total
distance from the source node are investigated before other nodes with higher minimum
total distances from the source node. If there are multiple candidate nodes in its prior-
ity queue with the same value of (minimum distance + underestimation to the nearest
target node), one of them is chosen randomly. The algorithm stops when the selected
candidate node is one of the target nodes. For example, after iteration 11 (see Figure 2.1)
the priority queue contains two unvisited nodes. One of them is a target node. In itera-
tion 12, the selected node is visited (i.e., it is chosen as the “best” candidate node) and
therefore there is no need to visit the remainding nodes in the queue. Note that with a
better permissible function, all nodes that are highly unlikely to be a part of a shortest
path from the source node have higher underestimation values than other nodes and
thus have less priority to be visited. Figure 2.2 shows how the A* algorithm explores
the nodes in the same directed graph with a precise estimation function. With such a
function, the algorithm requires fewer iterations to identify the same shortest path com-
pared to the one shown in Figure 2.1. We refer to [50, 81] for further details of the A*
algorithm.
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Table 2.1: A fragment of some event log: each line corresponds to an event

Caseid | Eventid Properties
Timestamp Activity | Resource | Transaction Type
1 1023 20-10-2013 11:50 | register John complete

1024 22-10-2013 08:10 | lab test Tifania complete
1025 22-10-2013 10:04 | decide Fitriani complete

1026 22-10-2013 10:20 | payment | Arya complete
1027 23-10-2013 08:05 | archive Kate complete
2 1028 20-10-2013 12:15 | register John complete

1029 22-10-2013 09:10 | lab test Tifania complete
1030 22-10-2013 10:00 | decide Fitriani complete

1031 25-10-2013 08:00 | surgery Jim complete
1032 25-10-2013 08:45 | bedrest Kate complete
1033 25-10-2013 09:10 | decide Fitriani complete
1034 25-10-2013 10:10 | payment | Arya complete
1035 25-10-2013 12:10 | archive Kate complete

3 1036 20-10-2013 13:30 | register John complete

suspend

schedule reassign

assign

resume

abort_activity

manualskip complete

autoskip

withdraw abort_case

successful unsuccessful
termination termination

Figure 2.3: Standard transactional life-cycle model [171].

2.3 Event Logs

Table 2.1 shows a fragment of the log shown in Table 1.1. Recall that our example log
stores some execution history of patient handling process in a hospital. An event log
contains data related to a single process. For example, all events in Table 2.1 can be
related to the same patient handling process. Each event in the log refers to a single
process instance, often referred to as the case. Furthermore, an event is related to an
execution of some activity. Other than case and activity, an event may have several other
attributes, such as a timestamps or a resource (i.e., the person that executes the event).

To explicitly capture all information that may exist in event logs, we formalize com-
plex events and their attributes as follows:

Definition 2.3.1 (Complex event, attribute)

Let £ be the complex event universe, i.e., the set of all possible complex event identifiers.
A complex event may have various attributes. Let N be the attribute universe. For all
events e € £ and name n € N : #,,(e) is the value of attribute n for event e. J

Often, activities may take time and have some life-cycle [171]. Figure 2.3 shows
the standard life-cycle of activities [171]. Events are recorded when an activity instance
changes state from one life-cycle to another. For example, events may be recorded at
the moment activity instances are started or completed. Consider the following scenario
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where the standard activity life-cycle is used and events are recorded each time a trans-
action life-cycle changes. Suppose that an activity is scheduled, and then assigned to a
resource. The resource starts the activity and then completes it. In this scenario, four
events are recorded with the same activity attribute, but with different life-cycle transac-
tion type (i.e., schedule, assign, start, and complete).

In the remainder of this thesis, let C be the case universe, let A be the universe of all
activities, let 7 be the time universe, and let TY be the transaction type universe. We
assume that all events e € £ have at least the following standard attributes:

o #.4sc(€) € C is the case associated to event e,
o #..:(e) € Ais the activity associated to event e,
o #iime(e) € T is the timestamp of event e,

o H#uans(e) € TY is the transaction type of event e, e.g., schedule, start, complete,
and suspend.

An event log consists of cases. Typically, execution of a case does not directly influence
the execution of other cases, e.g., the way a patient is treated in a hospital does not
influence the way other patients are treated. Therefore, we often consider only events
for a case in isolation. The events for a case are represented in the form of complex trace,
i.e., a sequence of unique events.

Definition 2.3.2 (Case, complex trace, complex event log)

A complex trace over some event universe £ is a finite sequence of events o € £* such
that each event appears only once, i.e., for 1 < i < j < |o| : o[i] # o[j]. For all cases
c € C,¢ € £* is a shorthand for referring to a complex trace of ¢, such that

o {e €& | H#esele) =c} ={c[i] |1 <i<éd]|}, i-e., all complex events of the same
case c are in sequence ¢,

e Foralll <i < j <&, #time(€[i]) < #uime(E[J]), i-e., all complex events are ordered
based on their timestamps.

A complex event log LC C C is a set of cases. J

For example, the log in Table 2.1 is formalized as LC = {1,2,3,...}. For case ¢ =
1,¢ = (1023,1024, . ..,1027). #4.:(1023) = register is the activity associated with event
1023, etc.

Event logs can be used for various types of analysis. Many approaches only require
a subset of event attributes. For example, most process discovery algorithms only take
activity attribute of events into account, while performance measurement approaches
also take time attribute into account. Thus, we define a classifier to determine which
aspects of importance are taken from event logs.

Definition 2.3.3 (Classifier)
A classifier is a function that maps each event to a representative name used for analysis.
For all events e € £, e is the name of the event. J

For example, events e € £ may be identified by their activity name (e = #,.t(e)) or the
pair of activity and lifecycle transition (e = (#4ct(€), #erans(€))). In this thesis, we use a
default classifier that maps events to their activity names unless stated otherwise.

In the most of this thesis, we abstract from additional attributes and only use informa-
tion about recorded activities. Using this abstraction we can formalize traces and event
logs as follow:
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Definition 2.3.4 (Trace, Event log)
Let A C A be a set of activities. A process instance o € A* , i.e., trace, is a sequence of
activities. An event log L € B(A*) is a multiset of traces. a

The definition of event logs in Definition 2.3.4 abstracts from many details typically
stored in event logs. For example, in our formalization there is no unique identifier for
process instance, and there is no notion of unique events as there are no event attributes.
One can convert complex logs as defined by Definition 2.3.2 into event logs as defined in
Definition 2.3.4 using classifiers. We define such transformations as follow.

Definition 2.3.5 (Transforming a complex event log into an event log)

Let £ be a complex event universe and let LC' C C be a complex event log over £ as
defined in Definition 2.3.2. Assume a classifier that returns activity names is chosen.
The classifier can be applied to sequences, i.e., (e1,e2,...,e,) = (e1,€2,...,€,). LC =
[¢ | c € LC] is the event log of LC. J

For example, using the default classifier, the formalization of complex event log
in Table 2.1 LC = [(register, lab test, decide, payment, archive), {register, lab test, decide,
surgery, bedrest, decide, payment, archive), (register,...), .. .].

Other classifiers can also be used. If we use classifier e = (#qct(€), #trans(€)) that
maps events to combination of activity name and life-cycle, the obtained log is as follows
LC = [{(register, complete), (lab test, complete), (decide, complete), (payment, complete),
(archive, complete)), ((register, complete), (lab test, complete),...), .. ].

In the remainder, we will use whatever notation is most suitable. Furthermore, unless
explicitly indicated otherwise, we assume that events are recorded at the moment an
activity instance is completed, i.e., for all events e € &, #4rans(€) = complete.

2.4 Petri Nets

Petri nets [119] were the first process modeling languages able to model concurrency. It
is still one of the most frequently used notations and the basis for concurrency theory.
Various analysis techniques to investigate behavioral and structural properties have been
defined in literature. Petri nets are executable and supported by simple yet intuitive
graphical notations. In this section, we explain Petri-net related concepts, extensions,
and a sub-class of Petri nets that is often used in practice: workflow nets.

2.4.1 Concepts

A Petri net is a bipartite graph consisting of places and transitions. The state of a Petri
net is indicated by the distribution of tokens over places and is referred to as marking.
Transitions can be labeled, e.g., with activities, resources, etc. Figure 2.4 shows a booking
process of an online travel agency in Petri net formalism. A customer starts booking by
clicking a booking link shown in a browser (start book). Then, he can choose to book a
flight ticket (choose flight), hotel (choose hotel), or both. After choosing a flight and/or
hotel, the customer has to confirm his selections (confirm). Then, the travel agency
books the flight and/or travel tickets (book) while the customer transfers his payment
(transfer). A transfer may fail (fail transfer) or succeed (success transfer). A confirmed
booking order can be cancelled (cancel) as long as a transfer payment has not been
received. The process ends after all historical information is archived (archive).
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fail transfer

Figure 2.4: A booking process of an online travel agency, shown in terms of a Petri net.

Unless indicated otherwise, non invisible transitions are labeled with activities. We
reserve 7 ¢ A as the label of all invisible transitions. For convenience, for any set A C
A, AT = AU {7} denotes the union of set A and {7}. Petri net is formalized as follows:

Definition 2.4.1 (Petri net)

Let A C A be a set of activities. A Petri net over A is a tuple N = (P,T,F,a,m;,my)
where P is the finite set of places, T is the finite set of transitions, F' : (PxT)U(T x P) —
IN is a flow relation that returns the weight of arcs, and o : T'— A7 is a function mapping
transitions to labels.

A marking, i.e., a state of the Petri net, is a multi-set of places. m;,m; € B(P)
are the initial and the final marking of N respectively. A transition ¢t € T is enabled at
marking m € B(P), denoted (N, m)[t) if and only if Ve p F(p,t) < m(p) hold. m <5 m/
denotes the firing of an enabled transition ¢ in net NV from m that leads to new marking
m’ € B(P), such that V,cp m/(p) = m(p) — F(p,t) + F(t,p). A sequence o € T* of

e . . 1 2
transitions is a firing sequence from marking m to m’ if m et N My gk N M2 .. ellel N m,
abbreviated with m %y m’. We overload notation (N, m)[) to denote that o is a firing
sequence from marking m. Sequence o € T* is a complete firing sequence if m; % my.

The annotation N of firing sequence (— ) is omitted if the context is clear. a

The net shown in Figure 2.4 can be formalized as P = {p1,...,p15}, T = {t1,..-,t16},
A = {start booking, choose flight, choose hotel, ..., archive}, m; = [p1], my = [p1s),
F(p1,t1) = 1, F(p1,t2) = 0, ..., F(ti,p15) = 1. All invisible transitions, such as ¢y
and t4, have the same label, e.g., a(t2) = a(ty) = 7.

In principle, multiple transitions may have the same label. We call such transitions
duplicate transitions. Invisible transitions are labeled “7”. Graphically, invisible transitions
are colored black as shown in Figure 2.4.

Behavior of a Petri net can be analyzed through the marking reachable from its initial

state. We formalize reachable markings in Petri nets as follows.

Definition 2.4.2 (Marking Reachability)

Let A C A be a set of activities. Let N = (P, T, F,«, m;,my) be a Petri net over A. A

marking m’ € B(P) is reachable in N from marking m if there exists a sequence ¢ € T*

such that m % m/. RS(N,m) denotes the set of all reachable markings of N from

marking m, i.e., RS(N,m) = {m’ € B(P) | 3,er~ m > m'} 3
The matrix representation of a Petri net, often called the incidence matrix of the net,

keeps track of the changes on marking while firing transitions. It provides the number of
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Figure 2.5: An example of a reset/inhibitor net expressing behavior that cannot be modeled in petri net
without reset/inhibitor arcs.

tokens consumed and produced by firing transitions. Some analysis techniques for Petri
nets, such as transition/place invariants, exploit the incidence matrix for analysis.

Definition 2.4.3 (Incidence Matrix)

Let A C A be a set of activities. Let N = (P, T, F,a, m;, my) be a Petri net over A. The
incidence matrix [N] of N is a |P| x |T'| matrix such that forall 1 < j < |P|,1 < k <
T, [N]; , = F(T[k], P[5]) — F(P[j], T[K]). .

A Petri net may still allow for undesirable behaviors such as deadlocks and livelocks.
In the remainder of this thesis, we only consider Petri nets whose final marking is reach-
able from its initial marking. We name such class of Petri nets easy sound Petri nets.

Definition 2.4.4 (Easy sound Petri net)
Let A C A be a set of activities. Let N = (P, T, F, «,m;, my) be a Petri net over A. N is
an easy sound Petri net if and only if m; € RS(N, m;). J

2.4.2 Extension with Reset/Inhibitor Arcs

Petri nets are unable to express complex behaviors such as cancellation and priority. To
increase the expressive power of Petri nets, reset and inhibitor arcs can be added. Petri
nets with reset/inhibitor arcs are called reset/inhibitor nets. A reset arc connecting a place
to a transition removes all tokens from the place when the transition fires regardless of
the number of tokens originally exist in the place. An inhibitor arc connecting a place to
a transition does not allow the transition to fire if there is still a token in the place. In
the remainder of this thesis, reset arcs are represented graphically by arcs with double
arrows, while inhibitor arcs are decorated with a small circle.

Figure 2.5 shows a reset/inhibitor net whose behavior cannot be expressed by a Petri
net without reset/inhibitor arcs. The process shows an online transaction process for an
electronic bookstore, where transitions are labeled with activities. A customer creates
an order by adding as many items as he wants to his cart (add items). After an order is
finalized (finalize), all items in the order are packed individually (pack items). All items
of an order are sent to customers (send goods) after they are packed and payment for
the order is accepted (accept money). The customer may add more items to his cart after
the order is finalized (add items), but he can only cancel (cancel) the order as long as it
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has not been finalized. The process ends when all goods are sent to the customer or the
process is cancelled.
Reset/inhibitor nets are formalized as follows:

Definition 2.4.5 (Reset/inhibitor net)
Let A C A be a set of activities. A reset/inhibitor net over A is a tuple N = (P, T, F, «,
m;, mg,r, 1) where

o (P,T,F,a,m;,my) is a Petri net over A,

e r: T — P(P) is a function mapping a transition to its set of reset places, and

e i : T — P(P) is a function mapping a transition to its set of inhibitor places

A transition ¢t € T is enabled at marking m € B(P) if and only if both V,cp\;«)

F(p,t) < m(p) and Y,¢;+) m(p) = 0 hold. m 2 m’ denotes the firing of an enabled
transition ¢ from m that leads to new marking m’ € B(P), such that V¢ p\,1) m/(p) =

m(p) - F(p, t) + F(t7p) and v;DG'r(it) m/(p) = F(tvp)- N

We use the same notation as the one that is already defined in Definition 2.4.1 to de-
note firing sequences and pre/post of transitions/places. Note that if for all ¢t € T, r(¢) =
0 and i(t) = 0, N has exactly the same behavior as the Petri net (P, T, F,l,m;,my).
Moreover, we extend the notion of easy sound Petri nets in Definition 2.4.4 to Petri nets
with reset/inhibitor nets.

2.4.3 Workflow Net

Processes, in particular business or workflow processes, often have a well-defined start
and end state. Thus, we consider a subclass of Petri net known as workflow nets [168,
1691.

Definition 2.4.6 (Workflow net)
Let A C A be a set of activities. Let N = (P, T, F, «, m;, my, r,1) be a reset/inhibitor net
over A. N is a workflow net if and only if

e There is a single source place p; € P,i.e, {p€ P |*p =0} = {p:},

e There is a single sink place p; € P, i.e., {p € P | p®* = 0} = {ps},

e The source and sink place are the initial and the final marking respectively, i.e.,

m; = [p;] and my = [ps],
e Every node is on a path from p; to ps, and
e There is no reset arc connected to the sink place, i.e., Vicr ps ¢ 7(t).

J

Both nets shown in Figure 2.4 and Figure 2.5 are workflow nets. The reset/inhibitor
net shown in Figure 2.5 has a single source place p; and a single sink place ps. It is also
easy to see that all nodes are on a path from p; to ps. Furthermore, there is no reset
arc connected to ps. Similarly, the net shown in Figure 2.4 also satisfies all requirements
stated in Definition 2.4.6.

Various correctness criteria for workflow nets have been proposed in literature [187].
The most widely used correctness criterion for workflow models is soundness, which is
defined as follows:

Definition 2.4.7 (Classical Soundness)
Let A C A be a set of activities. Let N = (P, T, F, o, m;, my,7,1) be a workflow net over
A. N is sound if and only if
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e Option to complete: V,,crg(n,m,) My € RS(N,m),
e Proper completion: V,,crs(n,m,) ms < m = m =my, and
e No dead transitions: Vicr3mers(nv,m,) (N, m)[t).

J

The Petri nets in Figure 2.4 and Figure 2.5 are sound workflow nets, because they
satisfy all three criteria mentioned in Definition 2.4.7. The soundness criterion is some-
times considered to be too restrictive in practice. Therefore, weaker notions of sound-
ness have been defined such as weak soundness [104,105], relaxed soundness [51], and
lazy soundness [133]. Easy soundness [189] is one of the weakest correctness notions
for workflow nets. A workflow net is easy sound if there is at least a firing sequence
that leads to proper termination, i.e., the final marking is reachable from the initial
marking [187,189]. Note that this notion of correctness is a specialization of the easy
soundness notion formalized in Definition 2.4.4 for workflow nets.

Both nets shown in Figure 2.4 and Figure 2.5 are also easy sound. In both nets, there
exists a firing sequence from the initial marking to the final marking.

A workflow net that satisfies a strong correctness notion, e.g., the classical soundness,
also satisfies other weaker notions of soundness. For example, all classical sound work-
flow nets are easy sound, but an easy sound workflow net is not necessarily (classical)
sound. The hierarchy of correctness criteria is described in [187] in detail.

2.5 Process Modeling Formalisms

Other than Petri nets, there are alternative languages some of which are often used in
practice. We focus on executable process models, i.e., process models with semantics
that are used to explicitly define the set of allowed traces. In this section, we describe
some other existing process modeling languages often used in practice for such purpose.
Moreover, we indicate how they relate to Petri nets.

There are two important aspects of process modeling languages that need to be con-
sidered when choosing a language to model processes: expressibility and suitability [91].
Expressibility is an objective evaluation of a modeling language based on what modeling
problems can be solved by the language considered and what can not. Suitability is a
subjective evaluation on modeling languages based on how direct are the solutions of-
fered by the languages to modeling problems. In the remainder sections, we provide a
short overview on the expressibility and the suitability of existing languages.

2.5.1 BPMN

BPMN [122] is arguably the most used process modeling language in practice nowadays.
BPMN was created to provide end-users with the capability of representing their internal
business procedures in a graphical manner and communicate them in a standard manner.
Figure 2.6 shows a BPMN model of the travel booking process earlier shown as a Petri
net (Figure 2.4). The core of BPMN models are tasks, arcs, gateways, and events. Tasks
in BPMN models are synonymous with transitions in Petri nets. Tasks are labeled and
may be connected through directed arcs. Gateways are model elements that determine
possible paths during execution of a process. Gateways may have guards, i.e., a collection
of conditions that needs to be satisfied to allow execution of one path. Events indicate
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Figure 2.6: A Petri net and a BPMN model that exhibit similar set of traces, annotated with some control-flow
patterns that exist in both models.

occurrences of anything in the external environment that may change the state of the
process.

Unlike Petri nets, BPMN provides abundance of notations to represent complex pat-
terns. For example in Figure 2.6, both multi-choice and synchronizing merge patterns are
each represented by a dedicated gateway. There are many ways of expressing the same
behavior in BPMN. Figure 2.6 shows two alternatives to represent the same deferred
choice pattern: using tasks with type “receive”, or using events.

Despite of its popular use, BPMN also has some drawbacks. States are not explicitly
defined in BPMN. Therefore, some state-based patterns such as the milestone pattern
cannot be expressed in BPMN [209]. Furthermore, despite of the abundance of nota-
tions, only small subset of them are really used in practice [211]. Some notations are
ambiguous as shown in [57], thus models with such notations cannot be analyzed with-
out making further assumptions. The work in [57] even suggests that analysis on BPMN
models should be performed after translating them to Petri nets.

2.5.2 YAWL

YAWL is a process modeling language based on Petri net that was developed to be both
expressive and suitable [184]. YAWL is based on Petri nets, therefore it inherits the ad-
vantages of Petri net-based language such as [167]:

e Formal semantics despite the graphical nature,
e State-based instead of (just) event-based, and
e Abundance of analysis techniques.

YAWL extends classical Petri net language by supporting directly non-trivial workflow
patterns, such as advanced branching and synchronization (e.g., OR-split, OR-join), mul-
tiple instances, and cancellation patterns. YAWL models consist of tasks, conditions, arcs,
and possibly cancellation regions. Tasks and conditions in YAWL models are the same as
transitions and places in Petri nets. Two special types of conditions, i.e., input and output
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Figure 2.7: A Petri net and a YAWL model that exhibit similar set of traces, annotated with some control-flow
patterns that exist in both models.

condition, must exist exactly once in a process model. These indicate the start and end of
process respectively. Figure 2.7 shows the net shown in Figure 2.12 and a YAWL model
that allows similar behavior. Notice that advanced control-flow patterns are succinctly
encoded as part of tasks, and conditions can be omitted for clarity. We refer to [83,184]
for details about YAWL.

2.5.3 Causal Nets (C-Nets)

Process modeling languages typically have elements that represent activities, but often
they also have extra elements to specify the relation between activities (semantics). For
example, a Petri net requires places to represent states of the process and to model the
control-flow. YAWL also has conditions to represent the state of process. BPMN has
gateways and events. All of these extra elements do not leave a trace in event logs,
i.e., no events are generated by occurrence of elements other than the ones representing
activities. Thus, given an event log, process discovery techniques must also “guess” the
existence of such elements in order to describe the observed behavior in the log correctly.
This causes several problems as the discovered process model is often unable to represent
the underlying process well, e.g., the model is overly complex because all kinds of model
elements need to be introduced without a direct relation to the event log (e.g., places,
gateways, and events) [176]. Furthermore, generic process modeling languages often
allow for undesired behavior such as deadlocks and live-locks.

Causal nets are a process model representation tailored towards process mining [176].
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Nodes in a causal net represents activities and arcs represent dependencies between
them. A causal net has a start and an end activity. Semantics of activities are shown by
their input and output bindings.

Consider, for example, the causal net depicted in Figure 2.8. The causal net shows
the same booking process in an online travel agency as the one shown by the transi-
tion system in Figure 2.12. There are three output bindings for activity start booking:
the binding with activity choose flight, the binding with choose hotel, or the binding with
both. When an activity is executed with a binding, an obligation is created according
to the binding. Suppose that start booking is executed with binding choose flight, then
there is a pending obligation to do perform choose flight. Only after choose flight is exe-
cuted with input binding start booking, the obligation is removed. A causal net describes
behavior that starts from the start activity and ends with the end activity without any
pending obligations. Note that complex control-flow patterns such as cancellation and
multiple instances must be encoded explicitly as bindings of activities. Thus, causal nets
are less suitable to express processes with a complex control-flow.
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Figure 2.10: A transition system of a booking process in an online travel agency.

For all causal nets, there is a Petri net that allows the same set of traces with possible
additional behavior. We refer interested readers to [171] for details on converting a
causal net to a Petri net. Figure 2.9 shows a Petri net constructed from the causal net in
Figure 2.8 using the conversion rules in [171]. Note that many invisible transitions are
needed to represent bindings in the original Petri net. This shows the advantage of using
causal nets to model activities with complex control-flow between activities. Similar to
BPMN models, causal nets have no explicit notion of state.

2.5.4 Labeled Transition Systems

Transition systems are one of the most basic process modeling notations. Figure 2.10
shows a transition system of a booking process in an online travel agency. As shown in
Figure 2.10, a transition system consists of states and transitions that connect the states.
Note that the notion of transitions in transition systems is different than the notion of
transitions in Petri nets. States are represented by black circles and the arcs connecting
the circles represent transitions. A transition of a transition system is labeled, typically
with an activity. Furthermore, a transition system has an initial state and a final state.
Graphically, the initial state of a transition system has a small incoming arc and its final
state has a small outgoing arc. In Figure 2.10, state s; and si, are the initial and the
final state respectively.

In this thesis, we consider labeled transition systems. Labeled transition systems can
be formalized as follows:

Definition 2.5.1 (Labeled Transition System)

A labeled transition system is a tuple LTS = (S, TR, LB, s;, sy) where S is the (possibly
infinite) set of states, LB is the set of labels, and TR C S x LB x S is the set of transitions
between states. s;, sy € S is the initial and final state respectively. J

Transition systems are very expressive. Many process models with executable se-
mantics can be mapped onto a transition system [171]. Thus, analysis techniques and
notions defined for transition systems can be easily related to other languages such as
BPMN, BPEL, EPC, and Petri net. A transition system can be translated to a Petri net that
allows for the same set of traces. For example, Figure 2.11 shows a Petri net that allows
for the same set of traces as the labeled transition system in Figure 2.10.

There is, however, a drawback to use transition systems for modeling processes. Con-
currency cannot be expressed succinctly in transition systems. In all transition systems,
all possible interleaving between parallel transitions activities must be encoded explicitly.
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Figure 2.11: A Petri net that allows for the same set of traces as the labeled transition system in Figure 2.10.

Therefore, despite being expressive, transition systems are often not suitable to model
business processes.

A reset/inhibitor net whose initial marking is reachable from its initial marking can
be translated into a transition system that allows for the same set of traces. Such a
translation can be formalized as follows.

Definition 2.5.2 (Labeled transition system of a reset/inhibitor net)
Let A C A be a set of activities. Let N = (P, T, F,a, m;, my, r,1) be a reset/inhibitor net
over A where my € RS(N,m;). The labeled transition system of N, denoted T'S(N) =
(S, TR, LB, s;,sf) is a tuple where

e S = RS(N,m,;), ie., the set of all reachable states from the initial marking m;,

e LB =T, i.e., the set of labels is the set of transitions of NV,

TR = {(m,t,m') € SxT xS |m,m’ € S/\tGT/\m@m’}is the set of all state
transitions,

s; = m; is the initial state, and
e sy = my is the final state.

J

Figure 2.12 shows the transition system of the net in Figure 2.4. The set of labels
in the transition system is the set of Petri net transitions. The transition system is iso-
morphic to the transition system in Figure 2.10. Furthermore, if we replace all Petri net
transitions in Figure 2.12 with their activity label, we obtain the same transition system
as the one shown in Figure 2.10. Note that the transition system of a Petri net is deter-
ministic, because firing a transition from a marking in the net always lead to a unique
marking. Furthermore, for all transition systems (S, LB, TR, s;, s), (S, LB, TR) can also
be viewed as a directed graph.

In literature, there are various approaches to convert a labeled transition system to
a Petri net. Given a transition system, the work in [40, 56, 61] shows that the so-called
theory of regions can be used to construct a Petri net whose labeled transition system is
bisimilar to the given one. “Regions” are defined as sets of states in the transition system
and then translated to places in the net. The construction of a Petri net from a given
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Figure 2.12: The labeled transition system of the net shown in Figure 2.11. The transition system is isomorphic
to the transition system in Figure 2.10.

transition system is often called synthesis. This shows that a Petri net can be converted
to a labeled transition system and vice versa.

2.5.5 The Process Modeling Formalism Used in This Thesis

In this thesis, we take a pragmatic approach to select the most suitable process mod-
eling formalism based on our objective. We choose Petri nets and their extensions
(reset/inhibitor nets) as our process modeling formalism whenever we need a formal
and/or expressive model. Petri nets have unambiguous semantics, a standard graphical
notation, and they are supported by abundance of analysis techniques. Almost all exe-
cutable process models can be converted to Petri nets with similar behavior (especially
when allowing for reset and inhibitor arcs). Furthermore, many other process modeling
languages can be translated to transition systems and transition systems can be easily
converted into Petri nets (and vice versa). Hence, Petri nets are good representatives for
existing process modeling languages.
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Chapter 3

Relating Event Logs to Models

( PART II. Alignments )

Observed Behavior
(Event Log) Lunluuligionl

Modeled Behavior
(Process Model)

3.1 Introduction

Business processes have been studied since the end of 18th century when Adam Smith
(1723-1790) showed the advantages of the division of labor. However, only around
the 1950-ties Information Technology (IT) started to influence business processes and
their management. IT may provide support for business processes beyond traditional ap-
proaches that rely on human resources. Over time, business processes have become more
complex and may even span over multiple organizations. Process models assist organi-
zations to manage such complexity by offering insights into process executions. Further-
more, common agreement of required interactions between organizations is crucial in
conducting cross-organizational processes. Process models offer easily understandable
yet reasonably precise documentation of business process and thus help to reduce the
risk of misinterpretation. As a consequence, many organizations nowadays have process
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models of their business processes.

Process models may serve many different purposes. In BPM, there are three main
purposes of process models [83]. First of all, models may aim at providing insights.
Models that serve this purpose are made to represent reality, i.e., they are descriptive in
nature. Second, process models may be used to analyze the system and/or its processes.
The type of analysis that can be performed depends on the models used. Typically, for-
mal, unambiguous models offer more analysis capability than non-informal ones [167].
Third, models are used to enact processes. These models are prescriptive in nature, i.e.,
they describe the way processes should be executed. For example, reference models in
information systems such as SAP R/3 [89] and ARIS [153] act as guidelines on how pro-
cesses should be performed. However, they do not restrict executions and people may
deviate from these guidelines.

Regardless of being descriptive or prescriptive, process models have to be aligned with
reality. If a process model allows for behavior that never occurred in reality, insights
and analysis results obtained from the model may be misleading. As mentioned in Sec-
tion 1.2, the abundance of process-related data nowadays allows us to align observed
behavior in reality with modeled behavior in process models. In systems where process
executions are strictly enforced by process models, there is no need to create such align-
ments. However, some degree of flexibility to deviate from prescribed process models
is often desired. Furthermore, models may exist independently from event logs, i.e.,
models may exist only on paper and events may have no reference to process models.

In literature, there exists many process modeling formalisms as shown in Chapter 2.
We take a pragmatic approach to select the most suitable process modeling formalism
based on our objective. We choose Petri net and its extensions (reset/inhibitor nets) as
our process modeling formalism whenever we need a formal and/or expressive model.
Petri nets have unambiguous semantics, a standard graphical notation, and they are
supported by abundance of analysis techniques. Moreover, almost all executable process
models can be converted to Petri nets with similar behavior (especially when allowing
for reset and inhibitor arcs).

Given an event log and a Petri net, a fundamental challenge is to correlate occurrences
of events in the log to transitions in the net, i.e., replay the events on the net. Replay
approaches must be robust to handle peculiarities of event logs and Petri nets. They have
to be scalable, i.e., they are able to handle sufficiently large and complex event logs and
Petri nets. Furthermore, replay results must also provide additional insights that can be
analyzed further.

In this section, we list some important challenges that must be tackled by replay
approaches. To illustrate the challenges, we use the Petri net shown in Figure 3.1. The
net is an easy sound workflow net, but it is not a sound net (see Definition 2.4.7 and
Definition 2.4.4). The net shows a claim handling process in an insurance company. The
process starts when a claimant files a claim (claim). A decision is made by a manager
whether the claim will be audited (audit) or not. If the manager decides to audit the
claim, some additional information may be requested from the claimant (request data).
A decision whether the claim is accepted (accept) or rejected (reject) is based on this
data. If the claim is accepted, the company pays some money to the claimant via a
dedicated account (pay). Then, a notification may be sent to the claimant about the
acceptance through post (send post), mail (send mail), or not at all, depends on the policy
that applies to the claimant. The process ends when an administration officer archives
the whole claim handling (archive).
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Figure 3.1: A potentially challenging Petri net for traditional replay approaches.

Using the net as a running example, we illustrate the following challenges of replay
approaches mentioned in literature [9,48,145,175]:

1. Duplicate transitions. A Petri net may have multiple transitions with the same
label. In Figure 3.1, both ¢ and ¢; have label pay. Suppose that both t5 and ¢,
are both enabled, e.g., the marking of the net is [ps, p7], and an event with activity
attribute pay occurred. A good replay approach should be able to tell to which
transition the event belongs to.

2. Invisible transitions. In the presence of transitions without label, i.e., invisible
transitions, a replay approach should not mistakenly consider a perfectly fitting ex-
ecution as deviating and vice versa. For example, suppose that a firing sequence
(t1,t3,t4,ts,t6, t11, 10, t14, t15) is performed for a case. Since some transitions in
the sequence are invisible, the trace of the case is (claim, accept, pay, audit, send
post, archive). A replay approach should be able to consider that this trace is per-
fectly fitting the net, i.e., it can be fully reproduced by the net without any remain-
ing tokens. In this example, the approach should be able to identify the occurrence
of invisible transition ¢g such that occurrence of send post in the trace is not ac-
counted as deviation. As another example, take a non-fitting trace (claim, accept,
send post, pay, archive). A replay approach should be able to identify that this trace
is a non-fitting trace as according to the net, activity send post must not occur be-
fore activity pay.

3. Complex patterns. A replay approach should be able to deal with complex control-
flow patterns that may exist in process models. For example, invisible transitions
to and t3 in Figure 3.1 express a choice between only doing acceptance/rejection
for a claim or also execute auditing step. Suppose that a trace is a sequence (claim,
reject, archive), i.e., the trace only follows the top branch control-flow of the model.
The replay approach should not mistakenly consider the sequence as deviating
because there is no activity audit in the trace.

4. Loops. Behavior that a Petri net exhibit can be infinite if the net has loops. For
example, the net in Figure 3.1 allows for infinitely many iterations of audit followed
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by request data. Given a trace of a case and a Petri net that allows for loops, a replay
approach should still be able to map occurrences of events in the trace to transitions
in the net.

5. Sensitivity to deviations. In cases where observed behavior is not allowed accord-
ing to a Petri net or vice versa, a replay approach must not be sensitive to all types
of deviations, e.g., deviations that occur early should not influence the mapping
of events that occur later in the process execution. For example, suppose that a
trace of a case of the net in Figure 3.1 is {(claim, claim, audit, accept, pay, send post,
archive). It is easy to see that two consecutive occurrences of activity claim are
not allowed according to the net. A replay approach should not stop after the first
deviation, i.e., the alignment should map other events after the deviations, such as
audit, accept, pay, send post, and archive.

6. Support models with strict semantics. Replay result is used as basis for various
analysis based on observed and modeled behavior. Therefore, it is important that
the replay result is concise and unambiguous. This is clearly possible in case of
process modeling languages with strict semantics such as Petri nets. Process mod-
eling languages with less strict semantics, e.g., Fuzzy models [75], SPDs [193],
and process maps [99], allow for behavior not represented by their nodes and arcs,
thus they complicate further analysis.

7. Diagnostics. A replay approach should be able to provide information beyond
whether traces can be reproduced by process models. For example, if the behavior
observed in an event log is not allowed according to a Petri net, the replay result
should provide diagnostic information explaining why the process deviates.

8. Scalable. With the availability of big data, it is increasingly important that a replay
approach should be able to deal with large logs and models. Thus, computation
complexity and memory requirements also need to be taken into account when
evaluating replay approaches.

3.2 Related Work

In this section, we evaluate several replay approaches using the list of replay challenges
given in Section 3.1. We provide an overview of each approach and list its strengths and
weaknesses.

3.2.1 Token-based Replay

The token-based replay approach proposed by Rozinat et al. [151] measures the confor-
mance between an event log and a Petri net. Similar approaches are also used for the
evaluation of process discovery algorithms [47,204]. Given an event log and a Petri net,
token based-replay takes each trace in the log in isolation and fire transitions sequentially
according to the ordering of events in the trace. If a transition should be fired according
to an event in a trace but it is not enabled, enabled invisible transitions are fired to en-
able the transition. If there are no such invisible transitions, missing tokens are added
to enable the transition. All added tokens are recorded. Together with the number of
remaining tokens left after all traces are replayed, the amount of added tokens is used to
measure conformance between the log and the net.

If an event can be associated to more than one enabled transition, i.e., there are
multiple transitions enabled with the same label as the activity attribute of the event,
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Figure 3.2: Screenshot of replaying trace (claim, accept, pay, audit, send post, archive) on the net in Fig-
ure 3.1 using the token-based replay in ProM 5.2.

state space analysis using heuristics is performed to find out which of the candidate
transitions enables the transition of the direct successor of the event in the trace. This
process is repeated until there is one candidate left. If there are multiple candidates and
no more events are left in the trace, transitions are chosen randomly. The same approach
is also applied if a transition that should be fired according to an event is not enabled
and multiple invisible transitions are enabled instead.

The approach was implemented and publicly available in the ProM 5.2 framework!.
Due to the heuristic nature of the approach, its computation complexity is relatively low
but sometimes still time consuming in cases where state space analysis needs to be per-
formed. Furthermore, it also provides diagnostics. The number of missing tokens and
remaining tokens can be projected onto the original Petri nets to provide diagnostics on
where deviations are and what are the cause of deviations. Furthermore, the imple-
mented approach in ProM 5.2 also provides options to show deviations per case. The
approach has shown to be useful in many case studies, e.g., [46,151,170,179, 180].

However, heuristics in the approach may lead to misleading results when dealing with
Petri nets with invisible and duplicate transitions. Figure 3.2 shows the result of replay-
ing trace (claim, accept, pay, audit, send post, archive) on the net in Figure 3.1 using the
implemented token-based replay in ProM 5.2. Sequence (1, t3,t4, ts, s, t11, t10, t14, t15)
is one possible firing sequence of the net that generates the trace. Thus, there is no devia-
tion on the trace. However, as shown in the figure, the occurrence of audit and send post
are considered as deviations. The approach fails to identify the occurrence of invisible
transitions t3, tg, and t14 correctly. In [196], vanden Broucke et al. list several strategies
to replay the positive events of a trace on a Petri net, similar to [151]. However, none of
them guarantees that the “optimal” results, i.e., the replay that minimize the number of
deviations without introducing new behavior, are always obtained.

The addition of missing tokens may allow extra behavior that cannot be performed in
the original Petri net. Thus, the measurement of deviations can be misleading. Moreover,
in cases where deviations occur frequently, places may be flooded with tokens. In such
cases, diagnosis results are unreliable and it is impossible to find the root cause of de-
viations. Moreover, the fitness estimates are too positive since many transitions remain
enabled because of unused tokens.

Isee http://processmining.org
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3.2.2 Replay with Artificial Negative Events

Given an event log, the approach proposed in [49, 68] appends the log with artificial
negative events to discover a Petri net from positive and negative events. To evaluate
the quality of discovered net, the approach also proposes a way to replay events in the
log similar to the token-based replay of Section 3.2.1. Events of each trace in the log are
parsed independently from events of other traces. When a transition that should be fired
according to an event in a trace is not enabled, it is forced to fire. In case of multiple
enabled duplicate transitions, the transition that enables the next positive event in the
trace is fired. If both transitions (do not) enable the next positive event, a random choice
is made. Invisible transitions are handled in a similar way. If there are multiple enabled
invisible transitions, the one that enables the transition(s) of the next positive event
is chosen. If none of them enables the transition(s) or both enable the transition(s),
a random choice is made. Negative events are used to quantify the specificity of the
discovered net with respect to the log. If the net allows for the execution of a negative
event, the specificity of the net is decreased. However, negative events do not influence
the way the positive events are mapped to transitions.

The proposed replay approach in [68] uses heuristics to enable currently parsed event
in the trace without necessarily considering successors of the event, i.e., the analysis is
performed locally. As a consequence, long term dependencies between transitions may
not be identified correctly from the trace. This may provide misleading result when
dealing with both duplicate and invisible transitions, the same as the token-based replay.
This implies that the approach also has problems to deal with complex control-flows
that require invisible transitions in the Petri net. Different than the token-based replay,
the replay proposed in [68] only considers one-level (i.e., a look ahead of one step) to
select a duplicate and invisible transition for an occurrence of an event. Therefore, the
computation complexity of this approach is linear in the length of traces and hence, less
complex than the token-based replay.

3.2.3 Hidden Markov Model Conformance Checking

A Markov model is a stochastic model of a process that consists of a set of states and
a probability distribution describing the likelihood to move from one state to another.
A Markov model has a unique property that for each state, the conditional probability
distribution of its future states depends only upon the current state. Each state of a
Markov model corresponds to an observable event. Hidden Markov Models (HMMs)
[136] are an extension of Markov models where a state may emit more than one type
of observed events. Each state has a probability to emit an event of a particular type.
Thus, given a HMM and a sequence of emitted events, there can be more than one path
in the HMM that produces the same sequence of events. HMMs are used for various type
of analysis, such as speech, pattern, and gesture recognition, part-of-speech tagging, and
bioinformatics.

Given a sequence of emitted events and a HMM, one of the fundamental problems
whose solution exists in literatures is finding a sequence of states in the HMM that has
the highest probability to generate the sequence. Rozinat et al. [152] transform the
problem of measuring the quality of a discovered process model (in Petri net formalism)
from an event log into the problem of finding such sequences in a HMM. First, the Petri
net is converted to a HMM, and the log is treated as a set of sequences of emitted events.
Using existing technique such as the Viterbi algorithm [64], the sequence of HMM states
that has the highest probability to generate the sequences can be identified. Using such
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sequences, occurrences of events in the log can be easily related to transitions in the
original Petri net.

The Viterbi algorithm identifies a sequence of states with the highest probability to
generate a given sequence of emitted events, regardless whether there are more than
one state that emit the same events. Therefore, this approach is robust to duplicate tran-
sitions. However, the approach has several limitations. First, the proposed conversion
method is limited to a subset of Petri nets that does not allow any parallelism (i.e., state
machines). Furthermore, all states in the constructed HMM must be connected to address
all possible deviations between traces and Petri nets. Since the computation complexity
of the approach is exponential in the number of states and the number of transitions
between them, the approach may not be able to handle sufficiently large nets and event
logs. All states in HMM emit events, so the approach does not support invisible transi-
tions.

3.2.4 Posteriori Data Purpose Control Analysis

The comparison between event logs and process models is also useful to check possible
data misuse in security domain. Petkovic et al. [114] proposed a framework to check
compliance of executed process in event logs to data protection policies described in
form of BPMN. The approach uses the COWS formalism [94], a foundational language
for service-oriented computing that combines process-calculi and WS-BPEL.

Given a BPMN model and a trace (also called audit trail in [114]), the approach first
converts the model into a set of COWS specifications. A set of COWS specifications can
be represented as a labeled transition system where each state contains a collection of
tasks that can be executed from the state, i.e., active tasks, and transition labels are the
values of attributes observable from events in the trace. Events in the trace are paired
with transitions in the transition system. If there is more than one transition that can
be paired with an event, both states are used as possible current states. If there is no
transition that corresponds to an event, a deviation is identified and the rest of the events
are ignored.

All transitions in the labeled transition systems must be observable from events.
Therefore, to deal with invisible tasks, separate states are created for each possibility
of performing invisible tasks (or sequences of invisible tasks) from a current state. For
example, if two invisible tasks ¢; and t, are enabled, two states are created where the
first state contains active tasks if ¢; is performed, and the other contains active tasks if
to is performed. Note that a BPMN model may allow infinite sequences of invisible tasks
(loop of invisible tasks). Therefore, this approach excludes BPMN models with loops of
only invisible tasks. The approach keeps track of all possible current states until there
are no more events in the trace that can be mapped or deviations occur. When an event
in the trace deviates from the model, the rest of the events (i.e., successors of the event)
in the trace are ignored.

By keeping all possible current states, this approach tries all possible mappings before
concluding that a deviation has occurred. Thus, it is robust to invisible/duplicate tasks
and complex control-flow patterns. However, this also means that it requires extra mem-
ory to store all possible current states. Furthermore, the approach ignores all events that
occur after the first deviation. Therefore, it is sensitive to deviations and only provides
limited information to be used for further diagnosis.
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3.2.5 Measuring Privacy Compliance

Another example from the security domain is the approach by Banescu et al. [16]. They
propose an approach to measure privacy compliance with respect to process specifica-
tions. Specification of a process is given as a process model. Suppose that the model is
described in Petri net formalism, each transition in the net is labeled with an activity. For
all transitions in the net, data items that should be accessed and roles of resources that
may perform the transitions are explicitly specified. Such a specification is compared
against observed behavior in form of a sequence of events, i.e., trace, where all events
have the following attributes: activity, resource, and accessed data items.

To quantify compliance between a trace and a Petri net, the approach picks a complete
running sequence allowed according to the net that is the most similar to the trace.
Similarity between a running sequence and a trace is computed in the same way as
computing the Levenshtein distance [98] between them. However, instead of using the
distance of 1 and 0 as in computation of Levenshtein distance, the approach uses a cost
function that maps pairs of event in the trace and transition in the model to non-negative
values. For each pair of event and transition, the value returned by the cost function
depends on (1) the reputation of the resource that performs the event, (2) the semantic
distance between the label of the transition and the activity attribute of the event, (3)
the semantic distance between the role of the resource performing the event and the role
allowed to perform the transition, and (4) data authorization.

The approach can easily handle Petri nets with either duplicate or invisible transitions.
However, given a trace and a Petri net, one of the challenges of this approach is to
identify which complete firing sequence of the net is most similar to the observed trace.
In [16], all complete firing sequences of the net are computed in advance and the “real
distance” between the trace and the net is the minimum distance that one can obtain
from all possible complete firing sequences. If the net has infinitely many complete
firing sequences, e.g., if loop exists, this approach cannot be used (without leaving out
potential solutions).

3.2.6 Understanding the Behavior of Agents in Business Processes

In [63], Ferreira et al. propose a technique to map events at a low level of granularity to
a process model whose tasks (i.e., transitions in Petri net terms) are at a higher level of
granularity. Figure 3.3 shows an example of a hierarchical process models. The model
at the higher level of granularity is called the macro-level model, while the models at the
lower level of granularity are called micro models. Suppose that a macro-level model is
given and multiple agents perform the tasks in the model. The agents leave a trace of
executions in low level of granularity (i.e., a micro-sequence). The proposed technique
takes the micro-sequence and the model to construct a set of micro-models that best
describe the behavior of agents. Note that in the work of [63], all models are given in
the form of Markov chains.

Given a macro-level model and a micro-sequence, [63] uses a procedure based on
expectation-maximization to construct a set of micro-models. First, a random sequence
of the macro-level model is chosen to represent the micro-sequence, and a sequence of
tasks in the macro-level model is generated with the same length as the micro-sequence.
This sequence is called a macro-sequence. Then, the macro-sequence is used to estimate
a set of micro-models. The quality of the set is measured based on its probability to
generate the original micro-sequence. The set of micro-models is again used to obtain



43

Macro Model
O{AHBHCPO
T S~

: l\_/Iic_ro—Mc;ie_ll -; : Ir Micro Model 3 |

| [

O{FHGHHPO| | [O{HMH{F}HG O
| Micro Model 2~~~ ~ T T 1

Figure 3.3: A hierarchical process model in BPMN notation.

a better estimate of the macro-sequence. The process continues iteratively until both
macro-sequence and set of micro-models converge.

Markov chains are one of process modeling formalisms with a rather strict semantics,
thus the result of this approach also provide a useful insights for further analysis. How-
ever, this approach assumes that micro-sequences perfectly fit into macro-level models.
Hence, the approach is not able to deal with noise and does not provide any diagnostics
in case of deviations. The iterative nature of the approach also implies that it is computa-
tionally expensive, especially when dealing with models that have complex flow-patterns,
loops, and duplicate/invisible tasks. This may limit the applicability of the approach to
deal with complex logs and models.

3.2.7 Comparing Event Streams with Model Streams

Cook et al. [39] propose an approach to compare event streams, i.e., traces, with process
models to quantitatively measure their similarity. The similarity between a trace and a
process model is quantified based on the number of insertions and deletions one needs
to apply such that the trace can be transformed into a stream of events allowed by the
model, i.e., model stream.

Given a trace and a process model, the approach pairs occurrences of events in the
trace to tasks in the process model (i.e., transitions in Petri net terms) with the same
activity label using state-space search techniques. If such mapping cannot be performed,
either an extra event is inserted into the trace or the currently processed event is removed
from the trace. A state in a state-space may represent one of the following operations:
matching an event with a task, deleting an event in the trace, or inserting extra events.
Such a state-space is build incrementally from the beginning of the trace and the initial
state of the model until both the end of the trace and the termination of the model is
reached. Since the search process only moves forward, the whole state space is described
in terms of a tree.

To avoid the well-known state-space explosion problem, the approach uses best-first
strategy to explore state-space efficiently. The best-first search uses a priority queue of
states to be evaluated, and always evaluates the lowest-cost state on the priority queue.
Furthermore, it may also use a heuristic estimation function that estimates the distance
from all states to goal states to further “guide” the state-space exploration without sacri-
ficing results, i.e., if the estimation always underestimates the true cost, best-first search
is guaranteed to find a solution with minimum cost. The approach is extended in [38] to
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also consider time aspects.

The results of comparison between two streams proposed in [39] tend to be robust
to both duplicate and invisible tasks, loops, and complex control-flow patterns that may
exist in process models. Moreover, deviations between traces and process models are
explicitly shown by the insertions and deletions that need to be performed. However,
this robustness comes with price of computation complexity. To increase its applicability
in practice, an underestimation function and several pruning approaches are proposed
in [39]. However, none of them guarantee that the same comparison result as the one
obtained without such shortcuts, i.e., the one with minimum number of deviation, can
be obtained. Nevertheless, this approach is most related to the work performed in this
thesis.

3.2.8 Checking Executability of Scenario in Specification

Specifications of distributed systems are often provided in form of scenarios. Juhds et
al. [88] propose an algorithm with polynomial complexity to check whether scenarios in
form of Labeled Partial Orders (LPOs) can or cannot be executed in a Petri net. An LPO
is a directed graph whose nodes are labeled with transitions and arcs between the nodes
represent ordering between nodes. An LPO is not necessarily a connected graph. There-
fore, LPOs are more expressive than merely sequences of transitions (i.e., occurrence
sequence) or the so-called process nets [54] to represent scenarios, as they abstract im-
plementation details and can express concurrency without necessarily determine precise
causality between events.

Given a Petri net and an LPO, the proposed approach constructs a process net that
respects the concurrency relations formulated by the LPO. Therefore, it is robust to du-
plicate transitions. However, the approach does not consider Petri nets with invisible
transitions. Moreover, since the goal of the approach is to give a yes or no answer to
whether a scenario can be executed in a Petri net, it does not provide any further diag-
nostics when the net can only execute parts of the scenario.

3.2.9 Fuzzy Model Replay

Replay techniques are also needed to make an animation on process control-flow. Given
a trace and a fuzzy model [75], Giinther [74] proposes a heuristic approach to map the
occurrence of events in the trace to nodes of fuzzy models in order to animate the way
process were performed.

Fuzzy models [75] are descriptive models, i.e., their main purpose is for communi-
cating process knowledge. Fuzzy models have relaxed semantics that allow ambiguous
interpretation of the way process is performed. A fuzzy model may contain two types of
nodes: primitive nodes and cluster nodes. A primitive node is labeled with an activity,
while a cluster node aggregates some activities. An activity can only be involved in at
most one node. Thus, fuzzy models do not allow for multiple nodes with the same label.
Moreover, all nodes in a fuzzy model are associated to some activities. Arcs in a fuzzy
model represent relaxed precedence relations between activities, e.g., if there is an arc
between primitive nodes ¢ and b in a fuzzy model, the occurrence of a may be followed
by b.

An activity can only be mapped to at most one node in a fuzzy model. Therefore,
mapping events in a trace to nodes of a fuzzy model is trivial. Moreover, fuzzy models
also allow occurrences of activities in ways that are not expressed by their arcs. The
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semantics of a node, e.g., an AND-split or XOR-split, is derived heuristically by comparing
the set of successors of currently “active” nodes and compare it against the successor of
events within a look ahead window whose size is predetermined. For example, suppose
that the size of look ahead window is 4, if an event e in a trace is mapped to a primitive
node n of a fuzzy model and events of all successors of are included in the next four
positions in the trace, the semantics of n is AND-split.

Such a straightforward method to map events to process models implies that the ap-
proach to replay traces on fuzzy model is highly scalable. However, the relaxed semantics
of fuzzy models do not help to identify possible causes of deviations. Similar problem
also occur in general for replay approaches with relaxed semantics, such as replaying
event logs on SPDs [2] and replaying event logs on process maps [19].

3.2.10 Log Replay on Declarative Models

All techniques mentioned in Section 3.2.1 to Section 3.2.9 require an imperative process
model, i.e., a model that describes how the process should “behave”. An imperative model
of a process explicitly shows all possible execution of the process. Consequently, such
a model typically lacks flexibility and may be over-specific [142]. This motivates the
emergence of declarative process modeling languages. Instead of expressing the allowed
behavior of a process in a procedural manner, a declarative model expresses only the
disallowed behavior. Examples of such modelling languages are Declare [124,181], DCR
Graphs [82], and SCIFF [111]. For the sake of completeness, we also investigate replay
approaches on declarative models.

Given a trace and a declarative process model in Declare formalism, de Leoni et
al. [43] propose an approach to “replay” the log on the model. The replay result does
not only show deviations between the trace and the model, but also diagnostics on the
deviations, i.e., activities that must be executed according to the model but do not occur
in the trace and vice versa. The approach uses the A* algorithm to find the minimum set
of deviations in the trace.

The use of purely declarative approaches, however, is still limited in practice [129,
201]. Declarative models are regarded as well suited for highly volatile environments,
but the problems in understanding and maintaining them limit their use [77]. Based on
empirical experiments that involve BPM practitioners, Reijers et al. [142] show that a
purely declarative approach is less attractive than a hybrid approach that combines the
imperative and declarative aspects. Also practitioners acknowledge that some processes
can be modeled most naturally using the imperative approach, while others would fit
better with the declarative approach [142].

3.3 Comparison of Existing Approaches

Table 3.1 shows the summary of a high-level comparison of existing approaches to relate
observed and modeled behavior. Given the focus of this thesis, we only consider the
approaches that work on imperative process models. As shown in the table, there is
no approach that fully supports all criteria described in Section 3.1. Many approaches
support duplicate and invisible transitions, but only half of them fully support both types
of transitions. All approaches that fully support duplicate transitions are based on state-
space analysis. They try all possible solutions before deciding which one is the best
to use. Some approaches that partially support for duplicate transitions, e.g., [151]
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Table 3.1: Summary of comparison between approaches to relate observed to modeled behavior
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and [68], resort to heuristics that may yield misleading results. Similarly, only state-
space based approaches can deal with invisible transitions. Here, we see the importance
of global analysis to deal with duplicate and invisible transitions. Notice that although
the approach to compare event streams with model streams of Cook et al. [39] is based
on state-space analysis, it does not fully support either duplicate or invisible transitions.
To deal with high computational complexity, a heuristics estimation function that does
not guarantee that the solution with the minimum deviation is used in [39]. Without
such function, the approach would fully support both types of transitions but is not
scalable.

Other than the posteriori data purpose control analysis approach [114], there is no
approach that fully supports complex control-flow patterns. Approaches that do not guar-
antee results with minimum deviations (i.e., [63, 68, 74, 151]) may mistakenly choose
wrong semantics that yield misleading result. Both the HMM-based approach [152] and
checking executability of scenarios [100] explicitly put models with invisible transitions
out-of-scope, hence limit their support to models with complex control-flow patterns. In-
terestingly, some state-space based analysis techniques (i.e., [16,39]) also do not fully
support complex patterns because they sacrifice guarantee for results with minimum de-
viations to reduce computation complexity. Only the approach in [114] ignores such
computation complexity problems resulting in a poor scalability.

From all approaches, only the privacy compliance measurement in [16] does not
support loops, while the heuristics of [74] may mistakenly not identify any loop if a
small look-ahead value is used. Many approaches, i.e. [63, 100, 114, 152] are created
to simply provide binary answers to whether observed behavior is allowed according to
modeled process. Thus, only some of them are insensitive to deviations. Table 3.1 also
shows that all approaches that propose some way to deal with deviations also provide
diagnostics. Except the fuzzy model replay [74], all approaches work on process models
with strict semantics.

The top three approaches with the least number of not supported features are the
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Figure 3.4: An online transaction for an electronic bookstore in Petri net.

token-based replay [151], the replay with artificial negative events [68], and the com-
parison between event streams and model streams [39]. The heuristics proposed in [68]
are not as sophisticated as the ones proposed by [151]. Both of them have inherent prob-
lems in dealing with duplicate/invisible transitions, dealing with complex control-flow
patterns, and providing useful diagnostics if deviations occur almost in all states of the
modeled processes. The comparison between event and model streams [39] does not al-
ways guarantee solutions with minimal number of deviations because the proposed use
heuristics to deal with its computation complexity in practice.

In this thesis, we propose a robust way to relate observed to modeled behavior using
the notion of alignments. We formalize alignments in Section 3.4.

3.4 Defining Alignments

Given a process model as a reference, the execution of an activity that does not deviate
from the model implies that the activity is allowed by the model in its current state. In
the other way around, given a non-deviating execution of the process (e.g., event log), all
executed activities can be mimicked by series of actions allowed according to the model.
Based on this idea, we define an alignment between a recorded process execution and
a process model as a pairwise comparison between executed activities in the execution
and the activities allowed by the model. Typically, an instance of a process (i.e., case)
does not directly influence other instances of the same process. Take for example an
insurance claim handling process in an insurance company. The way a claim is handled
does not influence the way other claims are handled. They may be competing for the
same resources, but this does not directly influence the control-flow. Thus, an alignment
is defined per process instance.

We use the Petri net in Figure 3.4 as our running example to explain the concept of
alignments. Figure 3.4 shows a Petri net of an online transaction process for an electronic
bookstore. A customer can add as many items as he wants to his cart (add items) before
finalizing an order (finalize). After the order is finalized, the customer can choose either
to pay (pay) or to edit the order (edit order). All payments are performed online, thus
there is no guarantee that a payment (pay) is always successful. Success/failure of pay-
ments are modeled with two invisible transitions ¢ and ¢; respectively. In case payment
fails, the customer can retry another payment or edit the previous order (edit order) and
cancel his order (cancel). A successful payment is followed by product delivery (deliver).
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| add items | add items | cancel
add items | add items | cancel
tq to tg

71 =

Figure 3.5: An alignment between o1 = (add items, add items, cancel) and the model in Figure 3.4.

| add items | cancel | finalize | > | finalize | pay | > | deliver |
Yo =| add items finalize | edit order | finalize | pay deliver
t > t3 ty ts ts | te | ts

Figure 3.6: An alignment between o3 = (add items, cancel, finalize, finalize, pay, deliver) and the model in
Figure 3.4.

An instance of a process is recorded as a trace in an event log of the process. Given
a trace and a Petri net, if the trace perfectly fits the net each activity in the trace can
be mimicked by firing a transition in the net. Furthermore, at the end of the trace
the final state should have been reached. Take for example a perfectly fitting trace o =
(add items, add items, cancel). Figure 3.5 shows an alignment +; between o, and the net
in Figure 3.4. The top row of the alignment represents the trace oy, while the bottom row
represents a complete firing sequence of the Petri net shown in Figure 3.4. All activities
in oy are paired with transitions with the same label. We write transition identifier on
the bottom row to distinguish transitions with the same label, e.g., t; and ¢, are both
labeled add items.

Consider a non-fitting trace for the same Petri net oo = (add items, cancel, finalize,
finalize, pay, deliver). 1In this case, not all activities in the trace can be mimicked by
firing transitions in the net. Figure 3.6 shows an alignment ~, between o5 and the net
in Figure 3.4. Deviations occur at positions where either a top or bottom row contains
the “no move” symbol: >>. For example, the second column in the alignment shows
that activity cancel occurs in o5 while the net does not allow cancel to occur. The fourth
column shows the other way around: transition ¢, (edit order) should occur according
to the net but it does not occur in the trace. Notice that the occurrence of invisible
transition ¢ is also marked as a deviation. Since the execution of invisible transitions
is not recorded in event log, they are always shown as a deviation in alignments (event
though they are harmless).

Both v, and 9 in Figure 3.5 and Figure 3.6 are examples of alignments. Alignments
are constructed by pairing activities in traces with transition allowed by process models.
Such sequences of pairs are called movement sequences. For convenience, in the remain-
der of this thesis, for any set S, S = S U {>>} denotes the union of S with {>>} where
>¢ S. We formalize movement sequences as follows:

Definition 3.4.1 ((Legal) Movement Sequence)

Let A C A be a set of activities. Let o € A* be a trace over A and let N = (P, T, F, o, m;,
my) be a Petri net over A. A movement sequence v € (A~ x T>)* between ¢ and N is a
sequence of pairs such that

e m(7),4 < o, Le. its sequence of movements in the trace (ignoring ) is a prefix of
trace o,

e There exists a complete firing sequence m; % m 7,0 € T" such that m2(v)r < o,
i.e., its sequence of movements in the model (ignoring >>) is a prefix of a complete
firing sequence,
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For all tuples (a,t) € v in a movement sequence, we say that (a,t) is one of the
following movements:
move on log if a € A and t =>,
move on model if a => and t € T,
synchronous move ifa € Aandt € T,
illegal moves otherwise.

All moves on log, moves on model, and synchronous moves are considered as legal moves.
A movement sequence is a legal movement sequence if it contains only legal moves.
J

The definition of legal movement sequence in Definition 3.4.1 allows for a syn-
chronous move (a,t) where the label of transition ¢ is not the same as a. This way, we
address situations where an activity in a legal movement needs to be paired with a tran-
sition with different label. For example, suppose that the payment activity (pay) shown
in Figure 3.4 can be replaced with a transfer money activity (e.g., transfer). Movement
(transfer,t5) is a legal movement (synchronous move). As another example, suppose
that resource names are also a part of activity names in Figure 3.4 and the delivery ac-
tivity (deliver) can only be approved by a logistic officer, i.e., the label of transition tg
is (deliver,logistic officer). In an emergency situation, a manager of the company may
approve the activity instead of the officer, i.e., activity (deliver,manager) is performed.
Hence, Definition 3.4.1 allows for a synchronous move ((deliver,manager), ts) having a
predefined cost.

We use the definition of movement sequences to define an alignment as follows:

Definition 3.4.2 (Alignment)
Let A C A be a set of activities. Let 0 € A* be a trace over A and let N = (P, T, F, o, m;,
my) be a Petri net over A. An alignment v € (A> x T>)* between o and N is a legal
movement sequence such that:

e m(7),4 = 0, i.e. its sequence of movements in the trace (ignoring >>) yields the
trace, and

772(7)¢T
e m; — my, i.e. its sequence of movements in the model (ignoring >>) yields a

complete firing sequence of V.

I, n is the set of all alignments between a trace ¢ and a Petri net N. 2

The middle row of +; and v, in Figure 3.5 and Figure 3.6 can be derived using labeling
functions. Therefore, the definition of both movement sequences and alignments in
Definition 3.4.1 and Definition 3.4.2 does not need to mention transition labels explicitly.
Note that alignments require termination of both trace and process model. Thus, no
alignment can be constructed for Petri nets whose final marking is not reachable from
the initial marking.

For simplicity, in this thesis we only consider easy sound Petri nets with one final
marking (see Definition 2.4.4). In practice, a Petri net may have no final marking, e.g., a
net that expresses the behavior of a process that “loops” infinitely. In contrast, a Petri net
may have multiple final markings reachable from its initial marking. We can easily use
the definition of alignments in Definition 3.4.2 to reveal deviations on both types of nets.
The idea is given a trace and a Petri net with multiple final markings, we construct a net
that (1) has exactly one final marking, and (2) allows for the same set of traces as the
original net. For example, we add an extra place p to the original net, and then for each
final marking of the original net we add an invisible transition that takes all tokens in the
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| add items | cancel | finalize | finalize | pay | deliver |
add items | cancel
3] 2 > > > >

Figure 3.7: Another possible alignment between the same trace and net used to construct the alignment in
Figure 3.6, but with more deviating columns.

vs =

marking and put a token in the extra place p. It is trivial to see that the constructed net is
an easy sound Petri net with one final marking [p]. An alignment between the trace and
the constructed net yields the deviations between the trace and the original net. A net
that expresses an infinite loop behavior can be viewed as a net whose all reachable states
are final markings. Thus, given a trace and such a net, we use the same approach as the
one used to align traces with Petri nets with multiple final markings. Note that in this
thesis, we do not consider process models whose termination states are not reachable, as
it indicates that they possibly have modeling issues.

Given a trace and a Petri net, there can be multiple alignments that one can con-
struct. Figure 3.7 shows another alignment between the same trace and process model
as the one used to construct alignment - in Figure 3.6. Note that there are more devi-
ating columns in the alignment shown in Figure 3.7 than the ones shown in Figure 3.6
(4 against 3 deviations). In practice, the likelihood of deviations may differ between
activities. For example, one may consider the move on log on activity pay to be less
likely than move on model on tg, because nothing is logged for all executions of ¢5. To
construct a most likely alignment between the trace and the net, we assign a likelihood
cost to each movement (i.e., synchronous move, move on model, and move on log). We
are interested in alignments with the least total likelihood cost according to the assigned
likelihood cost function. Such an alignment is called an optimal alignment.

Definition 3.4.3 (Optimal alignment)
Let A C A be a set of activities. Let 0 € A* be a trace over A and let N = (P, T, F, «,
m;, my) be an easy sound Petri net over A. Let lc : A> x T> — IR be a likelihood cost
function for movements.

We say that v € T', v is an optimal alignment between ¢ and N if and only if for all
YV €Ton  Xaney lel(a 1) < X iney le((@t). T7 v . is the set of all optimal
alignments between ¢ and N with respect to likelihood cost function lc.

J

Given a trace, an easy sound Petri net, and a likelihood cost function, there exists an
upperbound value of the total cost of the of optimal alignments between the trace and
the net. In the worst case, an optimal alignment between the trace and the net consists
of the moves on log of all activities in the trace and the moves on model of all transitions
in a complete firing sequence of the net with the least total of likelihood cost.

Definition 3.4.4 (Likelihood cost limit)

Let A C A be a set of activities. Let 0 € A* be a trace over A and let N = (P, T, F, «,
m;, my¢) be an easy sound Petri net over A. Let lc : A> x T> — IR be a likelihood cost
function for movements. The likelihood cost limit of optimal alignments lim(o, N, lc) € IR
between o and N with respect to cost function lc is

lim(c, N, lc) = Z le((a,>)) + min({z le((>,1)) | 0 € T* Amy 2 my})

aco teo
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i.e., the sum of (the total likelihood cost of all moves on log for all activities in o) and
(the minimum total likelihood cost of an alignment between an empty trace and N). |

Proposition 3.4.5 (Likelihood cost limit is an upperbound)

Let A C A be a set of activities. Let 0 € A* be a trace over A and let N = (P, T, F, «,
m;, my) be an easy sound Petri net over A. Let lc : A> x T* — IR be a likelihood cost
function for movements. For all optimal alignments v € I') ;. 22, e, le((2,y)) <
lim(o, N, lc). a

Proof. We prove this proposition by showing that there exists an alignment between
the trace and the net with total likelihood cost equal to lim(o, N,lc). Let o € T* be a

complete firing sequence that yields a limit total cost such that m; % m gand >, le((>

1) =min({3 e le((>,1) [ ¢ € T Am; % mg}). Leto' = {(0[1], ), (ol|a]], >
) - (>, 01]), ..., (>, 0[|ol])) be a movement sequence. It is trivial to see that 4’ € I', .
O

The likelihood cost function provides a certain level of flexibility to determine the de-
sired optimal alignment between a given trace and model. In this thesis, we are mostly
interested in alignments to identify deviations between the trace and the model. Thus,
we do not penalize synchronous moves and moves on model involving an invisible tran-
sition (silent step). In case of a synchronous move, both log and model agree. In case of
a silent step, an unlogged transition is fired. We define a standard likelihood cost function
that assigns zero cost to all synchronous moves of activities and transitions with the same
label, as well as to all moves on model of invisible transitions. Furthermore, the function
assigns cost 1 to all moves on log/moves on model of normal (not invisible) transitions.
The function assigns cost +oo to all synchronous moves whose transitions have different
labels than their activities. In the remainder of the thesis, we use the standard likelihood
cost function unless indicated otherwise.

Definition 3.4.6 (Standard likelihood cost function)

Let A C A be a set of activities. Let N = (P, T, F,a,m;,ms) be a Petri net over A.
The standard likelihood cost function lc : A> x T — IR is the function that maps all
movements to real values, such that for all (z,y) € A> x T>:

o lc((x,y)) =0ifeitherx € A,y € T,and z = a(y),or z =>,y € T, and a(y) = 7,
o lc((z,y)) = +ooifeitherz € A,y € T, and = # a(y), or x = y =>, and
e lc((z,y)) = 1 otherwise.

J

Take for example alignments -y, in Figure 3.6 and 74 in Figure 3.7. Using the standard
likelihood cost function, the total costs of alignment ~, and 7/ are 2 and 4 respectively.
Moreover, there is no other alignment with less total costs than ~, for the trace and the
model in Figure 3.4. Hence, -y, is an optimal alignment.

The notion of optimal alignments provides a robust way to relate occurrence of logged
events to process models. Both duplicate and invisible transitions are explicitly handled
by optimal alignments, e.g., transition ¢, in the alignment in Figure 3.5 and transition
t¢ in the alignment in Figure 3.6. The requirement for having the least possible total
likelihood costs also makes the optimal alignment concept robust to loops and complex
control flow patterns, because it does not allow unnecessary behavior unless it is the one
that minimizes the total cost of likelihood. Furthermore, the alignment explicitly shows
where and why deviations occur if there exists any (see the moves on model and the
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moves on log in Figure 3.6). Remark that for simplicity, in this section all definitions use a
process model in terms of Petri nets without reset/inhibitor arcs. However, all definitions
can be easily extended to nets with reset/inhibitor arcs or any other executable process
models with a well-defined initial (m;) and final (m ) state.

Given a trace, a Petri net, and a likelihood cost function for movements, an alignment
between the trace and the net with the highest likelihood may not necessarily be an op-
timal alignment, i.e., it may not always be an alignment with the least total likelihood
costs of movements. Therefore, we define an “oracle” function that maps traces to align-
ments with their probabilities. The higher the probability of an alignment of a trace, the
more likely the alignment is the “best” representation of the trace. In the remainder of
this thesis, IP = {i € IR | 0 < ¢ < 1} denotes all real values between 0 and 1.

Definition 3.4.7 (Oracle function)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N be an easy
sound Petri net over A. An oracle function orcy n : {0 € L} — ((A> x T>)* — IP) of
L and N is a function that maps traces to alignments with probabilities, such that for all
o€ L:

o Vocasxr>y-orcp n(0)(y) >0 = v € I', n, ie., traces with non-zero occur-
rences are mapped to alignments between ¢ and N,

® > er, yorcr,n(o)(v) =1, ie, the sum of the probabilities of all alignments of a
trace is equal to 1.

The subscripts L and N in orcy, v can be omitted if the context is clear. J

An oracle function gives the probabilities of all possible alignments between a given
trace and Petri net. Take for example trace o3 = (add items, cancel, finalize, finalize, pay,
deliver) and the Petri net N in Figure 3.8. The bottom part of Figure 3.8 shows two
alignments between them as shown previously in Figure 3.6 and Figure 3.7. Using the
standard likelihood cost function, 7, is an optimal alignment between o3 and N.

Let L = [o3] be a log of one trace o3. Suppose that alignment -, has 100% probability
to represent the relation between trace o3 and net N. Based on this information, we can
make an oracle function that returns the probability of 1 to alignment ~, and O to other
alignments, given trace o3 and net N. Thus, orc!(o3)(7y2) = 1,0rct(03)(v4) = 0, and
orcl(o3)(y) = 0 for all other alignments v € T',, v between o3 and N. As another
example, if the probability of v» is 70% and the probability of 4 is 30% then we can
also define an oracle function orc? such that orc?(o3)(v2) = 0.7, orc?(03)(v4) = 0.3, and
orc?(o3)(y) = 0 for all other alignments v € I',, x between o3 and model N.

We define three special oracle functions: the standard oracle function, the basic oracle
function, and the optimal oracle function. Given a trace and a Petri net, a standard oracle
function yields a set of non-empty alignments between the trace and the net, where each
alignment has the same probability. A basic oracle function yields only a single alignment
between the trace and the net, i.e., it assigns a probability of 1 to an alignment and O
to all other alignments between the trace and the net. An optimal oracle function yields
a set of non-empty optimal alignments between the trace and the net with respect to a
given cost function.

Definition 3.4.8 (Standard, basic, and optimal oracle function)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N be an easy
sound Petri net over A, and let orcy v : {c € L} — ((A> x T>)* — IP) be an oracle
function of L and N.
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Figure 3.8: Top: an online transaction for an electronic bookstore shown in Figure 3.4, Bottom: Two possible
alignments between o3 = (add items, cancel, finalize, finalize, pay, deliver) and the net.

orcy, N is a standard oracle function if for all o € L,v,4" € Ty n : orcp n(o)(y) >
0N orer n(o)() >0 = orep n(0)(y) = orer,n(0)(7), i.e., all alignments of a trace
with a probability higher than 0 have the same probability value.

orcr,n is a basic oracle function if for all o0 € L,y € Ty n : orep n(o)(y) > 0 =
orcr, n(0)(y) = 1, i.e., there is only one alignment per unique trace.

Let lc : (A” x T?>)* — IR be a function that maps all movements to real values.
orcr, N is an optimal oracle function with respect to lc if for all 0 € L,y € T'y n
orcf y(@)(7) > 0 = v € TY y,, ie., each trace is mapped to a set of optimal
alignments with respect to cost function lc. orcl’  denotes an optimal oracle function
with respect to lc.

J

The previously mentioned orc! is an example of a basic, standard, and optimal oracle
function with respect to the standard likelihood cost. These three types of oracle func-
tions can be used to support different types of analysis. We show the application of such
functions in Part III of this thesis.

3.5 Conclusion

Relating the occurrences of logged events with transitions of Petri nets (i.e., replay) is
far from trivial. Many approaches have been proposed in literature, but none of them
satisfies all requirements identified. In this section, we defined alignments and optimal
alignments as robust concepts to relate logged events with process models. We showed
that optimal alignments can deal with peculiarities of process models such as dupli-
cate/invisible transitions (i.e., in Petri net terms), complex control-flow, and loops. In
situations where deviations occur, alignments explicitly show where the deviations are
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and hence provide diagnostics information that can be further exploited. Furthermore,
the flexibility to assign likelihood cost functions also provides a way to consider the sever-
ity of deviations in constructing alignments. This flexibility can be further exploited to
obtain alignments that are particularly suitable for a specific type of analysis.

In this chapter, we also described the notion of oracle functions without discussing
the details on how the functions can be implemented. In Chapter 4, we describe some
approaches to construct optimal alignments efficiently, given a trace and a Petri net.
These approaches can be used to realize the oracle functions introduced in this chapter.



Chapter 4

Computing Alignments

( PART II. Alignments )
Observed Behavior
(Event Log)
‘0' ". ‘1 /’:
V. N K
o\&gmputing ‘\:’ (N
Aligoments =

Modeled Behavior

(Process Model)

4.1 Introduction

Given a trace and a process model, constructing an optimal alignment between them
requires the computation of a sequence of activities that is allowed by the model and is
closest to the trace. Such a computation can be very expensive, especially in cases where
the model allows for an infinite number of traces. A brute force method of listing all
possible behaviors of the model and choose the one that is closest to the trace is clearly
not feasible if the model allows for infinitely many traces. A systematic approach to
construct an optimal alignment that does not require listing all behaviors allowed by the
model is needed.

Given a trace and a Petri net, in this section we provide an approach based on op-
timization techniques to compute an optimal alignment between them efficiently. In
Section 4.2, we provide an overview of related work. In Section 4.3, we show how the
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problem of computing optimal alignments can be modeled as a problem of finding a firing
sequence of Petri nets. Section 4.4 provides a detailed explanation of a memory-efficient
approach to compute an optimal alignment between the trace and the net. Section 4.5
introduces the notion of prefix alignments as an alternative to optimal alignments to
identify deviations between the trace and the model if the trace is known to be incom-
plete. Section 4.6 shows some extensions to the approach explained in Section 4.4 and
Section 4.5 to obtain more than one (prefix) alignments and representatives of all opti-
mal (prefix) alignments from a given trace and a given Petri net. Experiment results for
the proposed approaches are given in Section 4.7. Section 4.8 concludes this chapter.

4.2 Related Work

Given an event stream and a process model, Cook et al. [39] proposed a state-space
analysis approach to find all deviations between the stream and the streams allowed by
the model. To identify deviations between them, the approach builds a tree of states
iteratively where each state consists of a pair of event and model streams. To prevent
a state-space explosion, the tree is constructed using a best-first search strategy where
states that are most likely to lead to solutions are explored first before others. However,
this approach has potential memory problems dealing with models that exhibit paral-
lelism. New states are appended as leaves of the state space tree. Therefore, the same
state may appear in more than one branch of the tree. This redundancy problem may
lead to poor memory-efficiency. To solve this problem, some heuristics are suggested to
prune the state space tree. However, applying the heuristics removes the guarantee that
the minimum number of deviations will be found.

The problem of finding optimal alignments also has some similarities to the problem
of finding edit distance between two strings. Given two finite strings, Levenshtein [98]
defines the distance between them as the minimum number of insertion, deletion, and
substitution operations to transform one of them into the other and vice versa. The mini-
mum edit distance between two finite strings can be efficiently computed using dynamic
programming approaches such as the Needleman-Wunsch algorithm [121]. Given a trace
and a process model, the locations of moves on model and moves on log in an optimal
alignment between them show explicitly where activities need to be added/removed to
transform the trace into a sequence of activities allowed by the model. However, there is
a substantial difference between constructing optimal alignments and computing mini-
mum string edit distances. Process models may allow (infinitely) many behaviors, while
string edit distance computations require strings of finite length. Even if the number of
traces allowed by the process model is finite, choosing one of the allowed traces that is
most similar to the given trace can be computationally challenging as shown by Banescu
et al. [16]. To overcome the complexity, Banescu et al. [16] suggested some heuristics
and an approach based on dynamic programming. However, the obtained “alignments”
from this approach are not guaranteed to be optimal.

The problem of constructing optimal alignments can be viewed as an optimization
problem. Given a set of constraints, an objective function, and a set of decision variables,
there exists many optimization approaches to identify the values of the variables that
maximize/minimize the objective function without violating any of the constraints [34].
Given a trace, a process model, and a likelihood cost function, constructing an optimal
alignment between the trace and the model can be viewed as the problem of construct-
ing a sequence of pairs of movements with a set of constraints (see Definition 3.4.3)
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Figure 4.1: A process of handling insurance claim in an insurance company.

and an objective function defined as the total cost of movements. The goal of the opti-
mization is to minimize the objective function. Thus, optimization approaches such as
genetic algorithms [109] and linear programming approaches [197] are applicable to
solve such a problem. However, optimization problems require constraints in form of
equality/inequality algebraic equations, while the constraints of optimal alignments also
includes the possible ordering of activities as defined by process models. Given a process
model, there can be infinitely many possible ordering of activities (i.e., many allowed
behavior). Such an infinite behavior may not be easily represented in forms of algebraic
equations.

The construction of optimal alignments from traces and process models resembles
the modeling of concurrent processes with possible synchronization. Given two con-
current processes represented in Petri nets where some pairs of transitions need to be
synchronized, Winskel [208] defines the product of the two nets to show all possible
synchronization between the two nets explicitly. Such an explicit representation enables
the behavioral analysis of synchronous systems using existing techniques. To construct
an optimal alignment between a trace and a Petri net, activities in the trace need to be
“synchronized” with transitions in the net. However, analysis approaches based on the
product of two Petri nets typically do not take into account cost functions, while optimal
alignments are defined with respect to likelihood cost functions.

4.3 Modeling Alignment Problems

Given a trace and an easy sound Petri net, an optimal alignment between them is con-
structed by performing a sequence of movements that changes the state of the trace,
state of the net, or both. A synchronous move is a movement that changes both the
state of the trace and the state of the net, while other movements (i.e., moves on log,
moves on model) only change the state of either the net or the trace. Such a relation
between the trace and the net resembles the relation between two synchronized concur-
rent processes. We explicitly model the change of states in both the trace and the net as
a synchronization problem between two Petri nets.

We use the easy sound Petri net in Figure 4.1 as a running example. Figure 4.1 shows
a process of handling insurance claims in an insurance company. An instance of the
process starts from the moment an officer register a claim from a claimant (register).
Then, both the claimant history (check history) and causes of the claim (check causes) are
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Figure 4.2: The event net of trace o1 = (register, decide, register, send money, inform acceptance).

checked in an arbitrary order. A decision is made by a manager (decide) based on the
checking results. If the claim is accepted, the claimant is informed (inform acceptance)
and the claimed amount of money is send (send money). If the claim is rejected, the rea-
son of rejection is informed immediately to the claimant (inform rejection). The process
ends after the claim is archived by an insurance officer (archive).

Suppose that we want to find an optimal alignment between a trace o1 = (register,
decide, register, send money, inform acceptance) and the net in Figure 4.1 using the stan-
dard likelihood cost function. We first construct the event net [6] of the trace where all
possible states of the trace are captured explicitly by the net’s marking. The event net of
a trace is a Petri net with a linear structure, such that each transition in the net represents
a unique activity occurrence in the trace. Figure 4.2 shows the event net of o.

Formally, we define event net of a simple trace as follows:

Definition 4.3.1 (Event net)
Let A C A be a set of activities. Let o € A* be a trace of length n over A. The event net
of g is a Petrinet N = (P, T, F,a,m;, my), where
e P={p|1<j<n+1},
« T={;|1<j<n),
o F: (PxT)U(T x P)— IN, such that
- F(pj,t;) =1,foralll1 <j<n,p; e Pt; €T,
- F(tj,pj41) =L foralll1 < j<n,p; € Pt; €T, and
- F(x,y) = 0 otherwise.

e o : T — Ais a function mapping transitions to activities such that for all 1 < j <
n, a(t;) = oljl,
m; = [p1] is the initial marking, and

e my = [p p|] is the final marking.
.

To prevent ambiguity between event nets and easy sound Petri nets that represent
process models, from this section on we use the term process nets to refer to the latter.
Notice that all event nets are sound workflow nets (see Definition 2.4.7).

Having modeled traces as event nets, we explicitly model all possible movements by
taking the product of two Petri nets: event nets and process nets. The product of two Petri
nets is the union of both nets with extra synchronous transitions that are constructed by
pairing transitions in one net with transitions in the other net that have the same label
[208]. This way, possible synchronous moves are modeled by synchronous transitions,
while moves on log and moves on model are modeled as unpaired transitions in the event
net and process net respectively.
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Figure 4.3: The product of the event net of trace o1 = (register, decide, register, send money,
inform acceptance) and the model in Figure 4.1.

The product between the event net in Figure 4.2 and the process net in Figure 4.1 is
shown in Figure 4.3. The color of transitions and places distinguishes elements of the
original nets and the added synchronous transitions. Yellow, purple, black, and green-
colored transitions represent moves on log, moves on model (on normal transitions),
moves on model (on invisible transitions), and synchronous moves respectively. If a
yellow transition is fired, the state of the event net is changed but not the state of the
process net. Similarly, firing a purple/black transition only changes the state of the
process net. Firing a green transition changes the state of both nets. Notice that all
transitions in the net represents movements. For example, transition (¢}, ¢;) represents a
synchronous move by doing the first activity register in the trace and firing transition ¢;
in the process net. As another example, transition (>>,¢;) represents a move on model
by firing the transition ¢; in the process net without moving in the trace.

The product of two Petri nets is formalized as follows [208].

Definition 4.3.2 (Product of two Petri nets)

Let A C A be a set of activities. Let Ny = (P, T, Fi,a1,mi1,my1) and Ny = (Ps, Tb,
F5,a,m; 2, my2) be two Petri nets over A. The product of N, and N, is the Petri net
N3 =N; ® Ny = (Pg,Tg, Fg, ag,miyg,mfyg) where

e Py = P; U P, is the union set of places,

o T35 C (T1>> XT2>>), such that T3 = {(t1,>>) | t1 € Tl}U{(>>,t2) | to € TQ}U{(tl,tg) €
(Ty x T3) | a1 (t1) = ae(ta) # 7} is the set of the original transitions with additional
synchronous transitions,
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e I3 : (P3xT3)U (T3 x P3) — IN is the arc weight function, such that

)
- F3(p1, (t1,>)) = Fi(p1,t1) if pr € Py and ¢y € Ty,
- F5((t1,>),p1) = Fi(t1,p1) if p1 € Py and ¢; € Ty,
- F3(p2, (>, t2)) = Fa(pa,t2) if po € Py and ty € T,
- F3((>,t2),p2) = Fa(tz,p2) if p2 € Py and tp € T,
- F3(p1, (t1,t2)) = Fi(p1,t1) if p1 € Py and (t1,t2) € T30 (T1 x Tp),
— F5(pa, (t1,t2)) = Fo(pa, ta) if p2 € Py and (t1,t2) € T5 N (Th x T3),
= By((t1,t2),p1) = Fi(t1,p1) if p1 € Py and (1, 2) € Ty 1 (Th x T),
- F3((t1,t2),p2) = Fa(t2, po) if po € P> and (t1,12) € T3 N (T1 x T3),

- otherwise F3(x,y) = 0.

e a3 : T3 — A7 is the mapping from transitions to activities, such that for all (¢1,¢5) €
13, Oég((tl,tg)) = O((tl) if to =>, Oég((tl,tg)) S OéQ(tQ) if t1 =>, and ag((tl,tz)) =
a1(t;) otherwise,

® m; 3 = m; 1 Wm, o is the initial marking,

e my3 =mys1 Wmyo is the final marking.

J

We define a reverse function that maps transitions in the product of two Petri nets to
movements as follows:

Definition 4.3.3 (Reverse function)
Let A C A be a set of activities. Let Ny = (P, T4, Fi,a1,m;1,mys1) be a net over A
where Rng(a;) C A (i.e., there is no transition mapped to 7) and let Ny = (Ps, Ts, Fb,
a2, m; 2, My 2) be a Petri net over A, and let Ny ® Ny = (Ps, T3, F3, a3, m; 3, my3) be the
product of N; and Ns.

TeU(N,@Ny) 1 T3 — A¥ x T is the reverse function of Ny ® N, that maps transitions
in T3 to movements, such that for all (¢1,¢2) € T3:

o revn, on,) ((t1,t2)) = (a1(t1),>>) if to =>, i.e., all transitions derived from only
T, are mapped to moves on log,

o revn, on,)((t1,t2)) = (>, t2) if t1 =>, i.e., transitions derived from only transi-
tions of T, are mapped to moves on model, and

o revn, on,) ((t1,t2)) = (ai(t1),t2) if ay(t1) #> and t, #>, i.e., synchronous tran-
sitions are mapped to synchronous moves.

J

We use the reverse function and the theory of marking reachability in product of two
Petri nets in [208] to prove that complete firing sequences of products of event nets and
easy sound process nets yield alignments. We can reformulate the result of [208] as
follows:

Theorem 4.3.4 (Reachability of marking in the product of two Petri Nets)

Let A - A be a set of activities. Let N1 = (Pl,Tl,Fhozl,mi,l,mf,l) and N2 = (PQ,
TQ,FQ,OZQ,mZ',Q,mf,Q) be two Petri nets over A. Let N1 ® N2 = (P3,T3,F3,a3,mi’3,
my.3) be the product of Ny and Na. m;3 —»(n,en,) M, 0 € Ty if and only if both

1 (Q)yrl 7T2(Q)¢T2
Mig p, —Ny MP, and Mig p, —Ny MyP, hold, i.e., the projection of the

marking to each original net is also reachable from its initial marking.
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Proof. Refer to [208]. O

J

Using this result we prove that firing sequences of such product yields movement
sequences, and therefore yields alignments:

Theorem 4.3.5 (Firing sequences define movement sequences)
Let A C A be a set of activities. Let 0 € A* be a trace over A and let Ny = (P, T4,
F1,0q,m; 1, my 1) be its event net. Let Ny = (P», T, Fa, ag,m; 2, my 2) be an easy sound
process net over A, and let Ny ® Ny = (Ps,T5, F3, a3, m; 3, my3) be the product of N,
and Ns.

For all firing sequences m; 3 i(M@Nz) m,o0 € T3, revin,gn,)(0) is a movement

sequencel. Moreover, if m; 5 - (n, o N,) My,3, then rev(n, g n,) (o) is an alignment. 2

Proof. We prove the first part of this lemma by induction. If ¢ = (), then rev(n, gn,)(0) =
() is an alignment. Assume that ¢ = ¢’ - (t1,2) and that rev(y,gn,)(¢’) is a movement

. . o (t1,t2)
sequence. There exist markings m; and my where m; 3 = (v, gn,) M1 — (N, @N,) Ma-

By definition, Rng(a;) € A. We show that rev(n, gn,)(0) is @ movement sequence by
considering all three cases:

e Assume rev(n,gn,)((t1,t2)) = (a,>>),a € A (move on log). By definition, Dom(a; )
Ty. Thus, there exists a transition ¢, € T} where ay(t1) = o[1+|m1(¢'), 1, |] = @ and

w1 (e )J,Tl ”2(9)¢T2
Mi3 p, —N; Mi|p, #Nl ma p,. Furthermore, m; 3 , ————n, miyp,. It

is easy to see that rev(n, g n,)(0) is @ movement sequence,

e Assume rev(n, gn,)((t1,t2)) = (>,t2),t2 € T (move on model). We know that

w1 (o’ )lTl w2 (o’ )¢T2
Mig p, — Ny Miyp, and Mi3 p, —Np M1|P, 41\/2 mo p, (see Theo-

rem 4.3.4). It is easy to see that revy, g n,)(0) is @ movement sequence,

e Assume rev(n,gn,)((t1,t2)) = (a,t2),a € Aty € Ty (synchronous move). We
7"2(@ )Jj*2
know that m; 3 , ———— N, M1yp, 41\;2 msa | p,. By definition, ¢; € Dom(c) such
771(0 )LTl
that a(ty) = o[l + |m1 (0 )J/T [] = a and m; Bip, TN, Mip #Nl ma p,. Itis
easy to see that rev(y, gn,)(0) is a movement sequence.

We know that rev(y,en,)(0) is @ movement sequence. If m; 5 <>(n,@n,) my,3 then
m1(0) 1, m2(0)y,
Mmig p, —N, Mf3p and mi3 p ——nN, mf3 p,. By definition, this implies
“1(9)LT1 7"2(Q)¢T2
m;1 ———nN, My and m; 9 ———n, myo. We know that the following holds:

(e (ma(0) iy )+ 1 (ma () [ (0) oy [D) = . Hence, revi, oy () s an align:
ment. -

Note that the product of an event net and a process net does not model any syn-
chronous move containing an activity and a transition with different label. Hence, such
a synchronous move cannot be obtained from the product net. However, Definition 4.3.2

IWe abuse the reverse function to handle sequences of transitions. Let o € T™* be a sequence of transitions,
TeV(N, @ No) (0) = (Tev(n, @ No) (0[1]), - - - s rev N, oy (ellel])
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can be easily modified to explicitly model such a movement. For simplicity, in the re-
mainder of this chapter we only consider synchronous moves of activities and transitions
with the same label.

Given an event net and a process net, Theorem 4.3.5 shows that the problem of
constructing alignments can be viewed as the problem of finding some firing sequences
in the product of the two nets. Since transitions represent movements, we assign costs
to each transition according to the movement it represents. A brute force approach can
be used to find firing sequences in the product that yield minimum costs. However, such
an approach may perform poorly, especially in situations where the product net allows
for many (possibly infinite) firing sequences. In Section 4.4, we propose a state-space
exploration strategy to efficiently compute optimal alignments for easy sound process
nets.

4.4 Computing an Optimal Alignment

Given a trace and a process model, Section 4.3 shows that the problem of finding an
alignment corresponds to finding a firing sequence in the product of two Petri nets. In
this section, we provide an efficient method to solve the problem using a state-space ex-
ploration approach. Section 4.4.1 shows that the problem of computing a firing sequence
with minimum cost can be translated into shortest path problems, for which some effi-
cient solutions exist in literature. Section 4.4.2 provides a state space exploration strategy
that exploits well-known Petri net results to further improve the computation efficiency
in practice. An extension to the approach to handle reset/inhibitor nets is explained in
Section 4.4.3.

4.4.1 Translation to Shortest Path Problems

In this section, we model the problem of computing optimal alignments as a shortest path
problem. The behavior of a Petri net is explicitly represented by its labeled transition
system, which can also be viewed as a directed graph. Take for example the transition
system shown in Figure 4.4. The figure shows the transition system of the product net
previously shown in Figure 4.3 between the event net of trace (register, decide, register,
send money, inform acceptance) and the process net in Figure 4.1. The red-colored state
in the transition system is the final marking of the product net. The color of an edge
indicates the type of movements it correspond to (i.e., move on log, move on model
(invisible transition), move on model (not invisible transition), or synchronous move).
We assign the distance of each edge in the transition system according to the likeli-
hood cost of movement represented by its label. Suppose that we use the standard likeli-
hood cost function. The distance of the edge from the initial state [p;, p] to [p2, P, p4] in
Figure 4.4 is 0, because transition (¢}, ¢;) represents a synchronous move and the cost of
synchronous move is 0. As another example, the distance of the edge from the initial state
[p1,p}] to state [p},p2,p4] is 1, because transition (>>,t¢;) represents a move on model.
Since an edge in a transition system corresponds to firing a transition, the total distance
of a path in the transition system corresponds to the total cost of firing the sequence of
transitions along the path, thus representing the total cost of the movement sequence
represented by the firing sequence. For example, the highlighted path in Figure 4.13
(i.e., <([p1,p/1], (tll, tl), [pg,p/z,pzd), ey ([pll,pg], (>>7 tlo), [plg,p%}») can be transformed
back to the movement sequence shown in Figure 4.5 by mapping all edges in the path to
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Figure 4.4: The transition system of the product between the event net of trace o1 =
(register, decide, register, send money, inform acceptance) and the model in Figure 4.1. The colored state is

the final marking of the product net, i.e., marking [p12, p]. The highlighted path from the initial state to state
[p12, p§] yields the optimal alignment shown in Figure 4.5.

the movements represented by their labels. In this example, the path has a total distance
of 4, which is the same as the cost of movement sequence shown in Figure 4.5. Notice
that the movement sequence is also an alignment.

Since all paths from the initial state of such a transition system to any state in the
same transition system yield movement sequences and the total distance of each path
yields the cost of the movement sequence constructed from the path, a shortest path
from the initial state to the final state of the transition system yields an optimal align-
ment between the trace and the net. The alignment shown in Figure 4.5 is an optimal
alignment between trace (register, decide, register, send money, inform acceptance) and
the process net shown in Figure 4.1, because the highlighted path in Figure 4.4 is a
shortest path from the initial state to the final state of the transition system.

We provide a formal proof for all of the arguments mentioned up to this point. First,
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register > > | decide | register | > | send inform | > >
money | acceptance
register | check | check | decide send inform archive
history | cause money | acceptance
t1 to t3 t4 > ts te tr tg t10

Figure 4.5: The alignment/movement sequence obtained by translating the edges along the highlighted path
shown in Figure 4.4 to the represented movements. This sequence is also an optimal alignment between trace
o1 = (register, decide, register, send money, inform acceptance) and the model in Figure 4.1.

we show that there exists a path from the initial state to the final state of any net that is
the product of an event net and an easy sound process net.

Lemma 4.4.1 (Path from the initial state to the final state exists)
Let A - A be a set of activities. Let N1 = (Pl,Tl,Fl,()él,le,me) and N2 = (P27T2,
F5, a0, m; 2, my2) be an event net and an easy sound process net over A respectively. Let
N1 ® Ny = (P3,T3,F3, Oég,mi’g,mf,g) be the pl’OdUCt of N; and N,. Let TS(N1 & Ng) =
(S, TR, LB, s;, sy) be the transition system of N7 ® Na.

(s, 7r,LB)(5i,57) # 0, i.e., a path from the initial state s; to the final state s; of
TS (N, ® N») always exists. a

Proof. From Definition 4.3.1, we know that there exists p; € T7, such that m; 2 Ny
my 1. From Definition 2.4.4, we know that there exists a sequence g, € T3 such that

o . .
mio —3N, Myo. Since markings my; and my o are reachable from m;; and m; o re-

spectively, there exists o3 € 75 such that s; ﬁNS s (see Theorem 4.3.4). Hence,
Vs, rr,LB)(5i,57) 7 0. =

Intuitively, there are many trivial alignments between a trace and a model. It is
possible to first do move on model only and then do move on log only for all activities
in the trace, as well as all interleavings between its moves on model and moves on
log. Typically, such trivial alignments do not correspond to an optimal alignment. In
Theorem 4.3.5, we showed that paths in transition systems yield alignments and such
path always exists (see Lemma 4.4.1). Hence, we can show that a shortest path from
initial states to final states of such transition systems yields an optimal alignment.

Theorem 4.4.2 (Shortest path yields optimal alignment)
Let A C A be a set of activities. Let N; be an event net over A, let Ny = (P, T, F, «,
m;, my) be an easy sound process net over A. Let TS(N; ® Na) = (S, TR, LB, s;,5sf)
be the transition system of Ny ® Ny. Let lc : A® x T — IR be a likelihood cost
function of movements. Let dist : TR — IR be a distance function, such that for all
tr € TR, dist(tr) = lc(revin, g n,) (T2 (tr))).

For all shortest paths o € V(g rr 1B)(s:,5s) from the initial state to the final state
such that for all o' € V(s rr, 15 (8:,55) : dist(o) < dist(o’), the sequence of movements
7 = rev(n, @N,)(m2(0)) is an optimal alignment. 4

Proof. Theorem 4.3.5 shows that ~ is an alignment. The following holds by definition:
dist(0) = Y e, le(revin,en,) (m2(tr))) = 22, e, le((z,y)), ie., the distance between
two nodes is the same as the total likelihood cost of movements. Since p is a shortest
path from s; to sy, its distance yields the minimal likelihood cost of movements of all
possible alignments. O

Theorem 4.4.2 provides a theoretical foundation to use shortest path algorithms in
order to construct an optimal alignment, given a transition system of a product of an
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event net and a process net. As mentioned in Section 2.2, the A* algorithm is known to
be the most efficient algorithm to compute such a shortest path in literature [50]. Given
a directed graph, a source node, a target node, and a permissible function, the algorithm
visits the least number of nodes among other shortest path algorithms to find a shortest
path from the source node to the target node. However, the algorithm requires the num-
ber of paths with zero distance between nodes in the graph to be finite. Thus, given a
transition system of a product of an event net and an easy sound process net, the algo-
rithm only guarantees that a shortest path between two states in the transition system if
it has a finite number of paths between states with total distance of zero. Checking such
a constraint is computationally expensive as we need to construct the whole transition
system and check possible paths for all pairs of states.

We take a pragmatic approach to solve this problem. The distance of an edge in a di-
rected graph constructed from a transition system corresponds to the cost of movements
represented by the label of the edge. If each edge in the graph has distance value above
zero then the graph satisfies the requirement of the A* algorithm. Hence, using a cost
function of movements that assigns non-zero positive values to all movements is a sufficient
condition to apply the A* algorithm. Note that this is not a necessary condition. Given a
trace, an easy sound process net, and a cost function for movements lc, we create an-
other cost function Ic’ from Ic that maps all movements to positive non-zero cost. For all
movements, [¢’ returns the same cost as Ic, added with a negligibly small cost ¢ € IR™.
For example, if we use the standard cost function, the new cost function assigns cost e
to all synchronous moves and moves on model (invisible transitions) instead of 0. The
cost of moves on model (normal transitions) and moves on log is ¢ + 1. The choice for
the value of ¢ > 0 depends on specific traces and process nets. As a guideline, one could
use € = oo ﬂfthz;t ﬁfoslfeffeggexfz’?i Firace)- However, e should always be significantly
smaller than all other costs. If the chosen value is too high then the obtained results may
not be optimal with respect to the original cost function. If the chosen ¢ is too small,
finding an optimal alignment may take longer. After getting an optimal alignment  be-
tween the trace and the process net, ¢ - |y| can be substracted from the total cost of  to
get the “real” total cost of v. Note that no new cost function needs to be constructed if
the original cost function maps all movements to positive non zero values.

In practice, the performance of the A* algorithm also depends on the function it uses
to estimate the shortest distance between all nodes in the directed graph to the closest
target nodes. In Section 4.4.2, we provide a heuristic function that provide an estimation
on such distance based on Petri net reachability theory.

4.4.2 Heuristic Function to Explore State Spaces Efficiently

Given a state and a target state in a transition system of the product of an event net for
a trace and a process net, a function that always returns O is a permissible function for
the labeled transition system of the product. However, we are interested in a precise
estimation to guide the state space exploration of the A* algorithm. One of the possible
ways is to provide a naive underestimation cost based on the minimum total cost required
to reach a state that covers the final state of the event net, i.e., the minimum cost to
perform moves on log/synchronous moves for all remaining activities in the trace.

Take for example the trace and the process net that are used to construct the transition
system in Figure 4.4. Suppose that we want to have an underestimation of the shortest
distance from state [ps,ph,p4], i.e., the state after performing a synchronous move of
activity register from the initial state, to the final state [p12, ps]. The sequence of remain-
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ing activities in the trace that still need to be “replayed” is {decide, register, send money,
inform acceptance). Intuitively, the activities must appear as either synchronous moves
or moves on log in an optimal alignment between the trace and the net. Thus, the total
minimum cost of movements of each activity yields a cost that underestimates the cost
of the optimal alignment.

First of all, we show that each state in the transition system of a product net derived
from an event net and a process net has exactly one place of the event net.

Lemma 4.4.3 (All markings of product net mark one place in the event net)

Let A C A be a set of activities. Let Ny = (P, Ty, F1, 1, m; 1, my1) be an event net
over A and let N, be a process net over A. Let T'S(N1 ® N2) = (S, TR, LB, s;, s5) be the
transition system of N; ® Np. Foralls € S: |s;p,| = 1. 4

Proof. It is trivial to see that for all markings m € RS(N;, m; ;) : |m| = 1. According to
Theorem 4.3.4, forall s € S : sy p, € RS(N;, m; ;). Hence, |s;p | = 1. O

We formalize the naive permissible function described earlier in this section in Theo-
rem 4.4.4. Note that since permissible functions are only used to estimate the distance to
a single target node (i.e., the final state of a transition system), in the remainder of this
thesis we omit the set of target nodes in all of the signatures of permissible functions.

Theorem 4.4.4 (Naive permissible function [8])
Let A C A be a set of activities. Let Ny = (P, T4, Fi, a1, m;1,my,1) be the event net of
atrace o € A* over A, let Ny = (P, Ty, Fy, s, m; 2, my 2) be an easy sound process net
over A. Let TS(N1 ® Ny) = (S, TR, LB, s;, s7) be the transition system of N; ® N,. Let
lc: A” x Ts” — IR be a likelihood cost function of movements. Let dist : TR — IR™
be a distance function, such that for all tr € TR, dist(tr) = lc(rev(n, gn,) (m2(tr))).

A function h : S — IR maps the states of 7'S(/N; ® N») to real values such that for all
s€S:

h(s) = min ({ D min({le((ar(tr).y)) |y € To}) | syp, 4w, mypa})

t1€0
is a permissible function for (S, TR, LB) and dist. J
Proof. We prove that the function is admissible by considering two possible cases:

o If there is no path from s to sy, i.e., ¥ (g rr,15)(s, s5) = 0 then any value provided
by h is below +o0.

e Ifapath o € ¥ (s rr 1B)(s, s5) exists, we consider two sub-cases: (1) If s p, = my
then h(s) = 0. It is trivial to see that any function that returns O is admissible. (2)
If sy p, # my 1, we know that Ny is a sequence and |s, p,| = 1 (see Lemma 4.4.3).
Thus, there exists a firing sequence s, p, — m f1,0 € TY. p yields the remaining
activities in o that need to be replayed after state s. Therefore, h(s) is the mini-
mum total likelihood cost of movements to replay all of the activities. Hence, h is
admissible.

The proof that h is consistent is as follows. For all edges (s1,tr,s2) € TR, either
S1,p, = S2,p, OF 51 p, = 52, p,. In the former case, h(s1) = h(s2). In the latter case,
tr yields either a move on log or a synchronous move (see Lemma 4.4.3). Since h(s;) is
based on the minimum value of both of them, h(s;) < dist((s1,tr, s2)) + h(s2) holds.

O
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Figure 4.6: Two ways in which the marking equation is exploited: pruning exploration graph and limit explo-
ration area.

Given a trace and a process net, to this point we propose a permissible function
that only takes into account the number of “unreplayed activities” in the trace without
exploiting information about the process net. Given a transition system, such a function
may not be able to provide a precise estimation on the distance of each state in the
transition system to the final state of the transition system during state space analysis. As
a consequence, the A* algorithm may explore the states in a breadth-first-search manner
and require a huge amount of memory as many states need to be visited and queued.

Therefore, we introduce a permissible function for the A* algorithm that provides a
more precise underestimation of the remaining distance from each state in the system
to its final state based on the marking equation of Petri nets [10]. The proposed func-
tion improves the efficiency of the A*-based state space exploration in two ways (see
Figure 4.6). First of all, the state space is pruned as for some states we can state with
certainty that the final state is no longer reachable. If, according to the marking equa-
tion, the final state is no longer reachable, we do not need to explore successor states
in the transition system. Second, by using the marking equation we can provide a better
underestimation of the total cost required to reach the final state. This way, state space
exploration can be limited to those states that most likely lead to the final state.

Pruning the Exploration Graph

To prune the exploration graph we exploit the well known Petri net marking equation.
The following result can be found in any textbook on Petri nets, e.g., [119].

Theorem 4.4.5 (Reachability implies solution to marking equation)
Let A C A be a set of activities. Let N be a Petri net over A, let [N] be the incidence
matrix of N. Let TS(N) = (S, TR, LB, s;,s¢) be the transition system of N. For all

—

s,s' € S, p € T* such that s % ', the following marking equation holds: §+[N]-g = s _
Proof. See for example the proof in [119]. O

Theorem 4.4.5 states that reachability implies a solution. This implies that if no
solution exists then state s’ is not reachable from state s. Recall that we need to find a
shortest path to the final node and all paths are firing sequences. Hence, we exploit this
knowledge to identify nodes in the exploration graph from which the target node cannot
be reached.

Theorem 4.4.6 (State pruning)
Let A C A be a set of activities. Let N be a Petri net over A. Let [N] be the incidence
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matrix of N. Let TS(N) = (S, TR, LB, s;, sy) be the transition system of N. For all
s € S, if there is no solution & to 54 [N] - & = s}, (g 1B (s, 57) = 0. N

Proof. We prove this theorem by contradiction. Suppose that there exists a state s’ € S
such that no solution to s’ + [N] - & = s}, but there exists a path 0 € V(g 7r,15)(s', 57)
from state s’ to final state sy. Let o = 72(0) , be the firing sequence of ¢. By definition,

we know that s % s; and according to Theorem 4.4.5, 5+ [N]- g = s} holds. Thus, ¥ = g
is a solution.
O

The marking equation helps in pruning the exploration graph. However, we can also
use the marking equation to provide a better underestimate of the remaining cost.

Limiting the State Space Exploration Area

Given a transition system, we showed that the existence of a solution to the marking
equation for a state in the transition system (see Theorem 4.4.5) strongly correlates with
the existence of a path from the state to the final state of the transition system. Next, we
show that if such path exists, a solution to the marking equation with the minimum total
cost yields a lower bound for the path distance. Since all transitions in the product of
an event net and a process net represent movements, we define the cost of transitions in
such a product based on the cost of movements.

Definition 4.4.7 (Cost of transitions)

Let A C A be a set of activities. Let N; be an event net over A and let Ny = (P, T3,
F5,a9,m;2,my¢2) be a process net over A. Let Ny ® Ny = (P35, T3, F3, a3, m; 3, my 3) be
the product of Ny and Ny. Let lc : A x Ty> — IR be a likelihood cost function of
movements. ¢, : T3 — IRT is the cost of firing transitions, defined by lc such that for all

t3 € T3, cie(ts) = le(revin, gng,) (t3))- a

For simplicity, in the remainder of this section we use the cost of firing transitions di-
rectly instead of the likelihood cost of movements. Next, we show that marking equation
provides lower bound for the total cost of movements.

Theorem 4.4.8 (Marking equation solution provides lower bound)

Let A C A be a set of activities. Let N = (P, T, F, o, m;,my) be an easy sound Petri net

over A. Let [N] be the incidence matrix of N. Let T'S(N) = (S, TR, LB, s;, sy) be the

transition system of N. Let ¢, : T' — IR™ be a cost function of firing transitions, and let

dist : TR — IR™ be a distance function, such that for all tr € TR, dist(tr) = cc(ma(tr)).
For all states s € S where V(g 75 15)(s,57) # )

e let v = min ({3 ;<7 T - ce(T]j]) | 54 [N] - & = s}}) be the minimum value of
total cost of solution to marking equation, and

o letv' = min({dist(0) | 0 € ¥(s,7r,B) (S, 57)}) be the minimum distance of all paths
from s to sy.

The following statement holds: v < v’ J

Proof. We prove this theorem by first showing that a shortest path from s to s is also a
solution to the marking equation. Suppose that o € W (g 15, 15)(s,5s) is a shortest path
from s to s;. From Theorem 4.3.5, we know that ¢ = m(0) is a firing sequence from s

to s7,1.e., s >y sy. Hence, 5+ [N] - g = s} holds.
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The total cost of solution to marking equation is the same as the distance of path (see
the proof of Theorem 4.4.2). Therefore, >, ;|7 0j - cie(T]j]) = 2_4c, cic(t) = dist(o).
v is minimal, therefore v < dist(o) holds.

O

Given a state in a transition system, we know from Theorem 4.4.6 that if a solution
to marking equation in Theorem 4.4.5 does not exist, there is no path to the final state.
Hence, there is no point in exploring the successors of that state anymore. If a solution
exists, we know a lower bound for the distance from the state to the final state (see
Theorem 4.4.8). We use this knowledge to define a permissible underestimation function
for the A* algorithm.

Theorem 4.4.9 (Precise permissible function)
Let A C A be a set of activities. Let N = (P, T, F, o, m;, my) be the product of an event
net and an easy sound process net over A. Let [N] be the incidence matrix of N. Let
TS(N) = (S, TR, LB, s;, sy) be the transition system of N. Let ¢;. : T — IR* be a cost
function of firing transitions. Let dist : TR — IR™ be a distance function, such that for
all tr € TR : dist(tr) = cic(ma(tr)).

A function h : S — IR to the final state s; such that for all s € S, the following holds:

e h(s) = +oo if there is no solution to 5§+ [N] - # = s}, otherwise
o (s) = min ({3 < T - cie(Tl]) [ 5+ [N] -7 = s7})

is a permissible estimation function for (S, TR, LB) and dist.

J

Proof. For all s € S, if there is no solution to the marking equation then there is no path
from s to sy (see Theorem 4.4.6). Therefore, h(s) = +o0 is an underestimation to the
shortest distance from s to s;. If there is a solution, we know that h(s) is a lower bound
for the distance from s to s; (see Theorem 4.4.8). Thus, h(s) is admissible.

To prove that £ is also consistent, we use contradictions. Suppose that there exists an
arc (s1,t,82) € TR such that h(sy) > dist((s1,t,52)) + h(s2):

o If there is no solution to marking equation s + [N] - & = s then h(s2) = +oc.
Obviously, h(s1) < h(sz2) (contradiction).

e Suppose that 7 is a solution to marking equation s3 + [N] - # = s} that yields cost
h(sz2). Let ¢ be a column vector of size |T| where ¥i4,07(+,7) = 1 and #; = 0 for
1 <i < |T|,i # idzOf(t, T). We know that s; —y s5. Thus, 53 = $1 + [N] - #. By
substitution, s} = s3 + [N] - Z = 7 + [N] - (Z + 7).
h(sy) is computed from a possible solution Z' to marking equation si + [N] - 2 = s
that yields a minimum value. Therefore, h(s1) < 31 ;< 7(Z; + 4) - cie(T]j]) and
h(s1) < Z1§jg\T| Ly - ce(T]j]) + Zlgkgm Yk - cic(T'[k]). By definition, we know
that 3>y ;<\ U5 - cie(T]j]) = dist((s1,t,s2)) and 32y ;<\ @ - cie(T[5]) = h(s2).
Hence, h(s1) < dist((s1,t,52)) + h(s2) (contradiction).

O

Finding a solution for the marking equation with the minimum cost can viewed as an
ILP problem [42,157,197]. Many approaches and software tools to solve ILP problems
exist. Given a trace and a process net, we use the permissible function in Theorem 4.4.9
to guide state space exploration on transition systems constructed from the product of
an event net and a process net, such as the one shown in Figure 4.4.
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Figure 4.7: Example of a Petri net, extended with a reset arc (i.e., 7(t4) = {p2}) and an inhibitor arc (i(t¢) =
{p2}). The same behavior cannot be expressed without such reset/inhibitor arcs.

4.4.3 Computing alignments of reset/inhibitor nets

Next to Petri nets, many other process modeling languages are used in practice. In this
section, we extend the approach in Section 4.4.2 to deal with reset/inhibitor nets [200].

Figure 4.7 shows an example of a reset/inhibitor net. The net in the figure shows
an online transaction process for an electronic bookstore. A customer can add as many
items as possible to their cart (add items) before finalizing an order (finalize). After the
order is finalized, ordered items are packed individually (pack items). All items of the
order are sent to the customer immediately after they are packed and the payment for the
order is accepted (money accepted). The customer may add more items after the order
is finalized, but he can only cancel the order (cancel) before it is finalized. The process
ends when all goods are sent (and the payment is accepted) or the process is cancelled.

Similar to Petri nets without reset/inhibitor arcs, the behavior of a reset/inhibitor net
can be represented by a transition system. Since all theorems and lemmas that trans-
late the problem of finding optimal alignments into shortest path problems are based
on transition systems, i.e., Lemma 4.4.1 and Theorem 4.4.2, they still hold even for
reset/inhibitor nets.

The general idea to construct an alignment between traces and reset/inhibitor nets
is the same as the construction we described before for Petri nets. Given a trace and
a reset/inhibitor net, we construct the product of the event net of the trace and the
reset/inhibitor net in a similar way as constructing the product of two Petri nets. The
only difference is that we also keep the reset/inhibitor arcs in the event net of the trace
and add new reset/inhibitor arcs to synchronous transitions whose process net transitions
are connected to reset/inhibitor arcs.

Figure 4.8 shows the product of the event net of a trace oy = (add items, cancel,
add items, finalize, pack items, pack items, money accepted) and the reset/inhibitor net
in Figure 4.7. All reset and inhibitor arcs in the original reset/inhibitor net are pre-
served. Synchronous transitions that are constructed from transitions that are connected
to reset/inhibitor arcs also have reset/inhibitor arcs (e.g., synchronous transitions (¢}, t4)
and (t4,ts))-

Definition 4.4.10 (Product of two reset/inhibitor nets)
Let A C A be a set of activities. Let N; = (Pl, Ty, F1,aq, mi1,Mf 1,71, il) and Ny = (PQ,
Ty, Fy, 9, m; 2, My 2,72,12) be two reset/inhibitor nets over A. The product of N; and
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Figure 4.8: Product of event net of trace oo = (add items, cancel,add items, finalize, pack items, pack items,

money accepted) and the reset/inhibitor net in Figure 4.7.

N, is a reset/inhibitor net N3 = N1 ® Ny = (Ps, T3, F3, a3, m; 3, my 3,73, i3), such that

o (3,13, Fy,a3,mi3,my3) = (P, 11, Fryon,min,my 1)@ (P, Ta, Fa, a,mi 2,my ),
i.e., places, arcs, and transitions are created using the product of two ordinary Petri
nets (see Definition 4.3.2),

e r3 : T3 — P(P3) and i3 : T35 — P(Ps) are the reset function and the inhibitor
function respectively, such that

- for all (t1,>) € T3 where t; #>,7r3((t;,>)) = ri(t1) and is((¢;,>>)) =
i1(t1),

- forall (>>,t2) € T5 where to #>,1r5((>>,t2)) = r2(t2) and i3((>>, ta)) = ia(t2),

- for all (¢1,¢2) € T5 where t; #£> and to >, r3((t1,t2)) = r1(t1) U ra(t2) and
i3((t1,t2)) = i1(t1) Uia(ta)

J

The approach to prune the state space and direct state space exploration using the
marking equation of Petri nets cannot be applied directly, because the equation is based
on the incidence matrix that by definition ignores reset/inhibitor arcs. However, given a
product of an event net and a reset/inhibitor net, we only need values that underestimate
the actual distance from states of its transition system to its final state. Note that such a
product is also a reset/inhibitor net. Therefore, we propose a general idea to estimate the
actual distance of states of reset/inhibitor net using a Petri net with some cost function
and constraints that can be related to the original reset/inhibitor net and its cost to fire
transitions. We call such a net an estimation net.
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Definition 4.4.11 (Estimation net and cost)
Let A C A be a set of activities. Let Ny = (P, T4, Fi, oy, m;, my, r,) be a reset/inhibitor
net over A. Let ¢;,, : Ty — IR" be the cost function of firing transitions in 7;. Let
Ny = (P, Ty, F», a2, m;, my) be a Petri net over A and let ¢;., : T» — IR be a cost function
of firing transitions in 75.

N, with cost function ¢;., is an estimation of N; with cost function ¢, if for all
markings m,m’ € RS(N;,m;) and any firing sequence o; € T; such that m Sy, m/,
there exists a sequence g, € T3 where:

em%B N, M/, i.e., the same marking is reachable in N,, and
® D o Clea(t2) < 324 cp Ciei(th), Le., firing o yields less or equal cost to firing
01.

J

Given a reset/inhibitor net and the costs of firing its transitions, an estimation net of
the original reset/inhibitor net and the cost function are used to provide an underesti-
mation to the minimum distance between states of the reset/inhibitor net.

Theorem 4.4.12 (Estimation net and cost provide permissible underestimation)
Let A C A be a set of activities. Let Ny = (P, Ty, F1,0q,m;, my,r,4) be an easy sound
reset/inhibitor net over A, let TS(N;) = (S, TR, LB, s;, s¢) be the transition system of
Ny, let ¢, : Th — IR be the cost function of firing transitions in 73. Let dist; : TR —
IR™ be the distance of edges such that for all tr € TR, dist,(tr) = ¢, (m2(tr)).

Let Ny = (P, T, F»,m;, my) be an estimation net of N; with cost function ¢;., : Ty —
R.

A function h : S — IR such that for all s € S:

e h(s) = +oc if there is no firing sequence o € T such that s %, s, and
e h(s)=min({d_,,c, e, (t2) | 8 2N, 55 Ao € Ty}) otherwise.

is a permissible function for (S, TR, LB) and dist; to estimate the distance from all
states S to sy. 4

Proof. First, we show that the function is admissible. We consider two possible cases:

e Suppose that V(g 7 15)(s,sy) # 0. By definition, for all firing sequences ¢, € T
such that s QNI sy, there exists g € T3 such that s 31\@ sf. Furthermore,
Etzem Cley (t2) < Ztlem Cie, (t1). This implies h(s) < Zt2692 Cie, (t2), hence
h(s) < > i ep Cier(t1). Since any firing sequence in Ny from s to sy yields a path
from s to sy in (S, TR, LB), h(s) underestimate the distance from s to sy.

e Suppose that ¥ (g 15, 15)(s,57) = 0, i.e., state sy is not reachable from s in N;. Any
value of h(s) < 4o0. Thus, h is admissible.

Second, we show that h is also consistent using contradictions. Suppose that there
exists an edge (s1,%1,52) € TR where h(sy) > dist((s1,t1,52)) + h(s2). Let p € Ty
be a firing sequence such that s, %y, s ¢ and o yields the minimum cost of firing se-
quence from ss to s;. We know that there exists a firing sequence ¢’ € Ty such that
$1 i>N2 s and thég’ Cle, (t2) < dist((s1,t1, $2)). Furthermore, s, 2 sy. By definition,

h(Sl) S Zt’EQ’ clc2(tl) + ZteQClC2(t)‘ Hence, h(Sl) S dist((sl,tl,SQ)) + Ztegclcz(t)
(contradiction).
O
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Figure 4.9: An estimation net of the reset/inhibitor net shown in Figure 4.8: Inhibitor arcs i((>>,ts)) and
i((t%,te)) are removed and both reset arcs r((>>,t4)) and ((t},¢4)) are replaced by a sink invisible transition

(tpy)-

Given an event net, a process net with reset/inhibitor arcs, and a cost of movements,
there are possibly many estimation nets of the product between the event net and the
process net that one can construct. We encode reset arcs explicitly as invisible transitions
that take tokens from places connected to reset arcs, i.e., reset places. Figure 4.9 shows
a reset/inhibitor net and its simple estimation net. Transitions and places of the original
net are preserved and an extra transition is added for each reset place in the original
net. Furthermore, inhibitor arcs are removed. Intuitively, all behavior allowed by the
original net is allowed by the estimation net, but not necessarily the other way around.
Furthermore, we use a cost function where the cost of firing transitions is the same as
the cost of firing the original transitions, while the costs of firing the extra transitions are
0. Note that a zero cost function is allowed because the net is only used to provide an
estimation. We show that such a net and cost is an estimation.

First, we define such an estimation net and cost function as follows:

Definition 4.4.13 (Simple estimation Petri nets and cost)

Let A C A be a set of activities. Let N = (P,T,F,a,m;,my,r,i) be a process net
over A, and let ¢, : T — IR* be a cost function of firing transitions. N’ = (P,T U
T',F', o/, m;, my) is the simple estimation net of N where

o I"={t,|pe U r(t')}, i.e., an extra transition is added for each reset place in N,
veT
o F/': (Px (TUT)U((TUT") x P) — IN is a flow relation returning the weight of
arcs, such that
- foralle e (PxT)U (T x P),F'(e) = F(e),
- for all t, € T”, the following holds:
x F'(t,,p) =0,
* I (p,t,) =1, and
« For all p’ € P\ {p}, F(tp,p') = F(p',t,) =0



74 Computing Alignments

e o : (TUT') — A" is a labeling function such that for all ¢t € T : ¢/(¢) = «(t) and
forallt’ e T": /(t) =7

Furthermore, ¢}, : ('UT") — IR is a estimation cost function for N’ such that for all
teT:c.(t)=cec(t)and forallt’ € T": ¢ (') = 0.

J

We show that the simple estimation net and cost satisfy the requirements stated in
Definition 4.4.3.

Theorem 4.4.14 (Simple estimation net and cost satisfy requirements)
Let A C A be a set of activities. Let N = (P, T, F,«,m;,my,r,i) be an easy sound
reset/inhibitor net over A, and let ¢;. : T — IRT be the costs of firing transitions in
N. Let N' = (P,TUT',F',a/,m;, my) be the simple estimation net of N and let ¢], :
(TUT’) — IR be its cost function as defined in Definition 4.4.13.

N’ with cost function ¢j, is an estimation of N with cost function c;.. 2

Proof. For all transitions ¢ € T enabled at the initial marking (i.e., (N, m;)[t)), if ¢ is not
connected to any reset arc then the firing of ¢ in N, i.e., m; N ~ m, can be mimicked

by firing the same transition in N’ from the same marking m;, i.e., m; N N m. If tis
connected to some reset arcs in N, the firing ¢ can be mimicked in N’ by firing the same

transition, i.e., m; Lom , and firing some extra invisible transitions in N’ to remove
places connected to the reset arcs until marking m'’ is reached. Iteratively, we can show
that for all reachable markings m, € RS(N, m;) there exists a firing sequence in N’ to
reach the same markings. Since the cost of firing all transitions in 7" is the same for both
cic and ¢}, and the cost of firing any of the extra transition ¢’ € T is 0, it is trivial to see
that any firing sequence in N can be mimicked in N with exactly the same total cost.

O

Theorem 4.4.14 shows that simple estimation nets and cost functions yield permis-
sible heuristic functions for reset/inhibitor nets. We perform state space analysis as we
did before, but instead of using the marking equation of the reset/inhibitor net to pro-
vide estimation, we use the marking equation of its estimation net. Given a trace and
a reset/inhibitor net, for all visited states s in the net, the estimation of the remaining
distance from s to its final state is the same as the estimation of remaining distance from
the same state s in its estimation net to its final state. Hence, the A* algorithm and the
marking equation can both be used to compute optimal alignments.

4.5 Computing an Optimal Prefix Alignment

By definition, optimal alignments penalize traces that do not reach proper termination
as described by process models. However, if traces are known in advance to be not com-
pleted yet (i.e., new activities may be appended to the traces), optimal alignments may
mistakenly consider the incompleteness of such traces as deviations. Take for example a
trace o3 = (add items, finalize) of the process net in Figure 4.10. Suppose that the trace
is not completed yet, i.e., more activities may occur for the same trace. Using the stan-
dard cost function, an optimal alignment between the trace and the model is shown in
Figure 4.10. Notice that the occurrence of activity finalize in the trace is considered as a
deviation (move on log), while it should not be the case as new events may occur to make
the trace perfectly fitting (e.g., the sequence of activities (pay, pack, validate, deliver)).
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Figure 4.10: Top: Process net of an online transaction in an electronic bookstore, and Bottom: an optimal
alignment between an incompleted trace o3 = (add items, finalize) and the process net, showing that the
occurrence of finalize in the trace is a deviation.

Therefore, we define a less strict notion of alignments, called prefix alignments. The
main idea of prefix alignments is that incomplete traces are not penalized for not having
reached the final marking. Thus, given a trace and a process model, the absence of
activities in the trace that must occur according to process models to terminate properly
is ignored. Prefix alignments are defined as follows:

Definition 4.5.1 ((Optimal) Prefix Alignment)

Let A C A be a set of activities. Let o € A* be a trace over A and let N = (P, T, F, o, m;,
my) be an easy sound Petri net over A. A prefix alignment v € (A> x T>)* between o
and N is a movement sequence such that:

e m(7),4 = 0, i.e. its sequence of movements in the trace (ignoring >) yields the
trace, and

e There exists a complete firing sequence m; > m; such that () 7 < o le.its
sequence of movements in the model (ignoring >>) yields a prefix of a complete
firing sequence of N.

A, n is the set of all prefix alignments between a trace o and a Petri net N.
Let lc : A” x T” — IR be a likelihood cost function for movements. A prefix
alignment v € A,y is optimal if and only if for all v € Ao,n, 32,4, le((a,b)) <

S arnen (@) .

Figure 4.11 shows an optimal prefix alignhment between trace o5 = (add items, finalize)
and the process in Figure 4.10 according to the standard cost function. Compare the op-
timal prefix alignment with the optimal alignment shown in Figure 4.10. In the prefix
alignment, the occurrence of activity finalize is not considered as a deviation. Instead, it
is considered as a synchronous move because the trace is a prefix of a sequence of activ-
ities, yielded by a complete firing sequence of the net, i.e., trace {add items, finalize) is
a prefix of (add items, finalize, pay, pack, validate, deliver), resulting from the complete
firing sequence (1, t3, t4, ts, tg, t7) of the process net.
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| add items | finalize |
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Figure 4.11: An optimal prefix alignment between the uncompleted trace oo = (add items, finalize) and the
net in Figure 4.10, showing that there is no deviation in the trace.

Given a trace and a process net, in Section 4.3 we showed how to explicitly model the
set of all movements that can be performed in order to construct an optimal alignment
between the trace and the process net. We can use a similar approach as the one proposed
in Section 4.3 to construct an optimal prefix alignment between a trace and a process
net where the final marking can be reached from any reachable marking.

Definition 4.5.2 (Petri Net with option to complete)
Let A C Abe a set of activities. Let N = (P, T, F, o, m;, m) be a Petri net over A. N has
option to complete if and only if for all m € RS(N, m;) : my € RS(N, m). 4

It is trivial to see that a Petri net with option to complete is also an easy sound Petri
net. We show that a firing sequence of the product of an event net and a process net
defines a prefix alignment.

Theorem 4.5.3 (Firing sequences define prefix alignments)

Let A C A be a set of activities. Let 0 € A* be a trace over A and let Ny = (P, Ty, Fi,
aq,m; 1, my1) be its event net. Let Ny = (P, Th, Fh, aa,m; 2, my2) be a Petri net over
A with option to complete, and let Ny ® Np = (P3,T3, F3, a3, m; 3,my 3) be the product
of N1 and N,. For all firing sequences m; 3 £>(N1®N2) m,o € Ty, if myp, = my; then
Tev(N,oN,)(0) is a prefix alignment. N

Proof. Theorem 4.3.5 proves that rev(y, g n,)(0) is @ movement sequence. An event net
consists of a sequence of transitions and therefore the only way to reach the final marking
my,1 from m; ; is by firing all transitions in the net (see Definition 4.3.1). In the product
net, a marking m such that m p, = my,; can only be reached if transitions derived

from the event net are fired. This implies 7 (rev(n, g n,)(0)) =0 N has option to

complete, therefore there exists ¢’ € T5 such that mp, N N, my2. Therefore, there
exists a firing sequence ¢” € T3 such that m g Ny Mmy.3 (see Theorem 4.3.4). We know

that m; 3 e, my3 and rev(y, gn,) (0 - ) is an alignment (see Theorem 4.3.5). Hence,
Tev(N, @ N)(0) is a prefix alignment. O

Take for example the trace o1 = (register, decide, register, send money, inform
acceptance) and the process net shown in Figure 4.1. The process net has option to
complete. Figure 4.12 shows an excerpt of the product between the event net of the
trace and the process net. A prefix alignment can be obtained from any firing sequence
o of the product net that yields a marking m, such that the projection of m to places of
the event net yields its final marking (i.e., [pg])-

To compute such a firing sequence, we use a similar state space exploration approach
based on the A* algorithm as the one proposed in Section 4.4. Given a transition system
of a product of an event net and a process net, the target nodes that yield prefix align-
ments are all markings of the product reachable from its initial marking that cover the
final marking of the event net (i.e., [p;] in Figure 4.12). In the running example, the set
of target nodes is {[p1, pg], [P2, P4, D], [P3, P4, DG), - - -} Figure 4.13 shows the transition
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Figure 4.12: Excerpt of the product of the event net of trace o1 = (register, decide, register, send money,
inform acceptance) and the process net in Figure 4.3. A firing sequence from the initial marking that leads to
a marking m that covers [p}] yields a prefix alignment.

system of the product net in Figure 4.12. Colored states are the set of all states that cover
the final marking of the event net [pg]. Note that for each colored state, there is a path
from the state to the final state of the transition system.

Similar to the steps followed in Section 4.4, first we prove that a path from the initial
state of the product net to the target nodes exists.

Lemma 4.5.4 (A path to reach the final marking of event nets exists)

Let A C A be a set of activities. Let Ny = (P, T4, Fi,a1,m;1,my1) and Ny = (Ps,

Ty, Fy, a9, m; 2, My 2) be an event net and a process net over A with option to complete

respectively. Let T'S(N1 ® N2) = (S, TR, LB, s;, sy) be the transition system of N; @ Ns.

Let Sy = {s € S| syp, = my 1} be the set of all states that yields the final marking of N;.
Forall s € Sy : V(g 7R 1B)(5:,5) # 0, i.e., there exists a path from the initial state to

each state that yields the final marking of N;. J

Proof. For all s € Sy, s € RS(N; ® Ng, s;) and therefore a firing sequence s; —Q>(N1®N2) s
exists. By definition of transition system (see Definition 2.5.2), there exists a path ((s;,
o[1], 51), (51, 0[2],52), ..., (sn, 0[|0l], 5)) € ¥(s,7r,LB)(5:, 5). Therefore, such a path exists.

O

For all process nets with option to complete, we show that the A* provides a firing
sequence that yields an optimal prefix alignment.

Theorem 4.5.5 (Shortest paths yield prefix optimal alignments)

Let A C A be a set of activities. Let Ny = (P, T4, Fi,aq,m;1,my1) be the event net
of a trace 0 € A* over A. Let Ny = (P»,T5, Fy,9,m;2,my2) be a process net over
A with option to complete. Let T'S(N; ® N2) = (S, TR, LB, s;,sy) be the transition
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Figure 4.13: The transition system of the product between the event net of trace o1 =
(register, decide, register, send money, inform acceptance) and the model in Figure 4.1. All colored states

are markings that cover the final marking of the event net, i.e., marking [pg]. The highlighted path from the
initial state to state [pg, ps, p1o] yields the optimal prefix alignment shown in Figure 4.14.

system of Ny ® N,. Let Ic : A® x T — IR™ be a likelihood cost function of move-
ments. Let dist : TR — IR" be a distance function, such that for all tr € TR, dist(tr) =
le(rev(n,gn,) (m2(r))).

Let Sy = {s € S| s;p, = my,1} be the set of states (marking) of 7'S that yields the
final marking my; of Ny and let o € TR* be a shortest path from s; to any state in Sy,
i.e., for all state sy € Sy, 0" € (s rr,1B)(5i,57) : Ztreg dist(tr) < EWEQ, dist(tr').
The sequence of movements revy, gn,)(72(tr)) is an optimal prefix alignment. J

Proof. For all sy € Sy, by definition sy , = my, and there is no transition ¢t € T3 N
(T1 x T5”) can be fired. Furthermore, myo € RS(Ng, sf,p,) implies my3 € RS(Ns, sf)
(see Theorem 4.3.4). Thus, according to Theorem 4.3.5 rev(n, gn,)(m2(0)) is a prefix
alignment. Furthermore, since the distance of a path is the same as the total likelihood
cost of an alignment constructed from the path (see Theorem 4.4.2), rev(y, g n,)(m2(0))
is an optimal prefix alignment. O
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register > > | decide | register | > | send inform
money | acceptance
register | check | check | decide send inform
history | cause money | acceptance
t1 to t3 t4 > ts te tr
Figure 4.14: An optimal prefix alignment between trace o1 = (register, decide, register, send money,

inform acceptance) and the model in Figure 4.1.

The colored path in Figure 4.13 shows a shortest path from the initial state to any
target node of the transition system. The movement sequence constructed from the path
is shown in Figure 4.14. The total likelihood cost of the optimal prefix alignment in
Figure 4.14 is 3.

To this point, we have not discussed a permissible heuristic function that maps each
state of a transition system to a value that underestimates the shortest distance from
the state to reach any of the predefined target nodes. It is easy to see that a function
that always returns zero for all states in the transition system provides such an under-
estimation. The naive cost function mentioned in Theorem 4.4.4 also provides such an
underestimation.

Theorem 4.5.6 (Naive permissible underestimation function for prefix alignment)
Let A C A be a set of activities. Let N; be the event net of a trace ¢ € A* over A.
Let Ny = (P2, Ts, F5, a0, m; 2, my2) be a process net over A with option to complete.
Let TS(N1 ® N2) = (S, TR, LB, s;,sy) be the transition system of Ny ® N,. Let Ic :
A® x T? — IR be a likelihood cost function of movements. Let dist : TR — IR
be a distance function, such that for all tr € TR, dist(tr) = le(rev(y,qn,)(m2(ir))). Let
Sy = {s € S| sp, = my1} be the set of states (marking) of T'S that yield the final
marking of Nj.

A function h : S x P(S) — IR maps the states of T'S(IN; ® N3) to real values such that
forall s € S:

h(s,Sf) = > min ({lc((o]i], ) | € T>})

idzOf (syp, [1],P1)<i<|P1|

is a permissible function for (S, TR, LB) and dist that provides an underestimation of
the shortest distances to Sy. 2

Proof. The proof of this theorem is the same as the proof of Theorem 4.4.4. Intuitively,
given a trace, a Petri net, and a likelihood cost function, each activity in the trace needs
to be “replayed” as either a move on log or a synchronous move. For each state in the
transition system, the total minimum likelihood cost of only considering the remaining
activities to be “replayed” (without considering move on models) provides an underes-
timation for the “real” minimum cost (i.e., the function is admissible). Furthermore,
using the same approach as the proof in Theorem 4.4.4, we know that this function is
consistent.

O

The approach to compute optimal prefix alignments explained in this section is lim-
ited to process nets with option to complete. In [6], we propose an approach to compute
optimal prefix alignments for easy sound process nets based on Petri net coverability
theory. Given a trace and a process net, if the upper bound of total cost of deviations
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Figure 4.15: Left: a directed graph where all arcs have distance 1, and Right: The exploration graph obtained
in the last iteration of the A* algorithm that yields a shortest path from the source node to the target node of

the graph using a permissible underestimation function that always returns O for all nodes (as shown previously
in Figure 2.1).

between the trace and the net is known in advance, a binary search in combination with
marking coverability analysis of product of two Petri nets can be performed to compute
an optimal prefix alignment between the trace and the process net. However, the com-
putational complexity of this approach is much higher than the one presented in this
section. The computation complexity of marking coverability in a Petri net is exponential
to the size of the net. On top of that, the binary search complexity is logarithmic to the
value of the upper bound. The complexity of the approach proposed in this section is
the same as the complexity of the A* algorithm, which is exponential only to the size of
the shortest path. Thus, the approach proposed in this section outperforms our earlier
approach in [6].

4.6 Computing All Optimal (Prefix) Alignments and Rep-
resentatives

Section 4.4 and Section 4.5 show how the A* algorithm can be used to compute optimal
alignments and optimal prefix alignments. Given a trace and a process net, an optimal
(prefix) alignment provides some diagnostics on the type of deviations that occur be-
tween them. However, there can be more than one optimal (prefix) alignment between
them. To get a comprehensive diagnostics on all possible deviations, it may be necessary
to compute all optimal (prefix) alignments.

We extend the original A* algorithm to compute the set of all shortest paths in a
directed graph. Given a directed graph, a source node, and a set of target nodes, the A*
algorithm uses a priority queue to store candidate nodes to be explored iteratively. In
each iteration, the best candidate node in the priority queue is the one with the shortest
distance from the source node after adding the underestimate for the remaining costs.
This way, the algorithm never visits a less promising candidate node before all better
candidates in the queue are visited. Suppose that the first best candidate node in the
priority queue that is also a target node has a shortest distance value of x from the
source node, we know that other shortest paths also have a distance value of z. We
exploit this in order to compute all shortest paths from the source node to any of the
target nodes.
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Figure 4.16: All shortest paths between the source node and the target node of the graph in the left-side
of Figure 4.15, projected onto the exploration graph constructed by the A* algorithm (see the right-side of
Figure 4.15). Note that all shortest paths are “connected” to the shortest path identified by the original A*
algorithm.

The left figure of Figure 4.15 shows a directed graph where the distance of all edges
is 1. The right side of Figure 4.15 shows an example of how the A* algorithm explores
the nodes in the graph to identify a shortest path from the source node to the target
node. Figure 4.16 shows the set of all shortest paths from the source node to the target
node that can be identified from the node exploration graph shown in the right side of
Figure 4.15. Note that all shortest paths in Figure 4.15 are connected to some nodes of
the shortest path identified by the original A* algorithm.

For each queued node, the original A* algorithm only stores one predecessor node,
i.e., the one that can be used to construct a shortest path to the node from the source
node. If there are more than one predecessors that yield different paths with the same
shortest distance, only one of them is stored. For example in Figure 4.15, node 3 is not
stored as a predecessor of node 6 (i.e., the arc between node 3 and node 6 is dashed),
because node 2 is already stored as the predecessor of node 6 and the shortest distance
from the source node to node 6 either via node 2 or via node 3 is the same (i.e., distance
of 2). To obtain more than one shortest path from the source node to the target node, for
each queued node we store all of its predecessors that yield paths with the same shortest
distance from the source node.

Furthermore, we do not stop iterating nodes in the priority queue after finding the
first best candidate that is also a target node. Instead, we continue the iterations with
the identified shortest distance value as a threshold. If the best candidate in the priority
queue has a total shortest distance from the source node above the threshold, we stop
the iteration. Algorithm 2 shows the pseudocode of the modified A* algorithm that finds
all shortest paths between a source node and a target node.

Given a source node, a set of target nodes, and a directed graph with distance be-
tween nodes of the graph, we can obtain all shortest paths from the source node to the
target nodes using Algorithm 2. Thus, given a trace and a process model, we can compute
the set of all optimal alignments between them (see Theorem 4.4.2). Take for example a
trace o3 = (add items, finalize, validate) and the process net shown in Figure 4.10. Fig-
ure 4.17 shows how an exploration graph is constructed in each iteration of Algorithm 2
(line 6-30) to compute all shortest paths between the source node and the target node
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Algorithm 2: Pseudocode of an algorithm to obtain all shortest paths from a source
node to a set of target nodes, assuming that the source node is not in the set of
target nodes

N O g W=

o @
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13
14
15
16

17

18

19
20
21
22
23
24
25
26
27
28
29
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31
32
33

34
35
36

initialize pqueue with the source node;
visitedNodesSet « 0;
solutionNodesSet + (;
solutionFound « false;
distanceLim < +o0;
while pqueue is not empty do
currNode «+ best candidate node in pqueue (node with the minimum total
distance +underestimation distance to the nearest target node);
if total distance + estimation of currNode < distanceLim then
if currNode € the set of all target nodes then
solutionFound < true;
distancelLim < shortest distance to reach currNode;
solutionNodesSet < solutionNodesSet U {currNode};
end
forall succNode € set of all successors of currNode do
if succNode € visitedNodesSet then
if (stored best distance to reach succNode) > (current distance to
reach succNode) then
replace the values of stored best predecessor and total distance
for succNode with the current ones;
else if (stored best distance to reach succNode) = (current distance to
reach succNode) then
\ store the current predecessor together with the old predecessors;
end
else
visitedNodesSet « visitedNodesSet U {succNode};
store predecessor and total distance to reach succNode;
add succNode to pqueue;
end
end
else
| break while;
end
end
if (solutionFound = true) then
forall solutionNode € solutionNodesSet do
recursively iterate all predecessors of solutionNode until the source node to
obtain all shortest paths;
end
return all shortest paths;
end
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Figure 4.17: Top Left: a directed graph where all arcs have distance 1, and Other: Illustration on how the
nodes of the graph are explored in each iteration of line 6-30 of Algorithm 2 using a permissible underestima-
tion function that always returns 0 for all nodes.
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Figure 4.18: Illustration on how all shortest paths are constructed from the final exploration graph obtained
in Figure 4.17 using Algorithm 2. Stored predecessors are iterated backward from the target node.

of the directed graph shown in the left side of Figure 4.15. Figure 4.18 shows a step-by-
step construction of all shortest paths from the obtained exploration graph (i.e., line 33
of Algorithm 2). The set of constructed shortest paths is the same as the one shown in
Figure 4.16.

Using Algorithm 2 to compute all shortest path between the trace and the model, we
obtain the set of all optimal alignments between o3 and the net as shown in Figure 4.19.
Note that some alignments are similar to others. For example, ~» can be obtained from
by swapping the move on model (>>,¢4) on column 3 with the move on model (>>, t5) on
column 4. v, can be obtained from 3 by swapping the same pair of columns. Transitions
t4 and t¢5 can be fired in any order according to the net. Similarly, 75, s, and ~; have
exactly the same set of movements with different ordering between two moves on log
(finalize,>>) and (validate,>>) and a move on model (>>,%9). In some cases, instead of
having all optimal alignments, having some representatives of all optimal alignments
may provide better deviation diagnostics.

Therefore, we introduce the notion of representatives of all optimal alignments. Given
a trace and a process net, the approach presented in Section 4.4 computes an optimal
alignment that represents all optimal alignments between the trace and the net. Algo-
rithm 2 computes the set of all optimal alignments between the trace and the net, thus
each alignment in the set represents itself. Given a set of optimal alignments, the idea
is to group alignments that have similar characteristics. For example, two alignments
where each of them can be constructed by reordering the elements of the other should
be grouped together, e.g., alignment v, and 5 in Figure 4.19.

We take a pragmatic approach to group all optimal alignments between a trace and a
process net without introducing too much computation overhead. We use the exploration
graphs constructed as byproducts of Algorithm 2. Take for example the exploration graph
shown in Figure 4.18 and all four shortest paths from the source node to the target node
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Figure 4.19: All optimal alignments between trace o3 = (add items, finalize, validate) and the process net
in Figure 4.10.

identified from the graph shown in Figure 4.16. Figure 4.20 shows some possible ways
to group shortest paths from the graph shown in Figure 4.16. All edges in the yellow
area are parts of some shortest paths from the source node (with visit order 1) to the
target node (with visit order 12). We choose some representatives of all shortest paths
by first choosing a set of nodes to “knot” some shortest paths. These nodes are called
knot nodes. Two shortest paths in an exploration graph are grouped together by a knot
node if they contain an edge that points to the knot. For example, the leftmost figure
in Figure 4.20 shows a situation where the target node is chosen as the only knot node.
Since all shortest paths reach the target node, i.e., they contains an edge that points to
the knot node, all shortest paths in the figure are grouped as one group. In the other
extreme, the rightmost figure shows a situation where the source node is chosen as the
only knot node. Since all edges go out from the source node, there are no groupings on
shortest paths, i.e., each shortest path belong to a group.

Given an exploration graph, the set of knot nodes for the graph can be chosen ran-
domly. However, to maximize the similarity between shortest paths that are grouped
together without introducing too much computation overhead, we choose the set of knot
nodes based on the number of edges that need to be iterated from the target node. For
example, the knot nodes in the second-left figure of Figure 4.20 are the nodes reachable
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Figure 4.20: The final exploration graph and identified shortest paths taken from Figure 4.18. Shortest paths
are grouped by choosing different levels of knot nodes. The number of groups increases as the selected level of
knot nodes increases.

add items | finalize | > | > | validate > \
~v1 =| add items | finalize | pay | pack | validate | deliver
131 l3 la s le 144

add items | finalize | > | > |validate | > \
v =| add items | finalize | pay | pack | validate | cancel

ty t3 ty t5 te tg

add items | > | finalize | validate |
add items | cancel
tq tg > >

3

Figure 4.21: Representatives of all optimal alignments between trace (add items, finalize, validate) and the
process net in Figure 4.10 using knot nodes of level 1.

after 1 backward iteration from the target node. Thus, we say that the shortest paths are
knotted at level 1. The knot nodes in the third-left figure of Figure 4.20 are reachable af-
ter 2 backward iteration from the target node, thus the shortest paths are knotted at level
2. We use knot nodes at different level to group some optimal alignments together and
take one random representative from each group. Notice that the number of grouped
shortest paths decreases as the level of knot nodes increases.

Given an exploration graph and a set of shortest paths identified from the graph,
knot level offers a “slider” mechanism to group shortest paths with some degree of simi-
larity. Figure 4.21 shows the set of representative optimal alignments obtained from the
example shown in Figure 4.19 using knot nodes of level 1. Notice that the each repre-
sentative is unique and cannot be reproduced by simply swapping some movements of
other representatives.

Note that the strategy to select knot nodes based on the number of iterated arcs from
the target node does not guarantee that a shortest path belongs to just one group, i.e.,
a shortest path may belong to multiple groups. One can also think of other strategies
to choose knot nodes. For example, instead of using the target node as a reference one
can also use the source node as reference and select knot nodes based on certain number
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of arcs need to be iterated from the source node. In this way, two shortest paths are
grouped together if they are started with the same sequence of edges. We can use the
same knot node strategy to obtain representatives of optimal prefix alignments.

4.7 Experiments

Given a trace and a process net, Section 4.4 to Section 4.6 explain various ways to
compute optimal (prefix) alignments between them and their representatives. In this
section, we show some experimental results to evaluate the proposed approaches.

We implemented the approach in ProM [198] and used the Ip_solve tool as the ILP
solver in our implementation?. Two sets of experiments were performed. In the first
set of experiments, we compared the proposed approach with existing approaches using
two similar artificial process nets both having a real-life complexity. The second set
of the experiments was performed to show the applicability of the approach to handle
real life models and logs. We used case studies from the CoSeLog project involving
several municipalities in the Netherlands. The first set of experiments is explained in
Section 4.7.1, while the case study results are explained in Section 4.7.2.

4.7.1 Artificial Logs and Models

The goal of this set of experiments is to evaluate the robustness of the proposed approach
to compute alignments between traces and complex process models. The approaches
proposed in Section 4.5 and Section 4.6 are two extensions of the basic approach pro-
posed in Section 4.4. Thus, in this section we focus on the evaluation of the approach
introduced in Section 4.4. In particular, we focus on two aspects: memory efficiency and
computation time.

We compared the two approaches proposed in Section 4.4: the one with naive under-
estimation function (see Theorem 4.4.4) and the one with a more precise underestima-
tion function using ILP (see Theorem 4.4.9). In addition, we compared both approaches
with the tree-based state space exploration approach proposed by Cook and Wolf [39]
since this approach is most related to our work. We created two artificial process nets and
a set of logs generated from both nets. Both nets loosely describe the process of applying
for a building permit in a municipality in the Netherlands. One process net is a Petri net
(see Figure 4.22), and the other is a reset/inhibitor net (see Figure 4.23). For the sake of
readability, some parts of the net are grouped into subprocesses. Both process nets have
the same subprocess of regular permit check as shown in Figure 4.24. Furthermore, both
of them contain invisible/duplicate transitions and complex control-flow patterns (e.g.,
OR-splits, loops, and choices).

We generated perfectly fitting traces from each net (traces that can be perfectly re-
played) with various lengths between 20 to 69 activities per trace, and then introduced
noise by randomly removing and/or inserting activities. Then, we constructed an opti-
mal alignment for each trace and its net and recorded the number of queued states (i.e.,
the states that are actually visited and others that are considered as candidates to be
visited) needed to construct it.

2see http://sourceforge.net/projects/lpsolve
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Figure 4.22: The Petri net used in the experiments and details of some of its subprocesses.
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Figure 4.24: The sub-process of transition regular permit check in both Figure 4.22 and Figure 4.23.

We use the standard cost function for all of the experiments. However, since the
A* algorithm requires positive non-zero cost (see the discussion about the A* algorithm
in the end of Section 4.4.1), we add all costs by a negligibly small value ¢ = 0.001.
For benchmarking, we did the same set of experiments with the tree state-space-based
approach proposed in [39]. We use a computer with Intel Xeon 2.66 GHz processor and
use 1 GB of Java Virtual Memory. The results are shown in Figure 4.25 to Figure 4.27.
Each dot in the figures is based on the average of performing the same experiment 30
times, each with a different log consisting of 100 traces. The vertical bars indicate the
corresponding 95% confidence interval. Note that in all figures, the y-axis is shown using

a logarithmic scale.

Figure 4.25 shows that the number of explored states to construct alignments in-
creases as the length of traces and noise level increases. The figure shows that the
approach with ILP computation explores much fewer states to construct alignments than
other approaches in all cases. Furthermore, it is less sensitive to noise than other ap-
proaches. The permissible underestimation functions defined in Theorem 4.4.9 manage
to estimate the cost such that only relevant states that actually lead to solutions are ex-
plored. In cases where both the approach without ILP and the tree-state-space based
exploration need to choose which transition to fire for an OR-split/join pattern, both of
them use random selection that may lead to the exploration of many irrelevant states
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Figure 4.25: The number of explored states to construct optimal alignments for the Petri net in Figure 4.22
and the reset/inhibitor net in Figure 4.23. Each dot in the figures is based on the average of performing the
same experiment 30 times with different noisy logs where each log consists of 100 traces. Missing values are
due to out-of-memory problems of tree-based and A* without ILP. Clearly, the A* with ILP outperforms the A*

without ILP and the tree-based state exploration.
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Figure 4.26: The computation time required to construct optimal alignments for the Petri net in Figure 4.22
and the reset/inhibitor net in Figure 4.23. Each dot is based on the average of performing the same experiment
30 times with different noisy logs where each log consists of 100 traces. Missing values are due to out-of-
memory problems of tree-based and A* without ILP. For lower noise levels, the A* without ILP is the fastest.
For higher noise levels, the A* with ILP is faster and often the only one to terminate.

before they finally explore the correct ones. We can also see that the estimation function
significantly reduces the number of states that need to be investigated in cases where
there is noise.

Figure 4.25 also shows that only the ILP-based approach managed to compute optimal
alignments in all experiments. Other approaches have out-of-memory problems when
dealing with either large or noisy logs. For example, in the experiment with traces of
length between 20 and 24 (see Figure 4.25, top-left), the tree-based state space approach
[39] only managed to compute optimal alignments until the noise level reaches 5%.
Above 5% noise level, there are too many states that need to be explored by the approach
such that out-of-memory problems occurred. The non-ILP approach performs better than
the tree-based state space approach, but it can only provide results up to noise level 20%
before out of memory problem occurred. Note that other than storing queued states, all
approaches need to store the structure of constructed exploration graphs in memory.

Figure 4.26 shows the computation time needed to construct optimal alignments us-
ing different approaches. As shown in Figure 4.26, the approach with ILP requires more
computation time than the others if there is no noise. The overhead of computing the
ILP per visited state does not pay off if there are no or just few deviations. However, in
cases where noise exists and traces are long, the approach without ILP explores signifi-
cantly more states than the one with ILP, such that its total computation time is higher.
See for example the experiments involving a Petri net without reset and inhibitor arcs
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Figure 4.27: The computation time and the number of explored states to construct optimal alignments for
the Petri net in Figure 4.22 and the reset/inhibitor net in Figure 4.23. Each dot is based on the average of
performing the same experiment 30 times with different perfectly fitting logs where each log consists of 100
traces. Missing values are due to out-of-memory problems of tree-based and A* without ILP. A* with ILP is the
only algorithm that manages to provide optimal alignments for traces with high noise level.

and log with traces of lengths between 20 to 24 events in top-left of Figure 4.26. When
noise level reaches 20%, the ILP approach has lower computation time than the one
without ILP. Similarly, the experiment with the reset/inhibitor net and traces of same
length shows the same result when noise level reaches 20% (see Figure 4.26, bottom-
left). Moreover, for larger noise levels the tree-based and A* without ILP are unable to
compute alignments due to out-of-memory problems.

Figure 4.27 shows experimental results using the same models and logs with perfectly
fitting traces of various lengths. As shown in the figure, only the ILP approach managed
to provide optimal alignments for all experiment logs while the others fail at logs with
long traces due to out of memory problems. This underlines the importance of having a
memory-efficient alignment approach.

As mentioned in Section 4.5 and Section 4.6, the approaches to compute optimal
prefix alignments, all optimal (prefix) alignments, and all representatives are all based
on the approach of computing one optimal alignment per trace in Section 4.4. Given
a trace and a Petri net, the approach to compute one optimal prefix alignment for the
trace and the net is similar to the approach to compute one optimal alignments using
the permissible underestimation function in Theorem 4.4.4. Therefore, we believe that
the outcome on computation time and memory use of the computation of prefix optimal
alignment resembles the results of using the A* algorithm without ILP in this section.

The complexity of computing all optimal (prefix) alignments between the trace and
the net is obviously higher than computing just one optimal (prefix) alignment between
them. The computation of all optimal (prefix) alignments requires an extra iteration on
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Table 4.1: Real-life logs and models used in experiments

Num Log Petri net Net Features

Name | #Traces | #Events T P | Invisible | Duplicate | Parallel | Choice | Loop

1 LMO1 3,181 20,491 | 12 | 15 yes - yes - -
2 LMO02 1,861 15,708 | 19 16 yes - - yes yes

3 | LMO3 10,271 85,548 | 21 | 24 - - yes - -

4 | LMO4 4,852 29,737 | 27 | 16 yes - - yes -

5 | LMO5 25,846 | 141,755 | 24 | 14 yes - - yes -
6 | BouwV 714 9,116 | 33 | 23 yes - - yes yes
7 | Bouwl 139 3,364 | 34 | 33 yes yes yes yes yes
8 | Bouw2 121 2,247 | 30 | 28 yes - yes yes yes
9 | Bouw3 94 913 | 31 31 yes - yes yes yes

10 | Bouw4 109 2,331 | 31 31 yes - yes yes -

priority queue and also extra steps to reconstruct alignments from all identified paths. In
the worst case, the extra computation that one needs to performed to obtain all optimal
(prefix) alignments is exponential in the size of the shortest path. Therefore, we believe
that the both computation time and memory requirement of the approach to compute all
optimal (prefix) alignments is much more than the ones required to compute one optimal
(prefix) alignment. In Section 4.7.2, we show the experimental results using real life logs
and models.

4.7.2 Real Life Cases

Alignments are the starting point for various types of analysis based on both observed
and modeled behavior. To show that the approach shows various insights and robust to
logs and models with real-life complexity, we took several real-life logs and models as
case study. The logs and models were taken from Dutch municipalities, mostly the ones
involved in the CoSeLog project [26]. Most logs and models are related to building per-
mit application handling, and some others are related to objection handling of building
permit decision. Details about the logs and the models are shown in Table 4.1.

First, we compared the deviation diagnostics and time required to compute 1 opti-
mal (prefix) alignment per trace using all pairs of logs and models. Figure 4.28 shows
the comparison results. As expected, optimal alignments show higher average number
of deviations per trace than prefix alignment because uncompleted traces are penalized.
In the experiments with logs/models “LM03” and “BouwV”, the difference between the
average deviation cost per trace provided by optimal alignment and optimal prefix align-
ment are much higher than others. This is an indication that in the two logs, many of
the traces are incomplete compared to other logs. The right chart of Figure 4.28 shows
that the computation time of both approach are relatively low (lower than 100 ms per
trace for all logs and models). If we only take into account the time required to replay
all unique traces in the logs, the total computation time for each pair of log and model
in the experiments is always below 9 seconds (not shown in the graph). This shows that
the approaches to compute one optimal (prefix) alignment per trace in Section 4.4 and
Section 4.5 are robust to handle logs and models with real-life complexity.

Figure 4.29 shows diagnostics provided by optimal (prefix) alignments for the same
set of traces in log “LMO03”. Notice that there are more moves on model identified by the
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approach to compute optimal alignments because the traces are not properly terminated.
Such a proper termination is not required for optimal prefix alignments, hence it is not
penalized. The diagnostics shown in Figure 4.29 represent 1,854 + 497 + 479 + 362 =
3,192 traces. There are 10,271 traces in the log. Hence, Figure 4.29 shows more than
30% of the total number of traces in the log. This implies that at least 30% of traces
in the log need to be filtered out if the log is about to be used for analysis that require
completed traces, e.g., the average throughput time of cases.

We also computed all optimal alignments and representatives of all optimal align-
ments for all pairs of logs/models. In all experiments, we chose the set of knot nodes
of level 1 to get representatives of all optimal alignments. We recorded the maximum
and average number of all optimal alignments per trace. Furthermore, we recorded the
number of representatives, as well as the number of optimal alignments they represent.
The results of the experiments are shown in Table 4.2.

In few of the set of all experiments, out-of-memory exceptions occurred when com-
puting all optimal alignments between traces in the event logs and models. The reason
for these out-of-memory problems is simply because there are too many optimal align-
ments between the traces in the logs and the models. For example, the experiment with
log/model “LMO03” shows that the maximum number of all optimal alignments between
a trace in the log and the model is more than 32 million (i.e., a representative in the log
represents more than 32 million optimal alignments). Other pairs of logs and models
that have the same exceptions (“Bouw1” and “Bouw4”) also have a high maximum num-
ber of represented optimal alignments per trace. In such cases, constructing all optimal
alignments is obviously memory-demanding.

In all experiments, we managed to obtain all representatives of all optimal align-
ments. The number of obtained representatives per trace typically varies between 1 and
2. This shows that for real life logs and models, variations between optimal alignments
rarely occur at the end of the alignments. In fact, the variations are spread along the
alignments. If we only compute all representatives, the maximum required computation
time is below 21 seconds, which is acceptable for real-life use case.
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Figure 4.29: Screenshots of the implemented approach in ProM 6, showing a comparison between deviation
diagnostics provided by one optimal prefix alignment (left) and one optimal alignment (right) in the experi-
ment with log/model “LM03”.

Table 4.2: Results of Computing More than One Optimal Alignments/Trace in Real-life Logs/Models

Representative Alignments, knot level-1 All Optimal Alignments
Num Log #Representatives Max. Total Time #Alignments Total Time
per Trace #Represented (seconds) per Trace (seconds)

max avg. | Opt. Alignments max avg.

1 LMO1 2 1.03 4,272 < 1sec 6,281 | 158.00 1 sec
2 LMO02 2 1.15 1,716 < 1sec 3,003 4.99 < 1sec
3 LMO03 2 1.17 32,686,880 8 sec o/m o/m o/m
4 LM04 2 1.00 268 < 1sec 328 4.30 < 1sec
5 LMO5 2 1.00 316,029 1sec | 316,029 50 < 60 sec
6 | BouwV 2 1 15,016 < 1sec 24,025 105 < 1sec
7 | Bouwl 2 1 22,118,400 < 7 sec o/m o/m o/m
8 | Bouw2 2 1 1,216 < 1sec 1,216 38 < 1sec
9 | Bouw3 2 1 8,829 < 1sec 8,829 166 < 1sec
10 | Bouw4 2 1 67,376,336 < 21 sec o/m o/m o/m

o/m : Out-of-memory exception

4.8 Conclusions

In situations where process executions are not enforced by systems, deviations between
the behavior of an organization and the models used to describe the ideal behavior of
the organization occur frequently. The analysis of business processes based on observed
behavior has proven to be a complex problem in such situations, because analysis tech-
niques typically have difficulties relating the observed behavior to the modeled behavior.
In this chapter, we showed how to compute various types of alignments between ob-
served behavior in the form of event logs and process models in form of Petri nets or
reset/inhibitor nets.

Aligning traces with Petri nets or reset/inhibitor nets is a complex problem which
we addressed by translating this problem into a shortest path problem on a (possibly
infinite) graph. We showed that a shortest path can always be found using an A* based
algorithm with a permissible underestimation function. The techniques presented in this
chapter use the relation between the structure of the Petri net and its potential behavior
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optimally to improve computation efficiency. We exploited the marking equation in our
estimation function. The experiments using real-life size logs and models showed that
memory use is reduced significantly in all cases where the marking equation is exploited.
In situations where no deviations occur, the computation time overhead caused by com-
puting the marking equation slightly increases the overall computation time. However,
in cases where process models are complex and deviations are more frequent, the use
of the marking equation leads to a reduction in computation time next to the memory
reduction. In fact, without using the marking equation, out-of-memory problems occur
already for moderate-sized models and logs. By exploiting the marking equation we can
analyze processes which are an order of magnitude larger. Furthermore, we showed us-
ing several study cases that the approaches are robust to logs and models with real-life
complexity, and alignments in general provide valuable insights into process executions.

In order to make our approach applicable to real-life languages such as BPMN, EPCs,
etc, we extended our techniques to Petri nets with reset and inhibitor arcs. This way we
can deal with advanced workflow patterns, such as cancellation, priorities, OR-joins, and
timeouts more easily. Languages like BPMN, EPCs, UML Activity Diagrams, and YAWL
can easily be translated to Petri nets with reset and inhibitor arcs while retaining precise
semantics. Our experiments show that the introduction of these arcs does not lead to a
significant increase in memory usage or computation time.

Furthermore, given a trace and a process model, we extend the approach to compute
an optimal prefix alignment, all optimal (prefix) alignments, and a set of representatives
of all optimal (prefix) alignments between them. This way, we provide more types of de-
viation diagnostics between the trace and the model. Although the extensions are compu-
tationally more expensive than the original approach to compute one optimal alignment
per trace, real-life experiments show that these approaches are applicable to logs/models
of low to medium complexity and that they provide complementary diagnostics to the
one provided by the one optimal alignment per trace approach.
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Chapter 5

Extension to High-Level Deviations

( PART II. Alignments )

Observed Behavior
(Event Log) lunluuluying)

Modeled Behavior
(Process Model)

5.1 Introduction

Alignments provide a way to measure the severity of deviations and explicit diagnos-
tics on where the deviations are. Given a trace, a process model, and a likelihood cost
function of movements, deviations are explicitly shown by moves on model and moves
on log of an optimal alignment between the trace and the model with respect to the
cost function. Furthermore, the total cost of the alignment indicates the likelihood of
the deviations. However, diagnostics for log/model moves tend to be too low-level. Of-
ten measures and diagnostics at a higher-level of granularity are desired [53,162]. For
example, high-level management in organizations may have more interest in knowing
whether two activities are often swapped or whether an activity is often performed in-
stead of some other activities in the trace.

Given a trace and a process model, low-level deviations in the form of moves on
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Figure 5.1: A visa application handling process.
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Figure 5.2: An optimal alignment between trace o1 = (register, interview, fingerprint, recheck, decision)
and the model in Figure 5.1, showing low-level deviations.

model/log are the “building blocks” for the higher-level deviations between them. The
trace does not perfectly fit the model if and only if there is either a move on model or a
move on log in an optimal alignment between them. High-level deviations may not be
easily identified from low-level deviations. Take for example the process of a visa applica-
tion handling in Figure 5.1. The process starts when an applicant files a visa application
and registers himself in a visa center (register). While the documents of the applica-
tion are checked by an officer (check document), another officer collects the applicant’s
fingerprint (fingerprint) using a machine and then performs an interview (interview). If
suspicious information is found in the application, a manager may decide to recheck the
applicant (recheck). Rechecking activity may include checking all documents of the ap-
plicant. The process terminates after the manager makes a decision on the application
(decision).

Suppose that in an instance of the process, the fingerprint machine has some prob-
lems and therefore the fingerprint activity is frequently swapped with interview. Further-
more, a manager performs the recheck procedure instead of check documents because an
officer that should perform the latter activity is absent. Trace o1 = (register,interview,
fingerprint, recheck, decision) shows a trace where both high-level deviations occur. An
optimal alignment between the trace and the process model is shown in Figure 5.2. Fig-
ure 5.2 explicitly shows that there are four low-level deviations: two moves on model
and two moves on log. Identifying that fingerprint is swapped with interview and recheck
replaces check documents in this alignment is not trivial. The combination of move on
model (>>,t3) and move on log (fingerprint,>>) indicates that the activity fingerprint
is misplaced in the trace, but it does not explicitly show that it is swapped with an-
other activity in the trace, i.e., interview. Similarly, replacement of check documents with
recheck cannot be easily inferred by pairing move on model (>>,¢5) and move on log
(recheck,>>), as (>>,t5) can also be paired with another movement (fingerprint, >>) that
yields a different conclusion.

In this chapter, we extend the approach of computing optimal alignment in Chapter 4
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to check whether high-level deviations occur in the trace. Section 5.2 provides a detailed
explanation on an approach to check high-level deviations using alignments. Section 5.3
shows how the approach can be used to identify the possible root causes of deviations
between the trace and the model. Related work is discussed in Section 5.4. Experiment
results are provided in Section 5.5, and Section 5.6 concludes the chapter.

5.2 High-level Deviation Patterns

In this chapter, we only consider high-level deviations that are related to control-flow. We
explicitly model high-level deviations as patterns of low-level deviations. To avoid ambigu-
ity, we use Petri nets to express the deviation patterns. A deviation pattern is a Petri net
fragment that represents a high-level deviation explicitly. Therefore, a high-level devia-
tion pattern only allows the deviating behavior it represents and nothing else. Given a
trace and a Petri net, a deviation pattern is first appended to the net in order to check the
occurrences of the high-level deviation represented by the pattern in the trace. A devia-
tion pattern that is appended to a net is an instance of the pattern in the net. If the trace
contains a deviation that is represented by the pattern then an optimal alignment be-
tween the trace and the appended net should contain synchronous moves of transitions
that belong to the appended pattern.

Some transitions in a deviation pattern are marked as input/output borders. Given
a Petri net to be appended with a deviation pattern, all input/output borders in the
pattern have the same input/output arcs as some transitions in the net. Hence, these
borders “glue” all instances of the pattern to the original Petri net. Some transitions in
a deviation pattern may have the same label. The initial marking and final marking of a
deviation pattern are the empty marking [|.

In this section, we provide some examples of deviation patterns, intuition behind each
of them, and explanation on how to use them in order to identify high-level deviations.
Without aiming to be complete, in this section we discuss the three deviation patterns
mentioned in [53,162]: (1) the activity replacement pattern, (2) the activity reordering
pattern, and (3) the activity repetition pattern. Other high-level deviation patterns can
be easily derived based on these patterns.

5.2.1 Activity Replacement Pattern

In practice, an execution of an activity may be replaced by an execution of another
activity that is similar to the original one. Take for example the net in Figure 5.1. In
a normal situation, the documents of a registered application are checked by an officer
(check documents). However, if suspicious information is found in the application then a
manager may decide to check the documents himself instead of the officer soon after both
the fingerprints of the applicant are collected and the interview report of the applicant is
obtained, i.e., by performing activity recheck. In this case, activity recheck replaces check
document. Suppose that the trace for this case is o2 = (register, fingerprint, interview,
recheck, decision). Figure 5.3 shows an optimal alignment between the trace and the net
in Figure 5.1. The alignment shows that there are two low-level deviations in the trace.
However, it does not show that activity check document is replaced with activity recheck.

We can check whether activity recheck is replaced with check document in trace o5 by
computing an optimal alignment as explained in Chapter 4. First, we append transition
ti5 labeled recheck to the original net and copy both the input/output arcs of transition



102 Extension to High-Level Deviations

| register | fingerprint | interview | > | recheck | decision
register | fingerprint | interview | check document decision
t to ts ts > te

Figure 5.3: An optimal alignment between trace o2 = (register, fingerprint, interview, recheck, decision)
and the net of Figure 5.1 while using the standard likelihood cost function.

LEGEND
(transition id) (transition id)
check document Activity name Activity name
. (diagnostics info)
ts Appended transition Original transition

(replacing check document)

Figure 5.4: The result of appending ¢i5 to the net shown in Figure 5.1. ¢i5 models the replacement of activity
check document with activity recheck.

Trace | register | fingerprint | interview recheck decision
register | fingerprint | interview recheck decision
Model tq to t3 tis te
Diagnostics — — — check document is —
replaced with recheck

Figure 5.5: Top: An optimal alignment between trace o2 = (register, fingerprint, interview, recheck,
decision) and the net of Figure 5.1 appended with the replacement pattern instance shown in Figure 5.6 while
using the standard likelihood cost function, Bottom: Diagnostics obtained by translating the synchronous
moves of appended transitions into high-level deviation diagnostics.

- O X p LEGEND
inputx\\ E output x

N , rel Appended — — Appended arc for
WM transition input/output border
replace x with 'y Original OOriginaI » Original
tp name | transition place arc
1

Figure 5.6: A deviation pattern for replacing an activity (x) with another activity (y).

labeled check document (¢5) as shown in Figure 5.4. This way, we explicitly model the
replacement of activity check document with activity recheck. Second, we compute an
optimal alignment between o5 and the appended net to check whether such a replace-
ment occurs. An optimal alignment between them is shown in Figure 5.5. The fourth
column of the optimal alignment in Figure 5.5 shows a synchronous move between the
appended transition tis; with activity recheck. Such a synchronous move can be trans-
lated into high-level deviation diagnostics indicating that in o5 there is a replacement of
activity recheck with activity check document.

The set of appended transitions and arcs in Figure 5.4 is an instance of a high-level
deviation pattern that represents the replacement of an activity with another activity.
Figure 5.6 shows the deviation pattern. The same pattern can be used to check the
replacement of other pairs of activities. Transition ¢p; in the pattern has exactly the
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ti
Check document
placing the required activities between [Py, p3] and [Ps,Pel)

P2

LEGEND
Ps (transition id) (transition id)
t t Activity name Wi
- eplaced : . (diagngstics info) l:' Activity name
g activities _» Appended transition Original transition
register decision
P3 5

Figure 5.7: Modeling the execution of check document that replaces all activities in the fragment of the Petri
net shown in Figure 5.1 between marking [p2, p3] and [ps, ps]. Firing ¢; from marking [p2, p3] leads to marking

[ps, po]

same set of input and output places as the transition in the fragment with label z, i.e.,
tp; is an input border as well as an output border of the pattern. The transition with
label z is enabled if and only if transition ¢p; is enabled, and firing the transition labeled
x from a marking m leads to the same marking as the one yielded by firing tp; from m.

The replacement pattern in Figure 5.6 can be further generalized to check the re-
placements of sets of activities. An example of an appended instance of this generalized
pattern is shown in Figure 5.7. Figure 5.7 models an execution of activity check docu-
ment that replaces all activities that should be performed between activity register and
decision according to the original Petri net. Marking [p, ps] is reachable after transition
t1 (labeled register) is fired. The addition of transition ti to the original model allows a
firing sequence (¢, ti) from the initial marking of the original net that enables ¢ (labeled
decision). Note that marking [ps, p3] has to be reachable from the initial marking of the
original Petri net and marking [ps, pg] has to be reachable from marking [ps, p3] to ensure
that the set of reachable markings in the original net is preserved.

5.2.2 Activity Reordering Pattern

Process models show how activities are ordered. In practice, some activities can be re-
ordered. For example, the order of activity fingerprint in a visa application handling
process shown in Figure 5.1 may be swapped with interview if the fingerprint machine
is not available right after the application is registered. A possible trace for this case is
o3 = (register, interview, fingerprint, check document, decision). To check whether the
two activities are reordered in the trace, we use the same approach explained in Sec-
tion 5.2.1. We first append the original net with an instance of activity reordering pat-
tern. Then, we compute an optimal alignment between the trace and the appended net.

Figure 5.8 shows a Petri net fragment that is appended to the original net in Fig-
ure 5.1. Firing transition ti; has the same effects as firing ¢, in the original net (ignoring
place pi;). Similarly, firing ti, has the same effect as firing 3. Without the addition
of place pi;, the addition of ¢i; and tip can be viewed as two instances of the activity
replacement pattern. However, we can only say that activity fingerprint is swapped with
interview if both replacements occur. The addition of place pi; ensures that transition i,
can only be fired if and only if transition ¢i; has been fired before, i.e., the place ensures
ordering between appended transitions. Furthermore, firing ¢i; without firing ti, will
leave a token in place pi;. This implies that the final marking of the original net is not
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interview
(swap fingerprint
with interview)

fingerprint

(swap fingerprint

with interview) LEG EN D

(transition id)

(transition id)
Activity name l:l Activity name
(diagnostics info)
Appended transition Original transition

fingerprint interview

Figure 5.8: Modeling the swapping of activity fingerprint with interview in the net shown in Figure 5.1.

Trace | register | interview | fingerprint | check document | decision
register | interview | fingerprint | check document | decision
Model tq ti1 t’ig ts te
Diagnostics — fingerprint is swapped — —
with interview

Figure 5.9: Top: An optimal alignment between trace o3 = (register,interview, check document,
fingerprint, decision) and the appended net of Figure 5.8, Bottom: Diagnostics obtained from synchronous
moves of appended transitions.

reachable. Thus, given a trace and a Petri net appended with an instance of the swapped
activities (e.g., Figure 5.8), place pi; ensures that an alignment between them contains
zero or more pairs of ¢i; and tip.

Figure 5.9 shows an optimal alignment between o5 and the appended net while us-
ing the standard likelihood cost function. The columns of the alignment that contain
synchronous moves of the appended transitions (i.e., ti; or tiz) show the locations of
swapped activities. In this example, the pair of synchronous moves (interview, ti; ) and
(fingerprint, tig) shows that activity fingerprint in the trace is swapped with activity inter-
view.

Given a trace and a Petri net, the activity reordering pattern expresses activities in the
trace that are not performed in the right order. Unlike the replacements of activities,
the reordering of activities cannot be modeled using only a single transition (see e.g.,
Figure 5.8). Figure 5.10 shows an example of such a pattern, i.e., the reordering of two
activities pattern. Given a trace and a Petri net, a pair (z,y) of activities in the trace are
swapped if: (1) x occurs before y, and (2) swapping y with x in the trace yields a better
fitting trace than the original trace with respect to the net. Swapping two activities x
with y can be modeled as a pair of Petri net transitions with a strict ordering between
them such that one of the transition must always occur before the other. It is easy to
see that the appended transitions and place in Figure 5.8 is an instance of the pattern in

tpl pp th

1
swap x with y | LEGEND - _Appended arc for
e Appended input/output border
\ \

: N / \ transition ~— Pattern arc

/ .. Py Py
Activity | Original Original » Original
X *t) O_’ y transition Oplace arc

input x output x inputy output y

/
/

Figure 5.10: A deviation pattern for swapping an activity (x) with another activity (y).
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Figure 5.11: Four workflow fragments of the net shown in Figure 5.1. Only fragments (iii) and (iv) do not
share any transition. Thus, swapping between the two fragments can be checked using the same pattern as
Figure 5.10.

Copy of FragmentB opy-af Fragment A

Fragment A Fragment B
(workflow net) (workflow net)
(transition id) Appended place (transition id) Original place

LEGEND . Activity name Activity name
(diagnostics info)

Appended transition Appended arc Original transition Original arc

Figure 5.12: A Petri net, appended with transitions and places to identify swapping of activities in two sound
workflow fragments of the net.

Figure 5.10.

The swapping pattern in Figure 5.10 can be further generalized to check whether two
sound workflow fragments of a Petri net are swapped. A workflow fragment of a Petri
net is a workflow subset of the net with a unique start place and end place where all
transitions, places, and arcs between the start and end place are preserved. Figure 5.11
shows some examples of workflow fragments of the net shown in Figure 5.1. Note that
the complete net is also a workflow fragment. We can check whether any pair of the
fragments that share no transition is swapped using the similar pattern shown in Fig-
ure 5.10. In Figure 5.11, the only pair of fragments that share no transition is the pair of
fragments (iii) and (iv).

Figure 5.12 shows an example of a Petri net, appended with transitions and places to
identify swapped activities in two sound workflow fragments of the net. In the figure,
the swapped activities in two fragments A and B are modeled by copying each fragment
and place them in a reversed order. Place pi; is added between the fragment copies
to connect the start transition of the first fragment copy to the final transition of the
other fragment. Sound workflow fragment is a sufficient requirement to guarantee that
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tz t3
P2 p >
fingerprint ti, interview LEGEND o
fingerprint tiy (transition id) (transition id)
(repeated executions) . Activity name D Activity name
ti, T ti (diagnostics info)
2 Appended transition Original transition
pil X . pi
fingerprint M2 fingerprint
(repeated executions)  (repeated executions)

Figure 5.13: Appended transitions and places to check the repetition of activity fingerprint in the process
shown in Figure 5.1.

Trace | register | fingerprint | fingerprint | fingerprint | > | interview check decision
document
register | fingerprint | fingerprint | fingerprint interview check decision
document
Model t1 tig tio tig tiy t3 ts te
Diagnostics [ — | repetitive execution of fingerprint { - { - [ =

Figure 5.14: Top: An optimal alignment between trace o4 = (register, fingerprint, fingerprint, fingerprint,
interview, check document, decision) and the appended net shown in Figure 5.13, Bottom: Diagnostics ob-
tained from movements of appended transitions.

the movements on the copied fragments can be translated back to high-level deviations,
although it is not a necessary condition. The requirement guarantees that if a transition
in one copied fragment is fired according to an alignment then both the fragment and
its pair must be “completed”, i.e., either a complete firing sequence of both of the copied
fragments are observed or not at all.

5.2.3 Activity Repetition Pattern

In case of emergency, an activity that must be executed once according to a process model

may be performed multiple times. Take for example the visa application process in Fig-

ure 5.1. Suppose that the fingerprints of a visa applicant needs to be scanned multiple

times because of a technical problem on the fingerprint scanner. Trace o4 = (register,

fingerprint, fingerprint, fingerprint, interview, check document, decision) is the trace of the
case. It is easy to see that activity fingerprint is performed multiple times in the trace. We

check the multiple occurrences of activity fingerprint in o4 by first appending the original

net with new places and transitions as shown in Figure 5.13.

Transition ¢i; in Figure 5.13 represents the start of multiple execution of activity
fingerprint. Transition ti, is added after ¢i; such that any alignment that contains #i; must
also contain tig, i.e., a repeating fingerprint activity contains of at least two executions.
Transition tig is added to explicitly represent the third and consecutive occurrences of
activity fingerprint, and invisible transition ¢i, is an output border that marks the end of
the repetition.

Figure 5.14 shows an optimal alignment between the trace and the appended net
shown in Figure 5.13. The occurrence of a synchronous move (fingerprint, ti;) in the
optimal alignment of Figure 5.14 indicates the start of a repetitive execution of finger-
print while it is not allowed according to the original net. The move on model (>>, ¢i;)
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Figure 5.15: A deviation pattern for repetition of activity (x).

in the alignment explicitly indicates the end of the repetitive execution. Other syn-
chronous moves of the added transitions are the repetitive execution of fingerprint (i.e.,
synchronous moves (fingerprint, tiz) and (fingerprint, tis)).

The net in Figure 5.15 is an example of activity repetition patterns. The pattern mod-
els a repeated occurrences of an activity that should only occur once. Figure 5.13 is
an instance of the pattern. A unique characteristic of this type of deviation is that the
number of repetitions is unrestricted. Therefore, the repetition pattern contains a loop
construction. Similar to the activity reordering pattern, this pattern can also be extended
to check the repetitions of a sound workflow net by replacing all colored transitions in
the pattern with the fragment.

5.2.4 Constructing Patterns

To this point, we described three deviation patterns and their extensions. It is obvious
that there are many other patterns that one can make to check high-level deviations.
Nevertheless, we provide some guidelines on how to construct new deviation patterns
based on the three patterns explained before. Given a trace, a Petri net, and a deviation
pattern, any deviation modeled by an appended instance of the pattern needs to be
translated from an alignment between the trace and the net to higher-level diagnostics.
To ensure that this is possible, we recommend deviation patterns with a unique initial
transition and final transition. All complete firing sequences of a deviation pattern with a
unique initial/final transition start with the initial transition, end with the final transition,
and contain no initial/final transition in between. This way, a repetitive activity deviation
is “marked” between a synchronous move of the initial transition and a synchronous
move of the final transition.

All three patterns that we introduced in this section were created by following these
guidelines. For example, tp; in Figure 5.6 is both the initial and the final transition of
the activity replacement. The pattern only contains one transition, therefore it is easy
to see that all firing sequences of the pattern starts and ends with ¢p;. The initial and
final transition of the activity repetition pattern shown in Figure 5.15 are two different
transitions. The initial transition of the pattern is transition ¢p; and the final transition
of the pattern is the invisible transition ¢p,. The pattern is a sequence of transitions, thus
it is trivial to see that all complete firing sequences of the pattern start with ¢p; and end
with ¢p,. For all Petri nets appended with an instance of the pattern, a complete firing
sequence of the net that contains the instance of ¢p; also contains the instance of ¢p,
(e.g., transition ti; and ti; in Figure 5.13).
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5.3 Identifying the Root Causes of Deviations

Given a trace and a Petri net, Section 5.2 describes several high-level deviation patterns
and how they can be used in order to check occurrences of high-level deviations in the
trace. In practice, this is rarely the case. Instead, we would like to identify whether some
high-level deviations occur in the trace without any prior knowledge.

Suppose that there are multiple high-level deviations of interest and all deviation
patterns follow the guidelines mentioned in Section 5.2.4. We first append all high-level
deviation pattern instances to the net and then compute an optimal alignment between
the appended net with the original trace. To construct the alignment, we use a new
cost function of movements based on a predefined cost of low-level deviations (moves
on log, moves on model) and costs of high-level deviations. Let PA be a high-level
deviation pattern and let PA’ be an instance of PA, appended to a Petri net. The cost
of the deviation represented by PA is assigned to the cost of the synchronous move of
the initial transition of PA’. The cost of synchronous moves for all other transitions in
PA’ are set to 0. Furthermore, we assign a very high cost (+oc) to all moves on model
of all non-invisible transitions in PA’. This way, for all appended Petri net, optimal
alignments between the trace and the net will not contain any movement for which only
some transitions of pattern instances appear as synchronous moves, i.e., either all or no
transitions of the instance are included.

Take for example trace o5 = (register,interview, fingerprint, fingerprint, fingerprint,
fingerprint, recheck, decision) and the net shown in Figure 5.1. Suppose that there are
three high-level deviations of interest: (1) swapping fingerprint with interview, (2) replac-
ing check document with recheck, and (3) repetitive execution of fingerprint. All high-level
deviations have cost 1 and all other deviations follow the standard cost function. Fig-
ure 5.16 shows the net after appended with all three instances of the pattern of interest.
The cost of synchronous moves are annotated in the figure. Figure 5.17 shows an optimal
alignment between the trace and the appended net using the derived cost function.

We identify all high-level deviations from the optimal alignment in Figure 5.17 by
looking at all synchronous moves with the initial transition of some pattern instances.
There are two columns in the alignment that contain such initial transitions. Transition
ti; in column 3 is an instance of the initial transition of the repetition pattern (see Fig-
ure 5.15), and transition ¢i5 in column 9 is an instance of the initial transition of the
replacement pattern (see Figure 5.6). Thus, there are two high-level deviations that oc-
cur in o5: (1) A repetition of fingerprint, and (2) A replacement of check document with
recheck. Furthermore, there are also two low-level deviations: (1) a move on log of ac-
tivity interview and (2) a move on model of transition ¢3. The total cost of deviation in
the alignment is 4. Notice that one can also consider that activity fingerprint is swapped
with interview, but more low-level deviations will be identified as shown in Figure 5.18
and it yields higher total cost of deviations (i.e., 5 deviations). This example shows that
the approach is able to identify root causes of deviations.

The assignment of +oc to all moves on model of all non-invisible pattern instance
transitions is crucial. Take for example a trace o = (register, fingerprint, interview, decision)
of the net in Figure 5.1. In the trace, activity check document is skipped while it should
be performed according to the model. Since the deviation is unknown in advance, we
are looking for the same set of all interesting high-level deviations as the one described
in the previous example. Thus, we compute an optimal alignment between o and the
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Figure 5.16: The net in Figure 5.1, appended with pattern instances in Figure 5.6, Figure 5.10, and Figure 5.15.
The costs of moves on model of all colored non-invisible transitions, i.e., all added visible transitions, are +oo.

Trace | reg |int | fp | fo | fo | fP > > reck dec
reg folfolfp | f int reck dec
Model | t; > | tig tig | tig | tig tiy t3 tis te
Diagnostics | — | — | repetitive execution of fingerprint | — check document is —
replaced with recheck

LEGEND
reg :register fp :fingerprint int :interview dec : decision reck :recheck

Figure 5.17: Top three rows: An optimal alignment between trace o5 (register, interview, fingerprint,
fingerprint, fingerprint, fingerprint, recheck, decision) and the appended model in Figure 5.16. Bottom two
rows: high-level deviation diagnostics based on synchronous moves of appended extra transitions.

appended net shown in Figure 5.16. However, instead of assigning cost +oo to all moves
on model of appended non-invisible transitions, we assign cost of 1 to all of them. Fig-
ure 5.19 shows a possible optimal alignment between o and the net shown in Fig-
ure 5.16. As shown in the alignment, column 4 cannot be translated back to high-level
deviations of replacing check document with recheck, because no activity occurs in column
4 (i.e., 7T'1((>>7 tig)) =>).

This example shows that not all optimal alignments between a trace and an appended
Petri net can be translated to high-level deviations. However, the assignment of cost +oo
to all moves on model of appended non-invisible transitions ensures that they cannot
be aligned unless there is a corresponding event in the log. This way, for all appended
pattern instances, optimal alignments between the trace and the appended Petri net will
not contain any movement for which only some transitions of the patterns appear as
synchronous moves, i.e., either all or no transitions of the instance are included.

Recall the previous example. Suppose that we compute an optimal alignment be-
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Trace | reg | int fp ol reck dec

reg | int fp reck dec

Model | ¢ | tig tiy > 0> > tis te

Diagnostics | — | fingerprintis swapped | — | — | — check document is —
with interview replaced with recheck

LEGEND
reg :register fp :fingerprint int :interview dec : decision reck :recheck

Figure 5.18: Top three rows: A non-optimal alignment between trace o5 = (register, interview, fingerprint,
fingerprint, fingerprint, fingerprint, recheck, decision) and the appended model in Figure 5.16, showing activ-
ity fingerprint is swapped with interview. Bottom two rows: high-level deviation diagnostics based on syn-
chronous moves of appended extra transitions.

| register | fingerprint | interview | > | decision |
register | fingerprint | interview | recheck | decision
t to ts tis te

Figure 5.19: A possible optimal alignment between trace o = (register, fingerprint, interview, decision)
and the appended Petri net shown in Figure 5.16 with respect to the standard cost function.

tween og and the net in Figure 5.16 using the modified standard cost function. Fig-
ure 5.20 shows an optimal alignment between o and the net of Figure 5.17 with respect
to the modified cost function. As shown by the figure, the optimal alignment correctly
identifies a low-level deviation: check document (¢5) is skipped in .

The decision on which pattern instances need to be appended to a Petri net is taken by
a process expert. This way, we ensure that the obtained high-level deviation diagnostics
are meaningful from the expert point of view. Allowing arbitrary pattern instances may
yield diagnostics that do not make any sense. For example in the Petri net of Figure 5.1,
replacing activity check document with recheck make sense because both activities have
a similar definition. However, replacing activity check document with interview does not
really make sense as both activities are semantically different. Although the expert need
to determine a set of high-level deviations of interest, the translation from the set to
pattern instances can be automated. This way, the technique described in this chapter
can be used by a process expert without necessarily knowing about high-level deviation
patterns and the mechanics behind them.

5.4 Related Work

Checking the compliance of a set of rules to an observed execution has some similarities
with identifying high-level deviations from a given trace and a given Petri net. A Petri net
can be viewed as a set of low-level compliance rules. Each rule consists of a reachable
marking of the net and the set of activities that must not occur directly from the marking.

| register | fingerprint | interview | > | decision |
register | fingerprint | interview | check document | decision
tl t2 t3 t5 t6
Figure 5.20: The only optimal alignment between trace o6 =

(register, interview, check document, decision) and the appended Petri net shown in Figure 5.16 with
respect to a modified standard cost function where the cost of (>, tig), (>, tir) are +oo.
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If the trace does not fully comply with the set of rules imposed by the net, there is either
an activity that occurs in the trace while it must not occur according to the net or the
other way around. A set of high-level deviations is a set of rules defined on top of the
set of rules already imposed by the net. If the trace violates a high-level compliance rule,
there are some deviations with respect to low-level compliance rules but not necessarily
the other way around, as shown in the example given in Section 5.1.

Many approaches to diagnose high-level deviations between observed and modeled
behavior have been proposed in the area of compliance checking. In particular, we refer
to the approaches on backward compliance checking [90]. Given a set of predefined
constraints and rules and a set of recorded executions, backward compliance checking
techniques verify if the executions are in accordance with the set of constraints/rules.
In [17], Blaze et al. propose a conceptual approach to perform a compliance checking
for Trust Management Systems. The approach underlines the importance of having not
only a compliance checker that checks the compliance between a set of policies (i.e.,
rules) and a set of actions executed so far (i.e., observed behavior), but also provides
proofs of compliance that can be explained, formalized, and proven correct.

In [33], Chesani et al. propose an approach based on computational logic to check
whether a careflow process execution conforms to a set of predefined rules. The rules
are formalized in form of computational logics and are checked against process execution
using the SCIFF framework [32]. If some of the rules are not satisfied, the framework
points out the rules that are not satisfied. Giblin et al. also propose a similar compliance
checking approach based on real-time temporal object logics [66]. Given a set of rules in
form of Timed Propositional Temporal Logics [15], the approach provides a yes/no an-
swer to the question whether the rules are followed by process executions. Furthermore,
the approach also proposes a concept model called REALM to describe the relationships
between entities in the environment where the set of rules is applied. This way, the rules
may also contain relationship between entities.

Governatori et al. proposed an approach to check the compliance of business process
executions to a set of business process contracts [70]. The contracts are formalized using
the logic based formalism named FCL [69]. Other than providing a subset of fully compli-
ant contracts and other subset of non-compliant contracts from the set of contracts, this
work also introduces the concepts of ideal, sub-ideal, non-ideal, and irrelevant situations
to measure the degree of compliance between the contracts and executions according to
the set of contracts that have been violated and the ability of the business process to fix
occurred violations.

In the area of process mining, some approaches related to compliance checking that
can also be used to diagnose high-level deviations exist. Aalst et al. proposed an LTL-
based approach to check the compliance of recorded process executions in form of event
logs to a set of predefined rules [178]. Montali et al. propose an approach to check
the compliance between a predefined set of declarative rules to recorded process exe-
cutions [112]. In [191], Werf et al. propose an approach to check the compliance of
a process execution to a predefined set of rules that takes into account process context
using ontology.

All of the previously mentioned approaches only provide yes/no answer to compli-
ance rules without providing further diagnostics information. Ramezani et al. introduces
a compliance checking technique with precise diagnostics information [137]. In [137],
an exhaustive list of control-flow compliance rules is provided in Petri net formalism.
Given a trace and a rule in Petri net formalism, the approach not only provides a yes/no
answer whether the trace complies to the rule, but also detailed diagnostics information
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on where the deviation occurred. Note that if more than one compliance rule is checked
against a trace, diagnostics are shown for each rule independent of the others. This ap-
proach is extended to consider data in [138]. Similarly, Banescu et al. [16] introduce
an approach to measure compliance between a given process model and its executions
based on the well-known Levenshtein distance [98]. Other than compliance checking,
the approach also provides diagnostics if deviations exist in the executions. However, the
approach needs to list all activity sequences allowed by the model, which is not feasible
if the model contains loop and therefore allows for infinitely many sequences.

While the approaches of Ramezani [137] and Banescu [16] require imperative process
models, de Leoni et al. [43] introduces an approach to check conformance for declara-
tive models. Given an event log and a Declare model [124], de Leoni et al. proposes an
approach to check conformance between them [43]. The result of conformance check-
ing does not only shows explicitly where the deviations are, but also the possible root
causes of deviations. Similar work is also proposed by Maggi et al. [101] for monitoring
declarative constraints in runtime settings.

From all approaches mentioned in this section, given a trace that does not comply
with a set of compliance rules, there is not yet an approach that provides diagnostics on
which deviations are the root cause of non compliances (if they exist). In Section 5.3,
we describe an approach that does not only provide diagnostics on high-level deviations,
but also identifies the root causes of deviations in cases where more than one high-level
deviations occur.

5.5 Experiments

In this section, we show some experimental results used to validate and test the proposed
approach. The approach is implemented in ProM 6 [198]. We performed two sets of
experiments. The goal of the first set of experiments is to show that the approach can be
used to identify high-level deviations. The second set of experiments use logs and models
taken from real-life cases to show the applicability of the approach. The results of the
first set of experiments are described in Section 5.5.1, and the results of the second set
of experiments are shown in Section 5.5.2.

5.5.1 Artificial Logs and Models

For this set of experiments, we use the artificial process model shown in Figure 5.1. 30
perfectly fitting event logs were generated from the model, each log consists of 100 traces
with 5 to 15 activities per trace. Then, we created 11 variants of non fitting logs from
the perfectly fitting logs by removing, inserting, swapping, and replacing some activities
with other activities randomly. Each variant has different number of swapped (swap),
replaced (rep), inserted (ml), and removed activities (mm). For each variant, 30 event
logs were constructed. Then, we computed optimal alignments for all traces in all logs
and measure the average total cost per trace and the computation time required per
event log.

In this set of experiments, three different possible scenarios to diagnose deviations
were compared. In the first scenario, we consider that all swapping and replacement
of all activities are possible. In the second approach, we define a subset of high-level
deviations that is considered to be meaningful, thus the set of high-level deviations (i.e.,
swapped and replaced activities) of interest is a subset of the high-level deviations in
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Figure 5.21: Selected high-level deviations that provide meaningful diagnostics: swapping interview with
fingerprint (and vice versa), and replacing check document with recheck.
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Figure 5.22: Mean average cost per trace. Each bar is computed from 30 experiments using randomly gener-
ated noisy logs. Baseline shows expected mean cost if the noise are known in advance.

the first scenario. Figure 5.21 shows the model used in this set of experiments and the
selected high-level deviations. As shown in the figure, only the swapping of activity
interview with fingerprint (and vice versa) and the replacement of check document with
recheck were investigated in the second approach. In the third approach, only low-level
deviations were computed (i.e., moves on log, moves on model). Note that the first two
approaches also consider low-level deviations. In all experiments, we use a cost function
where all low-level deviations have cost of 1 (the same as the standard cost function)
and all high-level deviations have cost of 1, e.g., replacing activity a with b has cost 1 and
swapping activity a with b has cost 1 for all activities a and b in the logs.

Figure 5.22 and Figure 5.23 show the results of the experiments. The baseline value
for a variant of experiment is taken from the expected cost if the operation to make the
variant non-fitting was known in advance, e.g., the baseline value for variant “swap-1-
rep-1-ml-0-mm-0” is 2 because 1 random swap and 1 replacement were performed to all
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Figure 5.23: Mean computation time per log. Each bar is computed from 30 experiments using randomly
generated noisy logs. The y-axis is shown in logarithmic scale.

logs created using this variant. Figure 5.22 shows that the mean average cost per trace
of the approach that considers all possible swaps/replacements is always the lowest, fol-
lowed by the second scenario that only consider some meaningful high-level deviations.
The approach where only low-level deviations are identified always yields the highest
mean cost. In many variants (e.g., “swap-0-rep-0-ml-1-mm-0” and “swap-1-rep-1-ml-1-
mm-17) the first approach provides a lower mean cost than the baseline because some
combinations of low-level-deviations are identified as high-level-deviations. In contrast,
in most cases the approach that computes only low-level deviations provides a higher
mean cost than the baseline. An exception occurs in variant “swap-0-rep-0-ml-1-mm-1”,
because in some traces the removed activity is the same as the appended extra activity.

Figure 5.23 shows the average time spent to identify all deviations (i.e., to compute
optimal alignments) in event logs for all variants. We clearly see that the time required by
the first scenario (i.e., the one that check for all possible swaps/replacements) is much
higher than the other approaches. In all variants, the computation time for the first
scenario is more than 50 times higher than the time required by the approach that only
computes low-level deviations. In some variants, it took around 100,000 seconds (+27.7
minutes) on average to diagnose all deviations in an event log that only contains 100
traces. The scenario that considers only some subsets of all possible swaps/replacements
requires slightly more computation time compared to the one that only computes low-
level deviations. However, the average computation time of the scenario is under a
second in all variants. These results suggest that the selection of high-level deviations
before applying the proposed approach is crucial.

In the Section 5.5.2, we use the proposed approach to identify high-level deviations
in a real-life case, taken from a Dutch municipality.

5.5.2 Real-life Case

The experimental results in Section 5.5.1 show that the proposed approach is potentially
computationally expensive. Nevertheless, in this section we show that the approach is
applicable in practice. We took a pair of a log and a model from a Dutch municipality
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Figure 5.24: Real-life process model used in the experiment. The experiment was performed to identify cases
where “Onherroeplijk”, “Datum gereedmelding”, and “Rappel” are swapped.

where some high-level deviations may have occurred. The log and model refers to a
building permit handling process. The model is shown in Figure 5.24.

The process starts when a municipality officer creates (Creatie) a building permit
application. The officer needs to publish (Publicatie) the application to notify people
especially the ones that live near the location of the planned building, in case they object
to the application. In parallel, a backend process occurs (i.e., the bottom branch of the
process). The officer creates an internal request ((beh) Creatie) and seeks for advice
(written/direct) from some experts about the application ((beh) Advies naa). In parallel,
he can make a temporary decision on how to proceed with the original application.
After a while, a decision is made ((act) Beschikking) and an acceptance document is
made ((beh) Verleend t). In parallel, the date of decision is published (Beslisdatum anv)
and after a while a definite decision is made (Onherroepelijk). Typically, the definite
decision is followed by the acceptance statement that the building is finished (Datum
gereedmelding) and withdrawal of the application (Rappel). However, for exceptional
cases the acceptance statement and withdrawal may be performed in a different order.
In this experiment, we investigate how often such reordering occurs.

The log contains 3,181 traces and we used the approach proposed in this chapter
to investigate possible swappings between activities Onherroeplijk, Datum gereedmelding,
and Rappel. We identified 28 traces where high-level deviations of swapping between the
three activities occurred. A screenshot of the deviation diagnostics taken from one of the
traces is shown in the top of Figure 5.25. As shown in the figure, instead of identifying
only low-level deviations, the approach manages to also identify high-level deviations
between activities Onherroepelijk and Datum gereedmelding. This particular insight is
interesting for process experts, because it implies that there is a building permit appli-
cation for which the building is finished before a definite decision about the application
is issued. Compare this diagnostics with the diagnostics provided without identifying
high-level deviations in the bottom of Figure 5.25. If we only consider low-level devia-
tions, we get diagnostic information that an activity Onherroepelijk is not performed at
the moment it should (as it is identified as a move on log), but we cannot easily draw a
conclusion that it is actually swapped with Datum gereedmelding without manual analy-
sis. Figure 5.26 shows the diagnostics obtained from the top figure of Figure 5.25.



116 Extension to High-Level Deviations

Low-level Deviation
——"(beh) Verleend t”

G P=ro f “Rappel”

Alignment

ents

H | \ High-level Deviation

Swap “Onherroepelijk”
with “Datum gereedmelding”

13 ProM UlTopia

“Onherroepelijk”

Alignment
13 events Low-level
Deviation
N\ ”Rappel"
“(beh) Verleend t”

“Onherroepelijk”

LEGEND
) Synchronous moves 1) Move on log 2 Move on model
) Move on model » Swapped activities (invisible transitions)

Figure 5.25: Screenshot of the implemented approach in ProM, showing a comparison of diagnostics provided
by considering high-level deviations (top) and without (bottom) in the experiment.
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Figure 5.26: Projection onto process model of the diagnostics shown in Figure 5.25 (considering high-level
deviations).
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5.6 Conclusion

Experience shows that comparing process models and their executions in a non-strict
environment can reveal interesting information about deviations that can be used for
further analysis. On the one hand, information systems often record process executions
at a rather low-level of detail, while on the other hand management is mostly interested
in high-level diagnostics. Thus, there is a gap between analysis results that often rely on
low-level information and management who utilizes the information.

In this chapter, we described an extension of alignments to check high-level devia-
tions, hence bridging the gap between the abundance of low-level data and the need
for high-level diagnostics. We showed that many high-level deviations can be described
in the form of a combination of low-level deviations, i.e., deviation patterns. Further-
more, we showed how alignments can be exploited to identify root causes of deviations,
taking into account multiple high-level deviations as well as low-level deviations all at
once. Although the approach is computationally expensive, experiments showed that the
approach can be used to handle logs and models with real-life complexity by assuming
domain knowledge.

We emphasize that the selection of high-level deviations is very critical in this ap-
proach. A proper selection of high-level deviations does not only guarantee that the
obtained diagnostics are meaningful, but is also relevant from a computational point of
view.
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0 Using Alignments

6.1 Introduction

Given a trace and a Petri net, the concept of alignments offers a robust and flexible way
to relate the observed behavior in the trace to the behavior modeled in the net. An
alignment between a trace and Petri net is robust to peculiarities of process models such
as invisible/duplicate transitions and complex control-flow patterns because activities in
the trace are explicitly mapped to transitions allowed by the net. This explicit mapping
provides more than just explicit identification of deviations, as we can also view the
trace as a “path” through the process model by ignoring the moves on log. Such a model-
based perspective of traces enables many types of analysis based on both traces and their
corresponding Petri nets.

In this chapter, we highlight the role of alignments in various types of analysis based
on both observed behavior and modeled behavior. In Section 6.2, we show a typical
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Figure 6.1: General approach for using alignments in various types of analysis.

scenario using alignments. In Section 6.3, we define a metric to measure the quality
of alignments between a given event log and a given Petri net. This metric serves as a
measurement of quality of all later analyses based on alignments (ranging from confor-
mance to performance analyses). In Section 6.4, we show possible extensions to take
into account other information in event logs than just activity names.

6.2 General Use of Alignments

Many approaches in literature clearly separate model-based analysis and data-related
analysis. For example, approaches to verify safety properties of processes (e.g., dead-
lock, livelock) [36, 76] and simulation [186], are based on process models without di-
rectly considering real data obtained from executions in reality. In contrast, data-driven
approaches like data mining techniques [78] often discard process models. Given a trace
and a Petri net, an alignment between them provides a way to relate activities in the
trace to transitions of the net. Such a relation can be further exploited to enable both
model-based analysis that take data into account and process-aware data analysis.

Figure 6.1 shows a general approach for using alignments. Given an event log and a
process model, an oracle function maps each trace in the log to a set of alignments relat-
ing traces to paths in the model. An oracle function may use a likelihood cost function
to assign probabilities of alignments. However, as discussed in the end of Section 3.4,
this is not mandatory. The oracle function is used to construct a set of alignments for
each trace in the log and the model. This set of alignments is used for various types
of analysis. In Chapter 7, we show how alignments can be used to measure the confor-
mance between an event log and a process model. The proposed approaches in Chapter 7
mainly use the alignments between each trace in the log with the model and the original
process model. Most techniques to analyze the recurring deviations in Chapter 8 exploit
alignments without considering either event logs or process models. The performance
analysis approach in Chapter 9 requires the timestamps of events. Thus, both alignments
and event logs are required to perform performance analysis.

In Chapter 4, we explained some approaches to compute optimal alignments effi-
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Figure 6.2: Left: The model of an online transaction in an electronic bookstore, shown previously in Fig-
ure 4.10 with relabeled activities. Right: an event log of the model.

Table 6.1: All optimal alignments between all traces and net N in Figure 6.2 using the standard likelihood
cost function.
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ciently. These approaches can be used to construct oracle functions. Take for example
the event log and Petri net NV in Figure 6.2. Table 6.1 shows the set of all optimal align-
ments between all traces in the log of Figure 6.2 and the net using the standard likelihood
cost function. For the sake of readability, we use the alignment labels as shown in the
table to refer to particular alignments in the remainder of this chapter.

Using the approaches in Chapter 4, there are at least three oracle functions that
can be constructed for the log and net in Figure 6.2. Given a trace, a Petri net, and a
likelihood cost function, the approach explained in Section 4.4 computes one optimal
alignment between the trace and the net. We use this approach to construct an oracle
function that assigns 100% probability for one of the optimal alignments between each
trace in the log and net N. Suppose that the optimal alignments between the following
traces: (a,b,c,d,e, f),{a,b,e),{a,h), and net N are ~;,72, and vy respectively. orc! is
an oracle function constructed from the alignments such that orc!({a,b, c,d, e, f))(71) =
orc!({a,b,e))(v2) = orct({a,h))(y9) = 1, and orc!(z)(y) = O for all other x and y. It is
easy to see that orc! is both a basic oracle function and a standard oracle function (see
Definition 3.4.8).

Given a trace, a Petri net, and a likelihood cost function, the approach in Section 4.6
computes the set of all optimal alignments between the trace and the net. Assuming that
all optimal alignments have the same probability, we use this approach to construct an
oracle function that returns the same probability for all optimal alignments between each
trace in the example log and net N. Each optimal alignment has a probability of 1/(size
of the set of optimal alignments set). Thus, we define an oracle function orc? for the log
and net N in Figure 6.2 such that orc*((a,b,c,d, e, ))(71) = 1, orc*({a,b,€))(72) = %
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Figure 6.3: Left: An optimal alignment between o, = (a, b, ¢, d, e) and the model of Figure 6.2, Right: An
optimal alignment between o, = (a) and the same model.

for 2 < x <8, orc*({a, h))(y9) = 1, and orc?(y)(z) = 0 for all other y and z. It is easy to
see that orc? is a standard oracle function, but not a basic oracle function.

The third oracle function uses the representatives of all optimal alignments between
any given trace and a Petri net. In Section 4.6, we showed that knot nodes can be
used to group a set of similar optimal alignments. Suppose that we choose knot nodes
at level 1 and the set of representative optimal alignments for the following traces:
{a.b,c,d,e, f),{a.b,e), and (a, h), are {y1}, {72,74,76}, and {79} respectively. orc? is the
oracle function constructed from the representatives such that orc’({(a, b, c,d, e, f)) (1) =
1, orc™({a,b,€))(12) = orc®({a, b,€))(1a) = orc"((a, b, e))(76) = 3, orc™({a, h))(79) = 1,
and orc®(z)(y) = 0 for all other x and y. Note that we assign the same probability for
each representative in orc*. Hence, orc® is a standard oracle function.

6.3 Measuring the Quality of Alignments

Given a trace and a Petri net, there are many alignments that one can construct between
them as explained in the previous chapters. In Chapter 3, we showed that optimal align-
ments between the trace and the model yield the minimum total likelihood cost between
the trace and the model. However, such minimum cost may not be sufficient to compare
the quality of two arbitrary alignments. Take for example the Petri net N shown in Fig-
ure 6.2 and two traces o, = (a,b,¢c,d,e) and o, = (a) in the log. Optimal alignments
between the two traces and net N with respect to the standard likelihood cost function
are shown in Figure 6.3.

Both optimal alignments in Figure 6.3 show exactly one deviation. However, notice
that -y, is much shorter than ~,. Intuitively, the quality of -y, should be better than ~,.
Therefore, when comparing two alignments computed from two different traces and the
same Petri net, we also take into account the length of the traces. We use the following
metrics to measure the quality of alignments:

Definition 6.3.1 (Alignment quality)

Let A C A be a set of activities. Let 0 € A* be a trace over A. Let N = (P, T, F, o, m,
my) be an easy sound Petri net over A. Let lc : (A> x T”) — IR be a likelihood cost
function for movements. The quality of alignment v € T, ;y with respect to likelihood
function Ic is

E(a),y)efy lC((.’lﬁ, y))
lin(e1 () o N, 10)

agl(y,N,le) =1—

where lim is the likelihood cost limit between o and N with respect to Ic (see Defini-
tion 3.4.4). J

The metric in Definition 6.3.1 takes into account the likelihood cost of movements,
the length of traces, and the size of the net altogether. Let ic be the standard likelihood
cost function. Sequence of transitions ¢ = (t1,t9) is a complete firing sequence of net
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N in Figure 6.2 that yields the minimum total standard likelihood cost, i.e., ¢ is a firing
sequence of N with the minimum total likelihood cost of moves on model >~ , le((>

,t)) = 2. The quality of alignment ~; in Figure 6.3 is agl(y1, N, lc) = 1 — 515 = 2 ~ 0.85,

while the quality of optimal alignment ~, is agl(y2, N,lc) = 1 — 1%2 = % ~ 0.67. By
taking into account the likelihood cost of optimal alignments, trace lengths, and the size
of Petri nets, the quality of two optimal alignments can be compared even if they have
different lengths.

Alignments explicitly show the occurrences of invisible transitions. Thus, the align-
ment quality defined in Definition 6.3.1 also takes into account the likelihood cost of
invisible transitions. A move on model of an invisible transition in an alignment de-
creases the quality of the alignment if the likelihood cost of the move is higher than
0.

An alignment between a trace and a Petri net is high likely represents the relation
between the trace and the net if its quality is close to 1. In the following theory, we show
that the quality of optimal alignments always falls between 0 and 1:

Theorem 6.3.2 (Optimal alignment quality range)

Let A C A be a set of activities. Let 0 € A* be a trace over A. Let N = (P, T, F, o, m;,
my) be an easy sound Petri net over A. Let lc : (A> x T”) — IR be a likelihood cost
function for movements. For all v € Ty ;. : 0 < agl(y, N, lc) < 1. 2

Proof. Both the total likelihood cost of the alignment and the likelihood cost limit of
optimal alignments are always higher than 0 (see Definition 3.4.4). Thus, aql(y, N, lc) <
1. Proposition 3.4.5 shows that lim(o, N, Ic) is an upperbound value to any likelihood
cost of optimal alignment between the trace and the net. Hence, 0 < agl(o, N,lc) < 1. O

6.4 Beyond Activity Alignments

The general approach in Figure 6.1 shows that oracle functions have a crucial role in
alignment-based analysis. Given a trace of an event log and a Petri net, an oracle func-
tion determines which set of alignments between the trace and the model is the best
describing the deviations in the trace. Note that to this point, we only consider oracle
functions that take into account the sequences of activities. As explained in Section 2.3,
an event of a complex event log may have other attributes than the activity attribute. In
some cases, an oracle function may also need to look at the value of these attributes.

Take for example the net Figure 6.4. The net describes the process of handling com-
puter repair request in a reparation shop. An instance of the process starts when a front
desk officer registers a computer to be repaired (register). Then, a general technician di-
agnoses possible problems of the computer and report his diagnostics (diagnose). Based
on the diagnostics report, either a software fix (software fix) or a hardware fix (hardware
fix) procedure is performed by specialist technicians. The instance ends after a book
keeper archives the report and fix results (archive).

Table 7.1 shows the log of an instance of the process shown in Figure 6.4. Notice that
event with id 2 assigns value “hardware” to the “Problem” data attribute. Suppose that
an oracle function only consider the sequences of activities. The trace of the instance in
Table 7.1 is o = (register, diagnose, software fiz, hardware fix, archive). Using the stan-
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Figure 6.4: Repair process in a computer reparation shop, modeled as a Petri net annotated with data con-

straints.

Table 6.2: A fragment of an event log, showing an instance of the process in Figure 6.4

Event id Properties Data
Timestamp Activity Resource | Problem
1 20-10-2013 11:50 register Maria -
2 22-10-2013 08:10 diagnose Roger hardware
3 22-10-2013 10:04 | software fix | Nadal -
4 22-10-2013 10:20 | hardware fix | Djokovic -
5 23-10-2013 08:05 archive Maria -

dard likelihood cost function, there are two optimal alignments between the trace and
the net in Figure 6.4. These two alignments are shown in Figure 6.5.

Alignments v, and ~2 show two different deviations diagnostics. v; shows that activ-
ity hardware fix was performed while it is not possible according to the net in Figure 6.4.
~2 shows that activity software fix was performed while it is not allowed according to the
same net. In this example, suppose that we also take into account the “Problem” data
attribute. According to the net, activity software fix can only be executed if the value of
“Problem” data attribute is “software”. The event log in Table 7.1 shows that the value
of the attribute is “hardware”. Thus, the synchronous move (software fiz,ts) in the 3rd
column of v, is unlikely if we consider this additional information.

We can solve this problem by using a likelihood cost function that also takes into
account attribute values. Instead of using a likelihood cost function that assigns cost to
movements (i.e., pairs of activity names and transitions), we use a likelihood cost func-
tion that assigns cost for tuples where each tuple consists of an activity name, data value,
and transition id. Suppose that the new cost function assigns cost 1 to all deviations. The

register | diagnose | software fix | hardware fix | archive

Y1 =| register | diagnose | software fix archive
t1 to t3 > ts

register | diagnose | software fix | hardware fix | archive

Y2 =| register | diagnose hardware fix | archive
t1 to > ta ts

Figure 6.5: Two optimal alignments between trace o

archive) and the net shown in Figure 6.4.

(register, diagnose, software fix, hardware fiz,
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likelihood cost of ~; is 2 because there is a deviation for performing activity hardware fix
and data constraint violation when performing activity software fix. Using the same like-
lihood cost, the cost of 5 is 1 because the only deviation in ~ is the move on log in the
second column of the alignment. Hence, ~ is the optimal alignment.

Given a complex trace, a Petri net, and a modified likelihood cost function as men-
tioned before, the computation of an optimal alignment that takes into account attributes
other than the activity attribute can be performed using the same approach as mentioned
in Chapter 4. Note that this potentially increases the complexity of the approach dramat-
ically. It may be that many combinations of data values need to be explored by the A*
algorithm. To overcome possible performance issues, in cases where the cost of control-
flow deviations is much higher than the cost of data constraint violations, it may make
sense to divide the alignments computation in multiple phases. In the first phase, we
compute an optimal alignment by only taking into account the sequence of activities as
mentioned before in Chapter 4. The result of the first phase is then filtered by taking
into account data violations. The techniques to measure conformance between com-
plex traces and Petri net with data extensions use such strategies to improve the overall
computation time [44,45].

6.5 Conclusion

Given a trace and a Petri net, the notion of alignments offers a robust approach to relate
occurrences of activities in the trace to transitions in the net. In this chapter, we explained
a general approach to use alignments for various types of analysis. We showed the role
of oracle functions and how they can be constructed using the approaches explained in
Chapter 4. We also sketched possible extensions of the approaches to take into account
data information in event logs. Furthermore, we proposed a metric to measure the
quality of an alignment between a trace and a Petri net that takes into account the total
likelihood cost of movements, the trace length, and the size of the net altogether. In the
remainder of this thesis, we assume the existence of oracle functions without explicitly
mentioning the approach used to obtain them.
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Measuring Conformance

(" PARTIIL Applications )
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7.1 Introduction

Most Business Process Management (BPM) efforts start from process models, as they
provide insights into possible scenarios [83]. Process models are used for analysis (e.g.,
simulation [186]), enactment [83], redesign [59], and process improvement [123,132].
Therefore, they should reflect dominant behavior accurately. The increasing availability
of event data enables the application of conformance checking [151,171,177]. Confor-
mance checking techniques compare recorded process executions in form of event logs
with process models to quantify how “good” are the executions with respect to their
models.

Conformance can be viewed along multiple dimensions: (1) fitness, (2) precision, (3)
generalization, and (4) simplicity [25,171,177]:
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Event Log

# Trace

455 |<a,c,d,e,h>
191 |<a,b,d,e,g>
177 |<a,d,c,e,h>
144 |<a,b,d,e,h>

fitness: +, precision: +, generalization: +,
simplicity: +
111|<a,c,d,e,g>

( 1apO O d O (e pO 82|<a,d,ce,g>

M2: 56|<a,d,b,e,h>
fitness: -, precision: +, generalization: -, 47 |<a,c,d,e,f,d,b,e,h>
simplicity: + 38| <a,d,b,e,g>

33|<a,c,d,e,f,b,d,eh>
14 |<a,c,d,e f,b,d,e,g>

Jany
[N

<a,c,d,e,f,d,b,eg>

<a,d,c,e,f,c,d,eh>

fitness: +, precision: -, generalization: +,
simplicity: +

<a,d,c,e,f,d,b,eh>
<a,d,c,e,f,b,deg>
<a,c,d,e,f,b,d,e,f,db,e,g>
<a,d,c,e,f,d,b,eg>
<a,d,c,e,f,b,d,e,f,b,de,g>
<a,d,c,e,f,d,b,e,fb,d,eh>
<a,d,b,e,fb,d,efd,b,eg>
<a,d,c,e,f,d,b,ef,cde,fdb,eg>

R R R NN WU O

1391

... (all 21 variants seen in the log)

fitness: +, precision: +, generalization: -,
simplicity: -

Figure 7.1: An event log L and four Petri nets M7, M, M3, and My [177]

¢ Fitness measures the extent to which process models can reproduce the traces

recorded in the log. Take for example the log and process models shown in Fig-
ure 7.1. Models M;, M3, and M, can reproduce all traces in the log, while model
M can only reproduce one variant of traces in the log (i.e., trace (a,c,d, e, h).
Therefore, the fitness values of My, M3, and M, are higher than M,. Furthermore,
since all models except M, can reproduce all traces in the log, the fitness values of
M, M3, and M, are the same.

Precision penalizes a process model for allowing behavior that is unlikely given the
observed behavior in the event log. Model M3 and M, in Figure 7.1 are examples
of models with extremely different precision values. Model M, starts with a choice
and it enumerates all traces in the log. Therefore, it does not allow more behaviors
than the ones logged. Thus, the precision value of M, is high. In contrast, after
a firing of transition ¢ model M3 allows for simply any activity without imposing
any ordering constraints. A model that exhibits such a behavior is often called a
“flower” model [171]. The precision value of a flower model is low, as it does not
provide any insights on how processes should be performed.
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e Generalization evaluates the extent to which process models are able to reproduce
future behavior. In general, a process model should not restrict behavior to just
what is observed in the log. Generalization addresses the problem that a very
specific model like M, may be generated whereas it is obvious that the log only
holds example behavior. A model that is not general enough explains the particular
sample log, but it is unlikely that another sample log of the same process can be
explained well by the current model, i.e., it is unlikely that the second sample log
fits well. For example, model M, is less general than M; because it models each
unique trace as a unique path in the model. If another log of the same underlying
process is recorded, it is unlikely that the model can explain the behavior of the log
well.

e Simplicity penalizes models that are unnecessarily complex. This dimension is
inspired by the Occam’s Razor which states: “Non sunt entia multiplicanda oracter
necessitatem”, i.e., hypotheses should not be multiplied without reason [165]. For
example, model M; is simpler than My as it contains fewer places, transitions, and
arcs. Unlike the other conformance metrics, simplicity can be measured without
taking into account observed behavior of process executions. For example, a Petri
net is simpler than other Petri nets that allow the same set of traces if the former has
less number of duplicate/invisible transitions and implicit places [29,59,107,151].
In [29], the simplicity of a Petri net is measured based on the number of activities
that it represents and the number of control-flow it has. Other simplicity metrics,
e.g., the one proposed in [25], also take into account the size of both process
models and event logs to measure simplicity of process models. Simpler models
are often more understandable and less erroneous than complex ones [108].

In this chapter, we show how alignments can be used to measure the fitness, preci-
sion, and generalization conformance dimensions. Next, we explain some related work
with conformance checking (Section 7.2). Alignment-based conformance metrics are ex-
plained in Section 7.3. Section 7.4 provide some experimental results to validate the
metrics and discussions. Section 7.5 concludes this chapter.

7.2 Related Work

In literature, there are various approaches to measure conformance between an event log
and a process model. In the area of process mining, conformance checking is important
to measure the quality of discovered process models with respect to event logs [148].
Thus, many conformance checking techniques are proposed as a part of process discovery
techniques. In the following subsections, we discuss related work in each dimension of
conformance.

7.2.1 Fitness

Fitness is arguably the most important dimension of conformance. Many approaches
in literature are related to this particular dimension, e.g., [6, 8, 16, 25,47, 68,71, 114,
151,152,171,177,204]. Many of the approaches to relate the observed to the modeled
behavior in Chapter 3 address this conformance dimension. Weijters et al. [204] propose
the PM metric to quantify the fitness between event logs with respect to process models
discovered from the logs. Given an event log and a process model, the metric measures
the ratio of traces in the log that can be replayed correctly to the size of the log. This
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metric is improved by a finer-grained metric CPM that measures the ratio of events that
are successfully parsed to all logged events. Although the latter improves the robustness
of the former metric, it may allow for some extra behavior that is not allowed according
to the original model.

Given an event log and a discovered process model from the log, Greco et al. [71]
propose an approach to measure fitness based on the percentage of enactments of the
discovered model that also appear as traces in the log. However, computing the metric
requires exhaustive enumerations of all allowed paths by the model. Even for small
process models, it might be impossible to determine all traces that are compliant with
the model (e.g., if the model allows loop). Process discovery approaches that are based
on genetic algorithms rely on conformance measurements to discover process models
from event logs. Medeiros et al. [47] proposed a fitness metric called completeness
(PFcomplete) that is similar to the token-based fitness [151]. Given a log and a Petri net,
the metric takes into account the number of missing and remaining tokens to replay all
traces in the log on the net. However, this metric has the same problem as CPM. The
addition of missing tokens may allow extra behavior that cannot be performed in the
original model. Rozinat et al. [151] proposed a similar metric to measure fitness between
a Petri net and an event log and proposed some extensions to deal with duplicate and
invisible transitions in the net. However, this metric inherits the same problem as the
PF compiete due to addition of missing tokens.

Banescu et al. [16] quantifies fitness between a trace and a process model by tak-
ing the minimum Levenshtein distance between the trace and all traces allowed by the
model. Furthermore, the distance is weighted with the severity of deviations for each
misalignment between the trace and the model. However, as discussed in Chapter 3,
the approach has a problem to deal with models that allow for infinitely many traces.
Cook et al. [39] propose two metrics SSD and NSD to quantify fitness between an event
stream and a model. Both metrics take into account the total cost of insertion/deletion
to make the stream parse-able according to the model. SSD is the ratio of the total cost
to a maximum cost if all events in the stream are deleted/inserted. NSD can be viewed
as a variant of SSD where the same type of deviations that occur consecutively is only
accounted once. These two metrics are most similar to the one we will propose in Sec-
tion 7.3.1 among all metrics mentioned in this section. However, both metrics are not
guaranteed to provide values between 0 and 1.

Some fitness metrics are based on strong assumptions on either event logs or process
models. Goedertier et al. [68] propose the behavioral recall metric to measure the fitness
between an event log and a process model. Given an event log and a process model, the
behavioral recall between them is the ratio between the number of events that can be
replayed correctly to the total number of events in the log. This metric is similar to the
CPM metric of [204]. However, it is assumed that the event log shows the complete
behavior of the modeled process. This means that an event log of a small model consists
of 8 interleaving activities must contain at least 8! = 40,320 uniquely different traces
that contain all permutations of the activities. Similarly, the behavioral profile of Weidlich
et al. [202] assumes that there are no loops in process models. These assumptions clearly
limit the practical applicability of the approaches. Furthermore, a behavioral profile of
a model may allow some extra behavior that is not allowed according to the original
process model. Thus, a deviation in the log may remain unidentified. Van der Aalst
[171] proposes fitness checking between an event log and a process model based on
the so-called footprint matrices. However, this approach is only meaningful if the log is
complete with respect to the “directly follow” relation between activities. Note that this



133

is a much weaker assumption than expecting all possible traces to happen.

It is also worth mentioning that fitness is not only defined for imperative process
models. De Leoni et al. [43] propose an approach to quantify the fitness between a
Declare model (i.e. a declarative process model) and an event log. The fitness takes into
account the cost of performing activities in the log that are not allowed according to the
model and vice versa. A perfectly fitting log has a fitness value of 1. This fitness value
decreases towards O as the number of deviations increases.

7.2.2 Precision

Compared to the number of approaches that address the fitness dimension of confor-
mance, not many approaches in literature address the precision dimension. Given a log
and a process model, Rozinat et al. [151] propose the (advanced) behavioral appropri-
ateness metric that compares all pairwise relations between activities in the log to the
pairwise relations of activities in the model. However, computing such pairwise relations
requires an exhaustive simulation of the model which might be not feasible in prac-
tice [48]. Medeiros et al. [47] propose the PF),..;s. metric to compare the precision of
a process model (represented in the form of a causal matrix) to a set of process models
with respect to an event log. Given a process model and an event log, PFp,ccise value of
the model consider the total number enabled activities in all visited states of the model
when replaying the log on the model. In cases where the log is not perfectly fitting the
model, “missing tokens” are added just like the approach in [151]. Thus, PFp,c.isc may
show misleading results as the model may allow for new behavior during replay that is
not allowed in the original model.

The behavioral specificity metric proposed by Goedertier et al. [68] uses artificial
negative events to measure precision between an event log and a process model. The
idea of this metric is to penalize precision for enabled negative events while replaying
the positive events in the log on the model. However, as mentioned before, the strong
completeness assumption on the log may limit the applicability of this approach. This
problem is inherited by other approaches that also depends on artificial negative events,
such as the F-measure of De Weerdt et al. [49]. vanden Broucke et al. [195] relaxed this
assumption by improving the ways negative events are derived from event logs. Given
an event log, some of improvements to derive negative events from the log are: (1)
using dynamic windows instead of static windows for each event in the log, (2) exploit
the information about parallelism and loop to enrich the event log before negative event
extractions, and (3) exploiting both explicit and implicit dependencies between activities.
However, many parameters need to be adjusted properly in order to obtain a set of
negative events that are both correct and complete.

Munoz-Gama et al. [115] introduce the concept of escaping edges to measure pre-
cision between an event log and a process model. The approach is based on prefix
automata and allows for measurement without having to explore all states of the model.
The approach is extended to provide some degree of confidence to the obtained precision
values [116]. However, the approach assumes that the log perfectly fitting the model and
process models are deterministic. These are strong assumptions that may limit the ap-
plicability of the approach in practice. Buijs et al. [25] use the same precision metric to
discover a process tree from an event log using the genetic mining algorithm. Interest-
ingly, the work in [25] also shows that if the fitness dimension of a discovered model is
not good enough, other quality dimensions only add little value as the discovered model
does not describe the recorded behavior.
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7.2.3 Generalization

Not many work in literature addresses the generalization dimension of conformance. The
main difficulties with the generalization dimension is that we need to reason about un-
observed behavior. In [174], van der Aalst illustrates the relation between real processes,
event logs, and process models. Real processes are typically unknown and therefore we
can only estimate them from event logs. However, an event log may contain behaviors
that are not allowed according to the real process. Buijs et al. [25] define a general-
ization metric for an event log and a process tree based on the frequency of tree nodes
visited according to the result of replaying the log on the process tree. If some parts of
the tree are very infrequently visited then the generalization of the tree is bad. A gener-
alization metric based on alignment is proposed in [177]. This metric will be explained
further in Section 7.3.3.

7.2.4 Simplicity

Many approaches that address the simplicity dimension also take into account the struc-
tural properties of process models. Given an event log and a Petri net, Rozinat et al. [151]
propose the simple and advanced structural appropriateness (ag and a’y) to measure the
simplicity of the net. Interestingly, ag takes into account the property of both event logs
and Petri nets (i.e., the size of event logs and the total number of places and transitions),
but a’; only take into account the property of Petri nets (i.e., the number of transitions,
the number of duplicate transitions, and the number of redundant invisible transitions).
Given a process tree and an event log, Buijs et al. evaluate the simplicity of the tree by
taking into account the number of duplicate nodes (i.e., similar to duplicate transitions in
Petri net terminology), missing activities, the total number of tree nodes, and the number
of event classes in the log. The simplicity of a process tree is low if the tree has many
duplicate nodes and missing activities, but only few nodes.

The simplicity of a process model in [151] and [25] takes into account the observed
behavior in an event log. However, under an assumption that an “ideal” process model
is known, some simplicity metrics do not use event log at all. Given an “ideal” process
model and a discovered process model from an event log, the structural precision (recall)
metric of Medeiros et al. is the ratio of cells for which the causal matrix of the “ideal”
model agrees with the causal matrix of the original model to the number of cells in the
causal matrix of the original (discovered) model. This metric is similar to the precision
and recall metric proposed by Pinter et al. [130].

Many existing metrics that quantify the complexity/understandibility of process mod-
els are also considered as simplicity metrics, e.g., [27,28,97,107,143]. Lee and Yoon [97]
propose metrics to quantify the complexity of a Petri net based on its structural and dy-
namic (i.e., behavioral) properties. As an example, the total number of places, transi-
tions, and arcs in a Petri net quantifies the structural complexity of the net. The maximum
degree of concurrent transitions in a Petri net is an example of the dynamic properties.
Notice that both metrics do not require event logs. Reijers and Vanderfesteen [143] pro-
pose some cohesion/coupling notions for workflow activities that can be used to evaluate
the simplicity of workflows. Cardoso [28] proposes the Control Flow Complexity (CFC)
metric based to measure the complexity of process models based on their number of
AND-split, XOR-split, and OR-split semantics. Two survey papers of Cardoso et al. [29]
and Laue and Gruhn [95] summarize many of the existing approaches to measure the
understandability (simplicity) of process models without requiring event logs. These
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metrics are not just useful to quantify simplicity of process models, but also to under-
stand errors in process models [108].

7.3 Alignment-based Conformance Checking

Given an event log and a Petri net, alignments between the traces of the log and the net
provide explicit mappings between activities in the traces and transitions in the net. Such
mappings are crucial in conformance measurement because occurrences of activities in
the event log can be mapped in a deterministic way to the transitions in the net. In
this section, we exploit such relations to quantify conformance in the fitness, precision,
and generalization dimensions. An alignment-based fitness metric will be proposed in
Section 7.3.1. Some metrics to measure conformance in the precision dimension are
introduced in Section 7.3.2. Section 7.3.3 provides an alignment-based generalization
metric.

7.3.1 Fitness

From all four dimensions mentioned in Section 7.1, fitness is the most important dimen-
sion of conformance. Given an event log and a process model, if most behavior in the
model cannot be reproduced by the log then it is unlikely that the log/model is good
enough to be used for any type of analysis. In most cases, other conformance dimensions
are only worthwhile to be looked into if the fitness between the log and the model is
relatively high.

As mentioned in Chapter 2, the execution of a case in a process is typically inde-
pendent from the execution of other cases. Since the fitness dimension measures the
extent to which all traces in the log can be reproduced by the model, fitness can also
be measured per trace in the log. Given a trace and a Petri net, an alignment between
them explicitly shows the deviations between them. In practice, deviations may have
different severity. For example in an insurance claim handling process, sending too many
notifications to a claimant typically have less severity than paying the claimant multiple
times. Thus, we use a severity cost function that maps movements to their severity cost to
quantify the fitness between the trace and the net.

Given an alignment between a trace in a log and a net, the fitness of the alignment is
the total raw severity cost of all movements in the alignment. Note that the severity cost
function can be different than the likelihood cost function used to construct the multi-set.

Definition 7.3.1 (Absolute Fitness)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P, T,
F,a,m;, mys) be a Petri net over A. Let sc : (A> x T>) — IR be a severity cost function.
Let orc: {o € L} — ((A® x T?)* — IP) be an oracle function of L and N. The absolute
fitness between L and N using oracle function orc and severity cost sc is

afit(L, N, orc, sc) = Z Z orc(o)(y) - Z sc((x,y))

oc€ELvYEl N (z,y)€y
_

Given an event log, a Petri net, an oracle function, and a severity cost function, the
absolute fitness value shows the severity of deviations between the log and the net. If
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the absolute fitness value between the log and the net is O then the traces in the log
are perfectly fitting the net. However, if the value is above zero then there exists some
deviations in the log.

It is easy to see that the absolute fitness value may be higher than 1. In practice, it is
often desirable to have a quantification of fitness in the range of 0 (very poor fitness) to
1 (perfectly fitting). Thus, we define a relative fitness metric that always provide values
between 0 and 1 under the following conditions: (1) the oracle function only assigns non
zero probability to optimal alignments with respect to a likelihood cost function, and (2)
the severity cost function is the same as the likelihood cost function.

Definition 7.3.2 (Relative Fitness)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P, T,
F,a,m;, mys) be a Petri net over A. Let sc : (A> x T>) — IR be a severity cost function.
Let orc*¢ : {o € L} — ((A®” x T?>)* — IP) be an optimal oracle function of L and N
with respect to sc. The relative fitness between L and N using oracle function orc®*¢ and
severity cost sc is

sc 1 sc E x,y)EY 80((1‘7 y))
rfit(L, N, orc®¢,sc) =1 — 7] . Z Z <orc (o)) - (lz'm)(cr, ) )

ccL~yel's N

We show that the relative fitness values always between 0 and 1.

Theorem 7.3.3 (Relative fitness range)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P, T,
F,a,m;,my) be a Petri net over A. Let sc : (A> x T”) — IR be a severity cost function.
Let orc*¢ : {0 € L} — ((A” x T>)* — IP) be an optimal oracle function of L and N
with respect to cost function sc.

0 < rfit(L, N, orc®®,sc) <1
4
Proof. For all ¢ € L,y € I? DD (@ le((@,y)) < lim(o, N, sc) (see Proposi-

o,N,sc
tion 3.4.5). Therefore, 0 < % < 1oore*(0)() = 0if v & T9 n e
Therefore, 3/ o . orc*¢(o)(y") = 1. It is easy to see that 0 < rfit(L, N, orc*¢, sc) < 1
holds. - O

Take for example the log and all Petri nets in Figure 7.1. Suppose that for each net,
we use a basic oracle function that maps each trace in the log to an optimal alignment
between the trace and the net. We use the the standard likelihood cost function to
construct the oracle function and to measure the severity of deviations. The relative
fitness values between the log and model M, M3, and M, are all 1.00 (perfect) as all
traces can be reproduced by the models. The relative fitness value between the log
and model M5 is 0.8, which implies that the model correctly represents about 80% of the
events in the log. This value may seem high as just 455 of 1,391 traces fit completely (i.e.,
less than 33% of the traces can be perfectly replayed from beginning to end). However,
note that all traces start with a and execute at least one d and e. Moreover, the majority
of traces ends with h. This explains the high fitness value.

In some cases, the proposed metric in Definition 7.3.1 may be too restrictive as the
severity cost function must be the same as the likelihood cost function. Therefore, we
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propose two other metrics to complement the relative fitness metric: (1) the move log
fitness (mlf) , and (2) the move model fitness (mmf).

Definition 7.3.4 (Move Log Fitness, Move Model Fitness)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P, T,
F,a,m;,my) be an easy sound Petri net over A. Let sc : (A> x T>) — IR be a severity
cost function. Let orc : {o € L} — ((A*> x T)* — IP) be an oracle function of L and
N. The move log fitness (mif) of log L and N using oracle function orc and severity cost

scis mlf (L, N, orc, s¢) =
S st

1 {1<i<yl [ vileAx{>}}
11— —- ore(a)(y) -
L] c;wy;;]v " > sc((m(v[4]),>))

{1<i<Ivl | vlileAXT>}

Similarly, the move model fitness value (mmf) of log L and N with respect to severity cost
scis mmf (L, N, orc, sc) =

sc([])

1 {1<i<|y| | vlile{>}xT}
11— — - orc(o)(y) -
s 2 ! S sl

{1<j<hvl | vlileA> xT}

J

Regardless of the severity cost function, both move log and move model fitness return
values between 0 and 1. Furthermore, they can be computed without any knowledge
about the likelihood cost function used by the oracle function. Thus, we can use these
metrics to compute fitness even if the oracle function does not have any likelihood cost
function. The value of mif implies the average ratio of the total severity cost of moves
on log to the upperbound value of moves on log (without considering moves on model).
Similarly, the value of mmf implies the average ratio of the total severity of moves on
model to the upperbound total severity cost of moves on model (without considering
moves on log). Thus, mif and mmf yields the severity of deviations due to moves on log
and moves on model respectively.

Take for example the log and models in Figure 7.1. We use the standard likelihood
cost function to construct a basic and optimal oracle function, i.e., it yields one optimal
alignment per trace. Furthermore, we use the same function to as a severity cost function
and compute both mlf and mmf. mif and mmf between the log and model M, M3, and
My, are all 1.00 (perfect). The mif and mmf between the log and model M, are 0.79
and 0.83 respectively.

Both mif and mmf consider moves on log and moves on model separately. We intro-
duce the notion of weighted fitness metrics to combine both metrics.

Definition 7.3.5 (Weighted Fitness)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P, T,
F,a,m;, my) be an easy sound Petri net over A. Let sc : (A> x T) — IR be a severity
cost function. Let orc : {o € L} — ((A®> x T?)* — IP) be an oracle function of L and
N. The weighted fitness of log L and N using oracle function orc and severity cost sc is

mlf (L, N, ore, s¢) - mmf (L, N, ore, sc)
mlf (L, N, orc, sc) + mmf (L, N, orc, sc)’

wfit(L, N, ore, sc) = 2 -
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Figure 7.2: Repair process in a computer reparation shop, modeled as a Petri net annotated with data con-
straints.

Table 7.1: A fragment of an event log, showing an instance of the process in Figure 7.2

Event id Properties Data
Timestamp Activity Resource | Problem | Operation Cost
101 20-10-2013 11:50 register Maria - €10
102 22-10-2013 08:10 diagnose Roger hardware | €20
103 22-10-2013 10:04 | software fix | Nadal - €30
104 23-10-2013 08:05 archive Maria - €10

Using the same basic and optimal oracle function as the one mentioned just before,
the weighted fitness between the log and model My, M3, and M, in Figure 7.1 are all
1.00. The weighted fitness between the log and model M, is 2 - $55-%8% ~ 0.81. Note
that the metric always return values between 0 and 1.

The separation of the likelihood cost function that is used by an oracle function to
construct alignments and the severity cost function offers some degree of flexibility to
quantify fitness. Given a trace and a process model, the most likely alignment between
the trace and the model may not necessarily be the one with the least severity. For exam-
ple, we may determine the likelihood of an alignment based on historical information,
while the severity of the alignment is determined with a fixed cost. As another example,
as discussed in Section 6.4, a likelihood cost function can also be extended to consider
other event attributes than just the name of activities, e.g., data attributes. Similarly, we
can extend the notion of severity cost functions to also consider such extra attributes.

Take for example the repair process of a computer reparation shop in Figure 7.2. This
figure was shown previously in Section 6.4. Table 7.1 shows the log of an instance of
the process. Suppose that the likelihood of deviations only depends on the sequence
of activities followed by the instance. An optimal alignment between the trace of the
instance in Table 7.1 and the net in Figure 7.2 shows the deviations that are most likely
occurred. In this example, the trace of the instance is a sequence o = (register, diagnose,
software fix, archive). Using the standard likelihood cost function, the optimal alignment
between ¢ and the net in Figure 7.2 is shown in Figure 7.3.

Using the standard likelihood cost function, the optimal alignment in Figure 7.3 has
in total zero likelihood cost. Thus, the alignment is most likely describes the relation
between the trace and the net. However, note that event with id 102 in Table 7.1 as-
signs value “hardware” to the “Problem” data attribute. According to the annotation in
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‘ register ‘ diagnose ‘ software fix ‘ archive ‘
register | diagnose | software fix
t1 to t3

archive
ts

v =

Figure 7.3: The optimal alignment between trace o = (register, diagnose, software fiz, archive) and the net
shown in Figure 7.2.

Figure 7.2, activity software fix can only be performed if the value of the data attribute is
“software”. Thus, there is a deviation in the trace. This deviation can be captured using
a severity cost function that also takes into account the values of attributes other than
activity. Suppose that the severity cost function assigns costs according to the operational
cost for each violating events (either for control-flow or data constraint violations). The
total severity cost of alignment ~ is €30, because activity software fix was performed
while the value of data attribute “Problem” was “hardware” (see Table 7.1). This exam-
ple clearly shows that given a trace and a Petri net, the most likely alignment between
the trace and the net may not be the one with the least severity. This separation of con-
cerns between the likelihood cost functions and the severity cost functions underlies the
data conformance checking in proposed in [45]. Note that the alignment with the least
severity cost may be not optimal according to the likelihood cost.

7.3.2 Precision

Given an event log and a process model, the precision of the model with respect to the
log quantifies the fraction of the behavior allowed by the model which is not seen in the
log. Precision of the model is high with respect to the log if the model only allows for the
behavior observed in the log. If the model allows for too much behavior beyond what is
observed in the log then its precision is low. Note that there is a fundamental difference
between the fitness dimension and precision. While fitness values can be measured per
trace, precision needs to take into account the log as a whole.

Conformance metrics need to be unidimensional [48], i.e., a conformance metric
must only measure the entity that it is supposed to measure without being influenced by
other entities. By definition, precision measurements assume that the behavior of the log
is less or equal to the behavior allowed by the model. This is hardly the case in reality as
some deviations may occur (i.e., non fitting activities may exist). For all traces in the log,
the moves on model of an alignment between each trace and the model yields a complete
firing sequence of the model. We exploit such alignments to construct a perfectly fitting
event log from the (possibly non-fitting) log. Intuitively, a log that fits a model perfectly
contains only behavior that is allowed according to the model, and nothing more.

Given a perfectly fitting log and a Petri net, we use a similar concept as the one
proposed in [115,116] to measure precision. First, we construct a precision automaton
from the log that juxtaposes the behavior of the log and the behavior allowed by the net.
This way, we explicitly identify the points where the net allows for more behavior than
what was observed in the log, i.e., escaping states. Precision is then measured by taking
into account the behavior exhibited by the log and the set of all identified escaping states.
A precision automaton is formally defined as follows:

Definition 7.3.6 (Petri Net Precision Automaton)
Let A C A be a set of activities. Let N = (P, T, F, o, m;,ms) be a Petri net over A. A
precision automaton of N is a tuple PA = (SA, SE, EA, T, ss, wgt) where
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e SA is a set of states,

e SE is a set of escaping states,

e FAC SAXT x (SAUSE) is a set of labeled directed arcs between the states,

e ss € SA is the start state of PA,

e wgt : SA — IR is a weight function that maps states to real numbers,
Furthermore, the following constraints must hold:

e Let p € T* be a sequence of transitions. If there exists a sequence ((ss, o[1], s1),

(s51,0[2],82), .-, (810=1, 0l|0l], 510])) € EA™ then m; % m, i.e., a path from the start
state of the automaton yields a firing sequence,

e Let 0,0’ € T* be two firing sequences of N where arc sequence ((ss, o[1], sa1),
(sa1,0[2],5a2), ..., (sa),-1,0[|0|],sa)) € EA™ and ((ss, ¢'[1], sa}), (sa}, ¢'[2], sa}),
-5 (sal )y, 0[|¢]], sa)) € EA™ end in the same state sa € SA of PA. There exists

a marking m € RS(N,m;) such that m; 2 m and m; & m, i.e., the two firing
sequences lead to the same marking m in N.

J

Note that Definition 7.3.6 does not define a unique construction, i.e., there may be
many precision automata per net N. Given a Petri net precision automaton, a precision
value is computed as follows:

Definition 7.3.7 (Precision)

Let A C A be a set of activities, Let L € B(A) be an event log over A. let N = (P,
T, F,o, m;, my) be a Petri net over A. Let PA = (SA, SE, FA,T, ss, wgt) be a precision
automaton for L and N. Precision prec between L and N computed from PA is

Z wgt(sa) - |{(sa,t,s') € EA|s" ¢ SE}|
sa€SA

Z wgt(sa) - |{(sa,t,s") € EA}|

sa€SA

prec(PA) =

J

Definition 7.3.6 provides a generic definition on precision automata without specify-
ing how a precision automaton must be constructed from a given event log and a Petri
net. To construct such an automaton, one needs to further define the states, arcs between
states, and weight function. Given an alignment multi-set, one possible way to construct
a prefix precision automaton is to consider prefixes of all alignments in the multi-set as
states, formalized as follows [4,5]:

Definition 7.3.8 (Prefix Precision Automata)
Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P, T, F,
a,m;,my) be a Petri net over A. Let orc : {oc € L} — ((A> x T*)* — IP) be an oracle
function of L and N. A prefix precision automaton of L and N using oracle function orc
is a tuple PA = (SA, SE, FA, T, ss, wgt) where

o SA={p€T"|3seryer, yorc(o)(y) > 0A0 < ma(7) 1}, Le., the set of all prefixes
of firing sequences of alignments,

e SE={o-()eT |oe SAnm: Y m' Ao-(t) & SA}, i.e., the set of enabled
transitions that are never fired,
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o FA={(0,t,0') € SAXxT x (SAUSE) | o =0 (t)},
o ss= (),

e Forall p € SA : wyt(o) = > 5 | 0 ELAYET ) N A< (Y) 1] orc(o) (7). Note that the
weight of a state takes into account both the number of traces and the probability
of alignments of the traces that “enter” the state.

_

We show that the prefix precision automaton satisfies all of the requirements in Defi-
nition 7.3.6:

Theorem 7.3.9 (Prefix precision automaton satisfies requirements)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P,
T, F, o, m;,my) be a Petri net over A. Let orc : {o € L} — ((A> x T>)* — IP) be an
oracle function of L and N, and let PA = (SA, SE, FA, T, ss, wgt) be a prefix precision
automaton for L and N using oracle function orc. PA is a Petri net precision automaton.

_I

Proof. According to Definition 7.3.8, there are two requirements that need to be satisfied
by PA. We consider the two requirements separately.

e Let p € T* be a sequence of transitions such that ((ss, o[1], s1), (s1, 0[2], s2), - - -,

(810]-1,0[|0l],s)) € EA™ be a path from the start state ss. If o = () then m; ﬁ>

m; (the empty sequence () is a firing sequence). If o = o’ - (¢t) then we know
by definition that there exists 0 € L,y € I'; n such that ¢’ - (t) < ma(7), and

orc(c)(y) > 0. Furthermore, there exists o’ € T* such that m; % m’ % m” %

my. By repeating the same procedure iteratively for ¢/, we prove that g is a firing

sequence, i.e., there exists m € RS(N, m;) such that m; > m.

e We prove the second requirement by induction. Let g, ¢’ € T* be two sequences of
transitions and let o = ((ss, o[1], s1), (51, 0[2], 52), ..., (8]0/—1, 0[|0]], 51)) € EA* and
o' = ((ss,0'[1],51), (51, 0'[2]; 83), - - -, (8] 1|y, ©'[| €[], st)) € EA™ be two sequences
of edges that meet at state st € SA. If p = ¢’ = () then it is easy to see that firing
both sequences from the initial marking leads to the same marking. By definition,
ollel] = ¢'[|'[], thus 54— = ng’l—l' By repeating the same procedure iteratively,
we know that ¢ = o'. Previously, we prove that (IV,m;)[¢). Thus, there exists

m € RS(N,m,;) such that m; 2 mand m; % m.

O

As shown in Definition 7.3.8, a prefix precision automaton is constructed using an
oracle function. Given an event log and a Petri net, we can use at least three alterna-
tive approaches to construct an oracle function for the net and the log as discussed in
Chapter 6: Using the approach to compute one optimal alignment per trace, all optimal
alignments per trace, or representatives of all optimal alignments per trace. Thus, there
are some alternative approaches to construct a prefix precision automaton from a given
event log and a Petri net. Take for example the Petri net and log shown in Figure 7.4.
Figure 7.5 shows one optimal alignment for each trace in the log. Figure 7.6 is the prefix
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Event Log

Trace |Frequency
a 1
abcd
acbe
afgh
abibcd

e

a | c b‘e‘
alc|b]e
ty | t3 | t2 | s
d
d
t3 | t4

Figure 7.5: One optimal alignments for each trace in the log and model shown in Figure 7.4. ~1,v2,v3, 74,
and v5 are optimal alignments between the model in Figure 7.4 and o1 = ({(a),02 = (a,b,c,d),03 =
(a,c,b,e),04 = {a, f,g,h) and 5 = (a, b, 1, b, c, d), respectively.

precision automaton constructed using an oracle function that yields one optimal align-
ment per trace as shown in Figure 7.5. Using the constructed prefix precision automaton,
the precision value for the log and net in Figure 7.4 is 0.7907.

Figure 7.6 shows that there are 5 states that have some outgoing edges to some
escaping states. Take for example state ¢ = (t1,ts,t9) in Figure 7.6. The sequence is a
prefix of projection to model moves of 75, i.e., ¢ < m2(75) 1, and it is not a prefix of any
other projection to model of alignments in Figure 7.5. Thus, the weight of the state is
the same as the number of occurrences of trace 7 (7s), 4 in the log. The firing of o from
the initial marking [p;] of the net in Figure 7.4 leads to the marking [po, p3]. There are
three transitions enabled from the marking: ¢o, ¢3, and tg. According to the set of optimal
alignments in Figure 7.6, the only transition that was fired after firing g is ¢to. Therefore,
both states (¢1,to, to, t3) and (t1, ta, tg, L) are the escaping states of state (¢, to, tg).

The second alternative approach is to use the oracle function that yields all optimal
alignments per trace. From all traces shown in Figure 7.4, o; = (a) is the only trace in the
log that has more than one optimal alignment with respect to the standard cost function.
All optimal alignments between ¢ and the model of Figure 7.4 are shown in Figure 7.7.
Figure 7.8 shows a prefix precision automaton constructed from all optimal alignments
between the traces and the model shown in Figure 7.4. Note that state (¢, o, t3,ts5) is
not an escaping state in Figure 7.8, but it is an escaping state in Figure 7.6. Although
71,5 in Figure 7.7 is an optimal alignment between oy and the model of Figure 7.4, it
is not chosen as the optimal alignment of ¢, in Figure 7.5. The precision value for the
log and net in Figure 7.4 using the automaton shown in Figure 7.8 is 0.8267. Note
that the weight of the alignments of trace ¢, is divided equally to all 5 possible optimal
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LEGEND

<weight>

@ Escaping
state

<label> Edge to escaping

- states

<label> o Edge between

states

State

Figure 7.6: Prefix precision automaton for the log and model in Figure 7.4, using one optimal alignment per
trace.

la|>[>]>| a|>[>]>| a|>[>]>|
mai=|al| flg|h| m2=[alc]|b e‘ ma=lalc|b]|d
ti| te | tr | ts ti| ts | t2 | ts ti| ts | t2 | ta

a|>[>]>| a|>[>]>|

via=|a | b | c|d Tis5=|a| b | c|e

ti| ta | t3 | ta ti| ta | t3 | ts

Figure 7.7: All optimal alignments between trace o1 = (a) and the model shown in Figure 7.4.

alignments, i.e., the weight of each alignment is é =0.2.

As a third possibility, we can use the oracle function constructed from the approach
to compute representatives of all optimal alignments. Figure 7.9 shows a set of repre-
sentatives of all optimal alignments between o; and the model in Figure 7.4. For each
representative, we also compute the represented optimal alignments (see Figure 7.7) and
use them to weight the probability of the representative. A representative with higher
weight has higher probability. For example, trace o; has 5 optimal alignments. Since
71,2 (see Figure 7.9) represents 2 optimal alignments, its probability is % = 0.4. Fig-
ure 7.10 shows a prefix precision automaton, constructed using representatives of all
optimal alignments. The precision value for the log and net in Figure 7.4 using the

automaton shown in Figure 7.10 is 0.8027.

Note that different alternative oracle functions may yield slightly different precision
results. From all three different alternatives proposed in this section, the oracle func-
tion that yields non zero probabilities only for all optimal alignments per trace provides
the highest precision value because it considers more optimal alignments and therefore
minimizes the number of escaping states.

In some cases, the construction used by the prefix precision automaton can be too
strict. Take for example a pair of sequence (t;,t2,t3) and (t1,t3,t2) in Figure 7.10. Al-
though each sequence in the pair is a permutation of the other sequence, they are located
in different branches of the automaton as if each of them is really different than the other.
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t

LEGEND

<weight>

Escapin
State ® ping
state

_<label> . Edge to escaping

states
<label> o Edge between
- states

Figure 7.8: Prefix precision automaton for the log and model in Figure 7.4, using all optimal alignments per
trace.

la|>]|>[>]
yii=|al| f ‘ g | h |representing 1 optimal alignment ({~1,1} in Figure 7.7)
t1 | te | t7 | ts

a | > | > | >
v,2=|a | c | b | e |representing 2 optimal alignments ({71,2,71,5} in Figure 7.7)
ti1 | t3 | t2 | ts

a | > | > | >
m,3=|a | ¢ | b | d |representing 2 optimal alignments ({~1,3,71,4} in Figure 7.7)
t1 | ts | t2 | ta

Figure 7.9: Representatives of all optimal alignments between trace o1 = (a) and the model in Figure 7.4,
using knot nodes at level 1.

t

LEGEND
<weight>

E .

State @ Escaping

state

_<label> . Edge to escaping

states
<label> o Edge between
= States

Figure 7.10: Prefix precision automaton for the log and model in Figure 7.4, using representatives of all
optimal alignments per trace, knot nodes at level 1.

Therefore, we also use a state representation based on multi-set instead of prefix. This
way, the two sequences are “merged” into one single state.
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Multi-set Precision Automata

Given a multi-set alignment of a log and a Petri net, a multi-set precision automaton takes
the multi-set of all prefixes of model movements in the multi-set alignment. This way,
two branches that are similar in terms of the activities executed may be merged into a
single state in the automaton. A formal definition of the automaton is as follows:

Definition 7.3.10 (Multi-set Precision Automata)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P, T, F,
a,m;,my) be a Petri net over A. Let orc : {o € L} — ((A*> x T>)* — IP) be an oracle
function of L and N. A multi-set precision automaton of L and N using oracle function
orc is a tuple PA = (SA, SE, EA, T, ss, wgt) where

o SA={[t € o | Joerver, noeT-0rc(0)(7) > 0 A 0 < m2(y), 1}, ie., the set of all
multi-set of prefixes of firing sequences of alignments,

e SE={[t"€(o- )] €SA|teTNoeT*AN[t' € 0] € SAAmM; éﬁm}, i.e., the
set of multi-set of enabled transitions that are never fired,

o FA={(bt,b') € SAxT x (SAUSE) |V =bW[t]},

o ss=1),

e Forallbe SA:

wygt(b) = Z ore(a)(y)

o€L{v€lo N | Fper= e<m2(7) rAltEC]=b}
.

Similar to the prefix precision automata, we prove that the multi-set automata sat-
isfies all requirements of precision automata in Definition 7.3.6. We use a well-known
Petri net theory that shows for a Petri net and a pair of firing sequence of the net for
which one sequence is a permutation of the other, the pair leads to the same marking.
The following result can be found in many textbook on Petri nets, e.g., [55].

Lemma 7.3.11 (Firing sequences with same transition occurrences lead to the same
marking)

Let A C A be a set of activities. Let N = (P, T, F,«, m;, my) be a Petri net over A. Let
0,0’ € T* be two firing sequences of N such that for all ¢t € T : p(t) = ¢/(t). There exists

a marking m € RS(N,m;) such that m; 2 m and m; & m. 2
Proof. See for example the proof of Marking Equation Lemma in [55]. O

We use Lemma 7.3.11 to prove that multi-set precision indeed satisfies the require-
ment shown in Definition 7.3.6.

Theorem 7.3.12 (Multi-set precision automaton satisfies requirements)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P,
T,F,a,m;,m¢) be a Petri net over A. Let orc : {o € L} — ((A*> x T>)* — IP) be an
oracle function of L and N. Let PA = (SA, SE, EA, T, ss, wgt) be a multi-set precision
automaton for L and N using oracle function orc. PA is a Petri net precision automata.

_I

Proof. The proof for this theorem is similar to the proof of Theorem 7.3.9. There are
two requirements that need to be satisfied by PA. We consider the two requirements
separately.
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LEGEND
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@ Escaping

State state

_<label> . Edge to escaping
states
<label> . Edge between
states

Figure 7.11: Multi-set precision automaton for the log and model in Figure 7.4, using one optimal alignment
per trace.

LEGEND
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Escapin
State ® ping
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Figure 7.12: Multi-set precision automaton for the log and model in Figure 7.4, using all optimal alignments
per trace.

e Let p € T* be a sequence of transitions such that ((ss, g[1], s1), (s1, 0[2], s2), - - -,

(810—1, ©[|0l],s)) € EA" be a path from the start state ss. If o = () then m; O m;
(the empty sequence () is a firing sequence). If o = ¢ - (¢) then we know by
definition that there exists a trace o € L,y € I'; v such that o' - (t) < m2(7), and

orc(c)(y) > 0. Furthermore, there exists o” € T* such that m; % m’ - m” %

my. By repeating the same procedure iteratively for o', we prove that p is a firing
sequence, i.e., there exists m € RS(N, m;) such that m; 2 m.

e We prove the second requirement by induction. Let g, ¢’ € T* be two sequences of

transitions and let o = ((ss, o[1], s1), (51, 0[2], 52), ..., (5]0/—1, 0[|0]], 51)) € EA* and
o' = ((ss,0'[1],51), (51, 0'[2]; 83), - .-, (8] 1|1, @'[| €[], st)) € EA* be two sequences
of edges that meet at state st € SA. If p = ¢’ = () then it is easy to see that firing
both sequences from the initial marking leads to the same marking. If this is not
the case, since both sequences end up in the same state st and st is a multi-set
of transitions, we know that for all ¢ € T : p(t) = ¢'(¢') and hence there exists

marking m € RS(N, m;) such that m; % m and m; % m (see Lemma 7.3.11).

O
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Figure 7.13: Multi-set precision automaton for the log and model in Figure 7.4, using representatives of all
optimal alignments per trace.

For example, consider again the log and model shown in Figure 7.4. Figure 7.11, Fig-
ure 7.12, and Figure 7.13 are multi-set precision automata for the log and model shown
in Figure 7.4, constructed by considering one optimal alignment, all-optimal alignments,
and representatives of all optimal alignments respectively. Precision values computed
using the automaton that consider one optimal alignment, all optimal alignments, and
representatives of all optimal alignments per trace are 0.8372, 0.8267, and 0.8251 re-
spectively. Notice that these values are typically higher than the precision values provided
by prefix automata. This is because states are merged and hence there are fewer escaping
edges.

Backward-Constructed Precision Automata

Given an event log, a Petri net, and an oracle function, both prefix and multi-set automata
are constructed by iterating the transitions of alignments forward, i.e., for each alignment
with non-zero probability between a trace in the log and the net, the iteration starts
from the beginning of the alignment towards its end. Thus, the precision measurements
are more sensitive to transitions that occur in the beginning rather than the ones that
occur toward the end of alignments. Instead of constructing precision automata forward,
we can also construct them backward. For each alignment with non-zero probability,
we build an automaton from the end of each alignment and move backward until the
beginning of the alignment is reached.

To construct a precision automaton backward using an oracle function, we reverse
both the original Petri net and the set of alignments yielded by the oracle. Then, we
perform the same construction of precision automata using the reversed alignments and
Petri net. Recall the example event log and Petri net shown in Figure 7.4. The left side of
Figure 7.14 shows the reverse of the net in Figure 7.4. The right-side of the figure shows
the backward-constructed prefix precision automaton for the log and the net based on a
reversed oracle function that yields one optimal alignment per trace in the log. Compare
the difference between the automaton and the forward-constructed automaton shown in
Figure 7.6. Precision of the log with respect to the net according to the automaton shown
in Figure 7.14 is 0.8095. For each type of precision automaton that has been explained
before, we can construct its backward-constructed counterpart using a similar approach
as the one used to construct backward-constructed prefix precision automata.

We define the reverse of a Petri net and a reversed oracle formally as follows:
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Reversed Petri Net  Prefix Precision Automata (reversed)

D

LEGEND

<weight>

State @ Escaping state

—<IaEEI>—> Edge to escaping states
<label>

——— Edge between states

Figure 7.14: Left: The reversed Petri net of the net shown in Figure 7.4, Right: Backward-constructed prefix
precision automata of the log and model in Figure 7.4, using one optimal alignment per trace.

Definition 7.3.13 (Reversed Petri net)

Let A C A be a set of activities. Let N = (P, T, F,a,m;,ms) be a Petri net over A.
N' = (P,T,F',a,mys,m;) is the reverse of N if and only if for all (z,y) € (P xT) x (T x
P): F'(z,y) = F(y,x). 3

Definition 7.3.14 (Reversed oracle function)
Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P, T, F,
a,m;,my) be a Petri net over A. Let orc : {o € L} — ((A”> x T>)* — IP) be an oracle
function of L and N.

The reverse of orc is a function orc® : {rv(s) | 0 € L} — ((A> x T?)* — IP)
that yields probabilities for reversed alignments, such that for any reversed trace o €
{rv(o’) | o’ € L},y € (A> xT>)*:

orc®(a) (v) = orc(rv(a))(rv(7))

We show that a reversed oracle function is an oracle function for a reversed log and
Petri net (see Definition 7.3.13). Given an easy sound Petri net, we first show that the
reverse of a firing sequence of the net is a firing sequence of the reverse of the original
net.

Lemma 7.3.15 (Firing sequence in reversed Petri Net)

Let A C Abe aset of activities. Let N = (P, T, F, o, m;, my) be a Petri net over A, and let
N' = (P,T,F’,o,mys, m;) be the reverse of N. For all firing sequence o € T*,m; Ly m,
let o' = (o[|o|], o[lo| — 1], ..., o[1]) be the reverse sequence of o. m %/ m;. 4

Proof. We proof this by induction. If o = (),m; = m and thus the statement holds.
Suppose that there exists ¢ € T such that o = gy - (t) and m; Ay om i>N m. By
definition, for all p € ¢} : m(p) = m/(p) — F(p,t) + F(t,p). Since m/(p) > F(p,t), we
know that m(p) > F(t,p) and therefore m(p) > F'(p,t). This implies that (N’, m)[t),
i.e., t is enabled at m in N’. Suppose that m LN m. By definition, for all p € P :
m" (p) = m(p) — F'(p,t) + F(t,p) = m(p) — F(t,p) + F(p,t) = m'(p). Hence, m 5 n» m’.

. -1 1
Iteratively, we know that m QH—Q>HN/ m’ Q”i ]N/ ... LL]N/ m;, thus m %5/ m;. O

We use the lemma to prove that the reversed oracle function is an oracle function.
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Theorem 7.3.16 (The reverse of an oracle function is an oracle function)
Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N = (P, T,
F,a,m;, my) be a Petri net over A, and Let orc : {c € L} — ((A> x T>)* — IP) be an
oracle function of L and N.
Let L’ = [rv(o) | o € L] be the “reverse” of L, let N’ = (P,T,F’,c,my,m;) be the
reverse of N, and let orc® : {rv(o) |0 € L} — ((A> x T?)* — IP) be the reverse of orc.
orcf is an oracle function of L' and N'. J

Proof. Suppose that o/ € L',y € (A> x T>)*, and orcf(o’')(7/) > 0. This implies
m2(rv(v'))
that orc(rv(o’))(rv(y")) > 0. Thus, rv(y') € I'yy(oy,n and m; ——— n my. Using
7‘—2(7/)¢T
Lemma 7.3.15, we know that my ———n/ m;. We also know that rv(m1(y') 4) =0’ €
L’. Hence, v’ € T, n+ (i.e., the first criteria in Definition 3.4.7 is satisfied).
Using Lemma 7.3.15, it is easy to see that for all o’ € L' : T'pr v = {rv(v) | v €
'y (07),n }- Therefore, the following holds:

Yo o))=Y ore(ru(@))(n) =1

Y€l N YEL (o), N

We formally define backward-constructed precision automata as follows:

Definition 7.3.17 (Backward-Constructed Prefix/Multi-set Precision Automata)

Let A C A be a set of activities. Let L € B(A*) be an event log over A. Let N be a Petri

net over A and let N’ be the reverse of N. Let orc be an oracle function of L and N and

let orc’® be the reverse of orc. Let L' = [{(c]|o]],...,c[1]) | o € L] be the “reverse” of L.
The backward-constructed prefix precision automata of L and N is the prefix precision

automata of L' and N’ using oracle function orc®. Similarly, the backward-constructed

multi-set precision automata of L and N is the multi-set precision automata of L’ and N’

using oracle function orc®. 3

Other than backward-constructed and forward-constructed, one can also combines
both approaches by taking the average precision value of the two approaches. This way,
we minimize bias in precision measurement due to the direction where we construct
precision automaton.

In this subsection, we formalized an approach to measure precision for Petri nets and
nets with reset/inhibitor arcs. It is easy to see that similar approaches can be applied
to measure precision of process models in different modeling languages than Petri nets.
Note that the backward-constructed automata exploit a specific property of Petri nets
without reset/inhibitor arcs Lemma 7.3.15. This shows an example of the benefit of
using Petri nets over other process modeling languages.

7.3.3 Generalization

From all four conformance dimensions, generalization is a dimension that considers both
observed and unobserved behavior. A process model can be viewed as a possible encod-
ing of a process, and an event log of the process contains some samples of the behavior
of the process. Given an event log and a process model, the observed behavior in the
log does not necessarily contain all possible behavior of the process. The model is said
to be “overfitting” (i.e., not generalizing) if it only allows for the behavior that occurs in
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the log, but there is a high probability that the model is unable to explain the unlogged
behavior of the process [174,177]. Since this probability is typically unknown from the
log and model, in this section we describe a general idea that can be potentially used to
measure generalization.

Given an event log and a process model, we first “massage” the log to be perfectly
fitting to the model such that the generalization measurement is not influenced by non-
fitting traces (i.e., the measurement is unidimensional). This can be easily done using
basic oracle functions: for each trace in the log, we use a basic oracle function to get an
alignment and take both the moves on model and synchronous moves of the alignment
to construct a perfectly fitting trace of the trace. In the remainder of this subsection,
we only consider perfectly fitting logs. Given an event log that perfectly fits the model,
we consider each event in the log uniquely by introducing a massaged form of the log as
follows:

Definition 7.3.18 (Massaged Form)
Let A C A be a set of activities, and let L € B(A*) be an event log over A. split(L) €
B(A* x A x A*), where

split(L) = L—H [(01,a,02) € A" X Ax A% | 01 (a) - 02 = 0]
o€l

is the massaged form of L. Note that each event in L is mapped to precisely one (o1, a, 02)
element in split(L). a4

Given event log that perfectly fits a process model, we also assume that there exists
a state function that maps each unique “event” in the log to a set of states of the model.
We formalize such a state function as follows:

Definition 7.3.19 (State Function)

Let A C A be a set of activities, let L € B(A*) be an event log over A, and let N be a
process model. For any (o1, a,09) € split(L) : state((c1,a,03)) € S — IP is a function
that maps elements of the massaged form of L to a set of states S of the model, such that
Z state((o1,a,09))(s) = 1, i.e., the probabilities add up to one. a
seS

Intuitively, oracle functions can be used to realize such a state function. To quantify
generalization between the log and the model, we look at every state of the model. Given
an event e that occurs in state s of the model, we can find all events ¢’ in the massaged
log that occurred in the same state. Every event ¢’ can be considered as an occurrence
of an activity in state s. Suppose that state s is visited n times and there are w different
activities observed in the state. If n is very large and w is very small then it is unlikely
that a new event visiting the state will correspond to an activity not seen before in s.
However, if n and w is in the same order of magnitude, then it is more likely that a new
event visiting s will correspond to an activity not seen before in this state. Thus, we
quantify the generalization value as follows:

Definition 7.3.20 (Generalization)
Let A C A be a set of activities, let N be a Petri net, and let L € B(A*) be an event log
over A that is perfectly fitting N. Generalization between L and N is:

Z state((o1,a,02))(s)

-3 <m,a,oz>6splz‘t(|Ls>p s - pnew(seen(L, s), visit(L, s))

ses
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where
o seen(L,s) = |{a | (01,a,02) € split(L) A state((o1,a,02))(s) > 0}, i.e., the activi-
ties (possibly) seen for state s,
o visit(L,s) = |[(o1,a,02) € split(L) | state((o1,a,02))(s) > 0], i.e., the number of
times state s was (possibly) visited, and

e pnew(w,n) : IN x IN — IP is a function that returns estimated probability that the
next event visiting state s corresponds to an activity unobserved before.

J

We use an estimator inspired by [18] as follows: for all w,n € IN : pnew(w,n) =
ZE::I)) if n > w+2 and pnew(w,n) = 1 otherwise. This estimation can be derived under
a Bayesian assumption that there is an unknown number of possible transitions in all
markings and the distribution of this probability follows a multinomial distribution. If
n < w+ 1 the Bayesian analysis in [18] does not provide a transition probability as there
are too few occurrences to properly estimate the probability. For n = w + 1 wlwtl) _ 9

'’ n(n—1)
and for n = w, ﬁg;’fll)) > 1 (or undefined). Therefore, we assume the probability to

be 1 if n < w+ 1. This is a reasonable assumption (especially for larger n). If most
observations in a marking is unique, then it is likely that the next observation will also
be unique [177]. The generalization value of a net with respect to an event log is close
to 0 if it is very likely that a new trace will exhibit a new behavior (i.e., firing sequence)
unseen before. In contrast, the value is close to 1 if it is very unlikely that a new trace
will reveal new behavior.

Take for example log L and all Petri nets in Figure 7.1. gen(L, M, orc) denotes the
generalization of log L and model M according to Definition 7.3.20 using a basic oracle
function ore to: (1) construct a perfectly fitting log form L and M, and (2) construct a
state function (see Definition 7.3.19). Suppose that orcy, ys, is a basic oracle function of
L and model M, where 1 < z < 4. The generalization of L and My, M5, M3, and M,
are gen(L, My, orcr m,) = 1.0, gen(L, Ma, orcp am,) = 1.0, gen(L, M3, orcp ar,) = 1.0,
and gen(L, My, orcp ar,) = 0.99. As expected, generalization value of M; and Mj; are
high because the next trace to be observed is likely to fit into these models. Interestingly,
generalization of M, is high because the moves on model of all optimal alignments of
all non-fitting traces yield the same complete firing sequences of M,. Since all traces
yield the same complete firing sequence and therefore visit the same set of markings,
the generalization metric value is high and it is unlikely that new traces will introduce
new behavior. The generalization value for M, may be higher than expected, because
gen(L, My, orcy, a,) takes the average over all fired transitions, and most transitions
firing occur (by definition) in the highly frequent traces. For example, there are 455
occurrences of trace (a, ¢, d, e, h). For all intermediate markings between the initial and
final marking there is only one possible next activity (w = 1) whereas these states are

visited 455 times (n = 455). Hence pnew(w,n) = % ~ 0 for all events having

such a trace resulting in a very high generalization value.

The effect becomes clear if we assume that each of the 21 possible traces occurs
only once. Suppose that we construct a log L' from L such that L' = [{oc € L}]. The
generalization of My, My, M3, and M, with respect to L’ are 0.9935, 0.9952, 0.9975,
and 0.1155 respectively. For this smaller log, it becomes clear that M, is indeed less
general (i.e., more overfitting).

Table 7.2 shows the results of conformance measurements for all models and the log
shown in Figure 7.1 considering the three conformance dimensions that can be mea-
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Table 7.2: Conformance measurement between the log and models of Figure 7.1

Model | Log Fitness Precision Generalization
(1-align,prefix,forward) | (unique trace)
My 1.00 0.95 0.99
Mo 0.80 1.00 1.00
M3 1.00 0.30 1.00
My 1.00 1.00 0.12

sured using alignments: fitness, precision, and generalization. Notice that most of the
values corresponds to the intuition provided in Figure 7.1. The only exception is the
generalization of Ms, as the log has already a fitness problem that further influences the
other dimensions. This example shows that it is important to consider fitness first before
analyzing the other conformance dimensions, as was also demonstrated in [25].

In Section 7.4, we provide show discussions and experimental results to evaluate the
metrics proposed in this chapter. Furthermore, we use some real-life logs and models as
case studies to evaluate the applicability of the metrics in real-life settings.

7.4 Evaluations

In this section, we provide experimental results and discussions to evaluate the metrics
proposed in Section 7.3. In Sections 7.4.1, 7.4.2, and 7.4.3, we discuss the alignment-
based fitness, precision, and generalization metrics respectively. Experimental results
based on real-life logs and models are provided in Section 7.4.4.

7.4.1 Fitness

In Section 7.3.1, we proposed an approach to evaluate the fitness between a given log
and a Petri net using an oracle function. The oracle function yields alignments. Thus, as
discussed in Chapter 3, we tackle all possible issues due to invisible/duplicate transitions
and complex control-flow pattern in the net. Furthermore, we also proposed the use of
severity cost functions to quantify the fitness between them. This way, we allow different
deviations to have different levels of severity. Hence, the fitness value indicates the
severity of deviations between the log and the net. Note that the likelihood cost function
that is used by an oracle function is not necessarily the same as the cost function that
is used to measure the severity of deviations. We showed that if (1) the oracle is an
optimal oracle function with respect to a likelihood cost function, and (2) the likelihood
cost function is the same as the severity cost function, then the fitness value is between 0
and 1. Moreover, we also proposed the notions of move log/model fitness and weighted
fitness that are guaranteed to provide values between 0 and 1. This way, we showed that
the alignment-based fitness is intuitive, robust, and comparable.

As discussed in Section 7.2, many existing metrics in literature are based on strong
assumptions that are often hard to satisfy in practice. Consequently, these metrics may
show misleading results even for simple logs and models. Take for example the Petri
net shown in Figure 7.15. The net has only two complete firing sequences: (t1,t2,t4)
and (t1,t3,t2,t5). Let L = [{a,b,c),{(a,b,d)] be an event log consisting of 2 traces that
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Figure 7.15: An example of process model with invisible transitions whose occurrence cannot be identified
from traces of the model using the token-based replay approach [145].
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Figure 7.16: The optimal alignment between trace ¢ = (a,b,d) and the model in Figure 7.15 using the
standard likelihood cost function.

Transition fired with missing tokens

remaining tokens

Figure 7.17: The result of replaying log L = [(a, b, c), {(a, b, d)] and the process model in Figure 7.16 using the
token-based replay approach [145] to measure fitness. Some deviations are mistakenly identified although all
traces in L are perfectly fitting traces.

perfectly fits the model. We use the standard likelihood cost function to construct an
optimal oracle function between L and the net. We use the same function to quantify
the severity of deviations. Using the oracle function, the absolute fitness of the log and
the net is 0 (all traces perfectly fit the model). Moreover, all other alignment-based
fitness metrics: the relative fitness, move log fitness, move model fitness, and weighted
fitness yield the value of 1. As shown in Figure 7.16, an optimal alignment between trace
(a, b, d) and the model in Figure 7.15 explicitly shows invisible transition ¢s.

Using the same example, the token-based fitness metric of [151] returns a fitness
value of 0.9 as the token-based replay is unable to identify the occurrence of ¢3 (see
Figure 7.15). Similarly, the behavioral recall metric [68] provides a value of 0.83 which
is a relatively low value for a log that only contains two perfectly fitting traces. The
behavioral profile conformance [202] provides a perfect fitness value of 1.0 between L
and the net as the net does not allow any loop. However, the limitation to models without
loops might be too strong in practice.

The small example in Figure 7.15 shows that the existing fitness measurement tech-
niques in literature may already have some problems to deal with a small-sized log and
Petri net. These problems are mainly caused by the existence of invisible transitions, du-
plicate transitions, or complex control-flow construct (e.g., OR joins) in the model. Such
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A “flower” model (F) An overfitting (precise) model (P)
Event Log
Trace Frequency
<a,b,c,d> 1,230
<a,b,i,b,c,d>| 1,893
<a,c,b,e> 1,442
<a,f,g,h> 435

Figure 7.18: Example of an extremely imprecise (underfitting) and precise model (overfitting) for a given log.

a problem does not exist in alignment-based fitness measurement because of the explicit
mapping between transitions and activities and the optimization applied to minimize the
total likelihood cost.

7.4.2 Precision

In this section, we provide experimental results to evaluate the precision metrics based on
various types of precision automata. First, we show that the proposed precision metrics
are unidimensional, i.e., they are not easily influenced by problems in other dimensions
of conformance. Second, we investigate the influence of different state representations
of precision automata.

Evaluating Unidimensionality of Metrics

A first set of experiments was performed to evaluate the precision metrics. In particular,
we measure whether the proposed precision metrics are unidimensional [48], i.e., the
metrics should not be sensitive to non-fittingness of event logs. We measure precision
between various logs and models whose expected values are known. Furthermore, we
compare the obtained values against some existing state-of-the-art metrics for precision:
etcp [115], behavioral precision [49], and weighted behavioral precision [195].

The total time spent to compute representatives of all optimal alignments can be very
long if it has to be performed for large number of logs and models (see Section 4.7).
Therefore, we modify slightly the A* algorithm shown in Section 4.6 when computing
representatives of all optimal alignments. Suppose that n is the best candidate node in
an iteration in the algorithm, we explore all successors of n by performing the following
(in sequential order): (1) synchronous moves (if possible), (2) moves on model, and (3)
moves on log only if (2) can not be performed. Given an alignment, another alignment
can be created by swapping a pair of move on model and move on log that follows di-
rectly one another. The modification to the A* algorithm avoids the repeated exploration
of permutations of moves on model/log that occur consecutively. This implies that some
paths between nodes that are constructed by the original approach may be missing and
the number of represented optimal alignments computed from the exploration graph is
only a lower bound instead of an exact bound as described in Section 4.5. For all exper-
iments in this section, we use this modified algorithm to compute representatives of all
optimal alignments for a given trace and Petri net.

Figure 7.18 shows an event log and two Petri nets whose expected precision values
are known. The left net is the so-called “flower” net (F) that allows any arbitrary se-
quence of activities, while the right net (P) is a net that simply enumerates all traces in
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Figure 7.19: Precision values of the logs/models in Figure 7.18 and their combinations provided by alignment-
based approach (i.e., computed using all optimal alignments per trace). If all behavior are observed in the
original logs, all measurements are insensitive to non-fitting traces.

the log. By combining the models and log in Figure 7.18 in various ways, we have created
new models whose expected precision values are between the two extremes. The two
models are combined by merging the end place of one with the initially marked place of
another. The merged models were named according to the name of their original mod-
els, e.g., PF model is the result of merging the end place of P with the initially marked
place of F. The activity names in the merged models and logs were renamed before they
were merged such that the original models and logs can be easily distinguished from
the merged results. Precision values were measured 30 times using 30 event logs, each
consisting of 5,000 traces, generated by simulating the precise model (i.e., PP). For the
sake of completeness, we also measured the precision of the overfitting model (P) and
the flower model (F) using 30 logs of 5,000 traces generated by simulating the P model.
This way, each log contains all the possible traces of the P/PP model.

The top part of Figure 7.19 shows the results for the alignment-based precision met-
rics that are measured using an oracle function that yields all optimal alignments per
trace. The experiments with oracle functions that yield one and a set of representa-
tive alignments per trace yield identical results. This result shows that by observing
enough behavior in the event logs, all alignment-based metrics provide similar intu-
ition regarding the precision of models, i.e., overfitting models have high precision val-
ues and “flower” models have low precision values. Notice that the precision values
obtained using different approaches are almost the same, i.e., using different type of
automata (prefix/multi-set) or different directions of constructing the automata (for-
ward/backward).

To evaluate the robustness of the metrics against non-fitting logs, we took the models
and logs from the previous experiments and created a set of unfitting logs by removing n
events randomly per trace from the fitting logs. To ensure that the created logs are unfit-
ting, only events that belong to the precise part (i.e., mapped to P part) are removed. We
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Figure 7.20: Comparison between precision values provided by alignment-based approach (i.e., computed
using all optimal alignments per trace, forward-constructed prefix precision automata) and other metrics
(etcp [115], behavioral precision [49], and weighted behavioral precision [195]). Only the alignment-based
approach is not sensitive to non-fitting logs/models.

measured the precision between the models and the logs and then compared it against
existing metrics. We use the CoBeFra tool [194] to measure behavioral precision [49]
and weighted behavioral precision [195]) and use ProM 6 to measure etcp. The bottom
part of Figure 7.19, Table 7.3, and Figures 7.20-7.22 show some of the results.

The bottom part of Figure 7.19 shows that the metrics proposed in Section 7.3 are
robust to fitness problems. Even in cases where almost half of the events in all traces
are removed, all alignment-based precision metrics provide a value similar to the one
given for perfectly fitting traces. Figure 7.20 shows a comparison between the preci-
sion values given by alignment-based precision metrics and the values provided by other
precision metrics in literature. For readability, we only show the result of one of the
alignment-based metrics: the one that uses the approach to compute all-optimal align-
ments and a forward-constructed prefix precision automaton. Notice that in case of
fitting logs, all metrics result in similar insights. In fact, the alignment-based metric
shown in Figure 7.20 has the same value as the etcp metric. However, in cases where
logs are non-fitting, other metrics may show misleading precision insights. The etcp met-
ric provides low precision for model PF with respect to perfectly fitting logs (i.e., 0.25).
However, the value rises to 0.82 when 3 events are removed from the logs used in the
experiment, because for all non-fitting traces it ignores the rest of the traces after the first
non-fitting event occurs. Similarly, both weighted and unweighted behavioral precision
metrics provide lower precision values for non-fitting logs. Even for overly fitting models
P and PP, both metrics provide precision values below 0.5 (i.e., indicating the models are
imprecise). Because both metrics mix both perfectly-fitting and non-fitting traces in the
construction of artificial negative events, the generated negative events are misleading
and incorrect.

Figure 7.21 shows the influence of noise by removing some events in the logs. As
shown in the figure, other than the alignment-based precision metric, precision values of
all metrics may change significantly even with only one event removed from all traces.
Due to the randomness of the location of removed events, the etcp values may both
increase or decrease with the presence of non-fitting traces. Both weighted and un-
weighted behavioral precision metrics decrease when more events are removed because
incorrect artificial negative events are introduced. Note that the number of negative
events tends to decrease when traces in the log show more variability because of the



157

0 Model PF o Model FP 0 Model PP . Model P
c 08 S ————— 5 e c08 08 .\
2 05 2% 0s Sos \\\.
] S o K
02— 02 & 02
0.0 T 0.0 0.0 T T 0.0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
#Removed events #Removed events #Removed events #Removed events
LEGEND
—#—Alignment-based precision: All-alignments, etc, —®=Unweighted behavioral ——Weighted behavioral
prefix, forward-constructed precision precision

Figure 7.21: Precision values of different metrics for perfectly fitting logs and non-fitting logs created by
removing some events in the logs. Only the alignment-based approach metric (i.e., computed using all optimal
alignments per trace, forward-constructed prefix precision automata) is insensitive to non-fitting logs.

Table 7.3: Precision values of the PF model, measured using different precision automata (prefix/multi-set,
forward/backward). If all behavior is observed, both one alignment and representatives of all optimal align-
ments per trace provide a good approximation of all-alignments per trace.

Automata Construction Direction

Forward Backward [ Combined

#Removed 0 1 2 3 0 1 2 3 0 1 2 3
Prefix one | 0.25 [0.24|0.24|0.24| 0.19 | 0.19 | 0.19 | 0.18 [0.22{0.22|0.21|0.21
rep | 0.25 [0.25{0.24]/0.24| 0.19 | 0.19 | 0.19 | 0.19 |0.22]0.22]|0.22]0.21
all | 0.25 [0.25[0.24[0.24| 0.19 | 0.19 | 0.19 | 0.19 |0.22]0.22[0.22[0.21
Multi-set | one | 0.26 |0.25/0.25/0.25| 0.19 | 0.19 | 0.19 | 0.18 |0.22{0.22{0.22{0.22
rep | 0.26 [0.26/0.25|0.25| 0.19 | 0.19 | 0.19 | 0.19 |0.22{0.22]0.22]0.22
all | 0.26 [0.25[0.25[/0.25| 0.19 | 0.19 | 0.19 | 0.19 |0.22]0.22]0.22[0.22

removal of events.

The set of experiments also shows some interesting insights into differences between
alignment-based metrics. Table 7.3 shows the results for model PF. In cases where the
whole behavior is recorded in event logs, precision values depend on the state represen-
tations of the automata (based on prefix/multi-set) and the directions for the automata
construction. When all the possible behavior is observed, the automata constructed us-
ing one alignment or all-alignments per trace are identical. Similar results are obtained
from the experiments using the other models (P,F,FP,PP,FF). Note the slight differences
between precision values that are measured using different state representations within

PF, Prefix PF, Multi-set FP, Prefix FP, Multi-set
o3 —m— 0.3 o3 ——— o3 ——
c c % S =—e—9o =—p—0_29
002 |6——t—% 902 ' o—o—"2—4% S02 — —" 602 ———
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Figure 7.22: Precision values of the PF and FP using all-alignments per trace, with different precision au-
tomata (prefix/multi-set, forward/backward). Higher precision is obtained when the direction of automata
construction starts with the precise part of the models.
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“Choice” model “Parallel” model

Figure 7.23: (i) A model that only allows one activity per trace, and (ii) A model that allows interleaving
between all activities.

the same directions of automata construction in Table 7.3.

Table 7.3 shows that there are slight differences between precision values that are
measured using different state representations and different directions in the automata
construction. Figure 7.22 shows a comparison between the precision values provided
by the two metrics for models PF and FP. As shown in the figure, precision values of
alignment-based metrics provided by forward-constructed automata for model PF are
higher than the values provided by backward-constructed automata for the same model,
regardless of the noise level and the state representation (prefix/multi-set). In contrast,
the values provided by the latter is higher than the former for the FP model. This shows
that the position of the precise part of the models influences precision values. Precision
values are higher when the direction of constructed automata starts with precise part of
the process model. In this case, we clearly see the influence of direction of constructed
automata (forward/backward) on precision values. To balance the influence, one of the
simplest ways is to take the average between the values provided by measuring precision
from automata constructed from both directions. Figure 7.22 shows that the precision
values obtained by combining both values are almost similar between model PF and FP.

Thus far, non-fitting logs were created by removing activities randomly. Given a pro-
cess model and a fitting trace, there are other ways to make the trace non-fitting, such
as swapping some activities and add extra activities to the trace randomly. Regardless of
the approach used to introduce noise, an alignment between a non-fitting trace and the
model provides a good “guess” of a complete activity sequences allowed by the model
that should have occurred instead of the trace. This way, precision is measured inde-
pendently from other conformance metrics, e.g., the fitness metric. Other approaches
investigated in this section do not explicitly handle such non-fitting logs. Hence, they are
not unidimensional and may yield misleading results as shown by the experiment results
presented in this section.

The Influence of State Representations

The second set of experiments were conducted to investigate the influence of state rep-
resentations in alignment-based precision measurements. We use two models that, de-
spite having the same number of activities, one allows for much more behavior than
the other. The first model only allows for alternative routing (no concurrency) and is
named “Choice” model. The second model allows for the interleaving of all activities
and is named “Parallel” model (see Figure 7.23). For our experiments, we used models
that consist of 9 activities (with invisible transitions “start” and “end” for the “Parallel”
model).
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Figure 7.24: Alignment-based precision values for “Choice”, “Parallel”, “Choice-Choice”, and “Parallel-
Parallel” model. For “Parallel” and “Parallel-Parallel” models, the precision values computed using multi-set
precision automata are higher than the ones computed using prefix automata. For “Choice” and “Choice-
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Figure 7.25: Precision values of models with combination of choice and parallel control-flow patterns. Higher
precision values are obtained when the automaton is constructed starting from the part having most concur-
rency.

Similar to the previous set of experiments, we randomly generated perfectly fitting
logs for both models with various number of traces per log and then measured their
precision values. Experiments are repeated 30 times for each combination of models and
number of traces per log. We conducted the same experiments with models constructed
by combining the two models in sequential order (“Choice-Choice”, “Choice-Parallel”,
“Parallel-Choice”, “Parallel-Parallel”). The results of the experiments are shown in
Figure 7.24 and Figure 7.25.

Both Figure 7.24 and Figure 7.25 reveal that even if logs are generated from the mod-
els, all metrics require some degree of log completeness before they provide a high pre-
cision value. As expected, there is no difference between the precision values provided
using multi-set and prefix precision automata for the experiments with “Choice” and
“Choice-Choice” models. In contrast, the precision values provided by both approaches
in the experiments with “Parallel” and “Parallel-Parallel” models are high. In theory,
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the minimum number of traces in an event log required to see all possible behavior of
a “Choice” model with 9 activities is 9, while the minimum number of traces to see all
possible interleaving of activities in a “Parallel” model is 9! = 362,880 traces. In all ex-
periments, alignment-based precision measurements from multi-set precision automata
provide the same or higher precision values with the same number of observations traces
than the measurements with prefix precision automata. This experiment shows that
when not all behavior has been observed in event log, precision values computed us-
ing multi-set precision automata provide the upper-bound for the ones computed using
prefix precision automata.

The figure also shows that in all experiments, the etcp values are the same as the
alignment-based precision values computed using prefix automata because all traces
perfectly fit the corresponding models. Interestingly, in the experiments with model
“Choice” and “Choice-Choice”, both the weighted and unweighted behavioral precision
metrics provide a high value (1.00) for logs with only one trace but provide very low val-
ues (below 0.2) for other logs that contain more than one trace (i.e., logs with 10, 100,
1,000, to 5,000 traces). The reason the (un)weighted behavioral precision values are so
high is that the artificial negative events construction only takes into account the logged
activities. When an activity in a trace of the logs is replayed to construct artificial neg-
ative events, other than the logged activity both models allow only unlogged activities
(invisible transitions). Thus, no negative artificial events were constructed and therefore
the precision of the models with respect to the logs is 1.00. Furthermore, the results also
show that the time spent to compute alignment-based metrics is not necessarily higher
than the time required to compute other existing metrics such as the (un)weighted be-
havioral precision. In some of the experiments with models “Parallel” and “Parallel-
Parallel”, no result was obtained after 1 hour computation for (un)weighted behav-
ioral precision while the alignment-based precision metrics were computed in less than
1 minute for each pair of model and log.

Figure 7.25 shows the precision values obtained from experiments with “Choice-
Parallel” and “Parallel-Choice” models. Interestingly, the results of the experiment
with “Choice-Parallel” model performed using forward-constructed automata (i.e., top-
left of Figure 7.25) is identical to the one given by the experiment with “Parallel-
Choice” model using backward-constructed automata (bottom-second from left of Fig-
ure 7.25). Similarly, the results of experiment with “Parallel-Choice” model performed
using forward-constructed automata (i.e., bottom-left of Figure 7.25) is identical to the
one given by the experiment with “Choice-Parallel” model using backward-constructed
automata (top-second from left of Figure 7.25). These results show that precision val-
ues are also influenced by the location of parallel-choice constructs: precision values are
higher when the automaton is constructed starting from the part of the model having
most concurrent behavior. The combination precision value computed by averaging the
precision values obtained from both forward and backward-constructed automata is less
influenced by the construction direction as shown in Figure 7.25. As shown in the fig-
ures, the measured precision values for both “Choice-Parallel” and “Parallel-Choice”
models using the combined precision values are identical. None of non-alignment-based
approaches in this set of experiments managed to provide a precision value above 0.8.
Note that no result was obtained after 1 hour of computation for both weighted and
unweighted behavioral precision metric calculations and logs of size 1,000 traces and
more.
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7.4.3 Generalization

Unlike the fitness and precision metrics, the generalization metric in Definition 7.3.20
cannot be easily evaluated as it require estimations on unobserved behavior [174]. As
shown by the example in Figure 7.1, given an event log and a Petri net, the proposed
metric shows intuitive measurements when the number of observations are low (i.e., only
considering unique traces). However, it is less intuitive when the number of observations
is relatively high. This behavior can be related to the use of Bayesian assumption to
provide a probability that the next visit to a visited marking in the net will reveal a
new firing sequence unseen before. The assumption is valid for cases where there is
an unknown number of possible transitions in all markings and the distribution of this
probability follows a multinomial distribution, but in most cases there is a finite set of
enabled transitions for each reachable marking.

Identifying such a probability is far from trivial. We recall the results of the work
in [174] to show the challenges in measuring generalization. The work distinguishes
processes, process models, and event logs as follows: A process is a function that maps
traces to probabilities. A model of the process is a set of traces with probability above
a predefined threshold according to the function. Event logs are multi-set of observed
traces.

An event log L contains samples of traces of a “real” process pg, while a process model
N is derived from a function that maps traces to probabilities p;. The “real” process py is
typically unknown. From L, one can make an estimator p;, of its underlying process (the
process that generates the log). Generalization measurements are related to the quality
of p;, as an estimator for po. Generalization can be defined as the probability that the next,
not yet observed, case can be replayed by the process model [174], i.e., the probability that
the next observed trace 0 : 0 € N.

If L only contains few traces and most of them are unique, then p, is a poor estimator
for pg. Therefore, a model that only allows for the traces in L most likely will not allow
for 0. However, if L contains many traces and most of them appear many times then pp
is a much better estimator for pg due to the strong law of large numbers. Hence, a model
allowing for the traces in L will also allow for o.

Note that the validation of generalization remains a challenge, because the “real”
process remains unknown. In most cases, we only have an event log and a process
model at hand. Things are getting even more complicated as the observed behavior in
the log and the modeled behavior in the model is not guaranteed to be a subset of the
behavior of the “real” process.

7.4.4 Real-life Logs and Models

To evaluate the applicability of the approach to handle real life logs, we used 8 pairs
of process models and logs from two different domains (see Table 7.4 and Table 7.5),
where seven logs and models were obtained from municipalities in the Netherlands. In
particular, we took the collections of logs and models gathered in the context of CoSeL.oG
project [26]. The remaining pair of log and model was obtained from a hospital in the
Netherlands!. The logs and models from municipalities are related to different types
of building permission applications, while the hospital log is related to patient handling
procedure. All processes have invisible transitions, and some of the models allow loops.
Table 7.4 shows an overview of the logs and models used in the experiments and the

Isee http://www.healthcare-analytics-process-mining.org/
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Table 7.4: The fitness values of real-life logs and models

Log #Traces | #Events Model #Deviation afit rfit mlf mmf wfit Time
#P | #T per Trace (sec)

LMO1 3,181 20,491 15 12 5.33 16,942 | 0.68 | 0.94 0.55 | 0.69 1.0
LMO02 1,861 15,708 16 19 1.45 2,691 | 0.87 | 0.92 092 | 092 | <1.0
LMO03 10,271 85,548 24 21 14.50 | 148,901 | 0.45 | 0.92 0.35 | 0.51 4.0
LMO04 4,852 29,737 16 27 2.09 10,161 | 0.82 | 0.97 0.75 | 0.85 | <1.0
LMO5 25,846 141,755 14 24 1.21 31,337 | 0.88 | 0.96 0.84 | 0.90 1.0
Bouw1 139 3,364 33 34 9.75 1,355 | 0.78 | 0.88 0.76 | 0.82 3.0
Bouw4 109 2,331 31 31 7.27 792 0.8 | 0.87 0.80 | 0.83 9.0
IsalaLog 77 459 26 39 0.68 52 | 0.94 | 0.94 095 | 094 | <1.0

Table 7.5: The generalization values of real-life logs and models

Log #Traces | #Events | Process Model | #Deviation rfit gen
#P #T per Trace

LMO1 3,181 20,491 15 12 5.33 | 0.68 | 0.99
LMO02 1,861 15,708 16 19 1.45 | 0.87 | 0.99
LMO03 10,271 85,548 24 21 14.50 | 0.45 | 0.99
LMO04 4,852 29,737 16 27 2.09 | 0.82 | 0.99
LMO5 25,846 141,755 14 24 1.21 | 0.88 | 0.99
Bouwl 139 3,364 | 33 34 9.75 | 0.78 | 0.99
Bouw4 109 2,331 31 31 7.27 | 0.80 | 0.93
IsalaLog 77 459 | 26 39 0.68 | 0.94 | 0.98

fitness measurements results. The #Deviations per trace column indicates the cost of
deviations after aligning all traces in the logs with their corresponding models. afit, rfit,
mif, mmf, and wfit refer to the absolute, relative, move log, move model, and weighted
fitness respectively (see Section 7.3.1). We also measure the time required to compute
the fitness values. To compute the fitness values, we use an oracle function that yields one
optimal alignment per trace. Furthermore, we also compute the generalization between
between the pairs of logs and models as shown in Table 7.5).

As shown in Table 7.4, none of the logs is perfectly fitting to the corresponding model.
Some logs have more deviations than logged events (e.g., log “LM03”). Only one of
the logs has a relative fitness value below 0.5 (i.e., log “LM03” has many deviations).
The values of move on log/model fitness give an indication on the possible causes of
deviations. A log whose mif value is much higher than its mmf indicates that most
deviations occur because of moves on model, i.e., some activities are skipped. The mlf
values of log “LMO01” and “LMO03” are significantly higher than their mmf values because
many activities in both logs are skipped. We also see that the weighted fitness values wfit
are a good approximation of the rfit values. In all experiments, the computation time
for all pairs of logs and models are relatively low (below 10 seconds for each pair). This
result indicates the applicability of the alignment-based approach to measure the fitness
of logs and models with real-life complexity.

Table 7.5 shows that the generalization values of all logs are high. These values
indicate that there are sufficient behaviors observed in the logs and new traces are less
likely to follow a new path in the models. However, note that the values are influenced
by the fitness level of the logs.

Similarly, we measure the precision values for all logs and models and the computa-
tion time required. The results are shown in Figure 7.26 and Figure 7.27. Figure 7.26
reports precision values obtained for real-life logs and models. Only the approach based
on 1-alignment provides precision values for all real-life logs and models in the experi-
ments. The approach based on all-optimal alignments per trace had out-of-memory prob-
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Figure 7.27: Computation time comparison of alignment-based precision measurement using combined values
(from backward and forward constructed automata). Missing values are due to out-of-memory problems.

lems when dealing with relatively complex process models and logs such as “Bouw1” (33
places, 34 transitions), “Bouw4” (31 places, 31 transitions), and “LM03” (24 places, 21
transitions). Precision measurements based on representatives of all optimal alignments
also had the same problems dealing with the hospital log (i.e., “IsalaLog”). The model
of the hospital log is relatively small, but it contains many invisible transitions, allows
loops, and allow many interleaving activities such that the size of state space required to
compute even representatives of all optimal alignments is large and does not fit memory.

Nevertheless, notice the similarity of the computed precision values using all three
alignments (1-align, all-align, and representatives). From all pairs of logs and models,
only 2 of them have precision values below 0.7. This shows that in reality, process mod-
els are made to be relatively precise such that meaningful insights into process can be
obtained. Interestingly, different insights are provided by different direction of construct-
ing automata and state representation in the experiment with log and model “Bouw4”
using both one and representative alignments per trace. The precision value of the log,
computed using forward-constructed prefix automata is around 0.4 (showing slight im-
precision) while the same value computed using backward-constructed prefix automata
is 0.6 (showing that the log is slightly precise). This example shows the importance of
balancing the influence of direction for which automata is constructed. Alternatively, this
is also an indication that more observations are required to measure the precision of the
particular log and model accurately.

Figure 7.27 reports the computation time required to measure precision of real-life
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Figure 7.28: Precision values (left) and computation time (right) comparison between alignment-based preci-
sion measurements and existing precision measurements using real-life logs and models. Y-axis values on the
right chart are shown in a logarithmic scale. Missing values indicate that no result was obtained after 1 hour
of computation.

logs and models using alignment-based approach with combined precision values be-
tween forward and backward-constructed automata. The y-axis of the charts are shown
using a logarithmic scale. As shown in the figure, the computation time of precision
measurement with all-alignments takes much longer than the ones required by one or
representative alignments. Except for the experiment with log “IsalaLog”, all measure-
ments using one optimal alignment/representative of all optimal alignments per trace
were computed in less than 24 seconds. Notice the similarity between the left and right
graph on the figure (except the “IsalaLog” that has out-of-memory problem in the ap-
proach with representative alignments). In fact, we obtained identical results for all
other experiments with different combination of prefix/multi-set automata and direc-
tions where the automata is constructed (forward/backward). This shows that the di-
rection to construct automata and state representations (i.e., prefix/multi-set) do not
influence computation time significantly. Most time is spent on constructing alignment
multi-sets.

Figure 7.28 shows a comparison of precision values and computation time between
alignment-based precisions (represented by the ones computed using one alignment
per trace, forward/backward constructed multi-set automata, averaged) and other ap-
proaches. In most cases, the alignment-based approach yields higher values than other
approaches. The right-hand side of the figure shows that the computation time of both
weighted and unweighted behavioral precision is much higher than the computation
time of both the alignment-based precision and etcp.

7.5 Conclusion

Given an event log and a process model in the form of a Petri net, we showed several
alignment-based approaches to measure how good the log is with respect to the net. Re-
gardless of the dimension of conformance that is measured, all measurement approaches
in this chapter can be divided into two steps. The first step is constructing alignments
from each trace in the log, and the second step is measuring conformance using the
constructed alignments.

The fitness of a log to a process model is often measured based on the proportion
of the observed behavior in the log that can be reproduced by the net. In this chapter,



165

we proposed a flexible approach to measure fitness by explicitly taking into account the
severity of deviations. Thus, different deviations may have different severity. The ap-
proach uses a severity cost function to quantify the severity of deviations (movements)
in alignments. We showed that alignment-based fitness measurement is robust to pecu-
liarities of process models (e.g., invisible/duplicate transitions, complex control-flow).
Furthermore, we also showed that if the constructed alignments are all optimal accord-
ing to a likelihood cost function and the cost function is the same as the severity cost
function, the range of the fitness value is between 0 and 1.

Alignments also provide a basis to compute other metrics of conformance on different
dimensions, such as precision and generalization. Many approaches to quantify precision
assume perfect fitness, while this assumption is rarely being satisfied in practice. This re-
sults in unreliable precision measurements as shown in this chapter. Therefore, we have
developed an approach to measure precision based on alignments. Alignments are cru-
cial to measuring precision more accurately, especially in those cases where the log is
non-fitting. Given a Petri net and an event log, we use an automaton-based approach
to measure precision. Automata are mainly used as a means to juxtapose the behavior
of the net with the behavior observed in the log. We showed that the choice of state
representation in the construction of the automata influences the precision value ob-
tained. Furthermore, we have identified several behavioral properties of process models
that may cause a biased precision measurement. To minimize such bias, we proposed
an average precision value between the automata obtained using forward and backward
construction.

Computing all optimal alignments between a process model and an event log is com-
putationally expensive, if not infeasible in practice. We showed that precision values
based on both one optimal alignment and representatives of all optimal alignments per
trace provide a good approximations for the values obtained using the all-optimal align-
ments approach. We also showed that the precision measurement based on representa-
tive optimal alignments provides a trade-off between computation time and metric qual-
ity, providing more diagnostics information (i.e., a lower bound of the number of optimal
alignments). Nevertheless, identifying the “optimal” trade-off between computation time
and rich diagnostic information remains a challenge for practical cases.

While the alignment-based fitness and precision metrics can be easily validated using
either theoretical or empirical proofs, the generalization metric is hard to be justified as
it reasons about unknown facts. The proposed metric provides an intuition on how to
measure generalization. However, the validation of the metric remains a challenge due
to the nature of the problem.

Given an event log and a process model, we stress that all dimensions of conformance
must be considered together when evaluating the quality of the model with respect to
the log. Fitness, however, can be viewed as the most important quality dimension as it is
highly unlikely that if the model poorly fits the log, measurements on other dimensions
are meaningful. This result is consistent with the discussions and results of [25,174].
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Chapter 8

Analyzing Recurring Deviations

(" PART Ill. Applications )

0 Analyzing Recurring Deviations

8.1 Introduction

The dynamic nature of business environments nowadays demands organizations to be
flexible and quickly adapt to changing business requirements [156, 160]. Thus, business
processes need to support flexibility, e.g., by allowing alternative execution paths. Such
flexibility is also called flexibility by design [156].

In many cases, it is impossible to predict all possible execution paths at design time.
Therefore, an information system that supports a process typically allows for deviations
from a prescribed process model. Resources are allowed to deviate temporarily from
reference models at runtime without changing them and influencing the way other in-
stances of the same process are performed. For example, in case of an emergency a
patient may go straight to the operation table and skip some administrative procedures
that should have been performed before surgery in normal cases, e.g., registration, ap-
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pointment, etc. Nevertheless, regular patients without the same emergency status still
need to follow the administration procedures mention before. This type of flexibility is
categorized as flexibility by deviation [156].

In a process supported by a system that provides flexibility by deviation, the man-
agement of deviations directly impacts the performance of overall processes [72, 80].
Understanding the causes of deviations can help organizations to identify changes re-
quired in the process to avoid future occurrences of the deviations [72]. A frequently
occurring deviation in the process — such that it can even be considered as a routine —
indicates that the model of the process may need to be modified to reflect reality bet-
ter [166]. Deviation analysis may reveal interesting insights that can be used to improve
the way processes are conducted.

Given an event log and a process model, we are particularly interested in answering
the following research questions:

e What are the most frequently occurring deviations? If the deviations are so frequent
and can even be considered routine, one may consider improving the reference
model to explicitly allow for the deviations [166],

e In which context do deviations often occur? Understanding the context where de-
viations often occur can be exploited to prevent similar deviation from occurring
in the future or predicting occurrences of the same deviations while cases are still
running [72,80].

In the earlier chapters, we showed how alignments can be used to identify possible
root causes of deviations in the control-flow perspective. Given an event log and a pro-
cess model, in this chapter we show how alignments can be further exploited to analyze
recurring deviations and provide answers to the research questions mentioned above.
In Section 8.2, we first discuss related work. Alignment-based approaches that reveal
different insights into deviations between the log and the model are presented in Sec-
tion 8.3. Case studies to demonstrate the applicability of the approaches are reported in
Section 8.4. Section 8.5 concludes this chapter.

8.2 Related Work

As shown in Chapter 3 and Chapter 7, many approaches have been proposed to check
the conformance between a given process model and its recorded executions, e.g., [45,
49,65,68,115,116,151,202]. However, often these do not provide the desired insights.
The analyst would like to see recurring deviations and the root causes of deviations.

Given an event log and a Petri net, Rozinat et al. [151] use the token replay approach
to identify deviations between the traces of the log and the net. The original net is an-
notated with information about missing/remaining tokens and frequently visited paths,
obtained from replaying the traces of the log on the net. This way, a process expert can
diagnose possible root causes of deviations in a visual manner. However, in cases where
deviations occur frequently, places may be flooded with missing/remaining tokens and
it is impossible to find the root cause of deviations. The approach of [151] also adds
annotations to show deviating relations between transitions in the net and activities in
the log (e.g., always follows, always precedes, sometimes follows, and never follows).
However, many of such arcs can be added such that the original net becomes unreadable
if there are too many deviations.

Weidlich et al. [202] propose an approach based on behavioral profile to diagnose the
root causes of deviations, given an event log and a process model. The approach uses the
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pairwise relations (e.g., strict order, exclusive, or interleaving order) between activities
in the log and in the model to check for deviations between them. This approach is also
used to monitor deviations and provides possible root causes in an online setting [203].
However, as mentioned in Chapter 3, the behavioral profile of a process model may allow
for more behavior than the behavior of the original process model. Thus, the provided
diagnostics may be misleading. Furthermore, the root causes of deviations are presented
in the form of pairwise relations between activities without pointing out which specific
activities in the log that cause the deviations.

In a case study, Swinnen et al. [162] show that the combination of process mining
and data mining techniques can be used to show insights into deviations, given an event
log and a process model. The proposed approach uses the Fuzzy miner technique [75]
to discover an “as-is” process model from the event log. This model is then compared to
the prescribed model to identify deviations. Furthermore, data mining approaches such
as the association rule mining [13] are used to mine insights into frequently occurring
behaviors/deviations. A similar approach is followed by Jans et al. [86] in another case
study to audit a procurement process. Interestingly, in both case studies, deviations
are identified by manually comparing the discovered model with the prescribed model
instead of replaying the log on the prescribed model.

As shown in this section, not many approaches take into account both the process
model and its executions in order to show insights into possible root-causes of recur-
ring deviations. In Section 8.3, we show various ways to analyze deviations based on
alignments to answer the research questions mentioned in Section 8.1.

8.3 Alignment-based Deviation Analysis

Given a trace and a process model, an alignment between them explicitly shows the lo-
cation of deviations between traces in the log and the model. In this section, we show
several alignment-based approaches that altogether can be used to answer all research
questions mentioned in Section 8.1. As a running example, we use the event log and
net shown in Figure 8.1. The figure shows a visa application handling process sim-
ilar to the one shown in Chapter 5 and its non-fitting event log. The process starts
when an applicant submits his visa application and registers himself at the visa cen-
ter (register). An officer takes the fingerprints of the applicant (fingerprint) and then
performs an interview (interview). In parallel, an administration officer checks all docu-
ments that were submitted by the applicant. A manager decides whether the application
is accepted/rejected after the submitted documents are checked and the interview results
are obtained (decision). If suspicious information is found, a manager may instruct a visa
application officer to perform thorough checking of the applicant (recheck). Collecting
fingerprints and interviews can be skipped if the fingerprints data of the applicant are
already stored in the visa center central database and the applicant has been interviewed
at least once. For convenience, we relabel all transitions in the net with a single letter.
Figure 8.2 shows an optimal alignment for each trace of the log in Figure 8.1 and the net
in the same figure with respect to the standard cost function.

Deviation analysis is often not a trivial task. Given an event log and a process model,
the causes of a deviation in a trace in the log may not be the same as the cause of
the same deviation in another trace in the same log. Moreover, a deviation may have
multiple possible causes. In the presence of massive, dynamic, ambiguous, and perhaps
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Figure 8.1: A visa application handling process and its non-fitting event log.
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Figure 8.2: An optimal alignment for each trace in the log of Figure 8.1 and the net in the same figure with
respect to the standard cost function. +,, is an optimal alignment between trace with id n with the model in
Figure 8.1.

even conflicting data, visual analytics tools and techniques can be used to synthesize
information and derive insights [164]. Visual analytic techniques combine information
visualization with other techniques from data analysis (e.g., data mining) in order to
fully exploit humans’ capacity to perceive, understand, and reason about complex and
dynamic data and situation.

Due to limitations with respect to perceiving data, analysis is often performed in an
explorative manner. Given a set of data, it is highly unlikely that there exists a single
visualization that provides all desired information “hidden” within the data. In most
cases, one needs to use multiple visualizations to obtain insights based on a given set of
data. Given an event log, a Petri net, and the corresponding alignments, we construct
three different visualizations of the alignments to obtain insights into deviations. Each
of the visualization focuses on a specific aspect and the views complement each other.
Altogether, they can be used to gain some insights into causes of deviations. The differ-
ent visualizations are explained in Section 8.3.1 to Section 8.3.3. In Section 8.3.4, we
show that data mining techniques can also be used to extract useful knowledge about
deviations from alignments. In each section, we show some screenshots on how the
techniques are implemented in ProM.

For convenience, in the remainder of this chapter we use a basic oracle function
orc. Given the net in Figure 8.1 and a trace o, in the log of the same figure with ID x
(1 <z<8,x€eIN), orc(oy)(vz) =1 (11 to s are shown in Figure 8.2). Furthermore,
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Figure 8.3: A “projection onto log” visualization of the alignments in Figure 8.2.
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Figure 8.4: A compact visualization of the “projection onto log” where the width of arrows are narrow.

we define a multi-set of alignments T constructed from the net and all traces in the log
of Figure 8.1 using orec, such that T = [y249, 7234 7200 4115 163 163 43 331 In this
example, there is a one-to-one correspondence between traces in the log and alignments

in T. However, in principle there could be multiple alignments corresponding to a trace.

8.3.1 Projecting Alignments onto Logs

Given a multi-set of alignments, the first visualization shows each alignment indepen-
dently as a sequence of “arrows” where each arrow is colored according to the type of
movement it represents. We call this visualization a “projection onto log” as such a se-
quence resembles traces (i.e., sequence of activities) in the log. Green, yellow, purple,
and grey colored arrows indicate synchronous moves, moves on log, moves on model (Vvisi-
ble transitions), and moves on model (invisible transitions) respectively. This visualization
is intended to highlight detailed deviations that occur in a trace and deviations that occur
consecutively at a glance.

Figure 8.3 shows all optimal alignments in Figure 8.2, projected onto the log of Fig-
ure 8.1. With this visualization, it is relatively easy to see which alignments have more
deviations (i.e., moves on log/moves on model) than others and where deviations occur
on each of the alignment. Notice that the visualization of 5 is similar to the visualization
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Figure 8.5: A screenshot of ProM, showing the multi-set of optimal alignments Y, projected onto the log of
Figure 8.1.

of ~4 although they have a different sequence of movements.

The name of an activity in a log and the name of a transition in a Petri net can be
lengthy. Annotating the names of all long activities/transitions on top/bottom of each
arrow may yield unreadable visualization. Therefore, we make a “compact” version
of the visualization. We narrowed the width of arrows and only show the name of
activities/transitions of a movement when the movement is explicitly “selected”. An
illustration of such a visualization is shown in Figure 8.4. Not more than one movement
can be selected at a time. This way, we ensure that the name of activities/transitions of
a selected movement is always readable. Figure 8.5 shows a screenshot of the multi-set
of alignments T, projected onto the log of Figure 8.1 as implemented in ProM. In the
figure, move on log (interview,>) in alignment 5 is highlighted.

8.3.2 Projecting Alignments onto Models

Given a process model (in the form of a Petri net) and a multi-set of alignments, the sec-
ond visualization is a projection of all alignments in the multi-set onto the model. Unlike
the projection onto log that shows deviations on each alignment in isolation, a projection
of all alignments onto the model shows aggregated information about deviations. Thus,
this visualization shows insights into what type of deviations often occur and where they
occur.

Figure 8.6 shows a projection of all alignments in Figure 8.2 onto the Petri net shown
in Figure 8.1. We use the color, size, and other decorations of Petri net elements (i.e.,
transitions, places, and arcs) to annotate the original net with information about the
way the process was conducted and which deviations occurred. The color of a transition
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in a projected Petri net indicates the frequency of synchronous moves. The darker it
is in comparison to other transitions, the more it is visited. Similarly, the width and
color of arcs also indicate the frequency of tokens that flows through them. The ratio of
synchronous moves to moves on model for a transition is shown by the green and the
purple bar below the transition. Note that a transition in the net has no such a bar if
there is no move on model that involves the transition.

From the visualization in Figure 8.6, we know that three transitions were skipped
(i.e., there are three transitions with some moves on model) while they should have
been executed according to the net: interview, recheck, and check document (see the
highlighted transitions). At a glance, we can clearly see that the total number of syn-
chronous moves for the transition labeled interview is higher than the number of moves
on model for the same transition (1,009 compares to 360).

Given a Petri net and a movement that changes the state of the net (either a syn-
chronous move or a move on model), we know which transition in the net is correlated
to the movement. Therefore, all information about either synchronous moves or moves
on model in the alignment are projected onto the transitions of the net. However, a move
on log does not contain any information about the elements of Petri nets. A Petri net may
have multiple transitions with the same activity label. In such cases, projecting informa-
tion about moves on log to transitions may yield misleading insights into deviations.

Therefore, moves on log are projected onto places of Petri nets. The marking of a
Petri net shows explicitly the state of the net. Given an alignment of a Petri net, we
“replay” the alignment on the net and increase the size of places with some tokens just
before a move on log occurs. Take for example alignment ~, in Figure 8.2 and the net in
Figure 8.1. Figure 8.7 illustrates the steps of projecting alignment ~, onto the net. The
places of the markings reached just before some moves on log occur are colored yellow.

We introduce the notion of focus places to show the details on which markings are
reached when some moves on log occur. Take for example alignment vy in Figure 8.8
and its projection onto the net in Figure 8.1 (see Figure 8.8(i)). While replaying v
on the net, two reachable markings are followed by some moves on log : (1) marking
[p2, p3] (reachable after replaying ((a,t,))) is followed by move on log (e,>>), and (2)
marking [ps, p4] (reachable after replaying ((a, 1), (e, >), (b, t2))) is followed by move on
log (f,>). In this example, place p3 is involved in both markings. Thus, the size of p; is
larger than both ps and p,. Given a focus place of the net, when replaying ~o, we mark
all places of the markings that both contain the focus place and are followed by a move
on log. We annotate the net with the information on the places and frequencies of such
moves on log, as shown in Figure 8.8.

Figure 8.9 shows a screenshot of the multi-set of optimal alignments T projected onto
the net of Figure 8.1, implemented in ProM. The information panel in the figure shows
that when the red-colored places are marked, moves on log for activity interview occurred
234 times in 234 traces. Note that this is the same number as the frequency of traces
with id 2 in Figure 8.1.

8.3.3 Aligning Alignments

Given a multi-set of alignments derived from an event log and a Petri net, a projection
onto the log of this multi-set shows detailed information about deviations per align-
ment. However, it is hard to aggregate deviation information from the visualization. In
contrast, a projection onto model of the multi-set shows an aggregated view of what
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Figure 8.9: A screenshot of ProM, showing the projection of multi-set of optimal alignments Y onto the net
of Figure 8.1. The highlighted red-colored place is the selected focus place. The information panel shows the
number of moves on log that occurred while tokens resided in the focus place.
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deviations often occur and where they occur, but the ordering of parallel activities is no
longer shown. Inspired by the trace alignment technique in [21], the third visualization
shows an aggregated view on deviations without losing completely the context in which
deviations occur. The third visualization of the multi-set, namely the aligned multi-set of
alignments, is a matrix that shows each alignment in a row and aligns the movements
vertically between alignments such that each column in the matrix consists of only oc-
currences of a specific activity movement or gaps (“-”). Columns in the matrix are not
allowed to contain only gaps or contain different movements. Moreover, the movements
are aligned in a way that minimizes the number of gaps in all columns. Figure 8.10
shows an aligned alignments multi-set based on Figure 8.2.

A cell in an aligned multi-set of alignments is colored white if it contains a gap, oth-
erwise it is colored according to the type of contained movements (i.e., green, yellow,
purple, and grey for synchronous moves, moves on log, moves on model of non-invisible
transitions, and moves on model of invisible transitions respectively). Figure 8.10 shows
that all traces start with a synchronous move a and end with synchronous move e. It is
easy to see from the visualization that some alignments have the same type of deviations
in a certain “context”, e.g., 72, V5, and ¢ have a move on model just before a synchronous
move of e. This visualization also shows deviations that only occur in some alignments,
e.g., moves on log d and b on 3. Note that compared to the projection onto log of the
same multi-set of alignments, the difference between 75 and ~s becomes clearer using
this visualization (only the position of d is different). However, if the lengths of the
alignments in the multi-set are long and each of them is unique then identifying the fre-
quently occurring deviations with this visualization can be more difficult than identifying
the same insights from the projection onto log of the same multi-set. Furthermore, it is
hard to recognize parallel movements using this visualization.

Figure 8.11 shows the screenshot of aligned multi-set T, implemented in ProM. The
implemented visualization also allows for clustering alignment based on the trace cluster-
ing technique in [21]. In cases where there are groups of “similar” alignments in a given
multi-set of alignments, clustering them and aligning the alignments per cluster may
yield better insights into deviations. Note that the visualization shown in Figure 8.11 is
slightly different from the one shown in Figure 8.10 as the heuristics used to compute the
aligned alignments do not guarantee that the aligned alignments has the least number
of columns and rows.
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Figure 8.11: A screenshot of ProM, showing the aligned multi-set of alignments Y using the approach in [21].

Table 8.1: Table representation of the multi-set of alignments shown in Figure 8.2 to mine frequently occurring
deviations

Alignment | mvSync | mvSync | mvSync mvModel mvLog Frequency
a b c c c
Y1 1 1 1 0 0 249
72 1 1 0 1 1 234
73 1 2 2 0 0 200
4 1 1 1 0 0 115
75 1 2 1 1 0 63
76 1 2 1 1 0 63
Y7 1 2 2 0 0 43
v8 1 1 1 0 0 33

Deviation analysis using visual analytics relies on a human’s perceptive ability to in-
terpret interesting insights. In some cases, obtaining such insights may not be an easy
task. Thus, in Section 8.3.4 we present some data mining approaches that can be used
to complement the visual feedback provided in this section in order to obtain further
insights into deviations from a given multi-set of alignments.

8.3.4 Data Mining Approaches to Analyze Deviations

Data mining is a discipline that covers all techniques to extract knowledge from large
amounts of data [78]. Typically, the extracted knowledge is much less than the amount
of data required to obtain it. Obviously, deviation analysis based on event logs and
models fits the definition of problems that can be solved using data mining techniques.
Given an event log and a process model, the number of deviations of interest between
the logged activities and the modeled behavior is typically much less than the number of
logged activities.

There are various data mining techniques that can be applied to analyze deviations
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Figure 8.12: A screenshot of the alignment frequent itemset visualization, implemented in ProM. The visualiza-
tion shows a frequent itemset {(decision, tg), (fingerprint,ta), (register,t1), (check document,ts), (>>,t3),
(interview,>)} obtained by applying the FPGrowth mining algorithm [79] to the data set of Table 8.1. Moves
on model and synchronous moves in the itemset are projected onto the original Petri net with dark color.

based on multi-sets of alignments as deviations are explicitly shown in the multi-sets.
For example, frequent pattern mining techniques can be used to extract frequently co-
occurring deviations. Frequent patterns in a data set are collections of data values that
appear together in the data set frequently. For example, given a set of transactional data
of items that people bought in a supermarket as a data set, a frequent pattern of this data
set is a set of items that are often bought together. To identify the causes of deviations,
we often interested in frequently occurring deviations as well as other deviations that
occur together frequently with these deviations. Given a multi-set of alignments, the
problem of finding a set of frequently occurring deviations can be translated into the
problem of finding frequent patterns from a data set.

Take for example the multi-set of alignments T. We consider each movement in the
multi-set as an item, and thus an alignment is a multi-set of items. We represent each
possible movement of alignment multi-sets as a column of a table (see Table 8.1). This
table can be further processed as a data set by frequent pattern mining algorithms. The
number of occurrences of each movement in each alignment in an alignment multi-set is
counted as the value of the movement attribute for the alignment. For example, there are
two synchronous moves of c in 73. Therefore, the value of “mvSync ¢” (i.e., synchronous
moves of activity c) of 3 in Table 8.1 is 2. Note that the last column in the table indicates
the frequency of the alignment. This way, we also weigh each alignment according to its
occurrences in the alignment multi-set.

Figure 8.12 shows the screenshot of the alignment frequent itemset visualization, im-
plemented in ProM. The screenshot shows the results of applying the FPGrowth frequent
itemset mining algorithm [79] to the data set shown in Table 8.1 with a minimum sup-
port value of 0.23 (i.e., a pattern is considered as a frequent pattern if 23% items in
the data set contains the pattern). We take the existing implementation of FPGrowth al-
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Table 8.2: Table representation of alignment multi-set shown in Figure 8.2 to mine possible causes of skipping
activity interview (move model c)

Alignment | mvSync | mvSync | mvSync Frequency mvModel c
a b c vee (interview) occur?
Y1 1 1 1 249 No
Y2 1 1 0 234 No
¥3 1 2 2 200 No
Ya 1 1 1 115 No
5 1 2 1 63 Yes
Y6 1 2 1 63 Yes
0%4 1 2 2 43 No
s 1 1 1 33 No

gorithm from the WEKA library.! Several frequent itemsets are found in the data set.
One of the interesting itemsets consists of the following movements: {(decision,ts),
(fingerprint, t2), (register, t1), (check document,ts), (>>,t3), (interview,>>)} (as shown in
Figure 8.12). The projection of the itemset to the net of Figure 8.1 is shown in Fig-
ure 8.12. The transitions and their input/output arcs that correspond to some elements
in the itemset are colored darker. The itemset shows that moves on model for transition
c (i.e., interview) frequently occur together with moves on log for activity interview. Note
that other frequent itemset mining algorithms, e.g., the apriori algorithm [14], can also
be used to derive the same information.

Table representations of multi-sets of alignments such as the one shown in Table 8.1
can also be modified to allow for standard classification technique from data mining.
Given a data set and a chosen attribute of the data set as a label, a classification tech-
nique builds a classifier to predict the value of the label attribute from the values of
non-label attributes. We can use this type of technique to investigate the reasons why
some deviations occur in a multi-set of alignments. A classifier that predicts the value of
a label attribute accurately in a data set implies that it captures the knowledge required
to determine the value of the attribute from other attributes. If the label attribute cor-
responds to a deviation, classifiers with an explicit representation such as decision trees
may explain why a particular deviation occurs.

Given a multi-set of alignments and a particular deviation of interest, we construct a
table representation of the multi-set in a similar way as the example shown in Table 8.1.
In addition, we add an extra label attribute (column) identifying the deviation of interest.
Then, we use existing classification techniques to build a classifier for the added label
attribute.

Take for example the multi-set of alignments Y. Suppose that we are interested to
know the possible causes of moves on model for transition with label c, i.e., an interview
needed according to the model is skipped in reality. We construct a table representa-
tion of the multi-set as shown in Figure 8.2 and add an extra attribute that indicates
whether moves on model c occurred in each alignment. Note that Table 8.2 has an extra
label attribute (i.e., extra column) and has no “mvModel ¢” column in comparison with
Table 8.1 because the latter column is used to derive the new label attribute. We use
existing classification algorithms that use an explicit classifier such as decision trees to
explain under which circumstances “mvModel ¢” column has value of “Yes” or “No”.

We implemented a plugin in ProM to export a multi-set of alignments to a CSV format

Isee http://www.cs.waikato.ac.nz/ml/weka/
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Figure 8.13: Screenshot of the ProM plugin that is used to export a multi-set of alignments to a CSV file in a
format similar to Table 8.1.

file similar to the one shown in Table 8.1. The screenshot of the plug-in is shown in
Figure 8.13. Furthermore, instead of having a special column that shows the frequency
of each unique alignment in the multi-set, we list all of the alignments in the CSV file.
This way, we can also insert the attributes of traces where the alignments are derived
from whenever it is necessary. This CSV file can be used as an input for many existing
data mining tools.
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Figure 8.14: A screenshot of Rapidminer data mining tool, showing a decision tree mined from multi-set
of alignments Y to predict the occurrences of moves on model for transition c (interview) using the C4.5
algorithm [135].

Figure 8.14 shows a screenshot of the Rapidminer? data mining tool, used to mine

2see http://rapid-i.com
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a decision tree that predict the occurrences of move on model for transition labeled c
(interview) in alignment multi-set Y. For each node in the tree, mvSyncT:X is a label of a
column that stores the number of occurrences of synchronous moves for activity X. The
tree shows that an alignment in the multi-set has a move on model for the transition
labeled c if (1) there is no synchronous move for c (i.e., the value of mvSyncT:interview
< 0.5), or (2) there is a synchronous move for f (recheck) and a synchronous move for c
(interview) occurred exactly once (i.e., the value of mvSyncT:recheck > 0.5 and 0.5 < the
value of mvSyncT:interview < 1.5). Obviously, C4.5 is not the only algorithm that can be
used to extract such insights into deviations. Other decision-tree classification algorithms
such as ID3 [134], Bayesian network classification algorithms (e.g., [58,110]), and rule-
based classification algorithms (e.g., [84]) can also be used.

Other than the frequent set mining and classification techniques, there are many other
types of data mining techniques that can be used to analyze recurring deviations given
a table representation of an alignment multi-set. For example, clustering techniques
can be used to create clusters of alignments, where each cluster indicates the group of
traces that have similar deviations. As another example, data mining outlier detection
techniques can be used to identify exceptional type of deviations.

8.4 Experiments

To show the applicability of the approach, we performed two case studies using two pairs
of real-life logs and models. These illustrate that our diagnostics provide insights into
causes of deviations in real-life settings. In the first case study (see Section 8.4.1), we
show that the approach shows insights into possible root causes of deviations between
the observed behavior in a log and a reference model. In the second case study (see Sec-
tion 8.4.2), we show that the obtained insights from the approach can even be exploited
to complement process discovery techniques. For the data mining-related analyses used
in the experiments, we use standard data mining tools like WEKA and Rapidminer.

8.4.1 Dutch Municipality Case Study

In this first case study, we took an event log and a reference process model of handling
building permits in a Dutch municipality. The reference model of this process is shown in
Figure 8.15. Although the process is supported by a process-aware information system,
its executions were not strictly enforced to follow the model. Thus, deviations to the
model may exist in the log.

The process starts when a building permit request is accepted (Ontvangst aanvraag).
After an acknowledgement is sent (Verzenden ontvangst bevestiging), the process splits
into three parallel branches. The top branch starts with two activities that can be per-
formed in any order, followed by a long sequence of activities with a possible skip on
performing admissibility test (i.e., Ontvankelijkheidstoets). Similarly, the middle branch
also consists of a sequence of activities with some allowed skips in between. The bottom
branch consists of a sequence of activities required to make a decision about the request.
None of these activities can be skipped. These activities are: (1) estimating the date of
decision (Besluit datum besluit), (2) sending the decision date (Besluit datum verzenden),
and (3) publishing the decision date (Besluit datum publicatie).
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Figure 8.15: A reference model for building permit application handling process.
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T menTe “Bestemmingplantoets toepassen” (b4)
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: - .- - : N : often executed in the wrong order. Such
l,, - I : b4 - : - deviations occur after “Verklaring GS of
: B BN Eie : e minister van toepassing” (d4) and before
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Areas with many deviations

Figure 8.17: An aligned multi-set of optimal alignments of a Dutch municipality log and its model (Fig-
ure 8.16).

To gain insights into possible deviations, we constructed a multi-set of alignments
from the log and the model using a basic and optimal oracle function with respect to the
standard cost function. We also measured the relative fitness and precision (using one
optimal alignment per trace, both backward/forward constructed multi-set automata)
between the log and the model. Figure 8.16 shows a projection onto model of the multi-
set. As shown in the figure, many deviations occur in the log. Almost all places in
the figure are colored, which indicates that many activities were performed when they
were not allowed to according to the model. Similarly, almost all transitions have been
skipped in some cases as shown by the number of highlighted transitions with small bars
at their bottom. For a reference model that drives process enactments supported by an
information system, a relative fitness value of 0.80 indicates that deviations frequently
occurred (i.e., roughly 1 out of 5 activities were deviating). The low precision value
(0.62) for the model also indicates that the model allows for much more behavior than
the observed behavior in the log.

Figure 8.17 shows an alignment of the constructed multi-set of alignments. From
this visualization, we identify at least two areas for which many deviations are observed.
The first area refers to events between synchronous moves for Verklaring GS of minister
van toepassing and synchronous moves for Toetsen aan bouwbesluit. Activity Bestemming
toepassen followed by Ontvankelijkheidtoets were performed frequently between the two
synchronous moves. Another area where deviations frequently occur is located just after
the last synchronous move of Besluit datum publicatie. The large number of unique traces
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Table 8.3: Conformance measurements of logs derived from the Dutch municipality log with respect to the
original process model.

Log #Traces | #Events Model Relative Fitness | Precision
Original Log | Bouw4 109 2,331 | Figure 8.16 0.80 0.62
Ly 67 1,442 | Figure 8.16 0.74 0.60
Derived Log Lo 42 889 | Figure 8.16 0.89 0.53
L] 49 1,201 | Figure 8.16 0.84 0.57

Number of Cases
w

-8
04 05 06 0.7 08 09
Trace Fitness

Many moves on m(?del occurred in - Traces with really low fitness values
the end of alignments

Figure 8.18: Left: Projection onto log of optimal alignments between some traces of L; and the net in
Figure 8.16, and Right: A histogram showing the distribution of relative fitness of alignments between traces
of L; and the net in Figure 8.16.

that deviate in those two areas implies that the reference model is not accurately describ-
ing a large part of the observed behavior. Thus, we split the log into two parts L; and
Ly. Ly contains all traces in the log whose alignments show deviations in some of the
highlighted area. L, contains the rest of the traces of the original log. We measured the
fitness and precision of each part with respect to the original net and show it in Table 8.3.

As shown in Table 8.3, L; has a lower relative fitness value than L, (0.74 compared
to 0.89). L, has a slightly higher precision value than L, (0.60 compared to 0.53), but as
discussed in Chapter 7, the precision value between a log and a model can be misleading
if the fitness value is rather low. We investigated the causes of deviations of L; by
projecting the multi-set of alignments for L; onto the log (see the left side of Figure 8.18).
The figure shows that many alignments have a lot of moves on model towards the end of
the process. This indicates that many of the traces in ; are incomplete. The right side of
Figure 8.18 shows the distribution of relative fitness values of alignments between traces
of L, and the model. The x-axis in the figure shows fitness values, while the y-axis shows
the number of traces in L;. As shown by the figure, some traces have very low fitness
values compared to other traces.

To identify the root causes of deviations, we filtered out the incomplete traces in L;.
We noticed that some short incomplete traces have relatively high fitness values (around
0.6) because the ratios of the number of moves on model to the length of their optimal
alignments are relatively low. Therefore, we kept only the traces whose optimal align-
ments have relative fitness value of 0.7 or higher and name the filtered log L}. We ran a
frequent itemset mining algorithm (see Section 8.3.4) on the multi-set of alignments for
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[L+M] Bouwbesluit toepassen
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[L+M] Bestemmingsplan ouder dan 10 jaar
[L+M] Toetsen aan bestemmingsplan strijdig

Often move on log of “Bestemmingsplantoets
[L+M] Toetsen aan bouwbesluit

toepassen” and move on model of the same Y
activity occur in the same alignment

Figure 8.19: A frequently co-occurring movements identified from the multi-set of alignments for log L and
the model shown in Figure 8.16: moves on log for Bestemmingplantoets toepassen and move on model for
Bestemmingplantoets toepassen often occur together (in 34 traces out of 49).

L} to identify the most frequently occurring deviations. The result of this analysis shows
that 34 out of 49 alignments in the multi-set of L} have both a move on log for activity
Bestemmingsplantoets toepassen and a move on model for the transition labeled with the
same activity (see Figure 8.19). This indicates that the transition labeled Bestemmings-
plantoets toepassen may occur at different times than what is described in the model.

The aligned multi-set of alignments in Figure 8.17 shows that the moves on log for
activity Ontvankelijkheidtoets occurred more frequently than the moves on log for activity
Bestemmingplantoets toepassen. Therefore, we performed an analysis using a classifi-
cation algorithm technique to identify possible causes of move on log for activity Ont-
vankelijkheidtoets. Figure 8.20 shows a decision tree constructed by applying the C4.5
algorithm on the data set derived from the alignments of L} and model in Figure 8.16.

As shown by the decision tree, a move on log for activity Ontvankelijkheidtoets oc-
curred if there is no synchronous move for the same activity (the frequency of
mvSyncT:Ontvankelijkheidstoets is lower than or equal to 0.5). This is supported by
32 out of the 49 traces in the experiment. Interestingly, the decision tree also shows a
possible relation between the occurrences of synchronous moves for activity Bestemming-
plantoets toepassen and the occurrences of moves on log for activity Ontvankelijkheidtoets.
Suppose that a synchronous move for activity Ontvankelijkheidtoets occurred, a move on
log for activity Ontvankelijkheidtoets often co-exists with a synchronous move for activity
Bestemmingplantoets toepassen. If a synchronous move for activity Bestemmingplantoets
toepassen occurred then a move on log for activity Ontvankelijkheidtoets also occurred
(supported by 6 traces). Similarly, if a synchronous move for activity Bestemmingplan-
toets toepassen did not occur then a move on log for activity Ontvankelijkheidtoets also
did not occur (supported by 10 traces). This information can be very useful for process
experts in order to understand the context where deviations often occur.

8.4.2 Dutch Financial Institution

In the second case study, we use the log provided for the BPI Challenge 2012 [192]. The
log is taken from a Dutch financial institution and describes applications for personal
loans or overdraft handling. The log contains the events recorded from three inter-
twined subprocesses: subprocess for processing applications (subprocess A), offers (O),
and work items (W). The A subprocess is concerned with handling the loan applications
received from customers. The O subprocess specifies how offers are send to customers.
The W subprocess describes how work items, belonging to an application, are processed.
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mvSyncT:Ontvankelijkheidstoets(3)

> 0.500 <0.500

4 move-log-ontvankelijkheidtoets-occur |
mvSyncT:Bestemmingsplantoets toepassen(13)

32 times
>0.500 = 0.500

y ) BN
move-log lijkheidtoets-occur | move-log-ontvankelijkheidtoets-not-occur
L ===

6 times 10 times not occur/1 time occur

Figure 8.20: A decision tree, showing the possible causes why moves on log for activity Ontvankelijkheidtoets
occurred/not occurred.

In this case study, we only describe the analysis on the O subprocess. For a complete
report on the case study, readers are referred to [3].

One of the interest of the process owner is to know what the process models actually
look like. This is a typical question that often can be answered by applying process
discovery algorithms to the log. However, later we show that this is not the case. Due to
the limitations of many process discovery algorithms, it is important to first ensure that
the traces in the log are completed. Thus, we filtered out unfinished cases in the log with
the help of the dotted chart visualization [161]. The filtered log consists of 2,836 cases
with total 17,572 events. We added an artificial start and end activities for all traces in
the log to uniquely mark the start and end of each trace. Then, we use three different
process discovery algorithms (i.e., the «-algorithm [1], heuristic miner [204], and ILP
miner [190]) to construct three different process models of the filtered log.

Given the filtered log, the a-algorithm does not produce an easy sound model while
both the ILP and the heuristic miner discover overly complex models. For each model, we
constructed a multi-set of optimal alignments using a basic and optimal oracle function
with respect to the standard likelihood cost function. Figure 8.21 and Figure 8.22 show a
projection onto the model of the constructed multi-sets of alignments, discovered using
the ILP miner and the heuristic miner respectively. The model discovered by the ILP
miner (see Figure 8.21) allows the execution of activities O_DECLINED, O_ACCEPTED,
and O_SENT_BACK as many times as possible when they are enabled. Moreover, the
precision of the model is really low (0.46) although it has a perfect fitness value. Thus,
it does not yield any useful insights into the way the process was performed. The model
discovered using the Heuristic Miner (see Figure 8.22) has a lower fitness value than the
model discovered by the ILP miner (0.75), but it has a higher precision value (0.79).
However, Figure 8.22 shows that some transitions and arcs in the latter model are never
used. The problems exist for both nets. This indicates that they are not sufficiently good
enough to describe the way process was conducted.

In this section, we show that various visualizations explained in Section 8.3 can be
exploited to guide process model repair to better reflect the reality. We followed the gen-
eral steps in Figure 8.24, shown as a BPMN model to obtain a Petri net that describes
the behavior of subprocess O in the log accurately. Given an event log, the first step
shown in Figure 8.24 is to obtain an easy sound Petri net as an initial model. Such a
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0_SELECTED+
(3904)

Fitness: 1.00
Precision: 0.46

Figure 8.21: A projection onto model of an alignment multi-set of the filtered log for subprocess O with respect
to a Petri net mined from the log using the ILP Miner [190].

net can be discovered from the log using existing process discovery algorithms or sim-
ply hand made according to some background knowledge about the process. Then, we
constructed a multi-set of alignments in order to obtain some insights into causes of
deviations. We use a basic and optimal oracle function with respect to the standard like-
lihood cost function to compute such a multi-set. We used the visualizations/data mining
techniques presented in Section 8.3 to analyze the frequently occurring deviations. New
transitions/places are then appended to the original net based on the analysis result
without restricting the behavior of the original net, i.e., if a marking is reachable in the
original net, it must also be reachable in the appended net. The two last steps are per-
formed iteratively until a net with a sufficient relative fitness value is obtained. Last, we
simplify the net by removing infrequent transitions and surrounding places to improve
precision/generalization value. The “removal” of a transition in a Petri net that is either
(1) very infrequently visited, or (2) can be reduced without changing the sequence of

O_DECLINED and O_ACCEPTED were never executed

O_CANCELLED was skipped 1,789 times in 1,789 traces
Fitness: 0.75

Precision: 0.79 O_DECLINED and O_ACCEPTED were executed 453 and 1,334 times
inappropriately just after executions ended according to the model

Figure 8.22: A projection onto model of an alignment multi-set of the filtered log for subprocess O with respect
to a Petri net mined from the log using the Heuristic Miner [204].
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Before “Removal” After “Removal”
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Figure 8.23: Two approaches to “remove” transitions: Top: removing invisible transitions using standard
reduction techniques [119]. Bottom: removing infrequent transitions and their input/output arcs (here the
transition with label b is removed).

activities allowed by the original net may only increase precision values. Such a reduced
net has less number of transitions than the original one, thus it allows less behavior
than the original net. We apply Petri net reduction techniques and simple transition re-
moval to improve the conformance values increase in general. The proposed “removal”
approaches are shown in Figure 8.23.

Remove

Insufficient fitness
redundant/
unused

Add Sufficient
Identify new fitness
. transitions/
Deviations laces
P transitions/places

Improve Fitness Improve Precision
and Generalization

Generate
Easy Sound
Petri Net

Figure 8.24: General steps to repair process model to better reflect reality.

We used the net discovered by the heuristic miner (see Figure 8.22) instead of the
one discovered by the ILP miner as an initial model because the fitness values of the
net can still be improved by adding new transitions. As shown in Figure 8.22, activities
O_DECLINED and O_ACCEPTED were frequently performed after the termination of the
net had been reached (i.e., moves on log of both activities often occurred when there
is a token in the colored end place). The figure also shows that the transition labeled
O_CANCELLED was skipped many times. Interestingly, the frequency of moves on model
on O_CANCELLED is exactly the same as the sum of frequency of move on log for both
activities O_DECLINED and O_ACCEPTED. Thus, we add a choice to the input place
of transition labeled O_CANCELLED such that both O_DECLINED and O_ACCEPTED
can be performed when the transition is enabled. Projection on model of the multi-
set of alignments between the traces of the log and the appended model is shown in
Figure 8.25. Note that the previously appended transitions and arcs only allow more
behavior and are not restricting the behavior of the original Petri net. The relative fitness
value of the new alignment multi-set is higher than the original alignment multi-set (0.97
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O_SELECTED O_CREATED

O_CANCELLED was performed 524
Fitness: 0.97 times, O_SELECTED 544 times E

Precision: 0.77 O_CANCELLED

Newly added tranioms |
ewly a e ransitions E

Figure 8.25: The model shown in Figure 8.22 after the first repair.

compared to 0.75), but its precision value is lower (0.79 compared to 0.77).

The colored places on the projection onto model in Figure 8.25 show that there is
still some room for improvement by allowing extra behavior in the model. Thus, we
perform a second iteration to repair the net in Figure 8.25. As shown by the figure, two
moves on log for activities O_.CANCELLED and O_SELECTED often occur at the same
marking with approximately the same frequency. An aligned multi-set of alignments
between the log and the net in Figure 8.25 shows that there is a repeated pattern of
move on log occurrences in the alignment multi-set (see Figure 8.26). All moves on log
occur just before a synchronous move for activity O_CREATED. Moreover, we identify
two reoccurring sequences, each involves a move on log (see Figure 8.26). This implies
that there is a loop in the alignment that ends with moves on log. Both loops start
with synchronous moves O_CREATED followed by O_SENT, then followed by either a
sequence of synchronous move O_SELECTED and a move on log O_CANCELLED or a
sequence of synchronous move O_CANCELLED and a move on log O_SELECTED. Note
that O_SELECTED and O_CANCELLED are swapped in both loops. Based on this analysis,
we append the net to allow O_SELECTED and O_CANCELLED in any order just after
activity O_SENT. After both activities are performed, O_CREATED has to be enabled
such that it may loop. The appended net based on this analysis is shown in Figure 8.27.
Note that the fitness value of the log with respect to the new appended net in Figure 8.27
is 0.99.

We performed similar steps as we performed before to repair the process model in
Figure 8.27. An aligned multi-set of alignments between the log and model in Fig-
ure 8.27 is shown in Figure 8.28. As shown in the figure, we observed repeating blocks
and regularity of moves on log for activity O_.SENT_BACK. We appended the net to al-
low O_SENT_BACK between the occurrences of O_SENT and either O_SELECTED or
O_CANCELLED. A projection onto model of a multi-set of alignments constructed from
the newly appended net is shown in Figure 8.29.

The multi-set of alignments for the filtered log and the net shown in Figure 8.29 has a
very high fitness value (0.99) and not so many deviations. Thus, we proceed to the next
step of the approach shown in Figure 8.24: simplifying the model to improve its precision
value. In this step, we removed all transitions in the net whose removal does not change
the set of all traces that can be produced by the model, i.e., unnecessary transitions. For
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All deviations occur just before O_CREATEDQ\
d‘L I - pfp

Loops of block of sequences ended up with move on log:
O_CREATED (t), O_SENT (g), O_SELECTED (b), O_CANCELLED (h)
O_CREATED (t), O_SENT (g), O_CANCELLED (f), O_SELECTED (a)

Figure 8.26: Aligned alignments between the traces of the Dutch Financial Institution log and the repaired
model in Figure 8.25.
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Figure 8.27: The model shown in Figure 8.22, after the second repair iteration.
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Figure 8.28: Aligned Alignments between the traces of the Dutch Financial Institution log and the repaired
model in Figure 8.27.
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Fitness: 0.99
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-
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Figure 8.29: The model shown in Figure 8.22, after the third repair.
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example, by applying a standard reduction rule on all invisible transitions that have ex-
actly one input and one output arcs we can remove superfluous transitions. Furthermore,
we removed transitions/places that were very infrequently visited. Removal of invisible
transitions are performed according to Murata’s Petri net reduction rules [119].

With such a simplification, we obtain the model shown in Figure 8.30 from the model
shown in Figure 8.29. The relative fitness and precision value between the original log
and the simplified net in Figure 8.30 are close to perfect (i.e., 1.0). Compare these values
to the values of the Petri net originally discovered using heuristic miner in Figure 8.22.
This example shows that alignments can also be used to discover better process models,

given an event log and an original process model.
oo In 2 cases out of 1,334,

) O_ACCEPTED is skipped

b_ACCEPTE]
133472)

l0_DECLINED
|45310)

Fitness: 0.99
Precision: 0.98

0_CREATED
(3904/0)

Figure 8.30: The model shown in Figure 8.22, after the final (fourth) repair.

8.5 Conclusion

In a system where process models do not strictly enforce process executions, deviation
analysis is important to improve the performance of the overall process. Given an event
log, a process model, and an multi-set of alignments for all traces in the log and the
model, in this chapter we show how the multi-set can be exploited to analyze possible
causes of deviations. We showed various visualizations of the multi-set that yield dif-
ferent insights into deviations. These visualizations are complementary to each other.
Furthermore, we showed that the multi-set allows for the application of data-oriented
techniques such as data mining to process-oriented analysis, thus broadening the scope
of deviation analysis that can be performed to understand deviations and the context
where they often occur. Finally, we also showed that the knowledge obtained by per-
forming deviation analysis is not only limited to understanding causes of deviations, but
also useful to repair process models to better reflect reality.
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Chapter 9

Robust Performance Analysis

(" PARTIIl. Applications )

</

ePerformance Analysis

\ J

9.1 Introduction

Performance measurements of business processes are essential to many approaches that
improve performance of organizations such as Total Quality Management [132], Busi-
ness Process Re-engineering [73], and Six Sigma [123]. Typically, such information is
provided by Business Activity Monitoring (BAM) applications that support operational
processes. These applications record occurrences of activities and map them to the ele-
ments of predefined process models, so that performance can be calculated and projected
back onto the models. However, installations of such applications are often costly and
non-trivial. Moreover, such applications typically require executions to perfectly fit pre-
defined models, while some degree of flexibility to deviate from them on an operational
level is often desired [125,141,156].

The abundance of data in information systems allows performance measurements
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Figure 9.1: A Petri net showing hernia ingualis patients handling process.

based on recorded behavior in the form of event logs. Given an event log and a process
model, performance can be measured by replaying the events in the log on the model,
e.g., [85]. However, such an approach requires the log to (1) perfectly fit the prescribed
model, and (2) be at the same level of granularity as the model. In real life situations,
these requirements may not always be satisfied.

Take for example the inguinal hernia patient treatment process in a hospital, shown
in Figure 9.1. A patient needs to register him/herself (register) before taking both lab
tests and x-ray tests (lab test and x-ray). Based on the test results, a doctor may either
suggest the patient to undergo a surgery (surgery) or home therapy (therapy). A patient
with therapy treatment must return for another round of examinations a few days af-
ter the treatment ends. A patient who has a surgery needs to take a period of rest at
the hospital (bedrest) before later going through to another round of examinations. If
the examinations show that the patient is healthy, all executed activities are archived
(archive) by a hospital administration officer for further reference.

Some of the commonly measured performance metrics are the service time of activities
(the time spent from the moment a resource starts working on an instance of an activity
until the moment the instance is completed), the waiting time of activities (the time
spent from the moment all non-human resources required to perform an instance of an
activity are available until the moment a resource starts working on the activity), and
the sojourn time of activities (the sum of waiting time and service time of activities).
To measure these metrics, events must be logged every time an activity is started and
completed [41,207]. Thus, in this chapter we use the notion of complex event logs and
assume that events are recorded each time activities are started/completed.

Given a complex event log and a Petri net, the reconstruction of activity instances from
events in the log is crucial before performance can be measured. Since the execution
of one case typically does not directly influence other cases, activity instances can be
reconstructed per case. Figure 9.2 shows a perfectly fitting complex trace for the net
shown in Figure 9.1 where events are ordered based on their timestamps. Note that
the execution of a transition in the net is recorded as two events, i.e., an instance of an
activity is recorded as two events. Thus, the net is at a higher level of granularity than
the logged complex events.

To construct activity instances from the trace and the net, first we convert the net at
a high level of granularity into a net at a low level of granularity that allows for exactly
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Figure 9.2: Example of a set of activity instances constructed from a perfectly fitting complex trace with respect
to the net in Figure 9.1.
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Figure 9.3: An illustration of how a transition in a Petri net at a high level of granularity (left) is decomposed
into a transition at a lower level of granularity (right). A low level transition is labeled by the corresponding
name and the life-cycle transaction type (i.e., start/complete).

the same behavior. We use a similar approach as the pattern-based deviation analysis
in Chapter 5 to perform such a conversion. A full life-cycle of an instance of an activity
is recorded in a complex event log as a pair of events e1,es € £ that refer to the same
activity with different life-cycle transactions (“start” and “complete”). The event in the
pair that should occur first has a life-cycle transaction type “start” while the other event
that should occur later has a life-cycle transaction type “complete”. A transition of a
Petri net at a high level of granularity is therefore decomposed into a sequence of two
transitions at a low level of granularity as shown in Figure 9.3. The transition that starts
the sequence is labeled with a pair of activity names and “start” life-cycle transaction
type, while the other transition is labeled with the pair of the same activity name and
“complete” life-cycle transaction type. For convenience, in the remainder of this chapter
we use high level nets and low level nets to refer to Petri nets at a high level of granularity
and Petri nets at a low level of granularity respectively.

Furthermore, we need to distinguish the events that mark the start of activity in-
stances from the events that mark the completion of activity instances. Thus, in the
rest of this chapter we use a classifier that maps complex events to a combination of
the activity name and the life-cycle transaction, such that for all events e € £ : ¢ =
(#act(€), #irans(€)). Recall that classifiers determine the way events are named (see Def-
inition 2.3.3). For example, the names of the first and second events in the complex
trace of Figure 9.2 are (register, start) and (register, complete) respectively. This way,
events in Figure 9.2 can be trivially mapped to low level transitions with the same label
in Figure 9.4.
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Figure 9.4: A low level Petri net of the net shown in Figure 9.1, assuming that an instance of an activity
consists of a pair of events each with a life-cycle transaction “start” and “complete” respectively.

The complex trace in Figure 9.2 perfectly fits the low level net. Thus, activity in-
stances can be constructed by pairing each event in the trace mapped to the “start”
transition of an activity with its first succeeding event which is mapped to the “complete”
transition of the same activity. In the example shown in Figure 9.2, there is only one
instance for each of the activities register, lab test, bedrest, and archive. There are two in-
stances for each of the activities lab test and x-ray. From the identified activity instances,
performance metrics can trivially be measured. For instance, by taking into account both
instances of activity lab test we can measure its average service time: 1 - (40 + 30) = 35
minutes.

Consider the non fitting complex trace in Figure 9.5, obtained by removing four
events from the original trace shown in Figure 9.2. In this example, naively pairing
events in the same way as mentioned before yields a misleading instance for activity lab
test (see Figure 9.5(a)). As shown by the set of constructed instances in the figure, an
instance of lab test was not completed yet when instances of both surgery and bedrest
were started, while this is not allowed according to the net. In this case, the average
service time of activity lab test from the identified instance is 7.25 hours. This value is
much higher than the value previously obtained from activity instances of the perfectly
fitting trace (35 minutes). Pairing the events backwards, i.e., each event whose life-cycle
transaction type is “complete” is paired with its preceding event whose life-cycle trans-
action type is “start” and refers to the same activity, yields another problem as shown in
Figure 9.5(a). According to the figure, the service time of activity x-ray is 7 hours 45 min-
utes, which is much longer than the average service time of the same activity measured
from the activity instances in Figure 9.2.

To identify activity instances from the log accurately, we construct a multi-set of align-
ments from the log and the low level net. Activity instances are then constructed from
the multi-set. Note that given multiple alignments of the same complex trace in the log,
the performance values measured from one alignment may be different than the perfor-
mance values measured from other alignments. To avoid this problem, we use a basic
oracle function when constructing such multi-set of alignments, i.e., for each trace in an
event log, there is only one alignment in the multi-set.

Section 9.2 presents related work on process performance measurement. Section 9.3
describes an approach to discover a set of activity instances from a given complex event
log and a Petri net and how to use them in order to measure performance. The proposed
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Figure 9.5: Examples of misleading activity instances constructed from a non-fitting complex trace for the net
shown in Figure 9.1 by pairing events with the same activity attribute (a) from the start of the trace forward,
and (b) from the end of the trace backward.

approach is evaluated in Section 9.4, and Section 9.5 concludes this chapter.

9.2 Related Work

Process performance measurements are crucial to support organizations in making strate-
gic decisions [106,131,207]. Various process performance metrics have been defined in
literature (e.g., [52, 144,186, 213]). Despite numerous case studies showing that de-
viations to predefined models often occur in reality [8, 65, 151, 180], not much atten-
tion have been given to measure performance in systems where deviations occur. Zur
Muehlen and Rosemann [212] proposed a prototype process analysis tool PISA to ana-
lyze both technical and organizational performance based on event logs from multiple
workflow management systems. However, the approach did not take into account devi-
ating events. Similarly, Castellanos et al. [31] proposed the iBOM framework to measure
performance of processes in abstract views, but it did not specify any approach to deal
with possible deviations. Similar drawbacks are also found with other performance anal-
ysis approaches that rely on activity monitoring tools, such as [41,206,207].

Popova and Sharpanskykh [131] proposed a formal approach to evaluate organi-
zational performance and take into account that people may deviate from prescribed
process models. However, in cases where such deviations occur, manual inspection is
required to determine the reason behind the deviations. This limits the applicability of
the approach. Given an event log and a low level net, Hornix [85] proposed an approach
to measure performance metrics by replaying each trace in the log on the net using the
token-based replay approach [151]. However, as shown in Chapter 3, the token-based
replay approach yields misleading results when the net has duplicate/invisible transi-
tions. Nakatumba and Van der Aalst [120] proposed an approach to identify outliers and
estimating activity start events, given an event log. The approach, however, does not
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Figure 9.6: Overview of an alignment-based approach to measure performance by first constructing activity
instances.

take into account any process model.

Computing a mapping between events at a low level of granularity and a high level
net is an implicit problem that also needs to be addressed in performance measurement
from event logs. In the absence of an explicit mapping between a set of events and a
high level net, a low level net can be discovered from the events together with a mapping
between the elements of the net and the high level net. Given an event log at a low level
of granularity and a high level net in form of a hierarchical markov model, Ferreira et
al. [63] proposed a method based on Expectation-Minimization techniques to discover
a low level net and a mapping between the net to the high level net. Nevertheless, this
approach does not guarantee that all events can be mapped to elements of the low level
net, while this could be crucial in performance measurements. In [120], Nakatumba et
al. proposed an approach to remove outliers and estimate the start events of activity
instances in noisy event logs. This approach can be used as a pre-processing step before
measuring performance using event logs.

9.3 Measuring Performance

Related work mentioned in Section 9.2 shows that there is no approach that is able
to robustly measure performance in systems where deviations occur. Given a complex
event log and a high level net, we propose an approach to construct activity instances
based on alignments. As mentioned in Section 9.1, in this chapter we assume that events
are recorded when activity instances are started and completed. Thus, for all events
in the event log, there are two possible values of transaction type attribute: “start” or
“complete”, i.e., let £ be the complex event universe, for all events e € £ : #uns(e) €
{start,complete}. All events in the log with transaction type attribute other than “start”
and “complete” are filtered out.

Figure 9.6 shows an overview of all steps proposed in this section to measure per-
formance based on an event log and a given high level net where events were recorded
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Table 9.1: A complex event log of the net shown in Figure 9.1, consists of only one case.

Case id | Event id Properties
Timestamp | Activity | Lifecycle
c1 el 9:00 | register | start
e 9:15 | register | complete
e3 10:00 | x-ray start
e4 10:10 | lab test start
es 10:15 | x-ray complete
€6 12:00 | therapy | start
er 13:30 | therapy | complete
es 18:00 | archive start
€9 18:10 | archive | complete
el €2 e3 €4 es > €6 er es €9
(register;| (register; | (x-ray, | (lab test, (x-ray, > (therapy, | (therapy, | (archive, | (archive,
start) |complete)| start) start) complete) start) complete) start) complete)
(register;| (register; | (x-ray, | (lab test, (x-ray, (lab test, (archive, | (archive,
start) |complete)| start) start) complete) | complete) start) complete)
t1,1 t1,2 t3.1 t21 t3,2 t2 2 > > tr1 t7.2

Figure 9.7: The top row: Events of case c;, taken from the complex event log in Table 9.1. >> denotes
movements that do not relate to any events of case c;, The second row until bottom: An optimal alignment
between the trace of the complex trace of ¢; in Table 9.1 and the net shown in Figure 9.4 with respect to the
standard likelihood cost function.

when activity instances are either started or completed. The first two steps are performed
to relate the events of the log to the transitions of the net. First, a Petri net with the same
level of granularity as the events in the log is constructed (i.e., a low level net). The
constructed low level net must only allow for the same set of traces as yielded by the
high level net. Then, we construct a multi-set of alignments of the log with respect to
the previously constructed net using a basic oracle function to explicitly show deviations
between events in the log and the low level net. The multi-set also shows the behavior
allowed by the net that is most likely represents the behavior observed in log, which
we then exploit to construct activity instances. Performance metrics are then computed
based on the identified activity instances.

Both examples in Figure 9.5 show that identifying deviations is crucial before mea-
suring performance. In Section 9.1, we already showed how to construct the low level
net from a high level net. Given a complex event log, a low level net, and a basic oracle
function, we construct an alignment for each trace in the log using the oracle function.
Take for example the complex event log of the high level net in Figure 9.1, shown in
Table 9.1. Suppose that we use a basic and optimal oracle function with respect to the
standard likelihood cost function. Figure 9.7 shows an optimal alignment between the
trace of case ¢; and the low level net in Figure 9.4 yielded by the oracle. According to
the alignment, an event that indicates the completion of an instance of activity lab test
is missing in the trace. Furthermore, two events of the same activity therapy are not
supposed to be in the trace according to the net.

Given an alignment between a trace and a low level net, we construct instances of
activities by pairing all movements that refer to the same high level transition from the
start of the alignment to its end. We ignore all moves on log and only take into account
both synchronous moves and moves on model because all move on logs do not refer to
any high level transition. Note that an instance of an activity is not necessarily derived
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Figure 9.8: Pairing each low level transition whose transaction life-cycle label is “start” with its closest succes-
sor transition whose transaction life-cycle label is “complete” and refers to the same activity from the alignment
shown in Figure 9.7.

from two synchronous moves. An activity instance may be derived from a move on model
and a synchronous move, or two moves on model.

Take for example case c; in the log of Table 9.1 and the alignment of Figure 9.7 be-
tween the trace of ¢; and the low level net shown in Figure 9.4. We pair each move on
model/synchronous move in the alignment whose transition is labeled with transaction
life-cycle “start” with its closest successor that: (1) refers to the same high level tran-
sition, and (2) has a transaction life-cycle label “complete”. Figure 9.8 shows how the
movements of the alignment shown in Figure 9.7 are paired. Each pair of movements
yields an activity instance.

We denote an instance of an activity a as a tuple of three elements (z,y, z), where
both x and y are either events corresponding to a or >>, and z is a high level transition
labeled a. If x is an event then its transaction life-cycle is “start”. Similarly, if y is an
event then its transaction life-cycle is “complete”. For example, the four activity instances
discovered in Figure 9.8 are (e1, €2, t1), (es, es5,t3), (eq,>>,t2), and (es, eg, t7). We say that
(e4,>>,t2) is a partial complete instance because it does not contain any event that marks
its completion, i.e., it is replaced with >. Similarly, an activity instance (z,>,2) is a
partial start instance if © is an event. An activity instance (>>,>>, z) without both start
and complete events is called a missing instance, while an activity instance with both start
and complete events is a perfect instance.

Figure 9.9 shows another visualization of the discovered activity instances in Fig-
ure 9.8. Note that both events e and e; are not considered to be a part of any activity
instance as they are involved in moves on log according to the alignment shown in Fig-
ure 9.7. Applying the same approach to the complex trace shown in Figure 9.12 using
the same oracle function yields a set of activity instances shown in Figure 9.10. Note that
the set of discovered instances in Figure 9.10 resembles the one shown in Figure 9.2.

Given a complex event log, a low level Petri net, and a basic oracle function, we
repeat the same steps for all cases in the log to obtain a set of activity instances for each
case in the log. This set is used further to measure performance.

The last step of the approach proposed in Figure 9.6 is to compute performance values
based on the discovered activity instances. Given a set of activity instances, performance
can be computed in a trivial way. The service time of an activity can be computed from
all perfect instances of the activity. Take for example the discovered activity instances in
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Figure 9.9: Top: The high level net shown in Figure 9.1, Bottom: The discovered activity instances by pairing
the movements of alignments shown in Figure 9.7.

Figure 9.11. The service time of activity x-ray can be computed from the time required
to perform the perfect activity instance (es, e5, t3), which is 15 minutes. Assuming that
all non human resources to perform an activity are available immediately whenever all
transitions labeled with the activity are also enabled in the net, the average waiting time
of an activity can be measured from a pair of activity instance X and Y where: (1) X
is either a perfect or partial start instance of the activity, and (2) Y is either perfect or
partial complete instance of other activities that directly precede X. In this example, the
waiting time of activity x-ray is 45 minutes (i.e., the time spent between the completion
of (e1,e2,t1) and the start of (es,es,t3). The sojourn time of the activity x-ray in this
example can be measured from the moment (e, eq,t1) is completed until the moment
(es, e5,t3) is completed, which is 1 hour.

Performance can also be measured from partial start/complete activity instances. For
example, no perfect instance of lab test can be discovered in Figure 9.11. However, the
waiting time of activity lab test can still be measured from the moment of (eq, €2, t1) was
completed until the moment (ey4, >, t2) was started (55 minutes).

Identifying activity instances is a crucial step in measuring performance. In cases
where some performance metrics cannot be measured because of deviations, one can
exploit the diagnostics provided by the discovered instances in order to estimate perfor-
mance values based on statistical analysis. For example, the service time of activity lab
test cannot be measured from the discovered activity instances in Figure 9.11 because the
moment the instance (ey, >, t2) was completed is unknown. However, we know that ac-
tivity archive can only occur after an instance of lab test is completed according to the net
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Figure 9.11: Some performance metrics that can be measured from the discovered activity instances shown in
Figure 9.9.

in Figure 9.1. Thus, we know that the completion time of instance (e4, >, t2) must fall
between the start time of the instance (10:10) and the start time of instance (eg, eg, t7)
(18:00). One may take a naive approach to assume that all partial start/complete in-
stances were performed instantly [7]. This way, instance (e4,>>,t2) is assumed to be
completed at time 10:10. Similarly, one can also assume that the instances shown in
Figure 9.11 is correct, i.e., (e4,>>,t2) ended between 10.15 (e5) and 12.00 (eg). One
may also perform statistical analysis to better estimate the time of completion of the in-
stance if more information is available, e.g., resources [120]. In this case, we choose
to make no assumptions on unknown event timestamps, i.e., all unknown events are ig-
nored. In Section 9.4, we report the experimental results to identify the most appropriate
approach.
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Figure 9.12: A personal loan application process in a Petri net terms.

9.4 Experiments

To evaluate the proposed approach in this chapter, we implemented it using the ProM
framework. A set of experiments was conducted using a Petri net and a set of artifi-
cial logs with real-life complexity. Furthermore, a case study using an event log and a
Petri net taken from a municipality in the Netherlands was performed to evaluate the
applicability of the approach in real-life settings. The results of the experiments with the
artificial model and logs are explained in Section 9.4.1 and the results of the case study
are reported in Section 9.4.2.

9.4.1 Artifical Logs and Models

We created a Petri net and a set of artificial event logs of real-life complexity loosely
based on the application for an online personal loan process of a Dutch Financial Institute
[192]. The net is shown in Figure 9.12. It consists of 13 transitions where each transition
is labeled with a unique activity.

An applicant needs to first register for a loan application request (register). Then, an
officer categorizes the request, marks it as a completed request, and notifies the applicant
about the acceptance of the application for further processing (complete request). Then,
a public relation officer sends some information about the types of loans that match the
application request and a validation request form (offers). Another officer then evalu-
ates the request according to a set of predefined rules (validate request). In parallel, an
internal auditor decides whether the request only needs to be checked either normally
(normal audit) or thoroughly to prevent possible fraud (fraud check). An application that
undergoes fraud checking is analyzed by a risk analyst (risk analysis). Both the risk anal-
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ysis and the normal audit report are sent to an application manager. The manager then
decides to either grant the application request or to reject it (decide). Soon after a deci-
sion is made, it is sent to the applicant. If the applicant is a potential client for some new
loan products, the manager may also decide postpone his decision and assign another
analyst to create a tailored offering for the applicant (analyze offer). The tailored offering
is sent back to the public relation officer (dispatch extra offering) to be offered to the
applicant. If there is no objection to a decision made by the manager for the applicant,
the whole application request history is archived (archive). However, if the applicant
objects (objection), then the application is re-registered for another round of evaluations
together with additional notes of objections (re-register).

We generated 30 complex event logs using the CPN Tools [139], each log consists of
1,000 cases. Two events were generated each time a transition labeled with an activity is
fired: one event marks the start of an instance of the activity and the other event marks
the completion of the instance. The number of events per case varies from 14 events
per trace to more than 150 events per trace. The service time and the waiting time of
all activities were configured to follow exponential distributions. The average service
time and the average waiting time per activity are shown in Figure 9.12. In addition to
the service time and the waiting time of all activities, we also measured the time spent
to execute pairs of activities in sequences: the time spent between the pair of activities
analyze offers-dispatch extra offering, fraud check-risk analysis, objection-re-register, and
offers-validate request.

Three sets of non-fitting logs were generated from the perfectly fitting logs, each
set consists of 30 logs of 1,000 cases. The first set of logs consists of non-fitting logs
generated by swapping activity names of events randomly. The second set of logs contains
non-fitting logs due to random removal of events. The third set of logs contains non-
fitting logs due to random addition of new events to the original logs. We measured the
service time and the waiting time of all activities using the non-fitting logs and compared
the results to baseline values obtained from measuring the same metrics on perfectly
fitting logs. We compared the proposed approach in this chapter against the token-based
replay approach that measures the same performance metrics from a given event log
and a Petri net [85], implemented in the ProM 5 framework.! The token-based replay
approach measures performance only from events that can be replayed without missing
tokens.

We evaluated possible variations in the approach proposed in this chapter using three
different basic and optimal oracle functions. Each function uses a different likelihood
cost function. In the remainder of this chapter, for all z,y € IR : * < y denotes that
the value of x is much less than the value of y and = > y denotes that the value of
x is much higher than the value of y. Note that we overload notation as before “>”
was used to represent a “no move”. The three likelihood cost functions are (1) a cost
function where the likelihood cost of moves on model is much less than the likelihood
cost of moves on log (MM < ML), (2) a cost function where the likelihood cost of moves
on model is much higher than the likelihood cost of moves on log (MM > ML), and (3)
a cost function where the likelihood cost of moves on log is the same as the likelihood
cost of moves on model (MM = ML). We selected three different arbitrary likelihood cost
functions: MM:ML = 1:50, MM:ML = 50:1, and MM:ML = 1:1 to be referred to as MM
< ML, MM > ML, and MM = ML respectively.

Finally, we compared the accuracy of the proposed approach with an alternative ap-
proach where the timestamps of all missing events are injected (i.e., timestamps are

Isee http://www.processmining.org
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injected to all moves on model). We used the timestamps injection approach proposed
in [7] as a baseline. The timestamp of a missing event in an activity instance is the
timestamp of its closest preceding event whose activity instance directly precedes the in-
stance. This way, the service time of a non perfect activity instance is 0. If there is no such
event, the timestamp is taken from the closest successor event whose activity instance
succeeds the instance. We measured the Mean Square Error (MSE) of all measurements
to compare all approaches in the experiments.

Figure 9.13 shows the results of the experiments, presented in the form of scatter
plots with polynomial trendlines. The x-axis of the scatter plots shows the weighted
fitness values and the y-axis shows the MSE of performance measurements. As shown
by the scatter plots, all approaches provide accurate performance measurements when
measuring performance based on perfectly fitting logs (i.e., logs whose weighted fitness
value are 1.00). Inaccurate measurements are obtained only in the experiments with
logs whose weighted fitness values are below 1.00. This implies that poor fitness values
can be an indication of poor performance estimation. Therefore, one needs to take into
account weighted fitness values when measuring performance from a given log and a
Petri net. We also see that for each approach, given an event log and a process model,
there is a limit to the accuracy of the performance estimation it can provide when the log
is not perfectly fitting. Beyond this limit, the approach may provide high MSE values.

As shown in Figure 9.13, the token-based approach provides significantly higher MSE
measurements for non fitting logs than the alignment-based approaches. This is because
the approach does not consider the most-likely-followed paths according to the original
traces in the logs when measuring performance. In contrast, the alignment-based ap-
proaches try to guess a “correct” path followed by each trace in the logs before measuring
performance. In many cases, this leads to more accurate performance measurements.

As expected, performance measurements gets more accurate when more events in
the logs are taken into account (see Figure 9.13). The maximum MSE value of all per-
formance metric measurements using the logs with the same fitness level increases from
the left to right figures (i.e., from the experiments with likelihood cost function MM «
ML to the experiments with likelihood cost function MM > ML). In the presence of a
non-fitting event in a trace, an approach based on cost function MM >> ML “prefers”
discarding the event (i.e., do a move on log) to performing moves on model until the
event is enabled. Thus, many moves on log are constructed and therefore many events
are discarded during performance measurements. In contrast, the alignment-based ap-
proaches that use likelihood cost function MM < ML (see the left side of Figure 9.13)
prefer alignments with less number of moves on log because the cost of a move on log
is much higher than the cost of a move on model. Therefore, more events in the logs
are taken into account when measuring performance. This leads to better performance
measurement accuracy.

Experiments also show that injecting timestamps naively yields poor performance es-
timations. The scatter plots on the left of Figure 9.13 show that the MSEs of performance
measurements taken without timestamps injections are lower than the MSEs of the same
measurements taken with timestamps injections. Many of the alignments constructed
with likelihood cost function MM <« ML have subsequences of moves on model to en-
able non-fitting events. Naively injecting timestamps to these moves on model yields
misleading performance measurem<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>