399 research outputs found

    A privacy-preserving protocol for indoor Wi-Fi localization

    Get PDF
    Location-aware applications have witnessed massive worldwide growth in recent years due to the introduction and advancement of smartphones. Most of these applications rely on the Global Positioning System (GPS) which is not available in indoor environments. As a result, Wi-Fi fingerprinting is becoming increasingly popular as an alternative as it allows localizing users in indoor environments, has lower power consumption, and is also more economical as it does not require a dedicated sensor other than a Wi-Fi card. The technique allows a service provider (SP) to construct a Wi-Fi database (called radio map) that can be used as a reference point to localize a user. However, this process does not preserve the user privacy, as the location can only be computed interactively with the SP. The service provider may also reveal sensitive information on the indoor space (e.g. the building map) to the user. Thus, we need an indoor localization protocol that addresses the privacy of both parties. In this paper, we present a privacy-preserving cryptographic protocol for indoor Wi-Fi localization, that prevents the SP from learning the exact location of the user outside of certain pre-defined sensitive areas, while keeping the SP's database secure. Thus, both parties cannot learn anything about each other's input beyond the implicit output revealed

    Privacy-Preserving by Design: Indoor Positioning System Using Wi-Fi Passive TDOA

    Full text link
    Indoor localization systems have become increasingly important in a wide range of applications, including industry, security, logistics, and emergency services. However, the growing demand for accurate localization has heightened concerns over privacy, as many localization systems rely on active signals that can be misused by an adversary to track users' movements or manipulate their measurements. This paper presents PassiFi, a novel passive Wi-Fi time-based indoor localization system that effectively balances accuracy and privacy. PassiFi uses a passive WiFi Time Difference of Arrival (TDoA) approach that ensures users' privacy and safeguards the integrity of their measurement data while still achieving high accuracy. The system adopts a fingerprinting approach to address multi-path and non-line-of-sight problems and utilizes deep neural networks to learn the complex relationship between TDoA and location. Evaluation in a real-world testbed demonstrates PassiFi's exceptional performance, surpassing traditional multilateration by 128%, achieving sub-meter accuracy on par with state-of-the-art active measurement systems, all while preserving privacy

    A Low-complexity trajectory privacy preservation approach for indoor fingerprinting positioning systems

    Get PDF
    Location fingerprinting is a technique employed when Global Positioning System (GPS) positioning breaks down within indoor environments. Since Location Service Providers (LSPs) would implicitly have access to such information, preserving user privacy has become a challenging issue in location estimation systems. This paper proposes a low-complexity k-anonymity approach for preserving the privacy of user location and trajectory, in which real location/trajectory data is hidden within k fake locations/trajectories held by the LSP, without degrading overall localization accuracy. To this end, three novel location privacy preserving methods and a trajectory privacy preserving algorithm are outlined. The fake trajectories are generated so as to exhibit characteristics of the user’s real trajectory. In the proposed method, no initial knowledge of the environment or location of the Access Points (APs) is required in order for the user to generate the fake location/trajectory. Moreover, the LSP is able to preserve privacy of the fingerprinting database from the users. The proposed approaches are evaluated in both simulation and experimental testing, with the proposed methods outperforming other well-known k-anonymity methods. The method further exhibits a lower implementation complexity and higher movement similarity (of up to 88%) between the real and fake trajectories

    PILOT : Practical Privacy-Preserving Indoor Localization Using OuTsourcing

    Get PDF
    In the last decade, we observed a constantly growing number of Location-Based Services (LBSs) used in indoor environments, such as for targeted advertising in shopping malls or finding nearby friends. Although privacy-preserving LBSs were addressed in the literature, there was a lack of attention to the problem of enhancing privacy of indoor localization, i.e., the process of obtaining the users' locations indoors and, thus, a prerequisite for any indoor LBS. In this work we present PILOT, the first practically efficient solution for Privacy-Preserving Indoor Localization (PPIL) that was obtained by a synergy of the research areas indoor localization and applied cryptography. We design, implement, and evaluate protocols for Wi-Fi fingerprint-based PPIL that rely on 4 different distance metrics. To save energy and network bandwidth for the mobile end devices in PPIL, we securely outsource the computations to two non-colluding semi-honest parties. Our solution mixes different secure two-party computation protocols and we design size-and depth-optimized circuits for PPIL. We construct efficient circuit building blocks that are of independent interest: Single Instruction Multiple Data (SIMD) capable oblivious access to an array with low circuit depth and selection of the k-Nearest Neighbors with small circuit size. Additionally, we reduce Received Signal Strength (RSS) values from 8 bits to 4 bits without any significant accuracy reduction. Our most efficient PPIL protocol is 553x faster than that of Li et al. (INFOCOM'14) and 500Ă— faster than that of Ziegeldorf et al. (WiSec'14). Our implementation on commodity hardware has practical run-times of less than 1 second even for the most accurate distance metrics that we consider, and it can process more than half a million PPIL queries per day.Peer reviewe

    Indoor Positioning for Monitoring Older Adults at Home: Wi-Fi and BLE Technologies in Real Scenarios

    Get PDF
    This paper presents our experience on a real case of applying an indoor localization system formonitoringolderadultsintheirownhomes. Sincethesystemisdesignedtobeusedbyrealusers, therearemanysituationsthatcannotbecontrolledbysystemdevelopersandcanbeasourceoferrors. This paper presents some of the problems that arise when real non-expert users use localization systems and discusses some strategies to deal with such situations. Two technologies were tested to provide indoor localization: Wi-Fi and Bluetooth Low Energy. The results shown in the paper suggest that the Bluetooth Low Energy based one is preferable in the proposed task

    FedHIL: Heterogeneity Resilient Federated Learning for Robust Indoor Localization with Mobile Devices

    Full text link
    Indoor localization plays a vital role in applications such as emergency response, warehouse management, and augmented reality experiences. By deploying machine learning (ML) based indoor localization frameworks on their mobile devices, users can localize themselves in a variety of indoor and subterranean environments. However, achieving accurate indoor localization can be challenging due to heterogeneity in the hardware and software stacks of mobile devices, which can result in inconsistent and inaccurate location estimates. Traditional ML models also heavily rely on initial training data, making them vulnerable to degradation in performance with dynamic changes across indoor environments. To address the challenges due to device heterogeneity and lack of adaptivity, we propose a novel embedded ML framework called FedHIL. Our framework combines indoor localization and federated learning (FL) to improve indoor localization accuracy in device-heterogeneous environments while also preserving user data privacy. FedHIL integrates a domain-specific selective weight adjustment approach to preserve the ML model's performance for indoor localization during FL, even in the presence of extremely noisy data. Experimental evaluations in diverse real-world indoor environments and with heterogeneous mobile devices show that FedHIL outperforms state-of-the-art FL and non-FL indoor localization frameworks. FedHIL is able to achieve 1.62x better localization accuracy on average than the best performing FL-based indoor localization framework from prior work

    Privacy in Indoor Positioning Systems: A Systematic Review

    Get PDF
    Ponència presentada a 10th International Conference on Localization and GNSS (ICL-GNSS), celebrada a Tampere (Finland) del 2 al 4 de juny de 2020This article presents a systematic review of privacy in indoor positioning systems. The selected 41 articles on location privacy preserving mechanisms employ non-inherently private methods such as encryption, k-anonymity, and differential privacy. The 15 identified mechanisms are categorized and summarized by where they are processed: on device, during transmission, or at a server. Trade-offs such as calculation speed, granularity, or complexity in set-up are identified for each mechanism. In 40% of the papers, some trade-offs are minimized by combining several methods into a hybrid solution. The combinations of mechanisms and their levels of offered privacy are suggested based on a series of user mobility cases

    Privacy preserving in indoor fingerprint localization and radio map expansion

    Get PDF
    People spend most of their life time in indoor environments and in all of these environments, Location Service Providers (LSPs) improve users’ navigation. Preserving privacy in Location Based Services (LBSs) is vital for indoor LBSs and fingerprinting based indoor localization method is an emerging technique in indoor localization. In such systems, LSP may be curious and untrusted. Therefore, it is preferred that user estimates its location by using a Partial Radio Map (PRM) which is achieved by LSP, anonymously. In this paper, a privacy preserving method that uses Bloom filter for preserving anonymity and creating PRM during localization process, is proposed. In this method, LSP cannot recognize user identity, which is anonymized by the anonymizer. The proposed method has lower computational complexity compared with methods that use encryption or clustering concepts. The proposed method also has higher accuracy in localization compared with those that use Bloom filter with one random selected AP. Then, in order to decrease the complexity and to increase the accuracy at the same time, we introduce a method that expands the radio map by authenticated users, without compromising their privacy. We also enhance the performance of this method, using Hilbert curve for preserving the ambiguity of users’ location. After verifying the user’s data, LSP sends a certificate to the authenticated users. This certificate can increase the priority of users in LBS requests. Simulation results and measurements show that the proposed method on average improves the localization accuracy up to 16% compared with existing location privacy methods

    COVID-19 & privacy: Enhancing of indoor localization architectures towards effective social distancing

    Get PDF
    Abstract The way people access services in indoor environments has dramatically changed in the last year. The countermeasures to the COVID-19 pandemic imposed a disruptive requirement, namely preserving social distance among people in indoor environments. We explore in this work the possibility of adopting the indoor localization technologies to measure the distance among users in indoor environments. We discuss how information about people's contacts collected can be exploited during three stages: before, during, and after people access a service. We present a reference architecture for an Indoor Localization System (ILS), and we illustrate three representative use-cases. We derive some architectural requirements, and we discuss some issues that concretely cope with the real installation of an ILS in real-world settings. In particular, we explore the privacy and trust reputation of an ILS, the discovery phase, and the deployment of the ILS in real-world settings. We finally present an evaluation framework for assessing the performance of the architecture proposed
    • …
    corecore