12 research outputs found

    Computing Network of Diseases and Pharmacological Entities through the Integration of Distributed Literature Mining and Ontology Mapping

    Get PDF
    The proliferation of -omics (such as, Genomics, Proteomics) and -ology (such as, System Biology, Cell Biology, Pharmacology) have spawned new frontiers of research in drug discovery and personalized medicine. A vast amount (21 million) of published research results are archived in the PubMed and are continually growing in size. To improve the accessibility and utility of such a large number of literatures, it is critical to develop a suit of semantic sensitive technology that is capable of discovering knowledge and can also infer possible new relationships based on statistical co-occurrences of meaningful terms or concepts. In this context, this thesis presents a unified framework to mine a large number of literatures through the integration of latent semantic analysis (LSA) and ontology mapping. In particular, a parameter optimized, robust, scalable, and distributed LSA (DiLSA) technique was designed and implemented on a carefully selected 7.4 million PubMed records related to pharmacology. The DiLSA model was integrated with MeSH to make the model effective and efficient for a specific domain. An optimized multi-gram dictionary was customized by mapping the MeSH to build the DiLSA model. A fully integrated web-based application, called PharmNet, was developed to bridge the gap between biological knowledge and clinical practices. Preliminary analysis using the PharmNet shows an improved performance over global LSA model. A limited expert evaluation was performed to validate the retrieved results and network with biological literatures. A thorough performance evaluation and validation of results is in progress

    Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and their Roles in Complex Disease

    Get PDF
    Vast amounts of biomedical associations are easily accessible in public resources, spanning gene-disease associations, tissue-specific gene expression, gene function and pathway annotations, and many other data types. Despite this mass of data, information most relevant to the study of a particular disease remains loosely coupled and difficult to incorporate into ongoing research. Current public databases are difficult to navigate and do not interoperate well due to the plethora of interfaces and varying biomedical concept identifiers used. Because no coherent display of data within a specific problem domain is available, finding the latent relationships associated with a disease of interest is impractical. This research describes a method for extracting the contextual relationships embedded within associations relevant to a disease of interest. After applying the method to a small test data set, a large-scale integrated association network is constructed for application of a network propagation technique that helps uncover more distant latent relationships. Together these methods are adept at uncovering highly relevant relationships without any a priori knowledge of the disease of interest. The combined contextual search and relevance methods power a tool which makes pertinent biomedical associations easier to find, easier to assimilate into ongoing work, and more prominent than currently available databases. Increasing the accessibility of current information is an important component to understanding high-throughput experimental results and surviving the data deluge

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Novel Algorithm Development for ‘NextGeneration’ Sequencing Data Analysis

    Get PDF
    In recent years, the decreasing cost of ‘Next generation’ sequencing has spawned numerous applications for interrogating whole genomes and transcriptomes in research, diagnostic and forensic settings. While the innovations in sequencing have been explosive, the development of scalable and robust bioinformatics software and algorithms for the analysis of new types of data generated by these technologies have struggled to keep up. As a result, large volumes of NGS data available in public repositories are severely underutilised, despite providing a rich resource for data mining applications. Indeed, the bottleneck in genome and transcriptome sequencing experiments has shifted from data generation to bioinformatics analysis and interpretation. This thesis focuses on development of novel bioinformatics software to bridge the gap between data availability and interpretation. The work is split between two core topics – computational prioritisation/identification of disease gene variants and identification of RNA N6 -adenosine Methylation from sequencing data. The first chapter briefly discusses the emergence and establishment of NGS technology as a core tool in biology and its current applications and perspectives. Chapter 2 introduces the problem of variant prioritisation in the context of Mendelian disease, where tens of thousands of potential candidates are generated by a typical sequencing experiment. Novel software developed for candidate gene prioritisation is described that utilises data mining of tissue-specific gene expression profiles (Chapter 3). The second part of chapter investigates an alternative approach to candidate variant prioritisation by leveraging functional and phenotypic descriptions of genes and diseases from multiple biomedical domain ontologies (Chapter 4). Chapter 5 discusses N6 AdenosineMethylation, a recently re-discovered posttranscriptional modification of RNA. The core of the chapter describes novel software developed for transcriptome-wide detection of this epitranscriptomic mark from sequencing data. Chapter 6 presents a case study application of the software, reporting the previously uncharacterised RNA methylome of Kaposi’s Sarcoma Herpes Virus. The chapter further discusses a putative novel N6-methyl-adenosine -RNA binding protein and its possible roles in the progression of viral infection

    In Search of a Common Thread: Enhancing the LBD Workflow with a view to its Widespread Applicability

    Get PDF
    Literature-Based Discovery (LBD) research focuses on discovering implicit knowledge linkages in existing scientific literature to provide impetus to innovation and research productivity. Despite significant advancements in LBD research, previous studies contain several open problems and shortcomings that are hindering its progress. The overarching goal of this thesis is to address these issues, not only to enhance the discovery component of LBD, but also to shed light on new directions that can further strengthen the existing understanding of the LBD work ow. In accordance with this goal, the thesis aims to enhance the LBD work ow with a view to ensuring its widespread applicability. The goal of widespread applicability is twofold. Firstly, it relates to the adaptability of the proposed solutions to a diverse range of problem settings. These problem settings are not necessarily application areas that are closely related to the LBD context, but could include a wide range of problems beyond the typical scope of LBD, which has traditionally been applied to scientific literature. Adapting the LBD work ow to problems outside the typical scope of LBD is a worthwhile goal, since the intrinsic objective of LBD research, which is discovering novel linkages in text corpora is valid across a vast range of problem settings. Secondly, the idea of widespread applicability also denotes the capability of the proposed solutions to be executed in new environments. These `new environments' are various academic disciplines (i.e., cross-domain knowledge discovery) and publication languages (i.e., cross-lingual knowledge discovery). The application of LBD models to new environments is timely, since the massive growth of the scientific literature has engendered huge challenges to academics, irrespective of their domain. This thesis is divided into five main research objectives that address the following topics: literature synthesis, the input component, the discovery component, reusability, and portability. The objective of the literature synthesis is to address the gaps in existing LBD reviews by conducting the rst systematic literature review. The input component section aims to provide generalised insights on the suitability of various input types in the LBD work ow, focusing on their role and potential impact on the information retrieval cycle of LBD. The discovery component section aims to intermingle two research directions that have been under-investigated in the LBD literature, `modern word embedding techniques' and `temporal dimension' by proposing diachronic semantic inferences. Their potential positive in uence in knowledge discovery is veri ed through both direct and indirect uses. The reusability section aims to present a new, distinct viewpoint on these LBD models by verifying their reusability in a timely application area using a methodical reuse plan. The last section, portability, proposes an interdisciplinary LBD framework that can be applied to new environments. While highly cost-e cient and easily pluggable, this framework also gives rise to a new perspective on knowledge discovery through its generalisable capabilities. Succinctly, this thesis presents novel and distinct viewpoints to accomplish five main research objectives, enhancing the existing understanding of the LBD work ow. The thesis offers new insights which future LBD research could further explore and expand to create more eficient, widely applicable LBD models to enable broader community benefits.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202

    Bioinformatics

    Get PDF
    This book is divided into different research areas relevant in Bioinformatics such as biological networks, next generation sequencing, high performance computing, molecular modeling, structural bioinformatics, molecular modeling and intelligent data analysis. Each book section introduces the basic concepts and then explains its application to problems of great relevance, so both novice and expert readers can benefit from the information and research works presented here

    Semi-automated framework for the analytical use of gene-centric data with biological ontologies

    Get PDF
    Motivation Translational bioinformatics(TBI) has been defined as ‘the development and application of informatics methods that connect molecular entities to clinical entities’ [1], which has emerged as a systems theory approach to bridge the huge wealth of biomedical data into clinical actions using a combination of innovations and resources across the entire spectrum of biomedical informatics approaches [2]. The challenge for TBI is the availability of both comprehensive knowledge based on genes and the corresponding tools that allow their analysis and exploitation. Traditionally, biological researchers usually study one or only a few genes at a time, but in recent years high throughput technologies such as gene expression microarrays, protein mass-spectrometry and next-generation DNA and RNA sequencing have emerged that allow the simultaneous measurement of changes on a genome-wide scale. These technologies usually result in large lists of interesting genes, but meaningful biological interpretation remains a major challenge. Over the last decade, enrichment analysis has become standard practice in the analysis of such gene lists, enabling systematic assessment of the likelihood of differential representation of defined groups of genes compared to suitably annotated background knowledge. The success of such analyses are highly dependent on the availability and quality of the gene annotation data. For many years, genes were annotated by different experts using inconsistent, non-standard terminologies. Large amounts of variation and duplication in these unstructured annotation sets, made them unsuitable for principled quantitative analysis. More recently, a lot of effort has been put into the development and use of structured, domain specific vocabularies to annotate genes. The Gene Ontology is one of the most successful examples of this where genes are annotated with terms from three main clades; biological process, molecular function and cellular component. However, there are many other established and emerging ontologies to aid biological data interpretation, but are rarely used. For the same reason, many bioinformatic tools only support analysis analysis using the Gene Ontology. The lack of annotation coverage and the support for them in existing analytical tools to aid biological interpretation of data has become a major limitation to their utility and uptake. Thus, automatic approaches are needed to facilitate the transformation of unstructured data to unlock the potential of all ontologies, with corresponding bioinformatics tools to support their interpretation. Approaches In this thesis, firstly, similar to the approach in [3,4], I propose a series of computational approaches implemented in a new tool OntoSuite-Miner to address the ontology based gene association data integration challenge. This approach uses NLP based text mining methods for ontology based biomedical text mining. What differentiates my approach from other approaches is that I integrate two of the most wildly used NLP modules into the framework, not only increasing the confidence of the text mining results, but also providing an annotation score for each mapping, based on the number of pieces of evidence in the literature and the number of NLP modules that agreed with the mapping. Since heterogeneous data is important in understanding human disease, the approach was designed to be generic, thus the ontology based annotation generation can be applied to different sources and can be repeated with different ontologies. Secondly, in respect of the second challenge proposed by TBI, to increase the statistical power of the annotation enrichment analysis, I propose OntoSuite-Analytics, which integrates a collection of enrichment analysis methods into a unified open-source software package named topOnto, in the statistical programming language R. The package supports enrichment analysis across multiple ontologies with a set of implemented statistical/topological algorithms, allowing the comparison of enrichment results across multiple ontologies and between different algorithms. Results The methodologies described above were implemented and a Human Disease Ontology (HDO) based gene annotation database was generated by mining three publicly available database, OMIM, GeneRIF and Ensembl variation. With the availability of the HDO annotation and the corresponding ontology enrichment analysis tools in topOnto, I profiled 277 gene classes with human diseases and generated ‘disease environments’ for 1310 human diseases. The exploration of the disease profiles and disease environment provides an overview of known disease knowledge and provides new insights into disease mechanisms. The integration of multiple ontologies into a disease context demonstrates how ‘orthogonal’ ontologies can lead to biological insight that would have been missed by more traditional single ontology analysis

    FAIR and bias-free network modules for mechanism-based disease redefinitions

    Get PDF
    Even though chronic diseases are the cause of 60% of all deaths around the world, the underlying causes for most of them are not fully understood. Hence, diseases are defined based on organs and symptoms, and therapies largely focus on mitigating symptoms rather than cure. This is also reflected in the most commonly used disease classifications. The complex nature of diseases, however, can be better defined in terms of networks of molecular interactions. This research applies the approaches of network medicine – a field that uses network science for identifying and treating diseases – to multiple diseases with highly unmet medical need such as stroke and hypertension. The results show the success of this approach to analyse complex disease networks and predict drug targets for different conditions, which are validated through preclinical experiments and are currently in human clinical trials

    Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature

    Get PDF
    BACKGROUND: We previously associated HIST1H1E mutations causing Rahman syndrome with a specific genome-wide methylation pattern. RESULTS: Methylome analysis from peripheral blood samples of six affected subjects led us to identify a specific hypomethylated profile. This "episignature" was enriched for genes involved in neuronal system development and function. A computational classifier yielded full sensitivity and specificity in detecting subjects with Rahman syndrome. Applying this model to a cohort of undiagnosed probands allowed us to reach diagnosis in one subject. CONCLUSIONS: We demonstrate an epigenetic signature in subjects with Rahman syndrome that can be used to reach molecular diagnosis

    Additional file 2 of Prioritization, clustering and functional annotation of MicroRNAs using latent semantic indexing of MEDLINE abstracts

    No full text
    Tables S1A, S1B, S1C, S2A, S2B, S3, S4A and S4B. Microsoft Excel 2013 workbook ñ€™S11-S1.xlsxñ€™ contains supplementary tables 1A, 1B, 1C, 2A, 2B, 3, 4A and 4B in separate tabs. (XLSX 32.5 KB
    corecore