Computing Network of Diseases and Pharmacological Entities through the Integration of Distributed Literature Mining and Ontology Mapping

Abstract

The proliferation of -omics (such as, Genomics, Proteomics) and -ology (such as, System Biology, Cell Biology, Pharmacology) have spawned new frontiers of research in drug discovery and personalized medicine. A vast amount (21 million) of published research results are archived in the PubMed and are continually growing in size. To improve the accessibility and utility of such a large number of literatures, it is critical to develop a suit of semantic sensitive technology that is capable of discovering knowledge and can also infer possible new relationships based on statistical co-occurrences of meaningful terms or concepts. In this context, this thesis presents a unified framework to mine a large number of literatures through the integration of latent semantic analysis (LSA) and ontology mapping. In particular, a parameter optimized, robust, scalable, and distributed LSA (DiLSA) technique was designed and implemented on a carefully selected 7.4 million PubMed records related to pharmacology. The DiLSA model was integrated with MeSH to make the model effective and efficient for a specific domain. An optimized multi-gram dictionary was customized by mapping the MeSH to build the DiLSA model. A fully integrated web-based application, called PharmNet, was developed to bridge the gap between biological knowledge and clinical practices. Preliminary analysis using the PharmNet shows an improved performance over global LSA model. A limited expert evaluation was performed to validate the retrieved results and network with biological literatures. A thorough performance evaluation and validation of results is in progress

    Similar works