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Vast amounts of biomedical associations are easily accessible in public resources,

spanning gene-disease associations, tissue-specific gene expression, gene function

and pathway annotations, and many other data types. Despite this mass of data,

information most relevant to the study of a particular disease remains loosely coupled

and difficult to incorporate into ongoing research. Current public databases are

difficult to navigate and do not interoperate well due to the plethora of interfaces

and varying biomedical concept identifiers used. Because no coherent display of

data within a specific problem domain is available, finding the latent relationships

associated with a disease of interest is impractical.

This research describes a method for extracting the contextual relationships

embedded within associations relevant to a disease of interest. After applying the

method to a small test data set, a large-scale integrated association network is

constructed for application of a network propagation technique that helps uncover



more distant latent relationships. Together these methods are adept at uncovering

highly relevant relationships without any a priori knowledge of the disease of interest.

The combined contextual search and relevance methods power a tool which

makes pertinent biomedical associations easier to find, easier to assimilate into

ongoing work, and more prominent than currently available databases. Increasing

the accessibility of current information is an important component to understanding

high-throughput experimental results and surviving the data deluge.
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LIST OF DEFINITIONS

association

a relationship between two biomedical entities in a graph, often created by a

curator and/or computational method.

closure

the collection of all ancestors (subsuming terms) of an entity (term) in a

structured vocabulary. Denoted by a superscript ‘plus’ symbol: A+.

edge

a link between two nodes in a graph.

entity

a name or identifier that represents a concept or item found in a database,

structured vocabulary, or other resource.

gold standard

a well-defined set of data used to compare computational results with known

associations for the purposes of validation.

graph

an abstract collection of nodes and the edges between pairs of nodes. Typically

drawn with shapes representing the nodes and lines between the shapes

representing edges.
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homologous

having similar genetic sequence, esp. when found in similar structures or

anatomical associations.

merge algorithm

an algorithm which combines two sorted lists by walking through both lists

and appending the smallest element from either seen at each step. It runs in

time linear with the number of elements in both lists.

neighbor

an entity with an association to the subject entity.

node

an entity in a graph.

nomenclature

an agreed-upon system/method for assigning or choosing names.

ontology

A formal structured vocabulary in which the heirarchical relationships convey

additional semantic meaning. Ex: ‘Elbow is part_of Arm’ - Arm is not a more

generic term for Elbow.

orthologous

having similar genetic sequence due to a common ancestor species.

paralogous

having similar function.
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structured vocabulary

a dictionary of words/phrases (terms) organized into a heirarchical network

going from general descriptions to more specific terms. Ex: Money > Coins

> Quarter.

subsume

include by way of broader definition (as in a structured vocabulary). Ex:

“Vehicle” subsumes car, bicycle, boat and motorcycle because it is a broad

term that encompasses them all.

syntenic region

a genomic region in which genes are found in similar order along the

chromosomes of another species.

unsupervised

can run and produce useful output without human supervision or input.

warehouse

a database that stores all data locally (as opposed to a federated database

that links to remote databases).
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CHAPTER 1

FINDING LATENT CONTEXTUAL INFORMATION IN

HIGH-THROUGHPUT DATA

Although there exist large volumes of publicly accessible biomedical data, the

most computationally useful forms are sparse. A large proportion of scientific

content is found within the published literature, but requires computationally

intensive and error-prone natural language processing for computers to effectively

assimilate. Machine-readable associations between well-defined genes and controlled

vocabulary terms are significanly easier to use in computational analyses – but far

less numerous [5, 84, 85, 95]. These associations can only be produced by a thorough

literature review and/or experiment made by a domain scientist, which must then

be entered into a machine-readable database for public access. The sheer number

of genes, pathways, and functional annotations possible across currently studied

model organisms far outweighs the number of qualified biocurators for this task

[46]. This gap means that for many genes, little is known and annotated other

than that obtained through computational inference such as sequence and predicted

structure.

This makes it very difficult to study novel disease-gene associations. However,

there is a wealth of biomedical data outside of curated associations that

contain untapped latent information useful for this task. Many high-throughput

experimental contexts have produced data such as protein-protein interactions, co-

occurence in published datasets, correlated expression, co-localized expression, and

others. Contained within these data, contextual information can be aggregated to

prioritize the possible relationships between genes, diseases, phenotypes, and many

other biologically relevant concepts. Anecdotally, a gene with no known functional

1



annotations that is co-localized and co-expressed with many known disease genes

may be a much better candidate for contributing to a disease process than a gene

that shares a few functional annotations with known disease genes.

The layers of support provided by these contextual sources are especially

important when no other information is available. Putting them to work allows

novel hypothesis generation based on existing data that may have been collected

under another problem domain. Even if two genes are only consistently mentioned

together in the study of one disease, their co-occurance is enough to suggest a

possibly informative relationship in the study of another disease given supporting

contextual information. When comprehensive annotations are available, contextual

information can provide a wealth of useful information that make it easier to discover

the specific features most relevant to the study of human disease.

This research describes a novel technique to characterize sparsely annotated

genes through the extraction of contextual information in a large integrated

biomedical data warehouse. First, a quantitative contextual scoring technique is

designed, implemented, and tested for the functional prioritization of human disease

gene candidates. Second, the host of issues found when integrating a diverse array of

public biomedical database is discussed, and a warehouse of many biomedical entities

and associations for contextual extraction is constructed. Finally, the method

and data warehouse are combined with a graph saturation algorithm to enable

application of the technique in a web-based resource directly useful and accessible

to scientists. Together these efforts enable discovery of highly relevant information

from a variety of public resources, enhance scientific workflow by prioritizing large

sets of experimental results, and disseminate results through the use of discrete

association graphs and user-friendly visualization.

2



1.1 Combining Biological Data and Computational Algorithms for Gene

Functional Prioritization

The gene functional prioritization problem is often encountered by experimental

biologists trying to make sense of large sets of significant gene associations. The

problem entails determining which genes in the set are most likely to be associated

to the disease under study. The input consists of the gene list, often already ordered

by some empirical measure but containing unknown confounding features and false

positives. The output is an ordered list with quantitative scores depicting the

likelihood or confidence of the association based on convergent evidence from various

sources.

The many tools currently employed for the gene prioritization task have a

wide variety of implicit constraints and use varying combinations of data sources.

Each tool begins with bioinformatic methods that incorporate biological concepts

and observational knowledge into a quantifiable measure. One or more of these

bioinformatic measures are then used in various computational algorithms to arrive

at individual gene score. Finally, one or more algorithmic methods are then

incorporated into a software tool that ranks multiple genes at once. Each level

of abstraction makes data provenance more difficult to the end user – the tools

provide very little (if any) means to determine why one gene ranks higher than

another.

There are many ways in which biological data can be analyzed using

bioinformatics resources and computational algorithms to prioritize gene functional

associations. Methods will typically use synthetic models (in which prior knowledge

is manually codified into a computational model) and/or data-driven techniques

(in which prior knowledge is turned into a model computationally). For example,

the gene calling problem seeks to identify regions of DNA sequence that contain

3



transcribed genes. A simple synthetic model could identify regions surrounded by

specific, previously defined start and stop codons (3-letter DNA sequences). A data-

driven method would use sequence information from existing, known transcribed

gene regions to derive a model that can encompass difficult-to-observe factors such

as upstream regulators and transcription factor binding sites. While the synthetic

model does not require a collection of known transcribed sequence, it can result

in many false positives. Conversely, the data-driven method needs input data, but

can produce fewer false positives by incorporating more information. When fully

sequenced genomes were not yet available, the former methods were very important

for generating initial results that could be later refined, but now that more data is

available, the latter methods are significantly more useful in focusing work on the

the most relevant features.

1.2 Available Data Sources of Biomedical Associations

In order to be used by computational algorithms, data for predicting gene

functional annotations must be machine accessible. Many public resources both

large and small are available for this purpose, often storing annotations within a

database or easily parsed flat file format. These databases contain various types of

data roughly classified into primary identifiers (PI) and associations between them

(Table 1.1).

Primary identifers are used to uniquely refer to specific biomedical entities such as

genes and publications. Structured vocabularies represent hierarchically organized

PI entities. The data contained in these sources often have various semi-structured

definitions such as article authors, chromosome and genomic location, sequence, etc.

Associations consist of declarative links between primary data entities (ex: a gene

mentioned in a publication) which are most often empirically derived. Vocabulary
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mappings are a special type of association which are typically made by manual

annotation of a specific structured vocabulary term onto another primary entity.

Associations can also include metadata (data about the data), such as the evidence

type (electronic inference or manually curated for example) and a score that

represents the strength of the relationship (such as a correlation or p-value). A

summary of some association types used in this research can be found in Table 1.1.

Understanding and adequately handling the diversity of data and associations in

biological data integration is the fundamental challenge to harnessing the totality of

“big data” in biology. Some data sources are species agnostic, some cover multiple

species, and some apply to a single species only. The historically incohesive and

independent resource development efforts have lead to many data formats and

integration challenges. Furthermore, the wide variety of association types and

methods mean that there are significant differences in breadth, depth, quality,

and suitability to task. All associations cannot be treated equally, especially

when applied to the gene functional prioritization task. These complexities will

be discussed in detail in Chapter 3.

1.2.1 Public Resources for Primary Data

The National Center for Biotechnology Information (NCBI), a part of the US

National Library of Medicine (NLM), maintains many public resources containing

useful primary data. These resources are freely available and amenable to

programmatic access for computational analysis methods.

The NCBI maintains Entrez Gene, a public database of genes [64]. It

includes information such as: official gene nomenclature, chromosomal position,

and sequence; protein domain, interaction, phenotype, pathway and functional

associations; links to published literature and homologous genes; references to other

associated database resources. Entrez Gene records and references to them can be
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downloaded in plain text file format from NCBI’s FTP server, or through NCBI’s

e-utilities web service.

PubMed is a public database of over 22 million publication abstracts from the

biomedical literature [12]. It is also run by the NCBI, and includes publication

metadata such as authors, dates, keywords, and associated journal information.

Cross-references are provided to many of the other NCBI databases, including Entrez

Gene. Complete publication records are fully accessible using the NCBI e-utilities.

However, due to its large size, comprehensive PubMed records are not accessible via

FTP server, but certain subsets are available such as the ’gene2pubmed’ text file

linking Entrez Gene IDs to PubMed identifiers.

The Online Mendelian Inheritance in Man (OMIM) project is an online catalog

of human genes and genetic disorders [66]. It contains a highly curated collection of

publications and genes as they relate to many human genetic disorders. It is often

used as the source for "known" disease genes due to its comprehensive coverage of

human diseases. OMIM provides both FTP downloads and API access methods.

1.2.2 Structured Vocabularies

The NLMmaintains the Medical Subject Headings (MeSH), a structured medical

vocabulary [85]. This vocabulary contains descriptions and synonyms for medical

and related subjects that are used by curators to annotate records in PubMed. These

terms can be used to filter publication search results automatically. Because they

are manually curated in PubMed, MeSH terms are often used in place of literature

mining due to their controlled specificity. The full MeSH vocabulary is available for

download in multiple formats from the NLM, and PubMed annotations to MeSH

are available via the NCBI e-utilities.

The Gene Ontology (GO) is a structured vocabulary of terms designed with

the goal of standardizing gene and gene product attributes across species and
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databases [5]. It has been used in thousands of projects and publications to validate

experimental results and provide useful categorization of gene products. The Gene

Ontology vocabulary definition, along with gene association files for many model

organisms, can be downloaded directly from the project’s FTP or CVS servers.

The Mammalian Phenotype (MP) Ontology is a controlled vocabulary used to

describe phenotypes observed in both mouse and rat [95]. This provides a great

resource for model organisims that are relevant to human disease. The ontology and

mutant gene associations are available directly from Mouse Genome Informatics and

the Rat Genome Database [95, 101].

The Human Phenotype Ontology (HPO) project provides a controlled

vocabulary oriented specifically to computational analysis of human disease [84].

Although this project is a more recent addition to the list of available ontologies, it

already has many associations available. What it lacks in associations it makes up

for in structure, especially when compared to OMIM’s flat vocabulary and MeSH’s

shallow disease tree. The ontology definition and gene associations files are available

for download from the HPO website.

1.2.3 Large Empirical Resources

Concentrated efforts on specific problem domains have also been used to

produce large empirical resources. These efforts generate annotations between

biological entities using standardized and comprehensive techniques. This breadth

of application produces data especially useful for studying otherwise uncharacterized

genes.

The Allen Brain Atlas (ABA) is a substantial project that has produced a

mouse brain structure ontology and 3-dimensional expression localization for many

genes using in situ hybridization in the mouse brain [59]. Although the project

was originally focused on the adult mouse brain, it has since expanded to include
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developmental time series of the mouse brain in addition to mapping structure and

microarray gene expression in the Human brain [41]. The structure ontologies and

expression data are all available through a provided API.

The Comparative Toxicogenomics Database (CTD) is a curated knowledgebase

of chemical-gene-disease networks [27]. It provides a resource of associations

connecting environmental toxins and chemicals to both genes and diseases.

Additional bioinformatics efforts such as the MEDIC mapping between MeSH

and OMIM terms also help integrate existing knowledge more efficiently [26, 28].

Downloadable files are available from the website in a variety of formats.

The Interlogous Interaction Database (I2D) is a repository of known,

experimental, and predicted protein-protein interactions [15]. At present it contains

well over half a million interactions for six species, representing a valuable resource

for discovering relationships between genes. Data downloads are freely available

with registration on the web site.

1.3 Bioinformatics Methods for Gene Functional Prioritization

Bioinformatics methods make use of techniques from various computational

fields such as machine learning, semantics and information retrieval, and graph

theory, among others. These techniques are combined with biological observations

and properties to create quantifiable measures amenable to further computational

analysis. Exact answers and theorerical proofs are seldom found but instead findings

are verified by further observation, comparison to known gold standards, and

statistical validation.

1.3.1 Sequence or Structural Similarity

The earliest bioinformatics methods for gene prioritization began with the

observation that genes with highly similar sequence often have highly similar
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function, for example in the case of highly conserved homeobox proteins that are

essential to proper development of plants, animals, and fungi [90]. Structure is

mostly derived from sequence, so one can think of both sequence and structural

similarity methods as deriving from different scoring equations applied to the same

data. While similar sequences often do have similar function, the converse is

not necessarily true, which leads to a high number of false negatives. Sequence

similarity methods tend to be ideal for identifying relevant genes when many disease-

related genes are already known. For poorly studied diseases these methods are

very limited - you cannot perform a prioritization using pathways, symptoms, or

other annotations because there is no way to match them to sequence features for

comparison. Nevertheless, if some disease genes are known, and novel candidate

genes have very little annotation, sequence similarity methods provide one of the

only viable methods for prioritization.

1.3.2 Semantic Similarity

Genes with similar annotations also have similar function. At the detailed

level of annotations like “DNA binding” this idea is tautological, but when many

gene annotations are aggregated at the phenotype / disease level (through existing

disease-gene associations) the utility is easily apparent. Semantic similarity methods

define a quantitative measure of the meaning shared between two concepts in a

structured vocabulary. For example, “bicycle” and “motorcycle” each have specific

meanings, but the term “two-wheeled vehicle” describes the similarity between them.

These comparisons require a quantifiable definition of “meaning” in addition to

the structured vocabulary. This quantification is most often provided by concept

occurence frequencies in a knowledge corpus. These ideas are more thoroughly

described in Chapter 2.
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There are many different semantic similarity measures that can be used to

estimate the similarity of two genes based on their shared functional annotations [24,

38, 50, 52, 61, 78, 82, 92, 102]. The strengths of these various measures have been

shown in multiple evaluations versus other non-semantic techniques (for a sample see

[24, 62, 79]). Unlike sequence similarity methods, semantic similarity methods can

work in the absence of sequence information (or even a reference genome assembly).

However, these methods work best when available data is comprehensive - for

example all genes are annotated and the structured vocabulary is complete.

1.3.3 Interaction Partners

Protein-protein interaction (PPI) networks can provide a wealth of data for

genes that work together in a shared role. Through the principle of guilt-by-

association (GBA), gene protein products that directly or indirectly interact with

known disease gene proteins are assumed to be an important part of disease

progression. PPI networks can be significantly more dense than other data types

available, which enables the prioritization of candidates with very little publication

records or available functional associations. However, methods that rely solely on

protein interactions will fail to discover non-protein coding genes for functional RNA

(such as ribosomal RNA, transfer RNA, or small nuclear RNA). Small nuclear RNA

products can have a significant affect on other gene expression products and disease

progression through splicing effects, transcription factor regulation, and telomere

maintenance.

1.4 Computational Algorithms for Gene Functional Prioritization

There are myriad ways to combine available data sources with bioinformatics

measures and computational algorithms to perform the calculations and

classifications. A small sample of popular or recent methods making use of the
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methods describes below illustrates a small subset of combinations (Table 1.2). A

short and greatly simplified synopsis of each method is detailed presently.

1.4.1 Gene Clustering

Clustering algorithms, one of the simplest computational techniques for gene

functional prioritization, are methods where genes are grouped together by one

or more internal or external metrics (a list of these values is sometimes referred

to as a vector). Internal metrics describe a measure of consistency within the

experimental design tested (e.g. correlation, expression), whereas external metrics

allow the software to incorporate information from other resources (such as known

associations). The concept of “guilt by association” is applied to turn a clustering

result into a gene functional prioritization: for cluster(s) containing known disease

genes one examines the other genes in the cluster for association to the disease.

There are a wide variety of clustering algorithms in common usage. First,

principal component analysis (PCA) is an algorithm for transforming input metrics

into independent (uncorrelated) variables [75]. The PCA is often calculated using a

singular value decomposition (SVD) which is a numerically more precise method of

computation [39]. Genes in a PCA are then grouped by the component that is most

representative. Next, graph-based algorithms use the input metrics to construct an

association graph which is then searched for highly connected components [32, 48,

73]. Finally, hierarchical clustering methods link together similar pairs into a tree

structure which can be used to observe high-level structure and select similarily-sized

components for later analysis [67, 103]. There are many other clustering algorithms

in this space. I undertook a comprehensive comparison of some of these methods

over many different parameters, and showed that the graph-based techniques work

best at recapitulaing biological function [51].
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In many functional genomics experiments, clustering on internal metrics (such

as correlated expression) is often performed before any analysis task. This is done

in order to discard genes with insufficient data, in effect focusing the overall scope

of analysis. It also allows the currently available tools to handle smaller data sets

and return results more quickly. Analysis of very large and complete data sets in

reasonable timeframes, and presenting the results accessibly is a very difficult task.

1.4.2 Functional Enrichment Testing

Functional enrichment tools work from the assumption that biological functions

(i.e. terms in a structured vocabulary) which are associated to known disease

genes will be better represented (enriched) among the top results of an experiment.

Enrichment tools can be classified into three categories: Singular Enrichment

Analysis (SEA), Gene Set Enrichment Analysis (GSEA), and Modular Enrichment

Analysis (MEA).

Both DAVID and EASE are examples of SEA tools [29, 45], in which a list

of genes is searched for statistically significant over-representation of functional

associations using a method like Fisher’s exact test [35]. Gene Set Enrichment

Analysis [96] starts with an initial ranking (typically empirically derived, ex:

expression correlation, fold-change, etc), and then estimates enrichment by finding

a ranking threshold that maximizes statistically significant overlap with comparison

gene sets. The initial ranking can be a hurdle for results in which a quantitiative

value is difficult to obtain (such as SNP calls). Finally, MEA tools, such as

Ontologizer [9], rely upon the entire collection of gene associations to structured

vocabulary terms to better estimate the reliability of the enrichment tests. The

biggest weakness of all of these methods are their reliance upon curated annotations,

for which many genes are sparsely annotated, or are described at an insufficient level

of detail – which can compromise analysis.
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1.4.3 Literature Mining

Unlike many other highly-used methods, literature mining does not require

extensively curated gene-term associations. Instead, it obtains gene-term

associations through natural language processing and decomposition of text-based

descriptions (either publication abstracts or full-text content). This allows literature

mining to be applied to much larger unstructured, text-based datasets, but often

results in much lower precision and/or recall rates compared to the use of curated

gene-term associations [87].

The Phenopedia tool integrates previously annotated publication metadata to

provide a better view of available resources [104]. This allows users to search for a

disease of interest and obtain a list of prioritized genes along with various publication

metrics, as the number of meta-analyses or genome-wide associations studies present.

The Arrowsmith [94] tool was an early approach to prioritization in which words and

phrases extracted from the results of two literature queries were compared to each

other to highlight terms which appear in both searches (i.e. set intersection for words

appearing in each query result). The list of terms and scores can then be restricted

to genes to end up with a ranked list. Unlike techniques based on empirical data

and curated associations, the results of literature mining require careful inspection

to remove false positives and more studied interpretation for relevance to the study

of a disease.

1.4.4 Machine Learning

Machine learning algorithms examine data sets (such as collected gene

assocations to vocabulary terms) in order to develop models that can be used for

classification of similar data. These techniques are analogous to literature mining

(and often applied together), but generalize well to other non-text based data sources

such as curated associations. Machine learning can be broken into two phases: model
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generation or “training”, and classification or “testing.” During the model generation

phase, positive and negative data points are fed into the algorithm. For example:

X, Y, and Z were found in association to disease D. In the classification phase, the

model estimates whether a set of query data fits the model’s knowledge for D.

A simple application of machine learning is that of aggregate disease gene

profiling. Given a data set with known disease genes, the training phase collects the

pathways and processes in which the genes participate. For testing, the pathways

and processes for the query gene are compared to the collected disease-related

pathways and processes. MedSim is one tool which uses this technique [89]. It

creates aggregate functional profiles of disease terms, and then ranks the query

genes by calculating the semantic similarity of their functional annotations to the

aggregate functional profiles.

Bayesian classifiers develop a model using prior probabilities for various disease

gene observations. They then use the probabilistic model to determine the likelihood

of a gene’s association to a disease given based on its observations as well. The

GeneWanderer tool uses a protein-protein interaction network to create a model of

“proximity” from known disease genes to every other gene [56]. It uses a random

graph walk to generate a probabilistic proximity measure to ensure hub genes with

many interaction partners are not over-represented.

More complex algorithms also exist for large-scale or transactional data.

Frequent Itemset Mining is an online algorithm (an algorithm that does not need the

full dataset stored in memory) which can count the number of times a set of items

occurs together in a large collection of transactions. Armed with these frequent sets,

the same data can then be mined to create rules and/or decision trees in which the

observation of frequent itemsets is applied to determine final classification.

A gene prioritization tool that uses decision trees and sequence similarity is

PROSPECTR [1]. This tool builds a decision tree based on sequence-based features
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such as gene length, GC content, percent homology to genes in other species, and

predicted transcriptional event sites. By observing these same features in putative

candidate genes, the algorithm uses the decision tree to classify them based on their

similarity to known functionally-related genes.

1.4.5 Improved Prioritization through Composite Approaches

Prioritization tools can ameliorate many of the weaknesses and assumptions of

the methods described above by combining multiple complementary methods into a

single analysis. A number of prioritization tools have used this composite approach

to great success.

The SUSPECTS tool consolidates evidence from PROSPECTR, shared protein

domains, semantic similarity methods, and coexpression measures [2]. These four

measures are weighted according to the amount of available data for each line of

evidence, so that less annotated genes are not ranked unfairly. This method is able

to rank genes to a disease concept of interest, but input gene lists are based solely

on chromosomal regions. This restriction makes it difficult to analyze genes from

an empirical result (because multiple chromosomes are typically represented).

A method that combines structural similarity and functional similarity measures

is named POCUS [100]. It scores genes using protein domain and functional

annotation enrichment compared to the genomic background distribution. Like

SUSPECTS, it is also dependent on positional candidate lists and is unable to

easily handle genes from multiple chromosomes. Because chromosomal position is

not always known for disease susceptibility, this requirement makes the study of

novel diseases difficult.

ToppGene is a method that takes a list of known disease genes and a set of genes

to prioritize [20]. It can then use literature mining, protein interactions, semantic

similarity methods, and co-annotation scoring to produce an aggregate gene ranking.
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Two drawbacks to this method are that at least one disease gene must be known

ahead of time, and any candidate genes to test must share some annotations with

the disease genes. Results are best when all genes considered are comprehensively

collected and well described by all available data types.

The ENDEAVOUR method combines sequence, structural and functional

similarity methods with regulatory modules, coexpression, binding motifs, shared

pathways, and literature mining into a single ranking [3, 98]. It supports multiple

species and arbitrary gene lists for both training and candidate ranking. Like other

methods, disease genes must be known ahead of time and be well-described in many

databases in order to get the informative results.

A method named Genes2Diseases (G2D) [77] uses literature mining and gene

functional annotations to rank genes in a chromosomal region. It does this by first

mapping from disease terms to chemical terms using literature co-occurance, and

then mapping chemical terms to genes again using literature co-occurance. Finally,

genes are ranked by creating association scores for functional annotations between

genes and diseases. A recent update to the tool also highlights interactions between

proteins in the list. This method allows users to use a disease term instead of

looking up known genes, but like other tools, it can only prioritize genes based on a

chromosomal region and not arbitrary lists.

1.5 The Challenges and Limitations to Current Gene

Prioritization Methods

The lack of interoperability between data sources listed in Section 1.2 reinforces

data sparsity by isolating biological associations from each other. The existing

tools for gene prioritization compound this sparsity with measures and comparisons

inadvertently constrained to genes that have existing comprehensive annotations. In
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addition, these tools are severely limited in result provenance due to their aggregated

functional profiles and scoring metrics.

Data sparsity can be partially mitigated through data integration, homology

inference, and graph walks - each of which has been done independently in other

prioritization tools. I will demonstrate that improved inference can be obtained

by incorporating less reliable data from high-throughput sources with sparse

but accurate manually curated associations. Important contextual information

contained in one part of the biomedical landscape can inform the prioritization

of entities in another part.

As high-throughput methods become more common, data provenance is

increasingly important for clinical validation. The many steps between the study

of basic science such as gene function in the cell, and clinical disease susceptibility

encompass many possible associations. As new work becomes available, tracing

these associations is necessary to maintain accuracry. An important challenge to new

method development is the ability to trace not only the source of the prioritization

values but the individual data that was used in the process. Most machine learning

or trained models are unable to do this effectively because the derived models do

not retain metadata about the content from which they were derived. Graph-based

method are one of the few ways that can do this successfully, due almost entirely to

the precise mapping between the input data and internal representation.

1.6 Expanding Gene Functional Annotation by Context Integration

Most methods are fundamentally limited in that they are strictly bipartite - they

analyze the relations between gene and disease, largely by frequency and weight, and

are unable to incorporate related information. My method can aggregate the context

of relationships between genes and diseases to enable powerful techniques for filling
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in sparse data, while simultaneously using a high degree of supporting evidence.

A well-designed method incorporating hundreds of weaker indirect associations can

provide just as much signal as a more rigid approach applied to a few sparse direct

associations. My context-driven approach empowers the annotation of novel gene

products, helps generate hypotheses for disease pathways, and allows a variety of new

data-driven applications in the biomedical domain. This process turns seemingly

chaotic biological data into actionable knowledge.

The end goal of this research is to provide science with a tool that can use myriad

public data sources to prioritize the most relevant concepts for an experiment. The

research covers three linked but distinct topics: a method for quantifying context,

data integration techniques for diverse data sources, followed by the large-scale query

analysis and visualization of the integrated data using the quantified context method

(Fig. 1.1).

Chapter 2 describes the design, development, and implementation of the

SimGCC method for quantifying context. Contextual associations are difficult to

quantify because they can consist of many different data types and are made with

varying levels of confidence. The development of the new method is necessitated by

the diversity of context sources and the unsupervised nature of the methodology.

Existing techniques are are tailored to specific data sources and must be regularly

updated to align with new knowledge, while SimGCC is knowledge-agnostic. This

measure is suitable for prioritization and forms the foundation of a prioritization

tool which is compared to these existing tools.

The data integration necessary to power the large-scale contextual analysis is

reported in Chapter 3. The difficulties inherent in integrating biomedical data

from a large number of data resources are discussed, and methods for dealing with

these issues appropriately are described. By the end of this chapter, a sufficiently

large dataset with a wealth of contextual information is amassed to enable many
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Figure 1.1. Overview of Research System Described. Chapter 2 describes the
context quantification method and a small test dataset, Chapter 3 describes an
expanded data set which is linked into the prior quantification method, and Chapter
4 describes the system incorporating both method and dataset to provide a query
and visualization tool.

applications that can be augmented with contextual information. Because SimGCC

is knowledge-agnostic, proper data integration methods allow this work to continue

to be applied well into the future.

Finally, Chapter 4 describes the integration of the method and collected data into

a general tool for examining biomedical entities such as genes within the context of a

particular disease. This tool is implemented using a network propagation technique

to ensure indirect relationships are fully utilized to discover relevant gene-gene and

gene-disease associations. The results of these analyses are displayed in a manner

that allows biologists to easily delve deeper into the context of related associations

and possible hypotheses.
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CHAPTER 2

A CONTEXT-DRIVEN GENE PRIORITIZATION METHOD

High-throughput functional genomics experimental techniques have made it

possible to rapidly generate vast amounts of genomic data in disease related inquiry.

Thousands of potential gene-disease associations must be prioritized to identify

viable candidates for experimental validation and translation. Evaluation of the

disease implications of gene lists and gene networks that result from genomic

experimentation can be an inefficient, complex task due to the current separation

of biological data stores, where typical queries must overcome barriers imposed by

loosely coupled data frameworks.

There are numerous approaches to automate the process of gene prioritization

[34, 99]. Several techniques estimate the similarity of a set of candidate genes to

known disease gene associations [3, 18, 20, 44, 77, 97]. They make use of a variety

of data sources including literature, sequence, gene expression, protein domains, or

annotations to curated ontology associations such as the Gene Ontology (GO) or

Human Phenotype (HP) ontology [5, 84]. Many resources are designed with a focus

on a single data source or pivot point, and only provide meaningful results when

the density of biological associations within the data source is high [62, 78, 79].

The density and quality of available data for gene prioritization continues to

improve. However, curated biological associations, such as ontology annotations

from individual hypothesis driven experiments, remain sparse, while the dense

data afforded by functional genomics analysis is noisy and gathered in limited

experimental contexts. Manually curated gene annotations do not typically involve

An abridged version of this chapter appears in the Proceedings of the 9th International
Symposium on Bioinformatics Research and Applications, Charlotte, NC, USA, May 20-22 2013.
pp 161-172.
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data surveys of all genes or processes; rather, depth of knowledge is created

around specific areas of interest or well-supported hypotheses, creating an uneven

landscape highlighting particular genes or gene products and specific aspects of

disease function. There are limited empirical associations among the vast majority

of genes and diseases.

Efforts like GeneWeaver [6] use empirical data to build a contextual framework

around related genes. The framework extracts gene-disease relationships by

aggregating consistent overlaps found in many separate empirical data sets. This

technique allows a weakly supported relationship found in many independent results,

to be examined under a single analysis with higher support. The end result is a

highly precise meta-analysis which would not otherwise be possible. However, even

these emergent relationships cannot accurately provide large-scale prioritization due

to the limited scope of currently available empirical data.

Contextual information about a disease or gene has been shown to improve

gene-disease associations, but typically consists of very limited data such as co-

occurrence or co-expression information [43, 44]. Contextual information can

include associations that are often concurrently studied, such as comorbid diseases,

symptoms or other conditions that have sparse associations with the disease, yet are

highly relevant to its study.

Quantifying known relationships in a data-agnostic and comparable way is

an important step in applying context to the gene prioritization task. A

general and extensible method that can adapt to new data types and sources is

increasingly important due to the pace of of technical advances in molecular (’omics)

characterizations. A method specifically tailored to existing data types would be

difficult to scale, both in terms of effort and computational time. To this end, I

have designed an efficient method for incorporating diverse data context into gene-

disease similarity measurement for use in web-based genomics analysis tools, such
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as GeneWeaver. A parameter free design ensures users can get good results without

tedious trial-and-error parameter adjustments and optimizations. The method is

evaluated in section 2.2.2 on a dataset consisting of associations among Entrez Gene,

PubMed and Medical Subject Headings and compared in section 2.4 to existing gene

similarity quantification metrics and related bioinformatics resources.

2.1 Information Retrieval and Applications to Functional Genomics

The field of Information Retrieval covers a wide variety of methods useful for

quantifying the informative value of a relationship between two concepts such as a

gene and a disease. One issue is to measure how informative an individual concept

is. When looking at a word for example, does it have multiple meanings or just one?

A second issue is that of similarity between two concepts - for example, is a pair

of words often used to describe the same things or totally different things? These

two aspects of information retrieval inform the development of a new method that

can quantify just how much a relationship between two concepts (their similarity)

affects the informative nature of a concept (it’s information content).

2.1.1 Information Content

The Information Content (IC) of a concept is based on the probability of a

concept’s occurrence within a document corpus [82]. Initially this corpus was

defined by prose such as biomedical abstracts, but it can be generalized further

to include any knowledge base (KB) of associations. Information Content within

a KB is further developed through the use of a structured vocabulary, in which

subsuming terms, t, are observed for each occurence in the KB of a more specific

term. Intuitively, concepts that occur infrequently in the KB, such as “Quintuplets”,

provide more informative annotation than those that occur more frequently, such as

more general terms like “Child”. IC is measured using Equation 2.1, which can be
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interpreted as the negative log of the proportion of associations for a term t within

the entire knowledgebase KB.

IC(t) = −log
(
|KB ∩ t|
|KB|

)
(2.1)

Seco defines an alternative Information Content (Eq. 2.2) that uses the

structured vocabulary (SV) to quantify how specific a term (represented by t) is

based upon how many concepts it subsumes (refered to as children due to the tree

structure) [92]. So intuitively, a concept with many meanings and varied usage

is less informative than one that is very specific. A significant drawback to this

definition is that the structured vocabulary must be comprehensive, including the

entire universe of observable concepts, meanings and subsuming concept definitions.

Construction of such a vocabulary is a decidedly onerous task, and as such, Eq. 2.2

is typically disregarded in favor of the probabilistic definition of IC (Eq. 2.1).

ICseco(t) = 1− log(|children(t)|+ 1)

log(|SV |)
(2.2)

One could obtain a simple similarity between two concepts by taking the

difference of the IC values for each concept. While this technique could tell you

that concept A is more informative than concept B, it would only tell you relative

differences in IC. It would be unable to confirm that A and B are actually similar

concepts – that the information provided by A overlaps with that provided by B.

2.1.2 Counting-based Similarity Metrics

Two simple approaches to measuring the overlap of two concepts’ associations are

the Rand Index and the Jaccard Similarity Coefficient [50, 80]. These are based on

simple match counting between two sets of elements A and B, with elements selected

from a universe U . A “positive match” is counted for elements found in both A and
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B (formally, |A ∩B| = PM), a “negative match” is counted for elements not found

in either set (formally, |U \(A∪B)| = NM), and a “mismatch” (MM) is counted for

elements found in one set but not the other (formally, their symmetric difference:

|(A ∪ B) \ (A ∩ B)| = MM). The Rand Index consists of the sum of positive and

negative matches, divided by the number of all possible matches in the dataset

(Eq. 2.3). The Jaccard Coefficient withholds the negative matches from both

numerator and denominator, using only positive matches and mismatches (MM) in

its calculations (Eq. 2.4). The Rand Index is ideal for measuring correspondence of

two sets when knowledge is complete (in other words, that all negative associations

are known definitively). The Jaccard coefficient is better suited to a genome-wide

analysis because there are typically a high number of negatives (many of them

presumably false) within genomic studies and few true negative assertions in the

literature [47]. Thus, any metric that rewards negative matches, including the widely

used hypergeometric test, is upwardly biased and can be misleading.

RandIndex(A,B) =
PM +NM

PM +MM +NM
(2.3)

=
|U \ (A ∩B)|

|U |

Jaccard(A,B) =
PM

PM +MM
(2.4)

=
|A ∩B|
|A ∪B|

An extension of the Jaccard equation accounts for subsuming terms in a

structured vocabulary; this extension is referred to as SimUI [38]. Given two sets

of terms A and B, this method collects the closure set (union of all subsuming

terms, denoted A+ and B+) to include more general descriptors in the comparison

(Eq. 2.5). For example, genes associated to “DNA binding” and “RNA binding”
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would not match using the Jaccard Coefficient or Rand Index, but with SimUI

they would share the “nucleotide binding” subsuming term. This allows a more

accurate depiction of the similarity of terms, but requires curated knowledge to

collect concepts and relationships into the structured vocabularies.

SimUI(A,B) =
|A+ ∩B+|
|A+ ∪B+|

(2.5)

An important observation here is that a biologist can easily determine that

“nucleotide binding” is a more generic term than “RNA binding”, but the counting-

based metrics described will weight them equally when comparisons are made. In

addition, the discrete counts used by these methods means that sparse data sets

with limited matches available will also have limited variation and resolution for use

in comparison. The SimGIC equation results from a straightforward application of

IC to SimUI, summing the IC of each term x (y) in the intersection (union) of sets A

and B (Eq. 2.6), bringing a measure that addresses both the overlap of associations,

the information content of the related entities, and provides a more diverse range of

output useful for comparison [78].

SimGIC(A,B) =

∑
x∈(A+∩B+) IC(x)∑
y∈(A+∪B+) IC(y)

(2.6)

2.1.3 Information-based Similarity Metrics

Although the SimGIC works well in practice, it is naïve in that it only aggregates

the total information content of a comparison instead of attempting to make a

semantic comparison of the concepts themselves. For example, given a corpus

describing animal activities on a farm, thousands of cows could be noted as grazing

very often and occasionally playing, while a single puppy may be mentioned as

playing thousands of times and grazing twice. The IC of “puppy” is much higher

than the IC of “cow”, so the calculation of SimGIC(playing, grazing) would be
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higher than expected due to the inclusion of the puppy associations. Using the

definition of these words instead of the collected associations allows for a more apt

comparison. The realm of semantic similarity has grown around this notion by

exploring the similarity of concepts within a structured vocabulary.

Given two concepts in a structured vocabulary (denoted by lowercase a and b, to

distinguish from sets denoted by a capital letter), their semantic similarity is defined

by the most informative subsuming concept (Eq. 2.7). Resnik first defined this

measure in the WordNet taxonomy [82]. Note that this measure has an unbounded

maximum, which makes comparison to other bounded metrics on 0.0 - 1.0 difficult.

Normalizing Eq. 2.7 over the original concept IC values (Eq. 2.8) has been proposed

by Lin to address this [61].

SimResnik(a, b) = max
s∈(a+∩b+)

IC(s) (2.7)

SimLin(a, b) =
2 ∗ SimResnik(a, b)
IC(a) + IC(b)

(2.8)

Both the Resnik and Lin methods each compare only a pair of individual concepts

at one time, and not two sets of concepts (as Jaccard Similarity, Rand Index,

and SimGIC do). Therefore a method of aggregating pairwise term comparisons

is necessary to provide a standard interface. The three most commonly used

methods are average, maximum, and best-match average. The average is obtained

by calculating the summed similarity of all possible pairs of concepts and dividing

by total number of pairs. When restricted to specific subsets of concepts or problem

domains, it can work adequately and is simple to apply. However, the average

can be heavily biased toward undercharacterized entities with fewer annotations.

For example, given one high-IC term x and two associated genes a and b – if a is

associated to one other term with IC=0.0, and b is associated to ten other terms
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with IC=0.0, the average term ICs for a and b will be very different even though

annotations to a are incomplete. Finally, maximum finds the peak similarity of

all possible pairs of concepts, but does not adequately account for genes involved

in multiple different biological functions. Two genes that share one term (such as

“neurotransmitter receptor activity”) would have a perfect maximum similarity, but

due to the participation of genes in distinct processes, they may not have perfectly

related functions (for example “musculoskeletal movement” versus “regulation of

sleep/wake cycle”).

The Best-Match Average (BMA) combines average and maximum aggregation to

account for undercharacterized annotations and address biological reality [102]. For

each concept (a, b) in the respective sets (A,B), it finds the maximum similarity to

concepts in the alternate set, and then takes the average of all of the maximums (Eq.

2.9). This method can provide weight to multi-function genes without collecting less

informative pairwise comparisons.

SimBMA(A,B) =

∑
a∈A maxb∈B Sim(a, b) +

∑
b∈B maxa∈A Sim(a, b)

|A|+ |B|
(2.9)

There are many other methods for estimating information content and semantic

similarity available for adaptation to functional genomics that may produce even

more precise metrics. One such method, named GrASM, exploits the directed

acyclic graph structure of many ontological definitions to give more detailed semantic

similarity using multiple disjoint subtrees [24]. In effect, this method can compare

concepts with multiple meanings to each other, using the definition most appropriate

to the comparison concept. Methods like this are more accurate at individual term-

by-term comparisions, but at the cost of a significantly higher computational time.

For a large data set, precision of this magnitude is very expensive and has minimal

effect on the estimates when averaged across many associations.
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2.1.4 Augmenting Information Retrieval with

Contextual Graph Associations

This thesis describes a method for unsupervised, maintainable, and performant

context-based analysis that handles multiple diverse data sources. The unsupervised

nature of the method removes the burden of finding and collecting disease genes

and other true positive data necessary to train other machine learning algorithms.

The simple, easily maintained data structure enables new and updated data to

be incorporated as it becomes available instead of waiting for those with more

intimate knowledge to include them. Finally, strong performance is important to

adoption of the method described, as it affects both the amount of lag between

data availability and inclusion in the system, in addition to the responsiveness of

tools that incorporate the technique. Empowering real time applications, including

web-based systems like GeneWeaver.org [6], allow the technique to be easily used

by biologists in a gene prioritization task.

To provide flexibility in the types of entities that can be used to characterize

context, publicly available data formats and structures are decomposed to a graph

framework for analysis. Nodes consisting of entities such as genes, terms, concepts,

publications, etc. are connected by edges representing associations found in the

various data repositories. In formal graph theory, a simple graph represented as

G = V,E where G is the graph under study, V is the set of all vertices in the graph,

and E is the set of all edges connecting two nodes in V in the graph. Because

of the simplicity of this description, nodes (V ) will be referred to directly or as

just “entities” in this text, and edges (E) will be referred to as “associations” or

“relationships”. For brevity, we also use the term “neighbors” to refer to the set of

entities associated to a selected entity.
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In addition, closure inferences are automatically extended into the graph

structure (i.e. an associated to X creates matching associations to all of X’s

subsuming terms) to simplify later processing steps. The effect is that SimGIC no

longer needs two closure searches for every call, significantly reducing computational

complexity at the expense of higher memory usage. Just as SimUI was more

comprehensive than Jaccard Similarity, this step enables comprehensive analysis

to be computationally simplified.

2.1.5 Integrated Data Source for Contextual Analysis

The National Center for Biotechnology Information houses multiple databases

containing gene identifiers (Entrez Gene), publication abstracts (PubMed), and

controlled vocabulary terms (Medical Subject Headings, MeSH) [12, 85, 88].

Both Entrez Genes and MeSH terms are associated to hundreds of thousands of

publications through automated and manual processes. All of these data are freely

accessible through the NCBI FTP site and e-utilities for use in offline analyses.

As a centralized, well-integrated data source from a single provider, these three

NCBI databases represent an ideal collection on which to test a new contextual

algorithm. To keep the data set size manageable for development and evaluation,

this analysis is restricted to data from humans only. Although other species such as

mouse contain more detailed associations, exclusive use of human data provides

a direct link to relevant disease associations without the burden of additional

cross-species integration and interpretation steps, which are challenging unresolved

research problems.

Entrez Gene associations to PubMed identifiers were made using the

gene2pubmed flat file downloaded from the NCBI FTP site on 21 Jan 2012. To

retrieve MeSH associations to PubMed, the PubMed IDs found in the gene2pubmed

file were then fetched through the NCBI e-utilities API. One bias introduced by
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this selection criterea is that all publications must have at least one gene associated

them them (and zero or more MeSH terms). Python scripts to perform these data

downloading and processing steps can be found in Appendix B.

The Entrez Gene-PubMed distribution shows that most genes have few

publication associations, and that most publications have few gene associations (Fig.

2.1). More than 50 genes are associated to over 1000 publications each, including

the popular disease genes TP53, TNF, APOE, EGFR. The top row of associations

represents the over 5000 publications associated to the widely studied cancer gene

TP53. The three rightmost columns of associations represent separate large-scale

cDNA sequencing efforts with over 8000 gene associations each. Conversely, the

structure of MeSH-PubMed associations shows the striking difference that manually

curated data has. The majority of PubMed publications have between 10 and 50

MeSH term associations. Nevertheless, MeSH terms are not uniformly used across

this range, with generic terms such as Humans, Male, Female, and Animals occuring

more than 100x more frequently than most other MeSH terms in this dataset.

The MeSH term Humans has over 400,000 publication associations, as expected

given the selection criteria. However, these highly connected entities are outliers

– the majority of entities have small association networks. These sparse direct

associations are typical of biological data and make comparison of entities difficult.

This distribution describes a dataset well suited to testing the value of augmenting

associations via contextual estimation for comparison.
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Figure 2.1. Overview of NCBI-based Dataset for Contextual Content Extraction.
Each box represents one or more associations between PubMed identifiers on the X
axis and Genes or MeSH Terms on the Y axes. The boxes are positioned based on the
connectedness (degree) of PubMed, Gene, or MeSH terms and colored to represent
the number of overlapping associations. Most genes have few publications, most
publications mention few genes, and most publications have few MeSH assocations
– properties that make comparison difficult.
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2.2 Designing SimGCC - a Quantifiable Context Metric

There are several end goals and issues to consider in the development of a

quantitative measure for contextual relationships. First, contextual information

comes from relationships to entities that are an additional degree of separation away

from both the query entity A and the context entity C. Direct relationships (i.e.

A is directly associated to C) can be augmented by contextual data, but already

represent information at a much better specificity. Second, the level of contextual

information imparted to A depends on both the informative value of its related

entities (B), and the similarity of each B to the context C. An entitiy in B may be

associated to the context, but if it is associated to many other terms (i.e. it has low

IC) then it is uninformative for C. Likewise, a relation that is not very similar to C

should also impart little value even if it is a high-IC concept. These two observations

lead to the conclusion that both high-IC (low sim.) and low-IC (high sim.) values

need to result in lower contextual scores.

In terms of contextual pertinence, concepts found at each extreme of the IC

spectrum provide little additional information. This appears counter-intuitive to

the phrase “high information content" until one observes that high IC terms impart

a highly restricted subset of information in the knowledge base. Thus the best

terms for imparting contextual information are those with moderate IC, as they can

restrict the subset enough to drop spurious results, but do not restrict it enough to

discard all data with meaningful signal.

A second design consideration the selection of similarity method to use for

the context measure. Concepts that are highly relevant to each other will often

co-occur, and thus a high similarity value reinforces contextual relevance. The

similarity measure will be applied to every pair of an ever-expanding data set,

so it needs to be computationally efficient while providing a reasonably accurate
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measure of similarity. Based on these criterea, the SimGIC metric provides the

best tradeoff between accuracy (it includes term closures), resolution (IC versus

counting-based), and runtimes (order O(n) versus O(n2) for BMA, max, min over

Resnik/Lin similarities).

The unbounded nature of IC values makes it difficult to work with these values

directly. By reversing the IC’s log transform (Eq. 2.1), IC is converted back to term

prevalence in the KB (i.e. the probability of observing the entity), which is easier

to work with since it ranges from 0.0 - 1.0. Note that in practice, prevalence and

similarity, as measured by SimGIC, measure negatively correlated values (a high

prevalence is observed when similarity values are low) and converge only in the case

where the context term covers all items in the data set. As a result, if prevalence

is low or similarity is low, then the term in question should not weigh significantly

in the context. The product of these terms, in effect, weights the prevalence by the

similarity to the context term. Because each of these values range from 0.0 - 1.0,

their product occupies the same range. Adding one and then taking the logarithm

maps the resulting values into a positive range with similar characteristics to the

information content.

Constructing a novel, easily comparable Context Content (CC) metric from these

principles leaves a number of ways to combine the IC and SimGIC values (Table

2.1). The culmination of my analysis results in the definition of the novel metric

(Eq. 2.10), which I have named Context Content (CC) to parallel IC.

CC(t, z) = log
(
1.0 + e−IC(t) · SimGIC(nbrs(t), nbrs(z))

)
(2.10)

To apply this method to all possible entities in the data, a further step is required.

The SimGIC method only works when there are shared associations (neighbors,

enumerated by nbrs()) between two concepts. This works well for Entrez Genes and
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Equation and Comments Metric Comp. Fit

CC(t, z) = IC(t) · SimGIC(nbrs(t), nbrs(z)) No No No
Problem: IC unbounded

CC(t, z) = SimGIC(nbrs(t),nbrs(z))
IC(t)

Yes No No

Problem: IC strongly influences result

CC(t, z) = e−IC(t) · SimGIC(nbrs(t), nbrs(z)) Yes Yes No
Problem: High-Sim, Low-IC terms do best

CC(t, z) = |e−IC(t) · SimGIC(nbrs(t), nbrs(z))− 0.5| Yes Yes Yes*
Problem: Assumes Normal/Uniform distribution of
input values - in practice results are not centered on 0.5

CC(t, z) = log(1.0 + e−IC(t) · SimGIC(nbrs(t), nbrs(z))) Yes Yes Yes
Log transform maps result values onto 0.0− 0.693

Table 2.1. Potential Context Content Equations. A number of different equations
were examined for applicability to context measurement. Metric refers to the
output values fitting onto the range 0.0 - 1.0 which will work best when aggregated
with other similarity metrics. Comp. denotes whether comparisons make sense
between t, z with varying IC and SimGIC values. For example, IC=5 and
SimGIC=0.2 would result in the same score as IC=2 and SimGIC=0.5 - IC
has a significantly larger contribution to the final score than SimGIC, creating
an unbalanced metric. Fit describes whether the final value fits the design
considerations described. nbrs(t) denotes a function returning the set of neighbors
of a term t.

MeSH terms because they can use shared PubMed publications, however PubMed

publications do not share neighbors with either Gene or MeSH terms (they are

directly associated). An arithmetic mean of associated CC values would negate

much of the benefit of context by equally weighting low-CC terms and high-CC

terms; instead the method uses a sum of squares average to bias higher CC values

without adding additional algorithmic complexity (Eq. 2.11).
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CC(p, z) =

√∑
n∈nbrs(p)CC(n, z)

2

|nbrs(p)|
(2.11)

The strength of a gene’s relationship to a disease is calculated using the weight

of its neighbors’ associations to the disease. A novel metric, named SimGCC (for

Similarity by Graph Context Content), is constructed by substituting the CC for

the IC in the SimGIC equation and again using a sum of squares approach to allow

high-CC terms to influence the result more (Eq. 2.12). Where a higher-IC term

may have provided a better score previously, if that same term does not have high

relevance to the disease of interest, it will not contribute prominently to the ranking

of a gene.

SimGCC(A,B, z) =

√∑
x∈(A+∩B+)CC(x, z)

2√∑
y∈(A+∪B+)CC(y, z)

2
(2.12)

The end result is that gene rankings are less influenced by associations that have

little relevance to the disease of interest, and likewise are less influenced by very

specific associations with little corroborating evidence. Diverse, shared contextual

evidence of an association will fill in the gaps between these two extremes.

2.2.1 Design and Implementation of a Context-driven Analysis

In order to efficiently implement SimGCC, a number of data pre-processing steps

were performed before the analysis could even begin. First, as previously described,

the various data sets were fetched from their respective repositories and converted

into a simple graph format of nodes and edges (entities and associations). To improve

on flat file storage for data updates and queries, this graph is loaded into a high-

performance datastore which support embedded sets named Redis [81]. When ready

to perform an analysis, the contents of the datastore can be interactively accessed

or dumped to an efficient in-memory storage format. A full schematic of the data
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Figure 2.2. Schematic of Data Flow in the Comparative Analysis of Context and
Similarity Based Prioritization Tools. Red boxes = External data sources, Green
ovals = software packages, White ovals = intermediate data set.

flow and processing can be found in Figure 2.2, and the Redis data schema is fully

described in Appendix A.

To perform a global analysis, this implementation iterates over each disease,

calculates the CC for all nodes in the graph, and then calculates and outputs the

SimGCC (and other methods) scores for every gene to the selected disease (See

Algorithm 1 for an example python implementation). These scores are then sorted

to produce a gene prioritization for the disease.

Significant speedups over a naïve implementation have been achieved with a few

enhancements. First, individual nodes in the dataset graph are mapped onto distinct

integers, which are constructed such that a simple bitmask can be used to determine

the node’s data partition (1=Gene, 2=MeSH, 3=PubMed). By mapping entities to

integers, memory usage is significantly decreased and cache consistency is improved,

in addition to making node identifier comparisons significantly faster. Second, many

of the underlying equations used require the intersection and/or union of two sets of
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neighbors. After the initial loading stage, these neighbor relationships do not change,

so they are stored in sorted order. This allows for a simple merge algorithm to

efficiently find the intersection, union, and mismatches between two sets of neighbors

in O(n) time. Finally, due to the parallel nature of this algorithm and the low output

synchronization necessary, significant real-time speedups were obtained through the

use of shared memory and multi-threading. The graph structure, neighbor lists and

IC values can be easily shared across processor cores because they do not change

during the lifetime of the analysis. The only required thread-local storage allocations

required are O(n) on the total number of nodes in the dataset. This allows an

optimized implementation to use all available processor cores through a parallel for

loop (line 32 of the example implementation).

Full source code for the python data processing scripts and optimized, parallel

C analysis code can be found in Appendix B.

2.2.2 An Evaluation Method for Comparing Gene Prioritization

Results to Known Disease Gene Associations

To evaluate prioritized gene rankings a gold standard, in the form of true positive

associations, is needed. Two public databases are available that contain curated

human disease gene associations (summarized in Figure 2.3). First, the Online

Mendelian Inheritence in Man (OMIM) project, is an extensively curated catalog of

Human Genes and Genetic Disorders [66]. This resource has been used to validate

previous prioritization methods [3, 18, 20], and a mapping from OMIM diseases to

MeSH terms is publicly available and maintained, which facilitates comparison to

the test data [28]. Mapped OMIM data is somewhat sparse, however, covering only

546 MeSH disease terms and 1,244 associations (because the resource is intended as

more of an encyclopedia than a gold standard). The second resource is the Genetic

Association Database (GAD), which has much less descriptive text than the OMIM
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Algorithm 1 An example Python implementation that generates SimGCC scores
in a global analysis across all genes and diseases in the dataset.

1 def SimGIC(A,B): # Equation 2.6
2 numer =0.0
3 denom =0.0
4 common = neighbors(A).intersection(neighbors(B))
5 for X in neighbors(A).union(neighbors(B)):
6 denom+=IC(X)
7 if X in common:
8 numer+=IC(X)
9 return numer / denom

10
11 def get_CC(M,D): # Equation 2.10
12 return math.log( 1.0 + math.exp(-IC(M)) * SimGIC(M,D) )
13
14 def sum_CC(E,D): # Equation 2.11
15 total = 0.0
16 ccsum = 0.0
17 for N in neighbors(E):
18 ccsum+=CCs[n]*CCs[n]
19 total +=1
20 return math.sqrt( ccsum / total )
21
22 def SimGCC(G,D): # Equation 2.12 with B=Z=D
23 numer =0.0
24 denom =0.0
25 common = neighbors(G).intersection(neighbors(D))
26 for X in neighbors(G).union(neighbors(D)):
27 denom+=CCs[X]
28 if X in common:
29 numer+=CCs[X]
30 return math.sqrt(numer) / math.sqrt(denom)
31
32 for D in mesh_mental_disorders:
33 for N in neighbors(D):
34 for M in neighbors(N):
35 if M not in CCs:
36 CCs[M] = get_CC(M,D)
37
38 for E in all_entities:
39 if E not in CCs:
40 CCs[E] = sum_CC(E,D)
41
42 for G in genes:
43 print D, G, SimGCC(G,D)
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Figure 2.3. Summary of OMIM Associations Used for Validation of Results. OMIM
disease identifiers were mapped using the MEDIC correspondence data onto 546
MeSH terms, and the 1,244 gene associations aggregated. 13,357 GAD associations
mapped to 1,489 MeSH terms and their genes aggregated.

collection [10]. It contains a larger collection of disease gene associations covering

1,489 MeSH terms and 13,357 total associations that allow an evaluation of many

more diseases.

Some processing steps were necessary to integrate these data sources into a

standard format. To create the OMIM gold standard dataset, OMIM gene identifiers

were mapped onto Entrez Gene identifiers using the mim2gene file, and OMIM

disease identifiers were mapped to genes using the morbidmap file, both of which

are available through the OMIM FTP site. OMIM disease identifiers were then

aggregated to MeSH terms (using the MEDIC mapping file), and when multiple

OMIM disease identifiers mapped to a single MeSH term, the union of gene

associations was recorded. To create the GAD gold standard dataset, the provided

FTP download was used. Because this file already contained MeSH disease terms

and Entrez Gene IDs, the only filtering done was to remove negative associations.

For each MeSH term in the input dataset, gene scores from the global analysis in

Section 2.2.1 are sorted from highest to lowest. A Receiver Operating Characteristic

(ROC) curve is generated by iterating through the sorted genes and counting the

total number of true positives (when the gene is found in the gold standard set) and
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Algorithm 2 Generation of ROC curve from ranked gene list and a gold standard.

1 def generate_roc(ranked_gene_list , goldstandard_genes):
2 tp=0
3 fp=0
4 fn=len(goldstandard_genes)
5 tn=len(ranked_gene_list)-fn
6
7 moveplotto (0.0 ,0.0)
8 for gene in ranked_gene_list:
9 if gene in goldstandard_genes:

10 tp+=1
11 fn -=1
12 else:
13 fp+=1
14 tn -=1
15
16 sensitivity = 0.0
17 specificity = 0.0
18 if tp+fn != 0:
19 sensitivity = tp / (tp+fn)
20 if tn+fp != 0:
21 specificity = tn / (tn+fp)
22
23 plotlineto (1.0- specificity , sensitivity)

false positives (when the gene is not found in the gold standard set). These counts

are used to plot a curve of the sensitivity (recall) and specificity for the result. The

ideal result would be a line that closely follows the y-axis up to sensitivity = 1.0

and maintains it across specificity values. An implementation of this method is

represented by Algorithm 2.

2.3 Results of Contextual Gene Prioritization

The resulting ROC plots for each method and some selected MeSH terms are

presented in Figure 2.4. A summary showing the average ROC across all available

MeSH Mental Disorders terms in the gold standards in also shown in Figure 2.4.
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Figure 2.4. Summary of Performance. Average ROC curves over all MeSH Mental
Disorders terms in the GAD gold standard, and ROC scores for 5 selected MeSH
terms. SimGCC ROC scores are significantly different (p < 0.05) from other
methods for Autistic Disorder and Alzheimer Disease, and all results from the Rand
Index.

In both instances SimGCC consistently outperforms the other ranking methods

tested. SimGCC’s ROC is significantly different from all Rand Index ROC curves

(p < 0.05), and achived significance against all other methods for both Autistic

Disorder and Alzheimer Disease (p < 0.05) using a bootstrapped partial AUC test

[83]. On a closer level, Table 2.2 lists known disease genes from OMIM and their

rankings produced by the different methods.
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MeSH Disease Entrez ID simgcc simgic jaccard rand

Alcoholism ADH1B 1 1 1 27
Alcoholism ADH1C 2 3 3 23
Alcoholism GABRA2 8 8 8 110
Alcoholism HTR2A 26 28 29 537
Alcoholism TAS2R16 152 174 180 396
Alcoholism avg 37.8 42.8 44.2 218.6
Alzheimer Disease A2M 1 3 3 132
Alzheimer Disease APP 3 1 1 279
Alzheimer Disease PSEN1 10 6 6 1454
Alzheimer Disease ACE 29 72 83 2510
Alzheimer Disease APBB2 32 73 87 218
Alzheimer Disease SORL1 43 80 97 1661
Alzheimer Disease HFE 63 177 231 1324
Alzheimer Disease NOS3 76 235 265 3609
Alzheimer Disease BLMH 98 257 285 328
Alzheimer Disease PLAU 126 307 314 1527
Alzheimer Disease MPO 132 333 338 1446
Alzheimer Disease AD5 351 630 648 1816
Alzheimer Disease AD6 421 659 702 2944
Alzheimer Disease AD9 1286 1987 3540 3524
Alzheimer Disease PAXIP1 1692 2154 2649 2483
Alzheimer Disease avg 290.9 464.9 616.6 1683.7
Autistic Disorder EN2 2 40 48 154
Autistic Disorder CNTNAP2 25 117 121 716
Autistic Disorder MET 50 156 168 1000
Autistic Disorder SHANK2 442 569 716 648
Autistic Disorder avg 129.8 220.5 263.2 629.5
Schizophrenia COMT 1 1 1 418
Schizophrenia DRD3 5 4 4 277
Schizophrenia NRG1 6 5 5 432
Schizophrenia HTR2A 13 14 13 603
Schizophrenia DAO 17 15 14 211
Schizophrenia AKT1 18 50 51 529
Schizophrenia DTNBP1 21 25 24 1595
Schizophrenia DISC1 25 26 25 1365
Schizophrenia DAOA 44 42 44 1696
Schizophrenia MTHFR 58 77 91 1789
Schizophrenia CHI3L1 63 74 76 171
Schizophrenia PRODH 71 73 75 690
Schizophrenia SCZD2 234 332 350 748
Schizophrenia SCZD1 251 333 349 743
Schizophrenia RTN4R 293 331 335 1602
Schizophrenia SCZD6 325 376 382 924
Schizophrenia SYN2 373 515 532 845
Schizophrenia SCZD7 423 481 490 668
Schizophrenia SCZD3 481 631 656 744
Schizophrenia DISC2 622 566 583 1313
Schizophrenia SCZD8 643 712 737 971
Schizophrenia APOL4 708 702 734 949
Schizophrenia APOL2 730 753 795 1307
Schizophrenia SCZD11 964 1496 1748 1713
Schizophrenia SCZD12 1038 1530 1747 1720
Schizophrenia avg 297.1 366.6 394.4 960.9

Table 2.2. Selected OMIM Disease Gene Rankings. OMIM disease genes and ranks
by method for a selected subset of OMIM diseases.
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2.4 Comparison to Existing Tools and Methods

A number of gene prioritization methods exist, enabling SimGCC results to be

compared to other tools readily available online. Three tools were selected because

they have similar aims, are easily found on websites, and have input and output

formats amenable to comparison. Similar to SimGCC, each method aggregates

multiple data sources to build a quantitative measure of gene relevance. Unlike

SimGCC, they each begin the process with a set of user-defined training genes.

SimGCC saves it’s users this added step of collecting training genes.

One of the earliest attempts at gene prioritization from functional associations

started over a decade ago with the Genes2Diseases project [77]. It uses data from

MeSH Chemicals and Diseases, the Gene Ontology, RefSeq, and PubMed and

combines them using an algorithm highly tailored to these data sources. When

originally designed, the available data was very sparse, so a highly tailored algoritm

was the only way to extract relevant information. There are now more than ten

times as many GO associations now available than when G2D was first release.

Another method, named ENDEAVOUR, prioritizes genes using a large concert

of data sources, and combines the many rankings into a single aggregate ranking [3,

98]. Each data source can have a different ranking method, broken into categories

based on the data type represented, and then each data source is also assigned an

individual weight which is used in the final combined rank. Because the data sources

are separated, they can be enabled or disabled at will by the user, which allows more

fine-grained control of the types of data the user wants to use. SimGCC could be

modified to include this features, but would likely not perform as well since it would

restrict the search space for context clues significantly.

ToppGene is the last method in this comparison. It uses functional associations

and protein-protein interactions to rank specific features and build a statistical
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model for prioritization [20]. Like ENDEAVOUR, individual data sources can be

enabled/disabled at will. Of the three methods, it is the most similar to SimGCC

because of its use of feature-level relevance measures. However, like the other

methods it has the drawback that these individual features cannot be compared

to each other in any way.

To compare SimGCC to these online gene prioritization tools, a few well-studied

diseases were selected. Training genes for each method were taken from the OMIM

gold standard because of its higher curation stringency. When technically feasible,

all Human Entrez Gene IDs were ranked by each method. However, ToppGene was

unable to rank the entire set without crashing, so a subset consisting of all the genes

scored above 0.0 by the Jaccard, SimGIC, and SimGCC methods was used as the

input test set. The size of this subset varied by disease tested, but was typically

20-50% of the 31,308 Entrez Gene IDs available.

The results from each method were collected and organized into a standard

format. Unlike SimGCC, the results of these methods do not contain the genes from

the provided training set, so would automatically be at a disadvantage in the prior

ROC analysis. This is especially important since OMIM has collected information

currently embedded in the dataset used for SimGCC. The OMIM genes could be

simply omitted from the SimGCC results, but these genes are not guaranteed to

be the best ranked, and thus omission may upwardly bias the SimGCC results.

To alleviate the issue in an conservatively biased way, the OMIM training genes

are placed onto the beginning of the rankings for each of the three online methods

before determining ROC curves (in short, they get perfect intial correspondence to

OMIM genes). The ROC curves were produced for the top 1000 genes using the

much larger GAD gold standard, which encompasses the OMIM data.

Even with the training gene “handicap”, SimGCC is able to outperform the

other methods on 3 of the 4 selected diseases (Fig. 2.5). The wide margin for
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Figure 2.5. External Method Comparison. Selected OMIM Disease genes were used
to train recent gene prioritization methods, and then compared to SimGCC using
ROC curves from the GAD gold standard. The training genes were then prefixed to
the results from ToppGene, ENDEAVOUR, and Genes2Diseases since these methods
do not include them in rankings.

both Alzheimer Disease and Schizophrenia are indicative of the value of contextual

information in mental disorders with high comorbidity and/or genetic relationships

to similar disorders. The smaller margin visible with Alcoholism illustrates the

complexity inherent in addiction (and behavioral disorders in general) due to the

significant interaction effects of genetic predisposition and environment [57]. Finally,

the range of terms falling under Autism Spectrum Disorder are highly variable,

causing low information content. Due to the relatively early developmental timing

of diagnosis and the lack of disorders within ASD having similar genetic basis,

Autistic Disorder genes remain difficult to prioritize using contextual information.
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2.5 Conclusion

The novel method described, SimGCC, is a powerful technique for extracting

contextual information content from a simple literature-centered data set in the

study of genetics and genomics of human disease. The method was created

by building upon existing metrics for measuring information content within a

knowledge base, using similarity methods to assess the value of related associations,

and synthesizing them into the SimGCC equations. The subsequent evaluation

demonstrates that incorporating more information from contextual associations

results in a meaningful improvement over existing classification methods.

Further expansion of the data set can provide a better prioritization. For

example, genes that are highly associated to high-CC concepts can provide a wealth

of information about the mechanisms of action or possibly underserved research

topics. The incorporation of protein-protein interaction data in particular can

provide a wealth of data and relationships, and is already well-used by tools such

as ENDEAVOUR and ToppGene. Incorporating more data from a large variety of

data sources and other species will empower a tool that can establish hypotheses

and quickly highlight pertinent research based upon the wealth of existing data.

Tools for integrating distributed data, will be increasingly necessary and relevant as

more public resources become available and experiments continue to produce larger

amounts of data.
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CHAPTER 3

CREATION OF AN INTEGRATED MULTI-SPECIES CONTEXT

ASSOCIATION GRAPH

Any contextual content measure is only as good as the data behind it. Increasing

the amount of available data allows for higher resolution, greater range and

distribution of scores, and more opportunities for establishing connectivity between

diverse concepts. Although the contextual method previously described is designed

to pull additional signal from a large collection of data, the quality of this data is of

utmost importance. Poorly integrated data may subvert the intended effect, washing

out the signal in a sea of noise. Furthermore, a poor understanding of the data source

may result in invalid conclusions from the derived contextual associations. Properly

using large amounts of data requires a thorough understanding of the complexities

involved.

Understanding the source of data used in an analysis is essential to proper data

integration. Each repository has unique characteristics, such as the criterea for

calling a gene, combined with less salient definitions that can help determine the

suitability of a data source to one’s project goals. First, the mission and scope of the

project drive decisions about the applicability of concepts found in a repository. For

example, the Gene Ontology project’s mission is to provide an ontology of defined

terms representing gene and gene product properties (biological process, molecular

function, and cellular component), whereas a separate phenotype ontology may

provide a larger vocabulary of phenotypic terms and relevant cross-references.

An early version of this chapter appears in the book Bioinformatics of Behavior, Springer,
2012.
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Ultimately, the integration process has the greatest effect on overall data quality

and provenance. If ill-specificed concepts are matched broadly, then many entities

will have false positives – resulting in weak contextual relationships and very few

informative contextual associations. This affects design principles for the algorithms

used for automatically deriving associations (such as text mining and correlations)

and for selecting the best concept when performing manual curation. Even so,

recording the evidence at any stage is a necessary task to ensure reproducability.

At each stage of this process, there are tradeoffs that affect the speed and storage

requirements of the system, in addition to the precision, recall, and sensitivity of

the resulting matches.

A comprehensive integrated data set is most useful for the study of complex,

difficult-to-study human diseases such as behavioral disorders. It’s impossible,

both ethically and realistically, to create the conditions necessary to measure the

molecular effects of most neurological diseases (because post mortem brain samples

are required). Post-hoc genome-wide association studies in which many confounding

variables cannot be controlled or known are among the best techniques available.

However, there is a wealth of data available in model organisms with homologous

genes such as mouse and rat. Although the human literature may not be as

comprehensive in terms of available contextual information, integrating the large

amounts of data from model organisms expands the scope of resources immensely.

The expansion of genome sequence for model organisms has driven experiments

generating a large collection of functional genomics results with relevance to

behavior. The desire to integrate these experiments has become an increasingly

common operation for behavioral researchers [4, 55] but these efforts have themselves

been largely piecemeal, resulting in individual integrative studies and several

valuable databases but minimal interoperability. Examples within the neuroscience

community alone include individual databases for genes relating to pain, ethanol,
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drugs of abuse, the synapse, and localized brain expression [37, 40, 41, 58, 59,

105]. While these databases fulfill their intended goal of helping researchers discover

important gene-behavior associations, the balkanized data do not enable integrated

analysis across domains of behavioral investigation. Successful attainment of this

goal demands a deeply integrated database.

GeneWeaver.org is an example of a system to broadly integrate functional

genomics data sourced from many individual experiments and databases with data

from several species [6]. GeneWeaver’s integrated repository of data sets and analysis

tools incorporates many of the concepts described herein. It has collected data

from many different input formats into a coherent identifier-agnostic database of

gene associations. These gene associations are then integrated using homology

to enable complex convergent analyses. GeneWeaver has been used in multiple

studies of behavior including alcoholism, drug abuse, and autism [11, 16, 21, 22,

68]. This resource highlights many of the specific issues and solutions to biological

data integration that have been encountered and addressed to bring together an

expanding variety of data. GeneWeaver will be used throughout this chapter as

an illustrated use case of the decisions made to address data integration challenges

in genomics. The remainder of this chapter will focus on genes, their related gene

products and functional annotations. However, many of the topics discussed will also

apply to other biological entities and their related data types such as microRNAs,

epigenetic modification sites, SNPs and other sequence variants.

3.1 Data Types and Sources

Various biological data types are available for integrative analysis of the context

around gene associations. These data types can be roughly classified into two broad

categories: ‘Primary identifiers’ and ‘Structured annotations’. Primary identifiers

51



are necessary to make consistent references to biological entities regardless of genome

build, exact sequence structure, or nomenclature. Structured annotations provide

the ability to describe the complexity of function and other properties of a gene,

without specifically describing the abstractions and relationships between those

properties. Together these two data types allow one to describe a wealth of

information in a consistent and descriptive way that allows future research to build

off of it easily.

A principal consideration when integrating diverse data is the specificity of the

input designator (be it an identifier, symbol, or other reference). Some identifiers

refer directly to a specific sequence, determined through manual sequencing efforts.

Other identifiers refer to a gene product observed in a biochemical pathway, such as

those identified through purification and validation experiments. Sequence-specific

identifiers (such as SNP or microarray probes) will always refer to the same sequence

regardless of its chromosomal location or inferred function. Symbols based initially

on empirical observations can become further refined, for example when discovering

distinct sub-components or isoforms which in turn necessitate sub-classifications.

Conversely, further efforts may indicate an incorrect annotation, leading to removed

symbols or entities repositioned to other chromosomes. These occurrences are

frequent enough that handling them appropriately is crucial to maintaining data

provenance and accuracy, especially when dealing with large-scale data where low

probability occurrences of these issues are difficult to catch by eye.

Each type of data and source is subject to its own update schedule and

history. For some cases such as publication information, metadata are updated

once or twice after they are first added, and never updated again. Storing a daily

snapshot of every publication would therefore not be a prudent use of resources.

For highly-studied genes, information could be updated monthly or even daily as

new information becomes available. Updating these data infrequently can lead to
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Database Institution Example Identifiers Reference

Entrez Gene NCBI 4852, 109648, 24604, 30281 [64]
Ensembl Gene EMBL ENSG00000122585,

ENSMUSG00000029819,
ENSRNOG00000009768,
ENSDARG00000036222

[36]

HGNC HGNC HGNC:7955 [91]
MGI JAX MGI:97374 [13]
RGD RGD RGD:3197 [101]
ZFIN ZNC ZDB-GENE-980526-438 [14]

Table 3.1. Primary Data Sources and Identifiers. Some of the major primary data
sources in biology and example identifiers contained within them.

false relationships among identifiers that have been re-mapped, and the omission

of valuable new information. Understanding these update schedules and their

implications to suitability of integrated data, along with incorporating updates

quickly and efficiently can make the difference between stale data and ballooning

data storage requirements.

3.1.1 Primary Identifiers

Primary identifiers for biological molecules are the most basic and predominant

data available in biology, providing a way to address a specific gene or gene product

within an organism. A selection of primary identifier data sources and example

identifiers can be found in Table 3.1. The most specific types of primary identifiers

are completely opaque (i.e. the identifier provides no usable information to the

reader) and contain no dependencies on current nomenclature. This allows them to

identify the same gene product and its source species uniquely even in the case of

future changes to gene definition or nomenclature standards.

In most cases however, research results are not presented using opaque identifiers

such as these. The lack of standardized metadata renders the biologists’ common
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Official Symbol Species Other Synonyms

NPY Human PYY4
Npy Mouse 0710005A05Rik
Npy Rat NPY02, RATNPY, RATNPY02
Npy Zebrafish Si:dkey-22m8.5
Vti1b Mouse AU015348, GES30, MVti1b,

SNARE, Vti1-rp1
Gosr2 Mouse RP23-272P17.5, 2310032N09Rik,

C76855, Gs27, SNARE,
membrin

Napa Mouse 1500039N14Rik, AW209189,
RA81, SNAPA, SNARE, a-
SNAP, hyh

Napb Mouse RP23-377E1.3, Brp14, E161, I47,
SNARE, b-SNAP

Napg Mouse 2400003O04Rik, SNARE

Table 3.2. Primary Gene Symbols. Gene symbols and synonyms for the gene NPY
and its homologs in various species, or Mouse genes with the synonym SNARE in
NCBI.

practice of visualization and rapid human readable interpretation impossible. For

this reason, results are typically denoted by their informative gene symbols or

names such as those in Table 3.2. Researchers who read published results and

are familiar with the genes listed will be able to easily assimilate the information

without referring to a source database, and this has been a fundamental aspect of

disseminating research in the past. While this is still an important aspect facilitating

peer review, the increasing size and availability of result tables means that machine-

driven integration processes must be used to process them efficiently and incorporate

them into new work.

Machine-driven processes have a difficult time extracting gene symbols and

names from text, often resulting in multiple passes over a document. Tasks which

are intuitively easy to a domain scientist are computationally demanding for a

computer. First, the words ‘And’, ‘the’, and ‘but’ all refer to valid gene symbols or
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synonyms found within the Entrez Gene database. One cannot simply ignore these

words, but neither can every occurence be labeled as a gene. Complex linguistic

analysis, parsing sentence structure and meaning must be performed on the text in

order to decide on the applicability of the word as a gene reference. Second, it is

difficult to determine whether a gene is from Mouse or Rat or Human based on gene

symbol alone since orthologs are similarly or exactly named by official nomenclature

committees. Tagging, annotation, or additional machine learning algorithms can

typically extract this information from a second pass of the text. Handling case

sensitivity is also tricky due to errors from the writer, text extraction, or mining tools

employed. For example, MOBP in Human and Mobp in Mouse are distinguished

by case. Text mining algorithms have come a long way in handling many of these

problems, but still do not compare to human reader in accuracy.

Another issue that must be considered is that of gene synonyms (see Table 3.2).

Synonyms for genes can be very non-specific, referring to multiple genes or entire

complexes, such as the synonym SNARE in mouse referring to 5 different Entrez

Genes. Gene synonyms cannot be simply ignored though, or else the possibility of

integrating older studies that included identifiers such as Brp14 or 1500039N14Rik

would no longer be usable.

GeneWeaver’s approach to primary identifiers is to accept all valid identifiers

and synonyms found in the collected warehouse of major public resources and model

organism databases [7, 70]. Unique internal identifiers are created for every species-

specific reference identifier (ex: MGI, RGD, HGCN IDs) to give the majority of

inputs a primary aggregation point [13, 91, 101]. Mapping tables are used to

associate identifiers from the collected resources to these internal identifiers. Since

many of the large public resources use different gene models and genome assembly

processes, there are always identifiers that do not map directly to the other resources

or species-specific identifiers. New internal identifiers are created for these to ensure
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Name Size Type Notes

Medical Subject Headings [85] 229,698 DAG Biomedical concepts
Gene Ontology [5] 36,259 DAG Gene/gene product descriptors
Human Phenotype [84] 9,996 DAG Human-specific phenotypes
Mammalian Phenotype [95] 9,057 DAG Mouse-specific phenotypes
Adult Mouse Brain [71] 913 DAG Mouse-specific brain structures
KEGG [53] 418 Pathway Predominantly signaling pathways
Reactome [25] 1,218 Pathway Biologically relevant reactions

Table 3.3. Structured Annotation Sources. A sampling of widely used structured
annotation sources. DAG = Directed Acyclic Graph, a graph in which all edges
go the same direction, and there are no cycles. Totals calculated 28 March 2012,
Reactome total is the maximum of all species listed on the website.

they can be referenced. As reference identifiers are added, these database records

are updated accordingly.

3.1.2 Structured Annotations

Structured annotations are an attempt to standardize the complexity of human

knowledge in a way that can be consistently referenced in the literature and

is machine-readable for both databases and analysis tools. These annotations

span topics ranging from sub-cellular localization, to tissue-specific expression, to

pathway and disease associations, to binding domains and interactions. The most

comprehensive and widely used controlled vocabularies are the National Library of

Medicine’s Medical Subject Headings (MeSH), and the Gene Ontology (GO) [5, 85].

Other widely used structured annotations that span a range of topics are listed in

Table 3.3.

All ontologies and annotation efforts have finite scope, such that there is a

different ontology for each class of concepts, e.g. mutant mice, genes, anatomical

regions, diseases. As such, there are a number of different restrictions that are

typically applied to the development of these repositories. A restriction in scope is
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nearly always defined for the project. For example, the Gene Ontology is an effort

to address the need for consistent descriptions of gene products. Restricting scope

allows precision in semantic description of biological entities and their classifications.

However, this also has the effect of separating data that is fundamentally similar

across a vast array of ontologies. For example, the role of a gene in a biological

process results in an annotation to the Gene Ontology, but the effect of gene

mutation in a mouse in a similar process also results in an annotation to the

Mammalian Phenotype Ontology. The result is sparse annotation to a large number

of similar terms. Ontological alignment efforts seek to harmonize the roots of terms

applied to different biological entities. Another issue that results in data sparsity is

the cost of human curation.

The groups producing these structured annotations inherently understand the

need for data interoperability. This understanding has lead to the standardization

of easily machine-readable formats to represent the structured annotations. Thus

even though the data itself can be significantly more complex than primary identifier

relationships, it is very easy to incorporate multiple structured annotation sources

into a single database.

GeneWeaver allows its users to annotate any gene set upload with terms from

a number of descriptive ontologies. These terms allow users on the site to easily

discover and filter gene sets, using the descriptive metadata about the ontology

terms, their synonyms, and their more generic ancestor terms. The collected

associations to sets of genes also creates a wealth of secondary data relationships

highly useful for contextual gene prioritization. Publication text will not often name

all of the thousands of genes with weak correlation to a phenotype of interest, making

GeneWeaver a valuable resource for aggregating these kinds of weaker associations.
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3.1.3 Metadata and Updates

Metadata is a vital component to any integration effort. It allows data to be

grouped appropriately by species, tissue, publication date, subject, experimental

platform, and it allows for the accurate matching of gene identifiers and structured

annotations. GeneWeaver has fields covering these components to ensure that data

collected is both accurate and well-described.

In order to accurately reproduce data and integrate it with current knowledge,

one must be able to ascertain the history of an entity and its relation to current

ground-truth. Thus, an integrated repository should have a way to track the

additions, deletions, splits, joins, and other modifications that might take place

within a collection of data from any of a diverse array of primary data sources.

At the same time, the update schedules for both primary data, structured

annotations, and associations are almost never in sync. One must develop a local

update schedule that suits the currency and storage limits of the host. Daily or

weekly updates may provide the most recent and detailed glimpse of knowledge, but

may also quickly exceed the storage capacity of an installation. Likewise, bi-annual

or longer updates may not meet a researcher’s need for recency and completeness

of knowledge, but will represent a significantly reduced storage cost. The 6-month

update schedule used by GeneWeaver has proved to be adequate to the needs of

ongoing work while still allowing many details to be pre-computed and aggregated

for real-time display.

3.2 Gene Association Resources

Experimentally derived associations of genes and gene products to diseases and

behavior are the primary source of data used in integrative functional genomics

studies. These associations link genes to many other types of biological data
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such as other genes and structured annotations. Gene associations can come from

many sources including: co-expression experiments, publication co-occurrence, co-

association to structured annotations, structural inferences, similarity to known

associations, or myriad other techniques.

Many of the structured annotation sources listed in 3.3 also provide curated

gene associations to the concepts contained within them. These gene associations

are determined by the curation staff’s review of the literature, and as such can be

interpreted as being highly supported and relevant. However, just like with the

annotations themselves, the additions of gene associations to structured annotation

terms are determined by the scope of curation efforts and resources. As these

resources have developed, the depth and breadth of terminology and annotations

has greatly improved. However, the deep sophistication of behavioral processes and

the subtle distinctions among them may be out of reach of human curation.

To fill in the gaps of structured annotation gene associations, many efforts have

been made to infer associations through data mining techniques such as sequence

similarity, semantic similarity of associations, or co-occurrence in publication text

[17, 43, 62, 78, 94]. While these techniques are useful and provide a wealth of valid

associations, manual oversight is typically necessary to remove the false positives

before incorporating them into a resource.

The prevalence of microarrays and gene expression studies has provided a wealth

of gene co-expression associations. The two largest repositories of gene expression

data are the NCBI’s Gene Expression Omnibus and the EBI’s ArrayExpress Archive,

which together contain over 29,000 gene expression experiments [8, 74]. There have

been a number of projects that extract gene co-expression associations from these

repositories [17, 43].

Finally, there are many curated resources for gene associations. The Online

Mendelian Inheritence in Man (OMIM) project has created a catalog of human genes
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and genetic disorders, including over 21,151 entries [66]. The Allen Brain Atlas

has amassed a comprehensive collection of gene expression measures in the adult

mouse brain through the use of in situ hybridization, and post-mortem human brain

samples through microarray gene expression, and together with its brain anatomy

ontologies provides a wealth of gene associations to various brain structures relevant

to neuroscience research [41, 59]. The Comparative Toxicogenomics Database

covers gene associations to chemicals and diseases encompassing over 13 million

toxicogenomic relationships [27]. The Drug Related Gene Database contains gene

associations to various drug related publications curated from supplementary tables

[37]. The ubiquity of resources like these rose steadily with the requirement for data

sharing associated with many funding mechanisms, though this requirement lacks

the interoperability specifications necessary for the integrative analyses which these

plans had in mind [86].

An often-overlooked piece of metadata when aggregating results from third party

gene association sources is the date of collection. It is essential to the provenance

and reproducibility of an experiment that the state of biological knowledge used

for interpretation be known. This helps especially in the case of retractions and

corrections, but is also important due to term and gene obsoletions and renaming.

By querying a warehouse containing data collection timestamps, one can easily

determine the differences between current knowledge and the time of publication.

GeneWeaver regularly pulls data from many of the above sources, allowing

users to quickly and easily discover frequently occurring associations for their own

experimentally derived data. Providing a centralized internal repository for this

data provides a significantly faster experience, saving network access time and

computational resources for the task at hand.

There are two types of gene associations to structured annotations – direct and

indirect. When a curator assigns a gene-term association, they typically only do it
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for the most specific term mentioned. For example, a gene may be associated to

"DNA Binding" but will not necessarily be associated to the parent term "Nucleotide

Binding". When importing associations to structured annotations it is typicall

advantageous to perform a closure to ensure the gene association is propagated

up to all ancestors of the directly associated terms. This is especially necessary to

reduce data sparsity and loss of information when restricting the depth of analysis.

Some ontologies, such as the Gene Ontology, also provide an evidence code for

each association, indicating the source from which the association was derived.

Author statements, direct assays, and physical interactions can be interpreted

as having a high degree of significance, whereas electronic annotation, similarity

inference, or other computational analysis may hold a lower weight depending on

the application. Reading in evidence codes like these and filtering the inputs enables

users to create a repository containing only the most relevant associations to a

particular project.

When quantitative associations are available (such as with gene co-expression

data), one can be left with the immensely difficult problem of thresholding. For

published work, one could simply use the author’s original cutoffs, for example a

p-value < 0.05 as is most commonly used. However, in many cases there may be

suggestive data with slightly higher p-values that could be further supported by

other published work. If storage space allows, one could go even further and take all

possible values and associations, and perform pooled thresholding at a later time.

GeneWeaver cannot accurately or efficiently determine cutoffs for a wide variety

of data sets. However, it provides the means for users to set data thresholds.

GeneWeaver stores the full quantitative values from an upload, but most tools only

require discrete values (yes or no). Discrete associations within GeneWeaver enable

many parametric methods that would be much more complex or computationally

intensive if given continuous values. The gene sets pulled from GO or MP
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associations are given association values to determine if they were directly or

indirectly associated with the term as described above. This allows users to copy

these public sets and create filtered versions of them easily. Non-resource gene sets

from GeneWeaver users can be uploaded with the full set of scores from the source

data, and thresholding can be updated interactively on the site as needed.

3.3 Data Munging

The data munging step, when written text is translated into discrete primary

identifiers, is one of the most critical aspects of data integration. It relies on

two concepts that can affect both the sensitivity and precision of an input data

set’s resulting gene associations. The first is the method by which a table or text

document is converted into a discretized machine-readable format, either through

manual human curation or an automated text mining approach. The second

decision is whether to handle synonyms, renamed gene symbols, and other historical

identifiers. The importance of these decisions cannot be overstated as they determine

the data that drives an entire analysis.

3.3.1 Text Mining vs. Manual Curation

In practice, a large data integration project typically relies on both curation

staff and automated text mining tools. While a staff of salaried curators will require

significant cost and time to accumulate data, the resulting data sets will be of high

quality and relevance to the project’s goals. When working in a clinical human

setting, for example, high quality and relevance to the work are essential to reduce

potentially negative interactions. Conversely, applying text mining tools to a body of

text will result in a much larger body of results with lower overall cost, but the results

of this approach will have a significantly higher error rate and less overall specificity

to the stated project goals. It is important to evaluate acceptable error rates for a
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project in order to find the proper balance between these two considerations. This

decision will influence later aspects of the integration project that can account for

the strengths and weakness of the input data.

GeneWeaver has opted for a tiered curation structure, in which some gene sets

are manually curated by staff, some gene sets are imported automatically from

existing resources, and unrestricted user-uploaded data is allowed to be kept private

or distributed after data quality is verified. This process ensures that many different

types of quality data are available and allows for rapid discovery and contextual

analysis.

3.3.2 Identifier Matching

Once a gene list is disentangled from the source text, the individual gene

identifiers must be matched to their corresponding database entries. If this

discretization is not performed when an experiment is initially imported, then each

time a database is updated, new species are added, or new homology information is

available, the entire collection of experiments must be re-matched to the database

identifiers.

To accurately match identifiers to the correct entities, both the species and

database identifier source should be specified ahead of time. When the input data

is manually entered, these determinations are easy to make. Even with text mining

approaches, this information can be provided ahead of time to ensure the most

accurate matches. Otherwise, the text mining algorithm will have to infer both

attributes by searching for all possible identifiers. This can result in a much slower

and less accurate process, although current techniques in text mining are improving

significantly in this regard.

Once the database search is sufficiently restricted in scope, standard database

query techniques are possible using the extracted information. When one or more
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matches are found, it is helpful to store both the original data line from the input

with the matched identifier’s primary key. This is especially important for quality

control when using inexact matching. Again, using opaque identifiers such as

microarray, Entrez Gene, or Ensembl Gene identifiers will provide an exact match

and very little possible error compared to gene symbols.

Finally, some type of overall match quality metric can be incredibly useful

to cleaning up a new data set. Results from high-throughput experiments can

sometimes erroneously include non-gene features such as assembly scaffolds, gene

insertion targets, and large genomic regions if they are not thoroughly cleaned up,

resulting in many false positive matches. Deciding when to include or remove these

features is an issue left to the implementer and the needs of the project.

3.3.3 Metadata Tracking

Public databases are frequently updated – adding synonyms, renaming genes,

splitting and merging identifiers throw a wrench into the gears of the identifier

munging machinery. How these changes are handled can significantly influence the

final result of a collection of older published genomic data. Although newer data

can be found in some cases, large-scale longitudinal studies with gene associations

are difficult to reproduce and can provide a wealth of data.

Simple renames that have no previous or new naming conflicts are

straightforward to implement. Synonyms are still somewhat straightforward, but

come with the added step of first checking the uniqueness of synonomous identifiers.

If an synonym matches multiple genes then the algorithm will have to decide whether

to take none, all, or a subset of genes that match.

Gene identifier splits and merges are less common, but require the same kinds

of decisions to be made as to what to do with extracted data based on the updated

identifiers. When handling a split gene, one could take all of the new identifiers, none
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of them, or just the identifier at the 3’/5’ end of the region. Similarly for merged

identifiers, one may have to decide on how to handle aggregating any associated

quantitative information for all the merged genes (ex: average or maximum of

values).

As discussed earlier, many of these issues can be avoided through the use of

opaque identifiers that refer only to a specific sequence. The most prevalent example

to illustrate this point is that of a microarray probeset identifier. A single probeset

identifier will always refer to the same nucleotide sequence, although the genes

associated to that sequence may change with updated annotations. By storing the

probeset identifier, one can very easily update the list of gene associations simply by

remapping the already discretized probeset identifier to their new gene identifiers.

In the case of microarray probe identifiers, GeneWeaver stores the individual

probes for later use. The data are initially matched to genes for analysis during

upload, but further updates to these mappings can be applied afterwards to ensure

the most accurate data is represented.

3.4 Integration

Integrating data from diverse sources and species can supply a researcher with

extensive information through the incorporation of methods that may be difficult

or impossible to test in certain species, such as humans. Determining whether

two genes from separate species are ancestrally related is a difficult task, requiring

data and analysis in systematics and phylogenetic statistical models to determine

relatedness [33, 65, 69]. Careful integration of genes with dissimilar sequence,

based on function or association profiles, can provide useful data for species with

little known information, but is prone to error and can result in invalid inferences.
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Traceability is very important in this regard, so it is necessary to keep track of the

source data and all cutoffs and thresholds used throughout the process.

There are a few different ways to apply the concept of integration to a collection

of genes: sequence similarity, functional similarity, and association similarity. These

three methods have increasing data requirements and decreasing precision, in their

respective order.

3.4.1 Sequence Similarity

Sequence similarity is based purely on the nucleic acid or amino acid sequence

of the genes under comparison. It works very well for orthologous genes that have

been passed down and subsequently differentiated. Scoring similarity by amino

acids instead of nucleic acids allows more suitable similarity determination due to

degenerate codon usage or the varying activity distinctions between different pairs

of amino acid substitutions.

Further techniques for clustering genes based on sequence can include more

information gleaned from taxonomy trees, syntenic regions, and various distance

measures. When aggregated over numerous species, cutoffs for each step can be

determined from the resulting distributions to determine most likely homologs.

The Homologene project incorporates many of these techniques and the immense

sequence repository of the NCBI during its own build procedure [88]. It is a

widely used public database for this information and one of the most comprehensive

resources available. The OrthoMCL software uses protein sequence similarity

to cluster genes by classifying them using ortholog/paralog predictions based on

phylogenetic relationships [60]. The OrthoMCL clusters are currently available for

150 genomes [19].
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3.4.2 Functional Similarity

Functional similarity is another method that can be used to integrate genes

based on their shared annotations to molecular functions, biological processes, and

pathways. Where sequence similarity is great at determining ancestrally related

genes, functional similarity can accurately relate dissimilar genes with similar

function. For example, if two species have genes that are paralogs they may have

nearly identical function and activity but be widely divergent in sequence similarity.

Both counting-based and semantic similarity methods have been applied to gene

functional annotations such as GO, KEGG, and Reactome [38, 61, 78, 82, 92]. A

number of functional similarity methods and tools are discussed in Chapter 2 in

more detail.

3.4.3 Association Similarity

Association similarity is a broad term that encompasses both simple gene overlap

metrics and complex tools such as GeneWeaver’s hierarchical similarity graph. The

Jaccard coefficient measures the correspondance of a pair of sets (i.e. gene-disease

associations) by counting their common elements. GeneWeaver provides tools to do

this for many pairs of genomic experimental results using its matrix of venn diagrams

(Figure 3.1 panel A). It can also draw a hierarchical similarity graph containing

all combinations of multi-set overlaps, structured hierarchically such that N-way

overlaps for root nodes, and pairwise overlaps and single sets appear at the bottom

of the display (Figure 3.1 panel B). Because it relies on an integrated database,

these overlaps leverage use of multiple microarray platforms and publication gene

identifiers, and cross species using homology to cluster related genes.
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A

B         

Figure 3.1. A: GeneWeaver venn diagram matrix of multiple species A triangular
matrix of venn diagrams representing the pairwise overlaps of many gene sets
using homologous gene clusters from various species. B: GeneWeaver hierarchical
similarity graph of multiple species A hierarchical arrangement of multi-way overlaps
of many gene sets using homologous gene clusters from various species. Nodes at the
bottom represent the individual input sets, and nodes at the top represent N-way
overlaps of their genes (when such overlaps exist).

3.5 An Integrated Data Repository for Contextual Analysis

To expand the total available contextual associations, the ideas presented herein

are applied to the variety of data types and sources previously described in Section

1.2. To keep the total scope of this project within reasonable computational limits,

a subset of the most highly annotated species in NCBI was used for analysis (Table

3.4). The collected data represent a significantly larger dataset for contextual

analysis (Table 3.5). After closure inferences and the removal of non-unique

associations, the integrated dataset contains over 1.3 million entities and over 130

million associations among them.
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Species NCBI TaxID Entrez Gene Records

Homo sapiens 9606 194,718
Mus musculus 10090 184,836
Rattus norvegicus 10119 79,254
Drosophila melanogaster 7227 26,607
Danio rerio 7955 75,708
Caenorhabditis elegans 6239 48,469
Oryza sativa (Japonica Group) 39947 84,016
Trichomonas vaginalis 412133 60,818
Arabidopsis thaliana 3702 38,524
Chlamydomonas reinhardtii 3055 14,490
Penicillium chrysogenum 500485 13,912
Escherichia coli (W3110) 316407 8,885
Escherichia coli (MG1655) 511145 4,514
Saccharomyces cerevisiae 559292 6,353
Pseudomonas aeruginosa 208964 5,684

Table 3.4. Species Selected for Contextual Data Integration. Highly annotated
species in NCBI Taxonomy were selected for additional data collection. Current
gene entity counts and Taxonomy ID in NCBI are summarized. N.B. Gene records
are significantly higher than established gene estimates due to the inclusion of allelic
variants and non-coding features within the Gene database.

Although there are thousands of sequenced genomes, incorporating data from

every strain of bacteria, etc., would be an arduous task even for a moderately-sized

cross-disciplinary consortium. However, the species selected here span a variety

of phylogenetic sources. Although some species are not closely related to Human

or Animal genetics, they may still provide important contextual information. For

example, publications about Penicillium chrysogenum may discuss mechanisms of

action, chemical properties, or other features that may also be discussed in human

publications. These kinds of features are exactly the kind of relationships the

methods aim to capture in this work.
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Total Associations Data Source Association Name

114,391 ABA huaba2gene
42,931 ABA muaba2gene
107,542 CTD chemical2pubmed
495,745 CTD gene2chemical
52,454 CTD gene2pathway
469,487 CTD gene2pubmed

864 CTD mesh2omim
16,022 GWAS Catalog gene2mesh
17,508 GWAS Catalog gene2pubmed
1,572 GWAS Catalog pubmed2mesh
72,470 HPO gene2hp
89,536 HPO hp2omim
160,476 MGI gene2mp
22,386 MGI gene2pubmed
130,957 MGI mp2pubmed

1,461,003 NCBI gene2go
117,898 NCBI gene2homologene

3,815,794 NCBI gene2pubmed
212,262 NCBI go2pubmed

12,167,216 NCBI pubmed2mesh
208,493 NCBI/GO gene2pubmed
836,482 I2D gene2gene
4,755 OMIM gene2omim
1,220 Uberpheno hp2mp
13,519 REACTOME gene2reactome

20,632,983 direct associations

1,534 ABA huaba
984 ABA muaba

37,934 GO go
9,091 MGI mp
10,064 HPO hp
26,853 NCBI mesh
86,460 entities in closures

Table 3.5. Association Data Sources Used for Large-scale Contextual Analysis.
Association Name represents the two data partitions covered by the data source. For
example ‘huaba2gene’ connects entities from the Human Allen Brain Atlas ontology
to Genes from NCBI. Note that in some cases there are multiple data sources linking
two partitions (especially the case with ‘gene2pubmed’s 5 data sources).
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3.5.1 Additional Data Sources for Contextual Integration

There are now significantly more entities and associations that can be used for

contextual analysis (Figure 3.2). Although a single monolithic data source such

as NCBI can provide a large number of data and associations, the integration of

multiple data sources results in a supplemental layer of associations, increasing

connectivity for many existing entities.

3.5.2 More Associations Provide More Context for Identifying Gene

Function

The increase in connectivity that results from the additional integrated data

means that there are more opportunities for contextual association and comparison.

Disease-related genes for example, have more associations to each other outside

the domain of PubMed associations as in the previous dataset. These additional

associations translate into more possible overlaps and a wider range of information

content. Average gene degree increased by approximately 50% (from 11.24 to 16.94)

between the 3-partition graph from Chapter 2 and the 13-partition graph. Average

PubMed degree increased slightly from 23.65 to 24.25 or about 2.5%. Owing to the

exponential distributions previously observed, these modest increases translate into

much larger values for many entities in the graph. This gives SimGCC a broad base

from which to perform comparisons.

The addition of other association types makes it possible to more accurately

measure the relationship between entities. For example, Genes and MeSH Diseases

previously could only be scored by their co-mentions in PubMed. Now, many

other associations connect genes to PubMed such as chemical interactions, Gene

Ontology terms, and Mammalian Phenotype associations. These data sources

provide more informative associations that more accurately represent the state of
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Figure 3.2. A Map of Data Sources from 15 Species Integrated into the Contextual
Analysis. Each data source is represented by an oval, with a plus sign indicating
a structured vocabulary, and the total number of distinct entities in parentheses.
Lines between nodes represent an association source between the two entity types,
with the number in the middle of the line (and its thickness) representing the total
number of associations, and the numbers at each end of the line the representing
the number of unique entities covered per source.
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domain knowledge, and increase the number of contextual opportunities for existing

entity types.

In addition to these improvements in contextual measure, the underlying graph

structure also provides a deeper view of the latent associations contributing to each

gene’s relevance. The generality of SimGCC applied to this diverse data enables

uncommon yet highly interesting queries. For example: What Gene Ontology terms

are most relevant to the study of Alcoholism? What structures of the human brain

express genes important to Alcoholism? These questions and others will be explored

in further detail in the next chapter.
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CHAPTER 4

GENERALIZED FRAMEWORK FOR INTERROGATING

CONTEXTUAL RELEVANCE IN FUNCTIONAL

GENOMIC ANALYSIS

The gene prioritization problem is only the first step in a functional genomics

validation pipeline. Once putative functional gene associations are ranked,

supporting evidence for the association must be found or generated in order to make

a more compelling case for intensive experimental validation. Finding supporting

evidence for novel functional genomic associations is an incredibly difficult task,

from both a real-world human perspective and a computational perspective. For

poorly studied genes, one may have to try multiple sources and search engines to

discover even a few useful pieces of information. This is exacerbated by data sparsity

and the loosely coupled nature of existing resources. On the other hand, for well-

studied genes with thousands of publications and functional annotations, finding

the associations most relevant to the experiment can be overwhelming.

Research often begins at one of the large public data portals such as NCBI

or Ensembl [36, 64]. These two sites provide one-stop access to many diverse

resources for gene annotations. The NCBI Entrez Gene pages list every easily

indexed annotation in multiple sections on a single page, in which users must scroll

to the appropriate section and scan the listing for terms of interest. Conversely, the

Ensembl Gene pages list only basic information and a transcript viewer by default,

along with customization options where the user can select the annotation source

they are interested in. Mediator platforms, such as the Neuroscience Information

Framework [37], provide access to a wide range of sources centered on a single

problem domain (i.e. neuroscience). In each instance, the user must still manually
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find the most relevant data on the page and read through the full list of terms

to find those most pertinent to the phenotype under study. These one-size-fits-all

data portals can be a huge burden on the user – all users get data in the same

order regardless of their context. The lack of prominence assigned to more-relevant

associations means that users examining hundreds of pages on sites like these will

likely miss important details.

A contextual discovery tool provides a method to address issues of data sparsity

and discoverability. For example, in the study of Alcoholism (as the context), when

one looks up a novel gene, ideally interactions with addiction- or alcohol-related

genes and pathways are highlighted prominently, and publications consisting of large

cDNA libraries are less so. Likewise, ordering sections of the page by their relevance

to the context means that users won’t have to tediously skim hundreds or thousands

of details for every gene.

In addition to a custom-tailored, prioritized data portal, contextual analysis can

provide very useful supporting information. This can basically be described as the

"why" behind a prioritization value. For example, if a contextually relevant Gene

Ontology (GO) term is highly ranked, then directly underneath that a list of its

highly-ranked neighbors can also be displayed (such as co-annotated Alcoholism-

associated genes and publications that mention it). This provides an important

level of provenance, in addition to highlighting other important information that

may not be directly associated to the gene of interest.

Prior chapters discussed the design of a quantifiable context measure based on

shared information, and the creation of an integrated biomedical data warehouse.

This chapter puts these two developments together, necessarily adapting the context

measure to ensure contextual relevance can be measured across all associations in the

graph. Finally, an interactive data portal is constructed that applies these concepts

to highlight the most relevant associations for a user’s field of interest.
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4.1 Generalizing Contextual Analysis for Indirect Associations

The SimGCC measure developed in Chapter 2 has two components that require

adaptation for application to indirect associations. First, the Context Content (CC)

aggregation used in Equation 2.11 means that higher CC is highly correlated with

graph distance to the context term. Entities with shared associations to the context

will have more high-scoring neighbors and thus higher average CC. Entities farther

away (i.e. no shared associations) can only average with their neighbors’ already-

averaged (or zero) CC scores. This uneven distribution of CC scores means that

it is difficult to compare the relative merits of a more-distant entity to a closely-

related entity. Secondly, the SimGCC metric will always return 0.0 for entities

that do not share a common association with the context. In the disease gene

prioritization problem this was not an issue because genes and diseases (MeSH

terms) are immediately related through PubMed annotations.

4.1.1 Adapting a Context Metric for Indirectly Related

Biomedical Concepts

The SimGCC metric described in Equation 2.12 is not immediately useful

for the study of undercharacterized genes (or other entities) because it requires

a neighborhood overlap with the comparison target term (i.e. disease). If the

gene and disease have no common associations, then the SimGCC will always be

0.0, regardless of the contextual relevance of its neighboring associations. This

issue is compounded further when there are no data sources providing relationships

between the two entities (because there can never be an overlap). A contextual

comparison metric suitable for undercharacterized entities and more general queries

must overcome these obstacles.
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A novel metric called the Joint Context Content or JCC, divides the sum

of the top N CC scores of the query entity’s associations by the top N CC

scores of the context entity’s associations, where N is the size of the smaller of

the two neighbor sets (Algorithm 3). This last restriction on N accounts for the

disparity in association sizes that often occurs when comparing diseases with many

associations to genes with very few associations or lightly annotated features from

niche databases.

Like SimGCC, highly relevant shared associations will weight the metric higher,

because the higher CCs will occur in the top N results. Unlike SimGCC, irrelevant

assocations will only affect the metric if very few high-CC associations are found.

With SimGCC a large number of these low-CC associations (such as for a well-

studied gene in many problem domains) increase the denominator and reduce the

overall score. The JCC metric is thus better at comparing the specifically relevant

functions without degrading scores for well-studied genes active in many processes.

However, there is an important caveat for the existing data set: because closure

inferrences are done during data loading, root terms of structured vocabularies will

by default match all of the best hits for that data partition (and thus receive the

best JCC possible). To address this a simple self-referential scaling factor is applied

wherein the computed JCC is divided by the term’s IC value (which will be lower

for generic, highly connected vocabulary term roots) and subtracted from 1.0. Thus

high-IC terms will be scaled by a factor very close to 1.0, and low-IC terms will be

scaled by a smaller value (clamped to 0.0 when necessary).

This implementation trades increased computational time for better generality

- for both entities, the method must now iterate through all neighbors and sort

their CC scores. But because no intersection of neighboring associations is required,

determining the contextual relevance score (the JCC) for any entity in the graph is

possible – regardless of its direct connectivity to the contextual entity.
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Algorithm 3 The JCC metric implemented in unoptimized idiomatic Python.

1 def jcc(X, Z):
2 # collect the CCs of all neighbors
3 X_nbr_ccs = [CC(n_i , Z) for n_i in nbrs(X)]
4 Z_nbr_ccs = [CC(n_j , Z) for n_j in nbrs(Z)]
5
6 # sort collected neighbor CCs
7 X_nbr_ccs.sort(reverse=True)
8 Z_nbr_ccs.sort(reverse=True)
9

10 # sum the top N CCs from each and divide them
11 N = min(len(X_nbr_ccs), len(Z_nbr_ccs))
12 score = sum(X_nbr_ccs [:N]) / sum(Z_nbr_ccs [:N])
13
14 # adjust for low -IC ontology terms
15 score *= 1.0 - (score/ic(x))
16
17 return score

4.1.2 Propagation of Contextual Content in an Integrated

Biomedical Dataset

In order to address the discrepancy between CC scores in the sparse association

graph, a propagation network algorithm is applied to the distribution of CC values

in the graph. In this method, the CC values are determined for every entity in the

graph on every iteration, and averaged with previous values until a minimum delta

or time-based cutoff is reached.

The concept of a propagation algorithm on an association graph is not new.

Google’s PageRank algorithm is one well-known example of a similar concept

[72]. The PageRank algorithm has been previously applied separately to citation

networks, protein-protein interactions, and pathway analysis [31, 49, 63]. However,

it has not yet been applied to a general integrated biomedical association graph. The

PageRank model is, however, designed to optimize an opposite metric on a directed

graph, by highly ranking nodes with many incoming edges using a probabilistic web

visitor model. In contrast, for contextual ranking, nodes with moderate linkage are
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preferred over those with high linkage. A probabilistic model would also likely give

poor results given the sparsity of available data. Thus the method focuses on a

straightforward undirected association model.

The propagation network is initialized to CC = 0.0 for all nodes and CC = 1.0

for the context term(s). Then, Equation 2.10 is applied to all neighbors of the

context (here denoted CC0 for the base iteration, Eq. 4.1). From this base case,

the value of CCn+1 is determined using Equations 4.2 and 4.3. First, CCNn+1

calculates the average CCn for all neighbors just as with Equation 2.11. Then,

CCn+1 is calculated by averaging the prior value CCn (if it is non-zero) with CCNn+1

normalized over t’s partition. In the initial iterations, CCn may be zero for many

nodes since the signal has not had a chance to travel far. The non-zero check ensures

that when signal does finally reach a node, the method comes to equilibrium quickly,

while the average of the prior and current scores is taken to ensure that successive

iterations stabilize reliably.

CC0(t, z) = log
(
1.0 + e−IC(t) · SimGIC(nbrs(t), nbrs(z))

)
(4.1)

CCNn+1(t, z) =

√∑
x∈nbrs(t)CCn(x, z)2

|nbrs(t)|
(4.2)

CCn+1(t, z) =


CCn(t, z) + CCNn+1(t, z)

2
, if CCn(t, z) > 0.0

CCNn+1(t, z), otherwise
(4.3)

Stopping criteria for the propagation are determined by either a maximum

number of iterations, or a minimum number of successive iterations below a defined

delta threshold. The delta threshold is determined by taking the difference in sums
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Figure 4.1. Asymptotic Growth of Total Graph Distance, and Delta Values Between
Iterations of the Context Propagation Algorithm on Selected Diseases The sum of all
CC scores in the graph is computed at each iteration, and the delta is computed as
the absolute value of the difference between successive iterations. One can see in the
graph the initial values, expansion of context across the graph quickly followed by
saturation and equilibrium. Values shown are for MeSH Alcoholism, Schizophrenia,
Autistic Disorder, and Breast Neoplasms.

of CCn and CCn+1 for all nodes (Figure 4.1). For the datasets tested, the stopping

criteria select is a minimum of 3 successive iterations with a delta below 1% of

total distance, which typically converged after at least 10 iterations. The maximum

number of iterations allowed is 20.

Taken together, the propagation network and JCC metric provide a slightly

different view of the data than the SimGCCmetric. This arises due to the underlying

design objectives behind the two equations. SimGCC sought to promote genes
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already associated to a context by giving more weight to how informative the existing

associations are, as opposed to how many there are. In constrast, JCC seeks to give

equal consideration to under-characterized genes and other features that do not

necessarily have existing associations to a context, in addition to weighting multi-

function genes more appropriately.

Figure 4.2 compares SimGCC and JCC scores for Alcoholism using a collection

of 28 genes related to various types of addiction [57]. Note that SimGCC ranks

the Alcohol Dehydrogenases ALDH2 and ADH1B at the top, whereas JCC reports

DRD2 and COMT highest. This result is easily explained by observing that

ALDH2 and ADH1B are obvious correlates of Alcoholism observed in many studies,

but that their annotations to metabolic pathways have a much more general (i.e.

low-CC) relationship to Alcoholism. Conversely, candidates such as DRD2 and

COMT are central to neurotransmitter function and brain pathways for reward and

motivation, which have higher relevance (i.e. high-CC) to Alcoholism. Intuitively,

the broad topic of neuroscience is more relevant to Alcoholism than the broad topic

of metabolism.
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Figure 4.2. A Comparison of JCC and SimGCC Scores for Mesh Alcoholism on
a Selection of Human Genes JCC ranks DRD2 and COMT as more relevant to
Alcoholism than ALDH2 and ADH1B which are ranked highest by SimGCC. The
difference between scores is due to the context surrounding neurotransmitters DRD2
and COMT (i.e. neuroscience) which has a stronger relationship to Alcoholism
than the more general context of metabolic genes ALDH2 and ALDH1B. Both JCC
and SimGCC were computed from the same input data set. SimGCC used the
aggregation described in Equation 2.11 while JCC uses the propagation algorithm.
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4.2 High-performance Interactive Implementation

The propagation algorithm is computationally intensive but easily optimized for

modern hardware. First, the process is highly amenable to a shared-memory multi-

threaded computation because the results of the current iteration only rely upon

the previous iteration. As implemented in C using OpenMP threads, propagation

on the Chapter 3 dataset takes less than 10 seconds each on an Intel Core i7 2.7Ghz

using 8 threads for all MeSH terms tested.

A second optimization was made by first observing that for typical analyses

performed, the context remains constant and multiple queries will be performed. By

pre-caching a sorted list of the CCs for neighbors of Z, the number of CC lookups and

sorting function calls necessary for each invocation of JCC is significantly reduced.

Thus even with the remaining sort, there is no appreciable runtime difference

between JCC and SimGCC, allowing it to be run in real time.

To enable interactive exploration of the context network, a command-line

interactive console was created in front of these analysis algorithms. Using a simple

command language, a user can easily load or begin a new contextual analysis, using

all available cores on their hardware of choice. They can modify query terms and

explore relationships in real-time. Results can also be filtered and written to plain

text tab-delimited files for later use in analyses or statistical software. An example

session showing the prioritization of 28 addiction genes in an Alcoholism context is

shown in Transcript 1.

The code for the propagation algorithm, caching JCC implementation (and a

non-caching version), the interactive exploratory console, and all supporting data

manipulation commands can be found in Appendix B.
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Transcript 1 A Sample session for the contextual saturation tool.

1 Starting with 8 threads available ...
2
3 >>context mesh Alcoholism
4 dist =60.9442 (delta =1)
5 dist =74.3065 (delta =0.179827)
6 dist =442.53 (delta =0.832087)
7 dist =830.804 (delta =0.467347)
8 ... output omitted ...
9 dist =1496.76 (delta =0.00562213)

10
11 Context Saturated in 16 passes.
12 Total context saturation time: 10 seconds
13 Context Network Ready for ’Alcoholism ’.
14
15 Alcoholism >>examine gene 125,126,217,1129,1268,1312,1565,1621,1813,1814,
16 1815,2166,2554,2559,3351,3356,4128,4852,4986,4988,5173,6999,7054,7166,56144,
17 79152,121278,255239
18 28 entities from ’gene’ set to examine
19
20 Alcoholism >>jcc
21 mesh/Alcoholism gene /1813 0.918677
22 mesh/Alcoholism gene /1312 0.908328
23 mesh/Alcoholism gene /1565 0.857806
24 mesh/Alcoholism gene /125 0.821948
25 mesh/Alcoholism gene /3356 0.812022
26 mesh/Alcoholism gene /217 0.778909
27 mesh/Alcoholism gene /126 0.772057
28 mesh/Alcoholism gene /1815 0.754892
29 mesh/Alcoholism gene /4128 0.74578
30 mesh/Alcoholism gene /4988 0.736014
31 mesh/Alcoholism gene /4986 0.718317
32 mesh/Alcoholism gene /7054 0.707765
33 mesh/Alcoholism gene /1814 0.706379
34 mesh/Alcoholism gene /1268 0.698269
35 mesh/Alcoholism gene /7166 0.696833
36 mesh/Alcoholism gene /121278 0.694016
37 mesh/Alcoholism gene /2554 0.686264
38 mesh/Alcoholism gene /255239 0.685562
39 mesh/Alcoholism gene /4852 0.67751
40 mesh/Alcoholism gene /3351 0.673136
41 mesh/Alcoholism gene /1129 0.650801
42 mesh/Alcoholism gene /1621 0.646834
43 mesh/Alcoholism gene /5173 0.638997
44 mesh/Alcoholism gene /2166 0.621603
45 mesh/Alcoholism gene /2559 0.574668
46 mesh/Alcoholism gene /6999 0.526736
47 mesh/Alcoholism gene /79152 0.497194
48 mesh/Alcoholism gene /56144 0.473428
49 (28 rows output)
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4.3 Presenting Contextual Association Results

While simple ranked lists of genes are adequate for gene prioritization, presenting

an overview of the associations for even a small collection of genes is a challenge. A

visual representation is very useful to quickly decide which features warrant further

examination.

Displaying large data succinctly is difficult. Not only must the software

producing the visualization handle large amounts of data, but it must be organized

effectively for display based on multiple feature groups, and scaled appropriately

for each group based on the values observed. A visualization tool was developed

for the high-level display of results. The tool reads in a list of entity-context JCC

scores to create a summary matrix of heatmaps representing the distribution of JCC

scores. The scores are aggregated across each of the data partitions present, and

summarized succinctly into a single image.

4.3.1 Examining Addiction-related Genes in the

Context of Alcoholism

For a concrete example, examine the same 28 addiction-related genes in the

context of the Alcoholism MeSH term (Figure 4.3). Each column represents the

gene at the top’s associations to entities in each of the other data partitions. Each

cell contains a 10-part heatmap depicting the distribution of JCC scores for the

association entities. If less than 10 associations are known, then each part represents

a single entity. When more than 10 associations exist per gene, the heatmap depicts

a sample of 10 evenly spaced entities from the sorted list, and a green line denotes

the relative number of associations depicted in the heatmap (ex: line at the top:

more than 500, line at the bottom: less than 20).
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The JCC scores are plotted in shades of blue, such that dark colors represent

low JCC, and lighter colors represent high JCC. The scale factor is determined by

the maximum JCC for each data partition. For example, FAAH, TDO2, and FA2H

each show very low-CC Gene Ontology associations, implying that their functional

annotations are not typically associated to Alcoholism. Conversely, DRD2 and

CNR1 are well represented in the Allen Brain Atlas regional brain expression data,

specifically in regions that have high CC scores for Alcoholism. Many other genes

are not even represented in the ABA data. A gene such as GABRA6, with only 3

associations available, is not annotated to brain regions that are highly relevant to

Alcoholism.

The data partitions depicted on the left side of the map represent the same links

as those found in Table 3.5. For example, the GO row represents associations from

‘gene2go’ (because gene is the source query partition across the top), and the ‘gene’

row represents protein-protein interactions from ‘gene2gene’.

4.3.2 Ranking Human Brain Regions Most Relevant to the

Study of Alcoholism

To illustrate the newly expanded general query features, one can now ask:

What regions of the human brain particularly express genes that are relevant

to Alcoholism? As evidenced in Figure 3.2, the Human ABA ontology terms

(denoted by ‘Huaba’) are only associated to genes, which are sparsely annotated to

MeSH directly (by GWAS annotations), through 2nd-degree OMIM and PubMed

associations, and finally through 3rd-degree GO, MP, and Chemical associations

(which in turn have associations to PubMed). The majority of contextual signal

required to perform this analysis has to be pushed through many relationships and

entities to arrive at the Human ABA data partition (‘Huaba’). Because there is

only one association type (genes) to the Human ABA entities, it is useful to display
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Figure 4.3. A Contextual Heatmap of Associations for 28 Addiction-related Human
Genes. Each column represents the known associations for each gene, and each row
represents the different data sources. The heatmap contained in each cell of the
map depicts the distribution of all of the gene’s associations to entities in that data
source. The green line represents the number of associations drawn in the heatmap
when more than 10 associations are available.
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Figure 4.4. Contextual Heatmap of Alcoholism JCC Scores for the Top 25 out
of 1,523 Human ABA Brain Structure Ontology Terms. Each column represents
the known associations for each brain structure, and each row represents the
different data sources. The heatmap contained in each cell of the map depicts
the distribution of all of the brain structure’s direct (blue) and secondary (green)
associations to entities in that data source. The line over the heatmap (in green or
blue, respectively) represents the number of associations drawn when more than 10
associations are available.
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the secondary data from which it was derived (Figure 4.4). In this figure millions

of secondary relationships are shown in green, using the same scaling factors as the

directly associated blue JCC scores.

The top-ranked brain structures in this analysis represent regions that are well

known and often associated with addiction and reward-seeking behaviors. The

Substantia Nigra in particular plays an important role in reward and addiction

pathways, and is well-studied in the context of Alcoholism [23, 30, 54, 76, 93].

4.4 Detailed Reports of Contextually Relevant Gene Associations

Although the visual representation is useful for a general overview of a query

result, a detailed report for an individual gene is more useful for exploring and

discovering deeper relationships in the data. To generate these reports, all of

the associations for a gene of interest are analyzed by both the SimGCC (when

possible) and the JCC scores compared to the user’s context of interest. This gives

a straightforward prioritization of all the features as they relate to the user’s own

research. These scores are again grouped by data partition to organize display.

The entire goal of this system is to reduce the cognitive burden on the user

which exists with current resources such as the NCBI or Ensembl Gene portals.

The primary task encompasses reading many pages of associations and determining

the relevance of each entity to the context. To quantify the extent of this difference,

examine the alternative task: a user must click on each association to find (or

exhaust) the relationships leading back to the context. How deep must a user go to

find a link to the context? How many entities will she read over in the process? Even

though biological data is sparse, this number increases exponentially very quickly.

Even for a computer performing the same task, significant computational time can

be required if meager limits to depth or breadth of the search are in place.
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For display purposes, the network of associations around a gene is enumerated

by walking up to 3 associations away, and a maximum of twenty-five 3rd-degree

associations. Additionally, the search is short-circuited when the context entity is

found (thus a direct annotation never reaches the 3rd degree search). Even for a

relatively lightly annotated gene like ADH1C, 7.5 million total associations need

to be checked: 372 1st degree associations, 2,447,082 2nd degree associations, and

5,115,621 third degree associations were examined to produce output as described.

In examining this search space, a significant number of associations can be hidden

due to very low relevance scores. In the end, only 39 of the 372 direct associations

are scored highly enough to warrant display to the user.

These results are presented in an interactive HTML document, such that users

can expand associations for more detail (such as publication abstract, ontology

definitions, or gene name), and easily find the associated phenotypes, functional

annotations, and relevant publications (Figure 4.5). Table listings are sorted

by relevance, and annotated by network distance to the context term to clearly

represent closely linked associations (such as a publication about Alcoholism in the

context of Alcoholism) and associations that are indirectly linked (such as a pathway

annotation that contains many Alcoholism-associated genes). Throughout the page,

all names and identifiers are linked to the source database for further inspection.

The difference between computationally examined and displayed associations

is summarized in Table 4.1. The size of the examined search space depicts the

number of entities a user must read over, when using current data portals, in order

to trace each relationship from the gene to the context of study. Each count can

be interpreted as a unit of “work” a user would spend performing the same task -

if a user spent only half a second reading the name of every unique entity with a

relationship to this single gene, it would require 40 hours a week for 3 months to

cover them all.
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Figure 4.5. A Portion of a Detailed Alcoholism-context Report for ADH1C Collected
biomedical associations to ADH1C are ranked and aggregated for relevance to the
MeSH term ‘Alcoholism’, and further supporting associations displayed for the top
hits in each category. All entity identifiers link to their respective data sources for
further information.
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Examined (Unique) Displayed (pct of Unique)
Gene Direct 2D 3D Shown 2D 3D

ADH1B 372 2,447,082 5,115,621 39 282 165
(310,669) (136,615) 10.48% 0.09% 0.12%

ADH1C 288 2,528,809 4,376,317 40 253 167
(352,354) (165,164) 13.89% 0.07% 0.10%

GABRA2 291 3,352,314 3,967,917 57 530 502
(307,495) (194,523) 19.59% 0.17% 0.26%

HTR2A 1,287 5,091,064 31,857,070 61 386 350
(316,543) (523,661) 4.74% 0.12% 0.07%

TAS2R16 96 3,013,592 1,910,550 10 114 112
(299,065) (149,122) 10.42% 0.04% 0.08%

RCBTB1 136 3,887,581 6,098,133 60 1,386 1,363
(281,186) (342,667) 44.12% 0.49% 0.40%

Table 4.1. Total Associations Examined Versus Displayed when Producing a
Context-centered Gene Association Report. First-degree associations (labeled
Direct/Shown) for selected OMIM Alcoholism disease genes were examined up to
2- and 3-degrees away (labeled 2D, 3D, respectively) until the context MeSH term
‘Alcoholism’ was encountered. For each data partition, the top 25 associations
within the minimum distance grouping were collected for display purposes.

Because these relationships are annotated by distance, have related information

pertinent to the context highlighted, and are contained within a single page, they

represent a much lower burden on the user. First, the most obvious and informative

associations are listed first, meaning that the user does not have to examine the

full page to get a general synopsis of suitability. Second, the usability of the

site is improved - the user does not lose focus on the current task due to mental

context switching (i.e. there is a cognitive disconnect between using a web browser

versus reading scientific prose). Finally, the inline display and linkage of supporting

information means that the user does not need to navigate to new pages and browse

further to infer the reasoning behind a ranking.
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4.5 Future Applications for Contextual Analyses

The methods described open up a wide range of applications for the improvement

of research data portals in addition to new computational analyses. These techniques

can be used to improve the accessibility, timeliness, and applicability of relevant data

to domain scientists. They can be used to prioritize and classify new publications

for data curation and ontology annotation teams. New computational analyses can

disentangle the complex interactions underlying human disease processes. Without

a comprehensive approach to biological data management none of these are possible.

4.5.1 Context Divergence Propagation

One type of future direction for this work is that of a context divergence

propagation. In this task the question is: How does a saturated context network

respond when contextual associations are removed? This can provide a stability

measure for an association network in the absence of direct context annotation.

Do all of the network effects disappear when the context is removed, or do certain

components remain stable due to other associations?

One potential implementation of this idea simply propagates the network as

described, but removes the context node and all of its associations, then applies the

propagation method again (without resetting CC values). A more involved similar

approach would involve a hold-one-out analysis wherein every individual association

to the context is removed to determine the stability and dependence of assocations.

For example: is DRD2 still highly ranked for Alcoholism without its interactions

with the SLCA family of genes?

Further extension of this concept could lead to a distribution suitable for JCC

p-value determination. These p-values could be used to describe the confidence
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of a particular score given the sparse data available, in addition to automatically

deciding on threshold limits for display purposes.

4.5.2 Differential Context Analysis

In a differential context analysis, one would examine the difference between genes

ranked highly for a context, and those ranked lowly (but with non-zero JCC to

ensure some applicability). Are genes at the bottom of the list highly association

to certain processes that are not observed at the top of the list, or vice versa?

What associations are "opposite" to contextually relevant associations? Can these

opposing associations be used to further separate relevant and less relevant genes?

For example: genes particularly expressed in the liver may be considered

‘opposite’ (both in terms of localization and of function) to neurotransmitters.

Phosphatases and Kinases may be highly similar in contextual analysis but are

distinctly opposite in function. By discovering and penalizing these types of

relationships, genes that are ubiquitously expressed throughout the body or in

diametrically opposed pathways can be distinguished, improving prioritization and

results.

4.5.3 Context Contrast Analysis

Applying the differential analysis on a global scale, a contrast analysis asks

what contexts are orthogonal to each other in regard to a list of genes (or other

features). Are there contexts such as Stress Response and Anxiety which cannot

be easily separated from Alcoholism? Can Anxiety-related genes be separated from

Addiction processes?

There are at least two different statistical means for answering this question.

First, a repeated measures ANOVA applied to a set of genes under differing contexts

could be able to tell whether or not the contexts result in the same context content
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measures. Additionally, a Wilcoxon signed-rank test could be used to determine if

the ordering of genes in multiple contexts are statistically different from one another

even in the face of largely different absolute JCC score differences.

This type of analysis allows one to evaluate if certain genes at the intersection

of disease-related features are viable candidates for therapeutic intervention.

Additionally, it can provide a way to learn about potential side effects for the same

interventions.

4.6 Conclusion

This chapter described a second context content metric, JCC, and a propagation

algorithm, both tailored specifically to sparse, large-scale biomedical association

data. Unlike SimGCC, which required close relationships to a term of interest,

JCC can be applied to any connected network of associations. The JCC metric

more accurately depicts the relevance of under-characterized genes and biomedical

concepts by using the most informative and relevant associations. The propagation

algorithm described allows contextual signal to inform new topical analyses and

compare biomedical concepts through their indirect associations. Together these

two techniques provide the foundation of a data platform that can provide a cohesive

and coherent view of the information contained within the millions of entities and

associations currently in disparate resources, along with their relationship to a user’s

domain of study.

The generality of this combination is incredibly important to the study of poorly

characterized human diseases. The example query for the relevance of all brain

regions to the study of Alcoholism (for which only indirect associations between

them exist) is an interesting example application. This generality is further used

to construct a context-aware data portal that provides users with a focused and
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relevant display of gene associations, presented using a concise heat map matrix

visualization and embedded links to detailed HTML association reports and the

relevant associations behind the rankings.

These tools provide insights into complex human behaviors and diseases

through a powerful, highly relevant data portal that quickly finds the most useful

information. By highlighting the most informative associations, researchers can now

uncover important results that may be difficult to find. Propagating information

across the association network additionally provides researchers with the ability

to highlight biological pathways and other mechanisms that are important to

the context of inquiry, but may have no existing annotations or mentions in the

literature. Together these ideas can help researchers not only survive the data

deluge but harness it to discover new relationships latent within the increasingly

vast biomedical domain.
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CHAPTER 5

INTEGRATED CONTEXTUAL ANALYSIS FOR

DATA-INTENSIVE SCIENCE

Data-intensive scientific discovery has been described as the fourth paradigm

in scientific research, following theoretical, experimental, and simulated research

paradigms [42]. It has quickly become a necessary component of many research

programs due to the ability to generate massive data sets with new technology. Data-

intensive analysis techniques, visualization tools, and provenance are an important

need for scientists in the 21st century and beyond. Without tools that can properly

handle the data deluge, scientists are severely limited by hard-to-find related

information, impossibly large data sets and associations, and irreproducible results.

The techniques described in this work represent a set of tools that cover a range of

these needs for fourth paradigm bioinformatics research.

5.1 Improving Data Discoverability

The first way in which this work addresses the needs of data-intensive research

is through data integration. The loosely coupled nature of existing public resources

means that finding data outside of the typical research workflow is burdensome and

tedious, especially in the case of examining many possible entities. By increasing the

accessiblity of links between databases, this work makes existing data more easily

discoverable and more useful to the average user. This is significantly easier and less

error-prone than manually performing the same search across multiple resources.

In addition, the integration of diverse data types makes it possible to bring

together highly related entities (ex: SNPs, genes, and proteins) and their related

associations (ex: GWAS, pathways, interactions). While this information can often
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be accessed within the same data portal, relationships and queries across them can

be difficult or impossible to construct (ex: What known SNPs affect genes that

are DNA binding?). Data integration makes these types of questions very easy to

answer, and provides a wealth of information to the contextual analysis that would

not be possible with data silos and database-specific identifiers.

Aggregated information from many data sources also provides a way to connect

unrelated entities from separate resources. For the data used in this project, the

mappings between MeSH and OMIM, and between MP and HP, were valuable

additions that made it possible to bring significantly more information together.

This allowed us to relate many diverse but relevant publications that were not

about human-specific biology, and connect them through ontology mappings and

associations. This plethora of data sources means that relevant data for the user

is discovered even when it does not directly fit the search criteria. The ability to

discover indirect yet relevant data will aid research in less popular domains and lend

supporting data and possible hypotheses to those who need it most.

5.2 Enhancing the Scientific Workflow

Through the aggregated information present in the integrated database, a

contextual analysis makes it possible to put a large amount of data together for

the ranking of candidate entities. This allows bioinformaticists to focus on the

most promising associations first, instead of expending extra time and effort on less

relevant candidates. Through the integrated association graph, the ability to present

paths connecting entities to the context of interest provides users with even more

prioritized information and provenance. It is immediately apparent what the most

interesting relationships are, and where the most information about them can be
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sourced. Users do not need to browse many links and pages of information in order

to find what is most relevant to their needs.

Although the machine learning community is making considerable progress on

natural language processing and deep learning, these approaches cannot yet match

the precision of biocurators. Contextual analysis, semantic analysis, and association

graph techniques that operate of curated data are the best available tools to

provide the traceable provenance which is necessary for bioinformatics tools and

other applications in clinical medical settings. These methods provide a valuable,

practical, and important resource for harnessing big data in bioinformatics.

5.3 High-throughput Dissemination via Context Visualization

High-throughput technologies produce large-scale data and results that require

large-scale analysis and interpretation. This final interpretation step remains a

crucial bottleneck. Retaining a mental model of complex diseases processes and

assimilating new knowledge into that system is a slow and difficult task prone to

errors. Any improvements to result dissemination can alleviate the user’s burden.

Visual presentations of large-scale data, such as that described in this work, are

the only effective way to present thousands of results at once and still provide the

user with an opportunity to interact with the system. First, it is much easier and

faster to parse a chart or heat map than it is to read many lists or paragraphs of

scientific prose. Through the correct use of color, important results can be quickly

pinpointed and drilled into for further discovery, and results with low relevance can

be easily skipped over. Second, the increased data density of pixel-level detail means

that many results can be presented simultaneously. This density also means that

more results can be examined in very short timespans, increasing turnaround time

and reducing both reader fatigue and opportunities to miss important information.
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5.4 Conclusion

This research solves some of the problems facing scientists in the era of affordable

next-gen sequencing and other high-throughput technologies. The terabytes of data

produced by these new technologies cannot possibly be analyzed manually, and even

with highly stringent statistical testing, hundreds of reported genes in a variety of

datasets can still be burdensome. A context-driven analysis of existing public data

allows the most relevant and important results to be discovered and refined quickly

– an essential part of handling the data deluge.

The combination of two novel contextual content measures, a large-scale

integrated biomedical association repository, and a propagation graph algorithm

have resulted in a novel, innovative platform to help bioinformaticists handle the

sparse and expansive realm of biomedical associations. Together these ideas have

been used to create a platform for quickly finding the most useful information

for a scientist’s inquiry into human disease processes. By highlighting the most

informative, contextually relevant associations, we advance the ability of researchers

to not only survive the data deluge, but adequately harness it to uncover promising

information buried within.
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APPENDIX A

DATA FORMATS

Data is an integral part of this research, and thus requires precise definitions.

Efficient memory usage by these data is important in ensuring that the largest

data sets possible can fit into limited memory, and that enumeration and analysis

algorithms incur minimal page fault overhead.

In order to concisely represent entities in the biomedical graph, nodes are mapped

into a single integer identifier, the nodeid, which embeds both a partition identifier

and a node index within the partition. The partition identifier is stored in the lowest

N bits of the nodeid, where N is the minimum number of bits necessary to count all

partitions. The remaining bits of the nodeid are reserved for the node index. Both

partition identifiers and node indexes start at 1 to reserve nodeid=0 as a special

sentinal value.

The 13 partitions collected in Chapter 3 can be represented in 4 bits, leaving

32− 4 = 28 bits free to represent up to 268 million node indexes per partition in a

32-bit integer. Although this represents 10x the current size of PubMed, the existing

code has been written in such a way as to easily enable transition to 64-bit integers

(to represent over a quintillion nodes per partition).

A.1 Redis Schema

The redis datastore is used as a high-performance data warehouse to make it

easier to integrate and query the collected data sets. Loading, extraction, and

munging scripts are applied to populate each of the fields defined in this datastore

(Table A.1). Although it is ideal for these types of matching requirements and

the querying requirements of Chapter 4, the dynamic features of the datastore
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key description

meta hashmap of metadata about the entire dataset
.total_partitions total number of partitions in the dataset
.total_nodes total number of unique nodes in the dataset
.total_edges total number of edges in the dataset
.partition_shift number of bits to represent all partitions
.partition_mask a bitmask with the lower .partition_shift bits set

partition-<partid> hashmap metadata about each partition
.id the partid of the partition
.name the name of the partition
.prefix a display prefix to append to node._ref
.filenames source files used
.has_closure 1 if the partition is a structured vocabulary
.node_count number of unique nodes in the partition
.edge_count number of edges with one end in this partition
.closure_count number of relationships in the closure
.related_partitions comma-separated list of related partition names

node-<nodeid> hashmap information about a node in the graph
._ref the reference identifier
.name display name for the node
.description a more detailed description of the node
.ic-full IC of the node across the full dataset

noderefs-<partid> zset used to map node._ref back to <nodeid>
node-<nodeid>-ancs set of <nodeids> representing the subsumers of <nodeid>
node-<nodeid>-desc set of <nodeids> representing all the descendants of <nodeid>
node-<nodeid>-nbrs set of <nodeids> representing the neighbors of <nodeid>

Table A.1. Redis Data Warehouse Schema. The structure of the datastore
used for loading and querying the integrated data set.

make high-performance techniques like that of Chapter 2 and 4 more complex and

less efficient. Thus after the datastore is populated, it is dumped into a binary

association graph format (described in Appendix Section A.2) for efficient storage

and in-memory representation.

A.2 Binary Association Graph

The binary association graph format (Table A.2) used to store data on

disk closely follows the in-memory representation (and hence the available RAM

115



requirements for an analysis). Two additional techniques are used in the

implementation which make display and enumeration faster but require additional

memory allocations. First, the name_strings array of null-terminated strings is

scanned to find and store the beginning offset of every node. This requires an

additional loading time O(num_nodes) on the input, and O(num_nodes) additional

memory for the list of offsets. Second, the values from ics are copied into an array

of "neighbor ICs" ordered by the elements of nbrs. This requires an additional

allocation and runtime of O(2∗num_edges) but allows for better cache locality and

simplified enumeration during set intersection and union operations.

In the worst-case scenario when nodeids are 32bit (ie 2x larger than a 64bit

double), there are no structured vocabulary terms (and hence no closures to

maintain), and a very dense graph such that num_edges is much larger than

num_nodes. These additional allocations can result in a near tripling of the memory

requirements of the software, on the order O(num_nodes+2∗num_edges). However,

even for the current data set of 130 million associations, this additional memory

requirement is still well within the bounds of modern systems.
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value description & [size default=nodeid]

’DSET’ / 1413829444 tag for verification of format and nodeid size
num_parts number of parittions
part_mask partition mask
part_shift number of bits reserved for partition id
num_nodes total number of nodes
num_edges total number of edges

PARTITION INFO [ x num_parts]
part_name_len length of part_name in bytes
part_name partition name characters
part_num_nodes number of nodes in partition
part_num_edges number of edges in partition
part_num_closure_edges number of closure edges in partition
part_cloa_offsets offset into clos for each ancestor term list

[nodeid x part_num_closure_edges]
part_clod_offsets offset into clos for each descendant term list

[nodeid x part_num_closure_edges]

ics IC value for every node
[double x (num_nodes+1)]

nbr_offsets offset into nbrs for each node’s list of neighbors,
plus an offset just past the end of the list
[nodeid x (num_nodes+1)]

nbrs sorted list of neighbors for every node
[nodeid x (num_edges*2+1)]

clos sorted list of closure nodes for every node with defined closure
[nodeid x (sum(part_num_closure_edges)*2+1)]

NODE NAMES [ x num_parts]
name_char_count size of name_strings in bytes
name_strings appended null-terminated strings for every node in partition

Table A.2. Binary Data Storage Format. The structure of the binary storage
format used for high-throughput contextual analysis algorithms.
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APPENDIX B

CODE

The full package of the final software system consists of over 20,000 lines

of source code in the Python, C, and C++ languages spread across 92

files. Full source code, license, and usage instructions can be found online at

https://github.com/pbnjay/dissertation
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