71 research outputs found

    Automatic disruption classification in JET with the ITER-like wall

    Get PDF
    The new full-metal ITER-like wall at JET was found to have a deep impact on the physics of disruptions at JET. In order to develop disruption classification, the 10D operational space of JET with the new ITER-like wall has been explored using the generative topographic mapping method. The 2D map has been exploited to develop an automatic disruption classification of several disruption classes manually identified. In particular, all the non-intentional disruptions have been considered, that occurred in JET from 2011 to 2013 with the new wall. A statistical analysis of the plasma parameters describing the operational spaces of JET with carbon wall and JET ITER-like wall has been performed and some physical considerations have been made on the difference between these two operational spaces and the disruption classes which can be identified. The performance of the JET- ITER-like wall classifier is tested in realtime in conjunction with a disruption predictor presently operating at JET with good results. Moreover, to validate and analyse the results, another reference classifier has been developed, based on the k-nearest neighbour technique. Finally, in order to verify the reliability of the performed classification, a conformal predictor based on non-conformity measures has been developed

    EDMON - Electronic Disease Surveillance and Monitoring Network: A Personalized Health Model-based Digital Infectious Disease Detection Mechanism using Self-Recorded Data from People with Type 1 Diabetes

    Get PDF
    Through time, we as a society have been tested with infectious disease outbreaks of different magnitude, which often pose major public health challenges. To mitigate the challenges, research endeavors have been focused on early detection mechanisms through identifying potential data sources, mode of data collection and transmission, case and outbreak detection methods. Driven by the ubiquitous nature of smartphones and wearables, the current endeavor is targeted towards individualizing the surveillance effort through a personalized health model, where the case detection is realized by exploiting self-collected physiological data from wearables and smartphones. This dissertation aims to demonstrate the concept of a personalized health model as a case detector for outbreak detection by utilizing self-recorded data from people with type 1 diabetes. The results have shown that infection onset triggers substantial deviations, i.e. prolonged hyperglycemia regardless of higher insulin injections and fewer carbohydrate consumptions. Per the findings, key parameters such as blood glucose level, insulin, carbohydrate, and insulin-to-carbohydrate ratio are found to carry high discriminative power. A personalized health model devised based on a one-class classifier and unsupervised method using selected parameters achieved promising detection performance. Experimental results show the superior performance of the one-class classifier and, models such as one-class support vector machine, k-nearest neighbor and, k-means achieved better performance. Further, the result also revealed the effect of input parameters, data granularity, and sample sizes on model performances. The presented results have practical significance for understanding the effect of infection episodes amongst people with type 1 diabetes, and the potential of a personalized health model in outbreak detection settings. The added benefit of the personalized health model concept introduced in this dissertation lies in its usefulness beyond the surveillance purpose, i.e. to devise decision support tools and learning platforms for the patient to manage infection-induced crises

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Events Recognition System for Water Treatment Works

    Get PDF
    The supply of drinking water in sufficient quantity and required quality is a challenging task for water companies. Tackling this task successfully depends largely on ensuring a continuous high quality level of water treatment at Water Treatment Works (WTW). Therefore, processes at WTWs are highly automated and controlled. A reliable and rapid detection of faulty sensor data and failure events at WTWs processes is of prime importance for its efficient and effective operation. Therefore, the vast majority of WTWs operated in the UK make use of event detection systems that automatically generate alarms after the detection of abnormal behaviour on observed signals to ensure an early detection of WTW’s process failures. Event detection systems usually deployed at WTWs apply thresholds to the monitored signals for the recognition of WTW’s faulty processes. The research work described in this thesis investigates new methods for near real-time event detection at WTWs by the implementation of statistical process control and machine learning techniques applied for an automated near real-time recognition of failure events at WTWs processes. The resulting novel Hybrid CUSUM Event Recognition System (HC-ERS) makes use of new online sensor data validation and pre-processing techniques and utilises two distinct detection methodologies: first for fault detection on individual signals and second for the recognition of faulty processes and events at WTWs. The fault detection methodology automatically detects abnormal behaviour of observed water quality parameters in near real-time using the data of the corresponding sensors that is online validated and pre-processed. The methodology utilises CUSUM control charts to predict the presence of faults by tracking the variation of each signal individually to identify abnormal shifts in its mean. The basic CUSUM methodology was refined by investigating optimised interdependent parameters for each signal individually. The combined predictions of CUSUM fault detection on individual signals serves the basis for application of the second event detection methodology. The second event detection methodology automatically identifies faults at WTW’s processes respectively failure events at WTWs in near real-time, utilising the faults detected by CUSUM fault detection on individual signals beforehand. The method applies Random Forest classifiers to predict the presence of an event at WTW’s processes. All methods have been developed to be generic and generalising well across different drinking water treatment processes at WTWs. HC-ERS has proved to be effective in the detection of failure events at WTWs demonstrated by the application on real data of water quality signals with historical events from a UK’s WTWs. The methodology achieved a peak F1 value of 0.84 and generates 0.3 false alarms per week. These results demonstrate the ability of method to automatically and reliably detect failure events at WTW’s processes in near real-time and also show promise for practical application of the HC-ERS in industry. The combination of both methodologies presents a unique contribution to the field of near real-time event detection at WTW

    Proceedings - 30. Workshop Computational Intelligence : Berlin, 26. - 27. November 2020

    Get PDF
    Dieser Tagungsband enthält die Beiträge des 30. Workshops Computational Intelligence. Die Schwerpunkte sind Methoden, Anwendungen und Tools für Fuzzy-Systeme, Künstliche Neuronale Netze, Evolutionäre Algorithmen und Data-Mining-Verfahren sowie der Methodenvergleich anhand von industriellen und Benchmark-Problemen

    Comparative Analysis of Student Learning: Technical, Methodological and Result Assessing of PISA-OECD and INVALSI-Italian Systems .

    Get PDF
    PISA is the most extensive international survey promoted by the OECD in the field of education, which measures the skills of fifteen-year-old students from more than 80 participating countries every three years. INVALSI are written tests carried out every year by all Italian students in some key moments of the school cycle, to evaluate the levels of some fundamental skills in Italian, Mathematics and English. Our comparison is made up to 2018, the last year of the PISA-OECD survey, even if INVALSI was carried out for the last edition in 2022. Our analysis focuses attention on the common part of the reference populations, which are the 15-year-old students of the 2nd class of secondary schools of II degree, where both sources give a similar picture of the students

    Proceedings - 30. Workshop Computational Intelligence : Berlin, 26. - 27. November 2020

    Get PDF
    The proceedings of the 30th workshop on computational intelligence focus on methods, applications, and tools for fuzzy systems, artificial neural networks, deep learning, system identification, and data mining techniques

    Machine Learning in Tribology

    Get PDF
    Tribology has been and continues to be one of the most relevant fields, being present in almost all aspects of our lives. The understanding of tribology provides us with solutions for future technical challenges. At the root of all advances made so far are multitudes of precise experiments and an increasing number of advanced computer simulations across different scales and multiple physical disciplines. Based upon this sound and data-rich foundation, advanced data handling, analysis and learning methods can be developed and employed to expand existing knowledge. Therefore, modern machine learning (ML) or artificial intelligence (AI) methods provide opportunities to explore the complex processes in tribological systems and to classify or quantify their behavior in an efficient or even real-time way. Thus, their potential also goes beyond purely academic aspects into actual industrial applications. To help pave the way, this article collection aimed to present the latest research on ML or AI approaches for solving tribology-related issues generating true added value beyond just buzzwords. In this sense, this Special Issue can support researchers in identifying initial selections and best practice solutions for ML in tribology
    • …
    corecore