334 research outputs found

    Forward Kinematic Modelling with Radial Basis Function Neural Network Tuned with a Novel Meta-Heuristic Algorithm for Robotic Manipulators

    Get PDF
    The complexity of forward kinematic modelling increases with the increase in the degrees of freedom for a manipulator. To reduce the computational weight and time lag for desired output transformation, this paper proposes a forward kinematic model mapped with the help of the Radial Basis Function Neural Network (RBFNN) architecture tuned by a novel meta-heuristic algorithm, namely, the Cooperative Search Optimisation Algorithm (CSOA). The architecture presented is able to automatically learn the kinematic properties of the manipulator. Learning is accomplished iteratively based only on the observation of the input–output relationship. Related simulations are carried out on a 3-Degrees of Freedom (DOF) manipulator on the Robot Operating System (ROS). The dataset created from the simulation is divided 65–35 for training–testing of the proposed model. The metrics used for model validation include spread value, cost and runtime for the training dataset, and Mean Relative Error, Normal Mean Square Error, and Mean Absolute Error for the testing dataset. A comparative analysis of the CSOA-RBFNN model is performed with an artificial neural network, support vector regression model, and with with other meta-heuristic RBFNN models, i.e., PSORBFNN and GWO-RBFNN, that show the effectiveness and superiority of the proposed technique.publishedVersio

    Verification of bee algorithm based path planning for a 6DOF manipulator using ADAMS

    Get PDF
    In this article the end effector displacement control for a manipulator robot with 6 rotational joints on a predetermined 3-dimensional trajectory is investigated. Since for any end effector position there are more than a single set of answers, regarding to robot parts orientation, finding a method which gives the designer all existing states will lead to more freedom of action. Hence two different methods were applied to solve robot inverse kinematic issue. In the first method ADAMS software was considered, which is a well-known software in the field of solving inverse kinematic problems, and after that BA algorithm is used as an intelligent method. This method is one of the fastest and most efficient methods among all existing ones for solving non-linear problems. Hence problem of inverse kinematic solution is transformed into an affair of optimization. Comparison of results obtained by both models indicates the reasonable performance of BA because of its capability in providing the answers from all existing states along with the privilege of no need to 3D modeling

    Visual articulated tracking in cluttered environments

    Get PDF
    This thesis is concerned with the state estimation of an articulated robotic manipulator during interaction with its environment. Traditionally, robot state estimation has relied on proprioceptive sensors as the single source of information about the internal state. In this thesis, we are motivated to shift the focus from proprioceptive to exteroceptive sensing, which is capable to represent a holistic interpretation of the entire manipulation scene. When visually observing grasping tasks, the tracked manipulator is subject to visual distractions caused by the background, the manipulated object and by occlusions from other objects present in the environment. The aim of this thesis is to investigate and develop methods for the robust visual state estimation of articulated kinematic chains in cluttered environments which suffer from partial occlusions. To make these methods widely applicable to a variety of kinematic setups and unseen environments, we intentionally refrain from using prior information about the internal state of the articulated kinematic chain, and we do not explicitly model visual distractions such as the background and manipulated objects in the environment. We approach this problem with model-fitting methods, in which an articulated model is associated to the observed data using discriminative information. We explore model-fitting objectives that are robust to occlusions and unseen environments, methods to generate synthetic training data for data-driven discriminative methods, and robust optimisers to minimise the tracking objective. This thesis contributes (1) an automatic colour and depth image synthesis pipeline for data-driven learning without depending on a real articulated robot; (2) a training strategy for discriminative model-fitting objectives with an implicit representation of objects; (3) a tracking objective that is able to track occluded parts of a kinematic chain; and finally (4) a robust multi-hypotheses optimiser. These contributions are evaluated on two robotic platforms in different environments and with different manipulated and occluding objects. We demonstrate that our image synthesis pipeline generalises well to colour and depth observations of the real robot without requiring real ground truth labelled images. While this synthesis approach introduces a visual simulation-to-reality gap, the combination of our robust tracking objective and optimiser enables stable tracking of an occluded end-effector during manipulation tasks

    A novel robot calibration method with plane constraint based on dial indicator

    Full text link
    In pace with the electronic technology development and the production technology improvement, industrial robot Give Scope to the Advantage in social services and industrial production. However, due to long-term mechanical wear and structural deformation, the absolute positioning accuracy is low, which greatly hinders the development of manufacturing industry. Calibrating the kinematic parameters of the robot is an effective way to address it. However, the main measuring equipment such as laser trackers and coordinate measuring machines are expensive and need special personnel to operate. Additionally, in the measurement process, due to the influence of many environmental factors, measurement noises are generated, which will affect the calibration accuracy of the robot. Basing on these, we have done the following work: a) developing a robot calibration method based on plane constraint to simplify measurement steps; b) employing Square-root Culture Kalman Filter (SCKF) algorithm for reducing the influence of measurement noises; c) proposing a novel algorithm for identifying kinematic parameters based on SCKF algorithm and Levenberg Marquardt (LM) algorithm to achieve the high calibration accuracy; d) adopting the dial indicator as the measuring equipment for slashing costs. The enough experiments verify the effectiveness of the proposed calibration algorithm and experimental platform

    IMU-Based Online Kinematic Calibration of Robot Manipulator

    Get PDF
    Robot calibration is a useful diagnostic method for improving the positioning accuracy in robot production and maintenance. An online robot self-calibration method based on inertial measurement unit (IMU) is presented in this paper. The method requires that the IMU is rigidly attached to the robot manipulator, which makes it possible to obtain the orientation of the manipulator with the orientation of the IMU in real time. This paper proposed an efficient approach which incorporates Factored Quaternion Algorithm (FQA) and Kalman Filter (KF) to estimate the orientation of the IMU. Then, an Extended Kalman Filter (EKF) is used to estimate kinematic parameter errors. Using this proposed orientation estimation method will result in improved reliability and accuracy in determining the orientation of the manipulator. Compared with the existing vision-based self-calibration methods, the great advantage of this method is that it does not need the complex steps, such as camera calibration, images capture, and corner detection, which make the robot calibration procedure more autonomous in a dynamic manufacturing environment. Experimental studies on a GOOGOL GRB3016 robot show that this method has better accuracy, convenience, and effectiveness than vision-based methods

    A graph-theory-based C-space path planner for mobile robotic manipulators in close-proximity environments

    Get PDF
    In this thesis a novel guidance method for a 3-degree-of-freedom robotic manipulator arm in 3 dimensions for Improvised Explosive Device (IED) disposal has been developed. The work carried out in this thesis combines existing methods to develop a technique that delivers advantages taken from several other guidance techniques. These features are necessary for the IED disposal application. The work carried out in this thesis includes kinematic and dynamic modelling of robotic manipulators, T-space to C-space conversion, and path generation using Graph Theory to produce a guidance technique which can plan a safe path through a complex unknown environment. The method improves upon advantages given by other techniques in that it produces a suitable path in 3-dimensions in close-proximity environments in real time with no a priori knowledge of the environment, a necessary precursor to the application of this technique to IED disposal missions. To solve the problem of path planning, the thesis derives the kinematics and dynamics of a robotic arm in order to convert the Euclidean coordinates of measured environment data into C-space. Each dimension in C-space is one control input of the arm. The Euclidean start and end locations of the manipulator end effector are translated into C-space. A three-dimensional path is generated between them using Dijkstra’s Algorithm. The technique allows for a single path to be generated to guide the entire arm through the environment, rather than multiple paths to guide each component through the environment. The robotic arm parameters are modelled as a quasi-linear parameter varying system. As such it requires gain scheduling control, thus allowing compensation of the non-linearities in the system. A Genetic Algorithm is applied to tune a set of PID controllers for the dynamic model of the manipulator arm so that the generated path can then be followed using a conventional path-following algorithm. The technique proposed in this thesis is validated using numerical simulations in order to determine its advantages and limitations

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc
    corecore