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ABSTRACT 

In this thesis a novel guidance method for a 3-degree-of-freedom robotic manipulator 

arm in 3 dimensions for Improvised Explosive Device (IED) disposal has been 

developed.  The work carried out in this thesis combines existing methods to develop 

a technique that delivers advantages taken from several other guidance techniques.  

These features are necessary for the IED disposal application.  The work carried out 

in this thesis includes kinematic and dynamic modelling of robotic manipulators, T-

space to C-space conversion, and path generation using Graph Theory to produce a 

guidance technique which can plan a safe path through a complex unknown 

environment.  The method improves upon advantages given by other techniques in 

that it produces a suitable path in 3-dimensions in close-proximity environments in 

real time with no a priori knowledge of the environment, a necessary precursor to the 

application of this technique to IED disposal missions. 

To solve the problem of path planning, the thesis derives the kinematics and 

dynamics of a robotic arm in order to convert the Euclidean coordinates of measured 

environment data into C-space. Each dimension in C-space is one control input of 

the arm.  The Euclidean start and end locations of the manipulator end effector are 

translated into C-space. A three-dimensional path is generated between them using 

Dijkstra’s Algorithm. The technique allows for a single path to be generated to guide 

the entire arm through the environment, rather than multiple paths to guide each 

component through the environment.  The robotic arm parameters are modelled as a 

quasi-linear parameter varying system.  As such it requires gain scheduling control, 

thus allowing compensation of the non-linearities in the system.  A Genetic Algorithm 

is applied to tune a set of PID controllers for the dynamic model of the manipulator 

arm so that the generated path can then be followed using a conventional path-

following algorithm.  The technique proposed in this thesis is validated using 

numerical simulations in order to determine its advantages and limitations. 

Keywords: 

Robotic Manipulator, Guidance, Control, C-space, Graph Theory, Path Generation. 
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1 INTRODUCTION 

In the field of Defence Engineering, there are applications which require the use 

of highly accurate robotic manipulator arms in close-proximity environments, 

especially those of Improvised Explosive Device (IED) disposal (Beltran-Gonzalez, et 

al., 2007), (Dubowsky & Vance, 1989), (Nguyen & Bott, 2000), (Goldenberg, et al., 

2000).  In this thesis a method of path generation for a 3-degree-of-freedom (3-DoF) 

robotic manipulator arm with the purpose of IED disposal is developed that can in 

real-time plan a path through a close-proximity environment, avoiding collisions with 

obstacles by all parts of the manipulator arm.  Environment data are not required to 

be known a priori and the technique has the potential to generate paths for n-DoF 

manipulator arms.  Since the application of the technique is for IED disposal, and 

IEDs tend to be installed in concealed locations with very little access space and are 

designed to be very unstable, the technique has the capability of approaching and 

tracking the edges of obstacles and environments rather than completely avoiding 

them. 

 

1.1 Background to Research 

This research carried out in this thesis was partially sponsored by the defence-

solutions company Allen Vanguard™.  Allen Vanguard™ researches and 

manufactures countermeasures against hazardous threats.  These threats include 

various explosive devices and chemical, biological, radiological and nuclear agents.  

The company produces various products to counter these hazards.  These include 

two remotely operated vehicles (ROVs): Digital Vanguard (Figure 1-1) and Defender 

(Figure 1-2).  Digital Vanguard is a 56 kg tracked vehicle with an electronic servo-

controlled robotic arm and three cameras installed in various locations.  Defender is 

a 275 kg six-wheeled, skid-steer vehicle, with a heavier duty hydraulic-powered 

robotic arm and six cameras with varied functionality. 
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Figure 1-1 Digital Vanguard ROV (Photo courtesy of Allen Vanguard™). 

 

These robots require a highly skilled operator to control them as they do not have 

installed any sensors other than cameras and so provide very little information to the 

operator other than the visual feeds.  In the case of the smaller robot, Digital 

Vanguard, without any sensors indicating its position, the robotic arm can be 

unintentionally operated outside of its designed envelope, to the point where it is 

able to cut the cables controlling it.  For this reason the operator has to divert a lot of 

their time and attention to monitoring the state of the robot rather than carrying out 

the primary mission of IED detection and disposal. 

 

 

Figure 1-2 Defender ROV (Photo courtesy of Allen Vanguard™). 
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The diagram in Figure 1-3 illustrates the breakdown of the functions required to 

provide autonomous control of the Digital Vanguard ROV.  This control can be split 

into two main areas, control of the skid-steer drive unit, and control of the 

manipulator arm.  In each case simultaneous localisation and mapping (SLAM) must 

take place, and also path planning to avoid any obstacles.  This path must then be 

followed by the vehicle in order to reach the required target. 

 

Fully Autonomous Skid-
Steer IED Disposal ROV

Autonomous Skid-Steer 
Drive Unit

Autonomous Robotic 
Manipulator Arm

Skid-Steer Motion 
Control

SLAM
Localisation Mapping

Manipulator Guidance

Path Planning Path Following

Vehicle Guidance

Path Planning Path Following

Robotic Manipulator  
Motion Control

 

Figure 1-3 Flow Diagram showing the breakdown of autonomous functions for control 

of the ROV in question. 

 

Achieving fully autonomous navigation of a vehicle of this type would require a 

significant amount of work, far in excess of the scope of this project.  Therefore the 

work presented in this thesis will focus on the subsection of Figure 1-3 which is 

highlighted in red to bring autonomous navigation to the robotic manipulator arm. 
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This project will focus solely on the autonomous navigation of the robotic manipulator 

which is attached to the vehicle.  The one aspect of the drive unit that will be taken 

into consideration is that the motion of the vehicle means that the arm will not remain 

in the same location, and therefore the environment will change.  This means that 

knowledge of the environment may not be known a priori and the guidance algorithm 

for the arm will have to work in real time to continually provide a safe path for the 

manipulator arm to follow around obstacles in the environment. 

Autonomous operation of the robotic manipulator requires enough accuracy to be 

able to navigate safely through a close-proximity environment without the risk of 

collision.  For operation of the manipulator to carry out the disarmament of an IED, 

the environment is required to be mapped in much more detail than is needed for 

navigation with the vehicle platform.  This can be done for a much smaller area since 

the vehicle must navigate over hundreds of metres of terrain, but the arm is only 

needed to disarm the IED in the final stage of the mission.  The area in which the 

manipulator can move needs to be mapped, and obstacle avoidance needs to be 

carried out effectively so that collisions are very unlikely to take place, and this is 

imperative when sensitive explosive material may be present.  Path planning through 

the environment to place the manipulator in the correct location to carry out its 

function is required, and subsequent following of the planned path needs to have a 

near zero number of errors. 

Path planning techniques exist for robotic manipulators in various configurations and 

sizes, and in many different applications, but there is very little work reported in the 

literature that could be applicable to a scenario where the arm needs real-time path 

planning in a changing environment due to its mobility, and requires the ability to 

safely navigate in a new, heavily constrained space every single time it is used.  This 

means that in the application of robotics for IED detection and disposal there is a 

need to develop a technique which can satisfy these requirements.  Given that one 

of these requirements is for the robotic arm to be manoeuvred through potentially 

very tight spaces, consideration must be given to the position and trajectory of each 

link in the arm, not just the end effector. 
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1.2 Research Question 

Having considered the background laid out in section 1.1, and the narrowing of 

scope to an achievable subset of the overall problem of navigational autonomy in the 

vehicles presented, the following research question is proposed: 

“Is it possible and feasible to implement a path-generation algorithm that is capable 

of guiding a robotic manipulator arm through a close-proximity environment with the 

aim of carrying out Improvised Explosive Device disposal missions?” 

 

To adequately answer this question, the aim and objectives discussed in section 1.3 

have been determined. 

 

1.3 Aims and Objectives 

The aim of the work reported in this thesis is to develop a method of path planning 

for mobile 3-DoF manipulators that can plan a safe path in real-time through an 

environment around obstacles and towards a target object.  This path will consider 

not just for the end effector but the manipulator arm in its entirety. 

To satisfy this aim, several objectives must be met.  In order to test any guidance 

method, either a software or hardware model must be implemented so that any 

planned path through an environment can be tested for feasibility, in essence 

validating the guidance method.  Since a simulated system should be fully 

predictable given that it is governed by a set of known equations, a dynamic model 

of a 3-DoF manipulator arm will be developed for use in the majority of the work 

carried out in this thesis. 

Once a predictable dynamic model has been developed, a suitable control schema 

will be selected and tuned to provide system behaviour which is capable of following 

a planned path.  It is also important to know the limitations of the controlled system 

as any path generation technique must be designed to take into account such 

limitations. 
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The main focus of this thesis is to develop a guidance method which is capable of 

planning a safe path through close-proximity environments.  Obstacle data are 

required to be modelled in an accurate way, taking into account any assumptions 

made for ease of simulation.  This ensures that a usable and realistic data set is 

available for use in the mapping and path planning stages of the arm guidance. 

Once data about obstacles in the environment have been obtained, a usable map of 

such data must be built in an appropriate way for the path planning to be carried out.  

Finally, a method of planning safe paths through the environment must be 

investigated, taking into account the limitations of the arm and sensor data. 

Following the development of a guidance method the developed method must be 

validated and assessed for its limitations.  This gives the aim and a series of 

objectives as follows: 

Aim: 

 Develop a method of planning a safe path for a 3-DoF robotic manipulator 

arm in 3-D close-proximity environments. 

Objectives: 

 Derivation of a dynamic model of a 3-DoF robotic manipulator arm. 

 Implementation of a suitable control schema for such a dynamic system. 

 Development of a guidance method for safe navigation of the controlled 

dynamic model through close-proximity environments to include 

- realistic obstacle data of increasing complexity; 

- creation of a suitable environment map; 

- development of a suitable path-generation method, taking into account 

arm and mapping and localisation sensor limitations. 

 Validation of the guidance method to assess its strengths and limitations. 

 

The aim and objectives set out in this section will be achieved by combining together 

in a novel way methods of robotic manipulator kinematic and dynamic modelling, 

manipulator control, environment mapping and path planning and following as 

outlined in section 1.4. 
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1.4 Project Outline 

With the above research question and the suggested aim and objectives in mind a 

novel concept for navigational autonomy in the manipulator arm is developed.  This 

concept uses localisation sensor data to create a map of the environment.  It then  

uses a method of path generation and following to guide the manipulator arm 

through this environment, avoiding obstacles in the way, to reach the mission 

objective.  In the case of the Digital Vanguard ROV, which has a 3 degree-of-

freedom manipulator arm, path generation is required for each of the three arm links 

to guide the entire arm through the environment.  This means that three 3-D paths 

must be generated.  In the case of much larger robotic arms, with higher degrees of 

freedom, this would require a 3-D path to be generated for each link in the arm.  In 

many high-degree-of-freedom robotic arms the solution to the multiple 3-D path 

generation problem is to plot a path for the first link in the arm limiting the area in 

which the entire arm operates to avoid obstacles.  Every successive link then follows 

the same path therefore only one path is generated through space.  The technique 

proposed in this thesis has the advantage of only having to generate one path that 

will drive each link to follow a safe path to the goal.  In close-proximity environments 

the tight-volume-constraints that exist during the mission could mean that there may 

not always be a solution that allows the arm to manoeuvre in such a way as to 

achieve its objective, and therefore the proposed technique or any other may fail to 

find a safe path through the environment. 

To calculate the range of joint angle combinations of the Digital Vanguard 

manipulator arm that cause collisions with obstacles in the environment, the 

Euclidean coordinates of the obstacles are passed through an inverse kinematic 

model of the arm.  In the case of the three-degree-of-freedom arm, this provides a 

three-dimensional set of data specifying the joint angles where collisions occur.  This 

3-D data set contains the collision range of the arm with the environment in terms of 

the joint angles, which are the direct control requirements of the arm.  The data set 

can be considered to be a map of the environment with the obstacles specified in 

terms of the control requirements of the arm. 
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The Euclidean coordinates of the manipulator end effector at its starting position and 

at the required end position can also be passed through the kinematic model to 

calculate these two locations in terms of the newly acquired map.  With these two 

points in the control domain, a path can be plotted from the end effector starting 

point to the end location, avoiding all obstacles.  This path is now represented in 

terms of the direct control requirements of the robotic arm, which is useful for guiding 

the end effector to its mission objective. 

This method allows for the possible implementation of obstacle avoidance for the 

entire arm, and provides enough information for path planning of the arm in very 

strict volume constraints, allowing the end effector to be placed in the desired 

location, having been manoeuvred through very tight spaces to get there.  This 

method only requires one path to be generated for the entire manipulator arm. 

The flowchart in Figure 1-4 shows a breakdown of the processes required to get 

from the initial sensor and user inputs to a path which can then be followed by the 

arm implementation, which in this case will be a dynamic model of a 3-DoF 

manipulator arm. 
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Figure 1-4 Breakdown of the processes required for an autonomous robotic 

manipulator arm. 

 

1.5 Assumptions and Bounds 

In the context of this project, the problem will be simplified and assumptions will be 

made in order to provide constraints that allow for a solution to be developed within 

the given timescale.  The assumptions that have been made to narrow down the 

research and development of the proposed method are as follows: 

 It will be assumed that the location data and dimensional parameters of 

objects in the environment have already been obtained by a suite of sensors, 
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whether these be the visual sensors already employed by the ROV, or other 

types of sensor such as IR or laser rangefinders, LIDAR, RADAR or SONAR. 

 Since the location data and dimensional parameters of objects in the 

environment are assumed to be obtained by sensors, the environment data 

can be simulated and input into the guidance method. 

Having made these assumptions the previously displayed flowchart in Figure 1-4 has 

been updated to illustrate how these assumptions affect the implementation of the 

overall solution in Figure 1-5. 

Sensor

Arm Position and 

Pose

(Servo Encoders)

Simulated 

Environment Data

User Input

Desired End 

Effector Location

Map Conversion to 

C-space

Plotting of Current 

and Desired End 

Effector Location

Path Generation Path Following
Arm Servo 

Controllers

Arm Dynamics

Arm Kinematics

 

Figure 1-5 Breakdown of the processes required for an autonomous robotic 

manipulator arm, including assumptions made and colour coded to match the 

remaining chapters of the thesis. 
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The steps highlighted by the dashed red box in Figure 1-4 have been replaced with a 

single box that is responsible for simulated environment data in a useable format 

rather than data obtained by sensors.  The coloured blocks in this figure represent 

the work carried out in Chapters 3-7.  The arm kinematics block, outlined in red, is 

detailed in Chapter 3; the green block representing the arm dynamics is detailed in 

Chapter 4; the control of the servo motors which will drive the arm along a path, 

illustrated by the blue blocks in the figure, is dealt with in Chapter 5; the control 

domain mapping process outlined in purple in the figure is dealt with in Chapter 6 

and the path generation method, orange, is detailed in Chapter 7. 

 

1.6 Contributions 

There are several contributions to knowledge made in the work presented in this 

thesis.  The work presented here includes the implementation of a path-generation 

and following algorithm for a manipulator arm that is designed for use on a skid-steer 

vehicle with the main purpose being IED disposal.  This means that there is no a 

priori knowledge of the environment at the start of every new mission, and the 

algorithm has to generate a map in real-time of the environment in C-space and 

generate a safe path around obstacles in order to reach the target end-effector 

position. 

While techniques exist in the literature on manipulator guidance that seeks to solve 

the problem of path planning for the entire manipulator or attempt to solve the 

problem of path planning for an end effector in real-time, no technique exists which is 

able to successfully combine all of these factors, especially in a completely unknown 

environment and in such close proximity to obstacles. 

The technique presented here uses graph theory in configuration space (C-space), 

which has never been previously applied in this way. Its implementation to 

manipulator guidance in C-space highlights its power in such a control domain since 

it has the capability to handle path planning in an unlimited number dimensions 

providing that an adjacency matrix can be calculated for n-dimensional points in a 

space. 
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The major contribution of the research presented in this thesis is that existing 

methods in the areas of robotic manipulator guidance and control, environment 

mapping and path planning have been drawn together and combined in such a way 

as to develop a guidance technique that is capable of satisfying all of the following 

attributes. 

 The developed technique is capable of path planning in high 

complexity environments in real-time (i.e. less than 0.1 seconds). 

 It has the potential to be applicable to n-DoF manipulator arms for 3-D 

environments. 

 This method is capable of dealing with unknown environments as the 

manipulator arm is installed on a mobile vehicle therefore the 

environment is not a permanent reachable space that can be mapped 

a priori. 

 Joints are not decoupled for path generation and so there is only one 

trajectory, therefore trajectories do not need to be resynchronised. 

 This method is able to track around obstacles in the control domain 

which translates into edge following in Euclidean space. 

When considering the problems of task space (T-space) to C-space conversion and 

path generation for graph theory, different solutions have been investigated in order 

to find those which are appropriate for real-time applications and so a comparison of 

techniques has been presented.  Thus a trigonometric approach to T-space to C-

space conversion and Dijkstra’s algorithm as the solution to the pathing in T-space 

have been presented as the best options in the case of this application. 

 

1.7 Summary 

This chapter introduces the problem of path planning for a robotic manipulator in 

dangerous close-proximity environments and discusses the background surrounding 

the research question.  The aims and objectives and novelty of the work are 

discussed as well as the constraining factors.  It also outlines a possible solution that 

will be further explored in the following chapters. 



13 
 

Chapter 2 reviews the literature in the areas of modelling, control, mapping and path 

planning in the context of robotic manipulator arms.  This review of literature serves 

as the basis for the further investigation and design decisions made in Chapters 3-7 

of this thesis.  Chapter 3 describes the forward and inverse kinematics of a 3-DoF 

arm to provide a method of localisation of the robotic manipulator in space, and also 

the Euclidean environment to control domain map conversion.  In Chapter 4, the 

derivation of a dynamic model of the same robotic manipulator is carried out in order 

to build a predictable test bed for use in the validation of the guidance method.  

Chapter 5 deals with the selection, implementation and tuning of a control schema 

which allows the dynamic model to follow a planned path and inform the 

development of a mapping and path planning algorithm when considering the 

physical and practical limitations of the system.  Chapter 6 develops a method of 

converting obstacle data from the Euclidean domain to a domain which is 

representative of the direct control requirements of the manipulator arm and uses 

that method to form a suitable map of the environment.  Chapter 7 concentrates on a 

method of generating a path through the map and discusses how to include time 

based information to assist the manipulator arm to follow the path whilst remaining 

within its physical boundaries.  In Chapter 8 the complete technique is integrated 

with the controlled robotic manipulator dynamic model and simulated environment 

data is used to validate the effectiveness of the technique.  Finally, Chapter 9 draws 

all of the findings of the work together and provides a series of conclusions about the 

guidance method proposed in this thesis and suggest future work to enhance and 

improve the developed technique.  The overall scope of the work carried out in this 

thesis is summarised by the diagram in Figure 1-6. 
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Figure 1-6 Project outline of the research presented in this thesis. 
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2 REVIEW OF LITERATURE 

In the Introduction to this thesis the background and scope of the research to be 

carried out have been discussed.  This has determined the areas of literature to be 

explored in this chapter which provide the necessary information for the investigation 

and technique development carried out in the remainder of the thesis to allow the 

overall aim and objective laid out in the Introduction to be satisfied. 

There are four main areas of literature that are reviewed in this chapter.  Techniques 

for modelling of the forward and inverse kinematics of a robotic manipulator are 

investigated to provide a basis for the work carried out in Chapters 3 and 6.  

Literature regarding the dynamic modelling of a robotic manipulator arm is also 

investigated since it will inform the work carried out in Chapter 4, where a dynamic 

model of a 3-DoF robotic manipulator will be derived for use as the main system for 

the remainder of the research.  In this chapter appropriate methods of feedback 

compensation are also investigated to provide the necessary information for the 

selection of a suitable control schema in Chapter 5 to provide adequate control the 

manipulator arm such that it is able to follow any generated path without any unsafe 

deviation.  In chapters 6 and 7 a suitable guidance method is developed which 

involves the areas of environment mapping, including sensors, path generation and 

path following. 

 

2.1 Modelling of Robotic Manipulators 

The following section of this chapter presents a review of literature in the area of 

robotic manipulator kinematic and dynamic modelling to provide a basis for the 

derivation of forward and inverse kinematics and a predictable dynamic model of a 3-

DoF manipulator arm. 

Turney et al. (1980) develop two formulations for robot arm dynamics.  One of these 

is based on Lagrangian mechanics, and the other based on Newton-Euler (N-E) 

mechanics.  The authors then show that the two approaches are mathematically 
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equivalent and the computational complexity of the methods is compared.  Finally, a 

modified formulation of the Newton-Euler method is developed which is then proved 

to be less computationally complex and that allows more parallelism in its 

computation than the original two formulations.  Table 2-1 and Table 2-2 display the 

results presented by Turney et al. and assess which method has the smallest 

computational overheads for a 3-DoF manipulator arm.  In this case n is the number 

of degrees of freedom of the manipulator arm. 

 

Table 2-1 Extract from a computational complexity comparison of Lagrangian and 

Newton-Euler mechanics from Turney et al. (1980) 

Approach Multiplications Additions 

Lagrange 81

6
𝑛3 +

165

2
𝑛2 + 5𝑛 

40

3
𝑛3 + 58𝑛2 −

64

3
𝑛 

Newton-Euler 108𝑛 − 12 100𝑛 − 9 

 

Table 2-2 Comparison of Lagrangian and Newton-Euler methods in relation to a 3-DoF 

robotic manipulator arm. 

Approach Multiplications Additions 

Lagrange 1122 818 

Newton-Euler 312 240 

 

From these results it is clear that the Lagrangian mechanics have a computational 

complexity which is approximately 3 times a large as the Newton-Euler method for a 

3-DoF manipulator arm. 

Lee (1982) uses vector geometry and rotational matrices to describe the kinematics 

of a robotic arm, and uses the Denavit-Hartenberg (D-H) representation to describe 

the relationship between linkages in the arm.  The author then uses the N-E, 

Lagrange-Euler (L-E) and Generalised d’Alembert Equations of Motion 
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representations to describe the dynamics of the robotic arm, and concludes that all 

three are useful depending on the required specification of the user. 

Everett and Suryohadiprojo (1988) present work attempting to prove that regardless 

of the kinematic model that is chosen for a robotic manipulator there is a maximum 

number of parameters that must be determined.  This characteristic implies that 

model accuracy cannot be improved by adding “extra” parameters.  The paper also 

shows how to model a manipulator so that a minimum Jacobian is used, which 

reduces the computation required for calibration. 

Mooring and Padavala (1989) describe a measurement system which collects data 

about the pose of a robot manipulator.  The data is then used to identify the 

parameters which can then be used to identify the parameters of a manipulator. 

Zhuang et al. (1992) propose a kinematic modelling convention for robotic 

manipulators.  The modelling convention, named the CPC model because of the 

completeness and parametric continuity properties it displays, uses a singularity-free 

line representation which consists of four line parameters.  The model works by 

transforming between the world axes and axes of the robotic manipulator base, and 

also the axes of final link and the axes of the installed tool, allowing for the location 

of each part to be described both in terms of the world axes or the base axes.  All of 

the redundant parameters can be systematically eliminated from the model allowing 

for a linearised robot error model to be constructed.  In this model all error 

parameters are independent and span the entire geometric error space, which 

makes the model useful for robot calibration.  The authors focus on model 

construction, mappings between the D-H model (Denavit & Hartenberg, 1955), 

(Hartenberg & Denavit, 1964), the study of the model properties and its application to 

robot kinematic calibration. 

Kostic et al. (2004) carry out a case study which explains a procedure for getting 

models of robot kinematics and dynamics that are appropriate for robot design.  The 

authors concentrate heavily on the design of identification experiments and online 

reconstruction of state coordinates, which influence the quality of the estimation 

process.  They state that the modelling of friction and the estimation of friction 

parameters are important and so consider them in detail.  The method uses rigid 
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body dynamics so does not take into consideration compression and bending of 

joints and linkages. 

 

2.2 Control of Robotic Manipulators 

The following section of this chapter presents a review of literature in the area of 

robotic manipulator control in order to select an appropriate control schema to 

provide adequate performance for the manipulator arm. 

D. E. Whitney (Whitney, 1969) analyses the kinematics of remote manipulators and 

human prostheses to derive resolved motion rate control.  The approach taken 

suggests solutions to problems of coordination, motion under task constrains, and 

appreciation of forces encountered by a controlled hand.  The author concludes that 

working with rates means that the problem remains linear, regardless of the arm 

configurations.  The paper shows that the operator can obtain control of motion 

easily along the “world coordinates” if the control actions are modified by the inverse 

of the arm’s Jacobian Matrix.  This allows for a choice of several different coordinate 

systems in which to control. 

In Saridis and Lee (1979), the authors develop a theoretical procedure for comparing 

the performance of arbitrarily selected admissible controls with each other and with 

the optimal solution of a nonlinear optimal control problem.  The authors propose a 

recursive algorithm for sequential improvement of the control law which converges to 

optimal.  The approach is applied to the approximately optimal control of a trainable 

manipulator with seven degrees-of-freedom, where the controller is used for motion 

coordination and optimal execution of object-handling tasks. 

Luh et al. (1980) state that a manipulator is very difficult to control due to the 

nonlinearity of the system and the high level of coupling between the joints.  They 

present a technique which adopts the idea of an “inverse problem” and extend the 

results of resolved-motion-rate controls.  The method deals directly with the position 

and orientation of the end effector.  The approach taken by the authors is to specify 

acceleration and execute the feedback control at the hand level. 
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Koivo and Guo (1981) present an approach to the position and velocity control of a 

manipulator by using an adaptive (self-tuning) controller.  The system is modelled by 

a set of time varying differential equations and the parameters of the system are 

determined by an on-line recursive algorithm based on the least squares error 

criterion.  These differential equations and the chosen parameters are then used as 

the basis for the design of an adaptive controller.  The controller is calculated online 

using the model with estimated values of the system parameters. 

Lee and Chung (1982) also focus on the study of an adaptive control method.  The 

approach taken is based on the perturbation equations in the vicinity of a desired 

trajectory.  The highly coupled nonlinear dynamic equations of a manipulator are 

expanded in the vicinity of a pre-planned joint trajectory to obtain the perturbation 

equations.  The adaptive control strategy reduces the manipulator control to that of a 

linear system about a desired trajectory.  The authors carry out numerical 

simulations on a three-jointed robot arm and the results illustrate that the proposed 

adaptive control algorithm performs better for various loading conditions than a 

simple PD controller based on a computed torque technique.  They conclude that a 

clear advantage of the proposed formulation is that the nominal torques and the 

variational torques can be completed separately and simultaneously. 

Lea et al. (1993) investigate the feasibility of applying fuzzy logic based control for 

robotic systems.  They develop fuzzy logic based algorithms for semi-automatic 

control of a robotic arm to eliminate the problem of inversion of Jacobian matrices in 

conventional control.  In the controller the difference between the desired location 

and current location is fed in as an input vector and joint rate commands are 

generated.  

Jung and Hsia (1995) present a neural network control technique for non-model 

based PD control of robot manipulators.  The proposed technique compensates for 

the robot dynamic uncertainties outside the control loop by modifying the desired 

input trajectory.  The authors use two neural network training signals to develop two 

different control algorithms.  One of the algorithms is comparable to that of the 

Feedback Error Learning (FEL) technique proposed by Kawato et al. in (Kawato, et 

al., 1987) and the other involves the Jacobian of the Proportional Derivative (PD) 

controlled robot dynamic system. 
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Xin et al. use the State Dependent Riccati Equation (SDRE) Technique (Cloutier, 

1997) to build a robust controller for robotic manipulators in (Xin, et al., 2001).  The 

authors formulate the control problem as a nonlinear optimal regulator problem to 

treat the high level of nonlinearity in the problem.  The SDRE technique is used to 

synthesise an optimal controller for the robot control problem. A neural network 

based controller was also synthesised in order to achieve the robustness in the 

presence of the parameter uncertainties. 

Yamada et al. (1998) present a robot manipulator control method using a 

disturbance observer in task space and a simple coordinate transformation using the 

transposed Jacobian matrix.  The authors state that the control method can realise a 

simple control algorithm with smaller computational overheads for large degree-of-

freedom robot manipulators, however, the inertial variation depending on 

manipulator configuration is large due to the simplifications of the control algorithm.  

This means that the decoupled error of the system influences the accuracy of the 

system.  Therefore, the authors introduce a multi-input multi-output (MIMO) 

disturbance observer to the control of the system so that the non-diagonal elements 

of the inertia matrix can be regarded as a control parameter.  The authors also 

introduce a design method for this observer which considers the quadratic stability of 

the system. 

Nahapetian et al. (2008) present a tuning method for a PID controller that uses a 

Genetic Algorithm (GA) as a main gain estimator and Fuzzy Logic as a ranking 

basement for the GA. 

Tang et al. (2010) propose a self-adaptive Proportional Integral Derivative (PID) 

controller based on a Radial Basis Function (RBF) neural network online 

identification for a robot manipulator.  This approach addresses the strong 

nonlinearity and parameter uncertainty in manipulator control and solves the weak 

adaptive ability and poor robustness of the conventional PID control.  The approach 

uses a self-adaptive single neuron network to tune the parameters of the PID 

controller, while and RBF neural network identifies the manipulator online and 

simultaneously obtains the Jacobian transformation for the controller. 
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2.3 Guidance 

Two processes are required to provide guidance for the robotic arm.  The first is to 

provide information about the environment in the form of a map.  The second is to 

generate the path through the map from the starting location to the desired location. 

2.3.1 Mapping 

Before being able to plan a path for the arm, data about obstacles in the operating 

space must first be obtained.  In reality this data must be gathered using some form 

of sensor.  Several types of sensors are available for use in constructing a map of 

the environment.  A simple method of constructing a map is by using range data 

from objects surrounding the vehicle.  Range data can be obtained by measuring the 

time between the transmission of a pulse of a waveform, either of light or sound, and 

its subsequent arrival after reflection off a surface as seen in Figure 2-1.  This is 

known as time-of-flight (ToF).  Knowing the time taken between the transmission and 

receipt of the wave, and the speed of the wave in question, the distance to the object 

and back can be calculated, and the distance to the object is half this. 

 

Sensor
x

d

T

R

Object

 

Figure 2-1 Wave-based sensor operation using ToF to calculate the distance to an 

object. 

 

In this diagram T is the transmitter, R is the receiver, x is the distance to the object, 

and d is the distance between T and R. This distance is often so small that it can be 

considered negligible and treated as zero, simplifying the calculation. 
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Infrared (IR) sensors can be used for distance measurements as shown in (Benet, et 

al., 2002).  Infrared sensors are low cost and have a very quick response time, on 

the order of 10 to 100 wave emission and detections per second (Akai, et al., 2006).  

The disadvantage of using infrared sensors is that they exhibit highly non-linear 

behaviour and depend heavily on the reflectance of the surface in question.  This 

causes environment maps made with measurements based on the intensity of back-

scattered IR light to be of poor quality.  It is for this reason the IR sensors are almost 

exclusively used as proximity detectors in mobile robots.  There are ways of 

estimating the properties of a surface based on its reflectance and subsequently the 

distance from sensor to surface and its angle of orientation, such as the use of the 

Phong Illumination Model (Novotny & Ferrier, 1999), which tends to increase the 

accuracy of the range measurement. 

Benet et al. (2002) also explain how ultrasonic (US) sensors can also be used for 

distance measurement, with a precision of less than one centimetre over a distance 

of six metres.  These sensors are also relatively inexpensive; however they also 

pose a very crucial disadvantage when being used for real time data gathering.  

Most US sensor range finding is based on ToF measurement.  With an object 6 m 

away there is a total flight distance of 12 m.  With a pulse speed of approximately 

340 m s-1 the ToF is approximately 0.04 s.  When compared to light based 

waveforms with a pulse speed of approximately 3 × 108 m s-1 and ToF is 4 ×

10−8seconds, US has a very long response time, making range finding very slow in 

comparison to light based ranging sensors.  Other examples of US ranging and 

mapping include (Audenaert, et al., 1992), (Rencken, 1993) and (Mohammad, 2009). 

Another sensor which provides range information is a laser rangefinder.  Laser 

rangefinder sensors are highly capable of obtaining data in real time with a high 

degree of accuracy.  However, the sensors are very expensive, so using an array of 

laser range-finding sensors to build up a map of the environment is impractical.  An 

alternative is to use a single rapidly scanning laser rangefinder to build a picture of 

the environment.  Buchberger et al. (Buchberger, et al., 1993) use a combination of 

laser-radar and a sonar sensor so that a world model for obstacle avoidance could 

be built. 
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A similar approach by Zhang et al. (Zhang, et al., 2005) uses a Light Detection and 

Ranging (LIDAR) sensor in conjunction with a digital map and video image sequence 

to build a 3-D model of a city landscape.  Other, much older approaches have been 

taken using sonar sensors both for mapping and localisation, and examples include 

(Moravec & Elfes, 1985).  Likewise, improvements in radar over the decades have 

allowed it to be used not only for mapping and object detection, but to the point 

where it can be used to track multiple moving objects (Mobus & Kolbe, 2004), 

(Drumbeller, 2009) and (Elfes & Matthies, 2007) 

LIDAR can also be utilised in a slightly different way to gather information about the 

environment for the purposes of mapping.  A technique called flash LIDAR imagery 

can be implemented which provides highly detailed data for the construction of an 

accurate map of the environment.  A pulse from a wide beam laser can be sent out, 

and the resultant reflection recorded using a high resolution camera.  Each pixel can 

be analysed individually to obtain useful information.  Knowing the frequencies in use 

by the LIDAR, ToF can be used to calculate the range to the object that can be found 

in each pixel.  Given that an emitted sensor pulse travels at the speed of light, this 

technique can be considered to be almost instantaneous, therefore real-time, 

working within μs for distances of kilometres.  Another form of data that can be 

collected from this technique is the intensity of the light that is reflected of the 

frequencies in use.  A large spike indicates that the majority of the light in that pixel 

was reflected; therefore the object it reflected off was flat.  If the reflected light is of a 

lower intensity then less of the light has been reflected, and information about the 

shape of the surface in that pixel can be inferred.  Examples of flash LIDAR in use 

are given in (Gelbart, et al., 2003) and (Hanna, et al., 2005). 

 

d

 

Figure 2-2 Monocular ranging using known vehicle motion to cause disparity between 

successive image frames. 
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Another method of gathering range data and building environment maps is to use 

visual information from camera images.  This can be done using a single camera in 

one of several ways.  The first is to take multiple images of the same object as the 

vehicle moves along its path, knowing the motion of the vehicle hence the distance 

between each image position, and measuring the disparity between images of the 

same object to calculate the distance to the object as shown in Figure 2-2.  The 

biggest drawback to this approach is that the distance to the object can only be 

calculated from successive images so is not instantaneous.  In a similar way a 

complete visual map of an object can be made by taking several images at known 

location and orientations about the object.  This technique is carried out Niem and 

Wingbermuhle (Niem & Wingbermuhle, 1997). 

 

d

mirrors

 

Figure 2-3 Monocular ranging using two mirrors at a known distance from each other 

to provide two images, the disparity of which can be compared to calculate object 

distance. 

 

Another method used is to reflect the image of the object from two slightly different 

positions into one camera, knowing the difference in the position of each reflector 

and measuring the disparity between the reflections to calculate object range as 

shown in Figure 2-3.  This principle effectively simulates stereoscopic vision and 

provides the range information in real time rather than over successive frames.  This 

is the case in (Shimizu & Okutomi, 2007) where Shimizu and Okutomi use a double-

sided half-mirror plate to provide two reflected images, as shown in Figure 2-4.  This 

approach is novel but not practical in a case where multiple cameras are already 

installed on the vehicle as there is no need to add extra hardware to the vehicle for 

stereoscopic ranging. 
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Figure 2-4 Monocular ranging using a pair of double-sided half-mirror plates a known 

distance apart can be used to provide two images of the object, the disparity of which 

can be compared to calculate distance. 

 

A third approach to monocular ranging is to identify the object in the image from an 

image memory and with this information gauge the approximate size of the object.   

This parameter, along with the size of the object in pixels on the image can be used 

to calculate the range of the object.  This approach is taken by Menegatti et al. in 

(Menegatti, et al., 2004).  The greatest limitation with this approach is the high 

memory requirement needed to store enough images to provide an adequate library 

for object identification. 

 

d

 

Figure 2-5 Binocular ranging using two cameras a known distance apart, and 

measuring the disparity between the image taken by each to calculate the object’s 

distance. 

 

A simpler approach to visual ranging and mapping is to use multiple cameras to 

provide stereoscopic images, as illustrated in 
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Figure 2-5.  This approach does not require multiple image frames to provide a 

disparity between images, which reduces the calculation time for range information.  

This approach is taken by Murray and Little (2000) to provide real-time stereo vision 

information.  This information can be used for ranging, mapping, velocity estimation 

(Ab-Rahman, et al., 2005) and 3-D object recognition (Stasse, et al., 2006).  Object 

recognition for localisation and map building can be enhanced by using edge 

recognition to more easily identify object shapes.  This type of approach is taken in 

Rosenfield & Thurston (2006) and Tomono (2010). 

Some of these sensor methods are impractical for this application since they would 

be too large for the arm or base of the manipulator, but there are sensors of small 

enough size and high enough accuracy for the majority of the above techniques.  In 

order to provide an accurate map of the environment in real-time with a large number 

of data points, it will be assumed that a LIDAR sensor will be used, and data 

obtained from objects will follow this assumption. 

 

2.3.2 Path Generation and Following 

Prior to the review of literature in the area of robotic arm guidance it is important to 

consider some terms that are referred to in great frequency in the literature.  The 

physical world, which is the simplest to visualise occurs in the Euclidean domain.  

This domain is also where tasks are carried out by manipulator arms and so is often 

referred to in the literature as task space or T-space.  However it can be useful to 

visualise the world in terms of the manipulator joint combinations that would cause a 

collision between the object and the manipulator arm, as in this visualisation, the 

dimensions of space are the manipulator joint ranges, making the path that is 

planned a single path through this space.  The number of dimensions that are 

present in this space is dependent on the number of degrees-of-freedom of the 

manipulator arm.  For example a 3-DoF arm would create a 3-D space, and an n-

DoF arm would create an n-D space.  This space is often referred to as joint space 

or configuration space (C-Space). 

Path generation for manipulator arms is often carried out in the Euclidean operating 

space with the path then being transformed into a trajectory in joint space to more 
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easily allow for the control of the manipulator (Gasparetto & Zanotto, 2007).  The 

trajectory generation can be done to satisfy different requirements, such as a time-

optimal solution (Gasparetto & Zanotto, 2007), (Ramos, et al., 2013), (Haschke, et 

al., 2008); optimal-pose (Zha, 2002), which is especially useful in surgical robotics, 

minimum energy or optimal power (Gasparetto & Zanotto, 2007), or minimal jerk 

(Gasparetto & Zanotto, 2007), (Gasparetto & Zanotto, 2008), (Haschke, et al., 2008).  

The solution to the problem of trajectory generation in robotic manipulators is 

sufficiently complex that the manipulator dynamics are frequently removed to 

decouple the manipulator joints from one another and calculate for each one 

individually (Gasparetto & Zanotto, 2007).  This paper presents a solution to the path 

and trajectory generation problem which removes the need to decouple joints to 

reduce complexity.  The process of converting obstacles into the joint space (which 

is no more complex than converting a pre-generated path into joint space) allows for 

the manipulator arm to be considered a point mass, and a single path can be 

generated to guide it through the joint space. 

Leven and Hutchinson (2002) use random sampling in C-Space to create a 

probabilistic roadmap of the obstacle-free space.  This method is capable of planning 

a path for a serial-link manipulator with 20 joints in 2 or 3 dimensions, but the method 

is not able to cope with fine motion planning or narrow passages between obstacles, 

which is an inherent drawback with random sampling approaches to this type of 

problem.  This makes this technique unsuitable for the application of path planning 

and obstacle avoidance in close-proximity environments where the likelihood of 

narrow passages is very high. 

Lu and Chung (2005) present a method of path planning based on collision detection 

which is safe for operation in close-proximity to humans.  The method involves 

driving the arm to its desired location, while ensuring that if a collision occurs it is 

detected and an emergency stop command is enabled which controls the force level 

to ensure it is below the human pain threshold to prevent injury.  This method has 

many benefits, especially since it allows robotic manipulators to be operated safely in 

human presence, but is not useable in the application of IED disposal since the 

lightest touch could trigger an explosive detonator. 
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Lin et al (2005) carry out potential field path planning in C-Space rather than the 

Euclidean space.  In order to solve the issue of local minima, the technique employs 

a method of adjusting the potential gradient locally.  This method is tested only in 2-

D, but can be used for 9-DoF, since the potential field will have an effect on all joints 

and links in the arm.  The paper concludes that the method can be extended to 3-D, 

however, since this method acts on each specified point on the arm, it still effectively 

has to generate a path for each link in the manipulator separately.  Wei and Shimin 

(2010) also use potential fields combined with neural networks to allow for path 

planning in dynamic environments.  The technique can be used to generate a path 

which guarantees obstacle avoidance at a safe distance while planning the shortest 

possible route through the environment while also having the benefit of low 

computational load.  This work utilises neural networks to provide optimisation of the 

path.  This method also suffers from the effects of local minima.  Padula and 

Perdereau (2011) use potential fields to control joint velocities in Euclidean space.  

The benefit of controlling joint velocity is that it does not consider dynamics, and 

therefore removes the requirement to deal with joint torques in control.  This method 

is effectively generating a path for each joint in the arm, and has the drawback of 

suffering from the inherent problem of potential fields in that it may converge on local 

minima in cluttered environments, making it unsuitable for the application of close-

proximity environments.  Nakamura (2013) uses a 2-D dipole field to generate a path 

for the end effector of a robotic manipulator.  This paper states that the conventional 

method used to prevent local minima settling often causes oscillations and that the 

author’s proposed method seeks to prevent that occurring.  The method is able to 

provide a smooth path for the end effector in 3-D space, but the technique is carried 

out offline and only deals with the end effector. 

Ryu et al (2007) use inverse kinematic analysis of humanoid robots and a rapidly 

exploring random tree (RRT) to generate a path in C-Space for the robot.  This 

method reduces the need to find several thousand unnecessary configurations, 

which reduces computational complexity, but requires an initial and goal 

configuration, which could be unsolvable if one or both of these configurations are 

unsolvable.  D’Silva and Miikkulainen (2009) have used neural networks RRT 

methods to avoid obstacles in an environment with a 6-DoF manipulator arm.  The 

method of obstacle avoidance can occur in real time, but the learning by the neuro-
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controllers takes place in an environment where the number of objects does not 

change, but may move around, and the nodes in the network cannot relearn once 

they have carried out their learning process.  This makes the technique unsuitable 

for use in a function where the environment will be different with every use of the 

arm. 

Ding et al (2009) use mixed-integer linear programming to plan an optimal path 

through an environment with dynamic obstacles.  The technique uses rectangular 

approximation of object to simplify the computational requirements, but it requires 

trajectories to be known a priori.  The simplifying of obstacles to rectangular 

approximations means that any concavity in the objects will be removed, and so 

potentially navigable valleys where objects form a narrow channel will not be 

considered by the path planning algorithm.  This drawback removes the ability of the 

algorithm to handle the close-proximity environments which are commonplace in IED 

disposal applications. 

Korayem et al (2009) attempt to overcome the non-linearity in flexible robot arm 

dynamic equations using finite element analysis to plan a path in task space for the 

end effector of a 2-DoF manipulator.  The advantage of this method is that it 

removes the need to linearize the system in order to implement optimal control 

methods.  Since this method only solves the path planning problem for the end 

effector of a 2-DoF arm, it is not applicable to the problem of manipulator planning in 

3-DoF for obstacle avoidance of the entire arm. 

Chetty and Pomambalam (2012) employ a heuristic approach towards the planning 

of a path for a manipulator which operates in a 2-D plane.  The method uses an 

iterative approach of particle swarm optimisation to search for random joint 

combinations that will enable the arm to reach the desired end effector location 

without colliding with obstacles at any point on the arm throughout the process.  The 

manipulator that is used is a planar 5-DoF manipulator, though this technique could 

be applied to 3-D.  The method is only applicable, however, in a static environment 

with fixed obstacles since any motion would render potential solutions already found 

ineffective or unachievable. 

Chen et al (2012) use fuzzy logic to plan a path for a 2-DoF fixed pedestal 

manipulator arm.  Their approach is advantageous since it does not require inverse 
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kinematics, but only deals with obstacle avoidance for the end effector and only for a 

2-DoF manipulator arm. 

Singh and Leu (1987) carry out an offline trajectory planning algorithm for a 

manipulator arm which it can then follow.  They attempt to reduce the problem to a 

trajectory search for a single link, but the inability to work in real time prevents this 

algorithm from being useful for the application investigated in this project.  Kubota et 

al. (1997) attempt to solve this problem using a virus evolutionary algorithm.  They 

carry this process out by generating intermediate locations for the arm that are free 

from collision and then plot trajectories between these different positions to achieve 

their goal.  Gasparetto and Zanotto (2007) use B-spheres to generate a smooth 

trajectory rather than the jerk-bounded approach that has previously been used.  

Macfalane and Croft (2003) use an online method to obtain jerk-bounded trajectories 

using a concatenation of fifth order polynomials, and achieves the goal but requires 

up to a maximum of eight points per trajectory waypoint.  Dos Santos et al. (2008) 

use joint velocity control to plan a path through a constrained workspace.  This 

technique is highly applicable in industrial environments where time-optimal solutions 

are highly sought after.  The method analyses the distance between points on the 

entire manipulator and any obstacle to determine a safe path.  This technique is run 

offline however, and since the path is pre-generated, it cannot handle dynamic 

environments or moving obstacles. 

Koren and Borenstein discuss the use of the potential field method and its strengths 

and limitations (Koren & Borenstein, 2002).  The potential field method gained 

popularity in the early 1990s for obstacle avoidance, especially when applied robot 

manipulators.  The potential field method is attractive because of its elegance and 

simplicity, but has several substantial shortcomings such as trap situations due to 

local minima, the inability to pass between closely spaced obstacles and oscillation 

in the presence of obstacles and in narrow passages.  It is these drawbacks that 

make this method unsuitable for the guidance of the manipulator arm due to the tight 

constraints that are imposed as a result of the nature of the function to be carried 

out. 

Hota and Ghose (2010) take a novel approach to path planning. Instead of planning 

an optimal solution for a constant speed and turn rate constrained 
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Uninhabited/Unmanned Aerial Vehicle (UAV), they propose using a sub-optimal 

solution.  They compare their sub-optimal solution with an optimal one and conclude 

that the optimal solution is very computation intensive and the sub-optimal solution 

generates a solution close to the optimal one in a shorter time, with a lower 

computational load, making it more efficient and more easily applicable to a UAV 

with limited computational power. 

Work has been carried out by the former Autonomous Systems Group at Cranfield 

University involving guidance of UAVs.  From 2007 onwards, Shanmugavel et al. 

carried out work looking at two different geometric path planning algorithms for the 

guidance for simultaneous arrival at a target of multiple UAVs. 

 

Circle Based Dubins Path

Pythagorean-Hodograph Based Path

 

Figure 2-6 Comparison of a Dubins based path with a P-H based path that start and 

end at the same position and pose. 

 

In Shanmugavel, et al. (2007) the authors propose a technique for path following 

based on Dubins Paths (Dubins, 1957). The technique aims to ensure simultaneous 

arrival of all vehicles at the target by enforcing a constraint whereby the path length 

of each UAV is the same.  The authors state that the transition between arc and line 

segments, which is required in Dubins path following, entails discontinuous changes 

in lateral acceleration (latax) for fixed-wing UAVs. Because of this the authors make 

the choice to replace the Dubins-based solution with one based on quintic 

Pythagorean Hodograph (PH) curves as shown in Figure 2-6, with which the latax 

demand is continuous.  They design the PH paths to be similar in length to the paths 

generated in the Dubins-based solution to maintain a near minimum time solution.  

The solution meets the required specification of minimum curvature and produces 

multiple paths of equal length by plotting paths for each UAV and then lengthening 



32 
 

those shorter than the others.  The solution also satisfies the safety constraints and 

avoids inter-collision by maintaining a minimum distance between UAVs and 

maintaining a minimum distance between UAVs and maintaining non-intersection at 

equal path distance. 

In Shanmugavel, et al. (2009) the authors describe the cooperative path planning of 

a group of UAVs, again with the constraint of simultaneous arrival of the UAVs at the 

target. In this case the authors elect to use Dubins paths with Clothoid shaped arc 

segments, where the curvature decreases gradually, rather than the instantaneous 

change between zero curvature of the line segment and a much larger curvature of a 

curved path segment.  The paths are produced using the principles of differential 

geometry used by White et al. in (White, et al., 2007). 

Further work by the Autonomous Systems Group is carried out by Kim et al. (2010). 

The authors propose the use of a decision making algorithm that mainly relies on 

waypoint generation and path planning based on Dubins’ Theory to guarantee 

communication between a ground control station and a swarm of UAVs.  The 

algorithm looks at various constraints such as maximum speed, minimum curvature 

radius and no fly zones that arise in the mission operative scenario. 

These methods are not directly applicable to manipulator arms in T-space since 

there are multiple connected systems to plan paths for simultaneously, but if the path 

were to be generated in the control domain, C-space, then the robotic manipulator 

would become, in effect, a point mass.  This would then allow the above techniques 

to be applied to the problem of path planning for robotic manipulators. 

Yao and Gupta (2007) plot a kinematic roadmap in C-Space with end-effector 

constraints before using an RRT to plan a path.  The technique uses task space for 

end effector planning to narrow down the C-Space search.  This method does not 

guarantee a solution since selecting end effector start and end locations does not 

ensure that an achievable path is possible, and this will only be discovered when the 

RRT search is exhausted.  Conversely, there may be a large number of possible 

solutions that require searching in order to find the best route, be it time or energy-

optimum.  Kunz et al (2010) implement real-time path planning in a changing 

environment by building a roadmap of the environment and then generating a path 

using a RRT method.  This technique handles dynamic obstacles by blocking parts 
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of the roadmap so that the RRT algorithm cannot use them when an obstacle is in 

that region of the roadmap.  This technique is applicable to high-DoF and can 

generate a path on the roadmap online and in real-time, but it is implemented in a 

quasi-dynamic environment where the roadmap does not change, and so can 

calculated off-line prior to the operation of the arm.  This saves time when online, but 

makes it difficult to apply when the roadmap would need to be generated prior to 

every new mission. 

Lahaouar et al (2005)  employ a grid based method for path planning of manipulators 

in C-Space, whereby the grid is developed for a path directly from the start 

configuration to the end configuration, but does not consider any obstacle unless it 

crosses the path, whereby a grid search takes place to find a safe path around the 

obstacle.  This significantly reduces the computational cost of the path generation 

and this method has merit for the application of IED disposal since it involves edge 

following.  This method, however, is dependent on the resolution of the grid since a 

grid square is classed as occupied if it is 1% full or 100% full.  This method also has 

to search in different directions to find the shortest path around an obstacle.  This 

doubled up search is time-consuming.  Klanke et al (2006) use a genetic algorithm to 

plot a path through a grid in C-Space.  Their algorithm runs in real-time, and the local 

node complexity does not depend on the dimensionality of the space.  This is done 

by decoupling the degrees of freedom to generate a path for each decoupled set. 

For the grid-based methods of path planning, graph theory is a well-established 

technique (Euler, 1766), (Biggs, et al., 1976).  Graph theory is, in essence, the study 

of graphs, and these can be used to examine, investigate and model relationships 

between data or objects (Walther, 2012).  They are used throughout science, 

computing, finance, mathematics, and many other disciplines.   Prime examples of 

this are the search and cataloguing algorithms used by large databases owned by 

companies like Google (Langville & Meyer, 2006) or Facebook (CBS & McCarthy, 

2010).  Graph theory is used to create connections between pieces of data.  Graph 

theory is also used to carry out energy optimisation (Kladis, et al., 2008).  The use 

that is most similar to that implemented here is for satellite navigation units, including 

those used by the consumer market.  Graph theory is used to plot a path between 

destinations via road junctions, and can be carried out using the shortest distance, 

quickest time, or best fuel consumption. 
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In this case a graph will is used to model the relationship between points in space.  

The graph contains “vertices” which represent the points in space and “links” which 

represent the paths between nodes, and connect them to each other.  The length of 

these vertices could represent a whole plethora of information, but for simplicity this 

will be the distance between the nodes.  This now forms a graph similar to that 

shown in Figure 2-7. 
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Figure 2-7 Example of a node graph (not to scale).  Each node is numbered and the 

vertices between them are labelled with letters. 

 

Each of the nodes are numbered and each vertex has length, in this case these 

lengths are defined by lower case a-i.  This graph can also be represented by an nxn 

matrix, where n is the number of nodes in the graph.  In the example given 

previously, this is a 7x7 matrix (A).  Each element in the array represents the 

relationship or vertex between the nodes that are equivalent to the horizontal and 

vertical indices of the element. 

For example the link between node 4 and node 7 is represented by A4,7 and A7,4.  

The value of the distance between the nodes is the value recorded by the 

corresponding elements in the array.  For nodes that are connected this is the length 

of the vertex.  For values that are not connected, this length is infinite.  For the 

elements that represent the distance between a node and itself, the value is zero.  

For the above example, this gives matrix A as seen in Equation (2.1): 
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 𝐴 =

[
 
 
 
 
 
 
0 𝑎 ∞ ∞ ∞ ∞ ∞
𝑎 0 𝑏 𝑐 ∞ ∞ ∞
∞ 𝑏 0 𝑑 ∞ 𝑓 ∞
∞ 𝑐 𝑑 0 𝑒 ∞ 𝑔
∞ ∞ ∞ 𝑒 0 ℎ 𝑖
∞ ∞ 𝑓 ∞ ℎ 0 ∞
∞ ∞ ∞ 𝑔 𝑖 ∞ 0 ]

 
 
 
 
 
 

 
(2.1) 

 

This matrix is known as an adjacency matrix.  It is worth noting that the lengths of the 

vertices could mean something completely different.  For example, if instead of 

requiring the distance between the nodes, the energy requirement to travel between 

them were needed, then the data presented as the vertex “length” would be the 

energy cost.  It is also interesting to note that if all of the links between nodes on the 

graph can be traversed in both directions, then the adjacency matrix will be a 

diagonal matrix as is the one above. 

An advantage to graph theory is that any node, regardless of where it is situated, is 

given an identifier which corresponds to a row and a column in the adjacency matrix, 

which means that regardless of the number of variables needed to define a node 

(e.g. x, y, z which corresponds to three-dimensional coordinates), the node can 

always be represented in relation to all of the others by including it in a two-

dimensional adjacency matrix.  This is also true when more than three dimensions 

are required.  This will be shown later in this chapter. 

In the case of the technique being developed to provide autonomous path generation 

and guidance for a robotic arm, several dimensions are needed, ranging from 5 to 9 

or 10 dimensions.  This presents a problem where the solution is one of high 

dimensionality, and there are several methods that can be used for path planning in 

multiple dimensions.  The method chosen here has the ability to reduce the 

dimensionality of the path planning problem from n to 2. 

The map of the environment in Euclidean space is obtained from an array of sensors 

and converted into the control domain.  In the case of robot arm control this could 

constitute the control requirements of each of the servos that move the arm in one 

degree-of-freedom.  In the case of a high degree-of-freedom arm the number of 
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dimensions could also be high.  The nodes on this map, which follow the boundaries 

of objects can be analysed to find the adjacency matrix, forming a node graph which 

can be represented in 2 dimensions. 

Here a path planning algorithm that employs graphs must be utilised to find the node 

sequence with the smallest cost.  This will be the most optimum path in that variable 

(distance, time, energy, etc). 

There are a number of algorithms that could be used to generate a path through the 

graph.  These include: 

- Ford-Fulkerson Algorithm (Ford & Fulkerson, 1956) 

- Kruskal’s Algorithm (Kruskal, 1956) 

- Nearest Neighbour Algorithm (Gutin, et al., 2002) 

- Prim’s Algorithm (Prim, 1957) 

- Depth-first Algorithm (Anon., 2001) 

- Breadth-first Algorithm (Anon., 2001) 

- Bellman-Ford Algorithm (Bellman, 1958) 

- Dijkstra’s Algorithm (Dijkstra, 1959) (Anon., 2001) 

These algorithms are all designed to find paths through a graph, but for different 

functions.   The Ford-Fulkerson Algorithm is designed to find maximum flow in a flow 

network.  Kruskal’s Algorithm finds a minimal spanning tree which connects all of the 

nodes together by the shortest paths possible.  Prim’s Algorithm is designed to solve 

the same problem as Kruskal’s Algorithm.  The Nearest Neighbour Algorithm 

performs a similar function in that it attempts to solve the travelling salesman 

problem and visits each node at least once, by visiting the nearest node to the 

current one.  

The Breadth-first and Depth-first Algorithms are designed to search through a tree to 

find a specified node.  The Depth-first search completely explores one branch of the 

tree to its tip before exploring the sub-branches of that branch back towards the root 

of the tree.  Once all of the sub-branches on that branch are explored it moves on to 

the next branch of the tree.  The Breadth-first Algorithm searches across the entirety 

of the second level of the tree before moving on the third level.  This achieves a 

search which covers all branches simultaneously.  These searches would find a 

solution to the problem of finding a path from the start node to the destination node, 
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but except by chance would not necessarily be an optimal path or be found in the 

shortest time. 

Dijkstra’s Algorithm is designed to solve a single source, shortest path problem for a 

node graph.  This produces a shortest path tree, and the algorithm can be stopped 

when the tree reaches the desired node.  It can also be used for finding costs of 

shortest paths from a single vertex to a single destination vertex by stopping the 

algorithm once the shortest path to the destination vertex has been determined.  The 

algorithm works by assigning a value to the distance from the start node to every 

node that it can connect to in the graph, and attempts to improve upon the distances 

at every step.  The Bellman-Ford Algorithm is very similar to Dijkstra’s Algorithm in 

that it is also designed to compute the shortest path from one node to all the others, 

and can be stopped when it reaches the desired node.  The Bellman-Ford Algorithm 

has the added advantage that it is capable of handling negative link costs as well as 

non-negative ones.  This advantage is not necessary in the required application as 

all distances must be positive, and the Bellman-Ford Algorithm is also theoretically 

slower than Dijkstra’s Algorithm.  The performance of the two algorithms are shown 

in Table 2-3 and Table 2-4. 

 

Table 2-3 Comparison of algorithm running times. 

Algorithm Worst case running time 

Dijkstra 𝑂(|𝐸| + |𝑉|𝑙𝑜𝑔|𝑉|) 

Bellman-Ford 𝑂(|𝑉||𝐸|) 

 

Where E is the number of edges (links) and V the number of vertices (nodes).  For 

the above example graph, which has 7 nodes and 9 links, the following is the case. 

𝐸 = 9 and 𝑉 = 7: 

As can be seen from Table 2-4, Dijkstra’s Algorithm is significantly faster than the 

Bellman-Ford Algorithm, and based on the formula for calculation time, this 

difference in calculation time will only increase for larger, more complex graphs. 

Table 2-4 Comparison of algorithm running times with values. 
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Algorithm Worst case running time 

Dijkstra 𝑂(9 + 7𝑙𝑜𝑔7) = 𝑂(22.6214) 

Bellman-Ford 𝑂(7 × 9) = 𝑂(63) 

 

The following section gives an explanation of the method by which Dijkstra’s 

Algorithm works.  It is implemented by the carrying out the following iterative 

process.  The starting node will be termed the initial node (I), and the destination 

node will be denoted by J.  Dijkstra’s Algorithm assigns distance values to the path 

and attempts to improve them step by step: 

1. Assign an initial distance value to each node, zero for the initial node 

and infinite for all of the others. 

2. All nodes are marked as unvisited, and the initial node is set as the 

current node.  All unvisited nodes are included in a set (unvisited set), 

which at this point consists of all the nodes except for the current node. 

3. Consider all of the nodes connected to the current node by a link, 

calculate their tentative distances from the current node based on the 

cost of the link between these nodes and the current node.  For 

example, if current node A is marked with a distance of 5, and the link 

connecting it with neighbour B has length 4, then the distance to B via 

A will be the sum of tentative distance at node A and the link length 

from A to B.  If this distance is less than any previously recorded 

tentative distance at B (for example via another route), then overwrite 

that distance with the new tentative distance.  Even when the 

neighbour B has been examined, it is not marked as visited and 

remains in the unvisited set. 

4. When all of the neighbours of the current node have been examined, 

mark the current node as visited and remove it from the unvisited set.  

A visited node can never be checked again once it has been marked 

as visited. 
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5. If the destination node has been marked as visited or the smallest 

tentative distance among the nodes is set as infinite, then stop as the 

algorithm has finished. 

6. Select the unvisited node with the smallest tentative distance out of all 

nodes in the unvisited set and set it as the current node. 

7. Repeat algorithm from step 3. 
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Figure 2-8 Example of an environment where graph theory can be used to generate a 

trajectory. 

 

To illustrate the Dijkstra’s Algorithm as simple example of a tank traversing an 

environment towards a target over a river with four obstacles, a ford in the river, a 

bridge over it, a tunnel under it and two enemy tanks. The purple circles represent 
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nodes in the graph and the vertices are labelled with their costs (in this case the 

distances between them).  The following diagram shows the scenario and with a 

graph overlaid on top.  The graph contains 8 nodes and 13 links and the cost of each 

link is displayed in the diagram.  The vehicle at node one is attempting to reach node 

4.  This graph show in  Figure 2-8 produces the adjacency matrix found in Equation 

(2.2): 

 

 𝐴 =

[
 
 
 
 
 
 
 

0 500 ∞ ∞ 800 ∞ 930 ∞
500 0 200 ∞ 800 ∞ 720 ∞
∞ 200 0 790 ∞ 840 ∞ 1100
∞ ∞ 790 0 ∞ 1700 ∞ 1200

800 800 ∞ ∞ 0 180 ∞ ∞
∞ ∞ 840 1700 180 0 ∞ ∞

930 720 ∞ ∞ ∞ ∞ 0 300
∞ ∞ 1100 1200 ∞ ∞ 300 0 ]

 
 
 
 
 
 
 

 
(2.2) 

By inspection of the map (which is not to scale), the path that appears to be the 

shortest would be 1 2 3 4   , with a distance of 1490 m.  By passing the matrix 

through Dijkstra’s Algorithm, the result is identical. 
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Figure 2-9 A simple node graph. 
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It is worth noting what occurs when two paths are the same length.  In the example 

shown in Figure 2-9, the two possible routes are 1 2 3 5 6     or 

1 2 4 5 6    .  However, Dijkstra’s Algorithm will always travel by the shortest 

path with the lowest node identifiers as the algorithm searches sequentially through 

the nodes which are the nearest neighbours of the current node.  To illustrate this 

nodes 3 and 4 have been switched in the second diagram, indicated by the red node 

identifiers, however, as the adjacency matrix is identical, the algorithm will still 

always pick the first of the two routes (1 2 3 5 6    ).  Equation (2.3) shows the 

adjacency matrix  representing the node graphs from Figure 2-9. 

 

 𝐴 =

[
 
 
 
 
 
0 1 ∞ ∞ ∞ ∞
1 0 2 2 ∞ ∞
∞ 2 0 ∞ 2 ∞
∞ 2 ∞ 0 2 ∞
∞ ∞ 2 2 0 1
∞ ∞ ∞ ∞ 1 0]

 
 
 
 
 

 
(2.3) 

 

A more complex example which shows this to be the case is given in Figure 2-10. 
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Figure 2-10 A node graph with more complexity than that of Figure 2-9. 
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The adjacency matrices for the node graphs show in Figure 2-10 are found in 

Equations (2.4) and (2.5), which represent the left and right node graphs in the figure 

respectively. 

 

 𝐴 =

[
 
 
 
 
 
 
 
0 ∞ ∞ 1 ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ ∞ 1 1 ∞
∞ ∞ 0 1 1 ∞ ∞ ∞
1 ∞ 1 0 ∞ ∞ 1 ∞
∞ ∞ 1 ∞ 0 1 ∞ ∞
∞ 1 ∞ ∞ 1 0 ∞ 1
∞ 1 ∞ 1 ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ 1 ∞ 0]

 
 
 
 
 
 
 

 
(2.4) 

 

 𝐴 =

[
 
 
 
 
 
 
 
0 ∞ ∞ 1 ∞ ∞ ∞ ∞
∞ 0 ∞ 1 ∞ ∞ 1 ∞
∞ ∞ 0 1 1 ∞ ∞ ∞
1 1 1 0 ∞ ∞ ∞ ∞
∞ ∞ 1 ∞ 0 1 ∞ ∞
∞ ∞ ∞ ∞ 1 0 1 1
∞ 1 ∞ ∞ ∞ 1 0 ∞
∞ ∞ ∞ ∞ ∞ 1 ∞ 0]

 
 
 
 
 
 
 

 
(2.5) 

 

Having run Dijkstra’s Algorithm on these two adjacency matrices, the results are as 

follows.  For the original graph, the path taken is 1 4 3 5 6 8     , but for the 

second graph, the path taken is 1 4 2 7 6 8     .  This again shows that the 

algorithm searches the tree with the lowest node identifier first. 

As was previously mentioned in this chapter, graph theory allows for higher 

dimensionality path generation by reducing the dimensionality to 2 while calculating 

the nodes in the path.  For example, Figure 2-11 maps the boundaries of a cube. 
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Figure 2-11 A node graph with three-dimensional coordinated. 

 

In this graph all of the black lines have 1m cost and all of the coloured lines have √2 

m cost.  As can be seen in the graph, the nodes labelled 2 to 5, which could be 

considered to be on one plane and are in that sense a 2-D graph, have links to, and 

so are adjacent to the nodes labelled 6 to 9.  There are 10 nodes on the graph, and 

this produces the 10x10 adjacency matrix shown in Equation (2.6). 

 

 𝐴 =

[
 
 
 
 
 
 
 
 
 
 
0 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 0 1 1 √2 1 √2 √2 ∞ ∞

∞ 1 0 √2 1 √2 1 ∞ √2 ∞

∞ 1 √2 0 1 √2 ∞ 1 √2 ∞

∞ √2 1 1 0 ∞ √2 √2 1 ∞

∞ 1 √2 √2 ∞ 0 1 1 √2 ∞

∞ √2 1 ∞ √2 1 0 √2 1 ∞

∞ √2 ∞ 1 √2 1 √2 0 1 ∞

∞ ∞ √2 √2 1 √2 1 1 0 1
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 0]

 
 
 
 
 
 
 
 
 
 

 (2.6)  
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This adjacency matrix has the ability to generate the graph shown in Figure 2-12, 

where the red lines have a cost of 1m and the black lines a cost of 2  m. 
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Figure 2-12 The three-dimensional node graph from Figure 2-11 flattened out into a 

two-dimensional node graph. 

 

This adjacency matrix, when inputted into Dijkstra’s Algorithm, gives the optimum 

distance path from 1 to 10 as 1 2 3 9 10    , which by inspection of the cube 

graph is one of the shortest paths, with a cost of 4.4142 m.  It also follows the 

convention of moving to the smallest node identifier first. 

There are, of course, other variables that could be used to calculate the optimum 

path between nodes.  In the example of the tank scenario, instead of the distance 

from one node to another, the energy requirement to get between the nodes could 

be used to find an energy optimum path.  In Figure 2-13 the distance is denoted by 

the black value, and the energy is denoted by the red number. 
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Figure 2-13 Example of an environment where graph theory can be used to generate a 

trajectory with energy costs as well as distance. 

 

These values are not designed to necessarily be realistic, but follow a general rule of 

being similar in proportion to the lengths (a longer path will require more energy).  

The ford is drastically different as it would require significantly more energy to wade 

through the water.  The target base is designed to be slightly uphill, and the lower 

bank of the river slopes gently downwards away from the vehicle start point towards 

the water.  These values produce the adjacency matrix seen in Equation (2.7): 
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 𝐴 =

[
 
 
 
 
 
 
 

0 480 ∞ ∞ 790 ∞ 910 ∞
480 0 200 ∞ 810 ∞ 740 ∞
∞ 200 0 1700 ∞ 890 ∞ 1200
∞ ∞ 1700 0 ∞ 2000 ∞ 850

790 810 ∞ ∞ 0 8000 ∞ ∞
∞ ∞ 890 2000 8000 0 ∞ ∞

910 740 ∞ ∞ ∞ ∞ 0 300
∞ ∞ 1200 850 ∞ ∞ 300 0 ]

 
 
 
 
 
 
 

 (2.7) 

 

This adjacency matrix produces a path from node 1 to 4 of 1 → 7 → 8 → 4, and a 

cost of 2060 kJ, which varies from the distance graph, which produced a path of 

1 → 2 → 3 → 4, with a cost of 1490 m. 

Jun and D’Andrea (2002) (Butenko, et al., 2002) investigate the use of graph theory 

for path planning in UAV applications, but add the concept of decision-making.  They 

create a probability map of the environment, which maps the probability of 

encountering threats and then integrate the path planning algorithm to generate the 

safest path through the environment. 

A simple way of carrying this out would be to calculate the probability of a threat on 

each link of the graph, and add these probabilities, scaled by some calibrated 

weighting factor, to the cost of the link.  In this way those paths with a higher 

probability of threat will have a significantly higher cost, and so would be more likely 

to be avoided.  It would be important to calibrate the weighting factor correctly as 

there could be a fine balance between choosing a short route on the basis of it being 

the most optimum route in terms of energy consumption and it being a non-optimal 

route in terms of the risk to the mission completion or vehicle safety, or both.  The 

example of the tank crossing a river will again be used to illustrate this 

implementation. 
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Figure 2-14 Example of an environment where graph theory can be used to generate a 

trajectory with risk associated costs. 

 

The black and red values in Figure 2-14 represent the distance and energy costs of 

the links, respectively, and the green values represent the probability that a link will 

be broken.  The adjacency matrices for distance and energy cost are identical to 

those previously outlined.  The adjacency matrix for the distance is seen in Equation 

(2.8). 
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 𝐴 =

[
 
 
 
 
 
 
 

0 500 ∞ ∞ 800 ∞ 930 ∞
500 0 200 ∞ 800 ∞ 720 ∞
∞ 200 0 790 ∞ 840 ∞ 1100
∞ ∞ 790 0 ∞ 1700 ∞ 1200

800 800 ∞ ∞ 0 180 ∞ ∞
∞ ∞ 840 1700 180 0 ∞ ∞

930 720 ∞ ∞ ∞ ∞ 0 300
∞ ∞ 1100 1200 ∞ ∞ 300 0 ]

 
 
 
 
 
 
 

 (2.8) 

 

The adjacency matrix for the energy cost is seen in Equation (2.9). 

 

 𝐴 =

[
 
 
 
 
 
 
 

0 480 ∞ ∞ 790 ∞ 910 ∞
480 0 200 ∞ 810 ∞ 740 ∞
∞ 200 0 1700 ∞ 890 ∞ 1200
∞ ∞ 1700 0 ∞ 2000 ∞ 850

790 810 ∞ ∞ 0 8000 ∞ ∞
∞ ∞ 890 2000 8000 0 ∞ ∞

910 740 ∞ ∞ ∞ ∞ 0 300
∞ ∞ 1200 8500 ∞ ∞ 300 0 ]

 
 
 
 
 
 
 

 (2.9) 

 

The adjacency matrix for the probabilities of link breakage is seen in Equation (2.10). 

 

 𝐴 =

[
 
 
 
 
 
 
 
0 0 ∞ ∞ 0 ∞ 0 ∞
0 0 0.8 ∞ 0 ∞ 0 ∞
∞ 0.8 0 0.2 ∞ 0.1 ∞ 0.9
∞ ∞ 0.2 0 ∞ 0.1 ∞ 0.4
0 0 ∞ ∞ 0 0.3 ∞ ∞
∞ ∞ 0.1 0.1 0.3 0 ∞ ∞
0 0 ∞ ∞ ∞ ∞ 0 0.1
∞ ∞ 0.9 0.4 ∞ ∞ 0.1 0 ]

 
 
 
 
 
 
 

 (2.10) 

 

By using Equation (2.11) the probability of a break in one or more links can be taken 

into account when the path is generated. 

 

 𝐵 = 𝐴 + 𝑤𝐴𝑝 (2.11) 
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Where B is the new adjacency matrix, A is the adjacency matrix that is being used to 

calculate the optimum path (e.g. distance, energy cost, etc), and Ap is the adjacency 

matrix with the probability of link breakages.  When Equation (2.11) is applied with a 

variety of different weighting factors, the results in Table 2-5 are generated: 

As can be seen from these results, depending on the probability of a break in a link, 

when the weighting factor is large enough the path with the best probability of 

success is chosen.  In the case of the distance graph, this path is different to the 

optimum distance path.  In the case of the energy cost graph, this path is the same 

as the optimum energy path. 

 

Table 2-5 Change of path across the environment depending on the size of the 

weighting factor added to the risk associated with each vertex. 

Probability 

Weighting Factor Distance Energy 

0 

1 → 2 → 3 → 4 

(1490 m) 

1 → 7 → 8 → 4 

(2060 kJ) 

1 

1 → 2 → 3 → 4 

(1491 m) 

1 → 7 → 8 → 4 

(2060.5 kJ) 

10 

1 → 2 → 3 → 4 

(1500 m) 

1 → 7 → 8 → 4 

(2065 kJ) 

100 

1 → 2 → 3 → 4 

(1590 m) 

1 → 7 → 8 → 4 

(2110 kJ) 

1000 

1 → 2 → 3 → 4 

(2490 m) 

1 → 7 → 8 → 4 

(2560 kJ) 

10000 

1 → 5 → 6 → 4 

(6680 m) 

1 → 7 → 8 → 4 

(7060 kJ) 
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2.4 Summary of Literature 

In the literature, the most popular method of robotic manipulator control is to use a 

PID controller, but since systems of this type display highly non-linear characteristics 

and joints in a manipulator arm are dynamically linked the control has to be adaptive 

to provide adequate control in many different geometries and angular velocities.  

Several of the investigated literature attempt to solve the problem of gain selection 

online during manipulator operation, and different optimisation methods are used to 

solve this problem. 

Regarding navigation through environments for robotic manipulators, the most 

commonly used principle is to carry out the path generation in C-Space rather than 

T-space.  Working in C-Space is advantageous since any generated path is 

produced in terms of the direct control requirements of the manipulator arm rather 

than requiring to be converted into its control requirements following the generation 

of the path.  The second great advantage of working in C-Space rather than T-space 

relates to the need to consider the entire arm for collision avoidance and not just the 

end effector. 

Objects in T-space can be considered to be regions of space where no part of the 

arm can traverse.  To prevent any collisions between the arm and these 

impermissible regions of space and the entire arm, the locations of at least all of the 

joints in the arm, and possibly the entire arm must be considered to generate a 

series of arm configurations which must then be resolved into the control parameters 

(i.e. joint angles). 

Conversely, any impermissible regions in T-space must correspond with a set of joint 

angles which are also forbidden.  Given that each object is continuous and also the 

arm is continuous, each solution set for the impermissible angle ranges caused by 

an object must also be continuous.  By converting obstacles from T-space into C-

Space, all collision information from the entire arm with each obstacle is now 

contained in the C-Space version of the obstacles in an n-dimensional space, where 

n is the number of control parameters (joint angles) of the arm, in this case 3.  This 

allows the entire arm to be considered as a point mass in C-Space and only 1 path 

has to be generated from the initial arm configuration to the desired arm 

configuration which already exists in the control domain rather than multiple paths in 
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T-space which must then be converted into a single path in C-Space following the 

path generation. 

With the decision to operate in C-Space, the path planning problem becomes one of 

a standard 3-dimensional obstacle avoidance problem.  This allows for the use of a 

lot of established techniques which would have been impractical when generating a 

path in T-space. 

Having carried out a survey of available techniques, the decision has been taken to 

implement path generation for a robotic manipulator using graph theory.  This is 

because the node graph generation can be carried out very simply given the way in 

which the impermissible regions and permissible boundaries of obstacles are 

calculated using triangulation.  Also, graph theory allows for the path planning 

problem to become two-dimensional which will reduce the computational 

requirements of the trajectory generation and hence speed up the run time of the 

technique. 

Based upon the conclusions made in this section the following decisions have been 

made.  The guidance method will be carried out in C-Space and graph theory will be 

used to generate a path through C-Space.  Simulated sensor data about obstacles 

will be assumed to be noiseless; therefore the data inputted to the guidance method 

will be the exact location of the measured points in space.  Derivation of the dynamic 

model of a manipulator arm will be carried out using Newtonian mechanics owing to 

its smaller computational overheads. 

In the following chapters, the decisions made as a result of the review of literature 

will be implemented in order to carry out the objectives determined in Chapter 1.  

Chapters 3 and 4 derive the kinematic and dynamic models if the robotic manipulator 

arm respectively and Chapter 5 implements a suitable control schema for the 

dynamic model.  Chapters 6 deals with the formation of a map in C-space, given T-

space obstacle data.  Chapter 7 is responsible for the implementation of a path 

planning method which will use the C-space map to safely plan a route for the 

manipulator arm through the environment.  Chapter 8 presents the results of a series 

of simulations which are then used to validate the effectiveness of the combined 

dynamic system and guidance method and Chapter 9 presents the findings of the 

research undertaken in this thesis. 
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3 KINEMATIC MODELLING OF ROBOTIC MANIPULATORS 

In the Introduction chapter to this thesis, the problems surrounding guidance and 

control of a 3-DoF robotic manipulator arm in real time in close-proximity 

environments has been discussed.  The remainder of this thesis deals with the 

development of a technique which will satisfy this goal.  A starting point in achieving 

the aims and objectives laid down in the Introduction would be to investigate the 

development of kinematic and dynamic models of a 3-DoF manipulator arm for use 

both as a test bed for the control and path tracking ability of the arm model, and also 

as a means of developing a guidance method which is suitable for use in this type of 

navigation problem.  In this chapter a forward and inverse kinematic model is 

developed for use in the remainder of the thesis.  This chapter deals with the block 

highlighted in red in Figure 1-4, which is displayed again here with all of the other 

processes greyed out. 

Sensor

Arm Position and 

Pose

(Servo Encoders)

Simulated 

Environment Data

User Input

Desired End 

Effector Location

Map Conversion to 

C-space

Plotting of Current 

and Desired End 

Effector Location

Path Generation Path Following
Arm Servo 

Controllers

Arm Dynamics

Arm Kinematics

 

Figure 3-1 Manipulator arm kinematics (red) in relation to the overall guidance 

method. 
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3.1 Overview 

Having investigated literature on kinematic modelling of robotic manipulator arms, 

some of the information contained there can be used to develop forward and inverse 

kinematic models of the robotic manipulator, which can then be used in Chapter 6 for 

the conversion of T-space obstacle data into a C-space environment map.  The 

kinematic modelling is carried out in three ways, the first by trigonometry, the second 

by Denavit-Hartenberg Parameters and the third by solution to simultaneous 

equations. 

The development of the forward kinematics allows for the modelling of the arm so 

that given the angles between each link in the arm (provided by servo encoders) the 

states of the arm can be calculated, while the development of the inverse kinematics 

allows for the control of the arm given a demand position of each pivot point by 

calculating the required angles between each of the links to do so.  There are three 

methods of carrying out these calculations that are dealt with in this chapter, and 

these kinematic models will be used in Chapter 3 when converting the environment 

in T-space into C-space, and one of the methods will be selected for use.  The first 

method deals with the kinematics using trigonometry and geometry.  The second 

method, described by Rosales and Gan (2002), uses matrix transforms to derive the 

forward kinematics and then manipulates them into simultaneous equations to solve 

the inverse kinematics problem.  The main advantage of the trigonometric method is 

that it requires much less calculation than the matrix transform method, and so is 

more memory efficient, but the matrix transform method deals with the orientation of 

the axes at each of the joints dealt with, providing more information, which may be 

useful in terms of the manipulator control.  The third method uses the geometric 

parameters of the robotic manipulator arm to form a series of simultaneous 

equations that can be solved to calculate the Euclidean positions of each joint given 

the manipulator base point and end effector location. The vectors between each 

point can then be used to calculate the joint angles. 

The arm modelled in this chapter has three links, which can be seen from Figure 3-2.  

The first link rotates about the Z-axis at a pivot at its base. The second link is 

attached to the first link at a joint 0.090 m from the base of the first link, which 

operates in the X-Y plane. The second link rotates about an axis which is parallel to 
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the X-Y plane and perpendicular to the direction of the first link. The third link is 

attached to the second link at a joint 0.332 m from the joint between the first and 

second links. The third link rotates about an axis which is parallel to the X-Y plane 

and the axis of rotation of the second joint, and perpendicular to the plane in which 

the second and third links operate. The second and third links operate in a plane 

which is formed by the X-Y direction of the first link and the Z-axis. The third link is 

0.538 m long and the end effector is located at the end of this link. 

 

3.2 Trigonometric Method 

The manipulator arm used for this research consists of three straight links of fixed 

length, the positions of which are controlled by the angles between them at their 

joints.  Because all of the lengths and angles are known, it is very simple to calculate 

the position of each joint and the end effector in relation to the origin of the arm by 

using trigonometry.  

 

3.2.1 Forward Kinematics 

This method requires the arm to be defined with a series of parameters, the length of 

each link and the angles between them, and the position of the origin of the arm.  

The positions of each of the joints, and the end effector are the outputs of the 

calculations.  The joint angles will be defined as α, β and γ and the link lengths will 

be defined as 𝑙0, 𝑙1 and 𝑙2. The position of the origin is defined as 𝑃0 and the 

positions of the intermediate joints are 𝑃1 and 𝑃2.  The position of the end effector is 

defined as 𝑃𝑓.  This is shown in Figure 3-2. 
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Figure 3-2 Schematic of the variables and dimensions that make up the simple model 

of the Digital Vanguard ROV manipulator arm. 

 

The parameters are outlined in Table 3-1. 

 

Table 3-1 Parameters of the links in the manipulator arm. 

Link Label Joint Joint Angle Link Length 

0 𝑃0 𝛼 𝑙0 = 0.09 

1 𝑃1 𝛽 𝑙1 = 0.332 

2 𝑃2 𝛾 𝑙2 = 0.09 

 

Angle 𝛾  is defined as the angle between links 1 and 2, and must be given in terms of 

link 2 and the horizontal.  This can be represented in terms of angle 𝛽 as: 

 

 

휁 = 𝛾 + (−𝛽) 

 

(3.1) 
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The position vectors of 𝑃1, 𝑃2 and 𝑃𝑓 are calculated in Equation (3.2). 

 

 

𝑃1 = 𝑃0 + [
𝑙0 cos 𝛼
𝑙0 sin 𝛽

0

]

𝑃2 = 𝑃0 + [

(𝑙0 + 𝑙1cos 𝛽)cos 𝛼
(𝑙0 + 𝑙1cos 𝛽)sin 𝛽

𝑙1sin𝛽
] 𝑃𝑓 = 𝑃0 + [

(𝑎0 + 𝑙1cos 𝛽 + 𝑙2 cos 휁) cos 𝛼
(𝑎0 + 𝑙1cos 𝛽 + 𝑙2 cos 휁) sin 𝛽

𝑙1sin𝛽 + 𝑙2sinζ
]

 
(3.2

) 

 

These equations have been derived using trigonometry, with 𝑃1 being calculated with 

respect to 𝑃0.  𝑃2 has been calculated with respect to 𝑃1 and then converted to be 

with respect to 𝑃0 by substitution.  The same is the case for 𝑃𝑓.  A figure showing a 

graphical representation of the simple manipulator model is shown in Figure 3-3. 

 

 

Figure 3-3 Graphical representation of the robotic arm.  The red dotted line is the 

representation of the arm when fully extended. 

 



58 
 

3.2.2 Inverse Kinematics 

The inverse kinematics can also be calculated very easily using trigonometry and 

geometry.  The control of the end effector position can be envisaged as controlling 

the direction of the end point in the X-Y plane by varying angle 𝛼, and the distance of 

the end effector position from the origin in the X-Y plane and the Z-direction using 𝛽 

and 𝛾.  Because of this the angle 𝛼 can be calculated using the vector from the origin 

to the end effector in the X-Y plane.  This then simplifies the problem of the inverse 

kinematics to a two-dimensional one which is solvable using the cosine rule. 

The first part of the derivation is to calculate angle 𝛼.  This is carried out using the 

vector between 𝑃0 and 𝑃𝑓 in the X-Y plane, as shown in Figure 3-4. 

 

Plan view

P2

P1

Pf

α 

Pfx – Pox

Pfy – Poy

Po

 

Figure 3-4 Diagram of the calculation of 𝜶 using 𝑷𝒇 and 𝑷𝒐 

 

The calculation of 𝛼 requires only the tangent function as shown in Equation (3.3): 

 

 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛2(
𝑃𝑓𝑦 − 𝑃𝑜𝑦

𝑃𝑓𝑥 − 𝑃𝑜𝑥
) (3.3) 

 

where 𝑃𝑓𝑥 and 𝑃𝑓𝑦are the X and Y coordinates of position 𝑃𝑓 respectively, and 𝑃𝑜𝑥 

and 𝑃𝑜𝑦 are the X and Y coordinates of position 𝑃𝑜 respectively.  This leaves the 

problem requiring the solution to the two remaining joint angles, with known positions 

of the end manipulator 𝑃𝑓 and the first joint 𝑃1.  These unknowns can all be solved 

using geometry and trigonometry, as shown in Figure 3-5. 
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Figure 3-5 Diagram of the calculation of 𝜷 and 𝜸 using 𝑷𝒇 and 𝑷𝟏 

 

In order to calculate 𝛽2 and 𝛾 the cosine rule must be used, and both require the 

length 𝑙𝑓1 to be known.  The length 𝑎𝑓1 and angle 𝛽2 require the lengths 𝑙𝑓1𝑥𝑦 and 𝑙𝑓1𝑧 

to be calculated by subtraction of the point 𝑃1 from 𝑃𝑓 as: 

 

 

𝑙𝑓1𝑥𝑦 = √(𝑃𝑓𝑥 − 𝑃1𝑥)
2
+ (𝑃𝑓𝑦 − 𝑃1𝑦)

2
 

 

𝑙𝑓1𝑧 = 𝑃𝑓𝑧−𝑃1𝑧 

(3.4) 

 

The angle 𝛽1 can be calculated using the inverse tangent of these two lengths and 

𝑙𝑓1 can be calculated using Pythagoras’ Theorem for these two lengths as: 

 

 

𝛽1 = 𝑎𝑟𝑐𝑡𝑎𝑛2(
𝑙𝑓1𝑧

𝑙𝑓1𝑥𝑦
) 

 

𝑙𝑓1 = √𝑙𝑓1𝑥𝑦
2 + 𝑙𝑓1𝑧

2
 

(3.5) 
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The cosine rule can now be applied to find the angles 𝛽2 and 𝛾, shown in Equations 

(3.6) and (3.8): 

 

 𝛽2 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑙1

2 + 𝑙𝑓1
2 − 𝑙2

2

2𝑙1𝑙𝑓1
) (3.6) 

 

 𝛾 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑙1

2 + 𝑙2
2 − 𝑙𝑓1

2

2𝑙1𝑙𝑓1
) (3.7) 

 

Finally angle β0 can be calculated in Equation (3.8). 

 

 𝛽0 = 𝜋 − 𝛽1 − 𝛽2 (3.8) 

 

3.3 Denavit-Hartenberg (Matrix Transform) Method 

The kinematics of the robotic manipulator can also be represented in terms of the 

rotation and of the axes at each pivot into the next pivot.  When all the transforms 

are combined, a transform representing the rotation and translation of the reference 

axes to the axes at the end effector is derived.  The advantage of this is that both the 

position and the orientation of the end effector are described. 

 

3.3.1 The parameters of the robotic arm 

Before the kinematics of the arm are derived, the body axes at each joint must be 

defined.  As seen below in Figure 3-6 and Figure 3-7 the axis about which the 

rotation is made to move the link is defined as the Z-axis.  The X-axis is defined as 

being in the direction of the length of the link between the first and second joints of 

the arm, and the Y-axis is defined using the other two axes in a right-handed set. 
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The robotic arm in use in the project uses three links.  The first rotates about the axis 

perpendicular to the body frame, while the second two rotate about an axis which is 

rotated by 90° and perpendicular to the longitudinal length of the first link.  This is 

shown in Figure 3-6 and Figure 3-7, which give an illustration of the axes used at 

each pivot on the link. 

 

 

 

aX
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aY

bY

bZ
bX

a

b

 

Figure 3-6 Configuration of the first link in the manipulator arm.  
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Figure 3-7 Configuration of the second and third links in the manipulator arm.  

 

The transformation from axis-a of each link to axis-b of each link can be described 

using a transformation matrix 𝐴0
1 = [

𝑅3×3 𝑃3×1

𝑓1×3 𝑊1×1
], where 𝑅 is the rotation cosine 
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matrix that describes the rotation of the axes, 𝑃 is the translation which is a vector 

describing the change in position of the origin of the axes, 𝑓 is the change in 

perspective of the axes, and 𝑊 is the change in scale of the axes.  In the case of the 

manipulator arm, the scale of the axes does not change, so 𝑊 is set as 1, and the 

perspective of the axes remains the same, therefore 𝑓 = [0 0 0].  This means that 

the parameters needed for each link to calculate the position and orientation of each 

pivot and the end effector are the lengths of each of the pivots, the rotation of the 

axes from one end of the link to the other caused by the shape of the link, and the 

rotation about 𝑍0by angle 휃0. 

It is important to recognise the direction and reference point of each of the angles as 

they may not be defined as the angle between the physical parts of the links being 

connected by that joint. This is shown in Figure 3-8. 
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Figure 3-8 Schematic of the variables and dimensions that make up the model of the 

manipulator arm. 

 

The angle of rotation about the Z-axis is defined in the kinematic model as being an 

anti-clockwise rotation starting in the direction of the length of the previous link.  This 

has no effect on α but has a significant effect on the angles that are represented by 

𝛽 and 𝛾 when compared to those specified previously in Section 3.3.3.  Angles 𝛿 and 
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휀 are the angles which would preferably be used to control the state of each of the 

links, but the way in which each of the angles are specified mean that 𝛽 and 𝛾 are 

the angles used in the kinematics.  Angle 𝛾 shown on the diagram is in the negative 

direction, hence the negative sign.  The angles 𝛿 and 휀 can be represented in terms 

of 𝛽 and 𝛾 using the following geometric relationships: 

 

 

𝛿 = 180 − 𝛽 

 

휀 = 𝛾 + 180 

(3.9) 

 

The parameters used to derive the kinematics of the manipulator arm can be 

outlined more easily in the Table 3-2. 

 

Table 3-2 Parameters of the links in the manipulator arm. 

Link Number Joint Joint Angle Link Length (m) θ 

1 𝑃0 𝛼 𝑎0 = 0.09 90° 

2 𝑃1 𝛽 = 180 − 𝛿 𝑎1 = 0.332 0° 

3 𝑃2 𝛾 = 휀 − 180 𝑎2 = 0.538 0° 

 

Where the joint angle is the angle of rotation about the Za-axis, the link length is the 

length of the link (taken from the intersection between the a-axes, to the intersection 

between the b-axes) and 휃 is the rotation of the axes about the X-axis due to the 

geometry of the link. 

This information can be used to construct the transformation matrices to find the 

position of each pivot and the end manipulator in terms of the reference frame and 

the rotation angle of each pivot. 
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3.3.2 Derivation of the transformation matrices for each arm link 

This section describes the derivation of the transformation matrices which provide 

the forward kinematics for the manipulator arm.  This is done by constructing a 

transformation matrix for each link in the arm separately. 

To transform the axes of the first link from the reference frame to that of the end 

pivot point requires two separate rotation transforms due to the rotation of the axes 

by 90° about the X-axis.  The axes X0, Y0 and Z0 are transformed into a set of 

intermediate axes, X0’ Y0’ and Z0’ by the rotation about Z0 by angle α, which can then 

be rotated by 90° about the X0’-axis into the axes X1, Y1 and Z1.  This is shown in  

Figure 3-9 and  

Figure 3-10. 

 

 


0X

X0'

Z0'

Y0'

0Z

0Y

 

Figure 3-9 Rotation of the X0 and Y0 axes about the Z0 axis by 𝜶 to transform the axes 

in to the intermediate axes X0’, Y0’ and Z0’. 
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Figure 3-10 Rotation of the Y0’ and Z0’ axes about the X0’ axis by 90° into the X1, Y1 and 

Z1 axes. 

 

The rotation shown in  

Figure 3-9 can be described by the direction cosine matrix in Equation (3.10). 

 

 [

𝑋0′

𝑌0′

𝑍0′

] = [
cos 𝛼 sin 𝛼 0

− sin 𝛼 cos 𝛼 0
0 0 1

] [

𝑋0

𝑌0

𝑍0

] (3.10) 

 

The rotation shown in  

Figure 3-10 can be described by the direction cosine matrix in Equation (3.11). 

 

 [
𝑋1

𝑌1

𝑍1

] = [
1 0 0
0 cos 90° sin 90°
0 − sin 90° cos 90°

] [

𝑋0′

𝑌0′

𝑍0′

] = [
1 0 0
0 0 1
0 −1 0

] [

𝑋0′

𝑌0′

𝑍0′

] (3.11) 

 

The complete rotation from the 0-axes to the 1-axes can be carried out using 

Equation (3.12). 
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[
𝑋1

𝑌1

𝑍1

] = [
1 0 0
0 0 1
0 −1 0

] [
cos 𝛼 sin 𝛼 0

− sin 𝛼 cos 𝛼 0
0 0 1

] [
𝑋0

𝑌0

𝑍0

] 

[
𝑋1

𝑌1

𝑍1

] = [
cos 𝛼 0 sin 𝛼
sin 𝛼 0 − cos 𝛼

0 1 0
] [

𝑋0

𝑌0

𝑍0

] 

(3.12) 

 

The translation of the axes from the 0-axes to the 1-axes follows simple 

trigonometry. 

 

 [
𝑥
𝑦
𝑧
] = [

𝑙0 cos 𝛼
𝑙0 sin 𝛼

0

] (3.13) 

 

This allows for the construction of the transformation matrix seen in Equation (3.14). 

 

 𝐴0
1 = [

cos 𝛼 0 sin 𝛼 𝑙0 cos 𝛼
sin 𝛼 0 − cos𝛼 𝑙0 sin 𝛼

0 1 0 0
0 0 0 1

] (3.14) 

 

The transformation of the axes of the second and third links from their original 

frames to that of their end pivots requires only a single rotation, where the Xa and Ya 

axes are rotated about the Za axis by 𝛽 or 𝛾 for links 2 and 3 respectively into the Xb, 

Yb and Zb axes.  This is shown in Figure 3-11. 
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Figure 3-11 Rotation of the 𝑿𝒂 𝒀𝒂 axes around the 𝒁𝒂 axis by 𝜷 or 𝜸 into the 𝑿𝒃, 𝒀𝒃 and 

𝒁𝒃 axes. 

 

The rotation shown in Figure 3-11 can be described by the direction cosine matrix 

found in Equation (3.15). 

 

 [
𝑋𝑏

𝑌𝑏

𝑍𝑏

] = [
cos 휃 − sin 휃 0
sin 휃 cos 휃 0

0 0 1
] [

𝑋𝑎

𝑌𝑎

𝑍𝑎

] (3.15) 

 

where 휃 is the angle of rotation about the Z-axis in either link.  The translation of the 

axes from the a-axes to the b-axes again follows simple trigonometry. 

 

 [
𝑥
𝑦
𝑧
] = [

𝑙 cos 휃
𝑙 sin 휃

0
] (3.16) 

 

where 𝑙 is the length of the link.  This allows for the construction of the transformation 

matrix in Equation (3.17). 
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 𝐴𝑎
𝑏 = [

cos 휃 0 −sin 휃 𝑙 cos 휃
sin 휃 0 cos 휃 𝑙 sin 휃

0 1 0 0
0 0 0 1

] (3.17) 

 

This transformation matrix can be implemented for links 2 and 3, producing the 

transformation matrices seen in Equations (3.18) and (3.19) respectively. 

 

 𝐴1
2 = [

cos 𝛽 −sin 𝛽 0 𝑙1 cos 𝛽
sin 𝛽 cos 𝛽 0 𝑙1 sin 𝛽

0 0 1 0
0 0 0 1

] (3.18) 

 

 𝐴2
𝑓

= [

cos 𝛾 −sin 𝛾 0 𝑙2 cos 𝛾
sin 𝛾 cos 𝛾 0 𝑙2 sin 𝛾
0 0 1 0
0 0 0 1

] (3.19) 

 

3.3.3 The forward kinematics of the robotic manipulator arm. 

To model the complete forward kinematics of the robotic manipulator arm, these 

transformation matrices must be combined to find the position and orientation of 

each of the pivots in terms of the original reference frame. This is done by multiplying 

each of the transforms together: 

 

 𝑇0
1 = 𝐴0

1 = [

cos 𝛼 0 sin 𝛼 𝑙0 cos 𝛼
sin 𝛼 0 − cos 𝛼 𝑙0 sin 𝛼

0 1 0 0
0 0 0 1

] (3.20) 
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𝑇0
2 = 𝐴0

1𝐴1
2

= [

cos 𝛼 cos𝛽 − cos 𝛼 sin 𝛽 sin 𝛼 cos 𝛼 (𝑙0 + 𝑙1 cos 𝛽)

sin 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 − cos 𝛼 sin 𝛼 (𝑙0 + 𝑙1cos 𝛽)

sin 𝛽 cos 𝛽 0  𝑙1sin𝛽
0 0 0 1

] 
(3.21) 

 

 

𝑇0
𝑓

= 𝐴0
1𝐴1

2𝐴2
𝑓

= [

cos𝛼 cos(𝛽 + 𝛾) − cos 𝛼 sin(𝛽 + 𝛾) sin 𝛼 cos 𝛼 (𝑙0 + 𝑙1 cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾))

sin 𝛼 cos(𝛽 + 𝛾) − sin 𝛼 sin(𝛽 + 𝛾) − cos 𝛼 sin 𝛼 (𝑙0 + 𝑙1cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾))

sin(𝛽 + 𝛾) cos(𝛽 + 𝛾) 0  𝑙1sin 𝛽 +  𝑙1sin(𝛽 + 𝛾)
0 0 0 1

] 
(3.22) 

 

In transforms 𝑇0
2 and 𝑇0

𝑓
, 𝛽 and 𝛾 can be replaced by 𝛿 and 휀 using the relationships 

described in equation (4.14).  The forward kinematics can be used in numerical 

simulation to calculate the position and orientation of each of the joints. The 

transform 𝑇0
𝑛 can be equated to a generic transform 𝑇𝐻

𝑅 which is given in Equation 

(3.23). 

  

 𝑇𝐻
𝑅 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧

0 0 0 1

] (3.23) 

 

By equating each transform to the 𝑇𝐻
𝑅 matrix, a set of nine equations is created for 

the variables in the 𝑇𝐻
𝑅 matrix.  Following a set of rules given in (Rosales & Gan, 

2002), the orientation of each of the joints can be calculated as a series of angles 

representing roll, yaw and pitch.  The rules used to calculate the orientation of the 

joints are provided in Equation (3.24). 
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if (𝑛𝑥 = 0 ∧  𝑛𝑦 = 0) ⟹ {

휃𝑟 = arctan2(𝑜𝑥 , 𝑜𝑦)

휃𝑦 = 90°

휃𝑝 = 0°

 

 

if (𝑛𝑥 ≠ 0  ⋁  𝑛𝑦 ≠ 0) ⟹ {

휃𝑟 = arctan2(𝑜𝑧 , 𝑎𝑧)

휃𝑦 = arctan2(𝑛𝑦, 𝑛𝑥)

휃𝑝 = arctan2(−𝑛𝑧 , √𝑛𝑥
2 + 𝑛𝑦

2)

 

(3.24) 

where r , y  and p are the angles of roll, yaw and pitch respectively. 

 

3.3.4 The inverse kinematics of the robotic manipulator arm. 

The inverse kinematics allow for the calculation of the required joint angles given a 

demand manipulator end position and orientation.  This position and pose is defined 

in the X, Y and Z directions and roll, yaw and pitch, represented by 𝑃𝑥, 𝑃𝑦, 𝑃𝑧, 휃𝑟, 휃𝑦 

and 휃𝑝 respectively.  This, however, is not in a form that is compatible with the T-

matrix, and so must be converted to the format of the 𝑇𝐻
𝑅 matrix.  This is done by 

combining direction cosine matrices representing the rotations about each of the 

axes as: 

 

 

[

𝑋𝑏

𝑌𝑏

𝑍𝑏

] = [
1 0 0
0 cos 휃𝑟 sin 휃𝑟

0 −sin 휃𝑟 cos 휃𝑟

] [

cos 휃𝑦 0 − sin 휃𝑦

sin 휃𝑦 0 cos 휃𝑦

0 1 0

] [

cos 휃𝑝 −sin 휃𝑝 0

sin 휃𝑝 cos 휃𝑝 0

0 0 1

] [

𝑋𝑎

𝑌𝑎

𝑍𝑎

] 

 

[

𝑋𝑏

𝑌𝑏

𝑍𝑏

] = [

cos휃𝑦 cos 휃𝑝 −cos휃𝑦 sin 휃𝑝 −sin휃𝑦

sin 휃𝑟 sin 휃𝑝 + cos휃𝑟 sin 휃𝑦 cos 휃𝑝 sin휃𝑟 cos 휃𝑝 − cos휃𝑟 sin휃𝑦 sin휃𝑝 cos휃𝑟 cos휃𝑦

cos휃𝑟 sin 휃𝑝 − sin휃𝑟 sin 휃𝑦 cos 휃𝑝 cos 휃𝑟 cos 휃𝑝 + sin 휃𝑟 sin휃𝑦 sin휃𝑝 −sin휃𝑟 cos휃𝑦

] [

𝑋𝑎

𝑌𝑎

𝑍𝑎

] 

(3.25) 

 

The direction cosine matrix and the demand position calculated using Equation 

(3.25) can then be combined for the demand T-matrix in Equation (3.26). 
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𝑇𝐻
𝑅

=

[
 
 
 

cos 휃𝑦 cos 휃𝑝 −cos 휃𝑦 sin 휃𝑝 − sin 휃𝑦 𝑃𝑥

sin 휃𝑟 sin 휃𝑝 + cos 휃𝑟 sin 휃𝑦 cos 휃𝑝 sin 휃𝑟 cos 휃𝑝 − cos 휃𝑟 sin 휃𝑦 sin 휃𝑝 cos 휃𝑟 cos 휃𝑦 𝑃𝑦

cos 휃𝑟 sin 휃𝑝 − sin 휃𝑟 sin 휃𝑦 cos 휃𝑝 cos 휃𝑟 cos 휃𝑝 + sin 휃𝑟 sin 휃𝑦 sin 휃𝑝 −sin 휃𝑟 cos 휃𝑦 𝑃𝑧

0 0 0 1 ]
 
 
 
 (3.26) 

 

To derive the inverse kinematics, the 
R

HT  matrix in Equation (3.23) is equated to the 

forward transforms derived in Equations (3.20), (3.21) and (3.22).  This forms a 

series of simultaneous equations in each case which can be solved to find the 

required joint angles. 

 

Inverse kinematics for joint P1 

Equation (3.27) deals with the kinematics of the joint at the end of the first link: 

 

 𝑇𝐻
𝑅 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧

0 0 0 1

] = [

cos 𝛼 0 sin 𝛼 𝑎0 cos 𝛼
sin 𝛼 0 − cos 𝛼 𝑎0 sin 𝛼

0 1 0 0
0 0 0 1

] (3.27) 

 

From Equation (3.27) each of the elements can be equated to find several 

simultaneous equations.  The only simultaneous equations necessary for calculating 

𝛼 are either 𝑛𝑥 and 𝑛𝑦 or 𝑎𝑥 and 𝑎𝑦.  In this case the latter have been used and 

rearranged to find 𝛼 in Equation (3.28): 

 

𝑎𝑥 = sin 𝛼 

𝑎𝑥

−𝑎𝑦
=

sin 𝛼

cos 𝛼
= tan𝛼 

𝑎𝑦 = −cos𝛼 

𝛼 = arctan2(𝑎𝑥, −𝑎𝑦) 

(3.28) 

 

The demand 𝑎𝑥 and 𝑎𝑦 can be substituted by those derived in Equation (3.26) to find 

angle 𝛼 in terms of roll, yaw and pitch, as in Equation (3.29). 
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𝑎𝑥 = −sin 휃𝑦 𝑎𝑦 = cos 휃𝑟 cos 휃𝑦 

(3.29)  

𝛼 = arctan2(− sin 휃𝑦 , − cos 휃𝑟 cos 휃𝑦) 

 

Inverse kinematics for joint P2 

Equation (3.30) deals with the kinematics of the joint at the end of the second link. 

 

 𝑇𝐻
𝑅 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧

0 0 0 1

] = [

cos 𝛼 cos 𝛽 −cos𝛼 sin 𝛽 sin 𝛼 cos 𝛼 (𝑎0 + 𝑎1 cos𝛽)

sin 𝛼 cos 𝛽 −sin 𝛼 sin 𝛽 − cos𝛼 sin 𝛼 (𝑎0 + 𝑎1 cos 𝛽)

sin 𝛽 cos 𝛽 0 𝑎1 cos 𝛽
0 0 0 1

] (3.30) 

 

In this case 𝛼 can still be solved using 𝑎𝑥 and 𝑎𝑦, giving the same result as Equation 

(3.29).  Solving for 𝛽 can be done using 𝑝𝑧, 𝑎𝑦 and 𝑝𝑥 as shown in Equations (3.31) 

to (3.37): 

 

 𝑝𝑥 = 𝑎1 sin 𝛽 ⟹ sin𝛽 =
𝑝𝑧

𝑎1
 (3.31) 

 𝑎𝑦 = −cos𝛼 ⟹ cos 𝛼 = −𝑎𝑦 (3.32) 

 

Substituting cos 𝛼 for 𝑎𝑦 removes 𝛼 giving, 

 𝑝𝑥 = −𝑎𝑦(𝑎0 + 𝑎1 cos 𝛽) (3.33) 

which can then be rearranged to make cos 𝛽 the subject as: 

 
cos 𝛽 =

(
𝑝𝑥

−𝑎𝑦
− 𝑎0)

𝑎1
 

(3.34) 

 

Equations (3.31) and (3.40) can be combined to find 𝛽. 
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sin 𝛽

cos𝛽
=

𝑝𝑧𝑎1

𝑎1 (
𝑝𝑥

−𝑎𝑦
− 𝑎0)

= tan𝛽 
(3.35) 

 

 
tan 𝛽 =

𝑝𝑧

(
𝑝𝑥

−𝑎𝑦
− 𝑎0)

−𝑎𝑦

−𝑎𝑦
=

−𝑝𝑧𝑎𝑦

𝑝𝑥 + 𝑎0𝑎𝑦
 

(3.36) 

 

 𝛽 = arctan2(−𝑝𝑧𝑎𝑦, 𝑝𝑥 + 𝑎0𝑎𝑦) (3.37) 

 

Again, the relationships seen in Equation (3.26) can be substituted into the above 

equation to find 𝛽 in terms of roll, yaw and pitch. 

 

 𝛽 = arctan2(−𝑝𝑧 cos 휃𝑟 cos 휃𝑦 , 𝑝𝑥 + 𝑎0 cos 휃𝑟 cos 휃𝑦) (3.38) 

 

Inverse kinematics for joint Pf 

As 1has been done in Sections 0 and 0, the process can be repeated for the inverse 

kinematics of the arm given the demand position and orientation of 𝑃𝑓. 

 

 

𝑇𝐻
𝑅 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧

0 0 0 1

]

= [

cos 𝛼 cos(𝛽 + 𝛾) − cos 𝛼 sin(𝛽 + 𝛾) sin 𝛼 cos 𝛼 (𝑙0 + 𝑙1 cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾))

sin 𝛼 cos(𝛽 + 𝛾) − sin 𝛼 sin(𝛽 + 𝛾) − cos 𝛼 sin 𝛼 (𝑙0 + 𝑙1 cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾))

sin(𝛽 + 𝛾) cos(𝛽 + 𝛾) 0 𝑙1 sin 𝛽 + 𝑙2 sin(𝛽 + 𝛾)
0 0 0 1

] 

(3.39) 

 

Again angle α can be found using 𝑎𝑥 and 𝑎𝑦to give the same result as in Equation 

(3.29).  To find 𝛽, 𝑝𝑧 and 𝑝𝑦 are used and 𝑛𝑧, 𝑜𝑥 and 𝑜𝑧 are substituted in for various 
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variables to reduce the unknowns to cos 𝛽 and sin 𝛽, as shown in Equations (3.40) 

and (3.41). 

 

 

𝑝𝑧 = 𝑙1 sin 𝛽 + 𝑙2 sin(𝛽 + 𝛾) 

𝑛𝑧 = sin(𝛽 + 𝛾) 

𝑝𝑧 = 𝑙1 sin 𝛽 + 𝑙2𝑛𝑧 

(3.40) 

 

 

𝑝𝑧 = sin𝛼 (𝑙0 + 𝑙1 cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾)) 

𝑎𝑥 = sin 𝛼 

𝑜𝑧 = cos(𝛽 + 𝛾) 

𝑝𝑦 = 𝑎𝑥(𝑙0 + 𝑙1 cos 𝛽 + 𝑙2𝑜𝑧) 

(3.41) 

 

The equations shown in Equations (3.40) and (3.41) can be rearranged to make 

cos 𝛽 and sin 𝛽 the subjects in Equation (3.42). 

 

sin 𝛽 =
𝑝𝑧 − 𝑙2𝑛𝑧

𝑙1
 

cos 𝛽 =

𝑝𝑦

𝑎𝑥
− 𝑙0 − 𝑙2𝑜𝑧

𝑙1
 

(3.42) 

 

These equations can be combined and manipulated to find 𝛽, as shown in Equations 

(3.43) to (3.45). 

 

 

sin 𝛽

cos𝛽
=

(𝑝𝑧 − 𝑙2𝑛𝑧)𝑙1

𝑙1 (
𝑝𝑦

𝑎𝑥
− 𝑙0 − 𝑙2𝑎𝑧)

𝑎𝑥

𝑎𝑥
= tan𝛽 (3.43) 
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 tan 𝛽 =
𝑝𝑧𝑎𝑥 − 𝑙2𝑎𝑥

𝑝𝑦 − 𝑙0𝑎𝑥 − 𝑙2𝑜𝑧𝑎𝑥
 (3.44) 

 

 𝛽 = arctan2(𝑝𝑧𝑎𝑥 − 𝑙2𝑛𝑧𝑎𝑥, 𝑝𝑦 − 𝑙0𝑎𝑥 − 𝑙2𝑜𝑧𝑎𝑥) (3.45) 

 

The relationships seen in Equation (3.26) are once again substituted into Equation 

(3.45) to find β in terms of roll, yaw and pitch. 

 

 

𝛽

= arctan2 (
𝑙2 sin 휃𝑦(cos 휃𝑟 sin 휃𝑝 − sin 휃𝑟 sin 휃𝑦 cos 휃𝑝) −𝑝𝑧 sin 휃𝑦 ,

𝑝𝑦 + 𝑙0 sin 휃𝑦 + 𝑙2 sin 휃𝑦 (cos 휃𝑟 cos 휃𝑝 + sin 휃𝑟 sin 휃𝑦 sin 휃𝑝)
) 

(3.46) 

 

Finally, having found 𝛽, 𝛾 can be calculated using 𝑛𝑧 and 𝑜𝑧. 

 

 

𝑛𝑧 = sin(𝛽 + 𝛾) 

 

𝑜𝑧 = cos(𝛽 + 𝛾) 

 

∴
𝑛𝑧

𝑜𝑧
=

sin(𝛽 + 𝛾)

cos(𝛽 + 𝛾)
= tan(𝛽 + 𝛾) 

(3.47) 

Rearranging to make 𝛾 the subject gives, 

 𝛾 = arctan2(𝑛𝑧 , 𝑜𝑧) − 𝛽 (3.48) 

where 𝑛𝑧 and 𝑜𝑧 can be substituted out using the relationships from Equation (3.26) 

to find 𝛾 in terms of roll, yaw and pitch. 
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𝛾 = arctan2(cos 휃𝑟 sin 휃𝑝 − sin 휃𝑟 sin 휃𝑦 cos 휃𝑝 , cos 휃𝑟 cos 휃𝑝

+ sin 휃𝑟 sin 휃𝑦 sin 휃𝑝) − 𝛽 
(3.49) 

 

With all of the joint angles calculated, 𝛿 and 휀 can be calculated using the 

relationships in Equation (3.9).  In order to remove dependence on pose, a fourth link 

can be added with 0 m length with axes of freedom and no limitations on freedom.  

The equations have a high degree of dependency on one another and become 

unsolvable. 

 

3.4 Simultaneous Geometric Equations for Inverse Kinematics 

This method for calculating the robotic manipulator arm inverse kinematics uses the 

geometric parameters of the arm to form a set of simultaneous equations.  These 

can be solved to determine the joint positions given the manipulator base point and 

end effector positions. Figure 3-12 illustrates the manipulator arm configuration and 

defines the parameters to be used in the simultaneous equations. 

In this diagram 𝑙0, 𝑙1, and 𝑙2 are the length of each of the links respectively, 𝑥𝑦0, 𝑥𝑦1, 

and 𝑥𝑦2 are the xy-component of each of the links respectively and 𝑧1 and 𝑧2 are the 

z-components of the second and third links respectively. 𝑃𝑓 is the position of the end 

effector on the third link, and has two components, 𝑃𝑓𝑥𝑦 and 𝑃𝑓𝑧 which are the x-y 

and z coordinates of the end effector respectively. 𝑃0 is the position of the first joint 

and the origin of the arm. The parameters of the manipulator arm are outlined in 

Table 3-3: 
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Figure 3-12: Schematic of the variables and dimensions that make up the simple 

model of the Digital Vanguard ROV manipulator arm. 

 

Table 3-3 Parameters of links in a 3-DoF manipulator arm. 

Link Label Joint Joint Angle Link Length 

𝑙1 𝑃0 − 𝑃1 𝛼 0.090 𝑚 

𝑙3 𝑃1 − 𝑃2 𝛽 0.332 𝑚 

𝑙3 𝑃2 − 𝑃𝑒𝑓 𝛾 0.538 𝑚 

 

The geometric relationships describing the manipulator arm are seen in Equations 

(3.50) to (3.55). 

 

 𝑥𝑦1
2 + 𝑧1

2 = 𝑙1
2 (3.50) 
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 𝑥𝑦2
2 + 𝑧2

2 = 𝑙2
2 (3.51) 

 

 𝑥𝑦3
2 + 𝑧3

2 = 𝑙3
2 (3.52) 

 

 

𝑃𝑥𝑦1 = 𝑥𝑦1 

𝑃𝑧1 = 0 

(3.53) 

 

 

𝑃𝑥𝑦2 = 𝑥𝑦1 + 𝑥𝑦2 

𝑃𝑧2 = 𝑧2 

(3.54) 

 

 

𝑃𝑓𝑥𝑦 = 𝑥𝑦1 + 𝑥𝑦2 + 𝑥𝑦3 

𝑃𝑓𝑧 = 𝑧2 + 𝑧3 

(3.55) 

 

The unknowns in these relationships are 𝑥2, 𝑦2, 𝑥3 and 𝑦3 from 𝑥𝑦2 and 𝑥𝑦3 

respectively and 𝑧2 and 𝑧3 and can be solved simultaneously to form Equations 

(3.56) to (3.62). 

 

 𝑥𝑦2 = −
𝐴𝐵 ± 𝑃𝑓𝑧√−𝐶𝐷 + 𝑙1

3 − 𝑃𝑓𝑥𝑦
3

𝐸
 (3.56) 

where, 
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𝐴 = 𝑙1(𝑙2
2 − 𝑙3

2 + 𝑃𝑓𝑧
2 + 3𝑃𝑓𝑥𝑦

2) − 𝑃𝑓𝑥𝑦 

𝐵 = 3𝑙1
2 + 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 

𝐶 = (𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2) 

𝐷 = (𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 − 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2) 

𝐸 = 2(𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2) 

}
 
 
 
 
 
 

 
 
 
 
 
 

 (3.57) 

 

 𝑥𝑦3 = ∓
𝐴 ∓ 𝑃𝑓𝑥𝑦𝐵 + 𝑃𝑒𝑓𝑧√𝐶 + 𝑙1

3 ∓ 𝑃𝑓𝑥𝑦
3

𝐹
 (3.58) 

where, 

 

𝐴 = 𝑙1(𝑙3
2 − 𝑙2

2 ± 𝑃𝑒𝑓𝑧
2 ± 3𝑃𝑓𝑥𝑦

2) 

𝐵 = 3𝑙1
2 + 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 

𝐶 = −𝐷𝐸 

𝐷 = 𝑙1
2 + 2(𝑙2𝑙3 − 𝑙1𝑃𝑓𝑥𝑦) − 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

𝐸 = 𝑙1
2 + 2(𝑙2𝑙3 + 𝑙1𝑃𝑓𝑥𝑦) − 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

𝐹 = 2(𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2) 

}
 
 
 
 
 
 

 
 
 
 
 
 

 (3.59) 

 

 
𝑧2 =

𝑃𝑓𝑧

2
+

𝑃𝑓𝑧

𝑙2
3 − 𝑙3

3 ± 𝑙1√𝐴 ∓ 𝑃𝑓𝑥𝑦√𝐴
2

𝐷
 

(3.60) 

and, 
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𝑧3 =

𝑃𝑓𝑧

2
−

𝑃𝑓𝑧

𝑙2
3 − 𝑙3

3 ± 𝑙1√𝐴 ∓ 𝑃𝑓𝑥𝑦√𝐴
2

𝐷
 

(3.61) 

where, 

 

𝐴 = −𝐵𝐶 

𝐵 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

𝐶 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

𝐷 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

}
 
 
 
 
 

 
 
 
 
 

 (3.62) 

 

These equations give the x-y and z positions of each joint which can then be used 

with Equation (3.63) to calculate the angle of each. 

 

 𝛼 = arctan2(𝑃𝑧 , 𝑃𝑥𝑦) (3.63) 

 

3.5 Summary of Kinematic Modelling 

The reason behind the development of the forward and inverse kinematic models 

presented in this chapter is to have accessible a method of mapping the environment 

in terms of the joint angle ranges where collisions occur between the arm and 

obstacles in the Euclidean domain, with the dimensions of the map corresponding to 

each of the joint angles.  The procedure involved in this method is to determine an 

array of points along all of the exposed surfaces and edges of the object/obstacle 

and then run each point on the obstacle through the arm kinematics, using the 

kinematics for each of 𝑃1, 𝑃2 and 𝑃𝑓 at intervals along these arm links of 0 m to 𝑙1 m, 

𝑙2 m and 𝑙3 m respectively.  This means that collisions at any point along the arm are 

recorded, and not only the end point for each link.  By inspection of these three 

methods it is clear that the inverse solution for the Denavit-Hartenberg matrices 
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requires a lot more calculations than the other two suggested methods, therefore this 

method shall be discounted at this point. 

The third line of development for this type of mapping used basic geometry.  In the 

robotic manipulator arm, each link is moved by rotation in only one axis.  This means 

that, given a fixed starting point for the link, any collisions with that link must occur 

within a circle on the same plane as the link, with a radius of the link length, where 

the centre of the circle is at the pivot point of the link.  If there is a collision then the 

cosine of the joint angle that causes said collision can be found using the dot product 

of two vectors divided by the multiplication of the magnitudes of the two vectors, 

where the two vectors describe the link in its zero or initial position and the line from 

the pivot point to the collision point. 

If the object is larger than a point mass, then there will be a continuous range of 

angles that would cause a collision with the object, providing that the object is a 

regular shape.  This allows for a simplification to the algorithm as only the maximum 

and minimum collision angles for that object need to be found.  For a regular shape 

any angle in between these two limits must cause a collision between the arm link 

and the object. 

Having looked at a way of finding the collision angles for one link, it becomes very 

easy to investigate collision angles for a series of connected links.  By starting with 

the lowest link in the chain and finding all of the collision angles, the next link can be 

investigated.  The starting position for this link is the end position of the previous one 

so any starting position that occurs in the range of angles for the previous link that 

causes a collision with the object does not need to be investigated. Only starting 

positions that are available from accessible angles of the previous link must be 

investigated. 

This method has a significant drawback however.  For a small number of small 

objects with a low number of defined inspection points, the algorithm will execute 

quite quickly as the number of calculations is relatively small, but as soon as the size 

and number of objects and the number of inspection points increases, the algorithm 

run time will also increase. This problem is compounded further by increasing the 

number of points along the robotic arm used for inspection for collisions.  Depending 

on how many inspection points on both the obstacle and robotic arm are required to 
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make a usable collision map of the object, especially given the complexity of the real 

world environments to be explored, this method may be unviable as it may be too 

slow to be used to navigate in real time.  This process can then be extended for any 

further links, and the number of iterations increases by an order of magnitude for 

each extra link.   This increase in calculations by an order of magnitude for each 

extra link can be seen as a potential problem for higher number degrees-of-freedom 

in the arm as the time taken for the mapping calculation will increase dramatically, 

potentially making the method unfeasible. 

As described in section 3.2 of this chapter, there is a third method considered which 

is very similar to the second, but which very quickly finds all solutions to a single end 

effector position.  If this is carried out for a series of inspection points along the arm 

for all of the inputted data points from the simulated obstacles then the algorithm will 

run very quickly due to its low computational load. 

The inverse trigonometric method and the simultaneous geometric equation method 

will both be implemented in Chapter 6 in order to test the feasibility of use of each of 

them as part of the mapping algorithm.  The following chapter deals with modelling of 

the dynamics of a 3-DoF robotic manipulator arm to provide a set of constraints with 

which to develop the guidance method and also provide a test bed for validation of 

the complete technique. 
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4 DYNAMIC MODELLING OF A ROBOTIC MANIPULATOR 

In the previous chapter the forward and inverse kinematics of a 3-DoF 

manipulator arm have been derived for use in the work carried out in Chapter 6 in 

the development of a guidance method for the manipulator arm.  The present 

chapter deals with the dynamic modelling of a generic 3-DoF manipulator arm with 

the same degrees-of-freedom as previously specified.  Applying values to the 

numerical parameters in the dynamic model will allow for qualitative validation of the 

developed model, which can then be used in future chapters to design and tune a 

controller providing sufficient performance for the arm.  This chapter deals with the 

block highlighted in green in Figure 1-4, which is displayed again here with all of the 

other processes greyed out. 

Sensor

Arm Position and 

Pose

(Servo Encoders)

Simulated 

Environment Data

User Input

Desired End 

Effector Location

Map Conversion to 

C-space

Plotting of Current 

and Desired End 

Effector Location

Path Generation Path Following
Arm Servo 

Controllers

Arm Dynamics

Arm Kinematics

 

Figure 4-1 Manipulator arm dynamics (green) in relation to the overall guidance 

method. 



84 
 

Having investigated literature regarding the dynamic modelling of robotic manipulator 

arms in Chapter 2, some of the information contained there can be used for the 

development and validation of a dynamic model, including a simple servo model, for 

use as the test bed for the control and guidance parts of the thesis. 

The dynamic model of the manipulator arm will be derived using Newtonian 

mechanics since (Turney, et al.) showed that the Lagrangian derivation has a higher 

computational overhead, the results of which are presented in Table 2-1, and Table 

2-2 for a 3-DoF problem. 

 

4.1 Manipulator Arm Parameters 

It is important to recognise at this point a change in the joint angle usage, and 

therefore its nomenclature.  In the kinematic modelling of the manipulator arm, the 

joint angles in use referred to the grey shaded angles in Figure 4-2, 𝛽 and 𝛾, which 

corresponded to the angles starting at 0𝑐 when the arm was fully retracted and the 

positive direction for each joint was as follows.  The angle 𝛼 had exactly the same 

starting location and direction as in the following figure, 𝛾 and 휂 have the same 

direction, but  𝛽 = −𝜎.  The reason for the change in angles to 𝛼, 𝜎, 휂 rather than the 

original 𝛼, 𝛽, 𝛾 is that for the dynamic modelling, maintaining all of the angles with the 

same starting orientation and direction ensures that all of the moments about joints 

operate in the same directions and there is no need to resolve directions.  The 

difference is that the starting pose for the arm will be different.  In the [𝛼, 𝛽, 𝛾] 

coordinate system, the staring pose would be [0,0,0].  In the [𝛼, 𝜎, 휂] coordinate 

system, the starting pose would be [0, 𝜋, 0]. 

The manipulator arm shown in Figure 4-2 has 3 degrees-of-freedom, with link 1 

rotating about the Z-axis at P0, link 2 rotating about an axis on a horizontal plane at 

P1 and link 3 rotating about an axis on a horizontal plane at P2.  The lengths l1, l2 and 

l3 are the lengths of links 1, 2 and 3 respectively.  The mass of each link is 

represented by a point mass at the centre of mass of the link.  The masses m1, m2 

and m3 are the masses of each link.  The position of each of these centres of mass 

are described by the distance from the lower end of the respective link, therefore c1, 

c2 and c3 are the distances from the lower joint of links 1, 2 and 3 respectively to their 

centre of mass. 
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Figure 4-2  Schematic of a 3-DoF manipulator arm showing the relevant parameters 

for the development of a dynamic model. 

 

The angles α, σ and η are the angle of each joint from the horizontal.  The positive 

direction of each axis of rotation is anti-clockwise.  Based on the above diagram this 

means that α will rotate into the page, and σ and η will rotate anti-clockwise as 

positive.  For the purposes of the model, 0 radians in each case is when the joint 

angle is pointing horizontally to the right of the page, therefore in the case of the 

diagram, 𝛼 = 0𝑐, 𝜎 ≈ 140𝑐, and 휂 ≈ 30𝑐. 

 

4.2 Dynamic Equation Formulation 

Having laid out the parameters of a generic 3-DoF manipulator arm, the equations 

governing its dynamic properties can be explored.  By using Newtonian mechanics 

and d’Alembert’s principle, the dynamics can be developed.  For each link the 

relationship shown in Equation (4.1) is the case. 

 

 Σ𝑇 = 𝑇𝑖𝑛 − Σ𝑀𝑚 − Σ𝑀𝑓 − Σ𝑀𝑖 − Σ𝑀𝑐 (4.1) 
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Where Σ𝑇 is the total torque about a joint, 𝑇𝑖𝑛 is the input torque to the joint, Σ𝑀𝑚 is 

the total moment about the joint caused by the weight of the joint and any joints 

further up the arm, Σ𝑀𝑓 is the total moment about the joint caused by static and 

friction, Σ𝑀𝑖 is the total moment caused by moments of inertia of the link and any 

links further up the arm about the joint and Σ𝑀𝑐 is the total moment about the joint 

caused by the reaction to centripetal forces generated by circular motion in the joint, 

or any caused by circular motion in joints both below and above the joint. 

 

4.2.1 First Link 

In the first link, the rotation occurs about the Z-axis, so with the exception of any 

shearing forces causing friction in the joint, which will be assumed to be negligible, 

the weight of each link will have no effect on the total torque about the joint, therefore 

Σ𝑀𝑚 is zero.  Equally, any reaction forces to the centripetal forces generated due to 

circular motion of any of the links acts in a direction parallel to the length of the first 

link in the horizontal plane, therefore there is no moment generated by them about 

the first joint, hence Σ𝑀𝑐 is also zero.  This reduces Equation (4.1) to that of Equation 

(4.2). 

 

 Σ𝑇 = 𝑇𝑖𝑛 − Σ𝑀𝑓 − Σ𝑀𝑖 (4.2) 

 

A non-conservative torque which is present in the system is that which is caused by 

friction.  This model will deal with the effects of two forms of friction, static and 

kinetic.  Kinetic friction can be modelled very easily since torque produced by kinetic 

friction is calculated by 𝜏𝑘 = 𝑐𝑘휃̇, where 𝑐𝑘 is the coefficient of kinetic friction.  Static 

kinetic friction is more complex to model since it only exists when the angular 

velocity is small or zero.  For this to be the case the static friction term needs to 

reduce to zero as the angular velocity increases.  This is done using the expression 

given in Equation (4.3). 
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𝜏𝑠 = 𝑠𝑖𝑔𝑛(휃̇)𝑒−|�̇�|𝑐𝑠 

 

(4.3) 

Where, 𝑐𝑠 is the coefficient of static friction.  This forms the expression for the total 

torque about the joint due to friction shown in Equation (4.4). 

 

 Σ𝜏𝑓 = 𝑐𝑘휃̇ + 𝑠𝑖𝑔𝑛(휃̇)𝑒−|�̇�|𝑐𝑠 (4.4) 

 

The coefficient of kinetic friction can be modelled using this expression, which 

displays a shape which matches that of a Coulomb and Viscous friction model.  

Using values taken from (Meriam & Kraige, 2012) for steel against steel, the static 

friction coefficient is 0.6 and the kinetic friction coefficient is 0.4.  The reason behind 

these choices of coefficient of friction is because the friction terms in the gearboxes 

and servo motors for each joint have not been modelled, and this friction term allows 

for their effects on the system as well.  In this case the moment about the joint 

caused by friction is given in Equation (4.5). 

 

 Σ𝑀𝑓 = 0.4�̇� + 0.6𝑠𝑖𝑔𝑛(�̇�)𝑒−|�̇�| (4.5) 

 

0

Torque (Nm)

Θ (rad s-1)

 

Kinetic Friction

Static Friction

Total Friction
 

Figure 4-3 Effect of angular velocity on static and kinetic friction. 

 

Figure 4-3 show how the expression for static and kinetic friction behaves with 

varying angular velocity.  The red line is the kinetic friction, the blue line is the static 

friction and the green line the summation of the two.  It is clear from the figure that 
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static friction has the most effect early at low angular velocities, which requires an 

initial amount of energy to overcome.  As angular velocity increases the static friction 

had a depreciating effect and kinetic friction becomes the principal frictional effect 

acting on the system.  The friction model is symmetrical in that the friction has the 

exact same effect at negative velocities, only in the reverse direction. 

Since moment of inertia, 𝐼 = 𝑚𝑟2, and torque, 𝜏 = 𝐼휃̈, and in the case of joint 1 the 

radius is the horizontal distance of each mass from the same joint the moment of 

inertia of each of the links about joint 1 can be calculated using Equations (4.6) to 

(4.8). 

 

 𝜏1
1 = 𝑚1�̈�𝑟1

2 = 𝑚1�̈�𝑐1
2 (4.6) 

 𝜏1
2 = 𝑚2�̈�𝑟2

2 = 𝑚2�̈�(𝑙1 + 𝑐2 cos 𝜎)2 (4.7) 

 𝜏1
3 = 𝑚3�̈�𝑟3

2 = 𝑚3�̈�(𝑙1 + 12 cos 𝜎 + 𝑐3 cos 휂)2 (4.8) 

 

Therefore the total moment caused by the moments of inertia is calculated using 

Equation (4.9). 

 Σ𝑀𝑖 = 𝑚1�̈�𝑐1
2 + 𝑚2�̈�(𝑙1 + 𝑐2 cos 𝜎)2 + 𝑚3�̈�(𝑙1 + 12 cos 𝜎 + 𝑐3 cos 휂)2 (4.9) 

 

Using this relationship the total torque about joint 1 can by Equation (4.10). 

 

 

ΣT1 = T1in − (0.4�̇� + 0.6𝑠𝑖𝑔𝑛(�̇�)𝑒−|�̇�|) 

−𝑚1�̈�𝑐1
2 − 𝑚2�̈�(𝑙1 + 𝑐2 cos 𝜎)2 − 𝑚3�̈�(𝑙1 + 12 cos 𝜎 + 𝑐3 cos 휂)2 

(4.10) 
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4.2.2 Second Link 

In the case of the second link, the weights of the 2nd and 3rd links have an effect on 

the moments about joint 2.  The moment about joint 2 caused by the weight of link 2 

can be calculated using the schematic shown in Figure 4-4. 

 

σ 

m2g

c2

P1

σ 

 

Figure 4-4 Schematic of the weight of link 2 acting on link 2. 

 

In this case the moment acting about P1 due to the weight of the 2nd link is given by 

Equation (4.11). 

 

 𝑀2
2 = 𝑚2𝑐2𝑔 cos 𝜎 (4.11) 

 

For the moment acting about P1 due to the weight of the 2nd link, a similar process 

can take place.  In this case the effect of the weight of link 3 is calculated using 휃 

and 𝑙𝜃.  To do this Equations (4.12) and (4.13) are used. 

 

 휃 = atan (
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
) (4.12) 

 𝑙𝜃 = √(𝑙2 sin 𝜎 + 𝑐3 sin 휂)2 + (𝑙2 cos 𝜎 + 𝑐3 cos 휂)2 (4.13) 



90 
 

 

σ 

η

m3g

l2

c3

P1

P2

θ

θ

lθ

 

Figure 4-5 Schematic of the weight of link 3 acting on link 2. 

 

Equation (4.13), which calculates the value for 𝑙𝜃 can be simplified using 

trigonometric identities to that of Equation (4.14). 

 

 𝑙𝜃 = √𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂) (4.14) 

 

By combining Equations (4.13) and (4.14), the moment caused by the weight of link 

3 about the second joint can be calculated using Equation (4.15). 

 

 𝑀2
3 = 𝑚3𝑔 cos (atan (

𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
))√𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂) (4.15) 

therefore, 
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Σ𝑀𝑚

= 𝑚2𝑐2𝑔 cos 𝜎

+ 𝑚3𝑔 cos (atan (
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
))√𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂) 

(4.16) 

Kinetic friction about the 2nd joint occurs in exactly the same way as that of the first, 

therefore, 

 

 Σ𝑀𝑓 = 0.4�̇� + 0.6𝑠𝑖𝑔𝑛(�̇�)𝑒−|�̇�| (4.17) 

 

Moments of inertia about the 2nd joint can be calculated similarly to that of the first.  

Equation (4.18) calculates the moment of inertia caused by the second link about the 

2nd joint. 

 

 𝜏 =2
2 𝑚2�̈�𝑐2

2 (4.18) 

 

For the moment of inertia of the 3rd link acting about the 2nd joint, 𝑙𝜃 is used as the 

radius, hence, 

 

 
𝜏 =2

3 𝑚3�̈�√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂)

2

= 𝑚3�̈�(𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂)) 

(4.19) 

 

Therefore the total torque generated by moments of inertia about joint 2 can be 

described by Equation (4.20). 
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 Σ𝑀𝑖 = 𝑚2�̈�𝑐2
2 + 𝑚3�̈�(𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂)) (4.20) 

 

There are five reaction forces caused by circular motion which act on the 2nd link.  

Rotation of the 2nd link about the 2nd joint causes a centripetal force which acts 

axially along the link, and therefore causes no moment about joint 2.  However, 

reactions to the centripetal forces caused by the motion of the 2nd and 3rd links about 

the 1st joint act through the 2nd joint, as do the reactions to the centripetal forces 

caused by the rotation of the 3rd link about the 2nd and 3rd joints. 

 

α
 

σ 

Fc
c2

P0 P1

σ 

l1

m2

 

Figure 4-6 Schematic of the centripetal force which acts on the 2nd link due to its 

rotation about the 1st joint. 

 

For the moment generated about the 2nd joint by the reaction force caused by the 

rotation of the 2nd link about the first joint, the Figure 4-6 assists with the derivation of 

the equation.  Since centripetal force 𝐹 = 𝑚𝑟𝜔2, in this case, the radius would be the 

horizontal distance between joint 1 and the position of m2.  The component of this 

force that causes a moment about joint 2 can be calculated by trigonometry, forming 

Equation (4.21). 

 

 𝑀2𝑐 =2
1 𝑐2𝑚2(𝑙1 + 𝑐2 cos 𝜎)�̇�2 sin 𝜎 (4.21) 
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In this case the reaction to the centripetal force caused by the rotation of the 3rd link 

about the 1st joint acts at the end of link 2 in the horizontal direction and so can be 

calculated with trigonometry. 
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Figure 4-7 Schematic of the centripetal force which acts on the 2nd link due to the 

rotation of the 3rd link about the 1st joint. 

 

 𝑀2𝑐 =3
1 𝑙2𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)�̇�2 sin 𝜎 (4.22) 
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Figure 4-8 Schematic of the centripetal force caused by the rotation of the 3rd link 

about the 2nd joint. 

 

In this case the centripetal force can be calculated using Equation (4.23). 

 

 𝐹𝑐 = 𝑚3𝑙𝜃�̇�
2 = 𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂) (4.23) 

 

The moment about joint 2 can be calculated by finding the component of this force 

perpendicular to link to and multiplying it by l2.  This forms Equation (4.24). 

 

 

𝑀2𝑐 =3
2 𝑙2 sin(𝜎 − 휃)𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂)

= 𝑙2 sin (𝜎

− arctan
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂) 

(4.24) 

 

Finally, the moment about joint 2 caused by the centripetal reaction force generated 

by the rotation of link 3 about joint 3 can be calculated by using Figure 4-9 as a 

reference. 
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Figure 4-9 Schematic of the centripetal force caused by the rotation of link 3 about 

joint 3. 

 

In this case the moment of centripetal force caused by the rotation of link 3 about 

joint three which acts about joint 2 is calculated by Equation (4.25). 

 𝑀2𝑐 =3
3 𝑙2𝑚3𝑐3휂̇

2 sin(𝜎 − 휂) (4.25) 

 

This means that the sum of moments caused by centripetal forces calculated by 

Equation (4.26). 
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Σ𝑀𝑐

= 𝑙2𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)�̇�2 sin 𝜎 + 𝑚2𝑐2(𝑙1 + 𝑐2 cos 𝜎)�̇�2 sin 𝜎

+ (𝑙2 sin (𝜎

− arctan
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

+ 𝑙2𝑚3𝑐3휂̇
2 sin(𝜎 − 휂) 

(4.26) 

 

When the above equations are summed to calculate the total torque about joint 2, 

Equation (4.27) is formed: 

 

 

ΣT2

= T2in − 𝑐2𝑚2𝑔 cos 𝜎

− (𝑚3𝑔 cos (arctan
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)√𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

− (0.4�̇� + 0.6𝑠𝑖𝑔𝑛(�̇�)𝑒−|�̇�|) − 𝑚2�̈�𝑐2
2 − 𝑚3�̈�(𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

− 𝑙2𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)�̇�2 sin 𝜎 − 𝑚2𝑐2(𝑙1 + 𝑐2 cos 𝜎)�̇�2 sin 𝜎

− (𝑙2 sin (𝜎

− arctan
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

− 𝑙2𝑚3𝑐3휂̇
2 sin(𝜎 − 휂) 

 

(4.27) 
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4.2.3 Third Link 

In the case of the third link, the weight of the third link has an effect on the total 

moment about the joint. 

 

η

c3

P2

m3g
η

 

Figure 4-10 Schematic of the moment about joint 3 caused by the weight of link 3. 

 

 

In this case. 

 

 𝑀𝑚 = 𝑚3𝑐3𝑔 cos 휂 (4.28) 

 

The friction about joint 3 also has an impact, therefore, 

 

 𝑀𝑓 = 0.4휂̇ + 0.6𝑠𝑖𝑔𝑛(휂̇)𝑒−|�̇�| (4.29) 

 

In the case of the third link its inertia has an impact: 

 

 𝑀𝑖 = 𝑚3휂̈𝑐3
2 (4.30) 
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Centripetal forces caused by rotation have an effect on the moments about joint 3.  

Rotation of link 3 about joint 3 causes a centripetal reaction force which acts axially 

along the length of link 3, and therefore does not impact the moments about joint 3.  

However rotation of link 3 about joints 1 and 2 do have an effect.  For the rotation of 

link 3 about joint 1 Figure 4-11 is the case. 

The centripetal force caused by the acceleration about joint 1 can be calculated 

using Equation (4.31). 

 

 𝐹𝑐 = 𝑚3(𝑙1 + 𝑙2 + 𝑐3 cos 휂)�̈�2 (4.31) 

 

α
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Figure 4-11 Schematic of the centripetal force caused by the rotation of link 3 about 

joint 1. 

 

The component of this force which acts perpendicular to the link can be calculated 

using Equation (4.32). 

 

 𝑀3𝑐 =3
1 𝑚3(𝑙1 + 𝑙2 + 𝑐3 cos 휂)�̈�2 sin 휂 (4.32) 
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As before 𝑙𝜃 = √𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂) and 휃 = atan (
𝑙2 sin𝜎+𝑐3 sin𝜂

𝑙2 cos𝜎+𝑐3 cos𝜂
).  Since this is 

the case the centripetal force can be calculated using Equation (4.33). 

 

 𝐹𝑐 = 𝑚3�̇�
2√𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂) (4.33) 

 

For the rotation of link 3 about joint 2, Figure 4-12 shows the direction of the 

centripetal force acting on the link. 
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Figure 4-12 Schematic of the centripetal force caused by the rotation of the 3rd link 

about the 2nd joint. 

 

The component of this force that acts perpendicular to link 3 will have an impact on 

the total moment about joint 3, therefore, 

 

 

𝑀3𝑐 =3
2 𝑚3�̇�

2 sin (atan (
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)

− 휂)√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂) 
(4.34) 
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The resultant expression formed by collecting all of the moment terms about link 3 

gives the total torque about the link.  This is displayed in Equation (4.35). 

 

ΣT3 = T3in − 𝑚3𝑐3𝑔 cos 휂 − (0.4휂̇ + 0.6𝑠𝑖𝑔𝑛(휂̇)𝑒−|�̇�|) − 𝑚3휂̈𝑐3
2

− 𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)�̇�2 sin 휂

− (𝑚3�̇�
2 sin (atan (

𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)

− 휂)√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂)) 

(4.35) 

 

4.2.4 Angular Acceleration 

Having derived the expressions for (4.10), (4.27) and (4.35), the resultant torques 

about each joint, the angular acceleration can be derived next.  Since 𝜏 = 𝑚𝑟2휃̈, the 

angular acceleration of each joint can be calculated by 휃̈ =
𝜏

𝑚𝑟2.  For joint 1, all three 

links have an impact on the moments of inertia, therefore the sum of all three 

moments of inertia about joint 1 are used. 

 

 Σ𝐼1 = 𝑚1𝑐1
2 + 𝑚2(𝑙1 + 𝑐2 cos 𝜎)2 + 𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)2 (4.36) 

 

For joint 2, the moments of inertia of the second and third about the second joint 

have an impact, therefore, 

 

 Σ𝐼2 = 𝑚2𝑐2
2 + 𝑚3(𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂)) (4.37) 

 

For joint 3, only the moment of inertia of the third link about the third joint has an 

impact on the acceleration, therefore, 
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 Σ𝐼3 = 𝑚3𝑐3
2 (4.38) 

With these equations developed, the entire set of mechanical equations for the 

dynamic model has been derived, and the model can be built. 

 

 

Figure 4-13 Simulink Control block diagram for the 3-DoF arm dynamic model. 

 

In the model shown in Figure 4-13, the torques and arm parameters are inputted into 

the system and the dynamic equations are used to calculate the joint angular 

accelerations as Matlab code inside the ‘threeDofArm’ MATLAB Function, which are 

then fed out of the block as the signal ‘alphas’.  These accelerations are integrated 

twice to calculate the joint angles.  The joint angular positions, velocities and 

accelerations are fed back into the ‘threeDofArm’ MATLAB Function to carry out the 

next iteration of calculations. 

Upon simulating scenarios using the dynamic model, the friction term in each of the 

joint equations displayed a high frequency oscillation at the magnitude of ±0.6 when 

the system was within the range of angular velocities where static friction has more 

of an effect on the system than kinetic friction.  Figure 4-14 and Figure 4-15 are the 

resulting moments about the 2nd and 3rd joints for the 1st scenario from Section 4.2.5 

with the friction model described in Equation (4.4). 



102 
 

 

Figure 4-14 Moments about 𝝈. 

 

Figure 4-15 Moments about 𝜼. 

 

 

Figure 4-16 Angular position of each joint. 

 

The time at which the high frequency moment occurs is when the system has settled 

to a final value, i.e. the joints are stationary.  This can be observed by inspecting the 

time range in Figure 4-16 for the same scenario where the angular position does not 

change.  It is clear that the moments caused by friction are inserting energy into the 

system, and the resultant change in velocity is affecting the acceleration of the 

system, therefore the inertial terms are also affected. 

The reason behind this phenomenon is that the static friction term is being driven by 

the angular velocity of the joint, whereas static friction can only provide a force or, in 
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this case, torque to oppose another force or torque. A static friction torque is 

produced even when the system does not have velocity, since the exponent of 0 is 1. 

Therefore the current static friction model is required to be altered to reflect its 

dependence on an opposing torque. The resultant model is displayed in Equations 

(4.39) to (4.42).  The general principle of the model is correct, Equation (4.39) will 

still form the basis of the model. 

 

 
𝜏𝑠 = 𝑠𝑖𝑔𝑛(휃̇)𝑒−|�̇�|𝑐𝑠 

 

(4.39) 

 

Since the static friction will work in the opposite direction to the resultant moment 

acting on the system from all other moment terms in the model, the relationship 

shown in (4.40) can be used. 

 

 Σ𝑇 = 𝑇𝑖𝑛 − Σ𝑀𝑚 − Σ𝑀𝑖 − Σ𝑀𝑐 − 𝜏𝑘 (4.40) 

 

Using this relationship the direction that the static friction acts can be implemented. 

 

 
𝜏𝑠 = sign(−Σ𝑇)𝑒−|�̇�|𝑐𝑠 

 

(4.41) 

 

Finally the maximum magnitude of the static friction torque that can be applied must 

not exceed the value of the magnitude of the other moments about the joint. 

 

 𝜏𝑠 = sat−Σ𝑇
Σ𝑇 sign(−Σ𝑇)𝑒−|�̇�|𝑐𝑠 (4.42) 
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Figure 4-17 Effect of torque based saturation on friction in a joint. 

 

Figure 4-17 shows how the static friction term is affected by different resultant 

torques about each joint.  In figure (a) the resultant torque about the joint is larger 

than the maximum static friction therefore the reaction torque produced by friction is 

not affected.  In figure (b) the resultant torque about the joint is equal to the 

maximum static friction so the total friction is still unaffected.  In figure (c) the 

resultant torque is less than the maximum static friction, therefore this term is subject 

to a saturation which limits it to the same magnitude as the resultant torque in the 

case of zero angular velocity.  The red shaded area indicates the region of static 

friction which is no longer applied.  In figure (d) the resultant torque about the joint is 
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0 Nm, and this means that no static friction is generated as a reaction torque and 

only the kinetic friction has any effect on the system. 

The application of the static friction term to the dynamic model is given by equation 

(4.43). 

 Σ𝑇′ = Σ𝑇 − 𝜏𝑠 (4.43) 

 

4.2.5 Qualitative Validation 

In this section of the chapter, a series of simulated quantitative experiments will be 

carried out with the dynamic model developed previously in order to validate it.  For 

each experiment an assumption will be made about what the system is expected to 

do and then a comparison of the numerical results to the qualitative expectation will 

be carried out to validate whether the system is performing as expected.  In order to 

carry out any validation, numerical values must be applied to all of the variables 

specified in the dynamic model derivation.  For this case several assumptions have 

been made: 

 Each link is a hollow steel tube of diameter 0.02 m and wall thickness of 0.002 

m and the end of each link is capped with a piece of steel of the same 

thickness.  The density of steel is also taken from Meriam and Kraige 

Dynamics (2012), and is stated as 7830 𝐾𝑔 𝑚−3. 

 The servo motors that would control the arm currently have not been 

modelled and, as such, for the purposes of these simulations are assumed to 

have zero mass and inertia. 

 The mass and inertia of each link is distributed uniformly through the material; 

therefore the centre of mass of each link occurs half way along the length of 

the link and occurs in the centre of the circle. 

 This allows for all of the parameters to be calculated or decided upon.  This 

robot arm will have the same parameters as the Allen Vanguard™ Digital 

Vanguard robotic manipulator arm, as shown in Table 4-1. 
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Table 4-1 Numerical parameters of the Digital Vanguard 3-DoF manipulator arm. 

Parameter Value Parameter Value Parameter Value 

𝑙1 0.09 𝑚 𝑐1 0.045 𝑚 𝑚1 0.184 𝐾𝑔 

𝑙2 0.332 𝑚 𝑐2 0.166𝑚 𝑚2 0.637 𝐾𝑔 

𝑙3 0.538 𝑚 𝑐3 0.269 𝑚 𝑚3 1.021 𝐾𝑔 

 

Table 4-2 List of scenarios used for the qualitative validation of the manipulator 

dynamic model. 

Sim No. 𝝉𝟏 (𝑵𝒎) 𝝉𝟏 (𝑵𝒎) 𝝉𝟏(𝑵𝒎) 𝜶 (𝒓𝒂𝒅) 𝝈 (𝒓𝒂𝒅) 𝜼 (𝒓𝒂𝒅) 

1 0 0 0 0 0 0 

2 0 0 0 0 𝜋

2
 

𝜋

2
 

3 0 0 0 0 −
𝜋

2
 −

𝜋

2
 

4 10 0 0 0 0 0 

5 7 0 0 0 −
𝜋

2
 −

𝜋

2
 

6 0 7.06 0 0 0 0 

7 0 7.06 2.69 0 0 0 

8 0 5.74 1.91 0 0 0 

9 Ramp 0 0 0 0 0 

10 Ramp 0 0 0 −
𝜋

2
 −

𝜋

2
 

 

In the following scenarios, the initial angle of each joint will be specified and then 

either constant torques will be applied to the joints or, in the case of the final two 

scenarios, a ramp input will be applied to the first joint to assess whether the system 
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behaves in the expected way.  Table 4-2 gives the input torque and joint angle initial 

states for each simulation.  The initial conditions for the angular velocities and 

angular accelerations in each of the following simulations for all joints is 0 𝑟𝑎𝑑 𝑠−1 

and 0 𝑟𝑎𝑑 𝑠−2 respectively. 

 

Scenario 1 

The first scenario involves initial angles of 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑 and input torques of 

0 𝑁𝑚 for all joints.  In this case it is expected that 𝛼 will remain at 0 𝑟𝑎𝑑 since there is 

no input torque and the axis of rotation does not allow for any moment to be 

produced by the weight of the arm.  The other two joints do allow weight to produce 

a moment which will cause them to rotate.  Given that this is the case, both the 2nd 

and 3rd links will rotate in the negative direction.  Both of these links will rotate until 

there is no force acting in the direction which will cause a moment about the joint.  

Given that there are no limits to the rotation of the joints currently modelled in to the 

simulation, all three joints are able to rotate freely in any direction, and in this case 

the 2nd and 3rd links will rotate until they are pointing straight downwards (−
𝜋

2
 𝑟𝑎𝑑).  

This point is also the position where these links have the least potential energy and 

so is likely to be the settling point.  The inertia in the system is likely to cause an 

overshoot from this minimum potential energy position, and so the direction of the 

moment caused by gravity will reverse each link passes the −
𝜋

2
 𝑟𝑎𝑑 point.  The 

kinetic friction and static friction models in the system will damp down the oscillations 

as they will always act against the angular velocity, hence the motion of the link, and 

this effect will occur at high angular velocities due to the kinetic friction model and 

when the angular velocity tends to zero due to the static friction model. 
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Figure 4-18 Angular position of each joint in the arm model for scenario 1. 

 

As can be seen from Figure 4-18, 𝛼 remains at 0 𝑟𝑎𝑑 for the entirety of the 

simulation, but both 𝜎 and 휂 decrease towards −
𝜋

2
 𝑟𝑎𝑑.  There is oscillation about 

the settling point in both of the 2nd and 3rd joints, and this oscillation is different for 

both links.  The 3nd link is longer than the 2nd, but the 2nd link has the inertia of both 

2nd and 3rd links.  This means that the friction terms take longer to overcome the 

inertia as there is more mass to slow down, and so the 2nd link has a longer settling 

time than the 3rd.  Neither the 2nd or 3rd links have settled at exactly −
𝜋

2
 𝑟𝑎𝑑, but this 

is due primarily to the effect of static friction as the angular velocity of the system has 

to cross past the  0 𝑟𝑎𝑑 𝑠−1 at the maxima and minima of each oscillation, and this 

extra kinetic friction from having a low angular velocity helps to remove energy from 

the system until the point where the static friction overcomes the moments caused 

by weight, and the system decelerates to a halt.  The final position of each joint is 

displayed in Figure 4-19. 
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Figure 4-19 Resultant joint angle locations for scenario 1 in relation to the starting 

geometry. 

 

The effect of static friction can be verified by simulating the same system with static 

friction removed and determining the steady-state values of each joint angle. 

 

 

Figure 4-20 Angular position of each joint in the arm model for scenario 1 with static 

friction removed. 

 

The results shown in Figure 4-20 provide the final value for each of the joint angles 𝜎 

and 휂 when static friction is removed from the model.  Both of these joints have a 
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final value of −
𝑝𝑖

2

𝑐
 which is the predicted location.  This shows that as the 2nd and 3rd 

joints settle towards their final value and their angular velocity reduces so that static 

friction becomes larger than the kinetic friction term.  Since the joints are converging 

on a vertical angle, the cosine of the angle tends to 0, hence the moments about the 

joints cause by weight also tend to 0.  As the static friction term increases, it 

becomes larger than the moments caused by weight.  In reality, the point at which 

the moment cause by gravity and the static friction are equal for each joint will be the 

final value for the system.  The effect of the friction model can be further investigated 

by inspecting each term in the mechanical equation separately. 

 

 

Figure 4-21 Moment terms about 𝝈 (excluding input torque) for scenario 1. 

 

As can be seen from Figure 4-21, the weight of the links has a large effect on the 

overall torque acting on each joint.  As each joint converges on −
𝜋

2
 𝑟𝑎𝑑 the 

component of weight action perpendicular to the link tends to zero, and as the 

angular velocity of each link tends to zero, the link enters the static friction range and 

the kinetic friction torque becomes less prominent.  This is clear from the reduction in 

the magnitude of the sinudoidal shape which is present in the solid black line in the 

figure.  As the angular velocity of the joint reduces, the static friction moment (dotted 
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black line) becomes more apparent.  Once the value for the total moment acting on 

the joint becomes smaller than the static friction term, the static friction is only 

generated at the same magnitude since it will only counteract another force, not 

generate motion by itself.  The model has performed in this scenario in a manner 

which is consistent with the prediction of its behaviour prior to the running of the 

simulation, and therefore for this scenario it can be considered to be accurate. 

 

 

Figure 4-22 Moment terms about 𝜼 (excluding input torque) for scenario 1. 

 

Scenario 2 

The second scenario involves joint angles of 𝛼 = 0 𝑟𝑎𝑑, 𝜎 = 휂 =
𝜋

2
 𝑟𝑎𝑑, and has 

torque inputs of 0 𝑁𝑚 for each joint.  Given these joint angles of the 2nd and 3rd links 

should be pointing directly upwards in the vertical direction.  Since this means that 

weight has no components acting perpendicular to the links, all of the other terms 

are proportional to angular velocity and acceleration and there are no external 

disturbances, there should be no motion whatsoever, and the joint angles should 

remain constant at their initial values. 
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Figure 4-23 Angular position of each joint in the arm model for scenario 2. 

 

Figure 4-23 clearly confirms that the prediction made for this scenario correct since 𝛼 

remains constant at 0 𝑟𝑎𝑑 and 𝜎 and 휂 remain approximately constant at 
𝜋

2
 𝑟𝑎𝑑.  

Figure 4-24 and Figure 4-25 show 𝜎 and 휂 separately since they overlap. 

 

 

Figure 4-24 Angular position of 𝝈 for 

scenario 2. 

 

Figure 4-25 Angular position of 𝜼 for 

scenario 2. 
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Figure 4-26 Moment in 𝝈 (excluding input torque) for scenario 2. 

 

Figure 4-26 and Figure 4-27, show that there is negligible moments caused by any of 

the terms in the dynamics acting on the system.  The order of magnitude of the 

moments displayed in these figures is 10−16 so the moments can be considered to 

be 0 Nm.  The reason for this offset is numerical rounding errors in Simulink.  In this 

scenario the model has performed in a manner which is consistent with the predicted 

behaviour therefore it can be considered to be relatively accurate with regards to this 

set of inputs and initial conditions. 

 

 

Figure 4-27 Moment in 𝜼 (excluding input torque) for scenario 2. 
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Scenario 3 

The third scenario involves joint angles of 𝛼 = 0, 𝜎 = −
𝜋

2
 and 휂 =  −

𝜋

2
.  Again, the 

input torques in each of the joints is 0 𝑁𝑚.  This scenario should behave similarly to 

scenario 2.  However, in this scenario the system starts at its minimum potential 

energy point rather than its highest, as in the previous scenario, which means that 

any disturbance would not cause the system to diverge from this set of angles, in 

fact it should converge on this set of angles again should it be disturbed.  The reason 

that the system starts at its minimum potential energy point is that once again the 

components of weight acting perpendicular to the 2nd and 3rd links are 0, and any 

motion away from this angle combination would generate a moment caused by 

weight which acts to rotate the system towards this angle set.  This means that the 

only movement in the system would be caused by numerical simulation error. 

 

 

Figure 4-28 Angular position over time of all joints in scenario 3. 

 

Figure 4-28 shows that the system behaves as expected given the initial angular 

positions of 𝛼 = 0, 𝜎 = −
𝜋

2
 and 휂 =  −

𝜋

2
, and input torques of 0 𝑁𝑚. 
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Scenario 4 

The fourth scenario involves joint angles of 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑, and an input torque 

on joint 1 of 10 𝑁𝑚.  In this case the input torque will cause link 1 to accelerate until 

the kinetic frictional torque about joint 1 increases enough to counterbalance the 

input torque, and then the link will maintain a constant angular velocity.  The 

centripetal effects caused by the rotation of the 2nd and 3rd links about joint 1 will 

have an impact on the angular positions of 𝜎 and 휂.  Since there are no input torques 

on these two joints, the will initially tend towards the −
𝜋

2
 𝑟𝑎𝑑 points, but as the 

centripetal acceleration increases due to the increase in the angular velocity of joint 

1, their tendency will be to move radially away from joint 1 and this will provide a 

moment which rotates them towards 0 𝑟𝑎𝑑.  Since the links have inertia, there is 

likely to be oscillation about the 0 𝑟𝑎𝑑 point for both 𝜎 and 휂. 

 

 

Figure 4-29 Angular position over time of all joints in scenario 4. 

 

As can be seen in Figure 4-29, the angular velocity of 𝛼 increases for just over 1 

second, and then becomes constant, which can be observed from the straight line 

for joint angle 𝛼.  Both 𝜎 and 휂 begin to drop before 𝛼 has enough time to accelerate 

to an angular velocity high enough for the centripetal terms in the mode to have any 

appreciable effect.  Once �̇� has increase for centripetal effects to outweigh the 
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moments due to weight, joint angles 𝜎 and 휂 are forced towards 0 rad.  This is 

shown in Figure 4-30.  In this 15 second run of the system for scenario 4, the angle 

range shown on the figure is smaller in order to visibly see the motion of 𝜎 and 휂.  In 

this case it is clear that these two joint angles tend towards −
𝑝𝑖

2

𝑐
 initially, but then are 

driven back towards 0𝑐 as the momentum of joint 1 increases.  The predicted 

oscillation occurs as the links approach and pass the 0 radian point, but the frictional 

terms in the model damp down the oscillations over time. 

 

 

Figure 4-30 Angular position of all joints in scenario 4 over 15 seconds. 
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Figure 4-31 Diagram illustrating the angular velocity over time of all joints in scenario 

4. 

 

Figure 4-32 Angular velocity of joint 2 in 

scenario 4. 

 

Figure 4-33 Angular velocity of joint 3 in 

scenario 4. 

 

Figure 4-31 and Figure 4-33 illustrate the motion of the 2nd and 3rd joints over time.  

As can be seen here, both joints display highly oscillatory behaviour as they initially 

head towards the −
𝜋

2
 𝑟𝑎𝑑 point but, before 0.5 𝑠 for 휂, and less than 1 𝑠 for 𝜎, as the 

angular velocity of joint 1 (�̇�) becomes large enough such that the centripetal 

moment caused by this rotation becomes larger than the moments caused by weight 

on the 2nd and 3rd joints, and these links are forced to change direction back towards 

the 0 𝑟𝑎𝑑 point, and the oscillation begins.  As predicted the inertia in the system 
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causes the 2nd and 3rd joints to oscillate about 0 𝑟𝑎𝑑 until the oscillations die down 

due to friction. 

These angular velocity results show that �̇� increases during the first phase of the 

simulation, and the acceleration increases initially, but then decreases to 0 𝑟𝑎𝑑 𝑠−1, 

as the velocity levels off and becomes constant over time.  The uneven shape that 

occurs on the �̇� line is caused by the change in inertia of the system as 𝜎 and 휂 tend 

towards 0 𝑟𝑎𝑑. 

 

 

Figure 4-34 Moment terms about 𝜶 (excluding input torque) for the scenario 4. 

 

 

Figure 4-35 Moment terms about 𝝈 (excluding input torque) for scenario 4. 
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Figure 4-36 Moment terms about 𝜼 (excluding input torque) for scenario 4. 

 

As can be seen from Figure 4-34 to Figure 4-36, which show the breakdown of 

moments in the 1st, 2nd and 3rd links, the centripetal terms in the model have the 

largest effect on the system in this scenario.  What can also be observed is that the 

inertial effects and friction have an effect on the system as well, and it is these terms 

which cause the oscillations to die down towards the 0 𝑟𝑎𝑑 point.  As can be seen 

from the breakdown of moment terms about 𝛼, kinetic friction increases over time, 

which is the term that brings the angular acceleration of the joint to 0 𝑟𝑎𝑑 𝑠−2 and 

stabilises the angular velocity.  As described earlier in this section, the inertia of links 

2 and 3 have a substantial effect between 0 and 2 seconds, and this correlates 

precisely to the irregular shape of �̇� during the same time. 

A further experiment carried out in this section is to extend the simulation to 30 

seconds and cut the input torque to joint 𝛼 back to 0 Nm after 15 seconds.  The 

rotation of link 1 should decelerate to stationary, and as the centripetal effects 

reduce on the 2nd and 3rd links, their position should tend towards the −
𝜋

2
 radian 

point again.  The input torque signal and the resultant position of the joints are 

shown in Figure 4-37 and Figure 4-38. 
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Figure 4-37 Input torque to all joints for a modified version of scenario 4. 

 

 

Figure 4-38 Angular position of all joints for a modified version of scenario 4. 

 

There is a visible dip in the positions of 𝜎 and 휂 at the time of approximately 17 

seconds which corresponds to the torque removal from and deceleration of 𝛼.  By 

inspecting the range of time from this point to the end of the simulation, the result is 

more visible. 
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Figure 4-39 Angular position of joint 𝜶  for a modified version of scenario 4. 

 

 

Figure 4-40 Angular position of joints 𝝈 and 𝜼 for a modified version of scenario 4. 

 

Figure 4-39 clearly shows the deceleration of 𝛼 to a final value.  The time taken to 

stop following the step change in input torque at a simulation time of 15 seconds, is 

due to the inertia of the arm, especially since the arm is completely extended.  Figure 

4-40 shows how joint angles 휂 and 𝜎 drop to the −
𝜋

2
 radian point.  Due to the inertia 

of these links, the angle at which these joints angles settle from oscillation is more 

negative than −
𝜋

2
, but the links are tending to a final value at the end of the 

simulation. 
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The behaviour of the system during this simulation is consistent with the behaviour 

during previous scenarios and the prediction of its behaviour during this scenario, as 

such the model can be considered accurate with regards to this set of inputs and 

outputs. 

 

Scenario 5 

In the fifth scenario, the initial angular positions are 𝛼 = 0 𝑟𝑎𝑑, 𝜎 = −
𝜋

2
 𝑟𝑎𝑑 and 

휂 = −
𝜋

2
 𝑟𝑎𝑑 and am input torque to joint 1 of 7 𝑁𝑚, and input torques of 0 𝑁𝑚 for 

each of the 2nd and 3rd joints.  In this scenario the increase in angular velocity is 

predicted to have the same effect as that of the previous scenario.  The angular 

positions 𝜎 and 휂 should tend towards 0 𝑟𝑎𝑑, with a larger amount of oscillation than 

in the previous scenario, since they are likely to have a higher angular velocity during 

their approach to the 0 𝑟𝑎𝑑 point. 

 

 

Figure 4-41 Angular position over time of all joints in scenario 5. 

 

As predicted, the same effect has occurred as in the previous scenario.  However, 

the reason for presenting the results to an input torque of 7 𝑁𝑚 to joint 1, rather than 

the same input torque of 10 𝑁𝑚 as in the previous scenario is because for a larger 
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torque than about 7 𝑁𝑚, the system tends to become unstable and the simulation 

collapses. 

In the case of an input to joint 1 of 10 𝑁𝑚, the 2nd and 3rd  links are given enough 

energy by the rotation of 𝛼 to drive them over the 
𝜋

2
 𝑟𝑎𝑑 point.  Once this happens, 

the moments caused by the component of weight perpendicular to each joint works 

alongside the moments caused by the centripetal acceleration of the links about 𝛼 to 

accelerate �̇� and 휂̇.  This process continues as joints 2 and 3 rotate completely by 

2𝜋, and complete the entire circle.  These joints continue to accelerate towards ∞.  

However, for torques less than 7 𝑁𝑚, the system settles to a finite value, in this case 

approximately 0 𝑟𝑎𝑑 for both 𝜎 and 휂.  

 

 

Figure 4-42 Moment terms about 𝜶 (excluding input torque) for scenario 5. 
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Figure 4-43 Moment terms about 𝝈 (excluding input torque) for scenario 5. 

 

 

Figure 4-44 Moment terms about 𝜼 (excluding input torque) for scenario 5. 

 

As Figure 4-42 to Figure 4-44 (which show the breakdown of moment terms in each 

joint) illustrate the centripetal terms have a large effect on the positions of the 2nd and 

3rd joints, as these terms tend to cancel out the moments caused by weight.  Once 
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again the system has behaved as expected, and all of the observed phenomena can 

be explained by the same set of results. 

 

Scenario 6 

At this point, having investigated the effect on the system of inputs torques of 0 𝑁𝑚 

on the 2nd and 3rd joints, investigating whether the model behaves in an expected 

manner to different input torques in these joints is also important.  To that end this 

scenario will apply an input torque to joint 2 which is designed to counterbalance the 

effect of weight of the 2nd and 3rd links on the same joint.  The holding torque for joint 

2 at 𝜎 =  0 𝑟𝑎𝑑 and 휂 = 0 𝑟𝑎𝑑 can be calculated by Equation (4.44). 

 

 𝜏ℎ𝑜𝑙𝑑𝑖𝑛𝑔2
= 𝑐2𝑚2𝑔 + (𝑙2 + 𝑐3)𝑚3𝑔 (4.44) 

 

The resultant torque is 7.06 𝑁𝑚, and this will be inputted into joint 2, along with 

torques of 0 𝑁𝑚 to joints 1 and 3, and the initial angular positions of all three joints 

will be at 0 𝑟𝑎𝑑. 

Since 휂 is free to move it will accelerate downwards due to the effect of its weight, 

and its position will still tend to −
𝜋

2
 𝑟𝑎𝑑.  As the 3rd link drops down from 0 𝑟𝑎𝑑 the 

changing geometry of the system will affect the overall centre of gravity and drive it 

closer to the point of rotation about 𝜎.  This will reduce the total moment caused by 

weight about joint 2, and also reduce the moments of inertia acting about the 2nd 

joint.  As this process occurs, the torque required to hold joint 2 at 0 𝑟𝑎𝑑 will 

decrease, becoming less than the constant input torque into the joint, and so �̇� will 

accelerate therefore 𝜎 will increase. 
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Figure 4-45 Angular position of each joint in scenario 6. 

 

As can be observed from Figure 4-45, the prediction is accurate since 휂 begins to 

drop towards −
𝜋

2
 𝑟𝑎𝑑 immediately as the simulation starts.  As the weight moment 

and inertia acting about 𝜎 decrease, the input torque is able to accelerate 𝜎 and its 

magnitude increases.  As �̇� increases and 𝜎 gets larger, the effect on 휂 is dramatic, 

and the result is that both the 2nd and 3rd joint angles begin to increase rapidly until 

the effect of the rotation of link 3 about 𝜎 caused by the increasing �̇� drives �̈� and 휂̈ 

to ∞ and the simulation breaks down.  This can be observed by inspection of Figure 

4-46. 

 

 

Figure 4-46 Angular acceleration of each joint in the arm during scenario 6. 
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Scenario 7 

The 7th scenario deals with initial conditions of 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑 and the joints 2 

and 3 have holding torque inputs which are calculated using Equations (4.45) and 

(4.46) as follows. 

 

 τℎ𝑜𝑙𝑑𝑖𝑛𝑔2
= 𝑐2𝑚2𝑔 + (𝑙2 + 𝑐3)𝑚3𝑔 = 7.06 𝑁𝑚 (4.45) 

 τℎ𝑜𝑙𝑑𝑖𝑛𝑔3
= 𝑐3𝑚3𝑔 = 2.69 𝑁𝑚 (4.46) 

 

The input torque to joint 1 is 0 𝑁𝑚.  In this scenario, the prediction is that the holding 

torques will counter the moments generated by weight acting on the system.  At zero 

angular velocity the static friction model generates a maximum coefficient of friction 

of 0.6 which will act against any other moments present in the joint, but without 

velocity the kinetic friction moment is 0 𝑁𝑚.  The resultant response of the system 

should be one of zero angular velocity, hence no movement. 

 

 

Figure 4-47 Angular position of each of the joints during scenario 7. 
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As can be seen Figure 4-47  there is no motion in the arm therefore the calculated 

holding torque has provided the correct moments about each joint to counteract the 

moments due to weight.  An inspection of the moment terms about joints 2 and 3 will 

confirm this. 

 

 

Figure 4-48 Moment terms about 𝝈 (excluding input torque) for scenario 7. 

 

 

Figure 4-49 Moment terms about 𝜼 (excluding input torque) for scenario 7. 
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As can be seen from the moment terms about the 2nd and 3rd joints, all of the 

moments but those related to weight have a magnitude of 0 Nm.  The moments 

caused by the weights of links 2 and 3 add up to the inputted holding torque, and for 

휂 the moment caused by the weight of link 3 is equal to the inputted holding torque. 

 

Scenario 8 

For the 8th scenario, the input torques selected are to hold 𝜎 and 휂 at an angle of 

𝜋

4
 𝑟𝑎𝑑.  Since the initial angles of the joints are 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑, these torques will 

not be large enough to overcome the moments caused by the weight of each link 

and as such both joints will decelerate towards –
𝜋

2
 𝑟𝑎𝑑.  However, since the rotation 

of each link towards −
𝜋

2
 𝑟𝑎𝑑 will reduce the magnitude of the component of weight 

which acts perpendicular to each link.  Eventually the input torque will be equal to the 

moments caused by weight and the system will no longer decelerate.  As the system 

passes this point the input torques will be larger than the weight moments and the 

system will accelerate and move back towards the equilibrium point.  As the velocity 

oscillates about 0 𝑟𝑎𝑑 𝑠−1 kinetic friction will have a larger impact and will reduce the 

magnitude of the oscillations until the system slows to a final value for each joint.  

Given that the input torque is equal to the moment cause by weight when the system 

is at 
𝜋

4
 𝑟𝑎𝑑, and this moment has the same magnitude at −

𝜋

4
 𝑟𝑎𝑑, the prediction is 

that the system will settle at a final value of approximately −
𝜋

4
 𝑟𝑎𝑑 for 𝜎 and 휂. 
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Figure 4-50 Angular position of each joint during scenario 8. 

 

Figure 4-50 shows that the prediction is correct for the first 2 seconds, with joint 

angles 𝜎 and 휂 converging on −
𝜋

4
 𝑟𝑎𝑑.  The system does not settle at a value of 

−
𝑝𝑖

4

𝑐
 for the 2nd and 3rd joints however.  This is because the differences in dynamics 

for each joint means that they fall at different rates and overshoot the −
𝑝𝑖

4
 radian 

point.  Once the two joints are no longer falling at the same rate the centre of mass 

of each moves and the moments caused by weight will no longer have the same 

magnitude as the inputted torques.  Once the moments due to weight for 𝜎 are less 

than the input torque for joint 2, the link accelerates, ensuring that the centre of mass 

will not return to the expected location when the input torque was calculated.  The 

resultant system spins exponentially out of control and the system becomes 

unstable.  Figure 4-51 and Figure 4-52 show that the centripetal and inertial terms 

increase exponentially to ∞. 
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Figure 4-51 Moment terms about 𝝈 (excluding input torque) for scenario 8. 

 

 

Figure 4-52 Moment terms about 𝜼 (excluding input torque) for scenario 8. 

 

In this case, the system has not behaved as expected, but the resultant instability 

has resulted from an inadequate open loop control of the joint angles.  The input 

torque did not take into account the different dynamics of each joint so the system 

was driven to instability.  The result shows why adequate control is required for this 

type of system. 
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Scenario 9 

It is also useful to investigate how the system responds to a more gradual increase 

in input torque, rather than the instantaneous step as seen in the previous scenarios, 

which is not very realistic when considering that the input torque will be provided by 

servo motors with their own dynamics.  For the final set of scenarios, the system will 

be inspected for its response to a ramp input.  The first of these scenarios will have a 

ramp input to joint 1, with initial value of 0 𝑁𝑚 and a gradient of 1 𝑁𝑚 𝑠−1 for initial 

joint angles of 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑. 

The prediction here is that 𝜎 and 휂 will tend towards −
𝜋

2
 𝑟𝑎𝑑 and will drop by a larger 

magnitude than in scenario 4 since the input torque to 𝛼 is initially less, therefore �̈� is 

smaller and �̇� takes longer to increase and cause centripetal effects large enough to 

drive 𝜎 and 휂 to 0 𝑟𝑎𝑑.  The expected result is that this will occur, but that the 

overshoot for both the 2nd and 3rd joints will be much smaller and the magnitude of 

the oscillations will die down much more quickly than for the step input approach in 

scenario 4. 

 

 

Figure 4-53 Angular position of each joint during scenario 9 

 



133 
 

 

Figure 4-54 Angular velocity of each joint during scenario 9. 

 

 

Figure 4-55 Angular acceleration of each joint during scenario 9. 

 

As can be seen in Figure 4-53 to Figure 4-55, the prediction is correct, and the 

reason for the lower oscillation is that the rate of energy input into the system is not 

constant, and ramps up from zero, meaning that the centripetal moments increase at 

a slower rate, reducing the acceleration of 𝜎 and 휂.  This can be seen by comparing 

the moment terms for the 2nd and 3rd links for both this scenario and scenario 4. 
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Figure 4-56 Moment terms about 𝝈 for 

scenario 9. 

 

Figure 4-57 Moment terms about 𝜼 for 

scenario 9. 

 

 

Figure 4-58 Moment terms about 𝝈 for 

scenario 4. 

 

Figure 4-59 Moment terms about 𝜼 for 

scenario 4. 

 

In this scenario the centripetal moments ramp up slowly rather than the large 

increase that occurs earlier in the simulation for scenario 4. 

 

Scenario 10 

In this final scenario the stepped input torque to joint 1 for scenario 5 will be 

compared to a ramp input.  Similarly to scenario 5, the initial joint angles will be 
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𝛼 = 0 𝑟𝑎𝑑, 𝜎 = 휂 = −
𝜋

2
 𝑟𝑎𝑑, and input torques to the 2nd and 3rd joints of 0 𝑁𝑚.  In 

scenario 5 this system accelerated to ∞ for any input torque larger than 

approximately 7 𝑁𝑚.  In this scenario a ramp input of 1 𝑁𝑚 𝑠−1 with an initial torque 

of 0 𝑁𝑚 is used for joint 1 to assess if there is an improvement in the system.  The 

prediction is that this case, similarly to scenario 9, the lower rate of energy input will 

allow 𝜎 and 휂 to settle at 0 𝑟𝑎𝑑, rather than accelerating to ∞ rad. 

 

 

Figure 4-60 Input torques to each joint for scenario 10. 

 

 

Figure 4-61 Angular position of each joint for scenario 10. 
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In this case the torque is able to pass the 7 𝑁𝑚 point without causing the system to 

become unstable, and the 𝜎 and 휂 angles rise slowly to 0 𝑟𝑎𝑑.  Both display a small 

amount of oscillation, which can be more easily observed in Figure 4-62 and Figure 

4-63.  In this case 휂 converges more quickly than 𝜎, which displays more oscillatory 

behaviour.  In any case, the magnitude of oscillation is very small, within 1 𝑁𝑚. 

 

 

Figure 4-62 Angular position of 𝝈 for 

scenario 10. 

 

Figure 4-63 Angular position of 𝜼 for 

scenario 10. 

 

Again in this case, due to the increasing velocity of 𝛼, the centripetal terms have a 

high impact on the motion of 𝜎 and 휂, which is what would be expected from this 

system. 

 

4.2.6 Summary of Dynamic Modelling 

In the scenarios presented in the qualitative validation, the dynamic model behaved 

as expected, indicating that the model is qualitatively performing as expected given 

the assumptions and bounds made.  The model is an open loop system which can 

only be driven by an input torque.  To properly drive and control the system a set of 

three motors is needed, along with feedback on the joint angles to form servo 

systems which control the arm.  The following section of the chapter deals with the 

modelling of a servo system for use in the model. 
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4.3 Servo Model 

Figure 4-64 shows a circuit diagram of a motor to be implemented in the arm model.  

The motor is connected to the load by a gearbox.  Since the inertia of the arm is 

large, the inertia of the motor and gearbox will be assumed to be negligible.  The 

frictional part of the motor and gearbox are already modelled inside the arm 

dynamics. 

Ra
La

ia

Va

Back emf

w, θ
J, bkb

Gearbox

n1

n2

 

Figure 4-64 Circuit diagram of an electric motor drive connected to a load via a 

gearbox. 

 

In this case the following can be said: 

 

 

𝑉𝑎(𝑡) = 𝑅𝑎𝐼𝑎(𝑡) + 𝐿
𝑑𝐼𝑎
𝑑𝑡

+ 𝑘𝑏𝜔𝑐(𝑡) 

ℒ {𝑉𝑎(𝑡)} = 𝑉𝑎(𝑠), 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 

𝑉𝑎(𝑠) = 𝑅𝑎𝐼𝑎(𝑠) + 𝐿𝐼𝑎𝑠(𝑠) + 𝑘𝑏𝜔𝑐(𝑠) 

(4.47) 

 

Equation (4.47) can be rearranged to form Equation (4.48). 

 

 𝑉𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑠)𝐼𝑎(𝑠) + 𝑘𝑏𝜔𝑐(𝑠) (4.48) 
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It can be said that 𝜏(𝑠) = 𝑘𝑡𝐼𝑎(𝑠), therefore, in rearranged form this can be 

substituted into Equation (4.48) to form Equation (4.49). 

 

 𝑉𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑠)
𝜏(𝑠)

𝑘𝑡
+ 𝑘𝑏𝜔𝑐(𝑠) (4.49) 

This can be rearranged further. 

 

 𝑉𝑎(𝑠) − 𝑘𝑏𝜔𝑐(𝑠) = (𝑅𝑎 + 𝐿𝑠)
𝜏(𝑠)

𝑘𝑡
 (4.50) 

 

The expression on the left hand side of Equation (4.50) can be represented as a 

single variable 𝑉𝑖(𝑠). 

 

 

𝑉𝑎(𝑠) − 𝑘𝑏𝜔𝑐(𝑠) = 𝑉𝑖(𝑠) 

∴ 

𝑉𝑖(𝑠) = (𝑅𝑎 + 𝐿𝑠)
𝜏(𝑠)

𝑘𝑡
 

(4.51) 

 

Rearranging Equation (4.51) once more gives the transfer function displayed in 

Equation (4.52). 

 

 
𝜏(𝑠)

𝑉𝑖(𝑠)
=

𝑘𝑡

(𝑅𝑎 + 𝐿𝑠)
 (4.52) 

 

This can be represented in the system architecture shown in Figure 4-65. 
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Figure 4-65 Architecture of Robotic Manipulator Joint Servos with Non-Linear 

Dynamic Model as the Load. 

 

The servo motors have been modelled using the architecture shown in Dorf & 

Bishop, Modern Control Systems (2006).  Realistic values have been chosen from a 

product datasheet with servo motors that can fulfil the torque requirements.  In order 

to satisfy the requirement a McLennan Servo Supplies P05D, M542E servomotor 

has been selected for its parameters (McLennan Servo Supplies, Ltd, 2014).  This 

information is given in Table 4-3. 

 

Table 4-3 Servo motor parameters for use in the manipulator arm dynamic model. 

Description Parameter Value Conversion 

Motor Inertia Js 0.438 kg cm2 0.00438 kg m2 

Motor Friction B 0.028 Nm Reduce to zero 

Armature 

Resistance 

Ra 1.75 Ω - 

Motor Constant km 0.105 Nm/A - 

Armature 

Inductance 

La 5 mH 5x10-3 H 

Armature PD Va 50 x 1.1 V - 

 



140 
 

The friction in the motor has been reduced to zero to compensate for the high friction 

coefficient in the dynamic arm model.  The nominal voltage has been increased by 

10% since voltage can vary by ±10%. 

While the mass and volume of the motor are not specified in the data sheet, the 

assumption in this case is that these motors add no extra mass or volume to the 

manipulator arm, since this could be modelled by increasing length and mass of the 

manipulator links, and centre of mass could be adjusted accordingly.  Also, the 

torque provided by this motor is not large enough for the maximum required holding 

torque in the manipulator arm model, but since larger motors would also have larger 

mass and volume a more realistic approach would be to add a gearbox to the 

system. 

In this case the gear ratio required would be to increase the torque output by 6, 

therefore a scaling gain is used to simulate the gearbox and scale up the output 

torque.  Again, since the modelled kinetic friction in the manipulator arm is 

significantly higher than the realistic value, no friction is modelled in the gearbox.  

Finally, the maximum voltage that can be provided to the motor has been limited to 

± 10% of the nominal voltage, which in this case is 55 V, so a saturation of 55 V and 

-55 V has been added to the input of the servo motor so that the voltage in cannot 

exceed these limits. 

Figure 4-66 shows a block diagram illustrated the final architecture of a single servo 

motor: 

 

 

Figure 4-66 Simulink control block diagram for the dynamic model embedded into a 

servo loop with the specified motor model. 
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This allows for the following architecture shown in Figure 4-67 to be implemented. 
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PID 3
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Figure 4-67 Architecture of the PID controlled servo motors surrounding the 

manipulator arm dynamic model. 

 

Having implemented this system architecture, the PID controllers are required to be 

tuned.  However, as can be seen from the validation results in the previous chapter, 

this system is non-linear, and the holding moments and inertia change with joint 

angle.  This means that a single controller on each joint will be unable to handle the 

control requirements of the system over the entire range of joint angles, and so 

multiple controllers with the same architecture must be used for different angle 

regions of the joint (in other words the control gains in the controller must be tuned 

for different angle regions). 

 

4.4 Summary of Dynamic Modelling 

This chapter has developed a dynamic model of a 3-DoF manipulator arm including 

servo model for use as a test-bed for the control and guidance parts of the thesis.  In 

Chapter 5 an appropriate control schema will be selected and tuned to ensure 

adequate performance for the arm to allow it to track a path.  In Chapters 6 and 7 the 

guidance method is considered, and a path generation technique will be 

implemented to guide the arm through a close-proximity environment without 

colliding with any obstacles. 
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5 CONTROL OF 3-DOF MANIPULATOR ARM 

In Chapter 4 a non-linear dynamic model of a generic 3-DoF robotic manipulator 

arm was derived and qualitatively validated.  The results shown in Figure 4-18 

onwards indicate that the non-linear way in which the model behaves means that 

designing a controller is challenging.  The final part of Chapter 4 dealt with the 

modelling of servo motors which will provide the input torques to each link.  This 

chapter deals with the application of feedback control to the servo motors which 

provide the input torques to drive the dynamic model of the manipulator arm.  The 

work carried out in this chapter is outlined in blue in Figure 1-4, which is displayed 

again here with all of the other processes greyed out. 

Sensor

Arm Position and 

Pose

(Servo Encoders)

Simulated 

Environment Data

User Input

Desired End 

Effector Location

Map Conversion to 

C-space

Plotting of Current 

and Desired End 

Effector Location

Path Generation Path Following
Arm Servo 

Controllers

Arm Dynamics

Arm Kinematics

 

Figure 5-1 Manipulator arm control and path following (blue) in relation to the overall 

guidance method. 
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Following the selection of a suitable control schema, the remainder of the chapter 

deals with the tuning of the control method and validation of the robotic manipulator 

performance after the tuned controller has been implemented. 

5.1 Implementation 

There is only one set of physical parameters of the arm which changes during 

operation.  This is the angle of each joint, which is affected only by each joint angle 

velocity.  The second of these can be removed from the problem by maintaining a 

small rate of change of angle, therefore the change in moments cause by centripetal 

effects will be small.  This means that the only parameters that change the dynamics 

of the arm are the joint angles themselves.  Once this is the case the required gains 

for the controller on each joint can be calculated offline.  This can be done using one 

of many optimisation methods, and three have been selected based upon their 

availability in Matlab, genetic algorithms, least squares minimisation and the Nelder-

Mead optimisation.  

A genetic algorithm (GA) (Goldberg, 1989) is a form of evolutionary algorithm 

designed to solve both constrained and unconstrained optimization problems based 

on a natural selection process that mimics biological evolution.  The algorithm 

iteratively modifies a population of individual solutions.  At each step, the genetic 

algorithm selects the fittest individuals from the current population and uses them as 

parents to produce the children for the next generation.  Over successive 

generations, the population "evolves" toward an optimal solution. 

The Least Squares Minimisation Method (Bjork, 1996) is standard approach which is 

taken in regression analysis, where the approximate solution of a set of equations in 

which there are more equations than unknowns is searched for.  The overall solution 

to the Least Squares method is an attempt to minimize the sum of the squares of the 

errors made in the results of every single equation.  Since the optimisation problem 

presented in this chapter is non-linear, the Non-linear least squares method is the 

form of least squares analysis used to fit a set of 𝑚 observations with a model that is 

non-linear in 𝑛 unknown parameters (𝑚 >  𝑛).  It is used in some forms of non-linear 

regression.  This method circumvents the non-linearity of a problem by 

approximating the model by a linear one and refining the parameters by successive 

iterations. 
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The Nelder–Mead method, (McKinnon, 1998) downhill simplex method or amoeba 

method is a commonly applied numerical method used to find the minimum or 

maximum of an objective function in a multidimensional space.  It is applied to 

nonlinear optimization problems for which derivatives may not be known.  The 

Nelder–Mead method is a heuristic search method that can converge to non-

stationary points on problems that can be solved by alternative methods.  In Matlab, 

this method is known as fminsearch. 

In order to better understand how optimisation methods work, a Genetic Algorithm 

has been implemented in the following section. 

 

5.1.1 Genetic Algorithm 

Genetic algorithms are naive attempts to mimic evolution in nature.  This allows for 

an iterative change to variables in a system to make an improvement by only 

selecting the best changes and combining them to create a new set of variables. 

Figure 5-2 shows an illustration of a cell with special emphasis on its nucleus.  Inside 

can be seen a simplification of the genetic material as a pair of chromosomes, each 

one contributed by a different parent. 

 

 

Figure 5-2 A single cell containing two chromosomes. 

 

In normal cell division (during growth), mitosis, the chromosomes are duplicated as a 

pair as the nucleus splits and as the cell splits into two cells a nucleus is found in 

each. 
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Figure 5-3 A cell undedergoing out asexual reproduction by mitosis. 

 

This leaves two identical cells which are also identical to the original cell.  During 

reproduction, meiosis, when forming the single chromosome reproductive cells, the 

chromosomes get broken up into pieces and the genetic material from each 

chromosome can be recombined into a different combination of characteristics.  For 

example: 

 

Figure 5-4 Crossover of genetic material from two chromosomes during the first stage 

of meiosis. 

 

This process is known as crossover.  To illustrate the effect this has on the offspring 

of two parents, the following figure shows two individuals each with different 

characteristics in there chromosomes.  The first individual has the original red and 

blue chromosomes.  The second individual has green and orange chromosomes.  As 

the two produce their reproductive cells, crossover occurs randomly, which is 

illustrated in the figure by different lengths of chromosome fragments in each 

individual. 
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Figure 5-5 Crossover in two parent cells during the process of meiosis.  The two 

parents have different coloured chromosomes. 

 

These four new chromosomes produce 4 reproductive cells, two in each individual (1 

and 2).  Each reproductive cell has information from the parents of our two 

individuals in the previous generation, but the information from their parents has 

been jumbled up. 

 

1a 1b 2a 2b

 

Figure 5-6 Production of reproductive cells in both parents during meiosis. 

 

The reproductive cells from individual 1 can be combined with reproductive cells 

from individual 2 to form 2 new offspring. 

 

1a2b 1b2a

 

Figure 5-7 Formation of children cells by combination of reproductive cells from each 

parent cell. 
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Now there are two new individuals with a different combination of characteristics to 

their two parents and their four grandparents.  The processes of crossover in the 

production of reproductive cells and combination of reproductive cells from each 

parent occur randomly, so there can be any number of crossovers (including 0) and 

any reproductive cell from one parent can combine with any reproductive cell from 

the other.  This helps to produce a very large number of possible combinations of the 

parents in the offspring. 

There is another mechanism occurring in the process of meiosis which causes 

minute changes in the genetic material.  When the chromosomes are mixed up 

during reproductive cell generation, bits of information can be changed slightly. For 

example, an 8 bit binary number such as 00101010 (42), could be changed slightly 

to 11001011.  In this case the 1st, 2nd, 3rd and 8th bits have been changed to the 

opposite state, turning the number 42 into 203.  This is known as mutation.  Again, 

the mutation of a bit occurs randomly, and in an 8 bit word, there could b 0 to 8 

mutations.  To summarise, there are three main processes occurring in genetic 

reproduction that can be emulated in a genetic algorithm to help solve an 

optimisation problem: 

 Mutation. 

 Crossover. 

 Genotype to phenotype combination. 

 

This allows for new individuals to be created from the existing population.  In nature 

the individual with the best chances of survival will survive long enough to pass on 

their genetic material by reproduction.  As the population competes to survive and 

only the fittest survive, eventually those with the worst ability to survive will die off 

and the whole population will have the characteristics that best aid survival.  This is 

known as survival of the fittest and it is the primary mechanism by which evolution 

occurs. 

As the number of generations increases, mutation and crossover gives chances for 

slightly better versions of characteristics and better combinations of characteristics 

than in the previous generation.  When this is the case, the offspring with these new 

characteristics out-compete the other individuals in the population, and the overall 
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fitness of the population will slowly head to an ‘optimal’ fitness over successive 

generations.  This is the process that GAs attempt to replicate. 

In the case of the use of GAs to solve an optimisation problem, two crucial parts are 

required.  There is a need to specify the problem to be solved as an objective 

function, i.e. a function which specified the objective(s) to be met.  This function is 

usually set up in such a way that the aim is to find its maximum or minimum value.  

The other part of the GA is the fitness function, which is designed to give a measure 

of an individual’s suitability to satisfy the goals of the objective function. 

 

5.1.2 Robotic Manipulator Arm Tuning 

In the case of the robotic arm dynamic model, there are three controllers that must 

be tuned to provide acceptable performance.  Since the system is non-linear, 

multiple sets of gains must be determined for different arm states based on the 

angular position of its joints.  To do this objective and fitness functions must be 

developed to optimise the gains for this system. 

An initial starting point is to write a GA which will attempt to solve the non-linear 

multi-objective problem which is posed in the need to tune a 3-dof robotic 

manipulator arm.  Prior to carrying out the gain optimisation for a problem of this 

size, validation of the GA against well-known optimisation problems will be carried 

out to validate whether the GA is able to find solutions to this kind of problem.  Also, 

a comparison of the effectiveness of the implemented GA against other optimisation 

methods is also carried out to assess the feasibility of use of the implemented GA.  

Table 5-1 summarises the algorithmic process for a Genetic Algorithm. 

 

Table 5-1 Summary of the algorithmic process for a GA. 

Initialisation 
 Take initial estimates for the controller gains as inputs (these 

could be specified by the user or generated randomly). 

 Using the initial estimates form an individual.  In the case of the 
robotic manipulator arm, which has three controllers, the gains 
for each controller will be bundled into groups to form 
chromosomes, so each controller represents one chromosome 
of three genes. 
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Mitosis 
 Duplicate the individual with a small amount of random mutation 

to each gene in order to generate the required sample size. 

Natural 

Selection 

 Run the arm model for the specified scenario with each of the 
individuals providing the controller gains and assess the fitness 
of each individual based on how close to a specified system 
behaviour the manipulator arm operates with. 

Meiosis 

(Including 

Crossover 

and 

Mutation) 

 Take the top several individuals with the best fitness and select 
them for reproduction (the number of individuals selected will 
aim to maintain the specified population size). 

 Pair off the individuals and carry out reproduction by creating all 
combinations of chromosomes.  (i.e. for two individuals with 
three chromosomes each, there are eight possible 
combinations).  Mutation will occur randomly for each gene in 
the pool as the chromosomes are recombined. 

 The parent individuals that were responsible for reproduction will 
survive into the next generation of individuals.  This is important 
since the recombination and mutation of the fittest individuals 
may not provide a better individual, therefore keeping the fittest 
individuals from the previous generation will prevent a reduced 
fitness in the population. 

 There are now ten individual for each two parents in the 
previous generation, which can then be used to provide 
controller gains for the arm model and each individual is tested 
to find their fitness. 

Iteration 
 The process is repeated until an individual is found which 

satisfies the fitness criterion which is specified by the user (this 
would be calculated based on the fitness function and what the 
outcome of the fitness function means in real terms). 

 

Given that the robotic manipulator system displays a large degree of non-linearity, a 

single set of controller gains for the whole range of joint angles will be inappropriate 

since the moments about each joint vary by a large amount depending on the joint 

angle.  To account for this, the GA gain tuning can be carried out for discrete joint 

ranges to provide a series of controller gains over the range of joint angles. 

5.1.3 Fitness Functions 

In order to select which individuals are the fittest in the population, a fitness function 

is required which analyses the values of the error between the ideal response of 

each joint to an input and the actual response of each joint.  For the fitness function, 

several options were tested.  To describe the different fitness functions, the 

nomenclature defined in Table 5-2 is used. 
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Table 5-2 Summary of the variables used in the formation of the fitness function for 

the robotic manipulator tuning problem. 

Variable Description  Variable Description 

𝑌𝐼𝛼(𝑡) The set of ideal output  

magnitudes over time given 

a step input to the joint 𝛼. 

 𝑌𝐴𝛼(𝑡) The set of output 

magnitudes over time of the 

joint 𝛼 for the modelled 

robotic manipulator arm with 

PID controller. 

𝑌𝐼𝜎(𝑡) The set of ideal output  

magnitudes over time given 

a step input to the joint 𝜎. 

 𝑌𝐴𝜎(𝑡) The set of output 

magnitudes over time of the 

joint 𝜎 for the modelled 

robotic manipulator arm with 

PID controller. 

𝑌𝐼𝜂(𝑡) The set of ideal output  

magnitudes over time given 

a step input to the joint 휂. 

 𝑌𝐴𝜂(𝑡) The set of output 

magnitudes over time of the 

joint 휂 for the modelled 

robotic manipulator arm with 

PID controller. 

 

Where 𝑡 ∈ [𝑡0, 𝑡𝑓].  This allows for the following fitness functions to be implemented. 

Note that 𝑌 = 𝑌(𝑡) for all of the sets of outputs in the following equations.  Four 

different fitness functions have been implemented and investigated, all which are 

intended to reduce the error between the ideal output to a step input and the output 

of each joint to the same step input.  Since the system being tuned is a dynamical 

system, there exists both a transient stage (which consists of rise, overshoot and 

settling) and a steady-state stage to the response over time, therefore the following 

fitness functions have been designed with the intention of providing the best 

compromise when tuning the system over the whole range of stages. 
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Sum-Squared Error 

The first fitness function designed takes the error over time 𝑒(𝑡) for each joint and 

squares the set to make it positive, forming 𝑒2(𝑡).  The set of error squared for each 

joint is then summed to provide a scalar value, ∑𝑒2(𝑡).  The mean of the sum 

squared error for all three joints is then taken as the fitness value.  The complete 

fitness function is displayed in Equation (5.1). 

 

 𝑓 =
∑(𝑌𝐴𝛼−𝑌𝐼𝛼)2 + ∑(𝑌𝐴𝜎 − 𝑌𝐼𝜎)

2 + ∑(𝑌𝐴𝜂 − 𝑌𝐼𝜂)
2

3
 (5.1) 

 

The square of this function has two effects on the fitness value.  Firstly it ensures 

that all fitness values are positive.  This is useful since a large negative error would 

be found to be smaller than a small positive error, and this effect needs to be 

removed for a useful comparison.  Secondly, squaring a number larger than one 

increases the magnitude, whereas, squaring a fraction decreases the magnitude.  

This means that errors larger than 1 will be penalised significantly more heavily than 

those which are less than 1.   The fitness for each joint is taken with equal weight in 

the mean since all three joint performances are equally important.  This function 

worked well in optimising the PID gains to produce a sensible response but took a 

large number of generations to converge.  It was noted by inspection of the 

responses over successive generations that the area of the response causing the 

problem was the transient, specifically the overshoot and settling region of the 

transient. 
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Figure 5-8 Result of the optimisation of a joint angle range in the arm using the sum 

squared error fitness function. 

 

Weighted Sum of Errors-Squared (Transient and Steady-State) 

Since the sum-squared error fitness function does not take into account any 

weighting between the transient and steady state, and the GA struggled to find gains 

which reduced overshoot and settling time, finding a way of weighing the errors in 

certain parts of the response would allow the GA to put more emphasis on solutions 

with smaller overshoot and settling time.  This method splits the time response into 

two phases, the transient and the steady-state, and a single time is used to split the 

two phases.  This time is denoted as 𝑡1.  When the simulation time is smaller than or 

equal to 𝑡1 then the square of the error between the actual and ideal outputs are 

weighted with one value, and when the time of the simulation is larger than 𝑡1 then 

the square of the error between the actual and ideal output for each joint is weighed 

by a second value.  In order to put emphasis on the transient phase of the response, 

𝑤1 is selected to be larger than 𝑤2.  In this case the mean fitness between the three 

joints is not considered, only the sum since the two parameters are the same in 

essence, with only a scaling factor changing them.  This gives a complete 

expression which is displayed in Equation (5.2). 
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𝑓 = 𝑤1 ∑(𝑌𝐴𝛼−𝑌𝐼𝛼)2

𝑡1

𝑡0

+ 𝑤2 ∑(𝑌𝐴𝛼−𝑌𝐼𝛼)2

𝑡𝑓

𝑡1

+ 𝑤1 ∑(𝑌𝐴𝜎 − 𝑌𝐼𝜎)
2

𝑡1

𝑡0

+ 𝑤2 ∑(𝑌𝐴𝜎 − 𝑌𝐼𝜎)
2

𝑡𝑓

𝑡1

+ 𝑤1 ∑(𝑌𝐴𝜂 − 𝑌𝐼𝜂)
2

𝑡1

𝑡0

+ 𝑤2 ∑(𝑌𝐴𝜂 − 𝑌𝐼𝜂)
2

𝑡𝑓

𝑡1

 

(5.2) 

 

Where  𝑤1 = ℝ+ 𝑤ℎ𝑒𝑛 𝑡 ∈ [𝑡0, 𝑡1], 𝑤1 = 0 𝑤ℎ𝑒𝑛 𝑡 ∈ (𝑡1, 𝑡𝑓] and 𝑤2 = 0 𝑤ℎ𝑒𝑛 𝑡 ∈

[𝑡0, 𝑡1], 𝑤2 = ℝ+ 𝑤ℎ𝑒𝑛 𝑡 ∈ (𝑡1, 𝑡𝑓]. 

Figure 5-9 illustrates how the selection of the value for 𝑡1 allows for the splitting of 

the response in to the transient and steady-state phases of the response.  When 

selecting weightings it is important to consider how long the system has been run for, 

as a longer run time will imply a much longer steady-state phase, and therefore this 

phase of the response is being automatically weighted based on run time. 

 

Figure 5-9 Selection of the value 𝒕𝟏 in relation to the transient and steady state 

regions of a step response. 

 

This fitness function improved the transient part of response, shown in Figure 5-10, 

in that it reduced the overshoot but at the expense steady-state error, therefore the 
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aim of this fitness function was achieved but to the detriment of the other parts of the 

response. 

 

 

Figure 5-10 Result of the optimisation of a joint angle range in the arm using the 

Weighted Sum of Errors-Squared (Transient and Steady-State) fitness function. 

 

Weighted Sum of Errors-Squared (Rise Time, Overshoot and Steady-State) 

To get a better amount of control over all of the response, the run time of the 

response can be split up further into several smaller phases.  In this case the best 

split would be to separately weight the rise time, overshoot and steady-state to 

attempt to find the best balance between them.  In this case the rise time section is 

treated exactly as before, and to provide a better overshoot and steady-state error, 

the power of these sections has been increased from 2 to 4 in the case of the 

overshoot and from 2 to 6 in terms of the steady-state error.  This has been done so 

that large errors in these areas are heavily penalised and small errors in these areas 

are almost rewarded.   Again the weighting and times for each phase have to be 

selected appropriately.  This produces the fitness function shown in Equation (5.3). 
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𝑓 = 𝑤1 ∑((𝑌𝐴𝛼−𝑌𝐼𝛼)2 + (𝑌𝐴𝜎 − 𝑌𝐼𝜎)
2 + (𝑌𝐴𝜂 − 𝑌𝐼𝜂)

2
)

𝑡1

𝑡0

+ 𝑤2 ∑((𝑌𝐴𝛼−𝑌𝐼𝛼)6 + (𝑌𝐴𝜎 − 𝑌𝐼𝜎)
6 + (𝑌𝐴𝜂 − 𝑌𝐼𝜂)

6
)

𝑡3

𝑡2

+ 𝑤3 ∑((𝑌𝐴𝛼−𝑌𝐼𝛼)4 + (𝑌𝐴𝜎 − 𝑌𝐼𝜎)
4 + (𝑌𝐴𝜂 − 𝑌𝐼𝜂)

4
)

𝑡𝑓

𝑡2

 

(5.3) 

 

Figure 5-11 illustrates how the 𝑡1 and 𝑡2 values can be chosen to split the response 

into its separate phases. 

 

 

Figure 5-11 Selection of the values 𝒕𝟏 and 𝒕𝟐 in relation to the rise time, settling time 

and steady state regions of a step response. 

 

This fitness function performed similarly to the previous one in terms of overall 

fitness, but the higher powers of error in the overshoot and steady-state phases of 

the response mean that the GA focuses on minimising the error in these phases at 

the expense of the rise time.  The response of each of the joints when tuned using 

this fitness function are displayed in Figure 5-12. 
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Figure 5-12 Result of the optimisation of a joint angle range in the arm using the 

Weighted Sum of Errors-Squared (Rise Time, Overshoot and Steady-State) fitness 

function. 

 

Gaussian and Time Based Weighting 

This fitness function attempts to solve the same issues as the previous function.  

Instead of using higher powers, the function introduces a time-squared element to 

the function, where an error that remains in the response over long times is 

penalised more heavily the longer that it exists in the response.  In order to reduce 

the overshoot a Gaussian weighting is introduces at the peak time of the first peak in 

the system.  The intention is to increase the weighting the closer to the peak that the 

response is and then decrease as the response moves away from the peak.  The 

centre and width of the Gaussian weighting is selected using Equation (5.4). 

 

 𝑔(𝑡) = 𝑒
−
(𝑡−𝑏)2

2𝑐2  (5.4) 

 

Where, t is the time of the response, b is the centre of the peak, to be selected at 𝑡𝑝 

of the response and c is the standard deviation of the Gaussian bell, or the RMS 



158 
 

width.  This allows for a selection of when this weighting starts and ends as a 

function of time.  The height or maximum magnitude of the weighting would be given 

be a scaling factor which the whole function is multiplied b, and this is given by 𝑤1 in 

the fitness function.  The time part of the fitness function is carried out by multiplying 

the error of each joint over time, by the integral of time from 𝑡0 to 𝑡𝑖, where 𝑡𝑖 is the 

time index of that value of error.  This part of the function is also weighted and the 

weighting given by 𝑤2.  This produces the fitness function shows in Equation (5.5). 

 

 

𝑓 = (𝑤1𝑔 + 𝑤2 ∫ 𝑡
𝑡𝑖

𝑡0

) (∑(𝑌𝐴𝛼−𝑌𝐼𝛼)2 + ∑(𝑌𝐴𝜎 − 𝑌𝐼𝜎)
2  

+ ∑(𝑌𝐴𝜂 − 𝑌𝐼𝜂)
2
) 

(5.5) 

 

Given values, the weighting which the sum of the error-squared is multiplied by can 

be visualised in Figure 5-13.  Using the values 𝑤1 = 0.5,  𝑤2 = 1 × 10−4, 𝑏 = 2.5 and 

𝑐 = 1.  This shows how any error about the peak time of 2.5 seconds will be heavily 

penalised and any error as the time increases will be heavily penalised. 

 

  

Figure 5-13 Shape of the weighting function for the Gaussian and Time based fitness 

function. 
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The responses of each of the joints using this fitness function are shown in Figure 

5-14.  This function had a better performance in terms of optimising the gains, but 

still was unable to match the performance of the Sum Squared Error method 

presented first.  

 

 

Figure 5-14 Result of the optimisation of a joint angle range in the arm using the 

Gaussian and Time Base Weighting fitness function. 

 

This is due to the inclusion of parameters which attempt to specify the rise, peak and 

settling times of the responses.  Given that the optimisation is attempting to tune the 

gains of three PID controllers, any change in gains will change pole locations of the 

linearized version of the system, hence changing the rise, peak and settling times.  

This means that any prediction of the location of these points will only ever be an 

estimate, thus the weighting for each phase of the response will overlap into other 

phases.  Therefore the Sum Squared Error fitness function will be used to carry out 

the optimisation of the PID gains. 
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5.2 Genetic Algorithm Validation 

Having developed a Genetic Algorithm to optimize the PID gains in the robotic 

manipulator servo controllers, the algorithm should be validated to test its 

effectiveness at solving the problem.  This can be done by comparing it against the 

performance of the other optimization methods established as options at the end of 

the literature review in this chapter.  The validation of the developed GA takes two 

forms.  The first is a comparison of its performance against the other methods for 

standard optimization problems, and the second is a comparison of its performance 

against the other methods on the PID gain tuning problem for the robotic manipulator 

dynamic model developed in Chapter 4. 

 

5.2.1 Validation of the GA Using Standard Optimisation Problems 

Having implemented a genetic algorithm which has been designed for the tuning of a 

nine gain 3-DoF manipulator arm PID controller, it is important to validate the 

effectiveness of the GA against other optimisation methods for both the problem in 

question and other, well known optimisation problems.  This will give a benchmark 

for the feasibility of use of the GA for the robotic manipulator gain scheduling 

problem.  To carry this out the GA is modified to optimise a list of different functions 

(Back, 1995), (Haupt & Ellen, 2004), (Deb, 2002), (Binh & Korn, 1997), (Binh, 1999), 

(Simionescu, 2014).  The functions displayed in Table 5-3 are a small selection of 

those used, and the remainder are found in the appendices.  Those functions 

labelled in blue are single objective problems and those labelled in pink are multi-

objective problems. 

 

Table 5-3 List of standard optimisation problems used to test optimisation functions. 

Function 

Name 

Function Search Domain 

Rosenbrock 

function 
𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 
−∞ ≤ 𝑥𝑖 ≤ ∞, 

1 ≤ 𝑖 ≤ 𝑛 
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Beale's 

function 

𝑓(𝑥, 𝑦) = (1.5 − 𝑥 + 𝑥𝑦)2 + (2.25 − 𝑥 + 𝑥𝑦2)2

+ (2.625 − 𝑥 + 𝑥𝑦3)2 

−4.5 ≤ 𝑥, 𝑦 ≤ 4.5 

Easom 

Function 

𝑓(𝑥, 𝑦) = −cos(𝑥) cos(𝑦) 𝑒−((𝑥−𝜋)2+(𝑦−𝜋 )2) −100 ≤ 𝑥, 𝑦

≤ 100 

Cross-in-

tray 

Function 

𝑓(𝑥, 𝑦) = 

−0.0001(sin(𝑥) sin(𝑦) 𝑒
|100− 

√𝑥2+𝑦2

𝜋
|
+ 1)

0,1

 

−10 ≤ 𝑥, 𝑦 ≤ 10 

Eggholder 

Function 
𝑓(𝑥, 𝑦) = −(𝑦 + 47) sin (√|𝑦 +

𝑥

2
+ 47|)

− 𝑥 sin (√|𝑥 − (𝑦 + 47)|) 

−512 ≤ 𝑥, 𝑦

≤ 512 

Hölder table 

Function 𝑓(𝑥, 𝑦) = − |sin(𝑥) 𝑐𝑜𝑠(𝑦)𝑒
|−1−

√𝑥2+𝑦2

𝜋
|
| 

−10 ≤ 𝑥, 𝑦 ≤ 10 

Kursawe 

Function min

{
 
 

 
 

𝑓1(𝑥) = ∑ −10𝑒
−0.2√𝑥𝑖

2+𝑥𝑖+1
22

𝑖=1

𝑓2(𝑥) = ∑ |𝑥𝑖|
0.8 + 5 sin(𝑥𝑖

3)
3

𝑖=1

 

−5 ≤ 𝑥𝑖 ≤ 5, 

1 ≤ 𝑖 ≤ 3 

Schaffer 

Function 

No. 2 
min

{
 
 

 
 
𝑓1(𝑥) = {

−𝑥, 𝑖𝑓 𝑥 ≤ 1
𝑥 − 2, 𝑖𝑓 1 < 𝑥 ≤ 3
4 − 𝑥, 𝑖𝑓 3 < 𝑥 ≤ 4

𝑥 − 4, 𝑖𝑓 𝑥 > 4

𝑓2(𝑥) = (𝑥 − 5)2

 

−5 ≤ 𝑥 ≤ 10 

 

Poloni’s 

Two 

Objective 

Function 

min {
𝑓1(𝑥, 𝑦) = 1 + (𝐴1 − 𝐵1(𝑥, 𝑦))

2
+ (𝐴2 − 𝐵2(𝑥, 𝑦))

2

𝑓2(𝑥, 𝑦) = (𝑥 + 3)2 + (𝑦 + 1)2
 

𝑤ℎ𝑒𝑟𝑒, 

{
 

 
𝐴1 = 0.5 sin(1) − 2 cos(1) + sin(2) − 1.5 cos(2)

𝐴2 = 1.5 sin(1) − cos(1) + 2 sin(2) − 0.5 cos(2)

𝐵1(𝑥, 𝑦) =  0.5 sin 𝑥 − 2 cos 𝑥 + sin 𝑦 − 1.5 cos 𝑦

𝐵2(𝑥, 𝑦) = 1.5 sin 𝑥 − cos 𝑥 + 2 sin 𝑦 − 0.5 cos 𝑦

 

−𝜋 ≤ 𝑥, 𝑦 ≤ 𝜋 
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Zitzler-Deb-

Thiele's 

Function 

No.1 

min

{
 
 
 

 
 
 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)

 

0 ≤ 𝑥𝑖 ≤ 1, 

1 ≤ 𝑖 ≤ 30 

Zitzler-Deb-

Thiele's 

Function 

No.2 

min

{
  
 

  
 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)

2

 

0 ≤ 𝑥𝑖 ≤ 1, 

1 ≤ 𝑖 ≤ 30 

Zitzler-Deb-

Thiele's 

Function 

No.3 

min

{
 
 
 

 
 
 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)
− (

𝑓1(𝑥)

𝑔(𝑥)
) sin(10𝜋𝑓1(𝑥))

 

0 ≤ 𝑥𝑖 ≤ 1, 

1 ≤ 𝑖 ≤ 30 

Zitzler-Deb-

Thiele's 

Function 

No.4 

min

{
 
 
 

 
 
 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 91 + ∑ (𝑥𝑖
2 − 10 cos 4𝜋𝑥𝑖)

10

𝑖=2
  

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)

 

0 ≤ 𝑥1 ≤ 1, 

−5 ≤ 𝑥𝑖 ≤ 5, 

2 ≤ 𝑖 ≤ 10 

Zitzler-Deb-

Thiele's 

Function 

No.6 

min

{
 
 
 

 
 
 

𝑓1(𝑥) = 1 − 𝑒−4𝑥1 sin6(6𝜋𝑥1)

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 + 9(
∑ 𝑥𝑖

10
𝑖=2

9
)

0.25

 

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)

2

 

0 ≤ 𝑥𝑖 ≤ 1, 

1 ≤ 𝑖 ≤ 10 
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The 14 different optimisation problems displayed here, along with the rest which are 

found in the appendices have been used to compare the optimisation methods, since 

they all have uses in testing the performance of each method.  Some of them have 

similar properties therefore the optimisation methods should behave similarly with 

them, but to illustrate why these functions have been used, several of them have 

been described in detail.  Table 5-4 presents the surfaces of each of the optimisation 

problems presented in Table 5-3. 

 

Table 5-4 Graphical representation of the surfaces generated by the optimisation 

problems listed in Table 5-3. 

Function 

Name 
Function Surface 

 Function 

Name 
Function Surface 

Rosenbrock 

function 

 

 Schaffer 

Function 

No. 2 

 

Beale's 

function 

 

 Poloni’s 

Two 

Objective 

Function 

 

Easom 

Function 

 

 Zitzler-

Deb-

Thiele's 

Function 

No.1 
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Cross-in-

tray 

Function 

 

 Zitzler-

Deb-

Thiele's 

Function 

No.2 

 

Eggholder 

Function 

 

 Zitzler-

Deb-

Thiele's 

Function 

No.3 

 

Hölder table 

Function 

 

 Zitzler-

Deb-

Thiele's 

Function 

No.4 

 

Kursawe 

Function 

 

 Zitzler-

Deb-

Thiele's 

Function 

No.6 

 

 

The Rosenbrock Function and Beale’s Function have been used since they have 

very steep peaks for the optimisation functions to diverge away from, but the global 

minimum lies on a flat plain or valley, which makes it difficult for an optimiser to 

converge on a single point.  The Easom Function has been used since it is a function 
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which has a flat plain with a single inverse peak, which could be difficult to find 

depending on how well the optimiser is able to search a flat area and spread out. 

The Cross-in-Tray Function provides a surface with many local minima, the surface 

of which is intersected by a cross shaped ridge.  This means that the optimiser can 

easily converge on one local minimum, but it may not be the global minimum and the 

optimisers may struggle to traverse the cross shaped ridge.  The Eggholder Function 

has lots of local minima and is good to test whether the optimisers can find the global 

minimum among the set of local minima. 

The Hölder Table Function is a very interesting optimisation problem as it consists of 

a plateau containing many local minima and has four groups of inverse peaks in the 

XY corners of the space.  These groups of inverse peaks contain the global minima 

but also several large local minima which could be difficult to differentiate from the 

global minima.  Since the majority of space in this problem is taken up by a large 

plateau of shallow local minima, it could be very difficult to find the large inverse 

peaks in the corners of the space. 

The Kusawe Function, Schaffer Number 2 Function, Ziztler-Deb-Thiele Function and 

Poloni’s Function are all multi-objective functions with a general trend of decreasing 

Y values with increasing X values.  There exists discontinuities in the output of these 

functions which means that there are several local minima in the space with no 

output beyond them for a distance in both the X and Y directions.  This means that 

the optimisation functions will output one of the local minima as the solution unless 

they can traverse the spaces where discontinuities occur. 

Three other optimisers were chosen to provide a benchmark in performance to 

compare the implemented GA against.  The chosen optimisation methods were 

Least Squares Optimisation and a comparable Genetic Algorithm, both of which exist 

in the Matlab optimisation toolbox.  In the initial investigation all four optimisation 

methods were run on each of the above problems with the same fitness function and 

the fitness they achieved, along with the run time of the each on the same PC is 

compared for each problem. 
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For each of the above optimisation methods, the fitness function used to minimise 

the output of each of the test functions was the mean-squared value of the outputs to 

the function.  This fitness function is given in Equation (5.6). 

 

 
𝑓 =

∑𝑌2

𝑛
, 

𝑤ℎ𝑒𝑟𝑒 𝑌 = {𝑦1, … , 𝑦𝑛}, 

(5.6) 

Where, Y is the set of outputs from the function and F is the fitness. The results of 

the optimisation of all of these problems using the GA presented in this chapter, the 

GA implementation in MATLAB and the Least Squares Minimisation implementation 

in MATLAB are shown in Figure 5-15 and Figure 5-16.  Figure 5-15 presents the 

results with fitness and run time as linear values and Figure 5-16 presents the results 

with fitness and run time as logarithmic values in order to provide a more visible 

comparison between techniques. 

 

Single Objective Multi Objective

 

Figure 5-15 Linear results for achieved fitness and runtime for three optimisation 

methods over all of the optimisation problems. 
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These two figures present the results both with linear scales for fitness and runtime 

on the y-axis and also with logarithmic scales for fitness and runtime.  This is 

because for some problems, there were cases where the fitness values produced by 

one or more optimisation methods, or the time it took for the optimisation to be run, 

were found to be values on the order of 103 seconds for time, and the fitness values 

were found to range between the order of 10-204 and 109 in magnitude.  The lines on 

these plots are not used to designate trends but to aid visibility of each of the points 

on the figures.  There are also places on the logarithmic plots where the line is 

broken, indicating points which have not been plotted on the figure. This is because 

those values have a magnitude of −∞.  This occurs when the value of fitness or time 

is 0, since log10 0 = −∞. 

 

Single Objective Multi Objective

 

Figure 5-16 Logarithmic results for achieved fitness and runtime for three 

optimisation methods over all of the optimisation problems. 

 

It can be observed from the logarithmic figure that over the range of different 

optimisation problems, the optimisation method which achieves the best fitness is 
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varied, but the method which takes the least amount of time to converge on a 

solution is consistently the least squares method, however, the least squares method 

also tends to be the method which provides the worst fitness result.  The simplest 

reason for this fast convergence on a value which is clearly not the global minima is 

that the method is getting stuck in local minima.  A quick inspection of the shape of 

each of the optimisation problems shows that the problems whereby this method 

displays a fast run time with a large fitness value, the problems that are being solved 

for have lots of local minima very close to the global minima.  This indicates that the 

method very quickly converges on the minimum region in the search domain of the 

problem, but then is very easily satisfied by the fitness values that it achieves as it 

approaches the global minima and does not continue to search. 

With regards to the two Genetic Algorithm methods, the performance is varied.  

There are some problems whereby the two different methods perform similarly in 

terms of run time, fitness or both, and some problems whereby the performance of 

one of the methods is better than the other by a large margin.  The better performing 

algorithm is not the same one consistently, which indicates that both methods have 

strengths and weaknesses, allowing them to perform better in solving different 

problems. Again, an inspection of the shape of the search domain of the problems in 

which each performs better shows that the GA built into MATLAB performed better 

than the implemented method in problems where the global minimum of the problem 

existed in a very small range of the search domain and the area around the global 

minimum had very large changes in values, whereas the implemented method 

achieved better fitness values where the search domain had very small changes in 

the range around the global minimum and a lot of the search domain had a large 

area of very low values surrounding the global minimum.  In these cases the 

implemented method took a long time to converge on the solution however.  Since 

both GA methods were instructed to find a solution which satisfies a certain fitness 

value within a set number of generations, which was 300 generations, and were 

instructed to maintain the same population size over generations, a population of 50, 

it is clear that the rate of convergence on the global minimum with respect to 

increase in generations for the MATLAB GA is smaller than that of the implemented 

GA. This meant that it took more generations to achieve a comparable fitness for the 
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Matlab GA to that of the implemented GA. However, the implemented GA took 

longer to carry out each generation in terms of time. 

Since the PID controller gain tuning of the robotic manipulator is a multi-objective 

problem, it is appropriated to investigate more closely the performance of each 

optimisation method for the multi-objective optimisation problems. In these cases, 

with the exception of one optimisation problem, the Schaffer Number 1 multi-

objective problem, where the implemented GA displays the worst performance, it 

consistently matches or outperforms the other methods for fitness value. Since the 

PID gains are tuned off-line, the longer run time for this method when optimising 

these problems is not considered an issue. 

 

5.2.2 Comparison of Optimisation Methods on the Robotic Arm Tuning 

Problem 

Having compared these optimisation methods against each other for a series of 

different problems and assessed them as being comparable, it is also important to 

investigate their performance against each other for tuning the robotic arm gains for 

a single scenario.  To directly assess the feasibility of using the implemented GA to 

provide a set of solutions for the PID controller gains required to operate the robotic 

manipulator arm, each of the aforementioned optimisation methods were used to find 

controller gains for the arm in a single scenario (range of angle motions).  This 

allows for a direct comparison of the run time of each method and the achievable 

fitness value using the same fitness function, and will determine how well the 

implemented method behaves in comparison to existing methods. 

In order to do this each method will be used to tune the gains to the arm through a 

motion where joints 𝜎 and 휂 are required to move through an angle of 0.175 radians 

from -0.087 radians to 0.087 radians. The joint angle 𝛼 will move through an angle of 

0.35 radians. The initial estimates for the gains will be randomly generated, but will 

be identical for each method used. The results are displayed in Table 5-5. 
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Table 5-5 Numerical results of optimisation method comparison on the robotic 

manipulator tuning problem for an optimisation with random initial estimated 

solution. 

Optimisation Method Fitness Value Run Time (s) Run Time 

Implemented GA 0.0227 13723 ≈ 3.8 ℎ𝑟𝑠 

MatLab GA 0.0152 12409 ≈ 3.4 ℎ𝑟𝑠 

Nelder-Mead 

(Fminsearch) 

1.47806 529.3 ≈ 8.8 𝑚𝑖𝑛𝑠 

Least Squares 3.1279 51.02 ≈ 0.85 𝑚𝑖𝑛𝑠 

 

As can be observed from the information presented above and in Figure 5-17, over 

the four optimisation methods used, there is a large variation in fitness and run time 

in seconds.  The least squares optimisation method converges on a solution the 

fastest in terms of time, with Nelder-Mead Method (Fminsearch) converging on a 

solution next in time. 

 

 

Figure 5-17 Graphical results of optimisation method comparison on the robotic 

manipulator tuning problem. 
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Both of the GA optimisation methods display similar performance in terms of time, 

giving run times in the order of 105 seconds per optimisation; however they are able 

to find solutions with finesses in the order of 10-2, whereas the other two optimisation 

methods are only able to converge on solutions with a fitness value in the order of 

101.  By using the numerical values rather than the graph the fitness of the two GAs 

can be broken down into their physical meaning.  Since the fitness function takes the 

mean over the three joints of the sum of the error squared, the following is the case.  

For the MATLAB GA, the value of 0.0152 means that over the three joints over the 

entire run time, there was a total error of 0.2135 radians and for the implemented 

GA, the value of 0.0227 gives a total error of 0.261 radians over all three joints for 

the entire run time of the system.  Given that this is the case, the difference between 

them in terms of error is very small. 

 

5.3 Use of GA to Optimise Arm Gains 

Having validated the performance of the implemented GA, it can be used to optimise 

the PID gains in the controller for the robotic manipulator arm.  Since the moments 

about the arm vary non-linearly with changing joint angle it is appropriated to tune 

the PID controller for different ranges of angles.  While the time taken to find a 

solution to this problem is not an issue since the gains only need to be found once 

and this can be carried out offline, practical time constraints exist.  Either of the GA 

methods will take 105 seconds to run one optimisation, which is in the order of a four 

hours.  Given that this is the case, any efforts to minimise the number of discrete 

angle ranges which are optimised for would be useful in reducing the time taken to 

carry out the optimisation.  To do this the following factors and assumptions are 

taken into consideration. 

 

5.3.1 Assumptions 

The only terms which change their direction relative to the motion of the arm are 

those concerning gravity.  Since there is only one gravitational term in joint 휂 and two 
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gravitational terms in joint 𝜎, and these relate to the components of weight 

perpendicular to the two upper links, these terms are only affected by cosines of the 

respective joint angles and so can be calculated easily.  Removing this term during 

the optimisation and compensating for it by equation with an extra torque input will 

mean that the optimisation only has to take place for 1 angular direction in each joint, 

therefore effectively reducing the number of required optimisations by a factor of 4.  

The architecture change to the servo system by adding this torque correction is 

shown in Figure 5-18. 

Torque

Correction

Motori

Non-Linear

Arm Dynamic 

Model

+

-

1

s

1

sGBi

GBi

+

-
PIDi

α 
θa =  σ 

η θ θτin

ω 

Vd

α 
θd =  σ 

η 

Where 𝑖 = {1,2,3} or 𝑖 = {𝛼, 𝜎, 휂} 

Figure 5-18 Control block diagram illustrating the implementation of PID control into 

the dynamic model of robotic manipulator and servo drive.  This block diagram also 

includes a torque correction factor for moments caused by weight on the arm. 

 

The lowest link in the arm has an effect on those above it which relates to angular 

velocity, not position, therefore provided that  �̇� is small, its effect can be considered 

negligible.  This means that the motion of 𝛼 can be kept constant for every single 

optimisation. 

To determine the range of each discrete angle step, the moment terms which are 

affected by changing angle are considered.  With gravitational terms excluded, this 

leaves only the moments of inertia of each joint, which change depending on the 

extension of the links, hence joint angle.  Given that these moments of inertia terms 

contain the cosine of angles, it is useful to consider the values of these cosines. 

Table 5-6 shows that for the cosine of angles between 0 and 90 degrees, the angle 

changes the result of the cosine in the order of 10−2 until approximately 20°, after 

which the order of the change increases to the order of 10−1, therefore each angle 
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range has been selected to be 20° or 0.3491𝑐, which gives a total variation in value 

for each of the cosine terms of a maximum of 7.03%. 

 

Table 5-6 Numerical data illustrating the possible change in moment values as a result 

of angle. 

Angle 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 

Cosine 1 0.9848 0.9397 0.866 0.766 0.6428 0.5 0.342 0.1736 0 

Another factor which will reduce the number of discrete angle ranges necessary to 

optimise the PID controller is to consider that operating range of the arm.  

Assumptions can be made about the accessible range of the arm so that the entire 

– 𝜋 to 𝜋 range of each joint does not have to be considered.  As such the operating 

range of the arm is assumed to be as follows: 

−180𝑜 ≤ 𝛼 ≤ 180𝑜 

−40𝑜 ≤ 𝜎 ≤ 180𝑜 

−180𝑜 ≤ 휂 ≤ 1400 

Since the change in angle for each joint per scenario is ∆𝛼 = ∆𝜎 = ∆휂 = 20𝑜, and 𝛼 

will always move through the same 20𝑜, there will be 1 discrete range in 𝛼, 11 

discrete ranges in 𝜎 and 15 discrete ranges in 휂, therefore a total of 165 scenarios to 

optimise for. 

To potentially speed up the time taken to carry out each optimisation, a further 

assumption will be made.  Given that the moments about each joint vary non-

linearly, but continuously with angle, the idea that the gains required to control the 

arm will also vary non-linearly but continuously can be considered.  If this is the case 

then the solution to a previous scenario could be quite close to a solution to the next 

scenario, and the solution set from the previous scenario should then be used as the 

initial estimate for the gains to the next scenario, rather than starting from scratch 

with a new set of random numbers for the PID gains. If this is so then the first 

scenario will take the longest in terms of the number of required generations and 

thus the run time, and all scenarios after that will take less time to find a solution for. 
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5.3.2 Optimisation Process 

Table 5-7 shows the progression of a the optimisation process for a single scenario, 

starting with the first generation and showing the optimisation progress every 50 

generations to the maximum allows number of generations in this case, which is 300.  

It can be observed that the fitness decreases exponentially as a function of 

generation, and converges on a fitness which is in the order of 10−2.  As can be seen 

from the step response of each joint over the generations, the shape of the 

responses initially starts with overshoot and even oscillation like a higher order 

system, but the shape of the response gradually gets closer to that of a 1st order step 

response as the number of generations increases.  As the optimisation process 

drives the system closer to behaving in the desired manner a strange effect begins 

to appear whereby one or more of the joins display a secondary rise in their joint 

angle magnitude.  This is due to the coupling effects between joints but disappears 

again as the optimisation process compensates for it by altering the control gains. 

 

Table 5-7 Results of the optimisation process of the manipulator arm for a single 

angle range displaying the change in best fitness and response to a unit step over 

successive generations. 

G Fitness vs. Generations Joint Angles (rad) vs. Time (s) 

1 
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50 

  

100 

  

150 
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200 

  

250 

  

300 

  

 

5.4 Gain Scheduler for Robotic Manipulator PID Controller 

Having carried out the optimisation, the results which have been obtained are 9 sets 

of gains, three for each PID controller in the arm.  The results as they appear at this 

point are a series of 9 sets of 165 square surfaces which represent the proportional, 

integral and derivative gains for the servo controller implemented on each link in 

each of the scenarios in question.  For the gain plateaus {𝑙𝑖𝑛𝑘 𝛼, 𝑙𝑖𝑛𝑘 𝜎, 𝑙𝑖𝑛𝑘 휂} =
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{(𝐾𝑝𝛼
1 , 𝐾𝑖𝛼

1 , 𝐾𝑑𝛼
1 ), (𝐾𝑝𝜎

1 , 𝐾𝑖𝜎
1 , 𝐾𝑑𝜎

1 ), (𝐾𝑝𝜂
1 , 𝐾𝑖𝜂

1 , 𝐾𝑑𝜂
1 )} .  These can be plotted as a set of 9 

plots containing plateaus representing the gains in each of these scenarios. 

While the gain profiles as a set of plateaus is useful and already distinct shapes are 

clearly observable in each of the gain profiles for the PID controller, these gain 

plateaus are discontinuous by virtue of being obtained in a discontinuous manner.  

Using MATLABs curve fitting toolbox, these surfaces can be converted it splines 

which can then be used to implement gain schedulers for the PID controller.  To do 

this the ‘centre of gravity’ of each of the planes in the profiles displayed in the coming 

pages was taken to determine an approximate point at which each of the gains could 

be assigned.  The resultant data sets were passed through the curve fitting toolbox 

to produce a series of continuous surfaces which are presented in the following 

figures.  In this form it is clearly visible that the gains are continuous since the 

surfaces obtained from the optimisation have produced a series of correlated 

shapes.  In the case of the gain surfaces 

{𝑙𝑖𝑛𝑘 𝛼, 𝑙𝑖𝑛𝑘 𝜎, 𝑙𝑖𝑛𝑘 휂} = {(𝐾𝑝𝛼
2 , 𝐾𝑖𝛼

2 , 𝐾𝑑𝛼
2 ), (𝐾𝑝𝜎

2 , 𝐾𝑖𝜎
2 , 𝐾𝑑𝜎

2 ), (𝐾𝑝𝜂
2 , 𝐾𝑖𝜂

2 , 𝐾𝑑𝜂
2 )}. 

Table 5-8 shows the gain profile for each term in the set of controllers as both a 

profile of gain plateaus and also a profile as a single continuous surface.  A 

comparison of these gain profiles against the changes in moments about joint 𝛼 with 

varying 𝜎 and 휂 can be carried out in order to investigate whether the gain profiles 

have any relationship to these moments.  Given that each gain plateau found during 

the optimisation process was obtained for an angle range of the same size, and the 

motion for each was designed to be identical, all of the terms in the dynamic model 

which relate to �̇� and �̈� will behave in the same way for each angle range in the set 

of gain profiles.  With this being the case, the gains will only be compared against 

moments about each joint which are affected by 𝛼.  A modification has already been 

made to remove the need to compensate for changes in moments due to weight with 

joint angle.  This means that the only moment which is directly affected by angle is 

the moment of inertia, therefore only the effect of angle on moments of inertia has 

been investigated. 
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Table 5-8 Gain Plateaus and Surfaces for the PID controller in joint 𝜶. 

K Gain Plateaus Gain Surfaces 

𝑲𝒑𝜶 

  

𝑲𝒊𝜶 

 
 

𝑲𝒅𝜶 
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Figure 5-19 Moments of inertia about joint 𝜶 given changes in 𝝈 and 𝜼. 

 

As would be expected, Figure 5-19 shows that the moments of inertia are largest 

when the manipulator arm is fully extended, i.e. 𝜎 and 휂 are 0 radians.  All of the 

angle combinations which result in a large moment of inertia involve extension of the 

mass of the arm away from the axis of rotation about 𝛼.  This provides three peaks in 

the figure where the manipulator is extended.  These geometries are shown in 

Figure 5-20. 
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Figure 5-20 Manipulator arm geometries which generate the largest moments of 

inertia about 𝜶. 

 

Investigation of the gain profiles from Table 5-8 shows that the 𝐾𝛼𝑝 
2  and 𝐾𝑖𝛼

2  gains 

partially reflect this relationship.  In the angle ranges of 2 to 𝜋 radians and -2 to –𝜋 

radians, this relationship appears to be reflected in the gains, but the large peak at 𝜎 
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and 휂 of 0 radians is missing from these gain profiles.  In Figure 5-21, which shows 

all three sets of optimised PID control gains for the joint 𝛼, it can be observed that for 

the proportional gain 𝐾𝑝𝛼 and derivative gain 𝐾𝑑𝛼, the trend is of a low gain for low 𝜎 

and 휂 angles, and increasing gain as these two angles increase. 

 

 

Figure 5-21 PID Control gains for joint 𝜶 overlaid. 

 

The expected result would be that for 𝜎 and 휂 joint angles where the arm has less 

extension in the XY plane, and therefore joint 𝛼 would experience lower moments of 

inertia generated by the 2nd and 3rd links in the arm.  For 𝛼 and 𝜎 values where there 

is a larger extension of the manipulator in the XY plane, the higher proportional gain 

would be expected to reflect the larger moments of inertia experienced by joint 𝛼 as 

a direct consequence of a longer arm extension.  The same would be expected for 

the derivative gain.  When the arm is extended, there is a greater moment of inertia 

about joint 𝛼, which means that the joint requires more energy to slow down or 

reverse the motion of the arm rotation about 𝛼, and this would lead to a larger 

overshoot if uncompensated.  Since derivative gain affects the damping of the 

system, hence reducing overshoot, it makes sense that the optimisation would 

produce a larger derivative gains at arm geometries of higher extension.  This 

appears to be the case for the larger angles, where 𝜎 and 휂 are both in the range of 
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2 to 𝜋 or -2 to – 𝜋 radians, but not for the range of joint angles for around 0 radians 

for both 𝜎 and 휂.  An inspection of the sum of all three PID gains in comparison with 

the moments of inertia about 𝛼 in Figure 5-22 may provide extra information. 

 

 

Figure 5-22 Moments of inertia and PID gains for 𝜶. 

 

It can be seen from this figure that the sum of the three gain profiles is significantly 

larger than the moments of inertia about 𝛼.  This shows that the relationship between 

proportional and derivative gain and moments of inertia is not as clear as expected.  

The magnitude of the gains means that any need for proportional and derivative 

gains in order to provide the required response is satisfied across the whole range of 

𝜎 and 휂.  The other trend that is observable in these results is the opposite trend for 

𝐾𝑖 in the gain profile.  Since the integral gain is present predominantly when the 

other two gains are not, this implies a limit on the gains that is reached to stop the 

integral gain from being used.  Since there is a saturation on the servo motors of 

±55 𝑉, the gains in the PID controller will amplify the input signal and must be limited 

in some way in order to prevent them from causing the input to the servo from 

exceeding this saturation.  Given that proportional and derivative gains are required 

in order to accelerate and decelerate the arm, these two gains are more likely to be 

larger since they are needed to control the dynamics of the system.  The integral 
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gain is responsible for reducing the error signal over time, therefore an integration of 

a persistent error over a long period of time may result in a very large input voltage 

which could exceed the saturation limit, therefore the optimisation will provide a 

much smaller integral gain than the other two, and this gain will be reduced 

significantly in the regions of the gain profile where there is a need for proportional 

and derivative gain. 

Table 5-9 presents the gain profiles for joint 𝜎.  By observing the PID control gains 

for joint 𝜎, it can be seen that the same set of trends is apparent as was the case in 

joint 𝛼.  This illustrates that the optimiser has tuned the PID gains for joint 𝜎 with the 

joint experiencing a similar pattern of moments and torques about the joint over the 

same range of joint angle combinations.  The one change in the pattern in this case 

is that the integral gain dies down with larger values of 𝜎.  Figure 5-23 (c) shows that 

the valley in the sum of gains which occurs between the two peaks at the ±2 ↔ ±𝜋 

radian ranges has a greater magnitude than the plain in the region of 0 radians.  This 

indicates that the limit of saturation on the voltage input to the servo would be 

exceeded for a larger integral gain in this region.  It can be seen that the gain profiles 

are being forced to the shape which is seen in these figures by another driver other 

than the moments of inertia about the joints.  In the case of 𝜎 the moments of inertia 

display a completely different shape to that of the PID control gain pattern, but again 

the magnitude of the gain profiles is significantly larger than that of the moments of 

inertia. 
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Table 5-9 Gain Plateaus and Surfaces for the PID controller in joint 𝝈. 

K Gain Plateaus Gain Surfaces 

𝑲𝒑𝝈 

  

𝑲𝒊𝝈 

 
 

𝑲𝒅𝝈 
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(a) Moments of inertia about 𝜎. 

 

(b) PID control gains for 𝜎. 

 

(c) Moments of inertia and sum of PID gains for 𝜎. 

Figure 5-23 Comparison of moments of inertia of joint 𝝈 with the PID control gains for 

the same joint. 
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Figure 5-10 presents the gain profiles for joint 휂. 

 

Table 5-10 Gain Plateaus and Surfaces for the PID controller in joint 𝜼. 

K Gain Plateaus Gain Surfaces 

𝑲𝒑𝜼 

  

𝑲𝒊𝜼 

  

𝑲𝒅𝜼 
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(a) Moments of inertia about 휂. 

 

(b) PID control gains for 휂. 

 

(c) Moments of inertia and sum of PID gains for 휂. 

Figure 5-24 Comparison of moments of inertia of joint 𝜼 with the PID control gains for 

the same joint. 

 

In the case of the PID control gains for joint 휂, the same trend is visible once again, 

though with a much smaller correlation.  This is a more predictable result since the 

same fundamental principles are in effect.  The reason for the reduced correlation in 

the case of joint 휂 is simple because this joint is the last in the chain, therefore the 

previous links have much less of an effect on the moments experienced by this joint 

both opposing and assisting the demanded torque into the joint. 

Having determined a series of gain profiles in the form of splines, these splines can 

be converted into look up tables and used to select gains by gain scheduling.  Figure 
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5-25 shows the architecture of the servo system with the gain scheduler 

implemented. 
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 Where 𝑖 ∈ {1,2,3} or 𝑖 ∈ {𝛼, 𝜎, 휂}. 

Figure 5-25 Control block diagram for the controlled servo and dynamic model system 

with the implemented gain scheduler. 

 

5.5 Random Step Sequence Testing and Validation 

To test the effectiveness of the PID tuning method, the fully tuned system is required 

to be tested against some input.  To do this a series of paths will be generated using 

uniformly distributed random number within the assumed operating angle range that 

has been specified for each link in the arm.  Each path will consist of a series of 

three sets of 20 random numbers representing a set of 20 three-dimensional 

waypoints in the configuration space of the manipulator arm.  Effectively each 

waypoint is an angle demand on each of the three joint angles, and the paths are a 

series of 20 of these demands.  When all three of the joints reach a steady state of 

2° (0.0349 radians) or less from the demanded angles, the arm will be considered to 

have arrived at the waypoint and the next waypoint in the path will be inputted into 

the arm as a set of demanded joint angles.  This method allows multiple different 

paths to be generated and tested very quickly.  A series of twenty paths was 

generated and tested, and the results of two of these paths are displayed in the 

following pages.  The remaining paths are displayed in 11Appendix A. 
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Figure 5-26 Results of the random step sequence testing of the controlled dynamic 

model.  Plot 1 is joint angle against time for each joint and plot 2 is the angular error 

against time for each joint. 

 

In this scenario, the system was able to reach 13 waypoints.  As can be seen in the 

figure, every time all three joints achieve a value within 2° a new waypoint containing 

a new demand angle for each joint is given, causing the spikes in joint angle error for 

each joint.  As can be observed from the figure, the spikes in angle error for each 

joint occur together in time.  The biggest observation that can be made from the 

figure is that the frequency of the changes in waypoint varies through the running of 

the system over time.  Since the waypoint is considered to be achieved when all 

three joints are within 2° of the demanded angle, this suggests that the system takes 

varying time to achieve this goal.  Investigating further by zooming in to two regions 

of the above figure illustrates that this is the case.  The horizontal dotted line in each 

of the error subplots illustrates the threshold which all three joint angles must be 

within for the path to switch to the next waypoint.  The vertical dotted lines, which are 

primarily visible in the second of the two error subplots shows the exact moments in 

time when the path moves to the next waypoint. 
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(a) Joint 𝛼 PID Gains 

 

(b) Joint 𝜎 PID Gains 

 

(c) Joint 휂 PID Gains 

Figure 5-27 PID control gains for each joint over the random step test sequence  

carried out above. 

 

In Figure 5-28a, the output of the system is focussed on the region of the response 

between 40 seconds and 60 seconds, which is the final part of the motion to the first 

waypoint.  As can be observed from the figure, the 𝛼 and 휂 joint angles are well 

within the 2° threshold (signified by the horizontal dotted line on the figure) for the 

entire time range which is visible on the figure before the waypoint change.  In this 

case the waypoint changes when 𝜎 reaches the 2° threshold.  By inspecting a 

different time range in Figure 5-28b for this scenario, where the frequency of 

waypoint changes is much higher, given by the time range of 90 to 110 seconds in 

the second figure, it can be seen that all three joint angles reach the 2°  threshold 
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much more quickly, though it is clear from the figure that they do not reach that 

threshold at the exact same time. 

 

 

(a) Plot of 40 to 60 seconds. 

 

(b) Plot of 90 to 110 seconds. 

Figure 5-28 Zoomed in plot of joint angles against time and error against time for the 

random step test sequence. 

 

Given that there is a large amount of interconnectivity between the dynamics for 

each link, which is caused by the change in the moments about each joint which 

changing joint angle, it is likely that the different inertias at different joint angles has 

an effect on the ability of the system to reach zero steady state error.  Also, given 

that for these different angle ranges, the system is effectively a different dynamic 

system for each different joint angle, this means that the ability of the GA to find a 

solution in each angle range will be different.  Also, given that the gain profile for the 

gain scheduler has been obtained for discrete angle ranges and then interpolated to 

create a continuous surface, the final gains are an estimate.  These two actualities 

mean that the gains may not provide an exact ideal response as was optimised to.  

In the case of the above scenario, 𝜎 does not converge on the final value therefore 

the integral gain for the second joint is not strong enough, but for the later parts of 

the scenario, the integral gain is strong enough since all three joint angles converge 

on the final value much more quickly.  This can be seen by investigating the PID 

gains over the periods presented in the above figures.  Figures 4-28 to 4-31 show 

the gains on each of the joints. 
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(a) PID gains of joint 𝛼 over the time 

range of 40 to 60 seconds. 

 

(b) PID gains of joint 𝛼 over the time 

range of 90 to 110 seconds. 

 

(c) 𝐾𝑖 of joint 𝛼 over the time range of 40 

to 60 seconds. 

 

(d) 𝐾𝑖 of joint 𝛼 over the time range of 90 

to 110 seconds. 

Figure 5-29 PID control gains of joint 𝜶 in the robotic manipulator during the random 

step testing of the manipulator arm. 
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(a) PID gains of joint 𝜎 over the time 

range of 40 to 60 seconds. 

 

(b) PID gains of joint 휂 over the time 

range of 90 to 110 seconds. 

 

(c) 𝐾𝑖 of joint 𝜎 over the time range of 40 

to 60 seconds. 

 

(d) 𝐾𝑖 of joint 𝛼 over the time range of 90 

to 110 seconds. 

Figure 5-30 PID control gains of joint 𝝈 in the robotic manipulator during the random 

step testing of the manipulator arm. 
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(a) PID gains of joint 휂 over the time 

range of 40 to 60 seconds. 

 

(b) PID gains of joint 휂 over the time 

range of 90 to 110 seconds. 

 

(c) 𝐾𝑖 of joint 휂 over the time range of 40 

to 60 seconds. 

 

(d) 𝐾𝑖 of joint 휂 over the time range of 90 

to 110 seconds. 

Figure 5-31 PID control gains of joint 𝜼 in the robotic manipulator during the random 

step testing of the manipulator arm. 
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Figure 5-32 Results of the random step sequence testing of the controlled dynamic 

model.  Plot 1 is joint angle against time for each joint and plot 2 is the angular error 

against time for each joint. 

 

In the second scenario presented here, shown in Figure 5-32, there is a range of 

time where the 𝛼 joint appears to travel in the opposite direction to the demand.  This 

is clearly problematic and the reasons behind this must be discussed. 

 

 

(a) Plot of 40 to 60 seconds. 

 

(b) Plot of 48 to 54 seconds. 

Figure 5-33 Zoomed in plot of joint angles against time and error against time for the 

random step test sequence. 
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In Figure 5-34 the step response to a unit input of the system 
1

𝑠+1
.  The velocity of the 

system is also given.  If the required maximum error before the system is allowed to 

switch to the next waypoint is set as 0.3, then the waypoint would switch when the 

system had a position of 0.7 and hence a velocity of 0.3.  If this required maximum 

error were set to 0.1, then the waypoint would switch when the system had a position 

of 0.9 and a velocity of 0.1 

 

Step Input
Position
Velocity

 

Figure 5-34 Position and velocity change for a system at different points in time, 

especially when tending towards steady-state. 

 

It is this characteristic which means that the system has a higher velocity when 

switching between waypoints when the tolerance to the waypoint that the joint angles 

have to be within is larger.  For the robotic manipulator links, there is a significant 

amount of inertia involved, especially when the arm is fully extended or 𝜎 and 휂 tend 

towards 0𝑐, which in the case of the second scenario is the location that the 2nd and 

3rd joints are heading to.  This means that the first joint is experiencing the largest 

range of moments of inertia during this time period, and the link reaches the 2° 

waypoint threshold before it has decelerated fully.  This means that the joint still has 

angular velocity in the opposite direction to the input from the new waypoint which 

the controller has to reduce before accelerating in the correct direction.  This is what 

causes this overshoot effect.  The first joint experiences the most inertia of all three 

therefore the highest susceptibility to this issue.  The solution would be to reduce the 

waypoint threshold and this will be investigated further in the validation of the 

guidance method in Chapter 7. 
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5.6 Summary of GA PID Gain Tuning Method 

This chapter has dealt with the selection of a suitable control schema for the 

operation of a 3-DoF robotic manipulator arm.  The selection made was a set of 

three gain scheduled PID controllers.  These controllers required tuning; therefore 

gain selection was carried out by optimisation using a genetic algorithm to find a 

series of 9 gain profiles.  The resultant gain profiles were then used in a gain 

scheduled PID controller to drive the arm in an acceptable manner.  The controller 

produced in this way was able to satisfy a steady-state error requirement of 2° on 

each joint.   

Having developed the dynamic model of a 3-DoF robotic manipulator arm in Chapter 

4, and successfully tuned a PID controller to drive the model within an acceptable 

performance range in this chapter, the next step in the process of autonomous 

motion of the arm is to design and implement a guidance algorithm which will enable 

the arm to plan a safe path through a close-proximity environment in real time given 

sensor data about the surroundings and then follow the path.  This stage of the 

process will be investigated in Chapters 6 and 7. 
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6 ENVIRONMENT MODELLING AND MAPPING IN C-

SPACE 

Chapter 4 of this thesis have developed a dynamic model of a 3-DoF robotic 

manipulator arm and its corresponding control and tuning.  In chapter 5, a control 

schema was applied to the developed model to allow it to be driven and controlled in 

a stable and predictable manner in Euclidean space.  This control schema was a 

gain scheduled PID controller, tuned using a Genetic Algorithm and the robotic arm 

and its controller were assessed in their performance. 

Having tuned and validated system is important since it gives a set of numeric 

parameters which any guidance method can be designed and fitted around.  In this 

chapter existing literature in the area of robotic arm guidance is investigated to 

assess the possibility of use of existing techniques and to inform the development of 

a technique for use in the context of guidance in close-proximity environments.   

This chapter will outline a method of generating simulated environment data and a 

method of generating environment data to satisfy the requirement of simulated 

environment data in the algorithm.  Secondly, this chapter will deal with the 

investigation of how the environment can be mapped to provide a method for 

obstacle avoidance for the entire robotic arm.  The basis for this technique stems 

from the kinematics described in the previous chapters.  If all of the robotic joint 

angles can be calculated when the position of any point along the robotic arm is 

specified, then the joint angles that cause a collision between a point along the arm 

and an obstacle in the real world can be calculated.  This creates an impermissible 

region in the control angle domain which defines the joint angle combinations that 

the manipulator arm cannot use, otherwise a collision will occur.  The impermissible 

region can be expanded to provide a permissible boundary layer which, along with 

the permissible boundary layers to all other obstacles in the environment, can be 

used to form a node graph.  The remainder of this chapter will detail the validation of 

the developed guidance method for use with the simulation model developed in 
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Chapters 4 and 5.  The work carried out in this chapter is outlined in purple in Figure 

6-1, with all of the other processes greyed out. 
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Figure 6-1 Environment and mapping in C-Space (purple) in relation to the overall 

guidance method. 

 

6.1 Implementation 

In order to implement a guidance method using the two above techniques, several 

steps are involved: 

1. Obtain obstacle data. 

2. Convert obstacle data into C-Space. 

3. Expand C-Space obstacle angle data by the steady-state error of the arm 

determined in chapter 2 in orderprevent any collisions due to error from the 

demand angles. 
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4. Create a node graph in the available range of C-Space which contains the 

obstacle information. 

5. Map the end effector start and end points in C-Space. 

6. Carry out a pathing algorithm to generate a path through C-Space. 

 

6.1.1 Obtain Obstacle Data 

Before being able to convert any obstacles into C-Space their T-space data must 

first be obtained.  Since in this case the system is a simulated system, simulated 

data will also be used.  Since the selection for sensor was a LIDAR, then simulated 

data must be obtained which follows this assumption.  A second assumption that will 

be made is that the LIDAR is an ideal sensor, and so displays no measurement 

noise or dynamics.  These sensors measure data in terms of heading and range, but 

this can be very quickly transformed into Euclidean coordinates. 

The distance between consecutive measured points on an obstacle is dependent on 

two factors, the angular resolution of the sensor and the range from the sensor to the 

obstacle. 

 

r1

r2

d1

d2

d3

d4

θ1

θ2

 

Figure 6-2 Change of measured point spacing with sensor angular resolution and 

range. 

 

This relationship is governed by Equations (6.1) to (6.5). 
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 𝑑 = 𝑟휃 (6.1) 

 𝑑1 = 𝑟1휃1 (6.2) 

 𝑑2 = 𝑟2휃1 (6.3) 

 𝑑3 = 𝑟3휃2 (6.4) 

 𝑑4 = 𝑟4휃2 (6.5) 

 

Since the distance between measured points in an object will change with range to 

the object, the first place to start is to investigate realistic angular resolutions of 

LIDAR sensors to obtain a range of realistic angles between measured points for this 

type of sensor.  Several datasheets for commercially available LIDAR sensors were 

investigated and a realistic range of angular resolutions for this type of sensors was 

between 0.09° and 0.36°, (Velodyne LIDAR, 2016), (Hokuyo Automatic Co., Ltd., 

2016), (Technical Avenue Sdn Bhd, 2016), therefore this is the range over which 

distance between measured points will be investigated.  The range over which 

distance between measured points changes that is required to be investigated is 

from 0 m to the maximum extension range of the robotic arm, which is 0.96 m.  

Therefore the distance between each consecutive measured point in this range of 

angles and range from sensor can be displayed in Figure 6-3. 
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Figure 6-3 Change of distance between measured points with distance from origin 

and angular resolution. 

 

The maximum measured point spacing is very small, on the order of 10−3 𝑚.  This 

resolution will produce a very large number of measured points per object since the 

spacing is between 1.5 and 6 mm depending on the angular resolution of the sensor.  

Given that this is the case a selection of the mean of these two limits will be used at 

the maximum arm extension range, which is 2.92 𝑚𝑚 ≈ 3 𝑚𝑚.  This will be the 

spacing between each point.  To quickly generate the measured points in objects a 

method must be developed which allows for an object shape to be specified and 

then the points which are to be measured in that object very quickly generated.  

These sensors also have an accuracy of less between 0.02 m at 25 m.  This 

translates to an accuracy of 8 × 10−4°.  For the maximum extension range of the arm 

this gives an accuracy of 1.3 × 10−5 m or 0.134 mm.  In this case of the work carried 

out in this thesis the LIDAR is assumed to be noiseless and 100% accurate, but in a 

reality, this accuracy would impact the accuracy of the measured points.  This will be 

further discussed in section 6.1.2 of this chapter. 
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Triangular Polygon Object Formation 

In computer graphics, objects are generated into any shape by approximating them 

using a series of small triangular polygons.  To generate a more accurate 

approximation of the object, a larger number of smaller polygons is used.  However, 

the drawback is that the computing power required for more polygons is also larger.  

This means that one method of quickly generating sensor data is to build an object 

from triangular polygons to form the shape of the object in question and then 

automatically generating points of the correct spacing in each polygon. 

An object formed by n polygons can be described by a matrix n-by-9 in size.  Each 

row represents one polygon that makes up the object.  The elements in each row 

are, 𝑥𝑎, 𝑦𝑎, 𝑧𝑎, 𝑥𝑏, 𝑦𝑏, 𝑧𝑏, 𝑥𝑐, 𝑦𝑐 and 𝑧𝑐, which represent the x, y and z coordinates of 

each corner of the polygon in Euclidean space.  This creates a matrix 𝑂 in (6.6), 

which describes an entire object. 

 

 𝑂 =

[
 
 
 
 
𝑥𝑎 𝑦𝑎 𝑧𝑎 𝑥𝑏  𝑦𝑏 𝑧𝑏 𝑥𝑐  𝑦𝑐 𝑧𝑐

⋮ ⋮
⋮ ⋮
⋮ ⋮

𝑥𝑎𝑛 𝑦𝑎𝑛 𝑧𝑎𝑛 𝑥𝑏𝑛 𝑦𝑏𝑛 𝑧𝑏𝑛 𝑥𝑐𝑛 𝑦𝑐𝑛 𝑧𝑐𝑛]
 
 
 
 

 (6.6) 

 

Each row in the O matrix can be used to generate a series of inspection points which 

can be used to calculate the range of possible collisions with the manipulator arm.  

This is done by scattering inspection points across the polygon in a regular 

distribution as shown in Figure 6-4. 
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Figure 6-4 Distribution of inspection points across one polygon.  The red points 

represent the polygon corners, the green point represents the polygon centre and the 

blue points represent the other inspection points. 

 

This spread is created by calculating the centre point of the circle in Equation (6.7). 

 

 

𝑃𝑐 =
𝑃1 + 𝑃2 + 𝑃3

3
 

where, 

𝑃1 = [

𝑥1

𝑦1

𝑧1

],  𝑃2 = [

𝑥2

𝑦2

𝑧2

],  𝑃3 = [

𝑥3

𝑦3

𝑧3

] 

(6.7) 

 

The vector from the centre to each corner can then be calculated: 

 

 

�⃑� 𝑐
1 = 𝑃1 − 𝑃𝑐 

�⃑� 𝑐
2 = 𝑃2 − 𝑃𝑐 

�⃑� 𝑐
3 = 𝑃3 − 𝑃𝑐 

(6.8) 

 

The inspection points inside the polygon can then be calculated in Equation (6.9). 
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𝑃𝑖1 = 𝑃𝑐 + 𝐷�⃑� 𝑐
1 

𝑃𝑖2 = 𝑃𝑐 + 𝐷�⃑� 𝑐
2 

𝑃𝑖3 = 𝑃𝑐 + 𝐷�⃑� 𝑐
3 

𝑤ℎ𝑒𝑟𝑒, 𝐷𝑘=0

𝑘=
‖𝑃𝑛+1−𝑃𝑛‖

𝑑 = 𝑃𝑛 + 𝑘𝑑 

(6.9) 

 

And 𝑑 is the distance between measured points.  The vector from corner to corner is 

calculated in Equation (6.10): 

 

 

�⃑� 1
2 = 𝑃2 − 𝑃1 

�⃑� 2
3 = 𝑃3 − 𝑃2 

�⃑� 2
1 = 𝑃1 − 𝑃3 

(6.10) 

 

The inspection points along the sides of the polygon can be found in the same way 

as the inspection points inside the polygon using Equation (6.11). 

 

 

𝑃𝑒𝑛,1 = 𝑃𝑛 + 𝐷�⃑� 𝑛
𝑛+1 

𝑃𝑒𝑛,2 = 𝑃𝑛 + 𝐷�⃑� 𝑛
𝑛+1 

𝑃𝑒𝑛,3 = 𝑃𝑛 + 𝐷�⃑� 𝑛
𝑛+1 

(6.11) 

 

Where 𝐷 is the same vector as previously specified.  All of the points are stored in 

transpose in a single matrix, creating a matrix n-by-3 in dimensions which represents 

all of the inspection points in a single polygon, where n is the number of points in the 

polygon.  Because of the nature of the method that the inspection points are 
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calculated, the polygons have no requirement to be equilateral triangles, which is 

useful for constructing entire obstacles. 

 

Sphere Generation 

The previous method of generating measured points in objects is very useful for 

building highly detailed objects very quickly, but these objects must be modelled in 

terms of their polygons before generation and this is very time consuming.  A faster 

method in terms of very quickly generating objects is to provide a centre point and 

generate a sphere of measured points around it. 

Firstly the azimuth and elevation angles must be calculated to generate each point 

on the surface of the sphere with the correct spacing between them.  This is once 

again carried out using Equation (6.12). 

 

 

𝑑 = 𝑟휃 

∴ 

휃 =
𝑑

𝑟
 

(6.12) 

 

Where d is the spacing between points and r is the radius of the sphere.  Having 

carried this calculation out, Equation (6.13) is used. 

 

 

[
𝑋
𝑌
𝑍
] = 𝐶 + [

𝑟𝑐𝑜𝑠(𝐴)cos (𝐸)

𝑟𝑠𝑖𝑛(𝐴)cos (𝐸)
𝑟𝑠𝑖𝑛(𝐸)

] 

where 𝐴 ∈ {−𝜋, 휃, 𝜋}, 𝐸 ∈ {−𝜋, 휃, 𝜋} 

(6.13) 

 

This generates a set of points which form the surface of a sphere.  These points can 

then be converted from T-space to C-Space. 
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6.1.2 Convert Obstacle Data into C-Space 

Two methods have been used to convert the obstacles into C-Space.  Both methods 

decouple each of the links into its own problem and then convert the obstacle into C-

Space for each joint.  Any collision in the first joint will occur over the whole range of 

the 2nd and 3rd angles any collision in the second joint will occur over the whole 

range of the 3rd angle.  The first method uses trigonometry to calculate the angles for 

collisions with the first and second joints in the arm and a series of simultaneous 

equations to calculate the angles for collisions with the third joint.  The second 

method uses trigonometry to calculate the angle solutions to collisions along all three 

links. 

 

Method 1 – Trigonometry and Simultaneous Equation Solution 

Collisions with obstacles can occur in this case with one of the three links in the 3-

DoF manipulator arm, and the links are temporarily decoupled to calculate collision 

angles for each of them.  Should the collision occur with the first link then the angles 

responsible for the position of the other two links are irrelevant and so for the angles 

of the first link that cause a collision, 𝛼, the other angles, 𝛽 and 𝛾, will collide 

regardless of angle from – 𝜋 to 𝜋.  The same occurs if the second link does not 

collide but the third link does.  The angle responsible for the position of the second 

link is irrelevant so for a collision of the first link at a set combination of 𝛼 and 𝛽 there 

will be a collision for all angles of 𝛾 between −𝜋 and 𝜋 radians. 

 

Collision Range of First Link 

Any collisions with the first link must occur if a polygon passes through the plane of 

operation of the first link, inside a circle on the plane with its centre at the base point 

of the manipulator and radius of the length of the first link.  This circle represents the 

maximum range of the first link. 
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Line:Plane Intersection 

For each polygon in an object, the first thing that is calculated is whether or not it 

crosses the plane of operation of the first link.  This is done by calculating the line-

plane intersection of each of the edges of the polygon, which can be considered to 

be lines of infinite length which intersect with one another.  The plane of operation of 

the first link is defined as a plane in the X-Y directions with z = 0. 

In vector notation a plane can be expressed as Equation (6.14). 

 

 (𝑝 − 𝑝0) ∙ 𝑛 = 0 (6.14) 

 

The point 𝑝0 and 𝑝 are points on the plane.  In this case 𝑝0 is the origin point of the 

first link in the arm and 𝑝 is the point on the plane where a line intersects it.  In this 

case 𝑝 is the unknown.  The variable n is a vector perpendicular to the plane, which 

in this case is required to be equal to 𝑛 in Equation (6.15): 

 

 𝑛 = [
0
0
1
] (6.15) 

From vector mathematics, the dot product of two vectors is the cosine of the angle 

between them.  For a vector which is perpendicular to another the angle would be 

π/2 radians, therefore the cosine would be 0, hence the 0 in Equation (6.14).  The 

vector equation for a line is shown in Equation (6.16). 

 

 𝑝 = 𝑙1 + 𝑑𝐿 (6.16) 

 

The variable 𝑝 in this equation is again the intersection between the line and the 

plane.  The variable 𝑙1 is a point on the line, in this case one of the corners of the 

polygon, and 𝐿 is the direction unit vector towards another point on the line, in this 

case the other polygon corner which bounds the line.  The variable 𝑑 is the distance 
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along the vector to the point 𝑝.  By substituting the line vector equation for 𝑝 into the 

plane vector equation, Equation (6.17) is achieved: 

 

 (𝑙1 + 𝑑𝐿 − 𝑝0) ∙ 𝑛 = 0 (6.17) 

 

This can be rearranged using the process in Equation (6.18). 

 

 

𝑑𝐿 ∙ 𝑛 + (𝑙1 − 𝑝0) ∙ 𝑛 = 0 

𝑑𝐿 ∙ 𝑛 = (𝑝1 − 𝑙0) ∙ 𝑛 

𝑑 =
(𝑝1 − 𝑙0) ∙ 𝑛

𝐿 ∙ 𝑛
 

(6.18) 

 

This provides the distance 𝑑 which can be re-entered into the vector line equation to 

find the line-plane intercept if 𝑑 is a real number.  It is required to check that 𝑝 lies 

between the two line edges.  This is done by using the magnitudes of the vector 

between the two corners, and the vectors from the corners to the intersection point, 

displayed in Equation (6.19). 

 

𝑚0
1 = |𝑙1| 

𝑚0
𝑝 = |𝑙𝑝 − 𝑙1| 

𝑚𝑝
1 = |𝑙1 − 𝑙𝑝| 

(6.19) 

 

If the point lies inside the two corners then Equation (6.20) is used. 

 

 𝑚0
𝑝 + 𝑚𝑝

1 = 𝑚0
1 (6.20) 
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Line:Circle Intersection 

Once it is determined how many of the edges of the polygon intersect with the plane, 

they can be checked for intersections with the circle of maximum range of the first 

link. 

For the first link, any of the three lines of a polygon that pass through the plane of 

operation of the link are inspected for their intersection with that plane. This leads to 

one of four cases. 1) The entire polygon lies on the plane, in which case all three 

lines intersect the plane at all points in the lines. 2) The polygon could intersect the 

plane, in which case two of the lines would intersect with the plane, giving two 

intersection points. 3) The polygon could be just touching the plane, in which case 

two of the lines would intersect the plane at the point at which they intersect each 

other, i.e. the corner of the polygon. 4) The polygon does not intersect with the plane 

at all, in which case there are no intersection points. In the cases of intersections 

with the plane, any intersection which occurs inside the circle whose radius is the 

length of the first link, and whose origin is the origin of the first link (the first arm joint) 

is inspected for the maximum angle range between them. This inspection relies on 

the assumption that a continuous object will have a continuous range of collision 

angles. This angle range when defined in terms of distance from the zero angle of 

the joint is the range which will cause a collision between the obstacle and the first 

link. 

Figure 6-5 illustrates the possible cases of intersections between a polygon and the 

circle which bounds the range of the first link in the manipulator arm. In cases 1 and 

3 the crosses represent corners of the polygon. In case 2 the crosses represent 

intersections between edges of the polygon and the plane of operation. In all cases 

the black dots represent intersections between the polygon and the edge of the 

reachable range of the link. 
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(a)  Case 1: Polygon lies completely on 

plane of operation of 1st link 

 

(b)  Case 2: Polygon intersects with plane 

of operation of 1st link. 

 

(c) Case 3: Polygon corner intersects 

with plane of operation of 1st link 

 

(d) Case 4: Polygon does not intersect 

with plane of operation of 1st link 

Figure 6-5: Different cases of intersection of polygons with the plane of operation of 

the 1st link in the manipulator. 

 

In case 1 each line is checked for a line-circle intersection.  In case 2, the two line-

plane intersections are connected to form a line which is checked for a line-circle 
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intersection. In case 3, the distance from the centre of circle to the line-plane 

intersection point is calculated.  If it is less than the radius of the circle then the point 

lies inside the circle.  In case 4 there is no intersection between the polygon and the 

plane, so there is no collision angle range for the first link. 

For each line that occurs, it must be investigated for a line-circle intersection.  This is 

done by using the Euclidean line and circle equations in Equation (6.21). 

 

 

𝑦 = 𝑚𝑥 + 𝑐 

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2 

(6.21) 

 

Where 𝑎 and 𝑏 are the x and y coordinates of the centre of the circle respectively 

and in this case are both 0.  The line equation can be substituted into the circle 

equation and the resulting quadratic equation solved to find both possible 

intersections (if any occur). 

 

 

𝑥2 + (𝑚𝑥 + 𝑐)2 = 𝑟2 

∴ 

(𝑚2 + 1)𝑥2 + 2𝑚𝑥𝑐 + 𝑐2 + 𝑟2 = 0 

(6.22) 

 

This quadratic equation is solved using equation (6.23). 

 𝑦 =
−𝑚𝑐 ± √−𝑐2 + 𝑚2𝑟2 + 𝑟2

(𝑚2 + 1)𝑥
 (6.23) 

 

where the solutions are the y values of the line-circle intersections.  The calculated 

solutions can then be used to find the range of the first joint angle that causes a 

collision. 
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Collision Range of Second Link 

To find instances of collisions with the second joint is simpler than that of the first.  

The direction in the X-Y plane that the polygon inspection point lies, which 

corresponds to the joint angle of the first link (α), can be calculated as follows.  If 

𝑃𝑖 = [

𝐼𝑥
𝐼𝑦
𝐼𝑧

] then the angle of the first link 𝛼 can be calculated using Equation (6.24). 

 

 𝛼 = arctan2 (
𝐼𝑦 − 𝑃0𝑦

𝐼𝑥 − 𝑃0𝑥
) (6.24) 

 

Using this angle the joint between the first and second links can be found. 

 

 𝑃1 = 𝑃0 + 𝑙1 [
cos 𝛼
sin 𝛼

0
] (6.25) 

 

This point relates to the base point of the second link.  The angle direction from this 

point to the inspection point can now be calculated in Equation (6.26). 
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�⃑� 1
𝐼 = 𝑃𝑖 − 𝑃1 

 

|�⃑� 1𝑥𝑦

𝐼
| = √(�⃑� 1𝑥

𝐼
)
2

+ (�⃑� 1𝑦

𝐼
)
2

 

 

𝛽 = arctan2(
�⃑� 1𝑧

𝐼

|�⃑� 1𝑥𝑦

𝐼
|
) 

(6.26) 

 

If the magnitude of �⃑� 1
𝐼 is smaller than or equal to 𝑙2 then the second link will collide 

with the inspection point at that combination of 𝛼 and  joint angles. 

Due to the geometry of the arm, and the length of the second and third links being 

longer than that of the first, it is possible for collisions between the second or third 

links and an object when 𝛼 = 𝛼 ± 𝜋 rad (i.e. pointing in the opposite direction to the 

object), therefore the process must be carried out again for that case. 

 

Collision Range of Third Link 

To investigate collisions between inspection points and the third link, the kinematic 

equations that have been described in the previous chapter must be used.  The 

angle 𝛼 is calculated in the same way as it is for collisions with the second link.  

Equations (6.27) to (6.34) show how the joint angle ranges of collisions with the third 

link are calculated. 

 

𝑃𝑥𝑦1 = |�⃑� 1𝑥𝑦

𝐼
| 

𝑃𝑧1 = 0 

(6.27) 

  

 𝑥𝑦2 = −
𝐴𝐵 ± 𝑃𝑓𝑧√−𝐶𝐷 + 𝑙1

3 − 𝑃𝑓𝑥𝑦
3

𝐸
 (6.28) 
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where, 

 

𝐴 = 𝑙1(𝑙2
2 − 𝑙3

2 + 𝑃𝑓𝑧
2 + 3𝑃𝑓𝑥𝑦

2) − 𝑃𝑓𝑥𝑦 

𝐵 = 3𝑙1
2 + 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 

𝐶 = (𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2) 

𝐷 = (𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 − 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2) 

𝐸 = 2(𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2) 

}
 
 
 
 
 
 

 
 
 
 
 
 

 (6.29) 

 

 𝑥𝑦3 = ∓
𝐴 ∓ 𝑃𝑓𝑥𝑦𝐵 + 𝑃𝑓𝑧√𝐶 + 𝑙1

3 ∓ 𝑃𝑓𝑥𝑦
3

𝐹
 (6.30) 

where, 

 

𝐴 = 𝑙1(𝑙3
2 − 𝑙2

2 ± 𝑃𝑓𝑧
2 ± 3𝑃𝑓𝑥𝑦

2) 

𝐵 = 3𝑙1
2 + 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 

𝐶 = −𝐷𝐸 

𝐷 = 𝑙1
2 + 2(𝑙2𝑙3 − 𝑙1𝑃𝑓𝑥𝑦) − 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

𝐸 = 𝑙1
2 + 2(𝑙2𝑙3 + 𝑙1𝑃𝑓𝑥𝑦) − 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

𝐹 = 2(𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2) 

}
 
 
 
 
 
 

 
 
 
 
 
 

 (6.31) 

 

 
𝑧2 =

𝑃𝑓𝑧

2
+

𝑃𝑓𝑧

𝑙2
3 − 𝑙3

3 ± 𝑙1√𝐴 ∓ 𝑃𝑓𝑥𝑦√𝐴
2

𝐷
 

(6.32) 

and, 
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𝑧3 =

𝑃𝑓𝑧

2
−

𝑃𝑓𝑧

𝑙2
3 − 𝑙3

3 ± 𝑙1√𝐴 ∓ 𝑃𝑓𝑥𝑦√𝐴
2

𝐷
 

(6.33) 

where, 

 

𝐴 = −𝐵𝐶 

𝐵 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

𝐶 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

𝐷 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2 

}
 
 
 
 
 

 
 
 
 
 

 (6.34) 

 

Summary of Calculations 

This set of calculations produces a set of three-dimensional points with dimensions 

that are equivalent to the angle ranges of each link.  For the first joint 𝛼, 𝛽 and 𝛾 

have a range of –𝜋 to 𝜋 radians. This is because a collision with the first link makes 

the positions of the second and third links irrelevant.  The same is true with 𝛾 for 

collisions with the third link.  The set of points generated for a collision with a polygon 

provides a comprehensive scatter across the entire range of angles which the 

manipulator arm cannot enter without colliding with the inspected polygon.  This 

represents the impermissible region caused by the range of collision angles for that 

polygon. 

 

Two-Link Equation Analysis 

A series of 200 random two-dimensional points were generated and the resulting 

geometries calculated using the inverse kinematics for a two-link arm configuration 

derived in Chapter 3 are plotted in Figure 6-6. 

In Figure 6-6 (a), the green geometries in the upper graph represent the arm 

geometries where the randomly-generated point is achievable. The red geometries 
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in the lower graph represent the arm geometries where the randomly-generated 

point is unachievable. Figure 6-7 (a) shows the positions of the randomly-generated 

points used to calculate arm geometries in Figure 6-6 (a). As seen in the diagram, 

the red points fall outside the maximum arm extension range, and correspond to the 

unachievable arm geometries in the lower graph of Figure 6-6 (a). The green points 

fall inside the maximum arm extension range and correspond to the achievable arm 

geometries in the upper graph of Figure 6-6 (a). This shows that these equations are 

viable for a two-link arm. 

 

Three-Link Equation Analysis 

The equations developed to calculate the arm geometry for a given collision point 

have been tested using Monte Carlo Simulation. For the two-link and three-link 

equation sets a series of random points in a range that includes the arm extension 

range have been generated to test the effectiveness of the equations. 

All of the points in the series of random two-dimensional points that fall outside the 

achievable arm geometries when using the two-link arm configuration equations 

were then recalculated using the inverse kinematics for the three-link arm 

configuration derived in Chapter 3 and were plotted in Figure 6-6 and Figure 6-7. 

In Figure 6-6 (b) the green and blue geometries in the upper graph represent the arm 

geometries where the randomly-generated point is achievable. In a three-link 

configuration such as this one, there are two possible geometric solutions for each 

randomly-generated inspection point. The blue and green geometries correspond to 

each of the two solutions. The red geometries in the lower graph represent the arm 

geometries where the randomly generated point is unachievable. Figure 6-7 (b) 

shows the positions of the randomly-generated points used to calculate arm 

geometries in Figure 6-6 (b). As seen in the diagram, the red points fall outside the 

maximum arm extension range, and correspond to the unachievable arm geometries 

in the lower graph of Figure 6-6 (b). The green points fall inside the maximum arm 

extension range and correspond to the achievable arm geometries in the upper 

graph of Figure 6-7 (b). This shows that these equations are viable for a three-link 

arm. 
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(a)  2nd link configuration of a two-link 

arm.  

 

(b) 2nd and 3rd link configuration of a 

three-link arm. 

Figure 6-6: Geometries of (a) two-link and (b) three-link arm configurations generated 

by random demand end effector positions as inspection points.  

 

 

(a) Two-link arm analysis. 

 

(b) Three-link arm analysis. 

Figure 6-7: Positions of the randomly-generated points used to calculate arm 

geometries in Figure 6-6. The green points fall within the accessible range of each 

arm configuration, whereas the red points are inaccessible. 
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As can be seen from Figure 6-6 and Figure 6-7, a large proportion of the points that 

were unachievable with the two-link equations become achievable when calculated 

using the three-link equations. It is also worth noting that the accessible range of the 

three-link equations has a circular hole in the centre. Any inspection point that falls 

inside this hole will be achievable by the two-link series of equations, as the lower 

limit characteristic displayed by the first link is not present for the two link 

configuration because the second link is longer than the first.  In Figure 6-6 (a) the 

green lines and in (b) the green and blue lines represent the geometries required 

when the random points have fallen within the reachable range, of the arm. In both 

diagrams the red lines represent the cases where the random points fall outside of 

the reachable range. 

 

Method 2 – Trigonometry Only 

This method uses only the trigonometric inverse kinematics so find solutions to 

collisions with all of the points measured points on an obstacle and points along the 

entire range of each joint.  For the first and second joints, this solution only requires 

finding the angle between the measured point and the joint in question and then the 

range from the measured point to the joint is compared with the length of the link.  If 

the Euclidean distance between the joint and the measured point is smaller than or 

equal to the length of the link then there is a collision with the obstacle at that joint 

angle.  For the third joint the inverse trigonometric equations of end effector are 

used.  A vector of points representing inspection points along the third link are 

inputted as the total length of the third link. 

For joint 𝛼, the vectors 𝑃𝑥 and 𝑃𝑦 are the vectors which contain the X and Y 

coordinates of each of the measured points in the obstacle.  For this calculation only 

the points where 𝑃𝑧 (the Z coordinates of the measured points) are 0, hence they lie 

on the plane of the first link.  The calculation of the 𝛼 angles of collisions between the 

first link and any obstacles is given with Equation (6.35). 

 

 Α = tan−1
𝑃𝑦

𝑃𝑥
 (6.35) 
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Where Α is the vector of joint angles found by the inverse tangent of the quotient of 

the vectors 𝑃𝑦 and 𝑃𝑥.  For each of these angles, the Euclidean distance to the point 

from the origin is found using Equation (6.36) and for all those points where the 

distance is less than or equal to the length of the link, 𝑙1, then the angle is kept as a 

collision angle. 

 

 𝑅 = √𝑃𝑥
2 + 𝑃𝑦

2 (6.36) 

 

For joint 𝜎, the same method is used but in this case the location of the joint has to 

be calculated.  For each measured point, joint angle 𝛼 is calculated using the above 

equation, and then the location of the joint between links 1 and 2 can be found using 

the forward kinematics. 

Since, in the case of the robotic arm presented in this thesis, the second joint is 

larger than the first, there is the potential for two solutions to the joint angles 𝛼 and 𝜎.  

There may be a solution when −𝜋𝑐 ≤ 𝛼 ≤  𝜋𝑐, but also when 𝜋𝑐 ≤ 𝛼 ≤ 2𝜋𝑐.  Thie 

second possible range of 𝛼  angles is given by Equation (6.37). 

 

 Α1 = Α and Α2 = Α − 𝜋 (6.37) 

 

Given that this is the case, the two sets of solutions Σ can be found using the 

schematic shown in Figure 6-8. 
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Figure 6-8 Arm geometry for the calculation of 𝝈. 

 

In this case the 𝜎 angles can be calculated using Equation (6.38). 

 

 

 

Σ1 = tan−1
𝑃𝑧

√𝑃𝑥
2 + 𝑃𝑦

2 − 𝑙1
 

Σ2 = tan−1
𝑃𝑧

√𝑃𝑥
2 + 𝑃𝑦

2 + 𝑙1
 

(6.38) 

 

Again the Euclidean distance from the joint to the measured points is compared with 

the length of the link, in this case 𝑙2, and if the Euclidean distance, calculated using 

Equation (6.39), is smaller than or equal to 𝑙2 then there is a collision between the 

link and the measured points. 

 

 

𝑅1 = √(√𝑃𝑥
2 + 𝑃𝑦

2 − 𝑙1)
2
+ 𝑃𝑧

2,  for 𝜎1. 

𝑅2 = √(√𝑃𝑥
2 + 𝑃𝑦

2 + 𝑙1)
2
+ 𝑃𝑧

2,  for 𝜎2. 

(6.39) 

 



221 
 

For joint 3, the entirety of the 3rd link is taken into consideration since there are 

multiple solutions for collisions with the 3rd link and an obstacle.  To carry this set of 

calculations out, the length of link 3, 𝑙3 is inputted as a vector from 0 to 𝑙3.  The 

schematic illustrating the collision geometries for the third link is given in Figure 6-9. 

In this case O is the vector coordinates of the base of the manipulator arm.  P is the 

vector coordinates of a measured point (or all the measured points in the obstacle).  

Again, the joint angles 𝛼1 and 𝛼2 can be calculated using the inverse tangent of the 

XY vector between the measured point and the base of the 1st link in the manipulator 

arm, shown in Equation (6.40). 
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P

l3

l3

l2

l2

η3

θ6

-θ6

-θ5

σ4
θ4

θ5

σ3

l1

r1
r2

O
O

 

Figure 6-9 Arm geometry for the calculation of the 𝝈 and 𝜼 joint angle combination. 

 

 

Α1 = tan−1
𝑃𝑦

𝑃𝑥
 

Α2 = 𝜋 + tan−1
𝑃𝑦

𝑃𝑥
 

(6.40) 

 

The Euclidean distance (ℎ1 and ℎ2) between the measured points and the base of 

the manipulator can be used along with the lengths of links 2 and 3 to find all of the 
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internal angles of the triangle made by these three lengths.  Equations (6.41) to 

(6.44) provide calculate the internal angles of the geometries shown in Figure 6-9. 

 

 

𝑅1 = √(√𝑃𝑥
2 + 𝑃𝑦

2 − 𝑙1)
2
+ 𝑃𝑧

2,  for 𝜎1, 𝜎2 and 휂1, 휂2. 

𝑅2 = √(√𝑃𝑥
2 + 𝑃𝑦

2 + 𝑙1)
2
+ 𝑃𝑧

2,  for 𝜎3, 𝜎4 and 휂3, 휂4. 

(6.41) 

 

Given the length of link three as a vector of points along the length of the link, 𝐿3, the 

following set of equations will give the angles Θ1 to Θ6. 

 

Θ1 = tan−1
𝑃𝑧

√𝑃𝑥
2 + 𝑃𝑦

2 − 𝑙1
 

Θ4 = tan−1
𝑃𝑧

√𝑃𝑥
2 + 𝑃𝑦

2 + 𝑙1
 

(6.42) 

 

 

Θ2 = cos−1
𝑙2
2 + 𝑅1

2 − 𝐿3
2

2𝑙2𝑅1
  

Θ5 = cos−1
𝑙2
2 + 𝑅2

2 − 𝐿3
2

2𝑙2𝑅2
  

(6.43) 

 

 

Θ3 = cos−1
𝑙2
2 + 𝐿3

2 − 𝑅1
2

2𝑙2𝐿3
  

Θ6 = cos−1
𝑙2
2 + 𝐿3

2 − 𝑅2
2

2𝑙2𝐿3
  

(6.44) 

 

This set of equations now provides the necessary parameters to calculate the 𝜎 and 

휂 values. 



223 
 

 

Σ1 = Θ1 + Θ2 

Σ2 = Θ1 − Θ2 

Η1 = 𝜋 − Θ3 

Η2 = Θ3 − 𝜋 

(6.45) 

 

 

Σ3 = Θ4 + Θ5 

Σ4 = Θ4 − Θ5 

Η3 = π − Θ6 

Η4 = Θ6 − 𝜋 

(6.46) 

 

This provides the full list of 𝛼, 𝜎 and 휂 for each point in the obstacle for all of the 

inspection points along the length of link 3.  This set of calculations provides the 

entire range of joint angles which causes a collision between all of the measured 

points in the obstacle and the entire arm. 

 

Summary of T-Space to C-Space Conversion Methods 

Both of these methods provide a suitable method of converting points in T-Space 

into a C-Space map.  However, the first method requires a large amount of sorting of 

information to find which angle combinations fall within the range of each of the links 

and this takes a large amount of calculation overheads and time.  Even when both 

methods use vector operations to reduce the number of calculations necessary, 

method 1 takes 10 times as long to execute for an object of 250 points as method 2, 

which only takes approximately 3 seconds for an obstacle containing approximately 

16000 measured points.  Clearly, the second method is much more efficient at 

handling the T-Space/C-Space conversion; therefore this method shall be used for 

the path generation technique. 
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Analysis of C-Space Objects 

To determine how obstacles appear in C-Space, a single polygon has been used to 

generate a C-Space object.  Figure 6-10 illustrates the shape of an impermissible 

region for a single polygon. In the diagram there are two illustrations.  The illustration 

on the left shows the position of a polygon in relation to the maximum arm expansion 

radii in the plane of the first link.  The black circles represent the inspection points on 

the polygon, which is placed in the X-Z plane.  The red circle illustrates the maximum 

radius of the first link, the blue circle the maximum radius of the first and second links 

and the green circle the maximum radius of the entire arm in the X-Y plane. 

The diagram on the right of Figure 6-10 illustrates the components of the 

impermissible region formed by this polygon in the expansion range of the arm. 

There are two distinct shapes on the diagram.  The shape made by the red, dark 

blue and dark green regions represents the impermissible region caused by 

collisions with the arm when the first link is pointing in a direction range towards the 

polygon.  Mirroring the colours of the maximum expansion radii in the diagram on the 

left, the red shape is the impermissible region caused by collisions with the first link, 

the dark blue shape is the impermissible region caused by collisions with the second 

link, and the dark green shape is the impermissible region caused by collisions with 

the third link.  The other distinct shape, made up of the light blue and light green 

impermissible regions represents the collisions between the polygon and arm when 

the first link is pointing in a direction range which is opposite to the direction towards 

the polygon. In this case, the first link will never collide, but the second and third 

links, which have a longer length than the first link in this application, are able to 

extend back in the direction of the polygon and collisions occur. The light blue shape 

illustrates the impermissible region caused by collisions between the polygon and 

the second link, and the light green shape illustrates the impermissible region 

caused by collisions between the polygon and the third link in the case of the first link 

pointing in a direction opposite to the direction of the polygon. 

The reason that the impermissible regions of the first and second links extend 

entirely through one or two dimensions of the space is because if the first link 

collides with the polygon, then regardless of the direction of the other two links, the 

collision occurs. So for a given α angle, all  and  angles cause a collision. The 
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same is the case for the second link. If the second link collides, then for the 𝛼 and  

angles that cause the collision, the direction of the third link is irrelevant and the 

collision will occur for all  angles. 

 

Figure 6-10: Impermissible region for a triangular polygon situated in the arm 

extension range for all three links.  

 

Figure 6-11 illustrates how the different impermissible regions for the different link 

lengths are combined to form the overall impermissible region for the polygon. These 

display the two distinct regions for 𝛼 in the direction range of the polygon in red, and 

in the opposite direction range of the polygon in green. In this set of diagrams it is 

particularly clear that the regions completely fill the space in some dimensions. 

Figure 6-11 shows that the impermissible regions extend completely through the  

angle dimension and the  angle dimension for certain ranges of 𝛼. 
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(b) View of the 𝛼- plane. 
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(c) View of the 𝛼- plane. 
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(d) View in all three servo angle 

dimensions. 

Figure 6-11: Impermissible region formed by inspection of a single polygon, as seen 

from various directions. 

 

Given that collisions with the first link completely fill the C-Space in the 𝜎 and 휂 

dimensions, this will prevent the arm from navigating a large amount of the Task 

Space.  For this reason, future obstacles used will fall outside of the range of link 1 to 

allow for navigation about the space. 

 



227 
 

6.1.3 Expand Impermissible Region to Permissible Boundary. 

For each obstacle, a region in the C-Space exists that constitutes an impermissible 

region for the combinations of control inputs. These forbidden areas can be plotted 

as a three-dimensional graph, using the angle dimensions as the X, Y and Z 

dimensions of the graph. Moving the arm into a geometry whereby the joint angle 

combination falls inside this impermissible region would cause a physical collision.  

To prevent any collisions with the impermissible region formed by the C-Space 

obstacle, the impermissible region can be expanded to form a new shape which is 

slightly larger than the original C-Space shape. 

By expanding the impermissible region slightly a new region is created, the boundary 

of which is unobstructed by the obstacle.  When this new expanded shape is 

bounded it will form a boundary that the arm can touch that will not cause a collision 

provided that the arm does not cross inside it.  To expand the impermissible region 

of the obstacle each point must be expanded to a sphere (or a hemisphere), or 

similar shape as will be explained, to provide a safe boundary around each point.  To 

carry out this expansion, the required action is for duplicate versions of the C-Space 

points to be added to a set of vectors which contain a translation by the amount 

which corresponds to several limitations of the system. 

The first limitation of the system is the error in the LIDAR sensor, which could cause 

the measurements to be off by a small amount (calculated to be in the region of 

1.3 × 10−5 m or 1.35 × 10−5𝑐
 or 7.76 × 10−4°) which will form part of a boundary 

region which will be expanded around the impermissible region.  The second 

limitation is the resolution of the sensor.  Regardless of how small this resolution is, 

the sensor may miss the very edges of obstacles when scanning for points in range.  

This is shown in Figure 6-12.  The red lines on the obstacle are areas where the 

LIDAR sensor may not detect that there is an obstacle; 𝑟𝜃 is the angular resolution of 

the LIDAR, 𝑟𝑠 is the relative spatial resolution of the sensor and the red lines on the 

obstacle are the regions where the sensor has not detected any object. 
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Obstaclers
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LIDAR
 

Figure 6-12 Effect of resolution of the LIDAR sensor  on the detection of the corners 

of an obstacle. 

 

To prevent this from becoming a problem, the permissible boundary expansion can 

also be expanded by the angular resolution of the sensor, since this will ensure that 

any undetected parts of an obstacle will not be collided with.  The third limitation 

involves the accuracy of the joint servo encoders.  If there is any noise or error in the 

measurements taken by the joint then the arm will not be located where the guidance 

method thinks that it is, and there may be a collision.  A solution to this is to add a 

value to the permissible boundary around obstacles which is equal to the maximum 

measurement error of the servo sensors, hence avoiding a collision:  The fourth 

limitation that must be taken care of is the steady state error of the joints in the 

dynamic model, which in Chapter 5 was shown to be 2° or 0.035𝑐.  This means that 

even when the system displays the dynamics presented in Chapter 5, there will still 

be no collisions. 

This vector appears as shown in Equation (6.47) where 𝐶𝑝𝑜𝑖𝑛𝑡𝑠 is the vector of points 

in C-Space, 𝐶𝑝𝑜𝑖𝑛𝑡𝑠2 is the new vector of points in C-Space, 𝑒𝑙 is the angular error in 

the LIDAR sensor, 𝑟𝜃 is the angular resolution of the LIDAR and 𝑒𝑠 is the 

measurement error of the servo encoders.  This new vector provides a cluster of 

points with which to create a node graph from.  In this case the angular error in the 

LIDAR is negligible and the since the measured points in the obstacle are simulated, 

the entirety of the obstacle has been detected by the LIDAR.  The servo encoders in 
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this case are also considered to be ideal.  For this reason 𝑒𝑙 , 𝑟𝜃  and 𝑒𝑠 will be 

considered to be 0. 

 

 

𝐶𝑝𝑜𝑖𝑛𝑡𝑠2 = 

𝐶𝑝𝑜𝑖𝑛𝑡𝑠 + (𝑒𝑠𝑠 + 𝑒𝑙 + 𝑟𝜃 + 𝑒𝑠) 
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(6.47) 

 

Figure 6-13 illustrates how the impermissible regions are expanded to create a 

permissible boundary around them. In the diagrams the blue shape represents the 

impermissible region for the arm with the first link in the direction of the polygon and 

the yellow shape the impermissible region for the arm with the first link in the 

opposite direction of the polygon. The darker region in the shapes are the 

impermissible regions and the lighter enclosing shapes are the permissible 

boundaries that have been created by expanding the impermissible regions. 
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(b) View of the 𝛼- plane. 
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(c) View of the - plane. 
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(d) View in all three servo angle 

dimensions. 

Figure 6-13: Expansion of the impermissible region to create permissible boundary 

around the impermissible region seen from various directions.  

 

6.1.4 Node Graph Formation 

This part of the method deals with the formation of a node graph in order to be able 

to execute a path generation algorithm and generate a path.  Two methods are 

presented here.  The first is to manipulate the permissible boundary regions to be 

able to use them to form a node graph and plot a path around them.  The second 



231 
 

method is to generate a grid of nodes over the entire space and remove node from 

this graph which fall inside the permissible boundary regions.  

In either case, the permissible boundary regions still contain all of the C-Space 

points, including those which fall inside the boundaries.  These superfluous points 

can be removed in since they are not necessary.  Also, the generation of surfaces 

that bound these points is necessary in both methods.  The first requires the use of 

the edges of surfaces since they represent vertices connecting the nodes of the 

permissible boundary.  The second method requires the surfaces since it analyses 

which points in the node graph of the entire space fall inside the closed shapes 

formed by the surfaces. 

 

Convex Hulls and Alpha Volumes 

Due to the extensive inspection of each obstacle, a lot of the collision points will find 

themselves inside the impermissible region for that obstacle.  These points must be 

removed before a node graph is generated, otherwise they will be connected to the 

graph and this will allow the path generation algorithm the ability to use them in any 

path it generates, risking a collision.  To solve this problem a technique called an 

alpha volume is used.  This is the same as a convex hull, which is explained in the 

next paragraph, but with another extra function which is described immediately 

following the convex hull. 

 

Convex Hull 

A convex hull is a shape or volume which forms the boundary of a cloud of points.  

This can be done in two or three dimensions.  In the case of the map generation 

technique described here, the method is used in three dimensions; however, for the 

purposes of outlining the method, an example in two dimensions will be used. 

Consider a farmer’s field with fence posts driven into it at random points across the 

field and a rope is tied to one at the outside edge.  The farmer then walks with the 

other end of the rope all the way around the field and back to the first post.  This 

creates a boundary with the rope that, if pulled tight will form a convex, irregular 
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polygon with a high number of sides that entirely bounds the posts in the field.  The 

corners of this shape are the posts on the outside edge of the set of posts.  This is 

outlined in Figure 6-14 and Figure 6-15. 

 

 

Figure 6-14 A 2-D pattern of inspection 

points for illustration of the convex hull 

technique for bounding a region of 

points. 

 

Figure 6-15 The same 2-D patter of 

inspection points has now been bounded 

using the convex hull technique. 

 

As can be seen by these figures, the black line has completely encircled the brown 

circles (our fence posts).  This can be done by the following method: 

 Start with the left-most point in the group and take a vector from it in a 

leftward direction. 

 Find the point in the remainder of the set, the vector to which has the smallest 

angle from the original vector, when the angle is taken clockwise.  This is the 

next point; store it in a list with the previous ones. 

 Take the new vector as the starting direction vector and repeat step 2. 

 Repeat step 2 and 3 until the next point is the original one. 

 The points in the list represent all of the points that bound the set. 

 

This can be seen in Figure 6-16 
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Figure 6-16 Method by which the complex hull technique works. 

 

This is a very good start; however it is only useful if the distribution of points forms a 

convex shape.  If there is a concave area to the shape, then the algorithm will ignore 

it.  For example in Figure 6-17  the black line clearly ignores an area where the 

shape is concave, but the red line is a more accurate representation of the shape.  

This is done using an alpha shape, or volume in three dimensions. 

 

 

Figure 6-17 Limitations of the convex hull 

technique and the result of using the 

alpha hull technique. 

 

Figure 6-18 Limitations and compromise 

required when using the alpha volume 

technique. 

 

Alpha Shapes/Volumes 

An alpha shape follows the same principal as a convex hull; however it also has a 

tunnelling method to detect convex areas of a shape when a certain threshold is 

achieved.  The extra addition to the method is to investigate whether the distance 

from the current point to the next one found by the concave hull method.  If there is 
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another point which is closer with a larger direction angle it will use that as the next 

point and choose its next vector to be back along the previous line.  This is called 

tunnelling and requires a tunnelling distance to check as the threshold value.  There 

is a drawback to using this extra part of the algorithm however, depending on the 

required task.  If the tunnelling distance is set too large then the algorithm will 

continue to function in the same way as the convex hull and not detect any concavity 

in the shape.  If the tunnelling distance is set too short then the algorithm will begin 

to pick up gaps in the shape where none exist. This is shown in Figure 6-18. 

As can be seen in the figure, the algorithm tunnels into areas that it should not, and 

even decides that one point is not connected to the rest.  This is dangerous if the 

tunnelling distance is not calibrated correctly, especially when in the case of the map 

generation algorithm described in this thesis.  Here the points are a spread of 

inspection points across a continuous shape.  The alpha shape algorithm could 

conceivably decide that a surface on the shape does not exist in the control angle 

domain, and subsequently there are surfaces inside the object, which could lead to a 

potential collision. 

This algorithm can be used in three dimensions, which allows it to generate surfaces 

around objects, forming a volume in the same way as it forms a shape.  This is 

called an alpha volume.  If it carries out this function to the two shortest angle points 

in three dimensions it can form a triangular polygon, which can be used later in the 

map generation. 

 

Method 1 – Node Graph from Permissible Boundary Alpha Volumes 

This method requires that each of the permissible boundaries are checked for 

overlapping areas, and if so then the permissible boundaries are merged with one 

another.  Following this the remaining permissible boundaries are connected to one 

another by their closest nodes.  Finally, the C-Space version of the robotic 

manipulator end effector start and desired end locations are calculated and 

connected to the resulting node graph. 
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Merging of Overlapping Permissible Boundaries 

Due to the nature of the environment there may be places where the permissible 

boundary regions for two obstacles may be very close to one another.  When the 

regions are expanded to form the permissible boundaries it may be that these 

regions overlap, and so they must be combined before a node graph is generated so 

that nodes on the edge of one permissible boundary that find themselves inside 

another are not included on the graph.  This problem is solved simply by checking 

whether there are points from different impermissible regions within a certain 

distance of another impermissible region and if so then combining all of the points 

from the two regions into one array, effectively turning them into one region. 

 

Conversion of Object Permissible Boundaries into Node Graphs 

Each permissible boundary is required to be converted to a node graph for use with 

a pathing algorithm to find the shortest path between nodes in the graph.  This is 

done very simply.  The alpha volume technique described in the previous chapter 

finds polygon shaped surfaces around the edges of a scatter of points.  These are 

stored in a format known as a triangulation, which has two arrays.  The first array is 

an n-by-3 sized array which contains the coordinate data of the points in the 

triangulation for n points in the object.  The first column in the array is the coordinate 

in the first dimension, normally 𝑥, but in the case of the ‘permissible boundaries’ this 

is 𝛼.  The second column represents the  coordinates and the third column the  

coordinates.  This matrix is known as the index matrix, and is identical to the one 

used by the node graph that is generated.  The second matrix is an m-by-3 

triangulation matrix, where m is the number of polygons that make up the surface of 

the ‘permissible boundary’.  Each of the elements in a row corresponds to a row of 

the index matrix, each specifying the coordinates of one point.  The three points that 

are specified make up one of the m polygons in the boundary. 

Converting the triangulation into a node graph is a very small, but potentially memory 

intensive process, which has been dealt with later in this chapter.  An matrix is 

created of n-by-n dimensions where each element is infinite.  This is to become an 

adjacency matrix for the node graph.  Before it is populated with costs, all of the 



236 
 

nodes are set to have no connections. The (1,1) to (n,n) diagonal elements are set to 

0 as the angular cost from one point to itself is zero. Each row of the triangulation 

matrix is then taken and the elements specified within it are connected to each other 

in the adjacency matrix.  This is done by calculating the resultant angle change 

between each of the points and setting these as the cost to travel between those 

nodes in the adjacency matrix. 

 

 𝑇1 = [13 290 165] (6.48) 

 

For example, if a row in the triangulation matrix was as presented in (6.48), then 

elements (13,290), (290,13), (290,165), (165,290), (13,165) and (165, 13) would be 

filled with the resultant angle change between the points that these element 

identifiers refer to respectively. 

This process is carried out for every ‘permissible boundary’ for the environment.  It is 

at this point that a limitation of computer memory becomes a problem.  The 

adjacency matrices for these permissible boundaries’ have the potential for several 

thousand rows and columns in them.  In this case, there are limitations to various 

pieces of computer programming software, including Matlab, which cannot process 

extremely large matrices so there is a limit to the size that the adjacency matrices 

can become.  This has the potential to create a problem when several adjacency 

matrices are combined, and a solution has been found for this issue.  The solution is 

dealt with later in the chapter. 

A second issue that only becomes clear at this point in the construction of the 

adjacency matrices is as follows.  The space in which the map is built is circular.  

This means that where the impermissible region has dimensions of –𝜋 to 𝜋 radians, 

a continuous shape is formed that is circular in that dimension, exactly like the 

space.  As −𝜋 and 𝜋 are both 180°, the region simply exits off one side of the map 

and re-enters on the other only to travel completely across that dimension.  This in 

itself is not an issue as that means that there is a potential for some regions that are 

technically accessible to be inaccessible due to the impermissible region cutting off 

access completely to that area, which is physically possible in the real world.  Take a 
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closed box for example.  Theoretically the arm could be inside the box, but if all sides 

of the box are closed then the inside is inaccessible from the outside and vice-versa. 

The issue comes in that the techniques used so far do not know that the space is 

circular and to the computer −𝜋 ≠  𝜋.  This means that when the impermissible 

region stretch completely across one dimension, the alpha volume method connects 

up the sides at the ends of the shape where the coordinate in that dimension is 

either −𝜋 or 𝜋 radians.   

Link-2 joint angle range (β°)

Link-1 joint angle range (α°)
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Figure 6-19: Permissible boundary surface converted into a wire frame representing 

the vertices in a node graph in the three servo angle dimensions.  

 

The solution to this problem is as follows:  If the shape covers one entire dimension 

then expand the shape by several radians at each end; i.e. if a point has a value of 

π, then duplicate it and add 0.1 radians to the duplicate in that dimension. If negative 

π then duplicate and subtract 0.1 radians to the duplicate. 

 Carry out the Alpha Volume generation method again to get a new 

triangulation. 

 For all points that are greater than π or less than –𝜋, then do not add to the 

graph. 
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 If there is a point at 𝜋 or – 𝜋 in one dimension and another the other value of 𝜋 

then connect them up in the node graph. 

 The node graph for one ‘permissible boundary’ is shown in Figure 6-19. 

The permissible boundary region is used to build connectivity and adjacency 

matrices which represent the node graph used to generate a path. The wireframe 

objects shown in Figure 6-19 are the representation of the vertices or connections 

between nodes in that graph. 

 

Connection of Permissible Boundary Node Graphs for all Obstacles 

Having generated a node graph for each ‘permissible boundary and converted the 

end effector start and required locations into angular space, the map needs to be 

joined together.  To reduce the computational load of large matrices this is done on a 

two level basis.  Each of the ‘permissible boundaries’ has its centre point calculated 

and the boundaries are organised in order of increasing α position.  This is because 

the largest variation in real world position is in the direction so the ‘permissible 

boundaries’ need to be connected in this direction to provide paths between them.  

Each boundary is connected to the next as a single node in the list in the top tier of 

the graph.  The last in the list is also connected to the first in the same way as they 

are next to one another in the space. 

 

Method 2 – Whole Space Node Graph with Removal by Alpha Volume 

Intersection 

The above method is able to generate a node graph in the space, however, there are 

several operations that are required to be carried out which are computationally and 

time intensive.  The following method aims to reduce a large amount of the 

computational overheads in the above method.  The following sets of calculations 

are removed from this method: 

 Checking for overlaps between permissible boundaries. 

 Searching permissible boundaries for the closest points between them to 

connect them together. 
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 Searching the edges of the space for paths which exceed the limitations of the 

space and checking permissible boundaries in case they exceed the 

limitations of the space. 

 Having to create 2 different levels of node graph, a global node graph and 

local node graphs for each permissible boundary to prevent memory 

problems. 

 

To achieve all of the above, this method only requires two processes.  The first is to 

create a node graph which covers the entirety of the space as though there are no 

obstacles.  The spacing of the nodes in the graph will again match the steady state 

error values found in the previous chapter.  The second is to check whether any of 

the nodes in this graph fall inside the permissible boundaries of the obstacles in C-

Space and if so, removing them from both the list of indices and the adjacency 

matrix for the space.  The largest advantage to this method is that the node graph of 

the unobstructed space can be generated a priori and only loaded when necessary, 

saving large amounts of memory.  Also, the number of nodes in this graph will only 

reduce since nodes are removed when they are found to be obstructed by obstacles.  

Figures Figure 6-20 to 6-24 illustrate the effectiveness of this method. 

 

Figure 6-20 A sphere in T-space in 

relation to the base point of the 

manipulator arm. 

 

Figure 6-21 C-space representation of the 

sphere in relation to the manipulator arm. 
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Here the C-Space permissible boundary regions formed by a spherical object can be 

seen.  The next stage in the process is to create a node graph for the accessible C-

space.  This is carried out by first creating a node graph for the space without any 

obstacles.  As specified in Chapter 5, the accessible region of the manipulator arm is 

in the range of −180 ≤ 𝛼 ≤ 180,−40 ≤ 𝜎 ≤ 180,−180 ≤ 휂 ≤ 140. 

The choice of spacing between nodes is important and relates to two limitations, the 

first of which is related to the control limitations of the manipulator, the other is 

related to the memory capabilities of the computer carrying out the node graph 

construction.  The first limitation is the steady state error of the joint angles.  While 

this has been taken care of in the expansion of impermissible regions into 

permissible boundaries around which the arm can safely travel in section 6.1.3, the 

nodes in the graph which is being generated are direct control requirements of the 

joints and so if they have a smaller separation than the steady state error of the 

system then the arm will be situated at the location of two different nodes in reality 

and inside the guidance method.  For this reason the spacing between nodes will be 

set as the steady state error of the joints as a minimum.  In this case 2° or 0.035𝑐.  

The second limitation is that the computer which carries out the node graph 

generation is limited in terms of memory, and a node graph with a small spacing will 

have a very large number of nodes, increasing the size of the adjacency matrix in the 

computer memory, hence increasing overheads and run time.  For example, with the 

angle range limitations for the manipulator arm used in this thesis, the size of the 

adjacency matrix is as follows for the angle spacing of 1°, 2°, 5° and 10°. 

 

Table 6-1 Numerical data showing the adjacency matrix size difference between node 

graphs of different node spacings. 

Node spacing 1° 2° 5° 10° 

Adjacency 

matrix size 

79781 × 79781

= 6.365 × 109 

20091 × 20091

= 403648281 

3285 × 3285

= 10791225 

851 × 851

= 724201 
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Clearly, the smaller the spacing between nodes in the graph, the larger the 

adjacency matrix of the graph becomes, and this relationship is exponential.  It is for 

this reason that the node spacing has been selected as 5° or 0.087𝑐 to reduce the 

computational overhead significantly. 

The obtained set of C-Space permissible boundaries can be overlaid over the node 

graph of the empty space.  Figure 6-22 shows the It is clear that some of the angle 

combinations that cause collisions fall outside of this space. 

 

 

Figure 6-22 Sphere in C-space (red) overlaid over the unmodified node graph (black). 

 

Figure 6-23 Nodes which collide with the sphere in C-space (red) to be removed from 

the remainder of the node graph (blue). 
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The triangulation shown in Figure 6-24 illustrates the space that the removal of the 

red nodes leaves behind.  The triangulation itself is not used but displayed for 

illustrative purposes. 

 

Figure 6-24 Surface plot of a triangulation showing the complete node graph with the 

colliding nodes removed. 

 

The nodes in the graph of the empty space can be compared with the permissible 

boundary regions and any nodes that fall inside these regions can be removed.  The 

red nodes in Figure 6-23 illustrate which nodes will be removed from the graph. 

 

Summary of the Method 

This method has advantages over the first method in that the preloaded node graph 

already defines the space and, therefore, there is a reduction in computing 

overheads because the algorithm does not have to search for areas of the C-Space 

obstacles which exceed the limitations of the operational space of the manipulator 

arm.  There is also no computational overhead caused by the need to check each of 

the permissible boundaries for overlaps since any overlap will be taken care of when 

points are removed from the node graph.  Again, the closest points between each of 

the permissible boundaries do not have to be found, further reducing the amount of 
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computation.  Finally, there is no need to create two levels of node graph.  This is 

because each individual node graph and list of index points stored separately cost 

more in terms of memory than a node graph for the entire space together. 

It is for this reason that the second method will be used to calculate the node graph 

with which to generate paths through the T-Space. 

 

6.1.5 Mapping of End Effector Start and Required Joint Positions 

The end effector start and required positions have also to be mapped into the space 

to allow them to be connected to the node graph.  As with all the other inspection 

points, when these points are mapped into the angle space, there are several 

potential solutions.  The solutions with the smallest resultant angular change (i.e. 

closest together in the space) are chosen, provided that they do not appear inside 

one of the ‘permissible boundaries’.  If that is the case then that solution is 

inaccessible.  If all solutions are inaccessible then the start or require point in 

Euclidean space is also inaccessible. 

In Figure 6-19, the end effector start position and required end position have also 

been mapped. The green circle represents the angle combination of the start 

position and the red circle represents the angle combination of the required end 

position. Table 6-2 illustrates the change in domain from the Euclidean domain to the 

control domain. 

 

Table 6-2 Change in domain from the Euclidean domain to the Control domain for the 

end effector start and required end points used in the path generation example for 

method 1. 

End Effector Point 

Identifier 

Euclidean 

Domain 

Control 

Domain 

Start point (𝑃𝑠) 
[
−0.0514 𝑚
−0.2915 𝑚

0 𝑚
] [

100°
0°
0°

] 
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Required end point (𝑃𝑟) 
[
−0.0514 𝑚
0.2915 𝑚

0 𝑚
] [

−100°
0°
0°

] 

 

The end effector start and required angle combinations are compared with the centre 

point of each ‘permissible boundary’ in the space to find which nodes in the graph 

they are closest to.  These points are then connected to only the node that they are 

closest to.  This completes the map of the environment, including the end effector 

start and required locations. 

 

6.2 Summary of Environment Modelling 

In this chapter a method of creating a navigable map of the environment has been 

presented which will allow the robotic manipulator system to safely pass around the 

obstacles in the environment.  Once the obstacle data has been converted to C-

space and the resultant impermissible regions expanded into safe boundaries, two 

methods of utilising the resultant information have been presented.  The first was to 

create an alpha volume of each of the permissible boundaries around objects and 

then connect these alpha volumes together as a node graph.  This method was very 

high in computational complexity due to the amount of manipulation that had to be 

carried out to make sure that it was contained in the region which is bounded by the 

limitation of the manipulator arm.  Also the resultant node graph was limiting in terms 

of where in the space the manipulator could travel.  The method was ensuring that 

the manipulator could track around the edges of obstacles but could only navigate by 

jumping between the edges of different obstacles.  For this reason a second option 

was investigated.  The second method uses a pre-calculated node graph of the 

empty space, which can then have any nodes which fall inside the alpha volumes for 

the accessible boundary regions removed to leave a node graph of the remaining 

accessible space.  This method has an advantage over the other method in that the 

edges of the space are already bounded since there are no nodes located outside of 

the limitations of the manipulator arm, hence no extra manipulation of the node 

graph is required.  Also there is no need to check each triangulation for any overlap 

since when two alpha volumes overlap, the first to be considered will remove all 
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nodes which intersect with it, and when the second alpha volume is considered, any 

nodes which would have been located in the overlap region of the two alpha volumes 

will have already been removed. 

With a successful implementation of a node graph which contains the map of the 

environment in C-space, Chapter 7 will investigate methods of generating a path 

through the space before the complete method is validated by simulations in Chapter 

8. 
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7 PATH GENERATION USING GRAPH THEORY 

In the previous chapter of this thesis a method of converting obstacle data in T-

Space into a safe, usable map in C-space has been presented.  Having accessibility 

to a safe map of the environment is important since it provides a domain for a path to 

be generated through, allowing the manipulator arm to navigate from A to B without 

collision with obstacles.  This chapter is responsible for the design decisions and 

implementation of a path generation method which will satisfy the requirement of a 

safe path through C-space.  Figure 7-1 illustrates how the path generation method 

fits into the context of the guidance method as a whole. 

Sensor

Arm Position and 

Pose

(Servo Encoders)

Simulated 

Environment Data

User Input

Desired End 

Effector Location

Map Conversion to 

C-space

Plotting of Current 

and Desired End 

Effector Location

Path Generation Path Following
Arm Servo 

Controllers

Arm Dynamics

Arm Kinematics

 

Figure 7-1 Flowchart showing the context of the path generation (orange) in relation 

to the overall guidance method. 
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7.1 Path Generation in C-Space 

A path generation algorithm is required to find the path from the start to required 

angle combinations.  Figure 7-2 shows how the node graph for one obstacle can be 

represented graphically in C-Space, with a resultant generated path. The path 

generation method will be detailed later in the chapter.  This example is for the 

triangular polygon previously presented in this chapter. 

 

 (a) With wireframe  (b) Without wireframe 

Figure 7-2: Generated path (red line) from an end effector start point (green circle) in 

the servo control domain to a desired end effector end point (blue circle) in the servo 

control domain. 

 

Figure 7-2 shows the shortest resultant angle change path from 𝑃𝑠 to 𝑃𝑟  through the 

servo control angle space. The red line represents the generated path which follows 

closely the edges of the permissible boundary layer. 
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(a) View of the 𝛼- plane. 

 

(b) View of the 𝛼- plane. 

 

(c) View of the - plane. 

 

(d) View in all three servo angle 

dimensions. 

Figure 7-3: Generated path between the end effector start point (green circle) to the 

desired end effector end point (blue circle). 

 

Figure 7-3 illustrates the path once the space has been normalised to a -180° to 

180° space in 𝛼,  and .  The red line represents the path, and the yellow circles are 

the nodes in the node graph of the permissible boundary around the impermissible 

regions.  The dimensions of the servo control space have been normalised to show a 

-180° to 180° square space.  As can be seen in the diagram, one of the two 

impermissible regions crossed the -180°/180° boundary in the α-angle dimension 

and so half of the object appears greater than -180° and the other half as smaller 



 

250 
 

than 180°. This further illustrates the circularity of the space. This figure illustrates 

the complete path that the arm must take in terms of the joint angle combinations 

that will guide the end effector from its start location to its required end position, 

while avoiding the obstacle with the entire arm. The list of angle combinations for this 

path is given in Table 7-1. 

 

Table 7-1: Joint angle combinations to guide the robotic manipulator in such a way as 

to drive the end effector from a starting position to a required position while providing 

effective avoidance for the entire manipulator. 

Point ID 𝜶° ° ° 

1 -100 0 0 

2 -121.695 -14.1908 0.1828 

3 -159.75 -42.4559 -49.5 

4 165.3354 -27.9574 -49.5 

5 144.0931 -10.6416 -49.5 

6 124.7179 -4.6067 -11.838 

7 100 0 0 

 

Alternatively, a complete example using the sphere as previously presented.  Figure 

7-4 illustrates the path generated by path generation method around the obstacle in 

C-Space. 
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Figure 7-4  Spherical object in C-space with a safe path generated around it. 

 

7.2 Comparison of Path Generation Techniques 

Plotting a path through C-Space in the quickest way possible, while still maintaining 

an accurate path around any obstacles is important.  Based on the review of 

literature carried out in Chapter 2, three pathing methods have been selected for 

testing, Dijkstra’s Algorithm, Bellman-Ford’s Algorithm and a Breadth-first Search 

Algorithm.  Figures 7-5 a to c show the same spherical obstacle from earlier in the 

chapter with a path generated around it for the same start and desired end effector 

locations using the three specified pathing methods, Dijkstra’s Algorithm, the 

Bellman-Ford Algorithm and a Breadth-first Search of the node graph.  In these 

figures there are 4 sets of lines.  The red lines indicate the path made by the first 

joint, the green lines indicate the path made by the second joint and the dark blue 

line represents the path made by the end effector.  The light blue lines show the 

geometry of the manipulator arm at each of the waypoints in the C-Space path. 
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(a) Dijkstra’s Algorithm 

 

(b) Bellman-Ford 

 

(c) Breadth-first 

Figure 7-5 Dijkstra’s Algorithm (a), the Bellman-Ford Algorithm (b) and Breadth-First 

Algorithm (c) having plotted a path around the same spherical obstacle. 

 

As can be seen from the figures, in this case all three pathing methods are able to 

generate a path around the obstacles.  In order to make a choice of pathing method, 

all three must be compared in several scenarios.  To compare the methods, they 

have been tested in several scenarios with the same start and end locations.  

Equation (7.1) shows the end effector starting location and Equation (7.2) the end 

effector demand location. 
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 [

𝛼𝑠

𝜎𝑠

휂𝑠

] = [
−180°
45°
0°

] (7.1) 

 
[

𝛼𝑑

𝜎𝑑

휂𝑑

] = [
180°
45°
0°

] 
(7.2) 

 

This means that the general direction of the path will always be the same.  Following 

this, obstacles will be added in the arc of the end effector motion with the 

unobstructed path in order to provide obstructions which the arm has to navigate 

about.  Obstacles were added until there were 7 spheres obstructing the path from 

the starting pose to the end pose. 

 

Table 7-2  Results from a preliminary investigation of the three selected pathing 

methods for different numbers of obstacles. 

No. 

Obs. 
Dijkstra’s Algorithm Bellman-Ford Algorithm 

Breadth-first 

Algorithm 

1 
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5 

   

7 
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By inspection it can be seen that in all three of the above methods, the paths that are 

generated avoid collisions with the obstacles.  Also, the general shape of the paths is 

similar for the Dijkstra and Bellman-Ford Algorithms, but a very different path shape 

is present for the Breadth-first Search method.  An inspection of the run time for 

each of the methods given the number of obstacles provides interesting results.  The 

figure below shows the run time of each algorithm for 1, 2 3, 5 and 7 obstacles.  It 

can be observed from the figure that the Breadth-first Algorithm consistently runs 

2 × 10−2 𝑠 to 4 × 10−2 𝑠 faster than Dijkstra’s Algorithm.  The Bellman-Ford Algorithm 

was 2 × 10−2 𝑠 to 6 × 10−6 𝑠 slower again.  This confirms the results presented 

shown by Table 2-3 and Table 2-4 in the review of literature in Chapter 2.  There is a 

slight trend of all three algorithms speeding up with larger numbers of obstacles, and 

this can be explained by the smaller number of accessible nodes to explore when 

more of the nodes are removed from the graph because they lie inside an obstacle.  

The Breadth-first Algorithm is faster than the other two methods because it is 

designed to explore outwards from the starting point first and in this case will stop as 

soon as it finds the target node.  This means that it will find the path with the smallest 

number of vertices, regardless of cost.  The other two methods will continue to 

search the graph for paths to the goal with shorter path costs, even if the resultant 

path contains more vertices. 

 

 

Figure 7-5 Algorithm run time for the selected path planning algorithms for different 

numbers of obstacles 
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Regardless of the reasons why one method is faster than the others, all three 

methods find a path within 0.1 seconds of each other, and since only one path has to 

be generated, this difference is very small in regards to the run time of the entire 

algorithm.  A further set of tests will increase the size of the obstacles to reduce the 

distance between them.  It is also of note that in all of the above paths, the 

algorithms generated a path around the entire cluster of obstacles rather than 

through the cluster.  Making the obstacles larger will increase the distance of the 

path if it navigates around the perimeter of the cluster rather than through the cluster, 

potentially encouraging the algorithms to travel through the smaller gaps between 

the obstacles. 

Each of the three methods will be investigated with 2 and 4 spheres with a Euclidean 

distance between the origin of the manipulator arm and the centre of each sphere of 

0.5657 m in the XY-plane, at coordinates of [0.4,0.4] m, [0.4,-0.4] m, [-0.4,0.4] m  or 

[-0.4,-0.4] m and either 0.6 m or 0m in the Z-direction.  This provides a central 

coordinate for each of the obstacles, which are 1 m apart from the adjacent 

obstacles, where the radius of each sphere can be specified to allow for collisions 

with both the 2nd and 3rd links and also provide a known separation between each 

obstacle. 

The investigation will consist of the same end effector start and desired geometries 

in terms of joint angle and there will be two obstacles with centres at [0.4,0.4,0.6] 

and [0.4,-0.4,0].  The radii of the two obstacles must be varied to change the spacing 

between the two obstacles.  A mathematical analysis can be used to calculate the 

range of radii which should be investigated.  At this point it is important to consider 

that the permissible boundary expansion of 2° gives a total of 4° between the two 

obstacles.  For the maximum extension of the arm this translates into 0.067 m, and 

for a Euclidean distance of approximately 0.64 m, which is the distance to the 

halfway point between the two obstacles, the 4° safety margin translates to 

approximately 0.05 m.  This means that for the arm to be able to pass, the maximum 

radius of each of the obstacles will be 0.475 m, since 0.05 + 2*0.475 is 1 m.  In order 

to test this, each of the methods will be tested for obstacle radii of 0.47 m, 0.475 m 

and 0.48m. 
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For these radius selections the distance between the surfaces of each of the objects 

is 0.94 m, 0.95 m and 0.96 m, and with the expanded permissible boundary, the safe 

spacing between objects is 0.01, 0 m and -0.01 m respectively.  This means that for 

the three object radii selections, the path generation method should be able to 

generate a safe path between the obstacles in the first case, theoretically generate a 

safe path between the obstacles in the second case since the safe boundaries touch 

but do not overlap, and in the third case, since the boundaries do overlap, there 

should not be a safe path between the obstacles. 

 

7.2.1 Bellman-Ford 

 

(a) 0.47 m Obstacle Radius 

X Distance (m)

 

(b) 0.475 m Obstacle Radius 

X Distance (m)  

(c) 0.48 m Obstacle Radius 

 

Figure 7-6 Results of the path generation around two obstacles with 0.47 m, 0.48m 

and 0.49m radii using the Bellman-Ford Algorithm. 
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Figure 7-6 displays the results for the Bellman-Ford Method.  This set of results 

shows that the Bellman-Ford method can find a suitable path with sphere radii of 

0.47 m and 0.745 m.  For the sphere radii of 0.48 m, the path generated collides with 

one of the obstacles.  This can be observed where the dark blue line showing the 

path of the end effector disappears inside the sphere of an obstacle.  This set of 

results agrees with the predicted outcome prior to the path generations.  A further 

test of the ability of this method is to carry out the same path generation but for 4 

obstacles with radius of 0.475 m rather than 2 obstacles.  Figure 7-7 illustrates that 

the Bellman-Ford Algorithm is capable of generating a path around the obstacles. 
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(a) X-Y View 

 

(b) Y-Z View 

 

(c) X-Z View 

 

(d) 3-D View 

 

Figure 7-7 Results of the path planning around 4 obstacles with 0.475 m radius using 

the Bellman-ford algorithm. 
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7.2.2 Breadth-first 

 

 

(a) 0.47 m Object Radius 

 

(b) 0.475 m Object Radius 

 

(c) 0.48 m Object Radius 

 

Figure 7-8 illustrates the results for the Breadth-first Method. 

 

X Distance (m)
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(c) 0.47 m Object Radius 

 

(d) 0.475 m Object Radius 

 

(c) 0.48 m Object Radius 

 

Figure 7-8 Results of the path generation around two obstacles with 0.47 m, 0.48m 

and 0.49m radii using the Breadth-first Algorithm. 

 

For the Breadth-first Method it can be seen from the results that the path generation 

around the obstacles does not produce a safe and traversable path in any of the 

above cases.  The further path generation with 4 spheres further illustrates that this 

method is not able to generate a safe path. 

X Distance (m)
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(a) X-Y View 

Path Around 4 Spheres in T-Space (Breadth-First)

 

(a) X-Z View 

Path Around 4 Spheres in T-Space (Breadth-First)

(c) Y-Z View (d) 3-D View 

 

Figure 7-9 Results of the path planning around 4 obstacles with 0.475 m radius using 

the Breadth-first algorithm. 
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7.2.3 Dijkstra 

Figure 7-10 illustrates the results for the Dijkstra Path Generation Method. 

 

X Distance (m)

Y Distance (m)  

(a) 0.47 m Sphere Radius 

 

(b) 0.475 m Sphere Radius 

X Distance (m)  

(c) 0.48 m Sphere Radius 

 

Figure 7-10 Results of the path generation around two obstacles with 0.47 m, 0.48m 

and 0.49m radii using Dijkstra’s Algorithm. 

 

In the case of Dijkstra’s Algorithm a safe path has again been generated around the 

obstacles with 0.47 m radius and 0.475 m radius, but not the obstacles with 0.48 m 

radius, again confirming the prediction made upon selection of the scenarios to 

investigate.  Further investigation by plotting a path through 4 obstacles yields the 

same results. 
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(a) X-Y View (b) Y-Z View 

(c) X-Z View 

 

(a) 3-D View 

 

Figure 7-11 Results of the path planning around 4 obstacles with 0.475 m radius using 

Dijkstra’s algorithm. 

 

Given that Dijkstra’s Algorithm and the Bellman-Ford Algorithm both provide safe 

paths around obstacles, but Dijkstra’s Algorithm executes slightly faster than the 
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Bellman-Ford Algorithm, which is reflected in the literature, Dijkstra’s Algorithm has 

been selected for use as the path method of choice. 

 

7.3 Path to Trajectory Conversion 

Currently the path which is generated by the guidance method is a list of demanded 

waypoints, but does not give any dynamic information for the arm to follow.  Ideally, 

each joint in the arm has been designed with identical dynamics in mind by tuning 

the PID controller for each joint with an ideal step response matching the following 

system dynamic model, as shown in (7.3): 

 

 𝑅𝑖(𝑠) =
1

𝑠 + 1
 (7.3) 

 

This means that each joint should reach approximately 63% of the final value in one 

second and have a zero steady-state error.  In reality, this is not the case since the 

optimisation technique was not able to perfectly match this system behaviour in any 

scenario for any joint, but was able to maintain system performance close to this.  

Also, since the joints were tuned over discrete ranges, the selected gains will not be 

ideal for every single one of the infinite angle combinations, therefore the 

performance will never exactly match the ideal.  

All of this means that the actual time response of each joint will not be identical and 

the three joints will not meet their demanded joint angle at the same time.  What can 

be done in this case is to add dynamics to the path so that the demanded joint angle 

changes more slowly than all three of the joints can respond.   If this is the case they 

should all be able to track the change in demand at the same time.  If the change in 

demanded joint angle was faster than the joints could respond, then they would all 

respond at different speeds and so would reach the demanded angle at different 

times.  This means there would be a deviation from the path as each of the joints 

would move in an uncoordinated way.  This process is illustrated in Figure 7-12 and 

Figure 7-17. 
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Figure 7-12 Time response of 3 different transfer functions with time constants of 0.5, 

0.25 and 0.167 seconds. 

 

In Figure 7-12, the response to a unit step of the transfer functions 𝐺1 =
2

𝑠+2
, 𝐺2 =

4

𝑠+4
 

and 𝐺3 =
8

𝑠+8
 are shown.  It is clear that none of the three systems reach steady-state 

at the same time.  The following figure shows the response of the same three 

systems to a signal which displays the dynamics of 𝑅 =
1

𝑠+1
 to the unit step.  In 

essence the three example systems are tracking the response of system R to the 

unit step input. 

 

Figure 7-13 Time response of systems 𝑮𝟏, 𝑮𝟐 and 𝑮𝟑 given an input which is 

equivalent to the step response of system 𝑹. 

 

Figure 7-13 shows the response of the system R to the unit step in magenta, and the 

original three systems 𝐺1, 𝐺2, and 𝐺3 track the magenta signal.  It is clear that the 

speed of each system has an effect on how well it is able to track the response of R, 
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but as time increases all three of the systems converge on the shaped input R as it 

tends towards the steady-state, hence they all appear to settle at approximately the 

same time.  Clearly there is still a difference between the responses of the system, 

but the dynamics of the systems chosen in this example differ by a large amount to 

exaggerate the difference between their responses to a unit step.  In reality, all of 

three of the joints in the arm are tuned to display the same behaviour and as such 

the difference between them is much smaller.  Figure 7-14 illustrates the effect if all 

three of the systems have very similar dynamic behaviours. 

 

 

Figure 7-14 Time response of 3 different transfer functions with similar time constants 

of 𝟎. 𝟒, 𝟎. 𝟑 and 𝟎. 𝟐𝟖𝟔 seconds. 

 

In this case, the three systems have similar dynamics, with each system being 

described as follows; 𝐺4 =
2.5

𝑠+2.5
, 𝐺5 =

3

𝑠+3
 and 𝐺6 =

3.5

𝑠+3.5
.  There is still a small 

disparity between the speed at which each responds and consequently the time at 

which each converges on the steady-state. 
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Figure 7-15 Time response of systems 𝑮𝟒, 𝑮𝟓 and 𝑮𝟔 given an input which is 

equivalent to the step response of system 𝑹. 

 

When inspecting the response of each of these systems to the shaped step it is clear 

that the disparity still exists, but the time at which each of the systems converges on 

the steady-state is almost identical.  The distance between each of these responses, 

both in the transient and when converging on the steady-state, is important since any 

difference will correspond to a divergence from the desired path and the potential for 

a collision with an obstacle.  If all three of the systems displayed identical dynamics, 

then it would not matter how fast or slow those dynamics were in terms of following 

the path since they would follow a linear motion along the desired path.  To illustrate 

this a simple example of a single linear path will be simulated with three systems 

representing a joint each, and the divergence from the path will be shown.  This 

investigation will be carried out with a step-based path and the same path with a 

shaping filter such as the low pass filter 
1

𝑠+1
 which has been used as the shaping 

function throughout this section.  In this example, the X-direction will be controlled by 

a transfer function 𝐺4 =
2.5

𝑠+2.5
, the Y-direction controlled by transfer function 𝐺5 =

3

𝑠+3
, 

and the Z-direction controlled by 𝐺6 =
3.5

𝑠+3.5
, therefore the system dynamics are 

identical to those used in the above example.  In this case the system will start at 

coordinates [0,0,0] and be required to move to coordinates [1,2,3], which will be 

shown in the figure below. 
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To illustrate the lack of difference between the path and trajectory once dynamic 

information is removed, Figure 7-16 shows the two plotted through the space in 

which they are operating. 

 

 

Figure 7-16 Path through space and the trajectory which represents the same path but 

with time information included. 

 

As can be observed in the figure, the two lines lie directly on top of one another, 

therefore the spatial parameters of the path and trajectory are identical, only the time 

based information has changed.   Figure 7-17 illustrates the difference in the system 

output between the system following the path and the system using the trajectory to 

follow the path.  In Figure 7-17, the black line indicates the spatial demand of both 

the path and the trajectory, and this is the line that the system would ideally follow.  

The red line shows how the system tracks the path and the blue line shows how the 

system tracks the trajectory.  It is clear just from this figure that there is an 

improvement in deviation from the desired path by using dynamic information as well 

as spatial.   
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Figure 7-17 Behaviour of systems 𝑮𝟒, 𝑮𝟓 and 𝑮𝟔 as dimension components of a path 

tracker when given the path as an input or the trajectory as an input. 

 

To further illustrate this effect, the time response of each of the dimensions to the 

demand path and to the demand trajectory is plotted in Figure 7-18.  There are two 

areas of each response which are of interest.  The dashed lines between 0 and 1 

seconds in the first plot and between 1 and 2 seconds in the second plot represent 

the time constant of each dimension, i.e. the point at which each dimension reaches 

63% of the final value.  In both cases these points occur very close together, so the 

initial response of each dimension is similar for both cases.  The dotted lines which 

occur between 1 and 2 seconds in the first plot and at approximately 5 seconds on 

the second plot are the points at which the response reaches 1% of the final value, 

and so can be considered to have arrived at the desired location.  When the system 

follows the demand path, the ‘settling time’ occurs at different times for each 

dimension, but when following the trajectory there is a simultaneous arrival to the 

demanded point. 
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Demand Path

Response to 
Demand Path

Demand 
Trajectory

Response to 
Demand 

Trajectory
 

Figure 7-18 Time response of each dimension to a demanded path and demanded 

trajectory. 

 

Since this is the case, the paths generated by the guidance method will be passed 

through a filter to give them dynamic information.  The time constant of the filter will 

be designed such that the demanded change in position over time is slower than any 

of the system dynamics, helping to reduce any deviation from the desired path.  In 

the case of the robotic manipulator dynamic model, the system is designed to 

behave with dynamic characteristics of 𝑅 =
1

𝑠+1
, and while the system almost 

achieves this in all of the different angle ranges, it is prudent to slow down the 

trajectory by this amount plus a small tolerance to account for any PID gain sets 

which are slower than this.  By allowing the time constant of the trajectory to by 10% 

more than the designed time constant this should enable the system to track the 

trajectory through the majority of gain sets. 

This means that the path will be passed through a low pass filter with the transfer 

function 𝐹 =
0.9091

𝑠+0.9091
 to generate a suitable trajectory. 
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7.4 Summary of Robot Arm Guidance 

Having investigated multiple methods of obtaining simulated obstacle data, 

converting the obstacle data from T-Space to C-Space, creating a node graph which 

avoids the obstacles and planning a path from start to end points on this graph a 

selection for each can be made in order to combine them into a single algorithm 

which is capable of planning a safe path for an entire arm around obstacles in T-

Space.  The resultant algorithm carries out the above processes in the following way: 

 

Table 7-3 List of processes carried out in the guidance algorithm. 
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1. Using the selected LIDAR angular resolution calculate the spacing 

between points on the surface of an obstacle. 

2. Calculate the change in azimuth and elevation from the centre of 

the obstacles to each of the points on the surface. 

3. Using the azimuth and elevation between each point and the 

obstacle radius calculate the points on the surface of the spherical 

obstacle. 



 

273 
 

T
-S

p
a
c

e
 t

o
 C

-S
p

a
c
e

 C
o

n
v

e
rs

io
n

 
4. Check the Z-coordinates of each point and for those with a Z-

coordinate of 0 m, indicating that the point lies on the XY-plane.  

5. Using trigonometry calculate the angle between the base of the arm 

and each of the selected measured point on the obstacle surface in 

the XY-plan. 

6. Calculate the XY-range between the base of the arm and the 

selected measured points.  If the distance is smaller than or equal 

to the length of link 1, then there is a collision. 

7. Using trigonometry calculate the elevation angle between the end 

of link 1 and the measured points.  Calculate the angle if the 𝛼 

angle is 𝜋𝑐 away from the original angle. 

8. Calculate the Euclidean distance between the end of link 1 and the 

measured points in both the 𝛼 and 𝛼 ± 𝜋 cases.  If the Euclidean 

distances to the point are less than or equal to the length of link 2, 

then there is a collision. 

9. Using the same process as for link 2, calculate the length and angle 

between the end of link 1 and the measured points for both the 𝛼 

and 𝛼 ± 𝜋 cases. 

10. Using the cosine rule calculate the angles 𝜎 and 휂 for a range of 

length 3 from 0 to the full length of 𝑙3.  This gives the entire range of 

𝛼, 𝜎 and 휂 where collisions occur. 

O
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x
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n
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n
 11. Add separate sets of points which are equivalent to the original but 

translated in each axis by the steady-state error of each of the joints 

found in Chapter 2. 

12. Create the alpha-volume of each of the permissible boundaries. 
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13. Generate a blank node graph which is a grid of points where each 

dimension fills the operating range of each of the arm joints, but 

with spacing which corresponds to the steady-state error of the joint 

angles found in Chapter 2. 

14. Join the nodes in the graph together with their adjacent nodes 

which all fall within the immediate horizontal adjacent nodes and all 

diagonally adjacent nodes. 

15. Investigate which nodes fall inside the permissible boundaries and 

remove them from the adjacency matrix and list of indices. 
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16. Using the inverse kinematics calculate all possible angle solutions 

for the end effector start and desired locations. 

17. Sort the angle solutions and remove those which fall outside of the 

operating range of the manipulator arm. 

18. Find which of the remaining start and desired end effector locations 

are closest to each other and add them to the node graph. 
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19. Assign to very node an initial distance value. The distance to the 

starting node is set to zero and all the others to infinite 

20. All the nodes are marked as unvisited, except for the starting node 

which is set as the current node. A set is created containing all the 

unvisited nodes, which initially contains all of the nodes but the 

starting one. 

21. For the current node, consider all of its the nodes connected to is 

that are in the set of unvisited nodes and calculate their distance 

values. For example, if the current node is marked with a distance 

of 10, and the vertex connecting it with a neighbour has length of 5, 

then the distance the neighbour node through the current node will 

be 10 + 5 = 15. 

22. When the algorithm has considered all of the neighbour nodes of 

the current node, mark the current node as visited and remove it 

from the set of unvisited nodes. The current node will not require 

inspecting again. 

23. If the destination node has been marked as visited or if the distance 

among the nodes in the set of unvisited nodes is infinity (when 

planning a path from one node to another this occurs when there is 

no connection between the initial node and remaining unvisited 

nodes), then stop. The algorithm has finished. 

24. Select the unvisited node that is marked with the smallest distance 

from the current node, and set it as the new "current node" then go 

back to step 3. If all neighbour nodes have been visited then go 

back down the path to the nearest node that has a neighbour which 

is unvisited. 

 

The above table presents the algorithm which has been developed to plot a safe 

path through the environment.  Alongside the Kinematics and Dynamic Model 

developed in Chapter 1, and the controller and PID tuning developed in Chapter 2, 

the path generation technique developed in this chapter can be combined to validate 
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the method.  In the next chapter, the entire method is tested to validate the guidance 

method and the conclusions from the investigation are presented. 
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8 VALIDATION OF GUIDANCE METHOD BY SIMULATION 

In Chapters 3 to 7 of this thesis a novel concept has been developed and 

presented which in real-time generates a safe path for a 3-DoF robotic manipulator 

through a close-proximity environment.  In Chapter 3 a forward and inverse 

kinematic model of the manipulator was developed to provide knowledge of the 

location of the entire manipulator given a set of joint angles.  Chapter 4 presented 

the development of a dynamic model of a 3-DoF manipulator to provide a test bed 

for use in the development of a guidance technique.  Chapter 5 was responsible for 

the selection and tuning of a control schema for the robotic manipulator dynamic 

model to provide adequate system performance and also provide some of the design 

specifications for the guidance method, especially in terms of safe boundaries 

around obstacles.  Chapters 6 and 7 detailed the design decisions and 

implementation of a technique which could satisfy the requirements of the 

manipulator arm dynamic model.  In this chapter, several simulated scenarios of 

increasing obstacle complexity are presented and the performance of the combined 

controlled dynamic model and guidance method discussed. 

 

8.1 Simulation Design 

To assess the capability of the tuned arm and the guidance method together a series 

of simulated environments with obstacles contained within them must be decided 

upon.  Each environment will get gradually more complex to test the limits of the 

arm-guidance combination. 

The first simulation to be carried out is to plan a path around a single obstacle since 

this will show whether the arm can follow a simple path.  Following this the number 

of obstacles should be increased to add complexity to the path.  Ideally the obstacles 

should be placed such that the generated path is required to pass between them to 

assess the manipulator arm’s ability to stay within the set confines of the accessible 

space.  If the arm is able to maintain the performance displayed in Chapter 2, then 
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the design parameters of the guidance method should prevent the arm from colliding 

with any obstacle as it passes between them.  In this case the arm displayed a 

performance such that it was able to maintain a steady-state error of 2° or less and 

no overshoot so the guidance method allows a safe region of 2° around each 

obstacle in C-Space to provide the extra leeway that the arm requires when 

navigating the environment.  Therefore the obstacle locations will be designed such 

that the guidance method can only just pass between them.  This will mean that 

when the dynamic model of the arm is driven along the demand path, any deviation 

from the path would cause a collision with an obstacle.  To test that the guidance 

method and arm work together in the environment, any deviation larger than 

2° ±  0.225°  may cause a collision with an obstacle. 

The first four environments will contain 1, 2, 3 and 4 obstacles respectively, and the 

final two will increase the complexity further.  The 5th scenario will contain 4 spheres 

which are close enough together to overlap, leaving a small hole through which the 

arm has to pass.  The 6th scenario will contain a string of spheres close enough 

together to overlap.  This scenario is designed to force the arm to have to navigate a 

narrow corridor where any deviation in any direction could cause a collision. 

 

8.2 Results 

The following section of this chapter presents the results from the simulated 

scenarios. 

 

8.2.1 Single Obstacle 

This scenario contains a single sphere as an obstacle.  The centre of the sphere is 

located at [0.566,0,0] and the sphere radius is 0.3 m.  The arm is required to move 

the end effector from one side of the obstacle to the other without a collision. Figure 

8-1 shows four different results.  Subfigure (a) shows the planned path of the 

manipulator around the spherical obstacle in T-space while subfigure (b) shows the 

actual path that the manipulator model takes when tracking the planned path.  
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Subfigure (c) shows these two paths in contrast to one another in C-space which 

results in two tracks overlapping one another. 

 

 

(a) Planned Path in T-space 

 

(b) Actual Path in T-space 

 

(c) Demand and Actual Paths in C-space 
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(d) Path and Trajectory Demands, Actual Path and Tracking Error. 

Figure 8-1 Results of simulation 1 showing the planned (a) and actual (b) path of the 

manipulator through T-space, the  planned and actual path through C-space (b) and 

the locations of each joint in time (d). 

 

It can be observed from the plot that the actual path (green) diverges slightly from 

the planned path (black).  Subfigure (d) has three sets of information.  The first of the 

subplots shows the planned path as a series of step inputs against time, with the 

path also converted to a trajectory plotted on the same axes.  The second of the 

subplots shows the planned trajectory against time with the actual joint angles of the 

arm plotted on the same axes and the third subplot shows the angular tracking error 

of each joint over time. 

In this case the guidance algorithm is able to generate a path which safely navigates 

around the obstacle.  When the arm is driven through the generated trajectory it is 

able to follow the path with a small amount of deviation.  By inspection of the motion 

of the arm through T-Space, it would appear that the arm does not collide at any 

point since none of the joint tracks disappear into the sphere and none of the cyan 
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arm geometries collide with the sphere.  By inspecting the angular error of each joint 

it is clear that none of the joints exceed an error of 0.04𝑐.  In fact the largest error is 

experienced by joint 휂, which is just short of 0.039𝑐, or 2.235°.  This value does 

exceed the allowed error by 0.01°.  A further simulation with a smaller threshold of 

0.05° to switch between waypoints was carried out following this simulation, and 

Figure 8-2 and Figure 8-3 present the results. 

 

 

Figure 8-2 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in 

scenario 1. 
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Figure 8-3 Demand path and trajectory, actual path and tracking error over time for a 

waypoint tolerance of 𝟎. 𝟓° in scenario 1. 

 

In the case of the smaller tolerance before the path following algorithm allows the 

system to move to the next waypoint, the arm was able to follow the path more 

smoothly, with a maximum error of close to 0.029𝑐, which is approximately 1.7°.  This 

smaller error is well within the tolerances allowed by the guidance algorithm 

therefore the arm does not collide with the obstacle.  The reason for the previous 

error value is that the threshold of 2° was large enough that the joints were still 

converging on their steady-state value and so the angular velocity was sufficiently 

high that the joints overshoot the next waypoint.  This is especially true when 

multiple waypoints exist in the same direction since the arm does not have to slow 

down when the next waypoint is selected and so continues with a larger angular 

velocity. 

 

8.2.2 Two Obstacles 

This scenario contains two spheres close together as obstacles in the environment.  

The centre of the spheres are located at [0.53, 0.2, 0.7] and [0.53, -0.2, 0.2], again 

with sphere radii of 0.3 m.  The arm is required to move the end effector from one 

side of one of the obstacles to the opposite side of the other without a collision.  

Figure 8-4 contains the same series of results as Figure 8-1, but for scenario 2. 
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(a) Planned Path in T-space 

 

(b) Actual Path in T-space 

 

(c) Demand and Actual Paths in C-space 
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(d) Path and Trajectory Demands, Actual Path and Tracking Error. 

Figure 8-4 Results of simulation 2 showing the planned (a) and actual (b) path of the 

manipulator through T-space, the  planned and actual path through C-space (b) and 

the locations of each joint in time (d). 

 

In the initial simulation for this scenario, the generated path is again capable of 

avoiding all obstacles.  The manipulator’s ability to follow the trajectory with a 

waypoint tolerance of 2° again falls slightly short of the specification, with maximum 

angular error on both 𝛼 and 휂 of more than 0.04𝑐, which is 2.3°.  This angular error 

exceeds the limit of 2.225°, which means that the arm is not capable of following the 

path without a possible collision when the tolerance between waypoints is set as 2°. 
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Figure 8-5 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in 

scenario 2. 

 

 

Figure 8-6 Demand path and trajectory, actual path and tracking error over time for a 

waypoint tolerance of 𝟎. 𝟓° in scenario 2. 

 

In this scenario, once the tolerance for waypoint selection is reduced to 0.5°, the arm 

displays a much greater performance when following the trajectory.  The maximum 

error on each joint is reduced to approximately 0.02𝑐, which is 1°.  This would mean 
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that the arm would safely be able to follow the generated path around the obstacles, 

however there is one point at which the joint angle error for 𝛼 still rises above 0.04𝑐.  

This means that there is the potential at that point in time that the arm would collide 

with an obstacle, but in this case, there is no collision.  The reason behind the 

avoidance of a collision is as follows.  This error occurs in a transient, where both the 

path and the trajectory are ahead of the actual position of the joints, so the error 

does not give a clear indication of the deviation of the arm from the path.  To 

illustrate this statement Figure 8-7 and Figure 8-8 show the time response of a 

system with similar estimated dynamics to the joints, 𝐺(𝑠) =
1

𝑠+1
 to the shaped 

path/trajectory of a unit step using the filter transfer function 𝐹(𝑠) =
0.9091

𝑠+0.9091
, along 

with the resultant error between the two.  Given that the guidance method has 

produced waypoints which are 10° or 0.175𝑐 apart, the input step will be the same 

value. 

 

 

Figure 8-7 Time response of demand path 

and trajectory and actual manipulator 

path. 

 

Figure 8-8 Tracking error of manipulator 

against trajectory. 

 

In the case of a joint with the dynamics 𝐺(𝑠) =
1

𝑠+1
, the angular error experienced to 

with a trajectory which changes the angle by 0.175𝑐 is 0.061𝑐.  Provided that the 

joints pass through the points in a path together, the arm will not deviate from the 

path.  A method of investigating this is to inspect the error graph for areas where the 
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three shape of the error for each joint does not line up in the time domain.  For 

example, in the error chart in Figure 8-9 the highlighted locations have a mismatch in 

the shape of each joint error in time. 

 

Figure 8-9Tracking error of manipulator joints in scenario 2.  The highlighted areas 

show where the three joint errors do not match up in time, predicting divergence from 

the demand path. 

 

In the time ranges of 20-30 seconds, 40-50 seconds and 75-85 seconds there is a 

mismatch in the error over time.  This means that the joints are offset in from each 

other on the trajectory and there will be divergence from the demanded path.  This 

can be seen by inspecting the plot of the path/trajectory and the actual path that the 

arm takes, but only for the time regions highlighted Figure 8-9. 

 

t = 20-30 s

t = 40-50 s

t = 75-85 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

 

Figure 8-10 C-space demand path for scenario 2 with the actual path plotted only for 

the time ranges highlighted in Figure 8-9. 
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Inspection of Figure 8-10 shows that the areas of the actual path which have been 

plotted are in fact the sections of the path where the arm has deviated in angle.  

Fortunately, in this case, since the tolerance between demand and actual joint angle 

has been reduced to 0.5° before the arm is allowed to move onto the next waypoint 

the angular error for each joint is within the 2.225° limit, therefore the arm does not 

collide with any obstacle. 

 

8.2.3 Three Obstacles 

This scenario contains three spheres close together as obstacles in the environment.  

The centre of the spheres are located at [0.45, 0.36, 0.6], [0.45, -0.36, 0.6] and 

[0.566, 0, 0], again with sphere radii of 0.3 m.  In this case the generated path avoids 

passing in between the obstacles so a further obstacle was implemented below the 

third to force the path in between the obstacles.  The additional sphere was 

implemented at [0.566, 0, -0.2].  The arm is required to move the end effector from 

one side of one of obstacle 1 to the opposite side of obstacle 2 without a collision.  

Figure 8-11 contains the same series of results as Figure 8-1, but for scenario 3. 

As with the previous two scenarios, the generated path is able to avoid the 

obstacles, and the arm is able to follow the path, but does show some deviation.  

Joint angle 휂 shows a maximum angular error of 0.055𝑐or 3.15°.  This is larger than 

the maximum limit by 40%, however where this order of magnitude of error occurs in 

time, the shape of each of the error plots lines up, which is why the arm does not 

collide with an obstacle.  The arm has deviated from the trajectory mostly in time, 

and only a small amount in space. 
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(a) Planned Path in T-space 

 

(b) Actual Path in T-space 

 

(c) Demand and Actual Paths in C-space 
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(d) Path and Trajectory Demands, Actual Path and Tracking Error. 

Figure 8-11 Results of simulation 3 showing the planned (a) and actual (b) path of the 

manipulator through T-space, the  planned and actual path through C-space (b) and 

the locations of each joint in time (d). 

 

The region of most interest in this figure is that which is highlighted in red.  In this 

area the joint angle 휂 displays a very large error over a sustained period of time, 

which may correspond to the deviation between the demanded path and the path 

that the arm actually takes through space.  This section of the path is displayed in 

the following figure. 
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Figure 8-12 Tracking error of manipulator joints in scenario 3.  The highlighted areas 

show where the three joint errors do not match up in time, predicting divergence from 

the demand path. 

 

t = 20-40 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

 

Figure 8-13 C-space demand path for scenario 2 with the actual path plotted only for 

the time ranges highlighted in Figure 8-12. 

 

Again it is clear from the figure that the regions on the error plot where the shape of 

each joint error does not line up in time is corresponds to the section of the path 

where the arm deviated from the demanded trajectory.  By removing the time 

element from the path and lining up the corresponding section of the demanded path 

the spatial error can be investigated rather than the error over time.  Figure 8-14 and 

Figure 8-15 show the progress of the demanded and actual trajectories the angular 

error between them in space rather than time.  The first figure shows each of the two 

trajectories with a coloured map as time progresses.  The shortest time is blue and 

the longest time is red. 
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Figure 8-14 Plot of planned C-space 

trajectory and actual path over time. Blue 

at the start and red at the end. 

 

Figure 8-15 Tracking error over the time 

range shown in Figure 8-14 

 

As can be observed from inspection of the demanded and actual trajectories, the two 

match up in time.  Given this is the case, the maximum deviation of joint angle 휂 from 

the path is 0.0425𝑐 or 2.44°.  This is still outside the error limit for the arm.  In this 

case the error between the arm and the demanded trajectory when each is at the 

same point along the path.  To reduce this error further, the waypoint angle tolerance 

is reduced from 2.225° to 0.5°.  Figure 8-16 and Figure 8-17 display the results. 

 

 

Figure 8-16 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in 

scenario 3. 
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Figure 8-17 Demand path and trajectory, actual path and tracking error over time for a 

waypoint tolerance of 𝟎. 𝟓° in scenario 3. 

 

In the case of the simulation results presented in Figure 8-16 and Figure 8-17 above 

two figures, the maximum angular error occurs in 휂, and is 0.0377𝑐, or 2.16°, which is 

inside the tolerance, therefore the manipulator will not collide with an obstacle when 

following the path.  The areas where the manipulator has diverged from the path can 

be predicted by inspecting the areas of the largest error where the error on each joint 

does not line up in time.  There are four time ranges where this occurs for this 

scenario, 7 seconds to 21 seconds, 23 seconds to 28 seconds, 56 seconds to 61 

seconds and 66 seconds to 80 seconds. 

 

 

Figure 8-18Tracking error of manipulator joints in scenario 3.  The highlighted areas 

show where the three joint errors do not match up in time, predicting divergence from 

the demand path. 
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Plotting the actual path of the arm for these time ranges yields the result shown in 

Figure 8-19. 

t = 56-61 s

t =66-80 s t = 7-21 s

t = 23-28 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

 

Figure 8-19 C-space demand path for scenario 2 with the actual path plotted only for 

the time ranges highlighted in Figure 8-18. 

 

In this case the arm has diverged by the error amount shown, but this is less than 

the 2.225° limit of the guidance method therefore the arm will not collide with its 

environment. 

 

8.2.4 Four Obstacles 

This scenario contains three spheres close together as obstacles in the environment.  

The centre of the spheres are located at [0.4, 0.4, 0.6], [0.4, -0.4, 0.6], [0.566, 0, 0.8] 

and [0.566, 0, 0], again with sphere radii of 0.3 m.  The arm is required to move the 

end effector from one side of one of obstacle 1 to the opposite side of obstacle 2 

without a collision.  As with the other scenarios, the guidance method is capable of 

planning a path which avoids all obstacles through the environment.  In this case, 

there is a large number of situations where the joint angle error on all three joints 

exceeds the 0.03882 or 2.225° limit.  For the same reason as explained in scenario 2, 

this does not appear to have an impact on the ability of the arm to follow the path, 
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but the maximum angular error experienced by the arm can be reduced using the 

same method as before.  Figure 8-20 contains the same series of results as Figure 

8-1, but for scenario 4. 

 

 

(a) Planned Path in T-space 

 

(b) Actual Path in T-space 

 

(c) Demand and Actual Paths in C-space 
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(d) Path and Trajectory Demands, Actual Path and Tracking Error. 

Figure 8-20 Results of simulation 4 showing the planned (a) and actual (b) path of the 

manipulator through T-space, the  planned and actual path through C-space (b) and 

the locations of each joint in time (d). 

 

The maximum error in 𝛼 coincides with peaks in 𝜎 and 휂 as well, indicating that it is a 

transient and all three joints are following the path.  An area of more interest is the 

error in 𝛼 between 50 seconds and 85 seconds.  This error is offset from the 

corresponding 𝜎 and 휂 errors and has a magnitude of 0.05𝑐, or 2.9°.  This suggests a 

divergence from the demanded path. 
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Figure 8-21Tracking error of manipulator joints in scenario 4.  The highlighted areas 

show where the three joint errors do not match up in time, predicting divergence from 

the demand path. 

 

An inspection of the actual path over this time range does indeed show a divergence 

between the demanded path and the path that the manipulator actually takes. 

 

t = 50-85 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

 

Figure 8-22 C-space demand path for scenario 2 with the actual path plotted only for 

the time ranges highlighted in Figure 8-21. 

 

In the case of the scenario presented in Figure 8-21 and Figure 8-22, reducing the 

tolerance for switching to the next waypoint to 0.5° is able to reduce the error 

experienced by each joint to that of less than 0.015𝑐, or 0.86°.  This means that the 

tuned dynamic model is capable of safely following the path without any collisions. 
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Figure 8-23 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in 

scenario 2. 

 

  

Figure 8-24 Demand path and trajectory, actual path and tracking error over time for a 

waypoint tolerance of 𝟎. 𝟓° in scenario 2. 

 

8.2.5 Single Obstacle with Hole 

In this scenario 4 spheres are used to construct a single obstacle with a hole through 

which the arm is required to pass.  The centre of each obstacle is placed at [0.43, 

0.38, 0.4], [0.43, -0.38, 0.4], [0.566, 0, 0] and [0.566, 0, 0.7] and the radius of each 
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sphere is 0.3 m.  This leaves a hole of approximate dimensions of 0.1 m by 0.1 m 

square through which the arm must travel.  Figure 8-25 contains the same series of 

results as Figure 8-1, but for scenario 5. 

 

 

(a) Planned Path in T-space 

 

(b) Actual Path in T-space 

 

(c) Demand and Actual Paths in C-space 
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(d) Path and Trajectory Demands, Actual Path and Tracking Error. 

Figure 8-25 Results of simulation 5 showing the planned (a) and actual (b) path of the 

manipulator through T-space, the  planned and actual path through C-space (b) and 

the locations of each joint in time (d). 

 

In this case the manipulator arm clearly clips the obstacle.  This can be seen 

highlighted by the orange circle graph c in the above figure.   In this case the angle 휂 

is offset from the other two over this time range, and the angle error of joint 𝜎 

reaches 0.084𝑐 or 4.8°, which combined causes the divergence. 

 

 

Figure 8-26Tracking error of manipulator joints in scenario 5.  The highlighted areas 

show where the three joint errors do not match up in time, predicting divergence from 

the demand path. 
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The actual path of the manipulator plotted over this range highlights that this is the 

case. 

 

t = 42-70 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

 

Figure 8-27 C-space demand path for scenario 2 with the actual path plotted only for 

the time ranges highlighted in Figure 8-26. 

 

Reducing the tolerance on the waypoint selection from 2.225° to 0.5° again solves 

the problem.  The figures below show that with the tighter tolerances on the angular 

error maximum before waypoints are selected allows the arm to follow the path, even 

with a small amount of divergence across all joints over the entire path, without 

colliding with the obstacle. 

 



 

302 
 

 

Figure 8-28 Actual path of manipulator arm in scenario 5 with a waypoint tolerance of 

𝟎. 𝟓°. 

 

 

Figure 8-29 Time based plots for planned path and trajectory, actual path and tracking 

errors in scenario 5 with a waypoint tolerance of 𝟎. 𝟓°. 
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Figure 8-30 Planned and actual C-space paths for the manipulator arm in scenario 5 

with a waypoint tolerance of 𝟎. 𝟓°. 

 

8.2.6 Narrow Passage Between Two Long Obstacles 

In the final scenario the obstacles chosen are two long, snakelike obstacles situated 

one above the other, with a narrow gap between them.  The arm is required to start 

at one end of the passage and navigate its way to the other end of the passage.  

Figure 8-31 contains the same series of results as Figure 8-1, but for scenario 6. 

 

 

(a) Planned Path in T-space 

 

(b) Actual Path in T-space 
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(c) Demand and Actual Paths in C-space 

 

(d) Path and Trajectory Demands, Actual Path and Tracking Error. 

Figure 8-31 Results of simulation 6 showing the planned (a) and actual (b) path of the 

manipulator through T-space, the  planned and actual path through C-space (b) and 

the locations of each joint in time (d). 
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In this case the guidance method was able to successfully plan a path through the 

environment which achieved the goal of navigating from one end of the trench to the 

other.  The arm was also able to follow the generated trajectory with one appreciable 

divergence, but this did not have an impact on its ability to navigate through the 

space without any collisions.  Further investigation of this divergence is carried out 

by again inspecting where the error on each joint are misaligned.  

 

 

Figure 8-32Tracking error of manipulator joints in scenario 6.  The highlighted areas 

show where the three joint errors do not match up in time, predicting divergence from 

the demand path. 

 

The divergence of the manipulator from the required path appears to occur between 

90 seconds and 120 seconds based upon the misalignment of the error of each joint.  

The plot of the actual path of the manipulator in C-Space over this time reflects this 

to be the case. 
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t = 90-120 s

 

Figure 8-33 C-space demand path for scenario 2 with the actual path plotted only for 

the time ranges highlighted in Figure 8-32. 

 

A reduction in the tolerance for the waypoint selection once again removes this 

divergence from the path, and the manipulator arm is again capable of following the 

generated path without any collision with obstacles. 

 

 

Figure 8-34 Actual path of manipulator arm in scenario 5 with a waypoint tolerance of 

𝟎. 𝟓°. 
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Figure 8-35 Time based plots for planned path and trajectory, actual path and tracking 

errors in scenario 5 with a waypoint tolerance of 𝟎. 𝟓°. 

 

 

Figure 8-36 Planned and actual C-space paths for the manipulator arm in scenario 5 

with a waypoint tolerance of 𝟎. 𝟓°. 

 

8.3 Summary 

In this chapter a series of simulations was devised to test the ability of the developed 

method of control and guidance of a 3-DoF robotic manipulator to plan and follow a 

path through space that would avoid all obstacles in the environment. 
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The results show that in some cases the manipulator is able to follow the generated 

paths without any problems, and as such the arm is able to navigate through the 

environment without any collisions.  In these cases one of two situations occurred.  

Either the arm was able to navigate with a maximum angular error for each joint 

which was less than the limit specified when generating the path, or the angular error 

for one or more joints exceeded the limit, but this error the difference between the 

demand and actual trajectories and so measures not only angular divergence from 

the path, but also the lag between the time that the demand trajectory reaches a 

given angle combination and the time the actual trajectory reaches the same angle 

combination.  In essence, the manipulator is following the path, but is behind the 

demanded trajectory, so the error between them is not representative of a 

divergence from the path. 

In other cases, the manipulator was initially not able to follow the path with a small 

enough error to avoid a collision.  Reducing the tolerance of error that was allowed 

before the path tracking would allow the next waypoint to be used provided time for 

each of the joints to slow down as they converged on the waypoint.  This prevented 

overshoots caused by the inertia of the arm when required to change direction and 

velocity instantaneously.  This concept was described in more detail in section 5.5 of 

the Manipulator Control chapter.  A graph illustrating the phenomenon was displayed 

in Figure 5-34. 

In the final chapter of this thesis, the work carried out will be summarised and the 

overall findings and contributions presented. 
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9 CONCLUSIONS 

This chapter summarises the work carried out in this thesis in the context of the 

conclusions drawn and the contributions made.  The work presented in this thesis 

was carried out to achieve the aim laid out in Chapter 1:  to create novel path-

generation algorithm for a three-degree-of-freedom robotic manipulator arm to 

provide the ability for safe navigation around obstacles in dangerous environments 

such as those encountered during a mission of IED detection and disposal. 

The first objective specified in Chapter 1 was the derivation of a dynamic model of a 

3-DoF robotic manipulator arm, which was implemented in Chapter 4.  This was 

carried out using Newton-Euler mechanics with d’Alembert’s principle rather than 

Lagrangian mechanics since the latter required significantly more computations (on 

the order of 3 times more for the specific problem).  The resulting model was 

qualitatively validated with a series of input torques intended to produce a predicted 

set of results.  The resulting outputs of the system were compared to the predicted 

result in order to validate whether the system is behaving in the expected manner 

and the model was found to behave as expected. 

The second objective specified in Chapter 1 was the implementation of a suitable 

control schema for the developed dynamic model, which was implemented in 

Chapter 5.  The selected control method was a gain-scheduled PID controller and 

the gains were selected by optimisation.  Several optimisation methods including 

Genetic Algorithms, Least Squares Minimisation and the Nelder-Mead method were 

investigated.  The least squares minimisation method followed by the Nelder-Mead 

method were found to require the shortest computation time per optimisation but the 

Genetic Algorithm displayed the capability of a fitness value hundreds of times better 

for the manipulator arm tuning problem, therefore it was implemented in order to 

carry out the optimisation and select a set of gains for the controller. 

The third objective specified in Chapter 1 was to develop a guidance method for safe 

navigation of the controlled dynamic model through close-proximity environments.  

This implementation was presented in Chapters 6 and 7 of the thesis.  This method 
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requires two parts:  The first is to covert sensor data about obstacles from the 

Euclidean domain into the joint-angle domain before carrying out the path generation 

on a point mass in the joint angle domain;  The second is to carry out path 

generation on the C-space map created by the conversion of obstacle data into the 

joint angle domain.  To carry out the conversion to C-space, the inverse kinematics 

of the manipulator arm were required to be solved.  Several different solutions were 

investigated and the method which was able to carry out the conversion of multiple 

obstacles in the shortest time is presented in section 6.1.2 of this thesis starting on 

page 219.  This method required trigonometry only and was able to convert an 

obstacle set containing on the order of 10000 points in less than 0.1 seconds. 

Chapter 7 continues the development of the guidance technique by investigating 

methods of path planning using a node graph.  The results of the comparison 

between Dijkstra’s Algorithm and the Bellman-Ford Algorithm confirm the 

comparison of computational complexity included in the literature review.  Three 

methods were investigated and Dijkstra’s Algorithm was implemented in the 

guidance method since it provided the shortest path with no collisions with obstacles 

in the shortest computation time. 

The final objective specified in Chapter 1 was the validation of the guidance method 

to assess its strengths and limitations.  This was presented in Chapter 8 using a 

series of scenarios with increasing numbers of obstacles. 

 

9.1 Further Conclusions 

Further conclusions drawn as a result of the work carried out in this thesis are 

described in the following paragraphs. 

The investigation carried out in this thesis in order to develop a guidance method 

suitable for path planning in close-proximity environments was able to gain 

significant insights into the process of tuning PID controllers for the type of non-linear 

system that is involved when dealing with robotic manipulator arms.  The resultant 

optimisation of PID control gains for the non-linear dynamic model derived in 

Chapter 4 showed that for non-linear but continuous operation spaces for 

manipulator arms, the gain profile produced would also be non-linear but continuous.  
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This also assisted with a second finding during the optimisation of the control for the 

derived non-linear dynamic model.  After having optimised the controller for the first 

range of motion of the arm using a random initial estimate for the gains, the use of 

the resultant solution as the initial estimate for the next range of motion (which is a 

discrete step of the continuous range of operation of the manipulator) reduced the 

number of required generations of the optimiser to converge on the specified fitness 

value to half of the original optimisation; i.e. use of the solution set 𝐾1
2 from [

𝛼
𝜎
휂
]
1

→

[

𝛼
𝜎
휂
]

2

 as the initial predicted set of gains for the range of motion [
𝛼
𝜎
휂
]
2

→ [

𝛼
𝜎
휂
]

3

 reduced 

the number of required generations for that optimisation by approximately half of that 

of the original optimisation. 

In Chapter 7, when converting a generated path to a trajectory, using a time constant 

that is slower than that of the slowest joint in the manipulator arm reduces the 

absolute error (or divergence) from the demanded path by the arm, but has very little 

impact on the tracking error of the manipulator actual location from the time-based 

trajectory demand.  This is the case because the addition of time-based information 

to the path means that the slowest joint follows the angle demand as fast as it can, 

but the two other joints, which are faster than the slowest joint, are limited to the 

speed at which the trajectory demand changes.  This means that the three joints 

arrive at the waypoint almost simultaneously.  The reason for the tracking error 

between the manipulator actual position and the demanded trajectory is the 

dynamics of each joint, which provide a lag in time between the trajectory arriving at 

a location and the dynamic model arriving at the same location. 

It was found during the validation of the guidance technique in Chapter 8 that the 

angle tolerance that the manipulator joints would have to be within from a waypoint 

before moving to the next waypoint had a large effect on the ability of the arm to 

follow the demanded path.  A smaller tolerance (i.e. error between demanded joint 

angles and actual joint angular positions) before switching to the next waypoint 

allows 휃̇ to be reduced further, leading to less overshoot immediately after switching 

to the next waypoint caused by the inertia of the manipulator arm, therefore less 

divergence from the path. 
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The divergence from the demanded path can be predicted by inspecting error 

between the demanded path and actual response of each joint.  Where the error on 

each joint does not occur at the same time, divergence from the path occurs.  This is 

useful when assessing whether the manipulator has followed the demanded path 

since error between the actual manipulator and demand trajectory will always display 

a tracking error due to the dynamics of the manipulator arm. 

 

9.2 Research Contributions 

The research carried out in this thesis is novel because it implements a path-

generation and following algorithm for a manipulator arm that is designed for use on 

a skid-steer vehicle with the main purpose being IED disposal.  This means that 

there is no a priori knowledge of the environment at the start of every new mission, 

and the algorithm has to generate a map in real-time of the environment in C-space 

and generate a safe path around obstacles in order to reach the target end-effector 

position. 

While there is work presented in the literature on manipulator guidance that seeks to 

solve the problem of path planning for the entire manipulator or attempts to solve the 

problem of path planning for an end effector in real-time, no work exists in the 

literature which combines all these factors, especially in a completely unknown 

environment, and in such close proximity to obstacles. 

This work has the potential to be expanded to higher degrees-of-freedom than the 3-

DoF manipulator used in this research, and initial investigation carried out in 

11Appendix B has shown promising results, which show that this method is 

applicable in real-time for higher degrees-of-freedom, currently up to 9-DoF.  Work 

using graph theory in C-space has not been shown out in the literature, and that it 

has been implemented here shows that it can be used in this way, and highlights its 

power in such a control domain since it has the capability to handle path planning in 

an unlimited number dimensions providing that an adjacency matrix can be 

calculated for n-dimensional points in a space. 

In the literature many methods of path planning are investigated.  These were further 

explored in Chapter 2.  While there are merits to each of the methods investigated, 
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none of them had the potential to be singularly applied to the application of IED 

disposal.  In this application the path-planning problem requires to be solved in real-

time, which some methods are able to do.  However, this application also requires 

path planning for a 3-DoF manipulator in a 3-D environment, which makes path 

planning methods for planar manipulators inappropriate for this application.  Some of 

the methods for path planning discussed in the review of literature can satisfy these 

two requirements but do not consider the entire manipulator, only the end effector.  

Most of the methods presented in the literature are concerned with obstacle 

avoidance, only approaching obstacles should there be no other option.  However, in 

this application it is reasonable to assume that IEDs are likely to be hidden amongst 

or inside obstacles, so it is a requirement to get close to objects that may be hiding 

the IED and follow their edges without collision since this could cause detonation.  In 

this application all of these requirements must be considered. 

The major contribution of the research presented in this thesis is that existing 

methods in the areas of robotic manipulator guidance and control, environment 

mapping and path planning have been drawn together and combined in such a way 

as to develop a guidance technique that is capable of satisfying all of the following 

attributes. 

 The developed technique is capable of path planning in high 

complexity environments in real-time. 

 It has the potential to be applicable to n-DoF manipulator arms for 3-D 

environments. 

 This method is capable of dealing with unknown environments as the 

manipulator arm is installed on a mobile vehicle therefore the 

environment is not a permanent reachable space that can be mapped 

a priori. 

 Joints are not decoupled for path generation and so there is only one 

trajectory, therefore trajectories do not need to be resynchronised. 

 This method is able to track around obstacles in the control domain 

which translates into edge following in Euclidean space. 
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9.3 Advantages and Limitations of the Technique 

The advantages of this algorithm are that it very quickly generates a trajectory that 

allows for the entire arm to avoid obstacles in the environment while still achieving 

the objective.  The algorithm is very powerful in that it converts the three-dimensional 

world into a map that includes the entire control domain data required to avoid 

obstacles within it.  This map will have the same dimensionality as the number of 

degrees-of-freedom that are being controlled, but even at this state n×3-D paths 

(one for each link in an arm) are converted into 1×n-D problem.  A further advantage 

of the algorithm is that converting the path-generation problem it into a graph theory 

problem, which uses a 2-D connectivity matrix between nodes regardless of the 

number of coordinate dimensions the nodes have, the problem is always reduced to 

one of two dimensions.  This means that even though the output of the algorithm is 

an n-dimensional trajectory, the solution that is calculated is in fact only 2-D, so for 

any n, an n×3-D problem becomes a 2-D one.  This is very powerful since it reduces 

the computational complexity of the path-planning problem significantly, especially at 

higher degrees-of-freedom. 

An advantage of using C-space as the domain of choice for the guidance method is 

that both environment data and predicted measurement errors in sensors and errors 

caused by the resolution of sensors can be take into account when generating the 

safe boundaries around obstacles in C-space. 

This method also has the advantage of using a pre-existing node graph representing 

the accessible space of the manipulator arm with inaccessible nodes being 

temporarily removed when an obstacle is detected meaning that the node graph 

does not need to be repeatedly built, reducing computational overhead significantly.  

A drawback of this method however, is that the computational memory available for 

use in the system will limit the resolution of the node graph since smaller spacing 

between nodes means more nodes in the graph. 

A limitation to the developed technique is that inverse kinematic solutions become 

more complex with increasing degrees-of-freedom and for an arm with more 

degrees-of-freedom than the system used in this thesis the solution is 

computationally intensive and takes significant time.  If this problem can be solved 

then the technique becomes very transferrable, especially since manufacturers of 
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automated manipulator arms will often derive the forward and inverse kinematics 

during the design phase, so this information will be known prior to implementation of 

the path-following algorithm.  Also, once the inverse kinematic solution is known for a 

specific arm, it does not need to be calculated again, and it does not need to be 

calculated on-line, in real time. 
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10 FUTURE RESEARCH WORK 

This chapter outlines the work which could be carried out in the future based on 

the technique and investigation presented in this thesis.  This future work could build 

upon the contributions to the field of robotic manipulator guidance that are presented 

here. 

Further work that could be carried out in this area involves the mapping and path 

planning when obstacles in the environment are no longer static.  Since the 

developed method is able to carry out these functions in real time, both the map and 

generated path can be renewed repeatedly, there is no immediate issue from the 

path-planning point of view.  However, since the obstacles in the environment would 

now be in motion, the path that has been generated may be obstructed at some time 

in the future.  The brief discussion on decision making which was carried out in 

Section 2.4 regarding how to weight node graphs with probability of a vertex being 

broken could be investigated here.  Using historical data about the previous and 

current states of obstacles in motion, predictions could be made about the future 

motion of the obstacles, informing the probability weighting of the node graph, and 

driving the manipulator arm through paths which are less likely to be obstructed. 

The concept of using the joint-angle domain to map the environment and generate a 

trajectory to guide the arm through it has the potential to be extended further than 

only the three degree-of-freedom robotic manipulator arm.  Given that a node graph 

can be represented by a two-dimensional adjacency matrix which indicates which 

nodes in the graph are connected directly to one another (adjacent), the coordinates 

in the space that the nodes occupy do not have to be two or three-dimensional, they 

can have coordinates in more than three dimensions.  This would allow for the 

conversion of a Euclidean map into a map in the control domain, where the number 

of dimensions in the map represent the degrees-of-freedom of a four-, five-, six-, etc 

degree-of-freedom manipulator, hence the map would have four, five or six 

dimensions, respectively.  This technique has the potential for providing a single 

trajectory for an entire controllable vehicle with any number of control inputs. 
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This method of trajectory generation requires the knowledge of the inverse 

kinematics of the robotic manipulator arm.  The inverse kinematics often provide 

multiple solutions to the problem of joint angle calculation based on the end effector 

location.  The number of joint angle solutions becomes larger for higher degrees of 

freedom and this causes the technique to become very calculation intensive, given 

that each solution must be calculated for points along each joint in the arm.  

Therefore future work could concentrate on solving the inverse kinematics problem 

of calculating multiple solutions to the joint angle combinations for a specific end 

effector position. 

During the development of the C-space mapping method, the issues of LIDAR 

sensor and servo encoder error were briefly discussed as potential problems that 

could affect the success of the manipulator arm to follow any planned path safely, 

without collisions with obstacles; the given solution was to expand the safe boundary 

around obstacles in C-space in order to compensate for this. Future work could 

investigate the effects of these errors in more detail and propose solutions to these 

effects.  A further investigation in this area is to determine how the safe boundary 

around obstacles in C-space must be expanded to take into account the thickness of 

the arm. 

A final area for future work would be to investigate the optimisation of the path 

generation to generate minimum angular distance, minimum Euclidean distance, or 

even minimum energy paths.  This would involve the development of a solution for 

time or energy optimal solutions to the path-planning problem by this method. 
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11 CLOSING SUMMARY 

Based on the aim and objectives laid out in Chapter 1 of this thesis a path planning 

technique for mobile 3-DoF manipulators was developed.  This technique can, in 

real-time, plan a safe path through an environment towards and around obstacles, 

not just for the end effector but with consideration to the manipulator arm in its 

entirety.  The resultant technique operates in a problem space of path planning for 

mobile robotic manipulators in a solution space which uses node graphs in C-space.  

It is designed to overcome the problems inherent to close-proximity environments, 

such as tight clearance between obstacles and high chances of collisions.  

Simulation-based validation of the method was carried out in order to answer a 

research question that was specified in Chapter 1 prior to the development of the 

technique: 

 

“Is it possible and feasible to implement a path-generation algorithm that is capable 

of guiding a robotic manipulator arm through a close-proximity environment with the 

aim of carrying out Improvised Explosive Device disposal missions?” 

 

The work reported in this thesis demonstrates that it is possible and feasible to 

implement a path-planning algorithm that can satisfy these requirements, and it is 

achievable in real-time. 
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APPENDICES 

 

Appendix A Genetic Algorithm Supplementary Information and 

Results 

In this appendix the full list of optimisation problems used in Chapter 5 is presented 

in Table A-1 and Table A-2.  Figure A-1 and Figure A-2 present the results of the 

optimisation technique shown in Chapter 5 in an alternate way, with lines connecting 

each result in order to assess trends. Figure A-3 to Figure A-25 display further 

results from the random waypoint path testing used to validate the GA optimised PID 

controller which was also carried out in Chapter 5. 

 

Table A-1 Full list of optimisation problems used to validate the developed GA. 

Function 

Name 

Function Search Domain 

Ackley's 

function 

𝑓(𝑥, 𝑦) = −20𝑒−0.2√0.5(𝑥2+𝑦2) − 𝑒cos(2𝜋𝑥)+cos(2𝜋𝑦)

+ 20 + 𝑒 

−5 ≤ 𝑥, 𝑦 ≤ 5 

Sphere 

function 
𝑓(𝑥) = ∑𝑥𝑖

2

𝑛

𝑖=1

 
−∞ ≤ 𝑥𝑖 ≤ ∞, 

1 ≤ 𝑖 ≤ 𝑛 

2nd Order 

Polynomial 

𝑓(𝑥) = 3𝑥2 + 2𝑥 + 1 −∞ ≤ 𝑥 ≤ ∞ 

3 variable 

quadratic 

𝑓(𝑥, 𝑦, 𝑧) = √𝑥2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑦𝑧 + 𝑥𝑧 −∞ ≤ 𝑥, 𝑦, 𝑧 ≤ ∞ 

Rosenbrock 

function 
𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 
−∞ ≤ 𝑥𝑖 ≤ ∞, 

1 ≤ 𝑖 ≤ 𝑛 
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Beale's 

function 

𝑓(𝑥, 𝑦) = (1.5 − 𝑥 + 𝑥𝑦)2 + (2.25 − 𝑥 + 𝑥𝑦2)2

+ (2.625 − 𝑥 + 𝑥𝑦3)2 

−4.5 ≤ 𝑥, 𝑦 ≤ 4.5 

Goldestein-

Price 

function 

𝑓(𝑥, 𝑦) = (1 + (𝑥 + 𝑦 + 1)2(19 − 14𝑥 + 3𝑥2 − 14𝑦

+ 6𝑥𝑦 + 3𝑦2))(30 + (2𝑥 − 3𝑦)2(18

− 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦

+ 27𝑦2)) 

−2 ≤ 𝑥, 𝑦 ≤ 2 

Booth's 

Function 

𝑓(𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2 + (2𝑥 + 𝑦 − 5)2 −10 ≤ 𝑥, 𝑦 ≤ 10 

Bukin 

Function 

𝑓(𝑥, 𝑦) = 100√|𝑦 − 0.01𝑥2| + 0.01|𝑥 + 10| −15 ≤ 𝑥 ≤ −5, 

−3 ≤ 𝑦 ≤ 3 

Matyas 

Function 

𝑓(𝑥, 𝑦) = 0.26(𝑥2 + 𝑦2) − 0.48𝑥𝑦 −10 ≤ 𝑥, 𝑦 ≤ 10 

Levi 

Function 

No. 13 

𝑓(𝑥, 𝑦) = sin2(3𝜋𝑥) + (𝑥 − 1)2(1 + sin2(3𝜋𝑦))

+ (𝑦 − 1)2(1 + sin2(2𝜋𝑦)) 

−10 ≤ 𝑥, 𝑦 ≤ 10 

Three-hump 

Camel 

Function 

𝑓(𝑥, 𝑦) = 2𝑥2 − 1.05𝑥4 +
𝑥6

6
+ 𝑥𝑦 + 𝑦2 

−5 ≤ 𝑥, 𝑦 ≤ 5 

Easom 

Function 

𝑓(𝑥, 𝑦) = −cos(𝑥) cos(𝑦) 𝑒−((𝑥−𝜋)2+(𝑦−𝜋 )2) −100 ≤ 𝑥, 𝑦

≤ 100 

Cross-in-

tray 

Function 

𝑓(𝑥, 𝑦) = 

−0.0001(sin(𝑥) sin(𝑦) 𝑒
|100− 

√𝑥2+𝑦2

𝜋
|
+ 1)

0,1

 

−10 ≤ 𝑥, 𝑦 ≤ 10 
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Eggholder 

Function 
𝑓(𝑥, 𝑦) = −(𝑦 + 47) sin (√|𝑦 +

𝑥

2
+ 47|)

− 𝑥 sin (√|𝑥 − (𝑦 + 47)|) 

−512 ≤ 𝑥, 𝑦

≤ 512 

Hölder table 

Function 𝑓(𝑥, 𝑦) = − |sin(𝑥) 𝑐𝑜𝑠(𝑦)𝑒
|−1−

√𝑥2+𝑦2

𝜋
|
| 

−10 ≤ 𝑥, 𝑦 ≤ 10 

McCormick 

Function 

𝑓(𝑥, 𝑦) = sin(𝑥 + 𝑦) + (𝑥 − 𝑦)2 − 1.5𝑥 + 2.5𝑦 + 1 −1.5 ≤ 𝑥 ≤ 4, 

−3 ≤ 𝑦 ≤ 4 

Schaffer 

No.2 

Function 

𝑓(𝑥, 𝑦) = 0.5 +
sin2(𝑥2 − 𝑦2) − 0.5

(1 + 0.001(𝑥2 + 𝑦2)2
 

−100 ≤ 𝑥, 𝑦

≤ 100 

Schaffer 

No.4 

Function 

𝑓(𝑥, 𝑦) = 0.5 +
cos2(sin|𝑥2 − 𝑦2|) − 0.5

(1 + 0.001(𝑥2 + 𝑦2)2
 

−100 ≤ 𝑥, 𝑦

≤ 100 

Styblinski-

Tang 

Function 

𝑓(𝑥) =
∑ 𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖

𝑛
𝑖=1

2
 

−5 ≤ 𝑥𝑖 ≤ 5, 

1 ≤ 𝑖 ≤ 𝑛 

Simionescu 

Function 

𝑓(𝑥, 𝑦) = 0.1𝑥𝑦 

Subject to:  𝑥2 + 𝑦2 ≤ (1 + 0.2 (cos 8 arctan
𝑥

𝑦
))

2

 

−1.25 ≤ 𝑥, 𝑦

≤ 1.25 

Binh and 

Korn 

Function 

min {
𝑓1(𝑥, 𝑦) = 4𝑥2 + 4𝑦2

𝑓2(𝑥, 𝑦) = (𝑥 − 5)2 + (𝑦 − 5)2 
0 ≤ 𝑥 ≤ 5, 

0 ≤ 𝑦 ≤ 3 

 

Chakong 

and Haimes 

Function 

min {
𝑓1(𝑥, 𝑦) = 2 + (𝑥 − 2)2 + (𝑦 − 1)2

𝑓2(𝑥, 𝑦) = 9𝑥 − (𝑦 − 1)2  
−20 ≤ 𝑥, 𝑦 ≤ 20 
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Fonseca 

and 

Fleming 

Function 

min{
𝑓1(𝑥) = 1 − 𝑒

−∑ (𝑥𝑖− 
1

√𝑛
)
2

𝑛
𝑖=1

𝑓2(𝑥) = 1 − 𝑒
−∑ (𝑥𝑖+ 

1

√𝑛
)
2

𝑛
𝑖=1

 

−4 ≤ 𝑥𝑖 ≤ 4, 

1 ≤ 𝑖 ≤ 𝑛 

Test 

Function 4 
min {

𝑓1(𝑥, 𝑦) = 𝑥2 − 𝑦

𝑓2(𝑥, 𝑦) = −0.5𝑥 − 𝑦 − 1
 

−7 ≤ 𝑥, 𝑦 ≤ 4 

Kursawe 

Function min

{
 
 

 
 

𝑓1(𝑥) = ∑ −10𝑒
−0.2√𝑥𝑖

2+𝑥𝑖+1
22

𝑖=1

𝑓2(𝑥) = ∑ |𝑥𝑖|
0.8 + 5 sin(𝑥𝑖

3)
3

𝑖=1

 

−5 ≤ 𝑥𝑖 ≤ 5, 

1 ≤ 𝑖 ≤ 3 

Schaffer 

Function 

No. 1 

min = {
𝑓1(𝑥, 𝑦) = 𝑥2

𝑓2(𝑥, 𝑦) = (𝑥 − 2)2 
−𝐴 ≤ 𝑥 ≤ 𝐴 

Values of A from 

10 to 105 have 

been used 

successfully. 

Higher values of 

A increase the 

difficulty of the 

problem. 

Schaffer 

Function 

No. 2 
min

{
 
 

 
 
𝑓1(𝑥) = {

−𝑥, 𝑖𝑓 𝑥 ≤ 1
𝑥 − 2, 𝑖𝑓 1 < 𝑥 ≤ 3
4 − 𝑥, 𝑖𝑓 3 < 𝑥 ≤ 4

𝑥 − 4, 𝑖𝑓 𝑥 > 4

𝑓2(𝑥) = (𝑥 − 5)2

 

−5 ≤ 𝑥 ≤ 10 

 

Poloni’s 

Two 

Objective 

Function 

min {
𝑓1(𝑥, 𝑦) = 1 + (𝐴1 − 𝐵1(𝑥, 𝑦))

2
+ (𝐴2 − 𝐵2(𝑥, 𝑦))

2

𝑓2(𝑥, 𝑦) = (𝑥 + 3)2 + (𝑦 + 1)2
 

𝑤ℎ𝑒𝑟𝑒, 

{
 

 
𝐴1 = 0.5 sin(1) − 2 cos(1) + sin(2) − 1.5 cos(2)

𝐴2 = 1.5 sin(1) − cos(1) + 2 sin(2) − 0.5 cos(2)

𝐵1(𝑥, 𝑦) =  0.5 sin 𝑥 − 2 cos 𝑥 + sin 𝑦 − 1.5 cos 𝑦

𝐵2(𝑥, 𝑦) = 1.5 sin 𝑥 − cos 𝑥 + 2 sin 𝑦 − 0.5 cos 𝑦

 

−𝜋 ≤ 𝑥, 𝑦 ≤ 𝜋 
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Zitzler-Deb-

Thiele's 

Function 

No.1 

min

{
 
 
 

 
 
 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)

 

0 ≤ 𝑥𝑖 ≤ 1, 

1 ≤ 𝑖 ≤ 30 

Zitzler-Deb-

Thiele's 

Function 

No.2 

min

{
  
 

  
 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)

2

 

0 ≤ 𝑥𝑖 ≤ 1, 

1 ≤ 𝑖 ≤ 30 

Zitzler-Deb-

Thiele's 

Function 

No.3 

min

{
 
 
 

 
 
 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)
− (

𝑓1(𝑥)

𝑔(𝑥)
) sin(10𝜋𝑓1(𝑥))

 

0 ≤ 𝑥𝑖 ≤ 1, 

1 ≤ 𝑖 ≤ 30 

Zitzler-Deb-

Thiele's 

Function 

No.4 

min

{
 
 
 

 
 
 

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 91 + ∑ (𝑥𝑖
2 − 10 cos 4𝜋𝑥𝑖)

10

𝑖=2
  

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)

 

0 ≤ 𝑥1 ≤ 1, 

−5 ≤ 𝑥𝑖 ≤ 5, 

2 ≤ 𝑖 ≤ 10 

Zitzler-Deb-

Thiele's 

Function 

No.6 

min

{
 
 
 

 
 
 

𝑓1(𝑥) = 1 − 𝑒−4𝑥1 sin6(6𝜋𝑥1)

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 + 9(
∑ 𝑥𝑖

10
𝑖=2

9
)

0.25

 

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)

2

 

0 ≤ 𝑥𝑖 ≤ 1, 

1 ≤ 𝑖 ≤ 10 
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Viennet 

Function 
min

{
 
 

 
 

𝑓1(𝑥, 𝑦) = 𝑜, 5(𝑥2 + 𝑦2) + sin (𝑥2 + 𝑦2)

𝑓2(𝑥, 𝑦) =
(3𝑥 + 2𝑦 + 4)2

8
+

(𝑥 − 𝑦 + 1)2

27
+ 15

𝑓3(𝑥, 𝑦) =
1

𝑥2 + 𝑦2 + 1
− 1.1𝑒−(𝑥2+𝑦2)

 

−3 ≤ 𝑥, 𝑦 ≤ 3 

Osyczka 

and Kundu 

Function 

min

{
 

 
𝑓1(𝑥) = −25(𝑥1 − 2)2 − (𝑥2 − 2)2 − (𝑥3 − 1)2

                                              −(𝑥4 − 4)2 − (𝑥5 − 1)2

𝑓2(𝑥) = ∑ 𝑥𝑖
2

6

𝑖=1

 

0 ≤ 𝑥1, 𝑥2, 𝑥6

≤ 10, 

1 ≤ 𝑥3, 𝑥5 ≤ 5, 

0 ≤ 𝑥4 ≤ 6 

CTP1 

Function 
min {

𝑓1(𝑥, 𝑦) = 𝑥

𝑓2(𝑥, 𝑦) = (1 + 𝑦)𝑒
− 

𝑥
1+𝑦

 
0 ≤ 𝑥, 𝑦 ≤ 1 

Constr-Ex 

Function min{
𝑓1(𝑥, 𝑦) = 𝑥

𝑓2(𝑥, 𝑦) =
1 + 𝑦

𝑥

 

0.1 ≤ 𝑥 ≤ 1, 

0 ≤ 𝑦 ≤ 5 

 

Table A-2 Graphical representation of all tested optimisation problems. 

Function 

Name 

Function Surface Function 

Name 

Function Surface 

Ackley's 

function 

 

Styblinski-

Tang 

Function 

 

Sphere 

function 

 

Simionescu 

Function 

 



 

xix 
 

2nd Order 

Polynomi

al 

 

Binh and 

Korn 

Function 

 

3 variable 

quadratic 

 

Chakong 

and Haimes 

Function 

 

Rosenbro

ck 

function 

 

Fonseca and 

Fleming 

Function 

 

Beale's 

function 

 

Test 

Function 4 

 

Goldestei

n-Price 

function 

 

Kursawe 

Function 

 



 

xx 
 

Booth's 

Function 

 

Schaffer 

Function No. 

1 

 

Bukin 

Function 

 

Schaffer 

Function No. 

2 

 

Matyas 

Function 

 

Poloni’s Two 

Objective 

Function 

 

Levi 

Function 

No. 13 

 

Zitzler-Deb-

Thiele's 

Function 

No.1 

 

Three-

hump 

Camel 

Function 

 

Zitzler-Deb-

Thiele's 

Function 

No.2 

 



 

xxi 
 

Easom 

Function 

 

Zitzler-Deb-

Thiele's 

Function 

No.3 

 

Cross-in-

tray 

Function 

 

Zitzler-Deb-

Thiele's 

Function 

No.4 

 

Eggholde

r 

Function 

 

Zitzler-Deb-

Thiele's 

Function 

No.6 

 

Hölder 

table 

Function 

 

Viennet 

Function 

 

McCormic

k 

Function 

 

Osyczka and 

Kundu 

Function 

 



 

xxii 
 

Schaffer 

No.2 

Function 

 

CTP1 

Function 

 

Schaffer 

No.4 

Function 

 

Constr-Ex 

Function 

 

 

Single Objective Multi Objective

 

Figure A-1 Alternate representation of optimisation technique comparison (linear). 
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Single Objective Multi Objective

 

Figure A-2 Alternate representation of optimisation technique comparison 

(logarithmic). 
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Figure A-3 Further PID controller testing 

results. 

 

Figure A-4 Further PID controller testing 

results. 

 

Figure A-5 Further PID controller testing 

results. 

 

Figure A-6 Further PID controller testing 

results. 

 

Figure A-7 Further PID controller testing 

results. 

 

Figure A-8 Further PID controller testing 

results. 
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Figure A-9 Further PID controller testing 

results. 

 

Figure A-10 Further PID controller testing 

results. 

 

Figure A-11 Further PID controller testing 

results. 

 

Figure A-12 Further PID controller testing 

results. 

 

Figure A-13 Further PID controller testing 

results. 

 

Figure A-14 Further PID controller testing 

results. 
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Figure A-15 Further PID controller testing 

results. 

 

Figure A-16 Further PID controller testing 

results. 

 

Figure A-17 Further PID controller testing 

results. 

 

Figure A-18 Further PID controller testing 

results. 

 

Figure A-19 Further PID controller testing 

results. 

 

Figure A-20 Further PID controller testing 

results. 
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Figure A-21 Further PID controller testing 

results. 

 

Figure A-22 Further PID controller testing 

results. 

 

Figure A-23 Further PID controller testing 

results. 

 

Figure A-24 Further PID controller testing 

results. 

 

Figure A-25 Further PID controller testing results. 
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Appendix B Extension of a 3-DoF Path Planning Algorithm to 9-DoF 

Having validated the effectiveness of the algorithm for a 3-DoF manipulator arm, 

initial simulations can be carried out to test the potential of the method to handle path 

planning for manipulator arms of higher degrees of freedom.  Since the arm in use 

for this project is a 3-DoF arm, no inverse kinematic model has been developed in 

order to convert environment data into c-space.  Instead, simulated c-space data is 

used by generating clusters of random n-dimensional numbers in an n-dimensional 

space of varying size.  This method of simulation allows for the number of degrees-

of-freedom in the c-space, the number of objects used, the number of inspection 

points in the object, and the Euclidean maximum spread of each object, which gives 

the ability to measure calculation time for different combinations of these points. 

This version of the algorithm utilises, in the majority, previous development carried 

out in this project.  The method of forming a node map from a triangulation of a 

shape, and the planning of the path through it for the manipulator by the use of 

Dijkstra’s Algorithm is identical to that previously used.  An algorithm for generating 

the alpha hull of a cluster of points in n-dimensions has not been developed, but 

Matlab’s ‘convhulln’ function, which can calculate the convex hull of a cloud of points 

in up to 9-dimensions has been used instead.  This means that the functionality of 

the n-dimensional algorithm thus far can only work with its maximum effectiveness 

when the cluster of points in the objects have no concavity, but future work will 

investigate the tunnelling process into a convex hull in n-dimensions in order to 

increase the ability of the algorithm to be able to handle concave objects. 

Experimentation in this case will take the form of a series of Matlab simulated runs of 

the algorithm for a set number of obstacles in a space with a fixed length in each of 

the n-dimensions.  The number of inspection points will be fixed, and the maximum 

spread, hence the size of each shape, will also be fixed.  This experiment will deal 

with the effect of increasing the number of dimensions on the calculation time 

required to generate the node map and plan a path in order to determine if the 

algorithm can be used to generate a path through n-dimensional c-space.  For this 

investigation, the following specifications are used: 
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Table B-3 Parameters for the simulated C-space generation for use in the n-DoF path 

planning experimentation. 

Number of objects 100 

Number of inspection points per object 100 

Spread of points per object per dimension 3 m 

Range of each dimension 100 m 

` 

This experiment is run ten times and then the mean of the time taken per run is used 

to investigate the usability of the algorithm for each number of dimensions, i.e. 

degrees-of-freedom.  The results are displayed in the following figures. 

 

 

(a) Multiple runs of path planner. 

 

(b) Average of multiple path planner 

runs. 

Figure B-26 Results from a number of runs of the path planning algorithm for 2 to 9 

degrees-of-freedom. 

 

From these results it can be seen that it is possible to plan a path through a 9-

dimensional space, therefore for a 9-DoF manipulator arm.  The time it takes to plan 

a path increases exponentially with the number of degrees-of-freedom, but for 2 to 6 
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degrees-of-freedom, the time taken to calculate a path is on the order of seconds.  

This can be seen in Figure B-27. 

 

 

Figure B-27 Enlarged view of Figure B-26 to display only the results for path planning 

in 2 to 6 degrees-of-freedom. 

 

Based on these results it is feasible to use this algorithm to generate a path in 6D 

space, so for 6-DoF.  There are currently some limitations to this version of the path 

planning algorithm in that the inverse kinematic solution to the arm in question still 

has to be developed in order to convert environment data to the C-space.  Also, 

since the method of converting clouds of points in C-space in greater than 3D uses 

the convex hull rather than an alpha hull with concavity, the method cannot currently 

work for concave shapes in the C-space. 
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