

CRANFIELD UNIVERSITY

DAVID JAMES GALVÃO WALL

A GRAPH-THEORY-BASED C-SPACE PATH PLANNER FOR MOBILE

ROBOTIC MANIPULATORS IN CLOSE-PROXIMITY ENVIRONMENTS

CRANFIELD DEFENCE AND SECURITY

PhD Thesis

Academic Year 2015-2016

Supervisor: Dr. John Economou

January 2016

CRANFIELD UNIVERSITY

CRANFIELD DEFENCE AND SECURITY

PhD Thesis

Academic Year 2015-2016

DAVID JAMES GALVÃO WALL

A graph-theory-based C-space path planner for mobile robotic

manipulators in close-proximity environments

Supervisor: Dr. John Economou

January 2016

© Cranfield University 2016, All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

To my beautiful wife Silvia and our expected twins.

In loving memory of my Grandad Tom.

i

ABSTRACT

In this thesis a novel guidance method for a 3-degree-of-freedom robotic manipulator

arm in 3 dimensions for Improvised Explosive Device (IED) disposal has been

developed. The work carried out in this thesis combines existing methods to develop

a technique that delivers advantages taken from several other guidance techniques.

These features are necessary for the IED disposal application. The work carried out

in this thesis includes kinematic and dynamic modelling of robotic manipulators, T-

space to C-space conversion, and path generation using Graph Theory to produce a

guidance technique which can plan a safe path through a complex unknown

environment. The method improves upon advantages given by other techniques in

that it produces a suitable path in 3-dimensions in close-proximity environments in

real time with no a priori knowledge of the environment, a necessary precursor to the

application of this technique to IED disposal missions.

To solve the problem of path planning, the thesis derives the kinematics and

dynamics of a robotic arm in order to convert the Euclidean coordinates of measured

environment data into C-space. Each dimension in C-space is one control input of

the arm. The Euclidean start and end locations of the manipulator end effector are

translated into C-space. A three-dimensional path is generated between them using

Dijkstra’s Algorithm. The technique allows for a single path to be generated to guide

the entire arm through the environment, rather than multiple paths to guide each

component through the environment. The robotic arm parameters are modelled as a

quasi-linear parameter varying system. As such it requires gain scheduling control,

thus allowing compensation of the non-linearities in the system. A Genetic Algorithm

is applied to tune a set of PID controllers for the dynamic model of the manipulator

arm so that the generated path can then be followed using a conventional path-

following algorithm. The technique proposed in this thesis is validated using

numerical simulations in order to determine its advantages and limitations.

Keywords:

Robotic Manipulator, Guidance, Control, C-space, Graph Theory, Path Generation.

ii

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. John Economou for his ongoing support,

encouragement during this research project. His enthusiasm and excitement to

understand the work carried out was inspirational and motivated me to drive the

research forwards.

I would like to thank Prof. Kevin Knowles for his contributions to discussion as part of

the thesis committee. I am very grateful for his support as well as his attention to

detail. I would especially like to thank Dr. Hugh Goyder, whose advice was

invaluable. I would also like to thank Bill Staffner for the thought provoking

discussions.

My thanks go to Dr. Peter Silson, Prof. Antonios Tsourdos and Dr. Seungkeun Kim

for their input as Supervisor and thesis committee at the start of this research. Their

suggestions and advice helped to lay the foundations for the work. A great deal of

thanks go to my various officemates, Hyon-dong Oh, Jiyoung Choi and Rodrigo Felix

Moreno for their support and discussions.

Finally, my thanks go to my family, who have supported me completely throughout

the duration of the research, but especially Silvia, who has been a rock of support

since the day I met her, and has been patient, understanding and helpful throughout

both the research and writing up of this thesis, even when the nights have been

sleepless.

iv

v

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS ... v

NOMENCLATURE ... xi

LIST OF TABLES ... xix

TABLE OF FIGURES ... xxi

TABLE OF EQUATIONS ... xxxvii

1 INTRODUCTION ... 1

1.1 Background to Research ... 1

1.2 Research Question ... 5

1.3 Aims and Objectives ... 5

1.4 Project Outline ... 7

1.5 Assumptions and Bounds ... 9

1.6 Contributions ... 11

1.7 Summary ... 12

2 REVIEW OF LITERATURE ... 15

2.1 Modelling of Robotic Manipulators .. 15

2.2 Control of Robotic Manipulators .. 18

2.3 Guidance ... 21

2.3.1 Mapping .. 21

2.3.2 Path Generation and Following .. 26

vi

2.4 Summary of Literature ... 50

3 KINEMATIC MODELLING OF ROBOTIC MANIPULATORS 53

3.1 Overview ... 54

3.2 Trigonometric Method ... 55

3.2.1 Forward Kinematics .. 55

3.2.2 Inverse Kinematics ... 58

3.3 Denavit-Hartenberg (Matrix Transform) Method .. 60

3.3.1 The parameters of the robotic arm ... 60

3.3.2 Derivation of the transformation matrices for each arm link 64

3.3.3 The forward kinematics of the robotic manipulator arm. 68

3.3.4 The inverse kinematics of the robotic manipulator arm. 70

3.4 Simultaneous Geometric Equations for Inverse Kinematics 76

3.5 Summary of Kinematic Modelling .. 80

4 DYNAMIC MODELLING OF A ROBOTIC MANIPULATOR 83

4.1 Manipulator Arm Parameters .. 84

4.2 Dynamic Equation Formulation ... 85

4.2.1 First Link ... 86

4.2.2 Second Link .. 89

4.2.3 Third Link .. 97

4.2.4 Angular Acceleration .. 100

4.2.5 Qualitative Validation .. 105

4.2.6 Summary of Dynamic Modelling ... 136

4.3 Servo Model .. 137

4.4 Summary of Dynamic Modelling .. 141

vii

5 CONTROL OF 3-DOF MANIPULATOR ARM ... 143

5.1 Implementation .. 144

5.1.1 Genetic Algorithm ... 145

5.1.2 Robotic Manipulator Arm Tuning .. 149

5.1.3 Fitness Functions ... 150

5.2 Genetic Algorithm Validation ... 160

5.2.1 Validation of the GA Using Standard Optimisation Problems 160

5.2.2 Comparison of Optimisation Methods on the Robotic Arm Tuning

Problem ... 169

5.3 Use of GA to Optimise Arm Gains ... 171

5.3.1 Assumptions ... 171

5.3.2 Optimisation Process .. 174

5.4 Gain Scheduler for Robotic Manipulator PID Controller 176

5.5 Random Step Sequence Testing and Validation 187

5.6 Summary of GA PID Gain Tuning Method .. 196

6 ENVIRONMENT MODELLING AND MAPPING IN C-SPACE 197

6.1 Implementation .. 198

6.1.1 Obtain Obstacle Data ... 199

6.1.2 Convert Obstacle Data into C-Space .. 206

6.1.3 Expand Impermissible Region to Permissible Boundary. 227

6.1.4 Node Graph Formation ... 230

6.1.5 Mapping of End Effector Start and Required Joint Positions 243

6.2 Summary of Environment Modelling ... 244

7 PATH GENERATION USING GRAPH THEORY .. 247

viii

7.1 Path Generation in C-Space ... 248

7.2 Comparison of Path Generation Techniques .. 251

7.2.1 Bellman-Ford .. 257

7.2.2 Breadth-first .. 260

7.2.3 Dijkstra .. 263

7.3 Path to Trajectory Conversion ... 265

7.4 Summary of Robot Arm Guidance .. 272

8 VALIDATION OF GUIDANCE METHOD BY SIMULATION 277

8.1 Simulation Design ... 277

8.2 Results .. 278

8.2.1 Single Obstacle .. 278

8.2.2 Two Obstacles .. 282

8.2.3 Three Obstacles ... 288

8.2.4 Four Obstacles ... 294

8.2.5 Single Obstacle with Hole ... 298

8.2.6 Narrow Passage Between Two Long Obstacles 303

8.3 Summary ... 307

9 CONCLUSIONS .. 309

9.1 Further Conclusions .. 310

9.2 Research Contributions ... 312

9.3 Advantages and Limitations of the Technique... 314

10 FUTURE RESEARCH WORK .. 317

11 CLOSING SUMMARY .. 319

REFERENCES ... xlv

ix

APPENDICES .. xiii

Appendix A Genetic Algorithm Supplementary Information and Results xiii

Appendix B Extension of a 3-DoF Path Planning Algorithm to 9-DoF............... xxviii

Appendix C List of Publications ... xxx

C.1 Published Works ... xxx

C.2 Submitted for Publication ... xxxi

C.3 Submitted Abstracts ... xxxi

C.4 Under Preparation .. xxxi

x

xi

NOMENCLATURE

Table of Abbreviations

CoG Centre of gravity

CPC Completeness and parametric continuity

C-Space Configuration space

D-H Denavit-Hartenberg

DoF Degrees-of-freedom

GA Genetic algorithm

IED Improvised explosive device

IR Infra-red

Latax Lateral acceleration

L-E Lagrange-Euler

LIDAR Light detection and ranging

MIMO Multi-input multi-output

N-E Newton-Euler

P Proportional feedback control

PD Proportional derivative feedback control

PH Pythagorean hodograph

PI Proportional integral feedback control

PID Proportional integral derivative feedback control

xii

RADAR Radio detection and ranging

RBF Radial Basis Function

ROV Remotely Operated Vehicle

RRT Rapidly exploring random tree

SDRE State-dependant Riccati equation

SLAM Simultaneous localisation and mapping

SONAR Sound navigation and ranging

ToF Time of flight

T-Space Task space

UAV Uninhabited aerial vehicle

US Ultra-sonic

DCM Direction cosine matrix

Symbols

Variable Description Units

𝑑 Light and sound based transmitter receiver spacing. 𝑚

𝑑 Stereoscopic sensor disparity 𝑚

𝑥 Light and sound based sensor distance to detected

object

𝑚

𝑉 No. of node graph vertices

𝐸 No. of node graph edges

𝑂 Big-O notation running time

𝛼 Robotic manipulator joint 1 angle (manipulator frame) ° 𝑜𝑟 𝑐

xiii

𝛽 Robotic manipulator joint 2 angle (manipulator frame) ° 𝑜𝑟 𝑐

𝛾 Robotic manipulator joint 3 angle (manipulator frame) ° 𝑜𝑟 𝑐

𝑙0 Robotic manipulator link 1 length (manipulator frame) 𝑚

𝑙1 Robotic manipulator link 2 length (manipulator frame) 𝑚

𝑙2 Robotic manipulator link 3 length (manipulator frame) 𝑚

𝑃0 Robotic manipulator base/joint 1 location 𝑚

𝑃1 Robotic manipulator joint 2 location 𝑚

𝑃2 Robotic manipulator joint 3 location 𝑚

𝑃𝑓 Robotic manipulator end effector location 𝑚

휁 Robotic manipulator joint 3 intermediate angle ° 𝑜𝑟 𝑐

휀 Robotic manipulator joint 3 intermediate angle ° 𝑜𝑟 𝑐

𝛿 Robotic manipulator joint 3 intermediate angle ° 𝑜𝑟 𝑐

𝐴 Direction cosine matrix

𝑅 Direction cosine matrix rotation cosine matrix ° 𝑜𝑟 𝑐

𝑃 Direction cosine matrix position translation 𝑚

𝑓 Direction cosine matrix axis perspective change

𝑊 Direction cosine matrix scale 𝑚

𝑋 Direction cosine matrix transform X-axis 𝑚

𝑌 Direction cosine matrix transform Y-axis 𝑚

𝑍 Direction cosine matrix transform Z-axis 𝑚

𝑇𝑎
𝑏 Denavit-Hartenberg transform matrix

𝑛 Denavit-Hartenberg transform matrix parameter

𝑜 Denavit-Hartenberg transform matrix parameter

xiv

𝑎 Denavit-Hartenberg transform matrix parameter

𝑝 Denavit-Hartenberg transform matrix parameter

휃𝑟 Manipulator end effector roll angle ° 𝑜𝑟 𝑐

휃𝑦 Manipulator end effector yaw angle ° 𝑜𝑟 𝑐

휃𝑝 Manipulator end effector pitch angle ° 𝑜𝑟 𝑐

𝐴 Simultaneous geometric equation inverse kinematic

solution parameter

𝐵 Simultaneous geometric equation inverse kinematic

solution parameter

𝐶 Simultaneous geometric equation inverse kinematic

solution parameter

𝐷 Simultaneous geometric equation inverse kinematic

solution parameter

𝐸 Simultaneous geometric equation inverse kinematic

solution parameter

𝐹 Simultaneous geometric equation inverse kinematic

solution parameter

𝛼 Robotic manipulator joint 1 angle (earth frame)

𝜎 Robotic manipulator joint 2 angle (earth frame)

휂 Robotic manipulator joint 3 angle (earth frame)

𝑙1 Robotic manipulator link 1 length (earth frame) 𝑚

𝑙2 Robotic manipulator link 2 length (earth frame) 𝑚

𝑙3 Robotic manipulator link 3 length (earth frame) 𝑚

𝑐1 Robotic manipulator link 1 centre of mass (earth frame) 𝑚

𝑐2 Robotic manipulator link 2 centre of mass (earth frame) 𝑚

xv

𝑐3 Robotic manipulator link 3 centre of mass (earth frame) 𝑚

𝑚1 Robotic manipulator link 1 mass (earth frame) 𝑘𝑔

𝑚2 Robotic manipulator link 2 mass (earth frame) 𝑘𝑔

𝑚3 Robotic manipulator link 3 mass (earth frame) 𝑘𝑔

Σ𝑇 Total torque about a joint excluding static friction 𝑁𝑚

Σ𝑇𝑖𝑛 Total torque input to a joint 𝑁𝑚

Σ𝑀𝑚 Total moments about a joint caused by mass 𝑁𝑚

Σ𝑀𝑓 Total moments about a joint caused by friction 𝑁𝑚

Σ𝑀𝑖 Total moments about a joint caused by inertia 𝑁𝑚

Σ𝑀𝑐 Total moments about a joint caused by centripetal

effects

𝑁𝑚

𝜏𝑠 Torque produced by static friction 𝑁𝑚

𝜏𝑘 Torque produced by kinetic friction 𝑁𝑚

Σ𝜏𝑓 Total torque produced by frictional effects 𝑁𝑚

τ Torque 𝑁𝑚

𝑐𝑠 Coefficient of static friction

𝑐𝑘 Coefficient of kinetic friction

휃 Generic joint angle ° 𝑜𝑟 𝑐

휃̇ Generic angular velocity ° 𝑠−1 𝑜𝑟 𝑐 𝑠−1

휃̈ Generic angular acceleration ° 𝑠−2 𝑜𝑟 𝑐 𝑠−2

�̇� Angular velocity of joint 1 ° 𝑠−1 𝑜𝑟 𝑐 𝑠−1

�̈� Angular acceleration of joint 1 ° 𝑠−2 𝑜𝑟 𝑐 𝑠−2

�̇� Angular velocity of joint 2 ° 𝑠−1 𝑜𝑟 𝑐 𝑠−1

xvi

�̈� Angular acceleration of joint 2 ° 𝑠−2 𝑜𝑟 𝑐 𝑠−2

휂̇ Angular velocity of joint 3 ° 𝑠−1 𝑜𝑟 𝑐 𝑠−1

휂̈ Angular acceleration of joint 3 ° 𝑠−2 𝑜𝑟 𝑐 𝑠−2

𝑔 Acceleration due to gravity (9.81) 𝑚 𝑠−2

𝐹𝑐 Force caused by centripetal effects 𝑁

Σ𝑇′ Total torque about a joint including frictional effects 𝑁𝑚

𝑌𝐼𝛼 Ideal response to an input for joint 1 ° 𝑜𝑟 𝑐

𝑌𝐼𝜎 Ideal response to an input for joint 2 ° 𝑜𝑟 𝑐

𝑌𝐼𝜂 Ideal response to an input for joint 3 ° 𝑜𝑟 𝑐

𝑌𝐴𝛼 Actual response to an input for joint 1 ° 𝑜𝑟 𝑐

𝑌𝐴𝜎 Actual response to an input for joint 2 ° 𝑜𝑟 𝑐

𝑌𝐴𝜂 Actual response to an input for joint 3 ° 𝑜𝑟 𝑐

𝑓 Fitness function

𝑡0 Step response initial time 𝑠

𝑡1 Step response rise time or peak time 𝑠

𝑡2 Step response settling time 𝑠

𝑡𝑓 Step response final time 𝑠

𝑌 Output of an optimisation problem

𝑛 Number of objectives in an optimisation problem

𝑟𝑠 Resolution of spacing between measured points in an

obstacle

𝑚

𝑟𝜃 Angular resolution of the LIDAR sensor ° 𝑜𝑟 𝑐

𝑒𝑠𝑠 Steady state error of each joint ° 𝑜𝑟 𝑐

xvii

𝑒𝑙 Angular error of the LIDAR sensor ° 𝑜𝑟 𝑐

𝑒𝑠 Measurement error of servo encoders ° 𝑜𝑟 𝑐

xviii

xix

LIST OF TABLES

Table 2-1 Extract from a computational complexity comparison of Lagrangian and

Newton-Euler mechanics from Turney et al. (1980) ... 16

Table 2-2 Comparison of Lagrangian and Newton-Euler methods in relation to a 3-

DoF robotic manipulator arm. ... 16

Table 2-3 Comparison of algorithm running times. ... 37

Table 2-4 Comparison of algorithm running times with values. 37

Table 2-5 Change of path across the environment depending on the size of the

weighting factor added to the risk associated with each vertex. 49

Table 3-1 Parameters of the links in the manipulator arm. 56

Table 3-2 Parameters of the links in the manipulator arm. 63

Table 3-3 Parameters of links in a 3-DoF manipulator arm. 77

Table 4-1 Numerical parameters of the Digital Vanguard 3-DoF manipulator arm. 106

Table 4-2 List of scenarios used for the qualitative validation of the manipulator

dynamic model. .. 106

Table 4-3 Servo motor parameters for use in the manipulator arm dynamic model.

 ... 139

Table 5-1 Summary of the algorithmic process for a GA. 149

Table 5-2 Summary of the variables used in the formation of the fitness function for

the robotic manipulator tuning problem. ... 151

Table 5-3 List of standard optimisation problems used to test optimisation functions.

 ... 160

Table 5-4 Graphical representation of the surfaces generated by the optimisation

problems listed in Table 5-3. .. 163

xx

Table 5-5 Numerical results of optimisation method comparison on the robotic

manipulator tuning problem for an optimisation with random initial estimated solution.

 ... 170

Table 5-6 Numerical data illustrating the possible change in moment values as a

result of angle. .. 173

Table 5-7 Results of the optimisation process of the manipulator arm for a single

angle range displaying the change in best fitness and response to a unit step over

successive generations. ... 174

Table 5-8 Gain Plateaus and Surfaces for the PID controller in joint 𝜶. 178

Table 5-9 Gain Plateaus and Surfaces for the PID controller in joint 𝝈. 183

Table 5-10 Gain Plateaus and Surfaces for the PID controller in joint 𝜼. 185

Table 6-1 Numerical data showing the adjacency matrix size difference between

node graphs of different node spacings. .. 240

Table 6-2 Change in domain from the Euclidean domain to the Control domain for

the end effector start and required end points used in the path generation example

for method 1. .. 243

Table 7-1: Joint angle combinations to guide the robotic manipulator in such a way

as to drive the end effector from a starting position to a required position while

providing effective avoidance for the entire manipulator. 250

Table 7-2 Results from a preliminary investigation of the three selected pathing

methods for different numbers of obstacles. .. 253

Table 7-3 List of processes carried out in the guidance algorithm. 272

Table A-1 Full list of optimisation problems used to validate the developed GA. xiii

Table A-2 Graphical representation of all tested optimisation problems. xviii

Table B-3 Parameters for the simulated C-space generation for use in the n-DoF

path planning experimentation. .. xxix

xxi

TABLE OF FIGURES

Figure 1-1 Digital Vanguard ROV (Photo courtesy of Allen Vanguard™). 2

Figure 1-2 Defender ROV (Photo courtesy of Allen Vanguard™). 2

Figure 1-3 Flow Diagram showing the breakdown of autonomous functions for

control of the ROV in question. .. 3

Figure 1-4 Breakdown of the processes required for an autonomous robotic

manipulator arm. .. 9

Figure 1-5 Breakdown of the processes required for an autonomous robotic

manipulator arm, including assumptions made and colour coded to match the

remaining chapters of the thesis. ... 10

Figure 1-6 Project outline of the research presented in this thesis. 14

Figure 2-1 Wave-based sensor operation using ToF to calculate the distance to an

object. ... 21

Figure 2-2 Monocular ranging using known vehicle motion to cause disparity

between successive image frames... 23

Figure 2-3 Monocular ranging using two mirrors at a known distance from each other

to provide two images, the disparity of which can be compared to calculate object

distance. ... 24

Figure 2-4 Monocular ranging using a pair of double-sided half-mirror plates a known

distance apart can be used to provide two images of the object, the disparity of

which can be compared to calculate distance. ... 25

Figure 2-5 Binocular ranging using two cameras a known distance apart, and

measuring the disparity between the image taken by each to calculate the object’s

distance. ... 25

Figure 2-6 Comparison of a Dubins based path with a P-H based path that start and

end at the same position and pose... 31

xxii

Figure 2-7 Example of a node graph (not to scale). Each node is numbered and the

vertices between them are labelled with letters. ... 34

Figure 2-8 Example of an environment where graph theory can be used to generate

a trajectory. .. 39

Figure 2-9 A simple node graph. .. 40

Figure 2-10 A node graph with more complexity than that of Figure 2-9. 41

Figure 2-11 A node graph with three-dimensional coordinated. 43

Figure 2-12 The three-dimensional node graph from Figure 2-11 flattened out into a

two-dimensional node graph. ... 44

Figure 2-13 Example of an environment where graph theory can be used to generate

a trajectory with energy costs as well as distance. ... 45

Figure 2-14 Example of an environment where graph theory can be used to generate

a trajectory with risk associated costs. ... 47

Figure 3-1 Manipulator arm kinematics (red) in relation to the overall guidance

method. .. 53

Figure 3-2 Schematic of the variables and dimensions that make up the simple

model of the Digital Vanguard ROV manipulator arm... 56

Figure 3-3 Graphical representation of the robotic arm. The red dotted line it’s the

representation of the arm when fully extended. .. 57

Figure 3-4 Diagram of the calculation of 𝜶 using 𝑷𝒇 and 𝑷𝒐 58

Figure 3-5 Diagram of the calculation of 𝜷 and 𝜸 using 𝑷𝒇 and 𝑷𝟏.......................... 59

Figure 3-6 Configuration of the first link in the manipulator arm. 61

Figure 3-7 Configuration of the second and third links in the manipulator arm. 61

Figure 3-8 Schematic of the variables and dimensions that make up the model of the

manipulator arm. .. 62

Figure 3-9 Rotation of the X0 and Y0 axes about the Z0 axis by 𝜶 to transform the

axes in to the intermediate axes X0’, Y0’ and Z0’. ... 64

xxiii

Figure 3-10 Rotation of the Y0’ and Z0’ axes about the X0’ axis by 90° into the X1, Y1

and Z1 axes. ... 65

Figure 3-11 Rotation of the 𝑿𝒂 𝒀𝒂 axes around the 𝒁𝒂 axis by 𝜷 or 𝜸 into the 𝑿𝒃, 𝒀𝒃

and 𝒁𝒃 axes. .. 67

Figure 3-12: Schematic of the variables and dimensions that make up the simple

model of the Digital Vanguard ROV manipulator arm... 77

Figure 4-1 Manipulator arm dynamics (green) in relation to the overall guidance

method. .. 83

Figure 4-2 Schematic of a 3-DoF manipulator arm showing the relevant parameters

for the development of a dynamic model. ... 85

Figure 4-3 Effect of angular velocity on static and kinetic friction. 87

Figure 4-4 Schematic of the weight of link 2 acting on link 2. 89

Figure 4-5 Schematic of the weight of link 3 acting on link 2. 90

Figure 4-6 Schematic of the centripetal force which acts on the 2nd link due to its

rotation about the 1st joint. .. 92

Figure 4-7 Schematic of the centripetal force which acts on the 2nd link due to the

rotation of the 3rd link about the 1st joint. ... 93

Figure 4-8 Schematic of the centripetal force caused by the rotation of the 3rd link

about the 2nd joint. .. 94

Figure 4-9 Schematic of the centripetal force caused by the rotation of link 3 about

joint 3. ... 95

Figure 4-10 Schematic of the moment about joint 3 caused by the weight of link 3. 97

Figure 4-11 Schematic of the centripetal force caused by the rotation of link 3 about

joint 1. ... 98

Figure 4-12 Schematic of the centripetal force caused by the rotation of the 3rd link

about the 2nd joint. ... 99

Figure 4-13 Simulink Control block diagram for the 3-DoF arm dynamic model. ... 101

xxiv

Figure 4-14 Moments about 𝝈. ... 102

Figure 4-15 Moments about 𝜼. ... 102

Figure 4-16 Angular position of each joint. ... 102

Figure 4-17 Effect of torque based saturation on friction in a joint. 104

Figure 4-18 Angular position of each joint in the arm model for scenario 1. 108

Figure 4-19 Resultant joint angle locations for scenario 1 in relation to the starting

geometry. ... 109

Figure 4-20 Angular position of each joint in the arm model for scenario 1 with static

friction removed. ... 109

Figure 4-21 Moment terms about 𝝈 (excluding input torque) for scenario 1. 110

Figure 4-22 Moment terms about 𝜼 (excluding input torque) for scenario 1. 111

Figure 4-23 Angular position of each joint in the arm model for scenario 2. 112

Figure 4-24 Angular position of 𝝈 for scenario 2. ... 112

Figure 4-25 Angular position of 𝜼 for scenario 2. ... 112

Figure 4-26 Moment in 𝝈 (excluding input torque) for scenario 2. 113

Figure 4-27 Moment in 𝜼 (excluding input torque) for scenario 2. 113

Figure 4-28 Angular position over time of all joints in scenario 3. 114

Figure 4-29 Angular position over time of all joints in scenario 4. 115

Figure 4-30 Angular position of all joints in scenario 4 over 15 seconds. 116

Figure 4-31 Diagram illustrating the angular velocity over time of all joints in scenario

4. .. 117

Figure 4-32 Angular velocity of joint 2 in scenario 4. .. 117

Figure 4-33 Angular velocity of joint 3 in scenario 4. .. 117

Figure 4-34 Moment terms about 𝜶 (excluding input torque) for the scenario 4. 118

xxv

Figure 4-35 Moment terms about 𝝈 (excluding input torque) for scenario 4. 118

Figure 4-36 Moment terms about 𝜼 (excluding input torque) for scenario 4. 119

Figure 4-37 Input torque to all joints for a modified version of scenario 4. 120

Figure 4-38 Angular position of all joints for a modified version of scenario 4. 120

Figure 4-39 Angular position of joint 𝜶 for a modified version of scenario 4. 121

Figure 4-40 Angular position of joints 𝝈 and 𝜼 for a modified version of scenario 4.

 ... 121

Figure 4-41 Angular position over time of all joints in scenario 5. 122

Figure 4-42 Moment terms about 𝜶 (excluding input torque) for scenario 5. 123

Figure 4-43 Moment terms about 𝝈 (excluding input torque) for scenario 5. 124

Figure 4-44 Moment terms about 𝜼 (excluding input torque) for scenario 5. 124

Figure 4-45 Angular position of each joint in scenario 6. .. 126

Figure 4-46 Angular acceleration of each joint in the arm during scenario 6. 126

Figure 4-47 Angular position of each of the joints during scenario 7. 127

Figure 4-48 Moment terms about 𝝈 (excluding input torque) for scenario 7. 128

Figure 4-49 Moment terms about 𝜼 (excluding input torque) for scenario 7. 128

Figure 4-50 Angular position of each joint during scenario 8. 130

Figure 4-51 Moment terms about 𝝈 (excluding input torque) for scenario 8. 131

Figure 4-52 Moment terms about 𝜼 (excluding input torque) for scenario 8. 131

Figure 4-53 Angular position of each joint during scenario 9 132

Figure 4-54 Angular velocity of each joint during scenario 9. 133

Figure 4-55 Angular acceleration of each joint during scenario 9. 133

Figure 4-56 Moment terms about 𝝈 for scenario 9. .. 134

Figure 4-57 Moment terms about 𝜼 for scenario 9. .. 134

xxvi

Figure 4-58 Moment terms about 𝝈 for scenario 4. .. 134

Figure 4-59 Moment terms about 𝜼 for scenario 4. .. 134

Figure 4-60 Input torques to each joint for scenario 10. ... 135

Figure 4-61 Angular position of each joint for scenario 10. 135

Figure 4-62 Angular position of 𝝈 for scenario 10. ... 136

Figure 4-63 Angular position of 𝜼 for scenario 10... 136

Figure 4-64 Circuit diagram of an electric motor drive connected to a load via a

gearbox. ... 137

Figure 4-65 Architecture of Robotic Manipulator Joint Servos with Non-Linear

Dynamic Model as the Load. .. 139

Figure 4-66 Simulink control block diagram for the dynamic model embedded into a

servo loop with the specified motor model. .. 140

Figure 4-67 Architecture of the PID controlled servo motors surrounding the

manipulator arm dynamic model. ... 141

Figure 5-1 Manipulator arm control and path following (blue) in relation to the overall

guidance method. ... 143

Figure 5-2 A single cell containing two chromosomes.. 145

Figure 5-3 A cell undedergoing out asexual reproduction by mitosis. 146

Figure 5-4 Crossover of genetic material from two chromosomes during the first

stage of meiosis. .. 146

Figure 5-5 Crossover in two parent cells during the process of meiosis. The two

parents have different coloured chromosomes. ... 147

Figure 5-6 Production of reproductive cells in both parents during meiosis. 147

Figure 5-7 Formation of children cells by combination of reproductive cells from each

parent cell. .. 147

xxvii

Figure 5-8 Result of the optimisation of a joint angle range in the arm using the sum

squared error fitness function. .. 153

Figure 5-9 Selection of the value 𝒕𝟏 in relation to the transient and steady state

regions of a step response. .. 154

Figure 5-10 Result of the optimisation of a joint angle range in the arm using the

Weighted Sum of Errors-Squared (Transient and Steady-State) fitness function. .. 155

Figure 5-11 Selection of the values 𝒕𝟏 and 𝒕𝟐 in relation to the rise time, settling time

and steady state regions of a step response. ... 156

Figure 5-12 Result of the optimisation of a joint angle range in the arm using the

Weighted Sum of Errors-Squared (Rise Time, Overshoot and Steady-State) fitness

function. .. 157

Figure 5-13 Shape of the weighting function for the Gaussian and Time based fitness

function. .. 158

Figure 5-14 Result of the optimisation of a joint angle range in the arm using the

Gaussian and Time Base Weighting fitness function. .. 159

Figure 5-15 Linear results for achieved fitness and runtime for three optimisation

methods over all of the optimisation problems. .. 166

Figure 5-16 Logarithmic results for achieved fitness and runtime for three

optimisation methods over all of the optimisation problems. 167

Figure 5-17 Graphical results of optimisation method comparison on the robotic

manipulator tuning problem. ... 170

Figure 5-18 Control block diagram illustrating the implementation of PID control into

the dynamic model of robotic manipulator and servo drive. This block diagram also

includes a torque correction factor for moments caused by weight on the arm. 172

Figure 5-19 Moments of inertia about joint 𝜶 given changes in 𝝈 and 𝜼. 179

Figure 5-20 Manipulator arm geometries which generate the largest moments of

inertia about 𝜶. ... 179

Figure 5-21 PID Control gains for joint 𝜶 overlaid. ... 180

xxviii

Figure 5-22 Moments of inertia and PID gains for 𝜶. ... 181

Figure 5-23 Comparison of moments of inertia of joint 𝝈 with the PID control gains for

the same joint. .. 184

Figure 5-24 Comparison of moments of inertia of joint 𝜼 with the PID control gains for

the same joint. .. 186

Figure 5-25 Control block diagram for the controlled servo and dynamic model

system with the implemented gain scheduler. .. 187

Figure 5-26 Results of the random step sequence testing of the controlled dynamic

model. Plot 1 is joint angle against time for each joint and plot 2 is the angular error

against time for each joint. ... 188

Figure 5-27 PID control gains for each joint over the random step test sequence

carried out above. .. 189

Figure 5-28 Zoomed in plot of joint angles against time and error against time for the

random step test sequence. ... 190

Figure 5-29 PID control gains of joint 𝜶 in the robotic manipulator during the random

step testing of the manipulator arm. ... 191

Figure 5-30 PID control gains of joint 𝝈 in the robotic manipulator during the random

step testing of the manipulator arm. ... 192

Figure 5-31 PID control gains of joint 𝜼 in the robotic manipulator during the random

step testing of the manipulator arm. ... 193

Figure 5-32 Results of the random step sequence testing of the controlled dynamic

model. Plot 1 is joint angle against time for each joint and plot 2 is the angular error

against time for each joint. ... 194

Figure 5-33 Zoomed in plot of joint angles against time and error against time for the

random step test sequence. ... 194

Figure 5-34 Position and velocity change for a system at different points in time,

especially when tending towards steady-state. .. 195

xxix

Figure 6-1 Environment and mapping in C-Space (purple) in relation to the overall

guidance method. ... 198

Figure 6-2 Change of measured point spacing with sensor angular resolution and

range. ... 199

Figure 6-3 Change of distance between measured points with distance from origin

and angular resolution. ... 201

Figure 6-4 Distribution of inspection points across one polygon. The red points

represent the polygon corners, the green point represents the polygon centre and

the blue points represent the other inspection points. .. 203

Figure 6-5: Different cases of intersection of polygons with the plane of operation of

the 1st link in the manipulator. ... 210

Figure 6-6: Geometries of (a) two-link and (b) three-link arm configurations

generated by random demand end effector positions as inspection points. 217

Figure 6-7: Positions of the randomly-generated points used to calculate arm

geometries in Figure 6-6. The green points fall within the accessible range of each

arm configuration, whereas the red points are inaccessible. 217

Figure 6-8 Arm geometry for the calculation of 𝝈. .. 220

Figure 6-9 Arm geometry for the calculation of the 𝝈 and 𝜼 joint angle combination.

 ... 221

Figure 6-10: Impermissible region for a triangular polygon situated in the arm

extension range for all three links. .. 225

Figure 6-11: Impermissible region formed by inspection of a single polygon, as seen

from various directions. .. 226

Figure 6-12 Effect of resolution of the LIDAR sensor on the detection of the corners

of an obstacle. .. 228

Figure 6-13: Expansion of the impermissible region to create permissible boundary

around the impermissible region seen from various directions. 230

xxx

Figure 6-14 A 2-D pattern of inspection points for illustration of the convex hull

technique for bounding a region of points. ... 232

Figure 6-15 The same 2-D patter of inspection points has now been bounded using

the convex hull technique. .. 232

Figure 6-16 Method by which the complex hull technique works. 233

Figure 6-17 Limitations of the convex hull technique and the result of using the alpha

hull technique. .. 233

Figure 6-18 Limitations and compromise required when using the alpha volume

technique. ... 233

Figure 6-19: Permissible boundary surface converted into a wire frame representing

the vertices in a node graph in the three servo angle dimensions. 237

Figure 6-20 A sphere in T-space in relation to the base point of the manipulator arm.

 ... 239

Figure 6-21 C-space representation of the sphere in relation to the manipulator arm.

 ... 239

Figure 6-22 Sphere in C-space (red) overlaid over the unmodified node graph

(black). ... 241

Figure 6-23 Nodes which collide with the sphere in C-space (red) to be removed

from the remainder of the node graph (blue). ... 241

Figure 6-24 Surface plot of a triangulation showing the complete node graph with the

colliding nodes removed. .. 242

Figure 7-1 Flowchart showing the context of the path generation (orange) in relation

to the overall guidance method. ... 247

Figure 7-2: Generated path (red line) from an end effector start point (green circle) in

the servo control domain to a desired end effector end point (blue circle) in the servo

control domain. ... 248

Figure 7-3: Generated path between the end effector start point (green circle) to the

desired end effector end point (blue circle). ... 249

xxxi

Figure 7-4 Spherical object in C-space with a safe path generated around it. 251

Figure 7-5 Algorithm run time for the selected path planning algorithms for different

numbers of obstacles ... 255

Figure 7-6 Results of the path generation around two obstacles with 0.47 m, 0.48m

and 0.49m radii using the Bellman-Ford Algorithm. ... 257

Figure 7-7 Results of the path planning around 4 obstacles with 0.475 m radius using

the Bellman-ford algorithm. .. 259

Figure 7-8 Results of the path generation around two obstacles with 0.47 m, 0.48m

and 0.49m radii using the Breadth-first Algorithm. ... 261

Figure 7-9 Results of the path planning around 4 obstacles with 0.475 m radius using

the Breadth-first algorithm. ... 262

Figure 7-10 Results of the path generation around two obstacles with 0.47 m, 0.48m

and 0.49m radii using Dijkstra’s Algorithm. .. 263

Figure 7-11 Results of the path planning around 4 obstacles with 0.475 m radius

using Dijkstra’s algorithm. .. 264

Figure 7-12 Time response of 3 different transfer functions with time constants of

0.5, 0.25 and 0.167 seconds. ... 266

Figure 7-13 Time response of systems 𝑮𝟏, 𝑮𝟐 and 𝑮𝟑 given an input which is

equivalent to the step response of system 𝑹. ... 266

Figure 7-14 Time response of 3 different transfer functions with similar time

constants of 𝟎. 𝟒, 𝟎. 𝟑 and 𝟎. 𝟐𝟖𝟔 seconds. ... 267

Figure 7-15 Time response of systems 𝑮𝟒, 𝑮𝟓 and 𝑮𝟔 given an input which is

equivalent to the step response of system 𝑹. ... 268

Figure 7-16 Path through space and the trajectory which represents the same path

but with time information included. ... 269

Figure 7-17 Behaviour of systems 𝑮𝟒, 𝑮𝟓 and 𝑮𝟔 as dimension components of a

path tracker when given the path as an input or the trajectory as an input. 270

xxxii

Figure 7-18 Time response of each dimension to a demanded path and demanded

trajectory. ... 271

Figure 8-1 Results of simulation 1 showing the planned (a) and actual (b) path of the

manipulator through T-space, the planned and actual path through C-space (b) and

the locations of each joint in time (d). ... 280

Figure 8-2 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in

scenario 1. .. 281

Figure 8-3 Demand path and trajectory, actual path and tracking error over time for a

waypoint tolerance of 𝟎. 𝟓° in scenario 1. ... 282

Figure 8-4 Results of simulation 2 showing the planned (a) and actual (b) path of the

manipulator through T-space, the planned and actual path through C-space (b) and

the locations of each joint in time (d). ... 284

Figure 8-5 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in

scenario 2. .. 285

Figure 8-6 Demand path and trajectory, actual path and tracking error over time for a

waypoint tolerance of 𝟎. 𝟓° in scenario 2. ... 285

Figure 8-7 Time response of demand path and trajectory and actual manipulator

path. ... 286

Figure 8-8 Tracking error of manipulator against trajectory. 286

Figure 8-9Tracking error of manipulator joints in scenario 2. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path. ... 287

Figure 8-10 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-9. .. 287

Figure 8-11 Results of simulation 3 showing the planned (a) and actual (b) path of

the manipulator through T-space, the planned and actual path through C-space (b)

and the locations of each joint in time (d). .. 290

xxxiii

Figure 8-12 Tracking error of manipulator joints in scenario 3. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path. ... 291

Figure 8-13 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-12. .. 291

Figure 8-14 Plot of planned C-space trajectory and actual path over time. Blue at the

start and red at the end. ... 292

Figure 8-15 Tracking error over the time range shown in Figure 8-14.................... 292

Figure 8-16 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in

scenario 3. .. 292

Figure 8-17 Demand path and trajectory, actual path and tracking error over time for

a waypoint tolerance of 𝟎. 𝟓° in scenario 3. .. 293

Figure 8-18Tracking error of manipulator joints in scenario 3. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path. ... 293

Figure 8-19 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-18. .. 294

Figure 8-20 Results of simulation 4 showing the planned (a) and actual (b) path of

the manipulator through T-space, the planned and actual path through C-space (b)

and the locations of each joint in time (d). .. 296

Figure 8-21Tracking error of manipulator joints in scenario 4. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path. ... 297

Figure 8-22 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-21. .. 297

Figure 8-23 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in

scenario 2. .. 298

xxxiv

Figure 8-24 Demand path and trajectory, actual path and tracking error over time for

a waypoint tolerance of 𝟎. 𝟓° in scenario 2. .. 298

Figure 8-25 Results of simulation 5 showing the planned (a) and actual (b) path of

the manipulator through T-space, the planned and actual path through C-space (b)

and the locations of each joint in time (d). .. 300

Figure 8-26Tracking error of manipulator joints in scenario 5. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path. ... 300

Figure 8-27 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-26. .. 301

Figure 8-28 Actual path of manipulator arm in scenario 5 with a waypoint tolerance of

𝟎. 𝟓°. ... 302

Figure 8-29 Time based plots for planned path and trajectory, actual path and

tracking errors in scenario 5 with a waypoint tolerance of 𝟎. 𝟓°. 302

Figure 8-30 Planned and actual C-space paths for the manipulator arm in scenario 5

with a waypoint tolerance of 𝟎. 𝟓°. .. 303

Figure 8-31 Results of simulation 6 showing the planned (a) and actual (b) path of

the manipulator through T-space, the planned and actual path through C-space (b)

and the locations of each joint in time (d). .. 304

Figure 8-32Tracking error of manipulator joints in scenario 6. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path. ... 305

Figure 8-33 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-32. .. 306

Figure 8-34 Actual path of manipulator arm in scenario 5 with a waypoint tolerance of

𝟎. 𝟓°. ... 306

Figure 8-35 Time based plots for planned path and trajectory, actual path and

tracking errors in scenario 5 with a waypoint tolerance of 𝟎. 𝟓°. 307

xxxv

Figure 8-36 Planned and actual C-space paths for the manipulator arm in scenario 5

with a waypoint tolerance of 𝟎. 𝟓°. .. 307

Figure A-1 Alternate representation of optimisation technique comparison (linear). xxii

Figure A-2 Alternate representation of optimisation technique comparison

(logarithmic). .. xxiii

Figure A-3 Further PID controller testing results. ... xxiv

Figure A-4 Further PID controller testing results. ... xxiv

Figure A-5 Further PID controller testing results. ... xxiv

Figure A-6 Further PID controller testing results. ... xxiv

Figure A-7 Further PID controller testing results. ... xxiv

Figure A-8 Further PID controller testing results. ... xxiv

Figure A-9 Further PID controller testing results. .. xxv

Figure A-10 Further PID controller testing results. .. xxv

Figure A-11 Further PID controller testing results. .. xxv

Figure A-12 Further PID controller testing results. .. xxv

Figure A-13 Further PID controller testing results. .. xxv

Figure A-14 Further PID controller testing results. .. xxv

Figure A-15 Further PID controller testing results. ... xxvi

Figure A-16 Further PID controller testing results. ... xxvi

Figure A-17 Further PID controller testing results. ... xxvi

Figure A-18 Further PID controller testing results. ... xxvi

Figure A-19 Further PID controller testing results. ... xxvi

Figure A-20 Further PID controller testing results. ... xxvi

Figure A-21 Further PID controller testing results. .. xxvii

xxxvi

Figure A-22 Further PID controller testing results. .. xxvii

Figure A-23 Further PID controller testing results. .. xxvii

Figure A-24 Further PID controller testing results. .. xxvii

Figure A-25 Further PID controller testing results. .. xxvii

Figure B-26 Results from a number of runs of the path planning algorithm for 2 to 9

degrees-of-freedom. ... xxix

Figure B-27 Enlarged view of Figure B-26 to display only the results for path

planning in 2 to 6 degrees-of-freedom... xxx

xxxvii

TABLE OF EQUATIONS

(2.1) .. 35

(2.2) .. 40

(2.3) .. 41

(2.4) .. 42

(2.5) .. 42

(2.6) .. 43

(2.7) .. 46

(2.8) .. 48

(2.9) .. 48

(2.10) .. 48

(2.11) .. 48

(3.1) .. 56

(3.2) .. 57

(3.3) .. 58

(3.4) .. 59

(3.5) .. 59

(3.6) .. 60

(3.7) .. 60

(3.8) .. 60

(3.9) .. 63

(3.10) .. 65

xxxviii

(3.11) .. 65

(3.12) .. 66

(3.13) .. 66

(3.14) .. 66

(3.15) .. 67

(3.16) .. 67

(3.17) .. 68

(3.18) .. 68

(3.19) .. 68

(3.20) .. 68

(3.21) .. 69

(3.22) .. 69

(3.23) .. 69

(3.24) .. 70

(3.25) .. 70

(3.26) .. 71

(3.27) .. 71

(3.28) .. 71

(3.29) .. 72

(3.30) .. 72

(3.31) .. 72

(3.32) .. 72

(3.33) .. 72

(3.34) .. 72

xxxix

(3.35) .. 73

(3.36) .. 73

(3.37) .. 73

(3.38) .. 73

(3.39) .. 73

(3.40) .. 74

(3.41) .. 74

(3.42) .. 74

(3.43) .. 74

(3.44) .. 75

(3.45) .. 75

(3.46) .. 75

(3.47) .. 75

(3.48) .. 75

(3.49) .. 76

(3.50) .. 77

(3.51) .. 78

(3.52) .. 78

(3.53) .. 78

(3.54) .. 78

(3.55) .. 78

(3.56) .. 78

(3.57) .. 79

(3.58) .. 79

xl

(3.59) .. 79

(3.60) .. 79

(3.61) .. 80

(3.62) .. 80

(3.63) .. 80

(4.1) .. 85

(4.2) .. 86

(4.3) .. 87

(4.4) .. 87

(4.5) .. 87

(4.6) .. 88

(4.7) .. 88

(4.8) .. 88

(4.9) .. 88

(4.10) .. 88

(4.11) .. 89

(4.12) .. 89

(4.13) .. 89

(4.14) .. 90

(4.15) .. 90

(4.16) .. 91

(4.17) .. 91

(4.18) .. 91

(4.19) .. 91

xli

(4.20) .. 92

(4.21) .. 92

(4.22) .. 93

(4.23) .. 94

(4.24) .. 94

(4.25) .. 95

(4.26) .. 96

(4.27) .. 96

(4.28) .. 97

(4.29) .. 97

(4.30) .. 97

(4.31) .. 98

(4.32) .. 98

(4.33) .. 99

(4.34) .. 99

(4.35) .. 100

(4.36) .. 100

(4.37) .. 100

(4.38) .. 101

(4.39) .. 103

(4.40) .. 103

(4.41) .. 103

(4.42) .. 103

(4.43) .. 105

xlii

(4.44) .. 125

(4.45) .. 127

(4.46) .. 127

(4.47) .. 137

(4.48) .. 137

(4.49) .. 138

(4.50) .. 138

(4.51) .. 138

(4.52) .. 138

(5.1) .. 152

(5.2) .. 154

(5.3) .. 156

(5.4) .. 157

(5.5) .. 158

(5.6) .. 166

(6.1) .. 200

(6.2) .. 200

(6.3) .. 200

(6.4) .. 200

(6.5) .. 200

(6.6) .. 202

(6.7) .. 203

(6.8) .. 203

(6.9) .. 204

xliii

(6.10) .. 204

(6.11) .. 204

(6.12) .. 205

(6.13) .. 205

(6.14) .. 207

(6.15) .. 207

(6.16) .. 207

(6.17) .. 208

(6.18) .. 208

(6.19) .. 208

(6.20) .. 208

(6.21) .. 211

(6.22) .. 211

(6.23) .. 211

(6.24) .. 212

(6.25) .. 212

(6.26) .. 213

(6.27) .. 213

(6.28) .. 213

(6.29) .. 214

(6.30) .. 214

(6.31) .. 214

(6.32) .. 214

(6.33) .. 215

xliv

(6.34) .. 215

(6.35) .. 218

(6.36) .. 219

(6.37) .. 219

(6.38) .. 220

(6.39) .. 220

(6.40) .. 221

(6.41) .. 222

(6.42) .. 222

(6.43) .. 222

(6.44) .. 222

(6.45) .. 223

(6.46) .. 223

(6.47) .. 229

(6.48) .. 236

(7.1) .. 253

(7.2) .. 253

(7.3) .. 265

1

1 INTRODUCTION

In the field of Defence Engineering, there are applications which require the use

of highly accurate robotic manipulator arms in close-proximity environments,

especially those of Improvised Explosive Device (IED) disposal (Beltran-Gonzalez, et

al., 2007), (Dubowsky & Vance, 1989), (Nguyen & Bott, 2000), (Goldenberg, et al.,

2000). In this thesis a method of path generation for a 3-degree-of-freedom (3-DoF)

robotic manipulator arm with the purpose of IED disposal is developed that can in

real-time plan a path through a close-proximity environment, avoiding collisions with

obstacles by all parts of the manipulator arm. Environment data are not required to

be known a priori and the technique has the potential to generate paths for n-DoF

manipulator arms. Since the application of the technique is for IED disposal, and

IEDs tend to be installed in concealed locations with very little access space and are

designed to be very unstable, the technique has the capability of approaching and

tracking the edges of obstacles and environments rather than completely avoiding

them.

1.1 Background to Research

This research carried out in this thesis was partially sponsored by the defence-

solutions company Allen Vanguard™. Allen Vanguard™ researches and

manufactures countermeasures against hazardous threats. These threats include

various explosive devices and chemical, biological, radiological and nuclear agents.

The company produces various products to counter these hazards. These include

two remotely operated vehicles (ROVs): Digital Vanguard (Figure 1-1) and Defender

(Figure 1-2). Digital Vanguard is a 56 kg tracked vehicle with an electronic servo-

controlled robotic arm and three cameras installed in various locations. Defender is

a 275 kg six-wheeled, skid-steer vehicle, with a heavier duty hydraulic-powered

robotic arm and six cameras with varied functionality.

2

Figure 1-1 Digital Vanguard ROV (Photo courtesy of Allen Vanguard™).

These robots require a highly skilled operator to control them as they do not have

installed any sensors other than cameras and so provide very little information to the

operator other than the visual feeds. In the case of the smaller robot, Digital

Vanguard, without any sensors indicating its position, the robotic arm can be

unintentionally operated outside of its designed envelope, to the point where it is

able to cut the cables controlling it. For this reason the operator has to divert a lot of

their time and attention to monitoring the state of the robot rather than carrying out

the primary mission of IED detection and disposal.

Figure 1-2 Defender ROV (Photo courtesy of Allen Vanguard™).

3

The diagram in Figure 1-3 illustrates the breakdown of the functions required to

provide autonomous control of the Digital Vanguard ROV. This control can be split

into two main areas, control of the skid-steer drive unit, and control of the

manipulator arm. In each case simultaneous localisation and mapping (SLAM) must

take place, and also path planning to avoid any obstacles. This path must then be

followed by the vehicle in order to reach the required target.

Fully Autonomous Skid-
Steer IED Disposal ROV

Autonomous Skid-Steer
Drive Unit

Autonomous Robotic
Manipulator Arm

Skid-Steer Motion
Control

SLAM
Localisation Mapping

Manipulator Guidance

Path Planning Path Following

Vehicle Guidance

Path Planning Path Following

Robotic Manipulator
Motion Control

Figure 1-3 Flow Diagram showing the breakdown of autonomous functions for control

of the ROV in question.

Achieving fully autonomous navigation of a vehicle of this type would require a

significant amount of work, far in excess of the scope of this project. Therefore the

work presented in this thesis will focus on the subsection of Figure 1-3 which is

highlighted in red to bring autonomous navigation to the robotic manipulator arm.

4

This project will focus solely on the autonomous navigation of the robotic manipulator

which is attached to the vehicle. The one aspect of the drive unit that will be taken

into consideration is that the motion of the vehicle means that the arm will not remain

in the same location, and therefore the environment will change. This means that

knowledge of the environment may not be known a priori and the guidance algorithm

for the arm will have to work in real time to continually provide a safe path for the

manipulator arm to follow around obstacles in the environment.

Autonomous operation of the robotic manipulator requires enough accuracy to be

able to navigate safely through a close-proximity environment without the risk of

collision. For operation of the manipulator to carry out the disarmament of an IED,

the environment is required to be mapped in much more detail than is needed for

navigation with the vehicle platform. This can be done for a much smaller area since

the vehicle must navigate over hundreds of metres of terrain, but the arm is only

needed to disarm the IED in the final stage of the mission. The area in which the

manipulator can move needs to be mapped, and obstacle avoidance needs to be

carried out effectively so that collisions are very unlikely to take place, and this is

imperative when sensitive explosive material may be present. Path planning through

the environment to place the manipulator in the correct location to carry out its

function is required, and subsequent following of the planned path needs to have a

near zero number of errors.

Path planning techniques exist for robotic manipulators in various configurations and

sizes, and in many different applications, but there is very little work reported in the

literature that could be applicable to a scenario where the arm needs real-time path

planning in a changing environment due to its mobility, and requires the ability to

safely navigate in a new, heavily constrained space every single time it is used. This

means that in the application of robotics for IED detection and disposal there is a

need to develop a technique which can satisfy these requirements. Given that one

of these requirements is for the robotic arm to be manoeuvred through potentially

very tight spaces, consideration must be given to the position and trajectory of each

link in the arm, not just the end effector.

5

1.2 Research Question

Having considered the background laid out in section 1.1, and the narrowing of

scope to an achievable subset of the overall problem of navigational autonomy in the

vehicles presented, the following research question is proposed:

“Is it possible and feasible to implement a path-generation algorithm that is capable

of guiding a robotic manipulator arm through a close-proximity environment with the

aim of carrying out Improvised Explosive Device disposal missions?”

To adequately answer this question, the aim and objectives discussed in section 1.3

have been determined.

1.3 Aims and Objectives

The aim of the work reported in this thesis is to develop a method of path planning

for mobile 3-DoF manipulators that can plan a safe path in real-time through an

environment around obstacles and towards a target object. This path will consider

not just for the end effector but the manipulator arm in its entirety.

To satisfy this aim, several objectives must be met. In order to test any guidance

method, either a software or hardware model must be implemented so that any

planned path through an environment can be tested for feasibility, in essence

validating the guidance method. Since a simulated system should be fully

predictable given that it is governed by a set of known equations, a dynamic model

of a 3-DoF manipulator arm will be developed for use in the majority of the work

carried out in this thesis.

Once a predictable dynamic model has been developed, a suitable control schema

will be selected and tuned to provide system behaviour which is capable of following

a planned path. It is also important to know the limitations of the controlled system

as any path generation technique must be designed to take into account such

limitations.

6

The main focus of this thesis is to develop a guidance method which is capable of

planning a safe path through close-proximity environments. Obstacle data are

required to be modelled in an accurate way, taking into account any assumptions

made for ease of simulation. This ensures that a usable and realistic data set is

available for use in the mapping and path planning stages of the arm guidance.

Once data about obstacles in the environment have been obtained, a usable map of

such data must be built in an appropriate way for the path planning to be carried out.

Finally, a method of planning safe paths through the environment must be

investigated, taking into account the limitations of the arm and sensor data.

Following the development of a guidance method the developed method must be

validated and assessed for its limitations. This gives the aim and a series of

objectives as follows:

Aim:

 Develop a method of planning a safe path for a 3-DoF robotic manipulator

arm in 3-D close-proximity environments.

Objectives:

 Derivation of a dynamic model of a 3-DoF robotic manipulator arm.

 Implementation of a suitable control schema for such a dynamic system.

 Development of a guidance method for safe navigation of the controlled

dynamic model through close-proximity environments to include

- realistic obstacle data of increasing complexity;

- creation of a suitable environment map;

- development of a suitable path-generation method, taking into account

arm and mapping and localisation sensor limitations.

 Validation of the guidance method to assess its strengths and limitations.

The aim and objectives set out in this section will be achieved by combining together

in a novel way methods of robotic manipulator kinematic and dynamic modelling,

manipulator control, environment mapping and path planning and following as

outlined in section 1.4.

7

1.4 Project Outline

With the above research question and the suggested aim and objectives in mind a

novel concept for navigational autonomy in the manipulator arm is developed. This

concept uses localisation sensor data to create a map of the environment. It then

uses a method of path generation and following to guide the manipulator arm

through this environment, avoiding obstacles in the way, to reach the mission

objective. In the case of the Digital Vanguard ROV, which has a 3 degree-of-

freedom manipulator arm, path generation is required for each of the three arm links

to guide the entire arm through the environment. This means that three 3-D paths

must be generated. In the case of much larger robotic arms, with higher degrees of

freedom, this would require a 3-D path to be generated for each link in the arm. In

many high-degree-of-freedom robotic arms the solution to the multiple 3-D path

generation problem is to plot a path for the first link in the arm limiting the area in

which the entire arm operates to avoid obstacles. Every successive link then follows

the same path therefore only one path is generated through space. The technique

proposed in this thesis has the advantage of only having to generate one path that

will drive each link to follow a safe path to the goal. In close-proximity environments

the tight-volume-constraints that exist during the mission could mean that there may

not always be a solution that allows the arm to manoeuvre in such a way as to

achieve its objective, and therefore the proposed technique or any other may fail to

find a safe path through the environment.

To calculate the range of joint angle combinations of the Digital Vanguard

manipulator arm that cause collisions with obstacles in the environment, the

Euclidean coordinates of the obstacles are passed through an inverse kinematic

model of the arm. In the case of the three-degree-of-freedom arm, this provides a

three-dimensional set of data specifying the joint angles where collisions occur. This

3-D data set contains the collision range of the arm with the environment in terms of

the joint angles, which are the direct control requirements of the arm. The data set

can be considered to be a map of the environment with the obstacles specified in

terms of the control requirements of the arm.

8

The Euclidean coordinates of the manipulator end effector at its starting position and

at the required end position can also be passed through the kinematic model to

calculate these two locations in terms of the newly acquired map. With these two

points in the control domain, a path can be plotted from the end effector starting

point to the end location, avoiding all obstacles. This path is now represented in

terms of the direct control requirements of the robotic arm, which is useful for guiding

the end effector to its mission objective.

This method allows for the possible implementation of obstacle avoidance for the

entire arm, and provides enough information for path planning of the arm in very

strict volume constraints, allowing the end effector to be placed in the desired

location, having been manoeuvred through very tight spaces to get there. This

method only requires one path to be generated for the entire manipulator arm.

The flowchart in Figure 1-4 shows a breakdown of the processes required to get

from the initial sensor and user inputs to a path which can then be followed by the

arm implementation, which in this case will be a dynamic model of a 3-DoF

manipulator arm.

9

Sensor

Arm Position and

Pose

(Servo Encoders)

Sensor

External

Information

(e.g. LIDAR)

User Input

Desired End

Effector Location

Environment

Mapping

Map Conversion to

C-space

Plotting of Current

and Desired End

Effector Location

Path Generation Path Following
Arm Servo

Controllers

Arm Dynamics

Arm Kinematics

Figure 1-4 Breakdown of the processes required for an autonomous robotic

manipulator arm.

1.5 Assumptions and Bounds

In the context of this project, the problem will be simplified and assumptions will be

made in order to provide constraints that allow for a solution to be developed within

the given timescale. The assumptions that have been made to narrow down the

research and development of the proposed method are as follows:

 It will be assumed that the location data and dimensional parameters of

objects in the environment have already been obtained by a suite of sensors,

10

whether these be the visual sensors already employed by the ROV, or other

types of sensor such as IR or laser rangefinders, LIDAR, RADAR or SONAR.

 Since the location data and dimensional parameters of objects in the

environment are assumed to be obtained by sensors, the environment data

can be simulated and input into the guidance method.

Having made these assumptions the previously displayed flowchart in Figure 1-4 has

been updated to illustrate how these assumptions affect the implementation of the

overall solution in Figure 1-5.

Sensor

Arm Position and

Pose

(Servo Encoders)

Simulated

Environment Data

User Input

Desired End

Effector Location

Map Conversion to

C-space

Plotting of Current

and Desired End

Effector Location

Path Generation Path Following
Arm Servo

Controllers

Arm Dynamics

Arm Kinematics

Figure 1-5 Breakdown of the processes required for an autonomous robotic

manipulator arm, including assumptions made and colour coded to match the

remaining chapters of the thesis.

11

The steps highlighted by the dashed red box in Figure 1-4 have been replaced with a

single box that is responsible for simulated environment data in a useable format

rather than data obtained by sensors. The coloured blocks in this figure represent

the work carried out in Chapters 3-7. The arm kinematics block, outlined in red, is

detailed in Chapter 3; the green block representing the arm dynamics is detailed in

Chapter 4; the control of the servo motors which will drive the arm along a path,

illustrated by the blue blocks in the figure, is dealt with in Chapter 5; the control

domain mapping process outlined in purple in the figure is dealt with in Chapter 6

and the path generation method, orange, is detailed in Chapter 7.

1.6 Contributions

There are several contributions to knowledge made in the work presented in this

thesis. The work presented here includes the implementation of a path-generation

and following algorithm for a manipulator arm that is designed for use on a skid-steer

vehicle with the main purpose being IED disposal. This means that there is no a

priori knowledge of the environment at the start of every new mission, and the

algorithm has to generate a map in real-time of the environment in C-space and

generate a safe path around obstacles in order to reach the target end-effector

position.

While techniques exist in the literature on manipulator guidance that seeks to solve

the problem of path planning for the entire manipulator or attempt to solve the

problem of path planning for an end effector in real-time, no technique exists which is

able to successfully combine all of these factors, especially in a completely unknown

environment and in such close proximity to obstacles.

The technique presented here uses graph theory in configuration space (C-space),

which has never been previously applied in this way. Its implementation to

manipulator guidance in C-space highlights its power in such a control domain since

it has the capability to handle path planning in an unlimited number dimensions

providing that an adjacency matrix can be calculated for n-dimensional points in a

space.

12

The major contribution of the research presented in this thesis is that existing

methods in the areas of robotic manipulator guidance and control, environment

mapping and path planning have been drawn together and combined in such a way

as to develop a guidance technique that is capable of satisfying all of the following

attributes.

 The developed technique is capable of path planning in high

complexity environments in real-time (i.e. less than 0.1 seconds).

 It has the potential to be applicable to n-DoF manipulator arms for 3-D

environments.

 This method is capable of dealing with unknown environments as the

manipulator arm is installed on a mobile vehicle therefore the

environment is not a permanent reachable space that can be mapped

a priori.

 Joints are not decoupled for path generation and so there is only one

trajectory, therefore trajectories do not need to be resynchronised.

 This method is able to track around obstacles in the control domain

which translates into edge following in Euclidean space.

When considering the problems of task space (T-space) to C-space conversion and

path generation for graph theory, different solutions have been investigated in order

to find those which are appropriate for real-time applications and so a comparison of

techniques has been presented. Thus a trigonometric approach to T-space to C-

space conversion and Dijkstra’s algorithm as the solution to the pathing in T-space

have been presented as the best options in the case of this application.

1.7 Summary

This chapter introduces the problem of path planning for a robotic manipulator in

dangerous close-proximity environments and discusses the background surrounding

the research question. The aims and objectives and novelty of the work are

discussed as well as the constraining factors. It also outlines a possible solution that

will be further explored in the following chapters.

13

Chapter 2 reviews the literature in the areas of modelling, control, mapping and path

planning in the context of robotic manipulator arms. This review of literature serves

as the basis for the further investigation and design decisions made in Chapters 3-7

of this thesis. Chapter 3 describes the forward and inverse kinematics of a 3-DoF

arm to provide a method of localisation of the robotic manipulator in space, and also

the Euclidean environment to control domain map conversion. In Chapter 4, the

derivation of a dynamic model of the same robotic manipulator is carried out in order

to build a predictable test bed for use in the validation of the guidance method.

Chapter 5 deals with the selection, implementation and tuning of a control schema

which allows the dynamic model to follow a planned path and inform the

development of a mapping and path planning algorithm when considering the

physical and practical limitations of the system. Chapter 6 develops a method of

converting obstacle data from the Euclidean domain to a domain which is

representative of the direct control requirements of the manipulator arm and uses

that method to form a suitable map of the environment. Chapter 7 concentrates on a

method of generating a path through the map and discusses how to include time

based information to assist the manipulator arm to follow the path whilst remaining

within its physical boundaries. In Chapter 8 the complete technique is integrated

with the controlled robotic manipulator dynamic model and simulated environment

data is used to validate the effectiveness of the technique. Finally, Chapter 9 draws

all of the findings of the work together and provides a series of conclusions about the

guidance method proposed in this thesis and suggest future work to enhance and

improve the developed technique. The overall scope of the work carried out in this

thesis is summarised by the diagram in Figure 1-6.

14

Robotic Arm Dynamic

Model

Robotic Kinematic

Model

Localisation Data

Simulation

Mapping Algorithm

Path Generation

Algorithm

Validate Robotic Arm

Dynamic Model

Validate Robotic Arm

Control

Validate Complete

Algorithm using a

Validated Simulation

Model

Obtain SLAM Data

Generate Map

Generate Path

Apply Actuator

Control

Platform Subsystem

Coordination

Mapping

Path Following

Path Planning

Control

Modelling

Mathematical

Modelling

Obtain Simulation

Results
Validate Guidance

Technique

Autonomy

Research Question
Is it possible and feasible to implement a path-generation

algorithm, that is capable of guiding a robotic manipulator arm

through a close proximity environment with the aim of carrying out

Improvised Explosive Device disposal missions?

A graph-theory-based C-space path planner for mobile

robotic manipulators in close proximity environments

Historical

Background

Aims and

Objectives

L

I

T

E

R

A

T

U

R

E

R

E

V

I

E

W

R

E

S

E

A

R

C

H

PROJECT OVERVIEW

Context

Research

Title:

Novelty

Robotic Arm Control

Sensors

Figure 1-6 Project outline of the research presented in this thesis.

15

2 REVIEW OF LITERATURE

In the Introduction to this thesis the background and scope of the research to be

carried out have been discussed. This has determined the areas of literature to be

explored in this chapter which provide the necessary information for the investigation

and technique development carried out in the remainder of the thesis to allow the

overall aim and objective laid out in the Introduction to be satisfied.

There are four main areas of literature that are reviewed in this chapter. Techniques

for modelling of the forward and inverse kinematics of a robotic manipulator are

investigated to provide a basis for the work carried out in Chapters 3 and 6.

Literature regarding the dynamic modelling of a robotic manipulator arm is also

investigated since it will inform the work carried out in Chapter 4, where a dynamic

model of a 3-DoF robotic manipulator will be derived for use as the main system for

the remainder of the research. In this chapter appropriate methods of feedback

compensation are also investigated to provide the necessary information for the

selection of a suitable control schema in Chapter 5 to provide adequate control the

manipulator arm such that it is able to follow any generated path without any unsafe

deviation. In chapters 6 and 7 a suitable guidance method is developed which

involves the areas of environment mapping, including sensors, path generation and

path following.

2.1 Modelling of Robotic Manipulators

The following section of this chapter presents a review of literature in the area of

robotic manipulator kinematic and dynamic modelling to provide a basis for the

derivation of forward and inverse kinematics and a predictable dynamic model of a 3-

DoF manipulator arm.

Turney et al. (1980) develop two formulations for robot arm dynamics. One of these

is based on Lagrangian mechanics, and the other based on Newton-Euler (N-E)

mechanics. The authors then show that the two approaches are mathematically

16

equivalent and the computational complexity of the methods is compared. Finally, a

modified formulation of the Newton-Euler method is developed which is then proved

to be less computationally complex and that allows more parallelism in its

computation than the original two formulations. Table 2-1 and Table 2-2 display the

results presented by Turney et al. and assess which method has the smallest

computational overheads for a 3-DoF manipulator arm. In this case n is the number

of degrees of freedom of the manipulator arm.

Table 2-1 Extract from a computational complexity comparison of Lagrangian and

Newton-Euler mechanics from Turney et al. (1980)

Approach Multiplications Additions

Lagrange 81

6
𝑛3 +

165

2
𝑛2 + 5𝑛

40

3
𝑛3 + 58𝑛2 −

64

3
𝑛

Newton-Euler 108𝑛 − 12 100𝑛 − 9

Table 2-2 Comparison of Lagrangian and Newton-Euler methods in relation to a 3-DoF

robotic manipulator arm.

Approach Multiplications Additions

Lagrange 1122 818

Newton-Euler 312 240

From these results it is clear that the Lagrangian mechanics have a computational

complexity which is approximately 3 times a large as the Newton-Euler method for a

3-DoF manipulator arm.

Lee (1982) uses vector geometry and rotational matrices to describe the kinematics

of a robotic arm, and uses the Denavit-Hartenberg (D-H) representation to describe

the relationship between linkages in the arm. The author then uses the N-E,

Lagrange-Euler (L-E) and Generalised d’Alembert Equations of Motion

17

representations to describe the dynamics of the robotic arm, and concludes that all

three are useful depending on the required specification of the user.

Everett and Suryohadiprojo (1988) present work attempting to prove that regardless

of the kinematic model that is chosen for a robotic manipulator there is a maximum

number of parameters that must be determined. This characteristic implies that

model accuracy cannot be improved by adding “extra” parameters. The paper also

shows how to model a manipulator so that a minimum Jacobian is used, which

reduces the computation required for calibration.

Mooring and Padavala (1989) describe a measurement system which collects data

about the pose of a robot manipulator. The data is then used to identify the

parameters which can then be used to identify the parameters of a manipulator.

Zhuang et al. (1992) propose a kinematic modelling convention for robotic

manipulators. The modelling convention, named the CPC model because of the

completeness and parametric continuity properties it displays, uses a singularity-free

line representation which consists of four line parameters. The model works by

transforming between the world axes and axes of the robotic manipulator base, and

also the axes of final link and the axes of the installed tool, allowing for the location

of each part to be described both in terms of the world axes or the base axes. All of

the redundant parameters can be systematically eliminated from the model allowing

for a linearised robot error model to be constructed. In this model all error

parameters are independent and span the entire geometric error space, which

makes the model useful for robot calibration. The authors focus on model

construction, mappings between the D-H model (Denavit & Hartenberg, 1955),

(Hartenberg & Denavit, 1964), the study of the model properties and its application to

robot kinematic calibration.

Kostic et al. (2004) carry out a case study which explains a procedure for getting

models of robot kinematics and dynamics that are appropriate for robot design. The

authors concentrate heavily on the design of identification experiments and online

reconstruction of state coordinates, which influence the quality of the estimation

process. They state that the modelling of friction and the estimation of friction

parameters are important and so consider them in detail. The method uses rigid

18

body dynamics so does not take into consideration compression and bending of

joints and linkages.

2.2 Control of Robotic Manipulators

The following section of this chapter presents a review of literature in the area of

robotic manipulator control in order to select an appropriate control schema to

provide adequate performance for the manipulator arm.

D. E. Whitney (Whitney, 1969) analyses the kinematics of remote manipulators and

human prostheses to derive resolved motion rate control. The approach taken

suggests solutions to problems of coordination, motion under task constrains, and

appreciation of forces encountered by a controlled hand. The author concludes that

working with rates means that the problem remains linear, regardless of the arm

configurations. The paper shows that the operator can obtain control of motion

easily along the “world coordinates” if the control actions are modified by the inverse

of the arm’s Jacobian Matrix. This allows for a choice of several different coordinate

systems in which to control.

In Saridis and Lee (1979), the authors develop a theoretical procedure for comparing

the performance of arbitrarily selected admissible controls with each other and with

the optimal solution of a nonlinear optimal control problem. The authors propose a

recursive algorithm for sequential improvement of the control law which converges to

optimal. The approach is applied to the approximately optimal control of a trainable

manipulator with seven degrees-of-freedom, where the controller is used for motion

coordination and optimal execution of object-handling tasks.

Luh et al. (1980) state that a manipulator is very difficult to control due to the

nonlinearity of the system and the high level of coupling between the joints. They

present a technique which adopts the idea of an “inverse problem” and extend the

results of resolved-motion-rate controls. The method deals directly with the position

and orientation of the end effector. The approach taken by the authors is to specify

acceleration and execute the feedback control at the hand level.

19

Koivo and Guo (1981) present an approach to the position and velocity control of a

manipulator by using an adaptive (self-tuning) controller. The system is modelled by

a set of time varying differential equations and the parameters of the system are

determined by an on-line recursive algorithm based on the least squares error

criterion. These differential equations and the chosen parameters are then used as

the basis for the design of an adaptive controller. The controller is calculated online

using the model with estimated values of the system parameters.

Lee and Chung (1982) also focus on the study of an adaptive control method. The

approach taken is based on the perturbation equations in the vicinity of a desired

trajectory. The highly coupled nonlinear dynamic equations of a manipulator are

expanded in the vicinity of a pre-planned joint trajectory to obtain the perturbation

equations. The adaptive control strategy reduces the manipulator control to that of a

linear system about a desired trajectory. The authors carry out numerical

simulations on a three-jointed robot arm and the results illustrate that the proposed

adaptive control algorithm performs better for various loading conditions than a

simple PD controller based on a computed torque technique. They conclude that a

clear advantage of the proposed formulation is that the nominal torques and the

variational torques can be completed separately and simultaneously.

Lea et al. (1993) investigate the feasibility of applying fuzzy logic based control for

robotic systems. They develop fuzzy logic based algorithms for semi-automatic

control of a robotic arm to eliminate the problem of inversion of Jacobian matrices in

conventional control. In the controller the difference between the desired location

and current location is fed in as an input vector and joint rate commands are

generated.

Jung and Hsia (1995) present a neural network control technique for non-model

based PD control of robot manipulators. The proposed technique compensates for

the robot dynamic uncertainties outside the control loop by modifying the desired

input trajectory. The authors use two neural network training signals to develop two

different control algorithms. One of the algorithms is comparable to that of the

Feedback Error Learning (FEL) technique proposed by Kawato et al. in (Kawato, et

al., 1987) and the other involves the Jacobian of the Proportional Derivative (PD)

controlled robot dynamic system.

20

Xin et al. use the State Dependent Riccati Equation (SDRE) Technique (Cloutier,

1997) to build a robust controller for robotic manipulators in (Xin, et al., 2001). The

authors formulate the control problem as a nonlinear optimal regulator problem to

treat the high level of nonlinearity in the problem. The SDRE technique is used to

synthesise an optimal controller for the robot control problem. A neural network

based controller was also synthesised in order to achieve the robustness in the

presence of the parameter uncertainties.

Yamada et al. (1998) present a robot manipulator control method using a

disturbance observer in task space and a simple coordinate transformation using the

transposed Jacobian matrix. The authors state that the control method can realise a

simple control algorithm with smaller computational overheads for large degree-of-

freedom robot manipulators, however, the inertial variation depending on

manipulator configuration is large due to the simplifications of the control algorithm.

This means that the decoupled error of the system influences the accuracy of the

system. Therefore, the authors introduce a multi-input multi-output (MIMO)

disturbance observer to the control of the system so that the non-diagonal elements

of the inertia matrix can be regarded as a control parameter. The authors also

introduce a design method for this observer which considers the quadratic stability of

the system.

Nahapetian et al. (2008) present a tuning method for a PID controller that uses a

Genetic Algorithm (GA) as a main gain estimator and Fuzzy Logic as a ranking

basement for the GA.

Tang et al. (2010) propose a self-adaptive Proportional Integral Derivative (PID)

controller based on a Radial Basis Function (RBF) neural network online

identification for a robot manipulator. This approach addresses the strong

nonlinearity and parameter uncertainty in manipulator control and solves the weak

adaptive ability and poor robustness of the conventional PID control. The approach

uses a self-adaptive single neuron network to tune the parameters of the PID

controller, while and RBF neural network identifies the manipulator online and

simultaneously obtains the Jacobian transformation for the controller.

21

2.3 Guidance

Two processes are required to provide guidance for the robotic arm. The first is to

provide information about the environment in the form of a map. The second is to

generate the path through the map from the starting location to the desired location.

2.3.1 Mapping

Before being able to plan a path for the arm, data about obstacles in the operating

space must first be obtained. In reality this data must be gathered using some form

of sensor. Several types of sensors are available for use in constructing a map of

the environment. A simple method of constructing a map is by using range data

from objects surrounding the vehicle. Range data can be obtained by measuring the

time between the transmission of a pulse of a waveform, either of light or sound, and

its subsequent arrival after reflection off a surface as seen in Figure 2-1. This is

known as time-of-flight (ToF). Knowing the time taken between the transmission and

receipt of the wave, and the speed of the wave in question, the distance to the object

and back can be calculated, and the distance to the object is half this.

Sensor
x

d

T

R

Object

Figure 2-1 Wave-based sensor operation using ToF to calculate the distance to an

object.

In this diagram T is the transmitter, R is the receiver, x is the distance to the object,

and d is the distance between T and R. This distance is often so small that it can be

considered negligible and treated as zero, simplifying the calculation.

22

Infrared (IR) sensors can be used for distance measurements as shown in (Benet, et

al., 2002). Infrared sensors are low cost and have a very quick response time, on

the order of 10 to 100 wave emission and detections per second (Akai, et al., 2006).

The disadvantage of using infrared sensors is that they exhibit highly non-linear

behaviour and depend heavily on the reflectance of the surface in question. This

causes environment maps made with measurements based on the intensity of back-

scattered IR light to be of poor quality. It is for this reason the IR sensors are almost

exclusively used as proximity detectors in mobile robots. There are ways of

estimating the properties of a surface based on its reflectance and subsequently the

distance from sensor to surface and its angle of orientation, such as the use of the

Phong Illumination Model (Novotny & Ferrier, 1999), which tends to increase the

accuracy of the range measurement.

Benet et al. (2002) also explain how ultrasonic (US) sensors can also be used for

distance measurement, with a precision of less than one centimetre over a distance

of six metres. These sensors are also relatively inexpensive; however they also

pose a very crucial disadvantage when being used for real time data gathering.

Most US sensor range finding is based on ToF measurement. With an object 6 m

away there is a total flight distance of 12 m. With a pulse speed of approximately

340 m s-1 the ToF is approximately 0.04 s. When compared to light based

waveforms with a pulse speed of approximately 3 × 108 m s-1 and ToF is 4 ×

10−8seconds, US has a very long response time, making range finding very slow in

comparison to light based ranging sensors. Other examples of US ranging and

mapping include (Audenaert, et al., 1992), (Rencken, 1993) and (Mohammad, 2009).

Another sensor which provides range information is a laser rangefinder. Laser

rangefinder sensors are highly capable of obtaining data in real time with a high

degree of accuracy. However, the sensors are very expensive, so using an array of

laser range-finding sensors to build up a map of the environment is impractical. An

alternative is to use a single rapidly scanning laser rangefinder to build a picture of

the environment. Buchberger et al. (Buchberger, et al., 1993) use a combination of

laser-radar and a sonar sensor so that a world model for obstacle avoidance could

be built.

23

A similar approach by Zhang et al. (Zhang, et al., 2005) uses a Light Detection and

Ranging (LIDAR) sensor in conjunction with a digital map and video image sequence

to build a 3-D model of a city landscape. Other, much older approaches have been

taken using sonar sensors both for mapping and localisation, and examples include

(Moravec & Elfes, 1985). Likewise, improvements in radar over the decades have

allowed it to be used not only for mapping and object detection, but to the point

where it can be used to track multiple moving objects (Mobus & Kolbe, 2004),

(Drumbeller, 2009) and (Elfes & Matthies, 2007)

LIDAR can also be utilised in a slightly different way to gather information about the

environment for the purposes of mapping. A technique called flash LIDAR imagery

can be implemented which provides highly detailed data for the construction of an

accurate map of the environment. A pulse from a wide beam laser can be sent out,

and the resultant reflection recorded using a high resolution camera. Each pixel can

be analysed individually to obtain useful information. Knowing the frequencies in use

by the LIDAR, ToF can be used to calculate the range to the object that can be found

in each pixel. Given that an emitted sensor pulse travels at the speed of light, this

technique can be considered to be almost instantaneous, therefore real-time,

working within μs for distances of kilometres. Another form of data that can be

collected from this technique is the intensity of the light that is reflected of the

frequencies in use. A large spike indicates that the majority of the light in that pixel

was reflected; therefore the object it reflected off was flat. If the reflected light is of a

lower intensity then less of the light has been reflected, and information about the

shape of the surface in that pixel can be inferred. Examples of flash LIDAR in use

are given in (Gelbart, et al., 2003) and (Hanna, et al., 2005).

d

Figure 2-2 Monocular ranging using known vehicle motion to cause disparity between

successive image frames.

24

Another method of gathering range data and building environment maps is to use

visual information from camera images. This can be done using a single camera in

one of several ways. The first is to take multiple images of the same object as the

vehicle moves along its path, knowing the motion of the vehicle hence the distance

between each image position, and measuring the disparity between images of the

same object to calculate the distance to the object as shown in Figure 2-2. The

biggest drawback to this approach is that the distance to the object can only be

calculated from successive images so is not instantaneous. In a similar way a

complete visual map of an object can be made by taking several images at known

location and orientations about the object. This technique is carried out Niem and

Wingbermuhle (Niem & Wingbermuhle, 1997).

d

mirrors

Figure 2-3 Monocular ranging using two mirrors at a known distance from each other

to provide two images, the disparity of which can be compared to calculate object

distance.

Another method used is to reflect the image of the object from two slightly different

positions into one camera, knowing the difference in the position of each reflector

and measuring the disparity between the reflections to calculate object range as

shown in Figure 2-3. This principle effectively simulates stereoscopic vision and

provides the range information in real time rather than over successive frames. This

is the case in (Shimizu & Okutomi, 2007) where Shimizu and Okutomi use a double-

sided half-mirror plate to provide two reflected images, as shown in Figure 2-4. This

approach is novel but not practical in a case where multiple cameras are already

installed on the vehicle as there is no need to add extra hardware to the vehicle for

stereoscopic ranging.

25

d

Figure 2-4 Monocular ranging using a pair of double-sided half-mirror plates a known

distance apart can be used to provide two images of the object, the disparity of which

can be compared to calculate distance.

A third approach to monocular ranging is to identify the object in the image from an

image memory and with this information gauge the approximate size of the object.

This parameter, along with the size of the object in pixels on the image can be used

to calculate the range of the object. This approach is taken by Menegatti et al. in

(Menegatti, et al., 2004). The greatest limitation with this approach is the high

memory requirement needed to store enough images to provide an adequate library

for object identification.

d

Figure 2-5 Binocular ranging using two cameras a known distance apart, and

measuring the disparity between the image taken by each to calculate the object’s

distance.

A simpler approach to visual ranging and mapping is to use multiple cameras to

provide stereoscopic images, as illustrated in

26

Figure 2-5. This approach does not require multiple image frames to provide a

disparity between images, which reduces the calculation time for range information.

This approach is taken by Murray and Little (2000) to provide real-time stereo vision

information. This information can be used for ranging, mapping, velocity estimation

(Ab-Rahman, et al., 2005) and 3-D object recognition (Stasse, et al., 2006). Object

recognition for localisation and map building can be enhanced by using edge

recognition to more easily identify object shapes. This type of approach is taken in

Rosenfield & Thurston (2006) and Tomono (2010).

Some of these sensor methods are impractical for this application since they would

be too large for the arm or base of the manipulator, but there are sensors of small

enough size and high enough accuracy for the majority of the above techniques. In

order to provide an accurate map of the environment in real-time with a large number

of data points, it will be assumed that a LIDAR sensor will be used, and data

obtained from objects will follow this assumption.

2.3.2 Path Generation and Following

Prior to the review of literature in the area of robotic arm guidance it is important to

consider some terms that are referred to in great frequency in the literature. The

physical world, which is the simplest to visualise occurs in the Euclidean domain.

This domain is also where tasks are carried out by manipulator arms and so is often

referred to in the literature as task space or T-space. However it can be useful to

visualise the world in terms of the manipulator joint combinations that would cause a

collision between the object and the manipulator arm, as in this visualisation, the

dimensions of space are the manipulator joint ranges, making the path that is

planned a single path through this space. The number of dimensions that are

present in this space is dependent on the number of degrees-of-freedom of the

manipulator arm. For example a 3-DoF arm would create a 3-D space, and an n-

DoF arm would create an n-D space. This space is often referred to as joint space

or configuration space (C-Space).

Path generation for manipulator arms is often carried out in the Euclidean operating

space with the path then being transformed into a trajectory in joint space to more

27

easily allow for the control of the manipulator (Gasparetto & Zanotto, 2007). The

trajectory generation can be done to satisfy different requirements, such as a time-

optimal solution (Gasparetto & Zanotto, 2007), (Ramos, et al., 2013), (Haschke, et

al., 2008); optimal-pose (Zha, 2002), which is especially useful in surgical robotics,

minimum energy or optimal power (Gasparetto & Zanotto, 2007), or minimal jerk

(Gasparetto & Zanotto, 2007), (Gasparetto & Zanotto, 2008), (Haschke, et al., 2008).

The solution to the problem of trajectory generation in robotic manipulators is

sufficiently complex that the manipulator dynamics are frequently removed to

decouple the manipulator joints from one another and calculate for each one

individually (Gasparetto & Zanotto, 2007). This paper presents a solution to the path

and trajectory generation problem which removes the need to decouple joints to

reduce complexity. The process of converting obstacles into the joint space (which

is no more complex than converting a pre-generated path into joint space) allows for

the manipulator arm to be considered a point mass, and a single path can be

generated to guide it through the joint space.

Leven and Hutchinson (2002) use random sampling in C-Space to create a

probabilistic roadmap of the obstacle-free space. This method is capable of planning

a path for a serial-link manipulator with 20 joints in 2 or 3 dimensions, but the method

is not able to cope with fine motion planning or narrow passages between obstacles,

which is an inherent drawback with random sampling approaches to this type of

problem. This makes this technique unsuitable for the application of path planning

and obstacle avoidance in close-proximity environments where the likelihood of

narrow passages is very high.

Lu and Chung (2005) present a method of path planning based on collision detection

which is safe for operation in close-proximity to humans. The method involves

driving the arm to its desired location, while ensuring that if a collision occurs it is

detected and an emergency stop command is enabled which controls the force level

to ensure it is below the human pain threshold to prevent injury. This method has

many benefits, especially since it allows robotic manipulators to be operated safely in

human presence, but is not useable in the application of IED disposal since the

lightest touch could trigger an explosive detonator.

28

Lin et al (2005) carry out potential field path planning in C-Space rather than the

Euclidean space. In order to solve the issue of local minima, the technique employs

a method of adjusting the potential gradient locally. This method is tested only in 2-

D, but can be used for 9-DoF, since the potential field will have an effect on all joints

and links in the arm. The paper concludes that the method can be extended to 3-D,

however, since this method acts on each specified point on the arm, it still effectively

has to generate a path for each link in the manipulator separately. Wei and Shimin

(2010) also use potential fields combined with neural networks to allow for path

planning in dynamic environments. The technique can be used to generate a path

which guarantees obstacle avoidance at a safe distance while planning the shortest

possible route through the environment while also having the benefit of low

computational load. This work utilises neural networks to provide optimisation of the

path. This method also suffers from the effects of local minima. Padula and

Perdereau (2011) use potential fields to control joint velocities in Euclidean space.

The benefit of controlling joint velocity is that it does not consider dynamics, and

therefore removes the requirement to deal with joint torques in control. This method

is effectively generating a path for each joint in the arm, and has the drawback of

suffering from the inherent problem of potential fields in that it may converge on local

minima in cluttered environments, making it unsuitable for the application of close-

proximity environments. Nakamura (2013) uses a 2-D dipole field to generate a path

for the end effector of a robotic manipulator. This paper states that the conventional

method used to prevent local minima settling often causes oscillations and that the

author’s proposed method seeks to prevent that occurring. The method is able to

provide a smooth path for the end effector in 3-D space, but the technique is carried

out offline and only deals with the end effector.

Ryu et al (2007) use inverse kinematic analysis of humanoid robots and a rapidly

exploring random tree (RRT) to generate a path in C-Space for the robot. This

method reduces the need to find several thousand unnecessary configurations,

which reduces computational complexity, but requires an initial and goal

configuration, which could be unsolvable if one or both of these configurations are

unsolvable. D’Silva and Miikkulainen (2009) have used neural networks RRT

methods to avoid obstacles in an environment with a 6-DoF manipulator arm. The

method of obstacle avoidance can occur in real time, but the learning by the neuro-

29

controllers takes place in an environment where the number of objects does not

change, but may move around, and the nodes in the network cannot relearn once

they have carried out their learning process. This makes the technique unsuitable

for use in a function where the environment will be different with every use of the

arm.

Ding et al (2009) use mixed-integer linear programming to plan an optimal path

through an environment with dynamic obstacles. The technique uses rectangular

approximation of object to simplify the computational requirements, but it requires

trajectories to be known a priori. The simplifying of obstacles to rectangular

approximations means that any concavity in the objects will be removed, and so

potentially navigable valleys where objects form a narrow channel will not be

considered by the path planning algorithm. This drawback removes the ability of the

algorithm to handle the close-proximity environments which are commonplace in IED

disposal applications.

Korayem et al (2009) attempt to overcome the non-linearity in flexible robot arm

dynamic equations using finite element analysis to plan a path in task space for the

end effector of a 2-DoF manipulator. The advantage of this method is that it

removes the need to linearize the system in order to implement optimal control

methods. Since this method only solves the path planning problem for the end

effector of a 2-DoF arm, it is not applicable to the problem of manipulator planning in

3-DoF for obstacle avoidance of the entire arm.

Chetty and Pomambalam (2012) employ a heuristic approach towards the planning

of a path for a manipulator which operates in a 2-D plane. The method uses an

iterative approach of particle swarm optimisation to search for random joint

combinations that will enable the arm to reach the desired end effector location

without colliding with obstacles at any point on the arm throughout the process. The

manipulator that is used is a planar 5-DoF manipulator, though this technique could

be applied to 3-D. The method is only applicable, however, in a static environment

with fixed obstacles since any motion would render potential solutions already found

ineffective or unachievable.

Chen et al (2012) use fuzzy logic to plan a path for a 2-DoF fixed pedestal

manipulator arm. Their approach is advantageous since it does not require inverse

30

kinematics, but only deals with obstacle avoidance for the end effector and only for a

2-DoF manipulator arm.

Singh and Leu (1987) carry out an offline trajectory planning algorithm for a

manipulator arm which it can then follow. They attempt to reduce the problem to a

trajectory search for a single link, but the inability to work in real time prevents this

algorithm from being useful for the application investigated in this project. Kubota et

al. (1997) attempt to solve this problem using a virus evolutionary algorithm. They

carry this process out by generating intermediate locations for the arm that are free

from collision and then plot trajectories between these different positions to achieve

their goal. Gasparetto and Zanotto (2007) use B-spheres to generate a smooth

trajectory rather than the jerk-bounded approach that has previously been used.

Macfalane and Croft (2003) use an online method to obtain jerk-bounded trajectories

using a concatenation of fifth order polynomials, and achieves the goal but requires

up to a maximum of eight points per trajectory waypoint. Dos Santos et al. (2008)

use joint velocity control to plan a path through a constrained workspace. This

technique is highly applicable in industrial environments where time-optimal solutions

are highly sought after. The method analyses the distance between points on the

entire manipulator and any obstacle to determine a safe path. This technique is run

offline however, and since the path is pre-generated, it cannot handle dynamic

environments or moving obstacles.

Koren and Borenstein discuss the use of the potential field method and its strengths

and limitations (Koren & Borenstein, 2002). The potential field method gained

popularity in the early 1990s for obstacle avoidance, especially when applied robot

manipulators. The potential field method is attractive because of its elegance and

simplicity, but has several substantial shortcomings such as trap situations due to

local minima, the inability to pass between closely spaced obstacles and oscillation

in the presence of obstacles and in narrow passages. It is these drawbacks that

make this method unsuitable for the guidance of the manipulator arm due to the tight

constraints that are imposed as a result of the nature of the function to be carried

out.

Hota and Ghose (2010) take a novel approach to path planning. Instead of planning

an optimal solution for a constant speed and turn rate constrained

31

Uninhabited/Unmanned Aerial Vehicle (UAV), they propose using a sub-optimal

solution. They compare their sub-optimal solution with an optimal one and conclude

that the optimal solution is very computation intensive and the sub-optimal solution

generates a solution close to the optimal one in a shorter time, with a lower

computational load, making it more efficient and more easily applicable to a UAV

with limited computational power.

Work has been carried out by the former Autonomous Systems Group at Cranfield

University involving guidance of UAVs. From 2007 onwards, Shanmugavel et al.

carried out work looking at two different geometric path planning algorithms for the

guidance for simultaneous arrival at a target of multiple UAVs.

Circle Based Dubins Path

Pythagorean-Hodograph Based Path

Figure 2-6 Comparison of a Dubins based path with a P-H based path that start and

end at the same position and pose.

In Shanmugavel, et al. (2007) the authors propose a technique for path following

based on Dubins Paths (Dubins, 1957). The technique aims to ensure simultaneous

arrival of all vehicles at the target by enforcing a constraint whereby the path length

of each UAV is the same. The authors state that the transition between arc and line

segments, which is required in Dubins path following, entails discontinuous changes

in lateral acceleration (latax) for fixed-wing UAVs. Because of this the authors make

the choice to replace the Dubins-based solution with one based on quintic

Pythagorean Hodograph (PH) curves as shown in Figure 2-6, with which the latax

demand is continuous. They design the PH paths to be similar in length to the paths

generated in the Dubins-based solution to maintain a near minimum time solution.

The solution meets the required specification of minimum curvature and produces

multiple paths of equal length by plotting paths for each UAV and then lengthening

32

those shorter than the others. The solution also satisfies the safety constraints and

avoids inter-collision by maintaining a minimum distance between UAVs and

maintaining a minimum distance between UAVs and maintaining non-intersection at

equal path distance.

In Shanmugavel, et al. (2009) the authors describe the cooperative path planning of

a group of UAVs, again with the constraint of simultaneous arrival of the UAVs at the

target. In this case the authors elect to use Dubins paths with Clothoid shaped arc

segments, where the curvature decreases gradually, rather than the instantaneous

change between zero curvature of the line segment and a much larger curvature of a

curved path segment. The paths are produced using the principles of differential

geometry used by White et al. in (White, et al., 2007).

Further work by the Autonomous Systems Group is carried out by Kim et al. (2010).

The authors propose the use of a decision making algorithm that mainly relies on

waypoint generation and path planning based on Dubins’ Theory to guarantee

communication between a ground control station and a swarm of UAVs. The

algorithm looks at various constraints such as maximum speed, minimum curvature

radius and no fly zones that arise in the mission operative scenario.

These methods are not directly applicable to manipulator arms in T-space since

there are multiple connected systems to plan paths for simultaneously, but if the path

were to be generated in the control domain, C-space, then the robotic manipulator

would become, in effect, a point mass. This would then allow the above techniques

to be applied to the problem of path planning for robotic manipulators.

Yao and Gupta (2007) plot a kinematic roadmap in C-Space with end-effector

constraints before using an RRT to plan a path. The technique uses task space for

end effector planning to narrow down the C-Space search. This method does not

guarantee a solution since selecting end effector start and end locations does not

ensure that an achievable path is possible, and this will only be discovered when the

RRT search is exhausted. Conversely, there may be a large number of possible

solutions that require searching in order to find the best route, be it time or energy-

optimum. Kunz et al (2010) implement real-time path planning in a changing

environment by building a roadmap of the environment and then generating a path

using a RRT method. This technique handles dynamic obstacles by blocking parts

33

of the roadmap so that the RRT algorithm cannot use them when an obstacle is in

that region of the roadmap. This technique is applicable to high-DoF and can

generate a path on the roadmap online and in real-time, but it is implemented in a

quasi-dynamic environment where the roadmap does not change, and so can

calculated off-line prior to the operation of the arm. This saves time when online, but

makes it difficult to apply when the roadmap would need to be generated prior to

every new mission.

Lahaouar et al (2005) employ a grid based method for path planning of manipulators

in C-Space, whereby the grid is developed for a path directly from the start

configuration to the end configuration, but does not consider any obstacle unless it

crosses the path, whereby a grid search takes place to find a safe path around the

obstacle. This significantly reduces the computational cost of the path generation

and this method has merit for the application of IED disposal since it involves edge

following. This method, however, is dependent on the resolution of the grid since a

grid square is classed as occupied if it is 1% full or 100% full. This method also has

to search in different directions to find the shortest path around an obstacle. This

doubled up search is time-consuming. Klanke et al (2006) use a genetic algorithm to

plot a path through a grid in C-Space. Their algorithm runs in real-time, and the local

node complexity does not depend on the dimensionality of the space. This is done

by decoupling the degrees of freedom to generate a path for each decoupled set.

For the grid-based methods of path planning, graph theory is a well-established

technique (Euler, 1766), (Biggs, et al., 1976). Graph theory is, in essence, the study

of graphs, and these can be used to examine, investigate and model relationships

between data or objects (Walther, 2012). They are used throughout science,

computing, finance, mathematics, and many other disciplines. Prime examples of

this are the search and cataloguing algorithms used by large databases owned by

companies like Google (Langville & Meyer, 2006) or Facebook (CBS & McCarthy,

2010). Graph theory is used to create connections between pieces of data. Graph

theory is also used to carry out energy optimisation (Kladis, et al., 2008). The use

that is most similar to that implemented here is for satellite navigation units, including

those used by the consumer market. Graph theory is used to plot a path between

destinations via road junctions, and can be carried out using the shortest distance,

quickest time, or best fuel consumption.

34

In this case a graph will is used to model the relationship between points in space.

The graph contains “vertices” which represent the points in space and “links” which

represent the paths between nodes, and connect them to each other. The length of

these vertices could represent a whole plethora of information, but for simplicity this

will be the distance between the nodes. This now forms a graph similar to that

shown in Figure 2-7.

1

2

3

4

6

7

5

a

b

c

d

f

h

g

e i

Figure 2-7 Example of a node graph (not to scale). Each node is numbered and the

vertices between them are labelled with letters.

Each of the nodes are numbered and each vertex has length, in this case these

lengths are defined by lower case a-i. This graph can also be represented by an nxn

matrix, where n is the number of nodes in the graph. In the example given

previously, this is a 7x7 matrix (A). Each element in the array represents the

relationship or vertex between the nodes that are equivalent to the horizontal and

vertical indices of the element.

For example the link between node 4 and node 7 is represented by A4,7 and A7,4.

The value of the distance between the nodes is the value recorded by the

corresponding elements in the array. For nodes that are connected this is the length

of the vertex. For values that are not connected, this length is infinite. For the

elements that represent the distance between a node and itself, the value is zero.

For the above example, this gives matrix A as seen in Equation (2.1):

35

 𝐴 =

[

0 𝑎 ∞ ∞ ∞ ∞ ∞
𝑎 0 𝑏 𝑐 ∞ ∞ ∞
∞ 𝑏 0 𝑑 ∞ 𝑓 ∞
∞ 𝑐 𝑑 0 𝑒 ∞ 𝑔
∞ ∞ ∞ 𝑒 0 ℎ 𝑖
∞ ∞ 𝑓 ∞ ℎ 0 ∞
∞ ∞ ∞ 𝑔 𝑖 ∞ 0]

(2.1)

This matrix is known as an adjacency matrix. It is worth noting that the lengths of the

vertices could mean something completely different. For example, if instead of

requiring the distance between the nodes, the energy requirement to travel between

them were needed, then the data presented as the vertex “length” would be the

energy cost. It is also interesting to note that if all of the links between nodes on the

graph can be traversed in both directions, then the adjacency matrix will be a

diagonal matrix as is the one above.

An advantage to graph theory is that any node, regardless of where it is situated, is

given an identifier which corresponds to a row and a column in the adjacency matrix,

which means that regardless of the number of variables needed to define a node

(e.g. x, y, z which corresponds to three-dimensional coordinates), the node can

always be represented in relation to all of the others by including it in a two-

dimensional adjacency matrix. This is also true when more than three dimensions

are required. This will be shown later in this chapter.

In the case of the technique being developed to provide autonomous path generation

and guidance for a robotic arm, several dimensions are needed, ranging from 5 to 9

or 10 dimensions. This presents a problem where the solution is one of high

dimensionality, and there are several methods that can be used for path planning in

multiple dimensions. The method chosen here has the ability to reduce the

dimensionality of the path planning problem from n to 2.

The map of the environment in Euclidean space is obtained from an array of sensors

and converted into the control domain. In the case of robot arm control this could

constitute the control requirements of each of the servos that move the arm in one

degree-of-freedom. In the case of a high degree-of-freedom arm the number of

36

dimensions could also be high. The nodes on this map, which follow the boundaries

of objects can be analysed to find the adjacency matrix, forming a node graph which

can be represented in 2 dimensions.

Here a path planning algorithm that employs graphs must be utilised to find the node

sequence with the smallest cost. This will be the most optimum path in that variable

(distance, time, energy, etc).

There are a number of algorithms that could be used to generate a path through the

graph. These include:

- Ford-Fulkerson Algorithm (Ford & Fulkerson, 1956)

- Kruskal’s Algorithm (Kruskal, 1956)

- Nearest Neighbour Algorithm (Gutin, et al., 2002)

- Prim’s Algorithm (Prim, 1957)

- Depth-first Algorithm (Anon., 2001)

- Breadth-first Algorithm (Anon., 2001)

- Bellman-Ford Algorithm (Bellman, 1958)

- Dijkstra’s Algorithm (Dijkstra, 1959) (Anon., 2001)

These algorithms are all designed to find paths through a graph, but for different

functions. The Ford-Fulkerson Algorithm is designed to find maximum flow in a flow

network. Kruskal’s Algorithm finds a minimal spanning tree which connects all of the

nodes together by the shortest paths possible. Prim’s Algorithm is designed to solve

the same problem as Kruskal’s Algorithm. The Nearest Neighbour Algorithm

performs a similar function in that it attempts to solve the travelling salesman

problem and visits each node at least once, by visiting the nearest node to the

current one.

The Breadth-first and Depth-first Algorithms are designed to search through a tree to

find a specified node. The Depth-first search completely explores one branch of the

tree to its tip before exploring the sub-branches of that branch back towards the root

of the tree. Once all of the sub-branches on that branch are explored it moves on to

the next branch of the tree. The Breadth-first Algorithm searches across the entirety

of the second level of the tree before moving on the third level. This achieves a

search which covers all branches simultaneously. These searches would find a

solution to the problem of finding a path from the start node to the destination node,

37

but except by chance would not necessarily be an optimal path or be found in the

shortest time.

Dijkstra’s Algorithm is designed to solve a single source, shortest path problem for a

node graph. This produces a shortest path tree, and the algorithm can be stopped

when the tree reaches the desired node. It can also be used for finding costs of

shortest paths from a single vertex to a single destination vertex by stopping the

algorithm once the shortest path to the destination vertex has been determined. The

algorithm works by assigning a value to the distance from the start node to every

node that it can connect to in the graph, and attempts to improve upon the distances

at every step. The Bellman-Ford Algorithm is very similar to Dijkstra’s Algorithm in

that it is also designed to compute the shortest path from one node to all the others,

and can be stopped when it reaches the desired node. The Bellman-Ford Algorithm

has the added advantage that it is capable of handling negative link costs as well as

non-negative ones. This advantage is not necessary in the required application as

all distances must be positive, and the Bellman-Ford Algorithm is also theoretically

slower than Dijkstra’s Algorithm. The performance of the two algorithms are shown

in Table 2-3 and Table 2-4.

Table 2-3 Comparison of algorithm running times.

Algorithm Worst case running time

Dijkstra 𝑂(|𝐸| + |𝑉|𝑙𝑜𝑔|𝑉|)

Bellman-Ford 𝑂(|𝑉||𝐸|)

Where E is the number of edges (links) and V the number of vertices (nodes). For

the above example graph, which has 7 nodes and 9 links, the following is the case.

𝐸 = 9 and 𝑉 = 7:

As can be seen from Table 2-4, Dijkstra’s Algorithm is significantly faster than the

Bellman-Ford Algorithm, and based on the formula for calculation time, this

difference in calculation time will only increase for larger, more complex graphs.

Table 2-4 Comparison of algorithm running times with values.

38

Algorithm Worst case running time

Dijkstra 𝑂(9 + 7𝑙𝑜𝑔7) = 𝑂(22.6214)

Bellman-Ford 𝑂(7 × 9) = 𝑂(63)

The following section gives an explanation of the method by which Dijkstra’s

Algorithm works. It is implemented by the carrying out the following iterative

process. The starting node will be termed the initial node (I), and the destination

node will be denoted by J. Dijkstra’s Algorithm assigns distance values to the path

and attempts to improve them step by step:

1. Assign an initial distance value to each node, zero for the initial node

and infinite for all of the others.

2. All nodes are marked as unvisited, and the initial node is set as the

current node. All unvisited nodes are included in a set (unvisited set),

which at this point consists of all the nodes except for the current node.

3. Consider all of the nodes connected to the current node by a link,

calculate their tentative distances from the current node based on the

cost of the link between these nodes and the current node. For

example, if current node A is marked with a distance of 5, and the link

connecting it with neighbour B has length 4, then the distance to B via

A will be the sum of tentative distance at node A and the link length

from A to B. If this distance is less than any previously recorded

tentative distance at B (for example via another route), then overwrite

that distance with the new tentative distance. Even when the

neighbour B has been examined, it is not marked as visited and

remains in the unvisited set.

4. When all of the neighbours of the current node have been examined,

mark the current node as visited and remove it from the unvisited set.

A visited node can never be checked again once it has been marked

as visited.

39

5. If the destination node has been marked as visited or the smallest

tentative distance among the nodes is set as infinite, then stop as the

algorithm has finished.

6. Select the unvisited node with the smallest tentative distance out of all

nodes in the unvisited set and set it as the current node.

7. Repeat algorithm from step 3.

7

4

6

3

8

1

2

5

Bridge

Ford

Tunnel

Vehicle

Enemy

Target

Base

1700 m

790 m

1200 m

1100 m

840 m

180 m

200 m

300 m

720 m

930 m

800 m

800 m

500 m

Figure 2-8 Example of an environment where graph theory can be used to generate a

trajectory.

To illustrate the Dijkstra’s Algorithm as simple example of a tank traversing an

environment towards a target over a river with four obstacles, a ford in the river, a

bridge over it, a tunnel under it and two enemy tanks. The purple circles represent

40

nodes in the graph and the vertices are labelled with their costs (in this case the

distances between them). The following diagram shows the scenario and with a

graph overlaid on top. The graph contains 8 nodes and 13 links and the cost of each

link is displayed in the diagram. The vehicle at node one is attempting to reach node

4. This graph show in Figure 2-8 produces the adjacency matrix found in Equation

(2.2):

 𝐴 =

[

0 500 ∞ ∞ 800 ∞ 930 ∞
500 0 200 ∞ 800 ∞ 720 ∞
∞ 200 0 790 ∞ 840 ∞ 1100
∞ ∞ 790 0 ∞ 1700 ∞ 1200

800 800 ∞ ∞ 0 180 ∞ ∞
∞ ∞ 840 1700 180 0 ∞ ∞

930 720 ∞ ∞ ∞ ∞ 0 300
∞ ∞ 1100 1200 ∞ ∞ 300 0]

(2.2)

By inspection of the map (which is not to scale), the path that appears to be the

shortest would be 1 2 3 4 , with a distance of 1490 m. By passing the matrix

through Dijkstra’s Algorithm, the result is identical.

1

2 3

4 5

6

2 m

2 m

2 m

2 m

1 m

1 m

1

2 4

3 5

6

2 m

2 m

2 m

2 m

1 m

1 m

Figure 2-9 A simple node graph.

41

It is worth noting what occurs when two paths are the same length. In the example

shown in Figure 2-9, the two possible routes are 1 2 3 5 6 or

1 2 4 5 6 . However, Dijkstra’s Algorithm will always travel by the shortest

path with the lowest node identifiers as the algorithm searches sequentially through

the nodes which are the nearest neighbours of the current node. To illustrate this

nodes 3 and 4 have been switched in the second diagram, indicated by the red node

identifiers, however, as the adjacency matrix is identical, the algorithm will still

always pick the first of the two routes (1 2 3 5 6). Equation (2.3) shows the

adjacency matrix representing the node graphs from Figure 2-9.

 𝐴 =

[

0 1 ∞ ∞ ∞ ∞
1 0 2 2 ∞ ∞
∞ 2 0 ∞ 2 ∞
∞ 2 ∞ 0 2 ∞
∞ ∞ 2 2 0 1
∞ ∞ ∞ ∞ 1 0]

(2.3)

A more complex example which shows this to be the case is given in Figure 2-10.

4 7

23

5 6

8

1

1 m

1 m

1 m

1 m

1 m

1 m

1 m

1 m

4 2

73

5 6

8

1

1 m

1 m

1 m

1 m

1 m

1 m

1 m

1 m

Figure 2-10 A node graph with more complexity than that of Figure 2-9.

42

The adjacency matrices for the node graphs show in Figure 2-10 are found in

Equations (2.4) and (2.5), which represent the left and right node graphs in the figure

respectively.

 𝐴 =

[

0 ∞ ∞ 1 ∞ ∞ ∞ ∞
∞ 0 ∞ ∞ ∞ 1 1 ∞
∞ ∞ 0 1 1 ∞ ∞ ∞
1 ∞ 1 0 ∞ ∞ 1 ∞
∞ ∞ 1 ∞ 0 1 ∞ ∞
∞ 1 ∞ ∞ 1 0 ∞ 1
∞ 1 ∞ 1 ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ ∞ 1 ∞ 0]

(2.4)

 𝐴 =

[

0 ∞ ∞ 1 ∞ ∞ ∞ ∞
∞ 0 ∞ 1 ∞ ∞ 1 ∞
∞ ∞ 0 1 1 ∞ ∞ ∞
1 1 1 0 ∞ ∞ ∞ ∞
∞ ∞ 1 ∞ 0 1 ∞ ∞
∞ ∞ ∞ ∞ 1 0 1 1
∞ 1 ∞ ∞ ∞ 1 0 ∞
∞ ∞ ∞ ∞ ∞ 1 ∞ 0]

(2.5)

Having run Dijkstra’s Algorithm on these two adjacency matrices, the results are as

follows. For the original graph, the path taken is 1 4 3 5 6 8 , but for the

second graph, the path taken is 1 4 2 7 6 8 . This again shows that the

algorithm searches the tree with the lowest node identifier first.

As was previously mentioned in this chapter, graph theory allows for higher

dimensionality path generation by reducing the dimensionality to 2 while calculating

the nodes in the path. For example, Figure 2-11 maps the boundaries of a cube.

43

10

98

6 7

2 3

4 5

1

Figure 2-11 A node graph with three-dimensional coordinated.

In this graph all of the black lines have 1m cost and all of the coloured lines have √2

m cost. As can be seen in the graph, the nodes labelled 2 to 5, which could be

considered to be on one plane and are in that sense a 2-D graph, have links to, and

so are adjacent to the nodes labelled 6 to 9. There are 10 nodes on the graph, and

this produces the 10x10 adjacency matrix shown in Equation (2.6).

 𝐴 =

[

0 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1 0 1 1 √2 1 √2 √2 ∞ ∞

∞ 1 0 √2 1 √2 1 ∞ √2 ∞

∞ 1 √2 0 1 √2 ∞ 1 √2 ∞

∞ √2 1 1 0 ∞ √2 √2 1 ∞

∞ 1 √2 √2 ∞ 0 1 1 √2 ∞

∞ √2 1 ∞ √2 1 0 √2 1 ∞

∞ √2 ∞ 1 √2 1 √2 0 1 ∞

∞ ∞ √2 √2 1 √2 1 1 0 1
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 0]

 (2.6)

44

This adjacency matrix has the ability to generate the graph shown in Figure 2-12,

where the red lines have a cost of 1m and the black lines a cost of 2 m.

1

2

9

10

3 4

6

5

7

8

Figure 2-12 The three-dimensional node graph from Figure 2-11 flattened out into a

two-dimensional node graph.

This adjacency matrix, when inputted into Dijkstra’s Algorithm, gives the optimum

distance path from 1 to 10 as 1 2 3 9 10 , which by inspection of the cube

graph is one of the shortest paths, with a cost of 4.4142 m. It also follows the

convention of moving to the smallest node identifier first.

There are, of course, other variables that could be used to calculate the optimum

path between nodes. In the example of the tank scenario, instead of the distance

from one node to another, the energy requirement to get between the nodes could

be used to find an energy optimum path. In Figure 2-13 the distance is denoted by

the black value, and the energy is denoted by the red number.

45

7

4

6

3

8

1

2

5

Bridge

Ford

Tunnel

Vehicle

Enemy

Target

Base

1700 m

2000 kJ

790 m

1700 kJ

1200 m

850 kJ

1100 m

1200 kJ

840 m

890 kJ

180 m

8000 kJ

200 m

200 kJ

300 m

350 kJ

720 m

740 kJ

930 m

910 kJ

800 m

810 kJ

800 m

790 kJ

500 m

480 kJ

Figure 2-13 Example of an environment where graph theory can be used to generate a

trajectory with energy costs as well as distance.

These values are not designed to necessarily be realistic, but follow a general rule of

being similar in proportion to the lengths (a longer path will require more energy).

The ford is drastically different as it would require significantly more energy to wade

through the water. The target base is designed to be slightly uphill, and the lower

bank of the river slopes gently downwards away from the vehicle start point towards

the water. These values produce the adjacency matrix seen in Equation (2.7):

46

 𝐴 =

[

0 480 ∞ ∞ 790 ∞ 910 ∞
480 0 200 ∞ 810 ∞ 740 ∞
∞ 200 0 1700 ∞ 890 ∞ 1200
∞ ∞ 1700 0 ∞ 2000 ∞ 850

790 810 ∞ ∞ 0 8000 ∞ ∞
∞ ∞ 890 2000 8000 0 ∞ ∞

910 740 ∞ ∞ ∞ ∞ 0 300
∞ ∞ 1200 850 ∞ ∞ 300 0]

 (2.7)

This adjacency matrix produces a path from node 1 to 4 of 1 → 7 → 8 → 4, and a

cost of 2060 kJ, which varies from the distance graph, which produced a path of

1 → 2 → 3 → 4, with a cost of 1490 m.

Jun and D’Andrea (2002) (Butenko, et al., 2002) investigate the use of graph theory

for path planning in UAV applications, but add the concept of decision-making. They

create a probability map of the environment, which maps the probability of

encountering threats and then integrate the path planning algorithm to generate the

safest path through the environment.

A simple way of carrying this out would be to calculate the probability of a threat on

each link of the graph, and add these probabilities, scaled by some calibrated

weighting factor, to the cost of the link. In this way those paths with a higher

probability of threat will have a significantly higher cost, and so would be more likely

to be avoided. It would be important to calibrate the weighting factor correctly as

there could be a fine balance between choosing a short route on the basis of it being

the most optimum route in terms of energy consumption and it being a non-optimal

route in terms of the risk to the mission completion or vehicle safety, or both. The

example of the tank crossing a river will again be used to illustrate this

implementation.

47

7

4

6

3

8

1

2

5

Bridge

Ford

Tunnel

Vehicle

Enemy

Target

Base

1700 m

2000 kJ

0.1

790 m

1700 kJ

0.2

1200 m

850 kJ

0.4

1100 m

1200 kJ

0.9

840 m

890 kJ

0.1

180 m

8000 kJ

0.3

200 m

200 kJ

0.8
300 m

350 kJ

0.1

720 m

740 kJ

0

930 m

910 kJ

0

800 m

810 kJ

0

800 m

790 kJ

0

500 m

480 kJ

0

Figure 2-14 Example of an environment where graph theory can be used to generate a

trajectory with risk associated costs.

The black and red values in Figure 2-14 represent the distance and energy costs of

the links, respectively, and the green values represent the probability that a link will

be broken. The adjacency matrices for distance and energy cost are identical to

those previously outlined. The adjacency matrix for the distance is seen in Equation

(2.8).

48

 𝐴 =

[

0 500 ∞ ∞ 800 ∞ 930 ∞
500 0 200 ∞ 800 ∞ 720 ∞
∞ 200 0 790 ∞ 840 ∞ 1100
∞ ∞ 790 0 ∞ 1700 ∞ 1200

800 800 ∞ ∞ 0 180 ∞ ∞
∞ ∞ 840 1700 180 0 ∞ ∞

930 720 ∞ ∞ ∞ ∞ 0 300
∞ ∞ 1100 1200 ∞ ∞ 300 0]

 (2.8)

The adjacency matrix for the energy cost is seen in Equation (2.9).

 𝐴 =

[

0 480 ∞ ∞ 790 ∞ 910 ∞
480 0 200 ∞ 810 ∞ 740 ∞
∞ 200 0 1700 ∞ 890 ∞ 1200
∞ ∞ 1700 0 ∞ 2000 ∞ 850

790 810 ∞ ∞ 0 8000 ∞ ∞
∞ ∞ 890 2000 8000 0 ∞ ∞

910 740 ∞ ∞ ∞ ∞ 0 300
∞ ∞ 1200 8500 ∞ ∞ 300 0]

 (2.9)

The adjacency matrix for the probabilities of link breakage is seen in Equation (2.10).

 𝐴 =

[

0 0 ∞ ∞ 0 ∞ 0 ∞
0 0 0.8 ∞ 0 ∞ 0 ∞
∞ 0.8 0 0.2 ∞ 0.1 ∞ 0.9
∞ ∞ 0.2 0 ∞ 0.1 ∞ 0.4
0 0 ∞ ∞ 0 0.3 ∞ ∞
∞ ∞ 0.1 0.1 0.3 0 ∞ ∞
0 0 ∞ ∞ ∞ ∞ 0 0.1
∞ ∞ 0.9 0.4 ∞ ∞ 0.1 0]

 (2.10)

By using Equation (2.11) the probability of a break in one or more links can be taken

into account when the path is generated.

 𝐵 = 𝐴 + 𝑤𝐴𝑝 (2.11)

49

Where B is the new adjacency matrix, A is the adjacency matrix that is being used to

calculate the optimum path (e.g. distance, energy cost, etc), and Ap is the adjacency

matrix with the probability of link breakages. When Equation (2.11) is applied with a

variety of different weighting factors, the results in Table 2-5 are generated:

As can be seen from these results, depending on the probability of a break in a link,

when the weighting factor is large enough the path with the best probability of

success is chosen. In the case of the distance graph, this path is different to the

optimum distance path. In the case of the energy cost graph, this path is the same

as the optimum energy path.

Table 2-5 Change of path across the environment depending on the size of the

weighting factor added to the risk associated with each vertex.

Probability

Weighting Factor Distance Energy

0

1 → 2 → 3 → 4

(1490 m)

1 → 7 → 8 → 4

(2060 kJ)

1

1 → 2 → 3 → 4

(1491 m)

1 → 7 → 8 → 4

(2060.5 kJ)

10

1 → 2 → 3 → 4

(1500 m)

1 → 7 → 8 → 4

(2065 kJ)

100

1 → 2 → 3 → 4

(1590 m)

1 → 7 → 8 → 4

(2110 kJ)

1000

1 → 2 → 3 → 4

(2490 m)

1 → 7 → 8 → 4

(2560 kJ)

10000

1 → 5 → 6 → 4

(6680 m)

1 → 7 → 8 → 4

(7060 kJ)

50

2.4 Summary of Literature

In the literature, the most popular method of robotic manipulator control is to use a

PID controller, but since systems of this type display highly non-linear characteristics

and joints in a manipulator arm are dynamically linked the control has to be adaptive

to provide adequate control in many different geometries and angular velocities.

Several of the investigated literature attempt to solve the problem of gain selection

online during manipulator operation, and different optimisation methods are used to

solve this problem.

Regarding navigation through environments for robotic manipulators, the most

commonly used principle is to carry out the path generation in C-Space rather than

T-space. Working in C-Space is advantageous since any generated path is

produced in terms of the direct control requirements of the manipulator arm rather

than requiring to be converted into its control requirements following the generation

of the path. The second great advantage of working in C-Space rather than T-space

relates to the need to consider the entire arm for collision avoidance and not just the

end effector.

Objects in T-space can be considered to be regions of space where no part of the

arm can traverse. To prevent any collisions between the arm and these

impermissible regions of space and the entire arm, the locations of at least all of the

joints in the arm, and possibly the entire arm must be considered to generate a

series of arm configurations which must then be resolved into the control parameters

(i.e. joint angles).

Conversely, any impermissible regions in T-space must correspond with a set of joint

angles which are also forbidden. Given that each object is continuous and also the

arm is continuous, each solution set for the impermissible angle ranges caused by

an object must also be continuous. By converting obstacles from T-space into C-

Space, all collision information from the entire arm with each obstacle is now

contained in the C-Space version of the obstacles in an n-dimensional space, where

n is the number of control parameters (joint angles) of the arm, in this case 3. This

allows the entire arm to be considered as a point mass in C-Space and only 1 path

has to be generated from the initial arm configuration to the desired arm

configuration which already exists in the control domain rather than multiple paths in

51

T-space which must then be converted into a single path in C-Space following the

path generation.

With the decision to operate in C-Space, the path planning problem becomes one of

a standard 3-dimensional obstacle avoidance problem. This allows for the use of a

lot of established techniques which would have been impractical when generating a

path in T-space.

Having carried out a survey of available techniques, the decision has been taken to

implement path generation for a robotic manipulator using graph theory. This is

because the node graph generation can be carried out very simply given the way in

which the impermissible regions and permissible boundaries of obstacles are

calculated using triangulation. Also, graph theory allows for the path planning

problem to become two-dimensional which will reduce the computational

requirements of the trajectory generation and hence speed up the run time of the

technique.

Based upon the conclusions made in this section the following decisions have been

made. The guidance method will be carried out in C-Space and graph theory will be

used to generate a path through C-Space. Simulated sensor data about obstacles

will be assumed to be noiseless; therefore the data inputted to the guidance method

will be the exact location of the measured points in space. Derivation of the dynamic

model of a manipulator arm will be carried out using Newtonian mechanics owing to

its smaller computational overheads.

In the following chapters, the decisions made as a result of the review of literature

will be implemented in order to carry out the objectives determined in Chapter 1.

Chapters 3 and 4 derive the kinematic and dynamic models if the robotic manipulator

arm respectively and Chapter 5 implements a suitable control schema for the

dynamic model. Chapters 6 deals with the formation of a map in C-space, given T-

space obstacle data. Chapter 7 is responsible for the implementation of a path

planning method which will use the C-space map to safely plan a route for the

manipulator arm through the environment. Chapter 8 presents the results of a series

of simulations which are then used to validate the effectiveness of the combined

dynamic system and guidance method and Chapter 9 presents the findings of the

research undertaken in this thesis.

52

53

3 KINEMATIC MODELLING OF ROBOTIC MANIPULATORS

In the Introduction chapter to this thesis, the problems surrounding guidance and

control of a 3-DoF robotic manipulator arm in real time in close-proximity

environments has been discussed. The remainder of this thesis deals with the

development of a technique which will satisfy this goal. A starting point in achieving

the aims and objectives laid down in the Introduction would be to investigate the

development of kinematic and dynamic models of a 3-DoF manipulator arm for use

both as a test bed for the control and path tracking ability of the arm model, and also

as a means of developing a guidance method which is suitable for use in this type of

navigation problem. In this chapter a forward and inverse kinematic model is

developed for use in the remainder of the thesis. This chapter deals with the block

highlighted in red in Figure 1-4, which is displayed again here with all of the other

processes greyed out.

Sensor

Arm Position and

Pose

(Servo Encoders)

Simulated

Environment Data

User Input

Desired End

Effector Location

Map Conversion to

C-space

Plotting of Current

and Desired End

Effector Location

Path Generation Path Following
Arm Servo

Controllers

Arm Dynamics

Arm Kinematics

Figure 3-1 Manipulator arm kinematics (red) in relation to the overall guidance

method.

54

3.1 Overview

Having investigated literature on kinematic modelling of robotic manipulator arms,

some of the information contained there can be used to develop forward and inverse

kinematic models of the robotic manipulator, which can then be used in Chapter 6 for

the conversion of T-space obstacle data into a C-space environment map. The

kinematic modelling is carried out in three ways, the first by trigonometry, the second

by Denavit-Hartenberg Parameters and the third by solution to simultaneous

equations.

The development of the forward kinematics allows for the modelling of the arm so

that given the angles between each link in the arm (provided by servo encoders) the

states of the arm can be calculated, while the development of the inverse kinematics

allows for the control of the arm given a demand position of each pivot point by

calculating the required angles between each of the links to do so. There are three

methods of carrying out these calculations that are dealt with in this chapter, and

these kinematic models will be used in Chapter 3 when converting the environment

in T-space into C-space, and one of the methods will be selected for use. The first

method deals with the kinematics using trigonometry and geometry. The second

method, described by Rosales and Gan (2002), uses matrix transforms to derive the

forward kinematics and then manipulates them into simultaneous equations to solve

the inverse kinematics problem. The main advantage of the trigonometric method is

that it requires much less calculation than the matrix transform method, and so is

more memory efficient, but the matrix transform method deals with the orientation of

the axes at each of the joints dealt with, providing more information, which may be

useful in terms of the manipulator control. The third method uses the geometric

parameters of the robotic manipulator arm to form a series of simultaneous

equations that can be solved to calculate the Euclidean positions of each joint given

the manipulator base point and end effector location. The vectors between each

point can then be used to calculate the joint angles.

The arm modelled in this chapter has three links, which can be seen from Figure 3-2.

The first link rotates about the Z-axis at a pivot at its base. The second link is

attached to the first link at a joint 0.090 m from the base of the first link, which

operates in the X-Y plane. The second link rotates about an axis which is parallel to

55

the X-Y plane and perpendicular to the direction of the first link. The third link is

attached to the second link at a joint 0.332 m from the joint between the first and

second links. The third link rotates about an axis which is parallel to the X-Y plane

and the axis of rotation of the second joint, and perpendicular to the plane in which

the second and third links operate. The second and third links operate in a plane

which is formed by the X-Y direction of the first link and the Z-axis. The third link is

0.538 m long and the end effector is located at the end of this link.

3.2 Trigonometric Method

The manipulator arm used for this research consists of three straight links of fixed

length, the positions of which are controlled by the angles between them at their

joints. Because all of the lengths and angles are known, it is very simple to calculate

the position of each joint and the end effector in relation to the origin of the arm by

using trigonometry.

3.2.1 Forward Kinematics

This method requires the arm to be defined with a series of parameters, the length of

each link and the angles between them, and the position of the origin of the arm.

The positions of each of the joints, and the end effector are the outputs of the

calculations. The joint angles will be defined as α, β and γ and the link lengths will

be defined as 𝑙0, 𝑙1 and 𝑙2. The position of the origin is defined as 𝑃0 and the

positions of the intermediate joints are 𝑃1 and 𝑃2. The position of the end effector is

defined as 𝑃𝑓. This is shown in Figure 3-2.

56

Plan view

Side-on view

l2 l1

l0

γ

l2

l1

l0

β

-β

ζ

P0
P2

P1

Pf

Pf

P1

P0

P2

Figure 3-2 Schematic of the variables and dimensions that make up the simple model

of the Digital Vanguard ROV manipulator arm.

The parameters are outlined in Table 3-1.

Table 3-1 Parameters of the links in the manipulator arm.

Link Label Joint Joint Angle Link Length

0 𝑃0 𝛼 𝑙0 = 0.09

1 𝑃1 𝛽 𝑙1 = 0.332

2 𝑃2 𝛾 𝑙2 = 0.09

Angle 𝛾 is defined as the angle between links 1 and 2, and must be given in terms of

link 2 and the horizontal. This can be represented in terms of angle 𝛽 as:

휁 = 𝛾 + (−𝛽)

(3.1)

57

The position vectors of 𝑃1, 𝑃2 and 𝑃𝑓 are calculated in Equation (3.2).

𝑃1 = 𝑃0 + [
𝑙0 cos 𝛼
𝑙0 sin 𝛽

0

]

𝑃2 = 𝑃0 + [

(𝑙0 + 𝑙1cos 𝛽)cos 𝛼
(𝑙0 + 𝑙1cos 𝛽)sin 𝛽

𝑙1sin𝛽
] 𝑃𝑓 = 𝑃0 + [

(𝑎0 + 𝑙1cos 𝛽 + 𝑙2 cos 휁) cos 𝛼
(𝑎0 + 𝑙1cos 𝛽 + 𝑙2 cos 휁) sin 𝛽

𝑙1sin𝛽 + 𝑙2sinζ
]

(3.2

)

These equations have been derived using trigonometry, with 𝑃1 being calculated with

respect to 𝑃0. 𝑃2 has been calculated with respect to 𝑃1 and then converted to be

with respect to 𝑃0 by substitution. The same is the case for 𝑃𝑓. A figure showing a

graphical representation of the simple manipulator model is shown in Figure 3-3.

Figure 3-3 Graphical representation of the robotic arm. The red dotted line is the

representation of the arm when fully extended.

58

3.2.2 Inverse Kinematics

The inverse kinematics can also be calculated very easily using trigonometry and

geometry. The control of the end effector position can be envisaged as controlling

the direction of the end point in the X-Y plane by varying angle 𝛼, and the distance of

the end effector position from the origin in the X-Y plane and the Z-direction using 𝛽

and 𝛾. Because of this the angle 𝛼 can be calculated using the vector from the origin

to the end effector in the X-Y plane. This then simplifies the problem of the inverse

kinematics to a two-dimensional one which is solvable using the cosine rule.

The first part of the derivation is to calculate angle 𝛼. This is carried out using the

vector between 𝑃0 and 𝑃𝑓 in the X-Y plane, as shown in Figure 3-4.

Plan view

P2

P1

Pf

α

Pfx – Pox

Pfy – Poy

Po

Figure 3-4 Diagram of the calculation of 𝜶 using 𝑷𝒇 and 𝑷𝒐

The calculation of 𝛼 requires only the tangent function as shown in Equation (3.3):

 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛2(
𝑃𝑓𝑦 − 𝑃𝑜𝑦

𝑃𝑓𝑥 − 𝑃𝑜𝑥
) (3.3)

where 𝑃𝑓𝑥 and 𝑃𝑓𝑦are the X and Y coordinates of position 𝑃𝑓 respectively, and 𝑃𝑜𝑥

and 𝑃𝑜𝑦 are the X and Y coordinates of position 𝑃𝑜 respectively. This leaves the

problem requiring the solution to the two remaining joint angles, with known positions

of the end manipulator 𝑃𝑓 and the first joint 𝑃1. These unknowns can all be solved

using geometry and trigonometry, as shown in Figure 3-5.

59

Side-on view

Po P1

P2

Pf

l2

l0

γ

β1

β0
β2

lf1z

lf1xy

lf1

Figure 3-5 Diagram of the calculation of 𝜷 and 𝜸 using 𝑷𝒇 and 𝑷𝟏

In order to calculate 𝛽2 and 𝛾 the cosine rule must be used, and both require the

length 𝑙𝑓1 to be known. The length 𝑎𝑓1 and angle 𝛽2 require the lengths 𝑙𝑓1𝑥𝑦 and 𝑙𝑓1𝑧

to be calculated by subtraction of the point 𝑃1 from 𝑃𝑓 as:

𝑙𝑓1𝑥𝑦 = √(𝑃𝑓𝑥 − 𝑃1𝑥)
2
+ (𝑃𝑓𝑦 − 𝑃1𝑦)

2

𝑙𝑓1𝑧 = 𝑃𝑓𝑧−𝑃1𝑧

(3.4)

The angle 𝛽1 can be calculated using the inverse tangent of these two lengths and

𝑙𝑓1 can be calculated using Pythagoras’ Theorem for these two lengths as:

𝛽1 = 𝑎𝑟𝑐𝑡𝑎𝑛2(
𝑙𝑓1𝑧

𝑙𝑓1𝑥𝑦
)

𝑙𝑓1 = √𝑙𝑓1𝑥𝑦
2 + 𝑙𝑓1𝑧

2

(3.5)

60

The cosine rule can now be applied to find the angles 𝛽2 and 𝛾, shown in Equations

(3.6) and (3.8):

 𝛽2 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑙1

2 + 𝑙𝑓1
2 − 𝑙2

2

2𝑙1𝑙𝑓1
) (3.6)

 𝛾 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝑙1

2 + 𝑙2
2 − 𝑙𝑓1

2

2𝑙1𝑙𝑓1
) (3.7)

Finally angle β0 can be calculated in Equation (3.8).

 𝛽0 = 𝜋 − 𝛽1 − 𝛽2 (3.8)

3.3 Denavit-Hartenberg (Matrix Transform) Method

The kinematics of the robotic manipulator can also be represented in terms of the

rotation and of the axes at each pivot into the next pivot. When all the transforms

are combined, a transform representing the rotation and translation of the reference

axes to the axes at the end effector is derived. The advantage of this is that both the

position and the orientation of the end effector are described.

3.3.1 The parameters of the robotic arm

Before the kinematics of the arm are derived, the body axes at each joint must be

defined. As seen below in Figure 3-6 and Figure 3-7 the axis about which the

rotation is made to move the link is defined as the Z-axis. The X-axis is defined as

being in the direction of the length of the link between the first and second joints of

the arm, and the Y-axis is defined using the other two axes in a right-handed set.

61

The robotic arm in use in the project uses three links. The first rotates about the axis

perpendicular to the body frame, while the second two rotate about an axis which is

rotated by 90° and perpendicular to the longitudinal length of the first link. This is

shown in Figure 3-6 and Figure 3-7, which give an illustration of the axes used at

each pivot on the link.

aX

aZ

aY

bY

bZ
bX

a

b

Figure 3-6 Configuration of the first link in the manipulator arm.

aX

aZ

aY

bY

bZ

bX

a

b

Figure 3-7 Configuration of the second and third links in the manipulator arm.

The transformation from axis-a of each link to axis-b of each link can be described

using a transformation matrix 𝐴0
1 = [

𝑅3×3 𝑃3×1

𝑓1×3 𝑊1×1
], where 𝑅 is the rotation cosine

62

matrix that describes the rotation of the axes, 𝑃 is the translation which is a vector

describing the change in position of the origin of the axes, 𝑓 is the change in

perspective of the axes, and 𝑊 is the change in scale of the axes. In the case of the

manipulator arm, the scale of the axes does not change, so 𝑊 is set as 1, and the

perspective of the axes remains the same, therefore 𝑓 = [0 0 0]. This means that

the parameters needed for each link to calculate the position and orientation of each

pivot and the end effector are the lengths of each of the pivots, the rotation of the

axes from one end of the link to the other caused by the shape of the link, and the

rotation about 𝑍0by angle 휃0.

It is important to recognise the direction and reference point of each of the angles as

they may not be defined as the angle between the physical parts of the links being

connected by that joint. This is shown in Figure 3-8.

Plan view

Side-on view

l2 l1

l0

γ

l2

l1

l0

β

-β

ζ

P0
P2

P1

Pf

Pf

P1

P0

P2

Figure 3-8 Schematic of the variables and dimensions that make up the model of the

manipulator arm.

The angle of rotation about the Z-axis is defined in the kinematic model as being an

anti-clockwise rotation starting in the direction of the length of the previous link. This

has no effect on α but has a significant effect on the angles that are represented by

𝛽 and 𝛾 when compared to those specified previously in Section 3.3.3. Angles 𝛿 and

63

휀 are the angles which would preferably be used to control the state of each of the

links, but the way in which each of the angles are specified mean that 𝛽 and 𝛾 are

the angles used in the kinematics. Angle 𝛾 shown on the diagram is in the negative

direction, hence the negative sign. The angles 𝛿 and 휀 can be represented in terms

of 𝛽 and 𝛾 using the following geometric relationships:

𝛿 = 180 − 𝛽

휀 = 𝛾 + 180

(3.9)

The parameters used to derive the kinematics of the manipulator arm can be

outlined more easily in the Table 3-2.

Table 3-2 Parameters of the links in the manipulator arm.

Link Number Joint Joint Angle Link Length (m) θ

1 𝑃0 𝛼 𝑎0 = 0.09 90°

2 𝑃1 𝛽 = 180 − 𝛿 𝑎1 = 0.332 0°

3 𝑃2 𝛾 = 휀 − 180 𝑎2 = 0.538 0°

Where the joint angle is the angle of rotation about the Za-axis, the link length is the

length of the link (taken from the intersection between the a-axes, to the intersection

between the b-axes) and 휃 is the rotation of the axes about the X-axis due to the

geometry of the link.

This information can be used to construct the transformation matrices to find the

position of each pivot and the end manipulator in terms of the reference frame and

the rotation angle of each pivot.

64

3.3.2 Derivation of the transformation matrices for each arm link

This section describes the derivation of the transformation matrices which provide

the forward kinematics for the manipulator arm. This is done by constructing a

transformation matrix for each link in the arm separately.

To transform the axes of the first link from the reference frame to that of the end

pivot point requires two separate rotation transforms due to the rotation of the axes

by 90° about the X-axis. The axes X0, Y0 and Z0 are transformed into a set of

intermediate axes, X0’ Y0’ and Z0’ by the rotation about Z0 by angle α, which can then

be rotated by 90° about the X0’-axis into the axes X1, Y1 and Z1. This is shown in

Figure 3-9 and

Figure 3-10.

0X

X0'

Z0'

Y0'

0Z

0Y

Figure 3-9 Rotation of the X0 and Y0 axes about the Z0 axis by 𝜶 to transform the axes

in to the intermediate axes X0’, Y0’ and Z0’.

65

X0'

Z0'

Y0'

Z1

X1

Y1

90°

Figure 3-10 Rotation of the Y0’ and Z0’ axes about the X0’ axis by 90° into the X1, Y1 and

Z1 axes.

The rotation shown in

Figure 3-9 can be described by the direction cosine matrix in Equation (3.10).

 [

𝑋0′

𝑌0′

𝑍0′

] = [
cos 𝛼 sin 𝛼 0

− sin 𝛼 cos 𝛼 0
0 0 1

] [

𝑋0

𝑌0

𝑍0

] (3.10)

The rotation shown in

Figure 3-10 can be described by the direction cosine matrix in Equation (3.11).

 [
𝑋1

𝑌1

𝑍1

] = [
1 0 0
0 cos 90° sin 90°
0 − sin 90° cos 90°

] [

𝑋0′

𝑌0′

𝑍0′

] = [
1 0 0
0 0 1
0 −1 0

] [

𝑋0′

𝑌0′

𝑍0′

] (3.11)

The complete rotation from the 0-axes to the 1-axes can be carried out using

Equation (3.12).

66

[
𝑋1

𝑌1

𝑍1

] = [
1 0 0
0 0 1
0 −1 0

] [
cos 𝛼 sin 𝛼 0

− sin 𝛼 cos 𝛼 0
0 0 1

] [
𝑋0

𝑌0

𝑍0

]

[
𝑋1

𝑌1

𝑍1

] = [
cos 𝛼 0 sin 𝛼
sin 𝛼 0 − cos 𝛼

0 1 0
] [

𝑋0

𝑌0

𝑍0

]

(3.12)

The translation of the axes from the 0-axes to the 1-axes follows simple

trigonometry.

 [
𝑥
𝑦
𝑧
] = [

𝑙0 cos 𝛼
𝑙0 sin 𝛼

0

] (3.13)

This allows for the construction of the transformation matrix seen in Equation (3.14).

 𝐴0
1 = [

cos 𝛼 0 sin 𝛼 𝑙0 cos 𝛼
sin 𝛼 0 − cos𝛼 𝑙0 sin 𝛼

0 1 0 0
0 0 0 1

] (3.14)

The transformation of the axes of the second and third links from their original

frames to that of their end pivots requires only a single rotation, where the Xa and Ya

axes are rotated about the Za axis by 𝛽 or 𝛾 for links 2 and 3 respectively into the Xb,

Yb and Zb axes. This is shown in Figure 3-11.

67

Xa

Ya

Za

Zb

Xb
Yb

 or

Figure 3-11 Rotation of the 𝑿𝒂 𝒀𝒂 axes around the 𝒁𝒂 axis by 𝜷 or 𝜸 into the 𝑿𝒃, 𝒀𝒃 and

𝒁𝒃 axes.

The rotation shown in Figure 3-11 can be described by the direction cosine matrix

found in Equation (3.15).

 [
𝑋𝑏

𝑌𝑏

𝑍𝑏

] = [
cos 휃 − sin 휃 0
sin 휃 cos 휃 0

0 0 1
] [

𝑋𝑎

𝑌𝑎

𝑍𝑎

] (3.15)

where 휃 is the angle of rotation about the Z-axis in either link. The translation of the

axes from the a-axes to the b-axes again follows simple trigonometry.

 [
𝑥
𝑦
𝑧
] = [

𝑙 cos 휃
𝑙 sin 휃

0
] (3.16)

where 𝑙 is the length of the link. This allows for the construction of the transformation

matrix in Equation (3.17).

68

 𝐴𝑎
𝑏 = [

cos 휃 0 −sin 휃 𝑙 cos 휃
sin 휃 0 cos 휃 𝑙 sin 휃

0 1 0 0
0 0 0 1

] (3.17)

This transformation matrix can be implemented for links 2 and 3, producing the

transformation matrices seen in Equations (3.18) and (3.19) respectively.

 𝐴1
2 = [

cos 𝛽 −sin 𝛽 0 𝑙1 cos 𝛽
sin 𝛽 cos 𝛽 0 𝑙1 sin 𝛽

0 0 1 0
0 0 0 1

] (3.18)

 𝐴2
𝑓

= [

cos 𝛾 −sin 𝛾 0 𝑙2 cos 𝛾
sin 𝛾 cos 𝛾 0 𝑙2 sin 𝛾
0 0 1 0
0 0 0 1

] (3.19)

3.3.3 The forward kinematics of the robotic manipulator arm.

To model the complete forward kinematics of the robotic manipulator arm, these

transformation matrices must be combined to find the position and orientation of

each of the pivots in terms of the original reference frame. This is done by multiplying

each of the transforms together:

 𝑇0
1 = 𝐴0

1 = [

cos 𝛼 0 sin 𝛼 𝑙0 cos 𝛼
sin 𝛼 0 − cos 𝛼 𝑙0 sin 𝛼

0 1 0 0
0 0 0 1

] (3.20)

69

𝑇0
2 = 𝐴0

1𝐴1
2

= [

cos 𝛼 cos𝛽 − cos 𝛼 sin 𝛽 sin 𝛼 cos 𝛼 (𝑙0 + 𝑙1 cos 𝛽)

sin 𝛼 cos 𝛽 − sin 𝛼 sin 𝛽 − cos 𝛼 sin 𝛼 (𝑙0 + 𝑙1cos 𝛽)

sin 𝛽 cos 𝛽 0 𝑙1sin𝛽
0 0 0 1

]
(3.21)

𝑇0
𝑓

= 𝐴0
1𝐴1

2𝐴2
𝑓

= [

cos𝛼 cos(𝛽 + 𝛾) − cos 𝛼 sin(𝛽 + 𝛾) sin 𝛼 cos 𝛼 (𝑙0 + 𝑙1 cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾))

sin 𝛼 cos(𝛽 + 𝛾) − sin 𝛼 sin(𝛽 + 𝛾) − cos 𝛼 sin 𝛼 (𝑙0 + 𝑙1cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾))

sin(𝛽 + 𝛾) cos(𝛽 + 𝛾) 0 𝑙1sin 𝛽 + 𝑙1sin(𝛽 + 𝛾)
0 0 0 1

]
(3.22)

In transforms 𝑇0
2 and 𝑇0

𝑓
, 𝛽 and 𝛾 can be replaced by 𝛿 and 휀 using the relationships

described in equation (4.14). The forward kinematics can be used in numerical

simulation to calculate the position and orientation of each of the joints. The

transform 𝑇0
𝑛 can be equated to a generic transform 𝑇𝐻

𝑅 which is given in Equation

(3.23).

 𝑇𝐻
𝑅 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧

0 0 0 1

] (3.23)

By equating each transform to the 𝑇𝐻
𝑅 matrix, a set of nine equations is created for

the variables in the 𝑇𝐻
𝑅 matrix. Following a set of rules given in (Rosales & Gan,

2002), the orientation of each of the joints can be calculated as a series of angles

representing roll, yaw and pitch. The rules used to calculate the orientation of the

joints are provided in Equation (3.24).

70

if (𝑛𝑥 = 0 ∧ 𝑛𝑦 = 0) ⟹ {

휃𝑟 = arctan2(𝑜𝑥 , 𝑜𝑦)

휃𝑦 = 90°

휃𝑝 = 0°

if (𝑛𝑥 ≠ 0 ⋁ 𝑛𝑦 ≠ 0) ⟹ {

휃𝑟 = arctan2(𝑜𝑧 , 𝑎𝑧)

휃𝑦 = arctan2(𝑛𝑦, 𝑛𝑥)

휃𝑝 = arctan2(−𝑛𝑧 , √𝑛𝑥
2 + 𝑛𝑦

2)

(3.24)

where r , y and p are the angles of roll, yaw and pitch respectively.

3.3.4 The inverse kinematics of the robotic manipulator arm.

The inverse kinematics allow for the calculation of the required joint angles given a

demand manipulator end position and orientation. This position and pose is defined

in the X, Y and Z directions and roll, yaw and pitch, represented by 𝑃𝑥, 𝑃𝑦, 𝑃𝑧, 휃𝑟, 휃𝑦

and 휃𝑝 respectively. This, however, is not in a form that is compatible with the T-

matrix, and so must be converted to the format of the 𝑇𝐻
𝑅 matrix. This is done by

combining direction cosine matrices representing the rotations about each of the

axes as:

[

𝑋𝑏

𝑌𝑏

𝑍𝑏

] = [
1 0 0
0 cos 휃𝑟 sin 휃𝑟

0 −sin 휃𝑟 cos 휃𝑟

] [

cos 휃𝑦 0 − sin 휃𝑦

sin 휃𝑦 0 cos 휃𝑦

0 1 0

] [

cos 휃𝑝 −sin 휃𝑝 0

sin 휃𝑝 cos 휃𝑝 0

0 0 1

] [

𝑋𝑎

𝑌𝑎

𝑍𝑎

]

[

𝑋𝑏

𝑌𝑏

𝑍𝑏

] = [

cos휃𝑦 cos 휃𝑝 −cos휃𝑦 sin 휃𝑝 −sin휃𝑦

sin 휃𝑟 sin 휃𝑝 + cos휃𝑟 sin 휃𝑦 cos 휃𝑝 sin휃𝑟 cos 휃𝑝 − cos휃𝑟 sin휃𝑦 sin휃𝑝 cos휃𝑟 cos휃𝑦

cos휃𝑟 sin 휃𝑝 − sin휃𝑟 sin 휃𝑦 cos 휃𝑝 cos 휃𝑟 cos 휃𝑝 + sin 휃𝑟 sin휃𝑦 sin휃𝑝 −sin휃𝑟 cos휃𝑦

] [

𝑋𝑎

𝑌𝑎

𝑍𝑎

]

(3.25)

The direction cosine matrix and the demand position calculated using Equation

(3.25) can then be combined for the demand T-matrix in Equation (3.26).

71

𝑇𝐻
𝑅

=

[

cos 휃𝑦 cos 휃𝑝 −cos 휃𝑦 sin 휃𝑝 − sin 휃𝑦 𝑃𝑥

sin 휃𝑟 sin 휃𝑝 + cos 휃𝑟 sin 휃𝑦 cos 휃𝑝 sin 휃𝑟 cos 휃𝑝 − cos 휃𝑟 sin 휃𝑦 sin 휃𝑝 cos 휃𝑟 cos 휃𝑦 𝑃𝑦

cos 휃𝑟 sin 휃𝑝 − sin 휃𝑟 sin 휃𝑦 cos 휃𝑝 cos 휃𝑟 cos 휃𝑝 + sin 휃𝑟 sin 휃𝑦 sin 휃𝑝 −sin 휃𝑟 cos 휃𝑦 𝑃𝑧

0 0 0 1]

 (3.26)

To derive the inverse kinematics, the
R

HT matrix in Equation (3.23) is equated to the

forward transforms derived in Equations (3.20), (3.21) and (3.22). This forms a

series of simultaneous equations in each case which can be solved to find the

required joint angles.

Inverse kinematics for joint P1

Equation (3.27) deals with the kinematics of the joint at the end of the first link:

 𝑇𝐻
𝑅 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧

0 0 0 1

] = [

cos 𝛼 0 sin 𝛼 𝑎0 cos 𝛼
sin 𝛼 0 − cos 𝛼 𝑎0 sin 𝛼

0 1 0 0
0 0 0 1

] (3.27)

From Equation (3.27) each of the elements can be equated to find several

simultaneous equations. The only simultaneous equations necessary for calculating

𝛼 are either 𝑛𝑥 and 𝑛𝑦 or 𝑎𝑥 and 𝑎𝑦. In this case the latter have been used and

rearranged to find 𝛼 in Equation (3.28):

𝑎𝑥 = sin 𝛼

𝑎𝑥

−𝑎𝑦
=

sin 𝛼

cos 𝛼
= tan𝛼

𝑎𝑦 = −cos𝛼

𝛼 = arctan2(𝑎𝑥, −𝑎𝑦)

(3.28)

The demand 𝑎𝑥 and 𝑎𝑦 can be substituted by those derived in Equation (3.26) to find

angle 𝛼 in terms of roll, yaw and pitch, as in Equation (3.29).

72

𝑎𝑥 = −sin 휃𝑦 𝑎𝑦 = cos 휃𝑟 cos 휃𝑦

(3.29)

𝛼 = arctan2(− sin 휃𝑦 , − cos 휃𝑟 cos 휃𝑦)

Inverse kinematics for joint P2

Equation (3.30) deals with the kinematics of the joint at the end of the second link.

 𝑇𝐻
𝑅 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧

0 0 0 1

] = [

cos 𝛼 cos 𝛽 −cos𝛼 sin 𝛽 sin 𝛼 cos 𝛼 (𝑎0 + 𝑎1 cos𝛽)

sin 𝛼 cos 𝛽 −sin 𝛼 sin 𝛽 − cos𝛼 sin 𝛼 (𝑎0 + 𝑎1 cos 𝛽)

sin 𝛽 cos 𝛽 0 𝑎1 cos 𝛽
0 0 0 1

] (3.30)

In this case 𝛼 can still be solved using 𝑎𝑥 and 𝑎𝑦, giving the same result as Equation

(3.29). Solving for 𝛽 can be done using 𝑝𝑧, 𝑎𝑦 and 𝑝𝑥 as shown in Equations (3.31)

to (3.37):

 𝑝𝑥 = 𝑎1 sin 𝛽 ⟹ sin𝛽 =
𝑝𝑧

𝑎1
 (3.31)

 𝑎𝑦 = −cos𝛼 ⟹ cos 𝛼 = −𝑎𝑦 (3.32)

Substituting cos 𝛼 for 𝑎𝑦 removes 𝛼 giving,

 𝑝𝑥 = −𝑎𝑦(𝑎0 + 𝑎1 cos 𝛽) (3.33)

which can then be rearranged to make cos 𝛽 the subject as:

cos 𝛽 =

(
𝑝𝑥

−𝑎𝑦
− 𝑎0)

𝑎1

(3.34)

Equations (3.31) and (3.40) can be combined to find 𝛽.

73

sin 𝛽

cos𝛽
=

𝑝𝑧𝑎1

𝑎1 (
𝑝𝑥

−𝑎𝑦
− 𝑎0)

= tan𝛽
(3.35)

tan 𝛽 =

𝑝𝑧

(
𝑝𝑥

−𝑎𝑦
− 𝑎0)

−𝑎𝑦

−𝑎𝑦
=

−𝑝𝑧𝑎𝑦

𝑝𝑥 + 𝑎0𝑎𝑦

(3.36)

 𝛽 = arctan2(−𝑝𝑧𝑎𝑦, 𝑝𝑥 + 𝑎0𝑎𝑦) (3.37)

Again, the relationships seen in Equation (3.26) can be substituted into the above

equation to find 𝛽 in terms of roll, yaw and pitch.

 𝛽 = arctan2(−𝑝𝑧 cos 휃𝑟 cos 휃𝑦 , 𝑝𝑥 + 𝑎0 cos 휃𝑟 cos 휃𝑦) (3.38)

Inverse kinematics for joint Pf

As 1has been done in Sections 0 and 0, the process can be repeated for the inverse

kinematics of the arm given the demand position and orientation of 𝑃𝑓.

𝑇𝐻
𝑅 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑝𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑝𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑝𝑧

0 0 0 1

]

= [

cos 𝛼 cos(𝛽 + 𝛾) − cos 𝛼 sin(𝛽 + 𝛾) sin 𝛼 cos 𝛼 (𝑙0 + 𝑙1 cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾))

sin 𝛼 cos(𝛽 + 𝛾) − sin 𝛼 sin(𝛽 + 𝛾) − cos 𝛼 sin 𝛼 (𝑙0 + 𝑙1 cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾))

sin(𝛽 + 𝛾) cos(𝛽 + 𝛾) 0 𝑙1 sin 𝛽 + 𝑙2 sin(𝛽 + 𝛾)
0 0 0 1

]

(3.39)

Again angle α can be found using 𝑎𝑥 and 𝑎𝑦to give the same result as in Equation

(3.29). To find 𝛽, 𝑝𝑧 and 𝑝𝑦 are used and 𝑛𝑧, 𝑜𝑥 and 𝑜𝑧 are substituted in for various

74

variables to reduce the unknowns to cos 𝛽 and sin 𝛽, as shown in Equations (3.40)

and (3.41).

𝑝𝑧 = 𝑙1 sin 𝛽 + 𝑙2 sin(𝛽 + 𝛾)

𝑛𝑧 = sin(𝛽 + 𝛾)

𝑝𝑧 = 𝑙1 sin 𝛽 + 𝑙2𝑛𝑧

(3.40)

𝑝𝑧 = sin𝛼 (𝑙0 + 𝑙1 cos 𝛽 + 𝑙2 cos(𝛽 + 𝛾))

𝑎𝑥 = sin 𝛼

𝑜𝑧 = cos(𝛽 + 𝛾)

𝑝𝑦 = 𝑎𝑥(𝑙0 + 𝑙1 cos 𝛽 + 𝑙2𝑜𝑧)

(3.41)

The equations shown in Equations (3.40) and (3.41) can be rearranged to make

cos 𝛽 and sin 𝛽 the subjects in Equation (3.42).

sin 𝛽 =
𝑝𝑧 − 𝑙2𝑛𝑧

𝑙1

cos 𝛽 =

𝑝𝑦

𝑎𝑥
− 𝑙0 − 𝑙2𝑜𝑧

𝑙1

(3.42)

These equations can be combined and manipulated to find 𝛽, as shown in Equations

(3.43) to (3.45).

sin 𝛽

cos𝛽
=

(𝑝𝑧 − 𝑙2𝑛𝑧)𝑙1

𝑙1 (
𝑝𝑦

𝑎𝑥
− 𝑙0 − 𝑙2𝑎𝑧)

𝑎𝑥

𝑎𝑥
= tan𝛽 (3.43)

75

 tan 𝛽 =
𝑝𝑧𝑎𝑥 − 𝑙2𝑎𝑥

𝑝𝑦 − 𝑙0𝑎𝑥 − 𝑙2𝑜𝑧𝑎𝑥
 (3.44)

 𝛽 = arctan2(𝑝𝑧𝑎𝑥 − 𝑙2𝑛𝑧𝑎𝑥, 𝑝𝑦 − 𝑙0𝑎𝑥 − 𝑙2𝑜𝑧𝑎𝑥) (3.45)

The relationships seen in Equation (3.26) are once again substituted into Equation

(3.45) to find β in terms of roll, yaw and pitch.

𝛽

= arctan2 (
𝑙2 sin 휃𝑦(cos 휃𝑟 sin 휃𝑝 − sin 휃𝑟 sin 휃𝑦 cos 휃𝑝) −𝑝𝑧 sin 휃𝑦 ,

𝑝𝑦 + 𝑙0 sin 휃𝑦 + 𝑙2 sin 휃𝑦 (cos 휃𝑟 cos 휃𝑝 + sin 휃𝑟 sin 휃𝑦 sin 휃𝑝)
)

(3.46)

Finally, having found 𝛽, 𝛾 can be calculated using 𝑛𝑧 and 𝑜𝑧.

𝑛𝑧 = sin(𝛽 + 𝛾)

𝑜𝑧 = cos(𝛽 + 𝛾)

∴
𝑛𝑧

𝑜𝑧
=

sin(𝛽 + 𝛾)

cos(𝛽 + 𝛾)
= tan(𝛽 + 𝛾)

(3.47)

Rearranging to make 𝛾 the subject gives,

 𝛾 = arctan2(𝑛𝑧 , 𝑜𝑧) − 𝛽 (3.48)

where 𝑛𝑧 and 𝑜𝑧 can be substituted out using the relationships from Equation (3.26)

to find 𝛾 in terms of roll, yaw and pitch.

76

𝛾 = arctan2(cos 휃𝑟 sin 휃𝑝 − sin 휃𝑟 sin 휃𝑦 cos 휃𝑝 , cos 휃𝑟 cos 휃𝑝

+ sin 휃𝑟 sin 휃𝑦 sin 휃𝑝) − 𝛽
(3.49)

With all of the joint angles calculated, 𝛿 and 휀 can be calculated using the

relationships in Equation (3.9). In order to remove dependence on pose, a fourth link

can be added with 0 m length with axes of freedom and no limitations on freedom.

The equations have a high degree of dependency on one another and become

unsolvable.

3.4 Simultaneous Geometric Equations for Inverse Kinematics

This method for calculating the robotic manipulator arm inverse kinematics uses the

geometric parameters of the arm to form a set of simultaneous equations. These

can be solved to determine the joint positions given the manipulator base point and

end effector positions. Figure 3-12 illustrates the manipulator arm configuration and

defines the parameters to be used in the simultaneous equations.

In this diagram 𝑙0, 𝑙1, and 𝑙2 are the length of each of the links respectively, 𝑥𝑦0, 𝑥𝑦1,

and 𝑥𝑦2 are the xy-component of each of the links respectively and 𝑧1 and 𝑧2 are the

z-components of the second and third links respectively. 𝑃𝑓 is the position of the end

effector on the third link, and has two components, 𝑃𝑓𝑥𝑦 and 𝑃𝑓𝑧 which are the x-y

and z coordinates of the end effector respectively. 𝑃0 is the position of the first joint

and the origin of the arm. The parameters of the manipulator arm are outlined in

Table 3-3:

77

1P

2P

0P

1P

2P
0P

Top-down view

Side-on view

xy1

l2

xy2
z2

z1

xy0

l1

l0

xy2 xy1

xy0

x2

x1

x0

y0 y1 y2

Pf

Figure 3-12: Schematic of the variables and dimensions that make up the simple

model of the Digital Vanguard ROV manipulator arm.

Table 3-3 Parameters of links in a 3-DoF manipulator arm.

Link Label Joint Joint Angle Link Length

𝑙1 𝑃0 − 𝑃1 𝛼 0.090 𝑚

𝑙3 𝑃1 − 𝑃2 𝛽 0.332 𝑚

𝑙3 𝑃2 − 𝑃𝑒𝑓 𝛾 0.538 𝑚

The geometric relationships describing the manipulator arm are seen in Equations

(3.50) to (3.55).

 𝑥𝑦1
2 + 𝑧1

2 = 𝑙1
2 (3.50)

78

 𝑥𝑦2
2 + 𝑧2

2 = 𝑙2
2 (3.51)

 𝑥𝑦3
2 + 𝑧3

2 = 𝑙3
2 (3.52)

𝑃𝑥𝑦1 = 𝑥𝑦1

𝑃𝑧1 = 0

(3.53)

𝑃𝑥𝑦2 = 𝑥𝑦1 + 𝑥𝑦2

𝑃𝑧2 = 𝑧2

(3.54)

𝑃𝑓𝑥𝑦 = 𝑥𝑦1 + 𝑥𝑦2 + 𝑥𝑦3

𝑃𝑓𝑧 = 𝑧2 + 𝑧3

(3.55)

The unknowns in these relationships are 𝑥2, 𝑦2, 𝑥3 and 𝑦3 from 𝑥𝑦2 and 𝑥𝑦3

respectively and 𝑧2 and 𝑧3 and can be solved simultaneously to form Equations

(3.56) to (3.62).

 𝑥𝑦2 = −
𝐴𝐵 ± 𝑃𝑓𝑧√−𝐶𝐷 + 𝑙1

3 − 𝑃𝑓𝑥𝑦
3

𝐸
 (3.56)

where,

79

𝐴 = 𝑙1(𝑙2
2 − 𝑙3

2 + 𝑃𝑓𝑧
2 + 3𝑃𝑓𝑥𝑦

2) − 𝑃𝑓𝑥𝑦

𝐵 = 3𝑙1
2 + 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2

𝐶 = (𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2)

𝐷 = (𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 − 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2)

𝐸 = 2(𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2)

}

 (3.57)

 𝑥𝑦3 = ∓
𝐴 ∓ 𝑃𝑓𝑥𝑦𝐵 + 𝑃𝑒𝑓𝑧√𝐶 + 𝑙1

3 ∓ 𝑃𝑓𝑥𝑦
3

𝐹
 (3.58)

where,

𝐴 = 𝑙1(𝑙3
2 − 𝑙2

2 ± 𝑃𝑒𝑓𝑧
2 ± 3𝑃𝑓𝑥𝑦

2)

𝐵 = 3𝑙1
2 + 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2

𝐶 = −𝐷𝐸

𝐷 = 𝑙1
2 + 2(𝑙2𝑙3 − 𝑙1𝑃𝑓𝑥𝑦) − 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

𝐸 = 𝑙1
2 + 2(𝑙2𝑙3 + 𝑙1𝑃𝑓𝑥𝑦) − 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

𝐹 = 2(𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2)

}

 (3.59)

𝑧2 =

𝑃𝑓𝑧

2
+

𝑃𝑓𝑧

𝑙2
3 − 𝑙3

3 ± 𝑙1√𝐴 ∓ 𝑃𝑓𝑥𝑦√𝐴
2

𝐷

(3.60)

and,

80

𝑧3 =

𝑃𝑓𝑧

2
−

𝑃𝑓𝑧

𝑙2
3 − 𝑙3

3 ± 𝑙1√𝐴 ∓ 𝑃𝑓𝑥𝑦√𝐴
2

𝐷

(3.61)

where,

𝐴 = −𝐵𝐶

𝐵 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

𝐶 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

𝐷 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

}

 (3.62)

These equations give the x-y and z positions of each joint which can then be used

with Equation (3.63) to calculate the angle of each.

 𝛼 = arctan2(𝑃𝑧 , 𝑃𝑥𝑦) (3.63)

3.5 Summary of Kinematic Modelling

The reason behind the development of the forward and inverse kinematic models

presented in this chapter is to have accessible a method of mapping the environment

in terms of the joint angle ranges where collisions occur between the arm and

obstacles in the Euclidean domain, with the dimensions of the map corresponding to

each of the joint angles. The procedure involved in this method is to determine an

array of points along all of the exposed surfaces and edges of the object/obstacle

and then run each point on the obstacle through the arm kinematics, using the

kinematics for each of 𝑃1, 𝑃2 and 𝑃𝑓 at intervals along these arm links of 0 m to 𝑙1 m,

𝑙2 m and 𝑙3 m respectively. This means that collisions at any point along the arm are

recorded, and not only the end point for each link. By inspection of these three

methods it is clear that the inverse solution for the Denavit-Hartenberg matrices

81

requires a lot more calculations than the other two suggested methods, therefore this

method shall be discounted at this point.

The third line of development for this type of mapping used basic geometry. In the

robotic manipulator arm, each link is moved by rotation in only one axis. This means

that, given a fixed starting point for the link, any collisions with that link must occur

within a circle on the same plane as the link, with a radius of the link length, where

the centre of the circle is at the pivot point of the link. If there is a collision then the

cosine of the joint angle that causes said collision can be found using the dot product

of two vectors divided by the multiplication of the magnitudes of the two vectors,

where the two vectors describe the link in its zero or initial position and the line from

the pivot point to the collision point.

If the object is larger than a point mass, then there will be a continuous range of

angles that would cause a collision with the object, providing that the object is a

regular shape. This allows for a simplification to the algorithm as only the maximum

and minimum collision angles for that object need to be found. For a regular shape

any angle in between these two limits must cause a collision between the arm link

and the object.

Having looked at a way of finding the collision angles for one link, it becomes very

easy to investigate collision angles for a series of connected links. By starting with

the lowest link in the chain and finding all of the collision angles, the next link can be

investigated. The starting position for this link is the end position of the previous one

so any starting position that occurs in the range of angles for the previous link that

causes a collision with the object does not need to be investigated. Only starting

positions that are available from accessible angles of the previous link must be

investigated.

This method has a significant drawback however. For a small number of small

objects with a low number of defined inspection points, the algorithm will execute

quite quickly as the number of calculations is relatively small, but as soon as the size

and number of objects and the number of inspection points increases, the algorithm

run time will also increase. This problem is compounded further by increasing the

number of points along the robotic arm used for inspection for collisions. Depending

on how many inspection points on both the obstacle and robotic arm are required to

82

make a usable collision map of the object, especially given the complexity of the real

world environments to be explored, this method may be unviable as it may be too

slow to be used to navigate in real time. This process can then be extended for any

further links, and the number of iterations increases by an order of magnitude for

each extra link. This increase in calculations by an order of magnitude for each

extra link can be seen as a potential problem for higher number degrees-of-freedom

in the arm as the time taken for the mapping calculation will increase dramatically,

potentially making the method unfeasible.

As described in section 3.2 of this chapter, there is a third method considered which

is very similar to the second, but which very quickly finds all solutions to a single end

effector position. If this is carried out for a series of inspection points along the arm

for all of the inputted data points from the simulated obstacles then the algorithm will

run very quickly due to its low computational load.

The inverse trigonometric method and the simultaneous geometric equation method

will both be implemented in Chapter 6 in order to test the feasibility of use of each of

them as part of the mapping algorithm. The following chapter deals with modelling of

the dynamics of a 3-DoF robotic manipulator arm to provide a set of constraints with

which to develop the guidance method and also provide a test bed for validation of

the complete technique.

83

4 DYNAMIC MODELLING OF A ROBOTIC MANIPULATOR

In the previous chapter the forward and inverse kinematics of a 3-DoF

manipulator arm have been derived for use in the work carried out in Chapter 6 in

the development of a guidance method for the manipulator arm. The present

chapter deals with the dynamic modelling of a generic 3-DoF manipulator arm with

the same degrees-of-freedom as previously specified. Applying values to the

numerical parameters in the dynamic model will allow for qualitative validation of the

developed model, which can then be used in future chapters to design and tune a

controller providing sufficient performance for the arm. This chapter deals with the

block highlighted in green in Figure 1-4, which is displayed again here with all of the

other processes greyed out.

Sensor

Arm Position and

Pose

(Servo Encoders)

Simulated

Environment Data

User Input

Desired End

Effector Location

Map Conversion to

C-space

Plotting of Current

and Desired End

Effector Location

Path Generation Path Following
Arm Servo

Controllers

Arm Dynamics

Arm Kinematics

Figure 4-1 Manipulator arm dynamics (green) in relation to the overall guidance

method.

84

Having investigated literature regarding the dynamic modelling of robotic manipulator

arms in Chapter 2, some of the information contained there can be used for the

development and validation of a dynamic model, including a simple servo model, for

use as the test bed for the control and guidance parts of the thesis.

The dynamic model of the manipulator arm will be derived using Newtonian

mechanics since (Turney, et al.) showed that the Lagrangian derivation has a higher

computational overhead, the results of which are presented in Table 2-1, and Table

2-2 for a 3-DoF problem.

4.1 Manipulator Arm Parameters

It is important to recognise at this point a change in the joint angle usage, and

therefore its nomenclature. In the kinematic modelling of the manipulator arm, the

joint angles in use referred to the grey shaded angles in Figure 4-2, 𝛽 and 𝛾, which

corresponded to the angles starting at 0𝑐 when the arm was fully retracted and the

positive direction for each joint was as follows. The angle 𝛼 had exactly the same

starting location and direction as in the following figure, 𝛾 and 휂 have the same

direction, but 𝛽 = −𝜎. The reason for the change in angles to 𝛼, 𝜎, 휂 rather than the

original 𝛼, 𝛽, 𝛾 is that for the dynamic modelling, maintaining all of the angles with the

same starting orientation and direction ensures that all of the moments about joints

operate in the same directions and there is no need to resolve directions. The

difference is that the starting pose for the arm will be different. In the [𝛼, 𝛽, 𝛾]

coordinate system, the staring pose would be [0,0,0]. In the [𝛼, 𝜎, 휂] coordinate

system, the starting pose would be [0, 𝜋, 0].

The manipulator arm shown in Figure 4-2 has 3 degrees-of-freedom, with link 1

rotating about the Z-axis at P0, link 2 rotating about an axis on a horizontal plane at

P1 and link 3 rotating about an axis on a horizontal plane at P2. The lengths l1, l2 and

l3 are the lengths of links 1, 2 and 3 respectively. The mass of each link is

represented by a point mass at the centre of mass of the link. The masses m1, m2

and m3 are the masses of each link. The position of each of these centres of mass

are described by the distance from the lower end of the respective link, therefore c1,

c2 and c3 are the distances from the lower joint of links 1, 2 and 3 respectively to their

centre of mass.

85

α

σ

η

m3

m2

m1

c1 l1

l2

c2

l3

c3

P0 P1

P2 γ

β

Pf

X

Y

Z

Figure 4-2 Schematic of a 3-DoF manipulator arm showing the relevant parameters

for the development of a dynamic model.

The angles α, σ and η are the angle of each joint from the horizontal. The positive

direction of each axis of rotation is anti-clockwise. Based on the above diagram this

means that α will rotate into the page, and σ and η will rotate anti-clockwise as

positive. For the purposes of the model, 0 radians in each case is when the joint

angle is pointing horizontally to the right of the page, therefore in the case of the

diagram, 𝛼 = 0𝑐, 𝜎 ≈ 140𝑐, and 휂 ≈ 30𝑐.

4.2 Dynamic Equation Formulation

Having laid out the parameters of a generic 3-DoF manipulator arm, the equations

governing its dynamic properties can be explored. By using Newtonian mechanics

and d’Alembert’s principle, the dynamics can be developed. For each link the

relationship shown in Equation (4.1) is the case.

 Σ𝑇 = 𝑇𝑖𝑛 − Σ𝑀𝑚 − Σ𝑀𝑓 − Σ𝑀𝑖 − Σ𝑀𝑐 (4.1)

86

Where Σ𝑇 is the total torque about a joint, 𝑇𝑖𝑛 is the input torque to the joint, Σ𝑀𝑚 is

the total moment about the joint caused by the weight of the joint and any joints

further up the arm, Σ𝑀𝑓 is the total moment about the joint caused by static and

friction, Σ𝑀𝑖 is the total moment caused by moments of inertia of the link and any

links further up the arm about the joint and Σ𝑀𝑐 is the total moment about the joint

caused by the reaction to centripetal forces generated by circular motion in the joint,

or any caused by circular motion in joints both below and above the joint.

4.2.1 First Link

In the first link, the rotation occurs about the Z-axis, so with the exception of any

shearing forces causing friction in the joint, which will be assumed to be negligible,

the weight of each link will have no effect on the total torque about the joint, therefore

Σ𝑀𝑚 is zero. Equally, any reaction forces to the centripetal forces generated due to

circular motion of any of the links acts in a direction parallel to the length of the first

link in the horizontal plane, therefore there is no moment generated by them about

the first joint, hence Σ𝑀𝑐 is also zero. This reduces Equation (4.1) to that of Equation

(4.2).

 Σ𝑇 = 𝑇𝑖𝑛 − Σ𝑀𝑓 − Σ𝑀𝑖 (4.2)

A non-conservative torque which is present in the system is that which is caused by

friction. This model will deal with the effects of two forms of friction, static and

kinetic. Kinetic friction can be modelled very easily since torque produced by kinetic

friction is calculated by 𝜏𝑘 = 𝑐𝑘휃̇, where 𝑐𝑘 is the coefficient of kinetic friction. Static

kinetic friction is more complex to model since it only exists when the angular

velocity is small or zero. For this to be the case the static friction term needs to

reduce to zero as the angular velocity increases. This is done using the expression

given in Equation (4.3).

87

𝜏𝑠 = 𝑠𝑖𝑔𝑛(휃̇)𝑒−|�̇�|𝑐𝑠

(4.3)

Where, 𝑐𝑠 is the coefficient of static friction. This forms the expression for the total

torque about the joint due to friction shown in Equation (4.4).

 Σ𝜏𝑓 = 𝑐𝑘휃̇ + 𝑠𝑖𝑔𝑛(휃̇)𝑒−|�̇�|𝑐𝑠 (4.4)

The coefficient of kinetic friction can be modelled using this expression, which

displays a shape which matches that of a Coulomb and Viscous friction model.

Using values taken from (Meriam & Kraige, 2012) for steel against steel, the static

friction coefficient is 0.6 and the kinetic friction coefficient is 0.4. The reason behind

these choices of coefficient of friction is because the friction terms in the gearboxes

and servo motors for each joint have not been modelled, and this friction term allows

for their effects on the system as well. In this case the moment about the joint

caused by friction is given in Equation (4.5).

 Σ𝑀𝑓 = 0.4�̇� + 0.6𝑠𝑖𝑔𝑛(�̇�)𝑒−|�̇�| (4.5)

0

Torque (Nm)

Θ (rad s-1)

Kinetic Friction

Static Friction

Total Friction

Figure 4-3 Effect of angular velocity on static and kinetic friction.

Figure 4-3 show how the expression for static and kinetic friction behaves with

varying angular velocity. The red line is the kinetic friction, the blue line is the static

friction and the green line the summation of the two. It is clear from the figure that

88

static friction has the most effect early at low angular velocities, which requires an

initial amount of energy to overcome. As angular velocity increases the static friction

had a depreciating effect and kinetic friction becomes the principal frictional effect

acting on the system. The friction model is symmetrical in that the friction has the

exact same effect at negative velocities, only in the reverse direction.

Since moment of inertia, 𝐼 = 𝑚𝑟2, and torque, 𝜏 = 𝐼휃̈, and in the case of joint 1 the

radius is the horizontal distance of each mass from the same joint the moment of

inertia of each of the links about joint 1 can be calculated using Equations (4.6) to

(4.8).

 𝜏1
1 = 𝑚1�̈�𝑟1

2 = 𝑚1�̈�𝑐1
2 (4.6)

 𝜏1
2 = 𝑚2�̈�𝑟2

2 = 𝑚2�̈�(𝑙1 + 𝑐2 cos 𝜎)2 (4.7)

 𝜏1
3 = 𝑚3�̈�𝑟3

2 = 𝑚3�̈�(𝑙1 + 12 cos 𝜎 + 𝑐3 cos 휂)2 (4.8)

Therefore the total moment caused by the moments of inertia is calculated using

Equation (4.9).

 Σ𝑀𝑖 = 𝑚1�̈�𝑐1
2 + 𝑚2�̈�(𝑙1 + 𝑐2 cos 𝜎)2 + 𝑚3�̈�(𝑙1 + 12 cos 𝜎 + 𝑐3 cos 휂)2 (4.9)

Using this relationship the total torque about joint 1 can by Equation (4.10).

ΣT1 = T1in − (0.4�̇� + 0.6𝑠𝑖𝑔𝑛(�̇�)𝑒−|�̇�|)

−𝑚1�̈�𝑐1
2 − 𝑚2�̈�(𝑙1 + 𝑐2 cos 𝜎)2 − 𝑚3�̈�(𝑙1 + 12 cos 𝜎 + 𝑐3 cos 휂)2

(4.10)

89

4.2.2 Second Link

In the case of the second link, the weights of the 2nd and 3rd links have an effect on

the moments about joint 2. The moment about joint 2 caused by the weight of link 2

can be calculated using the schematic shown in Figure 4-4.

σ

m2g

c2

P1

σ

Figure 4-4 Schematic of the weight of link 2 acting on link 2.

In this case the moment acting about P1 due to the weight of the 2nd link is given by

Equation (4.11).

 𝑀2
2 = 𝑚2𝑐2𝑔 cos 𝜎 (4.11)

For the moment acting about P1 due to the weight of the 2nd link, a similar process

can take place. In this case the effect of the weight of link 3 is calculated using 휃

and 𝑙𝜃. To do this Equations (4.12) and (4.13) are used.

 휃 = atan (
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
) (4.12)

 𝑙𝜃 = √(𝑙2 sin 𝜎 + 𝑐3 sin 휂)2 + (𝑙2 cos 𝜎 + 𝑐3 cos 휂)2 (4.13)

90

σ

η

m3g

l2

c3

P1

P2

θ

θ

lθ

Figure 4-5 Schematic of the weight of link 3 acting on link 2.

Equation (4.13), which calculates the value for 𝑙𝜃 can be simplified using

trigonometric identities to that of Equation (4.14).

 𝑙𝜃 = √𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂) (4.14)

By combining Equations (4.13) and (4.14), the moment caused by the weight of link

3 about the second joint can be calculated using Equation (4.15).

 𝑀2
3 = 𝑚3𝑔 cos (atan (

𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
))√𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂) (4.15)

therefore,

91

Σ𝑀𝑚

= 𝑚2𝑐2𝑔 cos 𝜎

+ 𝑚3𝑔 cos (atan (
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
))√𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂)

(4.16)

Kinetic friction about the 2nd joint occurs in exactly the same way as that of the first,

therefore,

 Σ𝑀𝑓 = 0.4�̇� + 0.6𝑠𝑖𝑔𝑛(�̇�)𝑒−|�̇�| (4.17)

Moments of inertia about the 2nd joint can be calculated similarly to that of the first.

Equation (4.18) calculates the moment of inertia caused by the second link about the

2nd joint.

 𝜏 =2
2 𝑚2�̈�𝑐2

2 (4.18)

For the moment of inertia of the 3rd link acting about the 2nd joint, 𝑙𝜃 is used as the

radius, hence,

𝜏 =2

3 𝑚3�̈�√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂)

2

= 𝑚3�̈�(𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

(4.19)

Therefore the total torque generated by moments of inertia about joint 2 can be

described by Equation (4.20).

92

 Σ𝑀𝑖 = 𝑚2�̈�𝑐2
2 + 𝑚3�̈�(𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂)) (4.20)

There are five reaction forces caused by circular motion which act on the 2nd link.

Rotation of the 2nd link about the 2nd joint causes a centripetal force which acts

axially along the link, and therefore causes no moment about joint 2. However,

reactions to the centripetal forces caused by the motion of the 2nd and 3rd links about

the 1st joint act through the 2nd joint, as do the reactions to the centripetal forces

caused by the rotation of the 3rd link about the 2nd and 3rd joints.

α

σ

Fc
c2

P0 P1

σ

l1

m2

Figure 4-6 Schematic of the centripetal force which acts on the 2nd link due to its

rotation about the 1st joint.

For the moment generated about the 2nd joint by the reaction force caused by the

rotation of the 2nd link about the first joint, the Figure 4-6 assists with the derivation of

the equation. Since centripetal force 𝐹 = 𝑚𝑟𝜔2, in this case, the radius would be the

horizontal distance between joint 1 and the position of m2. The component of this

force that causes a moment about joint 2 can be calculated by trigonometry, forming

Equation (4.21).

 𝑀2𝑐 =2
1 𝑐2𝑚2(𝑙1 + 𝑐2 cos 𝜎)�̇�2 sin 𝜎 (4.21)

93

In this case the reaction to the centripetal force caused by the rotation of the 3rd link

about the 1st joint acts at the end of link 2 in the horizontal direction and so can be

calculated with trigonometry.

α

σ

η

m3

l1

l2

c3

P0
P1

P2

Fc

Figure 4-7 Schematic of the centripetal force which acts on the 2nd link due to the

rotation of the 3rd link about the 1st joint.

 𝑀2𝑐 =3
1 𝑙2𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)�̇�2 sin 𝜎 (4.22)

σ

η

Fc

l2

c3

P1

P2

θ

θ

lθ

m3

σ

Fc

94

Figure 4-8 Schematic of the centripetal force caused by the rotation of the 3rd link

about the 2nd joint.

In this case the centripetal force can be calculated using Equation (4.23).

 𝐹𝑐 = 𝑚3𝑙𝜃�̇�
2 = 𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂) (4.23)

The moment about joint 2 can be calculated by finding the component of this force

perpendicular to link to and multiplying it by l2. This forms Equation (4.24).

𝑀2𝑐 =3
2 𝑙2 sin(𝜎 − 휃)𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂)

= 𝑙2 sin (𝜎

− arctan
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂)

(4.24)

Finally, the moment about joint 2 caused by the centripetal reaction force generated

by the rotation of link 3 about joint 3 can be calculated by using Figure 4-9 as a

reference.

95

σ

η

l2

c3

P1

P2

m3

σ

Fc

Figure 4-9 Schematic of the centripetal force caused by the rotation of link 3 about

joint 3.

In this case the moment of centripetal force caused by the rotation of link 3 about

joint three which acts about joint 2 is calculated by Equation (4.25).

 𝑀2𝑐 =3
3 𝑙2𝑚3𝑐3휂̇

2 sin(𝜎 − 휂) (4.25)

This means that the sum of moments caused by centripetal forces calculated by

Equation (4.26).

96

Σ𝑀𝑐

= 𝑙2𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)�̇�2 sin 𝜎 + 𝑚2𝑐2(𝑙1 + 𝑐2 cos 𝜎)�̇�2 sin 𝜎

+ (𝑙2 sin (𝜎

− arctan
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

+ 𝑙2𝑚3𝑐3휂̇
2 sin(𝜎 − 휂)

(4.26)

When the above equations are summed to calculate the total torque about joint 2,

Equation (4.27) is formed:

ΣT2

= T2in − 𝑐2𝑚2𝑔 cos 𝜎

− (𝑚3𝑔 cos (arctan
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)√𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

− (0.4�̇� + 0.6𝑠𝑖𝑔𝑛(�̇�)𝑒−|�̇�|) − 𝑚2�̈�𝑐2
2 − 𝑚3�̈�(𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

− 𝑙2𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)�̇�2 sin 𝜎 − 𝑚2𝑐2(𝑙1 + 𝑐2 cos 𝜎)�̇�2 sin 𝜎

− (𝑙2 sin (𝜎

− arctan
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)𝑚3�̇�

2√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

− 𝑙2𝑚3𝑐3휂̇
2 sin(𝜎 − 휂)

(4.27)

97

4.2.3 Third Link

In the case of the third link, the weight of the third link has an effect on the total

moment about the joint.

η

c3

P2

m3g
η

Figure 4-10 Schematic of the moment about joint 3 caused by the weight of link 3.

In this case.

 𝑀𝑚 = 𝑚3𝑐3𝑔 cos 휂 (4.28)

The friction about joint 3 also has an impact, therefore,

 𝑀𝑓 = 0.4휂̇ + 0.6𝑠𝑖𝑔𝑛(휂̇)𝑒−|�̇�| (4.29)

In the case of the third link its inertia has an impact:

 𝑀𝑖 = 𝑚3휂̈𝑐3
2 (4.30)

98

Centripetal forces caused by rotation have an effect on the moments about joint 3.

Rotation of link 3 about joint 3 causes a centripetal reaction force which acts axially

along the length of link 3, and therefore does not impact the moments about joint 3.

However rotation of link 3 about joints 1 and 2 do have an effect. For the rotation of

link 3 about joint 1 Figure 4-11 is the case.

The centripetal force caused by the acceleration about joint 1 can be calculated

using Equation (4.31).

 𝐹𝑐 = 𝑚3(𝑙1 + 𝑙2 + 𝑐3 cos 휂)�̈�2 (4.31)

α

σ

η

m3

l1

l2

c3

P0
P1

P2

Fc

η

Figure 4-11 Schematic of the centripetal force caused by the rotation of link 3 about

joint 1.

The component of this force which acts perpendicular to the link can be calculated

using Equation (4.32).

 𝑀3𝑐 =3
1 𝑚3(𝑙1 + 𝑙2 + 𝑐3 cos 휂)�̈�2 sin 휂 (4.32)

99

As before 𝑙𝜃 = √𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂) and 휃 = atan (
𝑙2 sin𝜎+𝑐3 sin𝜂

𝑙2 cos𝜎+𝑐3 cos𝜂
). Since this is

the case the centripetal force can be calculated using Equation (4.33).

 𝐹𝑐 = 𝑚3�̇�
2√𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂) (4.33)

For the rotation of link 3 about joint 2, Figure 4-12 shows the direction of the

centripetal force acting on the link.

σ

η

Fc

l2

c3

P1

P2

θ

θ

lθ

m3

σ

Fc

Figure 4-12 Schematic of the centripetal force caused by the rotation of the 3rd link

about the 2nd joint.

The component of this force that acts perpendicular to link 3 will have an impact on

the total moment about joint 3, therefore,

𝑀3𝑐 =3
2 𝑚3�̇�

2 sin (atan (
𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)

− 휂)√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂)
(4.34)

100

The resultant expression formed by collecting all of the moment terms about link 3

gives the total torque about the link. This is displayed in Equation (4.35).

ΣT3 = T3in − 𝑚3𝑐3𝑔 cos 휂 − (0.4휂̇ + 0.6𝑠𝑖𝑔𝑛(휂̇)𝑒−|�̇�|) − 𝑚3휂̈𝑐3
2

− 𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)�̇�2 sin 휂

− (𝑚3�̇�
2 sin (atan (

𝑙2 sin 𝜎 + 𝑐3 sin 휂

𝑙2 cos 𝜎 + 𝑐3 cos 휂
)

− 휂)√𝑙2
2 + 𝑐3

2 + 2𝑙2𝑐3 cos(𝜎 − 휂))

(4.35)

4.2.4 Angular Acceleration

Having derived the expressions for (4.10), (4.27) and (4.35), the resultant torques

about each joint, the angular acceleration can be derived next. Since 𝜏 = 𝑚𝑟2휃̈, the

angular acceleration of each joint can be calculated by 휃̈ =
𝜏

𝑚𝑟2. For joint 1, all three

links have an impact on the moments of inertia, therefore the sum of all three

moments of inertia about joint 1 are used.

 Σ𝐼1 = 𝑚1𝑐1
2 + 𝑚2(𝑙1 + 𝑐2 cos 𝜎)2 + 𝑚3(𝑙1 + 𝑙2 cos 𝜎 + 𝑐3 cos 휂)2 (4.36)

For joint 2, the moments of inertia of the second and third about the second joint

have an impact, therefore,

 Σ𝐼2 = 𝑚2𝑐2
2 + 𝑚3(𝑙2

2 + 𝑐3
2 + 2𝑙2𝑐3 cos(𝜎 − 휂)) (4.37)

For joint 3, only the moment of inertia of the third link about the third joint has an

impact on the acceleration, therefore,

101

 Σ𝐼3 = 𝑚3𝑐3
2 (4.38)

With these equations developed, the entire set of mechanical equations for the

dynamic model has been derived, and the model can be built.

Figure 4-13 Simulink Control block diagram for the 3-DoF arm dynamic model.

In the model shown in Figure 4-13, the torques and arm parameters are inputted into

the system and the dynamic equations are used to calculate the joint angular

accelerations as Matlab code inside the ‘threeDofArm’ MATLAB Function, which are

then fed out of the block as the signal ‘alphas’. These accelerations are integrated

twice to calculate the joint angles. The joint angular positions, velocities and

accelerations are fed back into the ‘threeDofArm’ MATLAB Function to carry out the

next iteration of calculations.

Upon simulating scenarios using the dynamic model, the friction term in each of the

joint equations displayed a high frequency oscillation at the magnitude of ±0.6 when

the system was within the range of angular velocities where static friction has more

of an effect on the system than kinetic friction. Figure 4-14 and Figure 4-15 are the

resulting moments about the 2nd and 3rd joints for the 1st scenario from Section 4.2.5

with the friction model described in Equation (4.4).

102

Figure 4-14 Moments about 𝝈.

Figure 4-15 Moments about 𝜼.

Figure 4-16 Angular position of each joint.

The time at which the high frequency moment occurs is when the system has settled

to a final value, i.e. the joints are stationary. This can be observed by inspecting the

time range in Figure 4-16 for the same scenario where the angular position does not

change. It is clear that the moments caused by friction are inserting energy into the

system, and the resultant change in velocity is affecting the acceleration of the

system, therefore the inertial terms are also affected.

The reason behind this phenomenon is that the static friction term is being driven by

the angular velocity of the joint, whereas static friction can only provide a force or, in

103

this case, torque to oppose another force or torque. A static friction torque is

produced even when the system does not have velocity, since the exponent of 0 is 1.

Therefore the current static friction model is required to be altered to reflect its

dependence on an opposing torque. The resultant model is displayed in Equations

(4.39) to (4.42). The general principle of the model is correct, Equation (4.39) will

still form the basis of the model.

𝜏𝑠 = 𝑠𝑖𝑔𝑛(휃̇)𝑒−|�̇�|𝑐𝑠

(4.39)

Since the static friction will work in the opposite direction to the resultant moment

acting on the system from all other moment terms in the model, the relationship

shown in (4.40) can be used.

 Σ𝑇 = 𝑇𝑖𝑛 − Σ𝑀𝑚 − Σ𝑀𝑖 − Σ𝑀𝑐 − 𝜏𝑘 (4.40)

Using this relationship the direction that the static friction acts can be implemented.

𝜏𝑠 = sign(−Σ𝑇)𝑒−|�̇�|𝑐𝑠

(4.41)

Finally the maximum magnitude of the static friction torque that can be applied must

not exceed the value of the magnitude of the other moments about the joint.

 𝜏𝑠 = sat−Σ𝑇
Σ𝑇 sign(−Σ𝑇)𝑒−|�̇�|𝑐𝑠 (4.42)

104

0

Torque
(Nm)

Θ (rad s-1)

(a) Σ𝑇 = ±0.9 𝑁𝑚

0

Torque
(Nm)

Θ (rad s-1)

(b) Σ𝑇 = ±0.6 𝑁𝑚

0

Torque
(Nm)

Θ (rad s-1)

(c) Σ𝑇 = ±0.3 𝑁𝑚

0

Torque
(Nm)

Θ (rad s-1)

(d) Σ𝑇 = ±0 𝑁𝑚

Kinetic Friction

Static Friction

Total Friction

ΣT

Figure 4-17 Effect of torque based saturation on friction in a joint.

Figure 4-17 shows how the static friction term is affected by different resultant

torques about each joint. In figure (a) the resultant torque about the joint is larger

than the maximum static friction therefore the reaction torque produced by friction is

not affected. In figure (b) the resultant torque about the joint is equal to the

maximum static friction so the total friction is still unaffected. In figure (c) the

resultant torque is less than the maximum static friction, therefore this term is subject

to a saturation which limits it to the same magnitude as the resultant torque in the

case of zero angular velocity. The red shaded area indicates the region of static

friction which is no longer applied. In figure (d) the resultant torque about the joint is

105

0 Nm, and this means that no static friction is generated as a reaction torque and

only the kinetic friction has any effect on the system.

The application of the static friction term to the dynamic model is given by equation

(4.43).

 Σ𝑇′ = Σ𝑇 − 𝜏𝑠 (4.43)

4.2.5 Qualitative Validation

In this section of the chapter, a series of simulated quantitative experiments will be

carried out with the dynamic model developed previously in order to validate it. For

each experiment an assumption will be made about what the system is expected to

do and then a comparison of the numerical results to the qualitative expectation will

be carried out to validate whether the system is performing as expected. In order to

carry out any validation, numerical values must be applied to all of the variables

specified in the dynamic model derivation. For this case several assumptions have

been made:

 Each link is a hollow steel tube of diameter 0.02 m and wall thickness of 0.002

m and the end of each link is capped with a piece of steel of the same

thickness. The density of steel is also taken from Meriam and Kraige

Dynamics (2012), and is stated as 7830 𝐾𝑔 𝑚−3.

 The servo motors that would control the arm currently have not been

modelled and, as such, for the purposes of these simulations are assumed to

have zero mass and inertia.

 The mass and inertia of each link is distributed uniformly through the material;

therefore the centre of mass of each link occurs half way along the length of

the link and occurs in the centre of the circle.

 This allows for all of the parameters to be calculated or decided upon. This

robot arm will have the same parameters as the Allen Vanguard™ Digital

Vanguard robotic manipulator arm, as shown in Table 4-1.

106

Table 4-1 Numerical parameters of the Digital Vanguard 3-DoF manipulator arm.

Parameter Value Parameter Value Parameter Value

𝑙1 0.09 𝑚 𝑐1 0.045 𝑚 𝑚1 0.184 𝐾𝑔

𝑙2 0.332 𝑚 𝑐2 0.166𝑚 𝑚2 0.637 𝐾𝑔

𝑙3 0.538 𝑚 𝑐3 0.269 𝑚 𝑚3 1.021 𝐾𝑔

Table 4-2 List of scenarios used for the qualitative validation of the manipulator

dynamic model.

Sim No. 𝝉𝟏 (𝑵𝒎) 𝝉𝟏 (𝑵𝒎) 𝝉𝟏(𝑵𝒎) 𝜶 (𝒓𝒂𝒅) 𝝈 (𝒓𝒂𝒅) 𝜼 (𝒓𝒂𝒅)

1 0 0 0 0 0 0

2 0 0 0 0 𝜋

2

𝜋

2

3 0 0 0 0 −
𝜋

2
 −

𝜋

2

4 10 0 0 0 0 0

5 7 0 0 0 −
𝜋

2
 −

𝜋

2

6 0 7.06 0 0 0 0

7 0 7.06 2.69 0 0 0

8 0 5.74 1.91 0 0 0

9 Ramp 0 0 0 0 0

10 Ramp 0 0 0 −
𝜋

2
 −

𝜋

2

In the following scenarios, the initial angle of each joint will be specified and then

either constant torques will be applied to the joints or, in the case of the final two

scenarios, a ramp input will be applied to the first joint to assess whether the system

107

behaves in the expected way. Table 4-2 gives the input torque and joint angle initial

states for each simulation. The initial conditions for the angular velocities and

angular accelerations in each of the following simulations for all joints is 0 𝑟𝑎𝑑 𝑠−1

and 0 𝑟𝑎𝑑 𝑠−2 respectively.

Scenario 1

The first scenario involves initial angles of 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑 and input torques of

0 𝑁𝑚 for all joints. In this case it is expected that 𝛼 will remain at 0 𝑟𝑎𝑑 since there is

no input torque and the axis of rotation does not allow for any moment to be

produced by the weight of the arm. The other two joints do allow weight to produce

a moment which will cause them to rotate. Given that this is the case, both the 2nd

and 3rd links will rotate in the negative direction. Both of these links will rotate until

there is no force acting in the direction which will cause a moment about the joint.

Given that there are no limits to the rotation of the joints currently modelled in to the

simulation, all three joints are able to rotate freely in any direction, and in this case

the 2nd and 3rd links will rotate until they are pointing straight downwards (−
𝜋

2
 𝑟𝑎𝑑).

This point is also the position where these links have the least potential energy and

so is likely to be the settling point. The inertia in the system is likely to cause an

overshoot from this minimum potential energy position, and so the direction of the

moment caused by gravity will reverse each link passes the −
𝜋

2
 𝑟𝑎𝑑 point. The

kinetic friction and static friction models in the system will damp down the oscillations

as they will always act against the angular velocity, hence the motion of the link, and

this effect will occur at high angular velocities due to the kinetic friction model and

when the angular velocity tends to zero due to the static friction model.

108

Figure 4-18 Angular position of each joint in the arm model for scenario 1.

As can be seen from Figure 4-18, 𝛼 remains at 0 𝑟𝑎𝑑 for the entirety of the

simulation, but both 𝜎 and 휂 decrease towards −
𝜋

2
 𝑟𝑎𝑑. There is oscillation about

the settling point in both of the 2nd and 3rd joints, and this oscillation is different for

both links. The 3nd link is longer than the 2nd, but the 2nd link has the inertia of both

2nd and 3rd links. This means that the friction terms take longer to overcome the

inertia as there is more mass to slow down, and so the 2nd link has a longer settling

time than the 3rd. Neither the 2nd or 3rd links have settled at exactly −
𝜋

2
 𝑟𝑎𝑑, but this

is due primarily to the effect of static friction as the angular velocity of the system has

to cross past the 0 𝑟𝑎𝑑 𝑠−1 at the maxima and minima of each oscillation, and this

extra kinetic friction from having a low angular velocity helps to remove energy from

the system until the point where the static friction overcomes the moments caused

by weight, and the system decelerates to a halt. The final position of each joint is

displayed in Figure 4-19.

109

σ=81.13o

σ=97.52o

P1 P2 P3

Pf

P3

Figure 4-19 Resultant joint angle locations for scenario 1 in relation to the starting

geometry.

The effect of static friction can be verified by simulating the same system with static

friction removed and determining the steady-state values of each joint angle.

Figure 4-20 Angular position of each joint in the arm model for scenario 1 with static

friction removed.

The results shown in Figure 4-20 provide the final value for each of the joint angles 𝜎

and 휂 when static friction is removed from the model. Both of these joints have a

110

final value of −
𝑝𝑖

2

𝑐
 which is the predicted location. This shows that as the 2nd and 3rd

joints settle towards their final value and their angular velocity reduces so that static

friction becomes larger than the kinetic friction term. Since the joints are converging

on a vertical angle, the cosine of the angle tends to 0, hence the moments about the

joints cause by weight also tend to 0. As the static friction term increases, it

becomes larger than the moments caused by weight. In reality, the point at which

the moment cause by gravity and the static friction are equal for each joint will be the

final value for the system. The effect of the friction model can be further investigated

by inspecting each term in the mechanical equation separately.

Figure 4-21 Moment terms about 𝝈 (excluding input torque) for scenario 1.

As can be seen from Figure 4-21, the weight of the links has a large effect on the

overall torque acting on each joint. As each joint converges on −
𝜋

2
 𝑟𝑎𝑑 the

component of weight action perpendicular to the link tends to zero, and as the

angular velocity of each link tends to zero, the link enters the static friction range and

the kinetic friction torque becomes less prominent. This is clear from the reduction in

the magnitude of the sinudoidal shape which is present in the solid black line in the

figure. As the angular velocity of the joint reduces, the static friction moment (dotted

111

black line) becomes more apparent. Once the value for the total moment acting on

the joint becomes smaller than the static friction term, the static friction is only

generated at the same magnitude since it will only counteract another force, not

generate motion by itself. The model has performed in this scenario in a manner

which is consistent with the prediction of its behaviour prior to the running of the

simulation, and therefore for this scenario it can be considered to be accurate.

Figure 4-22 Moment terms about 𝜼 (excluding input torque) for scenario 1.

Scenario 2

The second scenario involves joint angles of 𝛼 = 0 𝑟𝑎𝑑, 𝜎 = 휂 =
𝜋

2
 𝑟𝑎𝑑, and has

torque inputs of 0 𝑁𝑚 for each joint. Given these joint angles of the 2nd and 3rd links

should be pointing directly upwards in the vertical direction. Since this means that

weight has no components acting perpendicular to the links, all of the other terms

are proportional to angular velocity and acceleration and there are no external

disturbances, there should be no motion whatsoever, and the joint angles should

remain constant at their initial values.

112

Figure 4-23 Angular position of each joint in the arm model for scenario 2.

Figure 4-23 clearly confirms that the prediction made for this scenario correct since 𝛼

remains constant at 0 𝑟𝑎𝑑 and 𝜎 and 휂 remain approximately constant at
𝜋

2
 𝑟𝑎𝑑.

Figure 4-24 and Figure 4-25 show 𝜎 and 휂 separately since they overlap.

Figure 4-24 Angular position of 𝝈 for

scenario 2.

Figure 4-25 Angular position of 𝜼 for

scenario 2.

113

Figure 4-26 Moment in 𝝈 (excluding input torque) for scenario 2.

Figure 4-26 and Figure 4-27, show that there is negligible moments caused by any of

the terms in the dynamics acting on the system. The order of magnitude of the

moments displayed in these figures is 10−16 so the moments can be considered to

be 0 Nm. The reason for this offset is numerical rounding errors in Simulink. In this

scenario the model has performed in a manner which is consistent with the predicted

behaviour therefore it can be considered to be relatively accurate with regards to this

set of inputs and initial conditions.

Figure 4-27 Moment in 𝜼 (excluding input torque) for scenario 2.

114

Scenario 3

The third scenario involves joint angles of 𝛼 = 0, 𝜎 = −
𝜋

2
 and 휂 = −

𝜋

2
. Again, the

input torques in each of the joints is 0 𝑁𝑚. This scenario should behave similarly to

scenario 2. However, in this scenario the system starts at its minimum potential

energy point rather than its highest, as in the previous scenario, which means that

any disturbance would not cause the system to diverge from this set of angles, in

fact it should converge on this set of angles again should it be disturbed. The reason

that the system starts at its minimum potential energy point is that once again the

components of weight acting perpendicular to the 2nd and 3rd links are 0, and any

motion away from this angle combination would generate a moment caused by

weight which acts to rotate the system towards this angle set. This means that the

only movement in the system would be caused by numerical simulation error.

Figure 4-28 Angular position over time of all joints in scenario 3.

Figure 4-28 shows that the system behaves as expected given the initial angular

positions of 𝛼 = 0, 𝜎 = −
𝜋

2
 and 휂 = −

𝜋

2
, and input torques of 0 𝑁𝑚.

115

Scenario 4

The fourth scenario involves joint angles of 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑, and an input torque

on joint 1 of 10 𝑁𝑚. In this case the input torque will cause link 1 to accelerate until

the kinetic frictional torque about joint 1 increases enough to counterbalance the

input torque, and then the link will maintain a constant angular velocity. The

centripetal effects caused by the rotation of the 2nd and 3rd links about joint 1 will

have an impact on the angular positions of 𝜎 and 휂. Since there are no input torques

on these two joints, the will initially tend towards the −
𝜋

2
 𝑟𝑎𝑑 points, but as the

centripetal acceleration increases due to the increase in the angular velocity of joint

1, their tendency will be to move radially away from joint 1 and this will provide a

moment which rotates them towards 0 𝑟𝑎𝑑. Since the links have inertia, there is

likely to be oscillation about the 0 𝑟𝑎𝑑 point for both 𝜎 and 휂.

Figure 4-29 Angular position over time of all joints in scenario 4.

As can be seen in Figure 4-29, the angular velocity of 𝛼 increases for just over 1

second, and then becomes constant, which can be observed from the straight line

for joint angle 𝛼. Both 𝜎 and 휂 begin to drop before 𝛼 has enough time to accelerate

to an angular velocity high enough for the centripetal terms in the mode to have any

appreciable effect. Once �̇� has increase for centripetal effects to outweigh the

116

moments due to weight, joint angles 𝜎 and 휂 are forced towards 0 rad. This is

shown in Figure 4-30. In this 15 second run of the system for scenario 4, the angle

range shown on the figure is smaller in order to visibly see the motion of 𝜎 and 휂. In

this case it is clear that these two joint angles tend towards −
𝑝𝑖

2

𝑐
 initially, but then are

driven back towards 0𝑐 as the momentum of joint 1 increases. The predicted

oscillation occurs as the links approach and pass the 0 radian point, but the frictional

terms in the model damp down the oscillations over time.

Figure 4-30 Angular position of all joints in scenario 4 over 15 seconds.

117

Figure 4-31 Diagram illustrating the angular velocity over time of all joints in scenario

4.

Figure 4-32 Angular velocity of joint 2 in

scenario 4.

Figure 4-33 Angular velocity of joint 3 in

scenario 4.

Figure 4-31 and Figure 4-33 illustrate the motion of the 2nd and 3rd joints over time.

As can be seen here, both joints display highly oscillatory behaviour as they initially

head towards the −
𝜋

2
 𝑟𝑎𝑑 point but, before 0.5 𝑠 for 휂, and less than 1 𝑠 for 𝜎, as the

angular velocity of joint 1 (�̇�) becomes large enough such that the centripetal

moment caused by this rotation becomes larger than the moments caused by weight

on the 2nd and 3rd joints, and these links are forced to change direction back towards

the 0 𝑟𝑎𝑑 point, and the oscillation begins. As predicted the inertia in the system

118

causes the 2nd and 3rd joints to oscillate about 0 𝑟𝑎𝑑 until the oscillations die down

due to friction.

These angular velocity results show that �̇� increases during the first phase of the

simulation, and the acceleration increases initially, but then decreases to 0 𝑟𝑎𝑑 𝑠−1,

as the velocity levels off and becomes constant over time. The uneven shape that

occurs on the �̇� line is caused by the change in inertia of the system as 𝜎 and 휂 tend

towards 0 𝑟𝑎𝑑.

Figure 4-34 Moment terms about 𝜶 (excluding input torque) for the scenario 4.

Figure 4-35 Moment terms about 𝝈 (excluding input torque) for scenario 4.

119

Figure 4-36 Moment terms about 𝜼 (excluding input torque) for scenario 4.

As can be seen from Figure 4-34 to Figure 4-36, which show the breakdown of

moments in the 1st, 2nd and 3rd links, the centripetal terms in the model have the

largest effect on the system in this scenario. What can also be observed is that the

inertial effects and friction have an effect on the system as well, and it is these terms

which cause the oscillations to die down towards the 0 𝑟𝑎𝑑 point. As can be seen

from the breakdown of moment terms about 𝛼, kinetic friction increases over time,

which is the term that brings the angular acceleration of the joint to 0 𝑟𝑎𝑑 𝑠−2 and

stabilises the angular velocity. As described earlier in this section, the inertia of links

2 and 3 have a substantial effect between 0 and 2 seconds, and this correlates

precisely to the irregular shape of �̇� during the same time.

A further experiment carried out in this section is to extend the simulation to 30

seconds and cut the input torque to joint 𝛼 back to 0 Nm after 15 seconds. The

rotation of link 1 should decelerate to stationary, and as the centripetal effects

reduce on the 2nd and 3rd links, their position should tend towards the −
𝜋

2
 radian

point again. The input torque signal and the resultant position of the joints are

shown in Figure 4-37 and Figure 4-38.

120

Figure 4-37 Input torque to all joints for a modified version of scenario 4.

Figure 4-38 Angular position of all joints for a modified version of scenario 4.

There is a visible dip in the positions of 𝜎 and 휂 at the time of approximately 17

seconds which corresponds to the torque removal from and deceleration of 𝛼. By

inspecting the range of time from this point to the end of the simulation, the result is

more visible.

121

Figure 4-39 Angular position of joint 𝜶 for a modified version of scenario 4.

Figure 4-40 Angular position of joints 𝝈 and 𝜼 for a modified version of scenario 4.

Figure 4-39 clearly shows the deceleration of 𝛼 to a final value. The time taken to

stop following the step change in input torque at a simulation time of 15 seconds, is

due to the inertia of the arm, especially since the arm is completely extended. Figure

4-40 shows how joint angles 휂 and 𝜎 drop to the −
𝜋

2
 radian point. Due to the inertia

of these links, the angle at which these joints angles settle from oscillation is more

negative than −
𝜋

2
, but the links are tending to a final value at the end of the

simulation.

122

The behaviour of the system during this simulation is consistent with the behaviour

during previous scenarios and the prediction of its behaviour during this scenario, as

such the model can be considered accurate with regards to this set of inputs and

outputs.

Scenario 5

In the fifth scenario, the initial angular positions are 𝛼 = 0 𝑟𝑎𝑑, 𝜎 = −
𝜋

2
 𝑟𝑎𝑑 and

휂 = −
𝜋

2
 𝑟𝑎𝑑 and am input torque to joint 1 of 7 𝑁𝑚, and input torques of 0 𝑁𝑚 for

each of the 2nd and 3rd joints. In this scenario the increase in angular velocity is

predicted to have the same effect as that of the previous scenario. The angular

positions 𝜎 and 휂 should tend towards 0 𝑟𝑎𝑑, with a larger amount of oscillation than

in the previous scenario, since they are likely to have a higher angular velocity during

their approach to the 0 𝑟𝑎𝑑 point.

Figure 4-41 Angular position over time of all joints in scenario 5.

As predicted, the same effect has occurred as in the previous scenario. However,

the reason for presenting the results to an input torque of 7 𝑁𝑚 to joint 1, rather than

the same input torque of 10 𝑁𝑚 as in the previous scenario is because for a larger

123

torque than about 7 𝑁𝑚, the system tends to become unstable and the simulation

collapses.

In the case of an input to joint 1 of 10 𝑁𝑚, the 2nd and 3rd links are given enough

energy by the rotation of 𝛼 to drive them over the
𝜋

2
 𝑟𝑎𝑑 point. Once this happens,

the moments caused by the component of weight perpendicular to each joint works

alongside the moments caused by the centripetal acceleration of the links about 𝛼 to

accelerate �̇� and 휂̇. This process continues as joints 2 and 3 rotate completely by

2𝜋, and complete the entire circle. These joints continue to accelerate towards ∞.

However, for torques less than 7 𝑁𝑚, the system settles to a finite value, in this case

approximately 0 𝑟𝑎𝑑 for both 𝜎 and 휂.

Figure 4-42 Moment terms about 𝜶 (excluding input torque) for scenario 5.

124

Figure 4-43 Moment terms about 𝝈 (excluding input torque) for scenario 5.

Figure 4-44 Moment terms about 𝜼 (excluding input torque) for scenario 5.

As Figure 4-42 to Figure 4-44 (which show the breakdown of moment terms in each

joint) illustrate the centripetal terms have a large effect on the positions of the 2nd and

3rd joints, as these terms tend to cancel out the moments caused by weight. Once

125

again the system has behaved as expected, and all of the observed phenomena can

be explained by the same set of results.

Scenario 6

At this point, having investigated the effect on the system of inputs torques of 0 𝑁𝑚

on the 2nd and 3rd joints, investigating whether the model behaves in an expected

manner to different input torques in these joints is also important. To that end this

scenario will apply an input torque to joint 2 which is designed to counterbalance the

effect of weight of the 2nd and 3rd links on the same joint. The holding torque for joint

2 at 𝜎 = 0 𝑟𝑎𝑑 and 휂 = 0 𝑟𝑎𝑑 can be calculated by Equation (4.44).

 𝜏ℎ𝑜𝑙𝑑𝑖𝑛𝑔2
= 𝑐2𝑚2𝑔 + (𝑙2 + 𝑐3)𝑚3𝑔 (4.44)

The resultant torque is 7.06 𝑁𝑚, and this will be inputted into joint 2, along with

torques of 0 𝑁𝑚 to joints 1 and 3, and the initial angular positions of all three joints

will be at 0 𝑟𝑎𝑑.

Since 휂 is free to move it will accelerate downwards due to the effect of its weight,

and its position will still tend to −
𝜋

2
 𝑟𝑎𝑑. As the 3rd link drops down from 0 𝑟𝑎𝑑 the

changing geometry of the system will affect the overall centre of gravity and drive it

closer to the point of rotation about 𝜎. This will reduce the total moment caused by

weight about joint 2, and also reduce the moments of inertia acting about the 2nd

joint. As this process occurs, the torque required to hold joint 2 at 0 𝑟𝑎𝑑 will

decrease, becoming less than the constant input torque into the joint, and so �̇� will

accelerate therefore 𝜎 will increase.

126

Figure 4-45 Angular position of each joint in scenario 6.

As can be observed from Figure 4-45, the prediction is accurate since 휂 begins to

drop towards −
𝜋

2
 𝑟𝑎𝑑 immediately as the simulation starts. As the weight moment

and inertia acting about 𝜎 decrease, the input torque is able to accelerate 𝜎 and its

magnitude increases. As �̇� increases and 𝜎 gets larger, the effect on 휂 is dramatic,

and the result is that both the 2nd and 3rd joint angles begin to increase rapidly until

the effect of the rotation of link 3 about 𝜎 caused by the increasing �̇� drives �̈� and 휂̈

to ∞ and the simulation breaks down. This can be observed by inspection of Figure

4-46.

Figure 4-46 Angular acceleration of each joint in the arm during scenario 6.

127

Scenario 7

The 7th scenario deals with initial conditions of 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑 and the joints 2

and 3 have holding torque inputs which are calculated using Equations (4.45) and

(4.46) as follows.

 τℎ𝑜𝑙𝑑𝑖𝑛𝑔2
= 𝑐2𝑚2𝑔 + (𝑙2 + 𝑐3)𝑚3𝑔 = 7.06 𝑁𝑚 (4.45)

 τℎ𝑜𝑙𝑑𝑖𝑛𝑔3
= 𝑐3𝑚3𝑔 = 2.69 𝑁𝑚 (4.46)

The input torque to joint 1 is 0 𝑁𝑚. In this scenario, the prediction is that the holding

torques will counter the moments generated by weight acting on the system. At zero

angular velocity the static friction model generates a maximum coefficient of friction

of 0.6 which will act against any other moments present in the joint, but without

velocity the kinetic friction moment is 0 𝑁𝑚. The resultant response of the system

should be one of zero angular velocity, hence no movement.

Figure 4-47 Angular position of each of the joints during scenario 7.

128

As can be seen Figure 4-47 there is no motion in the arm therefore the calculated

holding torque has provided the correct moments about each joint to counteract the

moments due to weight. An inspection of the moment terms about joints 2 and 3 will

confirm this.

Figure 4-48 Moment terms about 𝝈 (excluding input torque) for scenario 7.

Figure 4-49 Moment terms about 𝜼 (excluding input torque) for scenario 7.

129

As can be seen from the moment terms about the 2nd and 3rd joints, all of the

moments but those related to weight have a magnitude of 0 Nm. The moments

caused by the weights of links 2 and 3 add up to the inputted holding torque, and for

휂 the moment caused by the weight of link 3 is equal to the inputted holding torque.

Scenario 8

For the 8th scenario, the input torques selected are to hold 𝜎 and 휂 at an angle of

𝜋

4
 𝑟𝑎𝑑. Since the initial angles of the joints are 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑, these torques will

not be large enough to overcome the moments caused by the weight of each link

and as such both joints will decelerate towards –
𝜋

2
 𝑟𝑎𝑑. However, since the rotation

of each link towards −
𝜋

2
 𝑟𝑎𝑑 will reduce the magnitude of the component of weight

which acts perpendicular to each link. Eventually the input torque will be equal to the

moments caused by weight and the system will no longer decelerate. As the system

passes this point the input torques will be larger than the weight moments and the

system will accelerate and move back towards the equilibrium point. As the velocity

oscillates about 0 𝑟𝑎𝑑 𝑠−1 kinetic friction will have a larger impact and will reduce the

magnitude of the oscillations until the system slows to a final value for each joint.

Given that the input torque is equal to the moment cause by weight when the system

is at
𝜋

4
 𝑟𝑎𝑑, and this moment has the same magnitude at −

𝜋

4
 𝑟𝑎𝑑, the prediction is

that the system will settle at a final value of approximately −
𝜋

4
 𝑟𝑎𝑑 for 𝜎 and 휂.

130

Figure 4-50 Angular position of each joint during scenario 8.

Figure 4-50 shows that the prediction is correct for the first 2 seconds, with joint

angles 𝜎 and 휂 converging on −
𝜋

4
 𝑟𝑎𝑑. The system does not settle at a value of

−
𝑝𝑖

4

𝑐
 for the 2nd and 3rd joints however. This is because the differences in dynamics

for each joint means that they fall at different rates and overshoot the −
𝑝𝑖

4
 radian

point. Once the two joints are no longer falling at the same rate the centre of mass

of each moves and the moments caused by weight will no longer have the same

magnitude as the inputted torques. Once the moments due to weight for 𝜎 are less

than the input torque for joint 2, the link accelerates, ensuring that the centre of mass

will not return to the expected location when the input torque was calculated. The

resultant system spins exponentially out of control and the system becomes

unstable. Figure 4-51 and Figure 4-52 show that the centripetal and inertial terms

increase exponentially to ∞.

131

Figure 4-51 Moment terms about 𝝈 (excluding input torque) for scenario 8.

Figure 4-52 Moment terms about 𝜼 (excluding input torque) for scenario 8.

In this case, the system has not behaved as expected, but the resultant instability

has resulted from an inadequate open loop control of the joint angles. The input

torque did not take into account the different dynamics of each joint so the system

was driven to instability. The result shows why adequate control is required for this

type of system.

132

Scenario 9

It is also useful to investigate how the system responds to a more gradual increase

in input torque, rather than the instantaneous step as seen in the previous scenarios,

which is not very realistic when considering that the input torque will be provided by

servo motors with their own dynamics. For the final set of scenarios, the system will

be inspected for its response to a ramp input. The first of these scenarios will have a

ramp input to joint 1, with initial value of 0 𝑁𝑚 and a gradient of 1 𝑁𝑚 𝑠−1 for initial

joint angles of 𝛼 = 𝜎 = 휂 = 0 𝑟𝑎𝑑.

The prediction here is that 𝜎 and 휂 will tend towards −
𝜋

2
 𝑟𝑎𝑑 and will drop by a larger

magnitude than in scenario 4 since the input torque to 𝛼 is initially less, therefore �̈� is

smaller and �̇� takes longer to increase and cause centripetal effects large enough to

drive 𝜎 and 휂 to 0 𝑟𝑎𝑑. The expected result is that this will occur, but that the

overshoot for both the 2nd and 3rd joints will be much smaller and the magnitude of

the oscillations will die down much more quickly than for the step input approach in

scenario 4.

Figure 4-53 Angular position of each joint during scenario 9

133

Figure 4-54 Angular velocity of each joint during scenario 9.

Figure 4-55 Angular acceleration of each joint during scenario 9.

As can be seen in Figure 4-53 to Figure 4-55, the prediction is correct, and the

reason for the lower oscillation is that the rate of energy input into the system is not

constant, and ramps up from zero, meaning that the centripetal moments increase at

a slower rate, reducing the acceleration of 𝜎 and 휂. This can be seen by comparing

the moment terms for the 2nd and 3rd links for both this scenario and scenario 4.

134

Figure 4-56 Moment terms about 𝝈 for

scenario 9.

Figure 4-57 Moment terms about 𝜼 for

scenario 9.

Figure 4-58 Moment terms about 𝝈 for

scenario 4.

Figure 4-59 Moment terms about 𝜼 for

scenario 4.

In this scenario the centripetal moments ramp up slowly rather than the large

increase that occurs earlier in the simulation for scenario 4.

Scenario 10

In this final scenario the stepped input torque to joint 1 for scenario 5 will be

compared to a ramp input. Similarly to scenario 5, the initial joint angles will be

135

𝛼 = 0 𝑟𝑎𝑑, 𝜎 = 휂 = −
𝜋

2
 𝑟𝑎𝑑, and input torques to the 2nd and 3rd joints of 0 𝑁𝑚. In

scenario 5 this system accelerated to ∞ for any input torque larger than

approximately 7 𝑁𝑚. In this scenario a ramp input of 1 𝑁𝑚 𝑠−1 with an initial torque

of 0 𝑁𝑚 is used for joint 1 to assess if there is an improvement in the system. The

prediction is that this case, similarly to scenario 9, the lower rate of energy input will

allow 𝜎 and 휂 to settle at 0 𝑟𝑎𝑑, rather than accelerating to ∞ rad.

Figure 4-60 Input torques to each joint for scenario 10.

Figure 4-61 Angular position of each joint for scenario 10.

136

In this case the torque is able to pass the 7 𝑁𝑚 point without causing the system to

become unstable, and the 𝜎 and 휂 angles rise slowly to 0 𝑟𝑎𝑑. Both display a small

amount of oscillation, which can be more easily observed in Figure 4-62 and Figure

4-63. In this case 휂 converges more quickly than 𝜎, which displays more oscillatory

behaviour. In any case, the magnitude of oscillation is very small, within 1 𝑁𝑚.

Figure 4-62 Angular position of 𝝈 for

scenario 10.

Figure 4-63 Angular position of 𝜼 for

scenario 10.

Again in this case, due to the increasing velocity of 𝛼, the centripetal terms have a

high impact on the motion of 𝜎 and 휂, which is what would be expected from this

system.

4.2.6 Summary of Dynamic Modelling

In the scenarios presented in the qualitative validation, the dynamic model behaved

as expected, indicating that the model is qualitatively performing as expected given

the assumptions and bounds made. The model is an open loop system which can

only be driven by an input torque. To properly drive and control the system a set of

three motors is needed, along with feedback on the joint angles to form servo

systems which control the arm. The following section of the chapter deals with the

modelling of a servo system for use in the model.

137

4.3 Servo Model

Figure 4-64 shows a circuit diagram of a motor to be implemented in the arm model.

The motor is connected to the load by a gearbox. Since the inertia of the arm is

large, the inertia of the motor and gearbox will be assumed to be negligible. The

frictional part of the motor and gearbox are already modelled inside the arm

dynamics.

Ra
La

ia

Va

Back emf

w, θ
J, bkb

Gearbox

n1

n2

Figure 4-64 Circuit diagram of an electric motor drive connected to a load via a

gearbox.

In this case the following can be said:

𝑉𝑎(𝑡) = 𝑅𝑎𝐼𝑎(𝑡) + 𝐿
𝑑𝐼𝑎
𝑑𝑡

+ 𝑘𝑏𝜔𝑐(𝑡)

ℒ {𝑉𝑎(𝑡)} = 𝑉𝑎(𝑠), 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒

𝑉𝑎(𝑠) = 𝑅𝑎𝐼𝑎(𝑠) + 𝐿𝐼𝑎𝑠(𝑠) + 𝑘𝑏𝜔𝑐(𝑠)

(4.47)

Equation (4.47) can be rearranged to form Equation (4.48).

 𝑉𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑠)𝐼𝑎(𝑠) + 𝑘𝑏𝜔𝑐(𝑠) (4.48)

138

It can be said that 𝜏(𝑠) = 𝑘𝑡𝐼𝑎(𝑠), therefore, in rearranged form this can be

substituted into Equation (4.48) to form Equation (4.49).

 𝑉𝑎(𝑠) = (𝑅𝑎 + 𝐿𝑠)
𝜏(𝑠)

𝑘𝑡
+ 𝑘𝑏𝜔𝑐(𝑠) (4.49)

This can be rearranged further.

 𝑉𝑎(𝑠) − 𝑘𝑏𝜔𝑐(𝑠) = (𝑅𝑎 + 𝐿𝑠)
𝜏(𝑠)

𝑘𝑡
 (4.50)

The expression on the left hand side of Equation (4.50) can be represented as a

single variable 𝑉𝑖(𝑠).

𝑉𝑎(𝑠) − 𝑘𝑏𝜔𝑐(𝑠) = 𝑉𝑖(𝑠)

∴

𝑉𝑖(𝑠) = (𝑅𝑎 + 𝐿𝑠)
𝜏(𝑠)

𝑘𝑡

(4.51)

Rearranging Equation (4.51) once more gives the transfer function displayed in

Equation (4.52).

𝜏(𝑠)

𝑉𝑖(𝑠)
=

𝑘𝑡

(𝑅𝑎 + 𝐿𝑠)
 (4.52)

This can be represented in the system architecture shown in Figure 4-65.

139

Non-Linear Robot

Arm Dynamic Model

Load

km

Ra + Las

Armature

kb

1

s

Va(s)
Tm(s) w(s) θ(s)

back emf

+
-

Vi(s)
kb

Ta(s)
1

s

α(s)

Figure 4-65 Architecture of Robotic Manipulator Joint Servos with Non-Linear

Dynamic Model as the Load.

The servo motors have been modelled using the architecture shown in Dorf &

Bishop, Modern Control Systems (2006). Realistic values have been chosen from a

product datasheet with servo motors that can fulfil the torque requirements. In order

to satisfy the requirement a McLennan Servo Supplies P05D, M542E servomotor

has been selected for its parameters (McLennan Servo Supplies, Ltd, 2014). This

information is given in Table 4-3.

Table 4-3 Servo motor parameters for use in the manipulator arm dynamic model.

Description Parameter Value Conversion

Motor Inertia Js 0.438 kg cm2 0.00438 kg m2

Motor Friction B 0.028 Nm Reduce to zero

Armature

Resistance

Ra 1.75 Ω -

Motor Constant km 0.105 Nm/A -

Armature

Inductance

La 5 mH 5x10-3 H

Armature PD Va 50 x 1.1 V -

140

The friction in the motor has been reduced to zero to compensate for the high friction

coefficient in the dynamic arm model. The nominal voltage has been increased by

10% since voltage can vary by ±10%.

While the mass and volume of the motor are not specified in the data sheet, the

assumption in this case is that these motors add no extra mass or volume to the

manipulator arm, since this could be modelled by increasing length and mass of the

manipulator links, and centre of mass could be adjusted accordingly. Also, the

torque provided by this motor is not large enough for the maximum required holding

torque in the manipulator arm model, but since larger motors would also have larger

mass and volume a more realistic approach would be to add a gearbox to the

system.

In this case the gear ratio required would be to increase the torque output by 6,

therefore a scaling gain is used to simulate the gearbox and scale up the output

torque. Again, since the modelled kinetic friction in the manipulator arm is

significantly higher than the realistic value, no friction is modelled in the gearbox.

Finally, the maximum voltage that can be provided to the motor has been limited to

± 10% of the nominal voltage, which in this case is 55 V, so a saturation of 55 V and

-55 V has been added to the input of the servo motor so that the voltage in cannot

exceed these limits.

Figure 4-66 shows a block diagram illustrated the final architecture of a single servo

motor:

Figure 4-66 Simulink control block diagram for the dynamic model embedded into a

servo loop with the specified motor model.

141

This allows for the following architecture shown in Figure 4-67 to be implemented.

PID 1

PID 2

PID 3

Motor 1

Motor 2

Motor 3

Non-Linear

Arm Dynamic

Model

+

+

+

-

-

-

θsin θsout

1

s

1

s

1

s

1

s

1

s

1

s

Servo 1

Servo 2

Servo 3

GB 3

GB 2

GB 1

GB 1

GB 2

GB 2

Figure 4-67 Architecture of the PID controlled servo motors surrounding the

manipulator arm dynamic model.

Having implemented this system architecture, the PID controllers are required to be

tuned. However, as can be seen from the validation results in the previous chapter,

this system is non-linear, and the holding moments and inertia change with joint

angle. This means that a single controller on each joint will be unable to handle the

control requirements of the system over the entire range of joint angles, and so

multiple controllers with the same architecture must be used for different angle

regions of the joint (in other words the control gains in the controller must be tuned

for different angle regions).

4.4 Summary of Dynamic Modelling

This chapter has developed a dynamic model of a 3-DoF manipulator arm including

servo model for use as a test-bed for the control and guidance parts of the thesis. In

Chapter 5 an appropriate control schema will be selected and tuned to ensure

adequate performance for the arm to allow it to track a path. In Chapters 6 and 7 the

guidance method is considered, and a path generation technique will be

implemented to guide the arm through a close-proximity environment without

colliding with any obstacles.

142

143

5 CONTROL OF 3-DOF MANIPULATOR ARM

In Chapter 4 a non-linear dynamic model of a generic 3-DoF robotic manipulator

arm was derived and qualitatively validated. The results shown in Figure 4-18

onwards indicate that the non-linear way in which the model behaves means that

designing a controller is challenging. The final part of Chapter 4 dealt with the

modelling of servo motors which will provide the input torques to each link. This

chapter deals with the application of feedback control to the servo motors which

provide the input torques to drive the dynamic model of the manipulator arm. The

work carried out in this chapter is outlined in blue in Figure 1-4, which is displayed

again here with all of the other processes greyed out.

Sensor

Arm Position and

Pose

(Servo Encoders)

Simulated

Environment Data

User Input

Desired End

Effector Location

Map Conversion to

C-space

Plotting of Current

and Desired End

Effector Location

Path Generation Path Following
Arm Servo

Controllers

Arm Dynamics

Arm Kinematics

Figure 5-1 Manipulator arm control and path following (blue) in relation to the overall

guidance method.

144

Following the selection of a suitable control schema, the remainder of the chapter

deals with the tuning of the control method and validation of the robotic manipulator

performance after the tuned controller has been implemented.

5.1 Implementation

There is only one set of physical parameters of the arm which changes during

operation. This is the angle of each joint, which is affected only by each joint angle

velocity. The second of these can be removed from the problem by maintaining a

small rate of change of angle, therefore the change in moments cause by centripetal

effects will be small. This means that the only parameters that change the dynamics

of the arm are the joint angles themselves. Once this is the case the required gains

for the controller on each joint can be calculated offline. This can be done using one

of many optimisation methods, and three have been selected based upon their

availability in Matlab, genetic algorithms, least squares minimisation and the Nelder-

Mead optimisation.

A genetic algorithm (GA) (Goldberg, 1989) is a form of evolutionary algorithm

designed to solve both constrained and unconstrained optimization problems based

on a natural selection process that mimics biological evolution. The algorithm

iteratively modifies a population of individual solutions. At each step, the genetic

algorithm selects the fittest individuals from the current population and uses them as

parents to produce the children for the next generation. Over successive

generations, the population "evolves" toward an optimal solution.

The Least Squares Minimisation Method (Bjork, 1996) is standard approach which is

taken in regression analysis, where the approximate solution of a set of equations in

which there are more equations than unknowns is searched for. The overall solution

to the Least Squares method is an attempt to minimize the sum of the squares of the

errors made in the results of every single equation. Since the optimisation problem

presented in this chapter is non-linear, the Non-linear least squares method is the

form of least squares analysis used to fit a set of 𝑚 observations with a model that is

non-linear in 𝑛 unknown parameters (𝑚 > 𝑛). It is used in some forms of non-linear

regression. This method circumvents the non-linearity of a problem by

approximating the model by a linear one and refining the parameters by successive

iterations.

145

The Nelder–Mead method, (McKinnon, 1998) downhill simplex method or amoeba

method is a commonly applied numerical method used to find the minimum or

maximum of an objective function in a multidimensional space. It is applied to

nonlinear optimization problems for which derivatives may not be known. The

Nelder–Mead method is a heuristic search method that can converge to non-

stationary points on problems that can be solved by alternative methods. In Matlab,

this method is known as fminsearch.

In order to better understand how optimisation methods work, a Genetic Algorithm

has been implemented in the following section.

5.1.1 Genetic Algorithm

Genetic algorithms are naive attempts to mimic evolution in nature. This allows for

an iterative change to variables in a system to make an improvement by only

selecting the best changes and combining them to create a new set of variables.

Figure 5-2 shows an illustration of a cell with special emphasis on its nucleus. Inside

can be seen a simplification of the genetic material as a pair of chromosomes, each

one contributed by a different parent.

Figure 5-2 A single cell containing two chromosomes.

In normal cell division (during growth), mitosis, the chromosomes are duplicated as a

pair as the nucleus splits and as the cell splits into two cells a nucleus is found in

each.

146

Figure 5-3 A cell undedergoing out asexual reproduction by mitosis.

This leaves two identical cells which are also identical to the original cell. During

reproduction, meiosis, when forming the single chromosome reproductive cells, the

chromosomes get broken up into pieces and the genetic material from each

chromosome can be recombined into a different combination of characteristics. For

example:

Figure 5-4 Crossover of genetic material from two chromosomes during the first stage

of meiosis.

This process is known as crossover. To illustrate the effect this has on the offspring

of two parents, the following figure shows two individuals each with different

characteristics in there chromosomes. The first individual has the original red and

blue chromosomes. The second individual has green and orange chromosomes. As

the two produce their reproductive cells, crossover occurs randomly, which is

illustrated in the figure by different lengths of chromosome fragments in each

individual.

147

Figure 5-5 Crossover in two parent cells during the process of meiosis. The two

parents have different coloured chromosomes.

These four new chromosomes produce 4 reproductive cells, two in each individual (1

and 2). Each reproductive cell has information from the parents of our two

individuals in the previous generation, but the information from their parents has

been jumbled up.

1a 1b 2a 2b

Figure 5-6 Production of reproductive cells in both parents during meiosis.

The reproductive cells from individual 1 can be combined with reproductive cells

from individual 2 to form 2 new offspring.

1a2b 1b2a

Figure 5-7 Formation of children cells by combination of reproductive cells from each

parent cell.

148

Now there are two new individuals with a different combination of characteristics to

their two parents and their four grandparents. The processes of crossover in the

production of reproductive cells and combination of reproductive cells from each

parent occur randomly, so there can be any number of crossovers (including 0) and

any reproductive cell from one parent can combine with any reproductive cell from

the other. This helps to produce a very large number of possible combinations of the

parents in the offspring.

There is another mechanism occurring in the process of meiosis which causes

minute changes in the genetic material. When the chromosomes are mixed up

during reproductive cell generation, bits of information can be changed slightly. For

example, an 8 bit binary number such as 00101010 (42), could be changed slightly

to 11001011. In this case the 1st, 2nd, 3rd and 8th bits have been changed to the

opposite state, turning the number 42 into 203. This is known as mutation. Again,

the mutation of a bit occurs randomly, and in an 8 bit word, there could b 0 to 8

mutations. To summarise, there are three main processes occurring in genetic

reproduction that can be emulated in a genetic algorithm to help solve an

optimisation problem:

 Mutation.

 Crossover.

 Genotype to phenotype combination.

This allows for new individuals to be created from the existing population. In nature

the individual with the best chances of survival will survive long enough to pass on

their genetic material by reproduction. As the population competes to survive and

only the fittest survive, eventually those with the worst ability to survive will die off

and the whole population will have the characteristics that best aid survival. This is

known as survival of the fittest and it is the primary mechanism by which evolution

occurs.

As the number of generations increases, mutation and crossover gives chances for

slightly better versions of characteristics and better combinations of characteristics

than in the previous generation. When this is the case, the offspring with these new

characteristics out-compete the other individuals in the population, and the overall

149

fitness of the population will slowly head to an ‘optimal’ fitness over successive

generations. This is the process that GAs attempt to replicate.

In the case of the use of GAs to solve an optimisation problem, two crucial parts are

required. There is a need to specify the problem to be solved as an objective

function, i.e. a function which specified the objective(s) to be met. This function is

usually set up in such a way that the aim is to find its maximum or minimum value.

The other part of the GA is the fitness function, which is designed to give a measure

of an individual’s suitability to satisfy the goals of the objective function.

5.1.2 Robotic Manipulator Arm Tuning

In the case of the robotic arm dynamic model, there are three controllers that must

be tuned to provide acceptable performance. Since the system is non-linear,

multiple sets of gains must be determined for different arm states based on the

angular position of its joints. To do this objective and fitness functions must be

developed to optimise the gains for this system.

An initial starting point is to write a GA which will attempt to solve the non-linear

multi-objective problem which is posed in the need to tune a 3-dof robotic

manipulator arm. Prior to carrying out the gain optimisation for a problem of this

size, validation of the GA against well-known optimisation problems will be carried

out to validate whether the GA is able to find solutions to this kind of problem. Also,

a comparison of the effectiveness of the implemented GA against other optimisation

methods is also carried out to assess the feasibility of use of the implemented GA.

Table 5-1 summarises the algorithmic process for a Genetic Algorithm.

Table 5-1 Summary of the algorithmic process for a GA.

Initialisation
 Take initial estimates for the controller gains as inputs (these

could be specified by the user or generated randomly).

 Using the initial estimates form an individual. In the case of the
robotic manipulator arm, which has three controllers, the gains
for each controller will be bundled into groups to form
chromosomes, so each controller represents one chromosome
of three genes.

150

Mitosis
 Duplicate the individual with a small amount of random mutation

to each gene in order to generate the required sample size.

Natural

Selection

 Run the arm model for the specified scenario with each of the
individuals providing the controller gains and assess the fitness
of each individual based on how close to a specified system
behaviour the manipulator arm operates with.

Meiosis

(Including

Crossover

and

Mutation)

 Take the top several individuals with the best fitness and select
them for reproduction (the number of individuals selected will
aim to maintain the specified population size).

 Pair off the individuals and carry out reproduction by creating all
combinations of chromosomes. (i.e. for two individuals with
three chromosomes each, there are eight possible
combinations). Mutation will occur randomly for each gene in
the pool as the chromosomes are recombined.

 The parent individuals that were responsible for reproduction will
survive into the next generation of individuals. This is important
since the recombination and mutation of the fittest individuals
may not provide a better individual, therefore keeping the fittest
individuals from the previous generation will prevent a reduced
fitness in the population.

 There are now ten individual for each two parents in the
previous generation, which can then be used to provide
controller gains for the arm model and each individual is tested
to find their fitness.

Iteration
 The process is repeated until an individual is found which

satisfies the fitness criterion which is specified by the user (this
would be calculated based on the fitness function and what the
outcome of the fitness function means in real terms).

Given that the robotic manipulator system displays a large degree of non-linearity, a

single set of controller gains for the whole range of joint angles will be inappropriate

since the moments about each joint vary by a large amount depending on the joint

angle. To account for this, the GA gain tuning can be carried out for discrete joint

ranges to provide a series of controller gains over the range of joint angles.

5.1.3 Fitness Functions

In order to select which individuals are the fittest in the population, a fitness function

is required which analyses the values of the error between the ideal response of

each joint to an input and the actual response of each joint. For the fitness function,

several options were tested. To describe the different fitness functions, the

nomenclature defined in Table 5-2 is used.

151

Table 5-2 Summary of the variables used in the formation of the fitness function for

the robotic manipulator tuning problem.

Variable Description Variable Description

𝑌𝐼𝛼(𝑡) The set of ideal output

magnitudes over time given

a step input to the joint 𝛼.

 𝑌𝐴𝛼(𝑡) The set of output

magnitudes over time of the

joint 𝛼 for the modelled

robotic manipulator arm with

PID controller.

𝑌𝐼𝜎(𝑡) The set of ideal output

magnitudes over time given

a step input to the joint 𝜎.

 𝑌𝐴𝜎(𝑡) The set of output

magnitudes over time of the

joint 𝜎 for the modelled

robotic manipulator arm with

PID controller.

𝑌𝐼𝜂(𝑡) The set of ideal output

magnitudes over time given

a step input to the joint 휂.

 𝑌𝐴𝜂(𝑡) The set of output

magnitudes over time of the

joint 휂 for the modelled

robotic manipulator arm with

PID controller.

Where 𝑡 ∈ [𝑡0, 𝑡𝑓]. This allows for the following fitness functions to be implemented.

Note that 𝑌 = 𝑌(𝑡) for all of the sets of outputs in the following equations. Four

different fitness functions have been implemented and investigated, all which are

intended to reduce the error between the ideal output to a step input and the output

of each joint to the same step input. Since the system being tuned is a dynamical

system, there exists both a transient stage (which consists of rise, overshoot and

settling) and a steady-state stage to the response over time, therefore the following

fitness functions have been designed with the intention of providing the best

compromise when tuning the system over the whole range of stages.

152

Sum-Squared Error

The first fitness function designed takes the error over time 𝑒(𝑡) for each joint and

squares the set to make it positive, forming 𝑒2(𝑡). The set of error squared for each

joint is then summed to provide a scalar value, ∑𝑒2(𝑡). The mean of the sum

squared error for all three joints is then taken as the fitness value. The complete

fitness function is displayed in Equation (5.1).

 𝑓 =
∑(𝑌𝐴𝛼−𝑌𝐼𝛼)2 + ∑(𝑌𝐴𝜎 − 𝑌𝐼𝜎)

2 + ∑(𝑌𝐴𝜂 − 𝑌𝐼𝜂)
2

3
 (5.1)

The square of this function has two effects on the fitness value. Firstly it ensures

that all fitness values are positive. This is useful since a large negative error would

be found to be smaller than a small positive error, and this effect needs to be

removed for a useful comparison. Secondly, squaring a number larger than one

increases the magnitude, whereas, squaring a fraction decreases the magnitude.

This means that errors larger than 1 will be penalised significantly more heavily than

those which are less than 1. The fitness for each joint is taken with equal weight in

the mean since all three joint performances are equally important. This function

worked well in optimising the PID gains to produce a sensible response but took a

large number of generations to converge. It was noted by inspection of the

responses over successive generations that the area of the response causing the

problem was the transient, specifically the overshoot and settling region of the

transient.

153

Figure 5-8 Result of the optimisation of a joint angle range in the arm using the sum

squared error fitness function.

Weighted Sum of Errors-Squared (Transient and Steady-State)

Since the sum-squared error fitness function does not take into account any

weighting between the transient and steady state, and the GA struggled to find gains

which reduced overshoot and settling time, finding a way of weighing the errors in

certain parts of the response would allow the GA to put more emphasis on solutions

with smaller overshoot and settling time. This method splits the time response into

two phases, the transient and the steady-state, and a single time is used to split the

two phases. This time is denoted as 𝑡1. When the simulation time is smaller than or

equal to 𝑡1 then the square of the error between the actual and ideal outputs are

weighted with one value, and when the time of the simulation is larger than 𝑡1 then

the square of the error between the actual and ideal output for each joint is weighed

by a second value. In order to put emphasis on the transient phase of the response,

𝑤1 is selected to be larger than 𝑤2. In this case the mean fitness between the three

joints is not considered, only the sum since the two parameters are the same in

essence, with only a scaling factor changing them. This gives a complete

expression which is displayed in Equation (5.2).

154

𝑓 = 𝑤1 ∑(𝑌𝐴𝛼−𝑌𝐼𝛼)2

𝑡1

𝑡0

+ 𝑤2 ∑(𝑌𝐴𝛼−𝑌𝐼𝛼)2

𝑡𝑓

𝑡1

+ 𝑤1 ∑(𝑌𝐴𝜎 − 𝑌𝐼𝜎)
2

𝑡1

𝑡0

+ 𝑤2 ∑(𝑌𝐴𝜎 − 𝑌𝐼𝜎)
2

𝑡𝑓

𝑡1

+ 𝑤1 ∑(𝑌𝐴𝜂 − 𝑌𝐼𝜂)
2

𝑡1

𝑡0

+ 𝑤2 ∑(𝑌𝐴𝜂 − 𝑌𝐼𝜂)
2

𝑡𝑓

𝑡1

(5.2)

Where 𝑤1 = ℝ+ 𝑤ℎ𝑒𝑛 𝑡 ∈ [𝑡0, 𝑡1], 𝑤1 = 0 𝑤ℎ𝑒𝑛 𝑡 ∈ (𝑡1, 𝑡𝑓] and 𝑤2 = 0 𝑤ℎ𝑒𝑛 𝑡 ∈

[𝑡0, 𝑡1], 𝑤2 = ℝ+ 𝑤ℎ𝑒𝑛 𝑡 ∈ (𝑡1, 𝑡𝑓].

Figure 5-9 illustrates how the selection of the value for 𝑡1 allows for the splitting of

the response in to the transient and steady-state phases of the response. When

selecting weightings it is important to consider how long the system has been run for,

as a longer run time will imply a much longer steady-state phase, and therefore this

phase of the response is being automatically weighted based on run time.

Figure 5-9 Selection of the value 𝒕𝟏 in relation to the transient and steady state

regions of a step response.

This fitness function improved the transient part of response, shown in Figure 5-10,

in that it reduced the overshoot but at the expense steady-state error, therefore the

155

aim of this fitness function was achieved but to the detriment of the other parts of the

response.

Figure 5-10 Result of the optimisation of a joint angle range in the arm using the

Weighted Sum of Errors-Squared (Transient and Steady-State) fitness function.

Weighted Sum of Errors-Squared (Rise Time, Overshoot and Steady-State)

To get a better amount of control over all of the response, the run time of the

response can be split up further into several smaller phases. In this case the best

split would be to separately weight the rise time, overshoot and steady-state to

attempt to find the best balance between them. In this case the rise time section is

treated exactly as before, and to provide a better overshoot and steady-state error,

the power of these sections has been increased from 2 to 4 in the case of the

overshoot and from 2 to 6 in terms of the steady-state error. This has been done so

that large errors in these areas are heavily penalised and small errors in these areas

are almost rewarded. Again the weighting and times for each phase have to be

selected appropriately. This produces the fitness function shown in Equation (5.3).

156

𝑓 = 𝑤1 ∑((𝑌𝐴𝛼−𝑌𝐼𝛼)2 + (𝑌𝐴𝜎 − 𝑌𝐼𝜎)
2 + (𝑌𝐴𝜂 − 𝑌𝐼𝜂)

2
)

𝑡1

𝑡0

+ 𝑤2 ∑((𝑌𝐴𝛼−𝑌𝐼𝛼)6 + (𝑌𝐴𝜎 − 𝑌𝐼𝜎)
6 + (𝑌𝐴𝜂 − 𝑌𝐼𝜂)

6
)

𝑡3

𝑡2

+ 𝑤3 ∑((𝑌𝐴𝛼−𝑌𝐼𝛼)4 + (𝑌𝐴𝜎 − 𝑌𝐼𝜎)
4 + (𝑌𝐴𝜂 − 𝑌𝐼𝜂)

4
)

𝑡𝑓

𝑡2

(5.3)

Figure 5-11 illustrates how the 𝑡1 and 𝑡2 values can be chosen to split the response

into its separate phases.

Figure 5-11 Selection of the values 𝒕𝟏 and 𝒕𝟐 in relation to the rise time, settling time

and steady state regions of a step response.

This fitness function performed similarly to the previous one in terms of overall

fitness, but the higher powers of error in the overshoot and steady-state phases of

the response mean that the GA focuses on minimising the error in these phases at

the expense of the rise time. The response of each of the joints when tuned using

this fitness function are displayed in Figure 5-12.

157

Figure 5-12 Result of the optimisation of a joint angle range in the arm using the

Weighted Sum of Errors-Squared (Rise Time, Overshoot and Steady-State) fitness

function.

Gaussian and Time Based Weighting

This fitness function attempts to solve the same issues as the previous function.

Instead of using higher powers, the function introduces a time-squared element to

the function, where an error that remains in the response over long times is

penalised more heavily the longer that it exists in the response. In order to reduce

the overshoot a Gaussian weighting is introduces at the peak time of the first peak in

the system. The intention is to increase the weighting the closer to the peak that the

response is and then decrease as the response moves away from the peak. The

centre and width of the Gaussian weighting is selected using Equation (5.4).

 𝑔(𝑡) = 𝑒
−
(𝑡−𝑏)2

2𝑐2 (5.4)

Where, t is the time of the response, b is the centre of the peak, to be selected at 𝑡𝑝

of the response and c is the standard deviation of the Gaussian bell, or the RMS

158

width. This allows for a selection of when this weighting starts and ends as a

function of time. The height or maximum magnitude of the weighting would be given

be a scaling factor which the whole function is multiplied b, and this is given by 𝑤1 in

the fitness function. The time part of the fitness function is carried out by multiplying

the error of each joint over time, by the integral of time from 𝑡0 to 𝑡𝑖, where 𝑡𝑖 is the

time index of that value of error. This part of the function is also weighted and the

weighting given by 𝑤2. This produces the fitness function shows in Equation (5.5).

𝑓 = (𝑤1𝑔 + 𝑤2 ∫ 𝑡
𝑡𝑖

𝑡0

) (∑(𝑌𝐴𝛼−𝑌𝐼𝛼)2 + ∑(𝑌𝐴𝜎 − 𝑌𝐼𝜎)
2

+ ∑(𝑌𝐴𝜂 − 𝑌𝐼𝜂)
2
)

(5.5)

Given values, the weighting which the sum of the error-squared is multiplied by can

be visualised in Figure 5-13. Using the values 𝑤1 = 0.5, 𝑤2 = 1 × 10−4, 𝑏 = 2.5 and

𝑐 = 1. This shows how any error about the peak time of 2.5 seconds will be heavily

penalised and any error as the time increases will be heavily penalised.

Figure 5-13 Shape of the weighting function for the Gaussian and Time based fitness

function.

159

The responses of each of the joints using this fitness function are shown in Figure

5-14. This function had a better performance in terms of optimising the gains, but

still was unable to match the performance of the Sum Squared Error method

presented first.

Figure 5-14 Result of the optimisation of a joint angle range in the arm using the

Gaussian and Time Base Weighting fitness function.

This is due to the inclusion of parameters which attempt to specify the rise, peak and

settling times of the responses. Given that the optimisation is attempting to tune the

gains of three PID controllers, any change in gains will change pole locations of the

linearized version of the system, hence changing the rise, peak and settling times.

This means that any prediction of the location of these points will only ever be an

estimate, thus the weighting for each phase of the response will overlap into other

phases. Therefore the Sum Squared Error fitness function will be used to carry out

the optimisation of the PID gains.

160

5.2 Genetic Algorithm Validation

Having developed a Genetic Algorithm to optimize the PID gains in the robotic

manipulator servo controllers, the algorithm should be validated to test its

effectiveness at solving the problem. This can be done by comparing it against the

performance of the other optimization methods established as options at the end of

the literature review in this chapter. The validation of the developed GA takes two

forms. The first is a comparison of its performance against the other methods for

standard optimization problems, and the second is a comparison of its performance

against the other methods on the PID gain tuning problem for the robotic manipulator

dynamic model developed in Chapter 4.

5.2.1 Validation of the GA Using Standard Optimisation Problems

Having implemented a genetic algorithm which has been designed for the tuning of a

nine gain 3-DoF manipulator arm PID controller, it is important to validate the

effectiveness of the GA against other optimisation methods for both the problem in

question and other, well known optimisation problems. This will give a benchmark

for the feasibility of use of the GA for the robotic manipulator gain scheduling

problem. To carry this out the GA is modified to optimise a list of different functions

(Back, 1995), (Haupt & Ellen, 2004), (Deb, 2002), (Binh & Korn, 1997), (Binh, 1999),

(Simionescu, 2014). The functions displayed in Table 5-3 are a small selection of

those used, and the remainder are found in the appendices. Those functions

labelled in blue are single objective problems and those labelled in pink are multi-

objective problems.

Table 5-3 List of standard optimisation problems used to test optimisation functions.

Function

Name

Function Search Domain

Rosenbrock

function
𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

−∞ ≤ 𝑥𝑖 ≤ ∞,

1 ≤ 𝑖 ≤ 𝑛

161

Beale's

function

𝑓(𝑥, 𝑦) = (1.5 − 𝑥 + 𝑥𝑦)2 + (2.25 − 𝑥 + 𝑥𝑦2)2

+ (2.625 − 𝑥 + 𝑥𝑦3)2

−4.5 ≤ 𝑥, 𝑦 ≤ 4.5

Easom

Function

𝑓(𝑥, 𝑦) = −cos(𝑥) cos(𝑦) 𝑒−((𝑥−𝜋)2+(𝑦−𝜋)2) −100 ≤ 𝑥, 𝑦

≤ 100

Cross-in-

tray

Function

𝑓(𝑥, 𝑦) =

−0.0001(sin(𝑥) sin(𝑦) 𝑒
|100−

√𝑥2+𝑦2

𝜋
|
+ 1)

0,1

−10 ≤ 𝑥, 𝑦 ≤ 10

Eggholder

Function
𝑓(𝑥, 𝑦) = −(𝑦 + 47) sin (√|𝑦 +

𝑥

2
+ 47|)

− 𝑥 sin (√|𝑥 − (𝑦 + 47)|)

−512 ≤ 𝑥, 𝑦

≤ 512

Hölder table

Function 𝑓(𝑥, 𝑦) = − |sin(𝑥) 𝑐𝑜𝑠(𝑦)𝑒
|−1−

√𝑥2+𝑦2

𝜋
|
|

−10 ≤ 𝑥, 𝑦 ≤ 10

Kursawe

Function min

{

𝑓1(𝑥) = ∑ −10𝑒
−0.2√𝑥𝑖

2+𝑥𝑖+1
22

𝑖=1

𝑓2(𝑥) = ∑ |𝑥𝑖|
0.8 + 5 sin(𝑥𝑖

3)
3

𝑖=1

−5 ≤ 𝑥𝑖 ≤ 5,

1 ≤ 𝑖 ≤ 3

Schaffer

Function

No. 2
min

{

𝑓1(𝑥) = {

−𝑥, 𝑖𝑓 𝑥 ≤ 1
𝑥 − 2, 𝑖𝑓 1 < 𝑥 ≤ 3
4 − 𝑥, 𝑖𝑓 3 < 𝑥 ≤ 4

𝑥 − 4, 𝑖𝑓 𝑥 > 4

𝑓2(𝑥) = (𝑥 − 5)2

−5 ≤ 𝑥 ≤ 10

Poloni’s

Two

Objective

Function

min {
𝑓1(𝑥, 𝑦) = 1 + (𝐴1 − 𝐵1(𝑥, 𝑦))

2
+ (𝐴2 − 𝐵2(𝑥, 𝑦))

2

𝑓2(𝑥, 𝑦) = (𝑥 + 3)2 + (𝑦 + 1)2

𝑤ℎ𝑒𝑟𝑒,

{

𝐴1 = 0.5 sin(1) − 2 cos(1) + sin(2) − 1.5 cos(2)

𝐴2 = 1.5 sin(1) − cos(1) + 2 sin(2) − 0.5 cos(2)

𝐵1(𝑥, 𝑦) = 0.5 sin 𝑥 − 2 cos 𝑥 + sin 𝑦 − 1.5 cos 𝑦

𝐵2(𝑥, 𝑦) = 1.5 sin 𝑥 − cos 𝑥 + 2 sin 𝑦 − 0.5 cos 𝑦

−𝜋 ≤ 𝑥, 𝑦 ≤ 𝜋

162

Zitzler-Deb-

Thiele's

Function

No.1

min

{

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)

0 ≤ 𝑥𝑖 ≤ 1,

1 ≤ 𝑖 ≤ 30

Zitzler-Deb-

Thiele's

Function

No.2

min

{

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)

2

0 ≤ 𝑥𝑖 ≤ 1,

1 ≤ 𝑖 ≤ 30

Zitzler-Deb-

Thiele's

Function

No.3

min

{

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)
− (

𝑓1(𝑥)

𝑔(𝑥)
) sin(10𝜋𝑓1(𝑥))

0 ≤ 𝑥𝑖 ≤ 1,

1 ≤ 𝑖 ≤ 30

Zitzler-Deb-

Thiele's

Function

No.4

min

{

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 91 + ∑ (𝑥𝑖
2 − 10 cos 4𝜋𝑥𝑖)

10

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)

0 ≤ 𝑥1 ≤ 1,

−5 ≤ 𝑥𝑖 ≤ 5,

2 ≤ 𝑖 ≤ 10

Zitzler-Deb-

Thiele's

Function

No.6

min

{

𝑓1(𝑥) = 1 − 𝑒−4𝑥1 sin6(6𝜋𝑥1)

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 + 9(
∑ 𝑥𝑖

10
𝑖=2

9
)

0.25

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)

2

0 ≤ 𝑥𝑖 ≤ 1,

1 ≤ 𝑖 ≤ 10

163

The 14 different optimisation problems displayed here, along with the rest which are

found in the appendices have been used to compare the optimisation methods, since

they all have uses in testing the performance of each method. Some of them have

similar properties therefore the optimisation methods should behave similarly with

them, but to illustrate why these functions have been used, several of them have

been described in detail. Table 5-4 presents the surfaces of each of the optimisation

problems presented in Table 5-3.

Table 5-4 Graphical representation of the surfaces generated by the optimisation

problems listed in Table 5-3.

Function

Name
Function Surface

 Function

Name
Function Surface

Rosenbrock

function

 Schaffer

Function

No. 2

Beale's

function

 Poloni’s

Two

Objective

Function

Easom

Function

 Zitzler-

Deb-

Thiele's

Function

No.1

164

Cross-in-

tray

Function

 Zitzler-

Deb-

Thiele's

Function

No.2

Eggholder

Function

 Zitzler-

Deb-

Thiele's

Function

No.3

Hölder table

Function

 Zitzler-

Deb-

Thiele's

Function

No.4

Kursawe

Function

 Zitzler-

Deb-

Thiele's

Function

No.6

The Rosenbrock Function and Beale’s Function have been used since they have

very steep peaks for the optimisation functions to diverge away from, but the global

minimum lies on a flat plain or valley, which makes it difficult for an optimiser to

converge on a single point. The Easom Function has been used since it is a function

165

which has a flat plain with a single inverse peak, which could be difficult to find

depending on how well the optimiser is able to search a flat area and spread out.

The Cross-in-Tray Function provides a surface with many local minima, the surface

of which is intersected by a cross shaped ridge. This means that the optimiser can

easily converge on one local minimum, but it may not be the global minimum and the

optimisers may struggle to traverse the cross shaped ridge. The Eggholder Function

has lots of local minima and is good to test whether the optimisers can find the global

minimum among the set of local minima.

The Hölder Table Function is a very interesting optimisation problem as it consists of

a plateau containing many local minima and has four groups of inverse peaks in the

XY corners of the space. These groups of inverse peaks contain the global minima

but also several large local minima which could be difficult to differentiate from the

global minima. Since the majority of space in this problem is taken up by a large

plateau of shallow local minima, it could be very difficult to find the large inverse

peaks in the corners of the space.

The Kusawe Function, Schaffer Number 2 Function, Ziztler-Deb-Thiele Function and

Poloni’s Function are all multi-objective functions with a general trend of decreasing

Y values with increasing X values. There exists discontinuities in the output of these

functions which means that there are several local minima in the space with no

output beyond them for a distance in both the X and Y directions. This means that

the optimisation functions will output one of the local minima as the solution unless

they can traverse the spaces where discontinuities occur.

Three other optimisers were chosen to provide a benchmark in performance to

compare the implemented GA against. The chosen optimisation methods were

Least Squares Optimisation and a comparable Genetic Algorithm, both of which exist

in the Matlab optimisation toolbox. In the initial investigation all four optimisation

methods were run on each of the above problems with the same fitness function and

the fitness they achieved, along with the run time of the each on the same PC is

compared for each problem.

166

For each of the above optimisation methods, the fitness function used to minimise

the output of each of the test functions was the mean-squared value of the outputs to

the function. This fitness function is given in Equation (5.6).

𝑓 =

∑𝑌2

𝑛
,

𝑤ℎ𝑒𝑟𝑒 𝑌 = {𝑦1, … , 𝑦𝑛},

(5.6)

Where, Y is the set of outputs from the function and F is the fitness. The results of

the optimisation of all of these problems using the GA presented in this chapter, the

GA implementation in MATLAB and the Least Squares Minimisation implementation

in MATLAB are shown in Figure 5-15 and Figure 5-16. Figure 5-15 presents the

results with fitness and run time as linear values and Figure 5-16 presents the results

with fitness and run time as logarithmic values in order to provide a more visible

comparison between techniques.

Single Objective Multi Objective

Figure 5-15 Linear results for achieved fitness and runtime for three optimisation

methods over all of the optimisation problems.

167

These two figures present the results both with linear scales for fitness and runtime

on the y-axis and also with logarithmic scales for fitness and runtime. This is

because for some problems, there were cases where the fitness values produced by

one or more optimisation methods, or the time it took for the optimisation to be run,

were found to be values on the order of 103 seconds for time, and the fitness values

were found to range between the order of 10-204 and 109 in magnitude. The lines on

these plots are not used to designate trends but to aid visibility of each of the points

on the figures. There are also places on the logarithmic plots where the line is

broken, indicating points which have not been plotted on the figure. This is because

those values have a magnitude of −∞. This occurs when the value of fitness or time

is 0, since log10 0 = −∞.

Single Objective Multi Objective

Figure 5-16 Logarithmic results for achieved fitness and runtime for three

optimisation methods over all of the optimisation problems.

It can be observed from the logarithmic figure that over the range of different

optimisation problems, the optimisation method which achieves the best fitness is

168

varied, but the method which takes the least amount of time to converge on a

solution is consistently the least squares method, however, the least squares method

also tends to be the method which provides the worst fitness result. The simplest

reason for this fast convergence on a value which is clearly not the global minima is

that the method is getting stuck in local minima. A quick inspection of the shape of

each of the optimisation problems shows that the problems whereby this method

displays a fast run time with a large fitness value, the problems that are being solved

for have lots of local minima very close to the global minima. This indicates that the

method very quickly converges on the minimum region in the search domain of the

problem, but then is very easily satisfied by the fitness values that it achieves as it

approaches the global minima and does not continue to search.

With regards to the two Genetic Algorithm methods, the performance is varied.

There are some problems whereby the two different methods perform similarly in

terms of run time, fitness or both, and some problems whereby the performance of

one of the methods is better than the other by a large margin. The better performing

algorithm is not the same one consistently, which indicates that both methods have

strengths and weaknesses, allowing them to perform better in solving different

problems. Again, an inspection of the shape of the search domain of the problems in

which each performs better shows that the GA built into MATLAB performed better

than the implemented method in problems where the global minimum of the problem

existed in a very small range of the search domain and the area around the global

minimum had very large changes in values, whereas the implemented method

achieved better fitness values where the search domain had very small changes in

the range around the global minimum and a lot of the search domain had a large

area of very low values surrounding the global minimum. In these cases the

implemented method took a long time to converge on the solution however. Since

both GA methods were instructed to find a solution which satisfies a certain fitness

value within a set number of generations, which was 300 generations, and were

instructed to maintain the same population size over generations, a population of 50,

it is clear that the rate of convergence on the global minimum with respect to

increase in generations for the MATLAB GA is smaller than that of the implemented

GA. This meant that it took more generations to achieve a comparable fitness for the

169

Matlab GA to that of the implemented GA. However, the implemented GA took

longer to carry out each generation in terms of time.

Since the PID controller gain tuning of the robotic manipulator is a multi-objective

problem, it is appropriated to investigate more closely the performance of each

optimisation method for the multi-objective optimisation problems. In these cases,

with the exception of one optimisation problem, the Schaffer Number 1 multi-

objective problem, where the implemented GA displays the worst performance, it

consistently matches or outperforms the other methods for fitness value. Since the

PID gains are tuned off-line, the longer run time for this method when optimising

these problems is not considered an issue.

5.2.2 Comparison of Optimisation Methods on the Robotic Arm Tuning

Problem

Having compared these optimisation methods against each other for a series of

different problems and assessed them as being comparable, it is also important to

investigate their performance against each other for tuning the robotic arm gains for

a single scenario. To directly assess the feasibility of using the implemented GA to

provide a set of solutions for the PID controller gains required to operate the robotic

manipulator arm, each of the aforementioned optimisation methods were used to find

controller gains for the arm in a single scenario (range of angle motions). This

allows for a direct comparison of the run time of each method and the achievable

fitness value using the same fitness function, and will determine how well the

implemented method behaves in comparison to existing methods.

In order to do this each method will be used to tune the gains to the arm through a

motion where joints 𝜎 and 휂 are required to move through an angle of 0.175 radians

from -0.087 radians to 0.087 radians. The joint angle 𝛼 will move through an angle of

0.35 radians. The initial estimates for the gains will be randomly generated, but will

be identical for each method used. The results are displayed in Table 5-5.

170

Table 5-5 Numerical results of optimisation method comparison on the robotic

manipulator tuning problem for an optimisation with random initial estimated

solution.

Optimisation Method Fitness Value Run Time (s) Run Time

Implemented GA 0.0227 13723 ≈ 3.8 ℎ𝑟𝑠

MatLab GA 0.0152 12409 ≈ 3.4 ℎ𝑟𝑠

Nelder-Mead

(Fminsearch)

1.47806 529.3 ≈ 8.8 𝑚𝑖𝑛𝑠

Least Squares 3.1279 51.02 ≈ 0.85 𝑚𝑖𝑛𝑠

As can be observed from the information presented above and in Figure 5-17, over

the four optimisation methods used, there is a large variation in fitness and run time

in seconds. The least squares optimisation method converges on a solution the

fastest in terms of time, with Nelder-Mead Method (Fminsearch) converging on a

solution next in time.

Figure 5-17 Graphical results of optimisation method comparison on the robotic

manipulator tuning problem.

171

Both of the GA optimisation methods display similar performance in terms of time,

giving run times in the order of 105 seconds per optimisation; however they are able

to find solutions with finesses in the order of 10-2, whereas the other two optimisation

methods are only able to converge on solutions with a fitness value in the order of

101. By using the numerical values rather than the graph the fitness of the two GAs

can be broken down into their physical meaning. Since the fitness function takes the

mean over the three joints of the sum of the error squared, the following is the case.

For the MATLAB GA, the value of 0.0152 means that over the three joints over the

entire run time, there was a total error of 0.2135 radians and for the implemented

GA, the value of 0.0227 gives a total error of 0.261 radians over all three joints for

the entire run time of the system. Given that this is the case, the difference between

them in terms of error is very small.

5.3 Use of GA to Optimise Arm Gains

Having validated the performance of the implemented GA, it can be used to optimise

the PID gains in the controller for the robotic manipulator arm. Since the moments

about the arm vary non-linearly with changing joint angle it is appropriated to tune

the PID controller for different ranges of angles. While the time taken to find a

solution to this problem is not an issue since the gains only need to be found once

and this can be carried out offline, practical time constraints exist. Either of the GA

methods will take 105 seconds to run one optimisation, which is in the order of a four

hours. Given that this is the case, any efforts to minimise the number of discrete

angle ranges which are optimised for would be useful in reducing the time taken to

carry out the optimisation. To do this the following factors and assumptions are

taken into consideration.

5.3.1 Assumptions

The only terms which change their direction relative to the motion of the arm are

those concerning gravity. Since there is only one gravitational term in joint 휂 and two

172

gravitational terms in joint 𝜎, and these relate to the components of weight

perpendicular to the two upper links, these terms are only affected by cosines of the

respective joint angles and so can be calculated easily. Removing this term during

the optimisation and compensating for it by equation with an extra torque input will

mean that the optimisation only has to take place for 1 angular direction in each joint,

therefore effectively reducing the number of required optimisations by a factor of 4.

The architecture change to the servo system by adding this torque correction is

shown in Figure 5-18.

Torque

Correction

Motori

Non-Linear

Arm Dynamic

Model

+

-

1

s

1

sGBi

GBi

+

-
PIDi

α
θa = σ

η θ θτin

ω

Vd

α
θd = σ

η

Where 𝑖 = {1,2,3} or 𝑖 = {𝛼, 𝜎, 휂}

Figure 5-18 Control block diagram illustrating the implementation of PID control into

the dynamic model of robotic manipulator and servo drive. This block diagram also

includes a torque correction factor for moments caused by weight on the arm.

The lowest link in the arm has an effect on those above it which relates to angular

velocity, not position, therefore provided that �̇� is small, its effect can be considered

negligible. This means that the motion of 𝛼 can be kept constant for every single

optimisation.

To determine the range of each discrete angle step, the moment terms which are

affected by changing angle are considered. With gravitational terms excluded, this

leaves only the moments of inertia of each joint, which change depending on the

extension of the links, hence joint angle. Given that these moments of inertia terms

contain the cosine of angles, it is useful to consider the values of these cosines.

Table 5-6 shows that for the cosine of angles between 0 and 90 degrees, the angle

changes the result of the cosine in the order of 10−2 until approximately 20°, after

which the order of the change increases to the order of 10−1, therefore each angle

173

range has been selected to be 20° or 0.3491𝑐, which gives a total variation in value

for each of the cosine terms of a maximum of 7.03%.

Table 5-6 Numerical data illustrating the possible change in moment values as a result

of angle.

Angle 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

Cosine 1 0.9848 0.9397 0.866 0.766 0.6428 0.5 0.342 0.1736 0

Another factor which will reduce the number of discrete angle ranges necessary to

optimise the PID controller is to consider that operating range of the arm.

Assumptions can be made about the accessible range of the arm so that the entire

– 𝜋 to 𝜋 range of each joint does not have to be considered. As such the operating

range of the arm is assumed to be as follows:

−180𝑜 ≤ 𝛼 ≤ 180𝑜

−40𝑜 ≤ 𝜎 ≤ 180𝑜

−180𝑜 ≤ 휂 ≤ 1400

Since the change in angle for each joint per scenario is ∆𝛼 = ∆𝜎 = ∆휂 = 20𝑜, and 𝛼

will always move through the same 20𝑜, there will be 1 discrete range in 𝛼, 11

discrete ranges in 𝜎 and 15 discrete ranges in 휂, therefore a total of 165 scenarios to

optimise for.

To potentially speed up the time taken to carry out each optimisation, a further

assumption will be made. Given that the moments about each joint vary non-

linearly, but continuously with angle, the idea that the gains required to control the

arm will also vary non-linearly but continuously can be considered. If this is the case

then the solution to a previous scenario could be quite close to a solution to the next

scenario, and the solution set from the previous scenario should then be used as the

initial estimate for the gains to the next scenario, rather than starting from scratch

with a new set of random numbers for the PID gains. If this is so then the first

scenario will take the longest in terms of the number of required generations and

thus the run time, and all scenarios after that will take less time to find a solution for.

174

5.3.2 Optimisation Process

Table 5-7 shows the progression of a the optimisation process for a single scenario,

starting with the first generation and showing the optimisation progress every 50

generations to the maximum allows number of generations in this case, which is 300.

It can be observed that the fitness decreases exponentially as a function of

generation, and converges on a fitness which is in the order of 10−2. As can be seen

from the step response of each joint over the generations, the shape of the

responses initially starts with overshoot and even oscillation like a higher order

system, but the shape of the response gradually gets closer to that of a 1st order step

response as the number of generations increases. As the optimisation process

drives the system closer to behaving in the desired manner a strange effect begins

to appear whereby one or more of the joins display a secondary rise in their joint

angle magnitude. This is due to the coupling effects between joints but disappears

again as the optimisation process compensates for it by altering the control gains.

Table 5-7 Results of the optimisation process of the manipulator arm for a single

angle range displaying the change in best fitness and response to a unit step over

successive generations.

G Fitness vs. Generations Joint Angles (rad) vs. Time (s)

1

175

50

100

150

176

200

250

300

5.4 Gain Scheduler for Robotic Manipulator PID Controller

Having carried out the optimisation, the results which have been obtained are 9 sets

of gains, three for each PID controller in the arm. The results as they appear at this

point are a series of 9 sets of 165 square surfaces which represent the proportional,

integral and derivative gains for the servo controller implemented on each link in

each of the scenarios in question. For the gain plateaus {𝑙𝑖𝑛𝑘 𝛼, 𝑙𝑖𝑛𝑘 𝜎, 𝑙𝑖𝑛𝑘 휂} =

177

{(𝐾𝑝𝛼
1 , 𝐾𝑖𝛼

1 , 𝐾𝑑𝛼
1), (𝐾𝑝𝜎

1 , 𝐾𝑖𝜎
1 , 𝐾𝑑𝜎

1), (𝐾𝑝𝜂
1 , 𝐾𝑖𝜂

1 , 𝐾𝑑𝜂
1)} . These can be plotted as a set of 9

plots containing plateaus representing the gains in each of these scenarios.

While the gain profiles as a set of plateaus is useful and already distinct shapes are

clearly observable in each of the gain profiles for the PID controller, these gain

plateaus are discontinuous by virtue of being obtained in a discontinuous manner.

Using MATLABs curve fitting toolbox, these surfaces can be converted it splines

which can then be used to implement gain schedulers for the PID controller. To do

this the ‘centre of gravity’ of each of the planes in the profiles displayed in the coming

pages was taken to determine an approximate point at which each of the gains could

be assigned. The resultant data sets were passed through the curve fitting toolbox

to produce a series of continuous surfaces which are presented in the following

figures. In this form it is clearly visible that the gains are continuous since the

surfaces obtained from the optimisation have produced a series of correlated

shapes. In the case of the gain surfaces

{𝑙𝑖𝑛𝑘 𝛼, 𝑙𝑖𝑛𝑘 𝜎, 𝑙𝑖𝑛𝑘 휂} = {(𝐾𝑝𝛼
2 , 𝐾𝑖𝛼

2 , 𝐾𝑑𝛼
2), (𝐾𝑝𝜎

2 , 𝐾𝑖𝜎
2 , 𝐾𝑑𝜎

2), (𝐾𝑝𝜂
2 , 𝐾𝑖𝜂

2 , 𝐾𝑑𝜂
2)}.

Table 5-8 shows the gain profile for each term in the set of controllers as both a

profile of gain plateaus and also a profile as a single continuous surface. A

comparison of these gain profiles against the changes in moments about joint 𝛼 with

varying 𝜎 and 휂 can be carried out in order to investigate whether the gain profiles

have any relationship to these moments. Given that each gain plateau found during

the optimisation process was obtained for an angle range of the same size, and the

motion for each was designed to be identical, all of the terms in the dynamic model

which relate to �̇� and �̈� will behave in the same way for each angle range in the set

of gain profiles. With this being the case, the gains will only be compared against

moments about each joint which are affected by 𝛼. A modification has already been

made to remove the need to compensate for changes in moments due to weight with

joint angle. This means that the only moment which is directly affected by angle is

the moment of inertia, therefore only the effect of angle on moments of inertia has

been investigated.

178

Table 5-8 Gain Plateaus and Surfaces for the PID controller in joint 𝜶.

K Gain Plateaus Gain Surfaces

𝑲𝒑𝜶

𝑲𝒊𝜶

𝑲𝒅𝜶

179

Figure 5-19 Moments of inertia about joint 𝜶 given changes in 𝝈 and 𝜼.

As would be expected, Figure 5-19 shows that the moments of inertia are largest

when the manipulator arm is fully extended, i.e. 𝜎 and 휂 are 0 radians. All of the

angle combinations which result in a large moment of inertia involve extension of the

mass of the arm away from the axis of rotation about 𝛼. This provides three peaks in

the figure where the manipulator is extended. These geometries are shown in

Figure 5-20.

-σ

η
σ

-η

Link 1 Link 2 Link 3
End

Effector
Link
Base

Figure 5-20 Manipulator arm geometries which generate the largest moments of

inertia about 𝜶.

Investigation of the gain profiles from Table 5-8 shows that the 𝐾𝛼𝑝
2 and 𝐾𝑖𝛼

2 gains

partially reflect this relationship. In the angle ranges of 2 to 𝜋 radians and -2 to –𝜋

radians, this relationship appears to be reflected in the gains, but the large peak at 𝜎

180

and 휂 of 0 radians is missing from these gain profiles. In Figure 5-21, which shows

all three sets of optimised PID control gains for the joint 𝛼, it can be observed that for

the proportional gain 𝐾𝑝𝛼 and derivative gain 𝐾𝑑𝛼, the trend is of a low gain for low 𝜎

and 휂 angles, and increasing gain as these two angles increase.

Figure 5-21 PID Control gains for joint 𝜶 overlaid.

The expected result would be that for 𝜎 and 휂 joint angles where the arm has less

extension in the XY plane, and therefore joint 𝛼 would experience lower moments of

inertia generated by the 2nd and 3rd links in the arm. For 𝛼 and 𝜎 values where there

is a larger extension of the manipulator in the XY plane, the higher proportional gain

would be expected to reflect the larger moments of inertia experienced by joint 𝛼 as

a direct consequence of a longer arm extension. The same would be expected for

the derivative gain. When the arm is extended, there is a greater moment of inertia

about joint 𝛼, which means that the joint requires more energy to slow down or

reverse the motion of the arm rotation about 𝛼, and this would lead to a larger

overshoot if uncompensated. Since derivative gain affects the damping of the

system, hence reducing overshoot, it makes sense that the optimisation would

produce a larger derivative gains at arm geometries of higher extension. This

appears to be the case for the larger angles, where 𝜎 and 휂 are both in the range of

181

2 to 𝜋 or -2 to – 𝜋 radians, but not for the range of joint angles for around 0 radians

for both 𝜎 and 휂. An inspection of the sum of all three PID gains in comparison with

the moments of inertia about 𝛼 in Figure 5-22 may provide extra information.

Figure 5-22 Moments of inertia and PID gains for 𝜶.

It can be seen from this figure that the sum of the three gain profiles is significantly

larger than the moments of inertia about 𝛼. This shows that the relationship between

proportional and derivative gain and moments of inertia is not as clear as expected.

The magnitude of the gains means that any need for proportional and derivative

gains in order to provide the required response is satisfied across the whole range of

𝜎 and 휂. The other trend that is observable in these results is the opposite trend for

𝐾𝑖 in the gain profile. Since the integral gain is present predominantly when the

other two gains are not, this implies a limit on the gains that is reached to stop the

integral gain from being used. Since there is a saturation on the servo motors of

±55 𝑉, the gains in the PID controller will amplify the input signal and must be limited

in some way in order to prevent them from causing the input to the servo from

exceeding this saturation. Given that proportional and derivative gains are required

in order to accelerate and decelerate the arm, these two gains are more likely to be

larger since they are needed to control the dynamics of the system. The integral

182

gain is responsible for reducing the error signal over time, therefore an integration of

a persistent error over a long period of time may result in a very large input voltage

which could exceed the saturation limit, therefore the optimisation will provide a

much smaller integral gain than the other two, and this gain will be reduced

significantly in the regions of the gain profile where there is a need for proportional

and derivative gain.

Table 5-9 presents the gain profiles for joint 𝜎. By observing the PID control gains

for joint 𝜎, it can be seen that the same set of trends is apparent as was the case in

joint 𝛼. This illustrates that the optimiser has tuned the PID gains for joint 𝜎 with the

joint experiencing a similar pattern of moments and torques about the joint over the

same range of joint angle combinations. The one change in the pattern in this case

is that the integral gain dies down with larger values of 𝜎. Figure 5-23 (c) shows that

the valley in the sum of gains which occurs between the two peaks at the ±2 ↔ ±𝜋

radian ranges has a greater magnitude than the plain in the region of 0 radians. This

indicates that the limit of saturation on the voltage input to the servo would be

exceeded for a larger integral gain in this region. It can be seen that the gain profiles

are being forced to the shape which is seen in these figures by another driver other

than the moments of inertia about the joints. In the case of 𝜎 the moments of inertia

display a completely different shape to that of the PID control gain pattern, but again

the magnitude of the gain profiles is significantly larger than that of the moments of

inertia.

183

Table 5-9 Gain Plateaus and Surfaces for the PID controller in joint 𝝈.

K Gain Plateaus Gain Surfaces

𝑲𝒑𝝈

𝑲𝒊𝝈

𝑲𝒅𝝈

184

(a) Moments of inertia about 𝜎.

(b) PID control gains for 𝜎.

(c) Moments of inertia and sum of PID gains for 𝜎.

Figure 5-23 Comparison of moments of inertia of joint 𝝈 with the PID control gains for

the same joint.

185

Figure 5-10 presents the gain profiles for joint 휂.

Table 5-10 Gain Plateaus and Surfaces for the PID controller in joint 𝜼.

K Gain Plateaus Gain Surfaces

𝑲𝒑𝜼

𝑲𝒊𝜼

𝑲𝒅𝜼

186

(a) Moments of inertia about 휂.

(b) PID control gains for 휂.

(c) Moments of inertia and sum of PID gains for 휂.

Figure 5-24 Comparison of moments of inertia of joint 𝜼 with the PID control gains for

the same joint.

In the case of the PID control gains for joint 휂, the same trend is visible once again,

though with a much smaller correlation. This is a more predictable result since the

same fundamental principles are in effect. The reason for the reduced correlation in

the case of joint 휂 is simple because this joint is the last in the chain, therefore the

previous links have much less of an effect on the moments experienced by this joint

both opposing and assisting the demanded torque into the joint.

Having determined a series of gain profiles in the form of splines, these splines can

be converted into look up tables and used to select gains by gain scheduling. Figure

187

5-25 shows the architecture of the servo system with the gain scheduler

implemented.

Torque

Correction

Motori

Non-Linear

Arm Dynamic

Model

+

-

1

s

1

sGBi

GBi

+

-
PIDi

α
θa = σ

η θ θτin

ω

Vd

α
θd = σ

η

Gain

Scheduler

 Where 𝑖 ∈ {1,2,3} or 𝑖 ∈ {𝛼, 𝜎, 휂}.

Figure 5-25 Control block diagram for the controlled servo and dynamic model system

with the implemented gain scheduler.

5.5 Random Step Sequence Testing and Validation

To test the effectiveness of the PID tuning method, the fully tuned system is required

to be tested against some input. To do this a series of paths will be generated using

uniformly distributed random number within the assumed operating angle range that

has been specified for each link in the arm. Each path will consist of a series of

three sets of 20 random numbers representing a set of 20 three-dimensional

waypoints in the configuration space of the manipulator arm. Effectively each

waypoint is an angle demand on each of the three joint angles, and the paths are a

series of 20 of these demands. When all three of the joints reach a steady state of

2° (0.0349 radians) or less from the demanded angles, the arm will be considered to

have arrived at the waypoint and the next waypoint in the path will be inputted into

the arm as a set of demanded joint angles. This method allows multiple different

paths to be generated and tested very quickly. A series of twenty paths was

generated and tested, and the results of two of these paths are displayed in the

following pages. The remaining paths are displayed in 11Appendix A.

188

Figure 5-26 Results of the random step sequence testing of the controlled dynamic

model. Plot 1 is joint angle against time for each joint and plot 2 is the angular error

against time for each joint.

In this scenario, the system was able to reach 13 waypoints. As can be seen in the

figure, every time all three joints achieve a value within 2° a new waypoint containing

a new demand angle for each joint is given, causing the spikes in joint angle error for

each joint. As can be observed from the figure, the spikes in angle error for each

joint occur together in time. The biggest observation that can be made from the

figure is that the frequency of the changes in waypoint varies through the running of

the system over time. Since the waypoint is considered to be achieved when all

three joints are within 2° of the demanded angle, this suggests that the system takes

varying time to achieve this goal. Investigating further by zooming in to two regions

of the above figure illustrates that this is the case. The horizontal dotted line in each

of the error subplots illustrates the threshold which all three joint angles must be

within for the path to switch to the next waypoint. The vertical dotted lines, which are

primarily visible in the second of the two error subplots shows the exact moments in

time when the path moves to the next waypoint.

189

(a) Joint 𝛼 PID Gains

(b) Joint 𝜎 PID Gains

(c) Joint 휂 PID Gains

Figure 5-27 PID control gains for each joint over the random step test sequence

carried out above.

In Figure 5-28a, the output of the system is focussed on the region of the response

between 40 seconds and 60 seconds, which is the final part of the motion to the first

waypoint. As can be observed from the figure, the 𝛼 and 휂 joint angles are well

within the 2° threshold (signified by the horizontal dotted line on the figure) for the

entire time range which is visible on the figure before the waypoint change. In this

case the waypoint changes when 𝜎 reaches the 2° threshold. By inspecting a

different time range in Figure 5-28b for this scenario, where the frequency of

waypoint changes is much higher, given by the time range of 90 to 110 seconds in

the second figure, it can be seen that all three joint angles reach the 2° threshold

190

much more quickly, though it is clear from the figure that they do not reach that

threshold at the exact same time.

(a) Plot of 40 to 60 seconds.

(b) Plot of 90 to 110 seconds.

Figure 5-28 Zoomed in plot of joint angles against time and error against time for the

random step test sequence.

Given that there is a large amount of interconnectivity between the dynamics for

each link, which is caused by the change in the moments about each joint which

changing joint angle, it is likely that the different inertias at different joint angles has

an effect on the ability of the system to reach zero steady state error. Also, given

that for these different angle ranges, the system is effectively a different dynamic

system for each different joint angle, this means that the ability of the GA to find a

solution in each angle range will be different. Also, given that the gain profile for the

gain scheduler has been obtained for discrete angle ranges and then interpolated to

create a continuous surface, the final gains are an estimate. These two actualities

mean that the gains may not provide an exact ideal response as was optimised to.

In the case of the above scenario, 𝜎 does not converge on the final value therefore

the integral gain for the second joint is not strong enough, but for the later parts of

the scenario, the integral gain is strong enough since all three joint angles converge

on the final value much more quickly. This can be seen by investigating the PID

gains over the periods presented in the above figures. Figures 4-28 to 4-31 show

the gains on each of the joints.

191

(a) PID gains of joint 𝛼 over the time

range of 40 to 60 seconds.

(b) PID gains of joint 𝛼 over the time

range of 90 to 110 seconds.

(c) 𝐾𝑖 of joint 𝛼 over the time range of 40

to 60 seconds.

(d) 𝐾𝑖 of joint 𝛼 over the time range of 90

to 110 seconds.

Figure 5-29 PID control gains of joint 𝜶 in the robotic manipulator during the random

step testing of the manipulator arm.

192

(a) PID gains of joint 𝜎 over the time

range of 40 to 60 seconds.

(b) PID gains of joint 휂 over the time

range of 90 to 110 seconds.

(c) 𝐾𝑖 of joint 𝜎 over the time range of 40

to 60 seconds.

(d) 𝐾𝑖 of joint 𝛼 over the time range of 90

to 110 seconds.

Figure 5-30 PID control gains of joint 𝝈 in the robotic manipulator during the random

step testing of the manipulator arm.

193

(a) PID gains of joint 휂 over the time

range of 40 to 60 seconds.

(b) PID gains of joint 휂 over the time

range of 90 to 110 seconds.

(c) 𝐾𝑖 of joint 휂 over the time range of 40

to 60 seconds.

(d) 𝐾𝑖 of joint 휂 over the time range of 90

to 110 seconds.

Figure 5-31 PID control gains of joint 𝜼 in the robotic manipulator during the random

step testing of the manipulator arm.

194

Figure 5-32 Results of the random step sequence testing of the controlled dynamic

model. Plot 1 is joint angle against time for each joint and plot 2 is the angular error

against time for each joint.

In the second scenario presented here, shown in Figure 5-32, there is a range of

time where the 𝛼 joint appears to travel in the opposite direction to the demand. This

is clearly problematic and the reasons behind this must be discussed.

(a) Plot of 40 to 60 seconds.

(b) Plot of 48 to 54 seconds.

Figure 5-33 Zoomed in plot of joint angles against time and error against time for the

random step test sequence.

195

In Figure 5-34 the step response to a unit input of the system
1

𝑠+1
. The velocity of the

system is also given. If the required maximum error before the system is allowed to

switch to the next waypoint is set as 0.3, then the waypoint would switch when the

system had a position of 0.7 and hence a velocity of 0.3. If this required maximum

error were set to 0.1, then the waypoint would switch when the system had a position

of 0.9 and a velocity of 0.1

Step Input
Position
Velocity

Figure 5-34 Position and velocity change for a system at different points in time,

especially when tending towards steady-state.

It is this characteristic which means that the system has a higher velocity when

switching between waypoints when the tolerance to the waypoint that the joint angles

have to be within is larger. For the robotic manipulator links, there is a significant

amount of inertia involved, especially when the arm is fully extended or 𝜎 and 휂 tend

towards 0𝑐, which in the case of the second scenario is the location that the 2nd and

3rd joints are heading to. This means that the first joint is experiencing the largest

range of moments of inertia during this time period, and the link reaches the 2°

waypoint threshold before it has decelerated fully. This means that the joint still has

angular velocity in the opposite direction to the input from the new waypoint which

the controller has to reduce before accelerating in the correct direction. This is what

causes this overshoot effect. The first joint experiences the most inertia of all three

therefore the highest susceptibility to this issue. The solution would be to reduce the

waypoint threshold and this will be investigated further in the validation of the

guidance method in Chapter 7.

196

5.6 Summary of GA PID Gain Tuning Method

This chapter has dealt with the selection of a suitable control schema for the

operation of a 3-DoF robotic manipulator arm. The selection made was a set of

three gain scheduled PID controllers. These controllers required tuning; therefore

gain selection was carried out by optimisation using a genetic algorithm to find a

series of 9 gain profiles. The resultant gain profiles were then used in a gain

scheduled PID controller to drive the arm in an acceptable manner. The controller

produced in this way was able to satisfy a steady-state error requirement of 2° on

each joint.

Having developed the dynamic model of a 3-DoF robotic manipulator arm in Chapter

4, and successfully tuned a PID controller to drive the model within an acceptable

performance range in this chapter, the next step in the process of autonomous

motion of the arm is to design and implement a guidance algorithm which will enable

the arm to plan a safe path through a close-proximity environment in real time given

sensor data about the surroundings and then follow the path. This stage of the

process will be investigated in Chapters 6 and 7.

197

6 ENVIRONMENT MODELLING AND MAPPING IN C-

SPACE

Chapter 4 of this thesis have developed a dynamic model of a 3-DoF robotic

manipulator arm and its corresponding control and tuning. In chapter 5, a control

schema was applied to the developed model to allow it to be driven and controlled in

a stable and predictable manner in Euclidean space. This control schema was a

gain scheduled PID controller, tuned using a Genetic Algorithm and the robotic arm

and its controller were assessed in their performance.

Having tuned and validated system is important since it gives a set of numeric

parameters which any guidance method can be designed and fitted around. In this

chapter existing literature in the area of robotic arm guidance is investigated to

assess the possibility of use of existing techniques and to inform the development of

a technique for use in the context of guidance in close-proximity environments.

This chapter will outline a method of generating simulated environment data and a

method of generating environment data to satisfy the requirement of simulated

environment data in the algorithm. Secondly, this chapter will deal with the

investigation of how the environment can be mapped to provide a method for

obstacle avoidance for the entire robotic arm. The basis for this technique stems

from the kinematics described in the previous chapters. If all of the robotic joint

angles can be calculated when the position of any point along the robotic arm is

specified, then the joint angles that cause a collision between a point along the arm

and an obstacle in the real world can be calculated. This creates an impermissible

region in the control angle domain which defines the joint angle combinations that

the manipulator arm cannot use, otherwise a collision will occur. The impermissible

region can be expanded to provide a permissible boundary layer which, along with

the permissible boundary layers to all other obstacles in the environment, can be

used to form a node graph. The remainder of this chapter will detail the validation of

the developed guidance method for use with the simulation model developed in

198

Chapters 4 and 5. The work carried out in this chapter is outlined in purple in Figure

6-1, with all of the other processes greyed out.

Sensor

Arm Position and

Pose

(Servo Encoders)

Simulated

Environment Data

User Input

Desired End

Effector Location

Map Conversion to

C-space

Plotting of Current

and Desired End

Effector Location

Path Generation Path Following
Arm Servo

Controllers

Arm Dynamics

Arm Kinematics

Figure 6-1 Environment and mapping in C-Space (purple) in relation to the overall

guidance method.

6.1 Implementation

In order to implement a guidance method using the two above techniques, several

steps are involved:

1. Obtain obstacle data.

2. Convert obstacle data into C-Space.

3. Expand C-Space obstacle angle data by the steady-state error of the arm

determined in chapter 2 in orderprevent any collisions due to error from the

demand angles.

199

4. Create a node graph in the available range of C-Space which contains the

obstacle information.

5. Map the end effector start and end points in C-Space.

6. Carry out a pathing algorithm to generate a path through C-Space.

6.1.1 Obtain Obstacle Data

Before being able to convert any obstacles into C-Space their T-space data must

first be obtained. Since in this case the system is a simulated system, simulated

data will also be used. Since the selection for sensor was a LIDAR, then simulated

data must be obtained which follows this assumption. A second assumption that will

be made is that the LIDAR is an ideal sensor, and so displays no measurement

noise or dynamics. These sensors measure data in terms of heading and range, but

this can be very quickly transformed into Euclidean coordinates.

The distance between consecutive measured points on an obstacle is dependent on

two factors, the angular resolution of the sensor and the range from the sensor to the

obstacle.

r1

r2

d1

d2

d3

d4

θ1

θ2

Figure 6-2 Change of measured point spacing with sensor angular resolution and

range.

This relationship is governed by Equations (6.1) to (6.5).

200

 𝑑 = 𝑟휃 (6.1)

 𝑑1 = 𝑟1휃1 (6.2)

 𝑑2 = 𝑟2휃1 (6.3)

 𝑑3 = 𝑟3휃2 (6.4)

 𝑑4 = 𝑟4휃2 (6.5)

Since the distance between measured points in an object will change with range to

the object, the first place to start is to investigate realistic angular resolutions of

LIDAR sensors to obtain a range of realistic angles between measured points for this

type of sensor. Several datasheets for commercially available LIDAR sensors were

investigated and a realistic range of angular resolutions for this type of sensors was

between 0.09° and 0.36°, (Velodyne LIDAR, 2016), (Hokuyo Automatic Co., Ltd.,

2016), (Technical Avenue Sdn Bhd, 2016), therefore this is the range over which

distance between measured points will be investigated. The range over which

distance between measured points changes that is required to be investigated is

from 0 m to the maximum extension range of the robotic arm, which is 0.96 m.

Therefore the distance between each consecutive measured point in this range of

angles and range from sensor can be displayed in Figure 6-3.

201

Figure 6-3 Change of distance between measured points with distance from origin

and angular resolution.

The maximum measured point spacing is very small, on the order of 10−3 𝑚. This

resolution will produce a very large number of measured points per object since the

spacing is between 1.5 and 6 mm depending on the angular resolution of the sensor.

Given that this is the case a selection of the mean of these two limits will be used at

the maximum arm extension range, which is 2.92 𝑚𝑚 ≈ 3 𝑚𝑚. This will be the

spacing between each point. To quickly generate the measured points in objects a

method must be developed which allows for an object shape to be specified and

then the points which are to be measured in that object very quickly generated.

These sensors also have an accuracy of less between 0.02 m at 25 m. This

translates to an accuracy of 8 × 10−4°. For the maximum extension range of the arm

this gives an accuracy of 1.3 × 10−5 m or 0.134 mm. In this case of the work carried

out in this thesis the LIDAR is assumed to be noiseless and 100% accurate, but in a

reality, this accuracy would impact the accuracy of the measured points. This will be

further discussed in section 6.1.2 of this chapter.

202

Triangular Polygon Object Formation

In computer graphics, objects are generated into any shape by approximating them

using a series of small triangular polygons. To generate a more accurate

approximation of the object, a larger number of smaller polygons is used. However,

the drawback is that the computing power required for more polygons is also larger.

This means that one method of quickly generating sensor data is to build an object

from triangular polygons to form the shape of the object in question and then

automatically generating points of the correct spacing in each polygon.

An object formed by n polygons can be described by a matrix n-by-9 in size. Each

row represents one polygon that makes up the object. The elements in each row

are, 𝑥𝑎, 𝑦𝑎, 𝑧𝑎, 𝑥𝑏, 𝑦𝑏, 𝑧𝑏, 𝑥𝑐, 𝑦𝑐 and 𝑧𝑐, which represent the x, y and z coordinates of

each corner of the polygon in Euclidean space. This creates a matrix 𝑂 in (6.6),

which describes an entire object.

 𝑂 =

[

𝑥𝑎 𝑦𝑎 𝑧𝑎 𝑥𝑏 𝑦𝑏 𝑧𝑏 𝑥𝑐 𝑦𝑐 𝑧𝑐

⋮ ⋮
⋮ ⋮
⋮ ⋮

𝑥𝑎𝑛 𝑦𝑎𝑛 𝑧𝑎𝑛 𝑥𝑏𝑛 𝑦𝑏𝑛 𝑧𝑏𝑛 𝑥𝑐𝑛 𝑦𝑐𝑛 𝑧𝑐𝑛]

 (6.6)

Each row in the O matrix can be used to generate a series of inspection points which

can be used to calculate the range of possible collisions with the manipulator arm.

This is done by scattering inspection points across the polygon in a regular

distribution as shown in Figure 6-4.

203

Figure 6-4 Distribution of inspection points across one polygon. The red points

represent the polygon corners, the green point represents the polygon centre and the

blue points represent the other inspection points.

This spread is created by calculating the centre point of the circle in Equation (6.7).

𝑃𝑐 =
𝑃1 + 𝑃2 + 𝑃3

3

where,

𝑃1 = [

𝑥1

𝑦1

𝑧1

], 𝑃2 = [

𝑥2

𝑦2

𝑧2

], 𝑃3 = [

𝑥3

𝑦3

𝑧3

]

(6.7)

The vector from the centre to each corner can then be calculated:

�⃑� 𝑐
1 = 𝑃1 − 𝑃𝑐

�⃑� 𝑐
2 = 𝑃2 − 𝑃𝑐

�⃑� 𝑐
3 = 𝑃3 − 𝑃𝑐

(6.8)

The inspection points inside the polygon can then be calculated in Equation (6.9).

204

𝑃𝑖1 = 𝑃𝑐 + 𝐷�⃑� 𝑐
1

𝑃𝑖2 = 𝑃𝑐 + 𝐷�⃑� 𝑐
2

𝑃𝑖3 = 𝑃𝑐 + 𝐷�⃑� 𝑐
3

𝑤ℎ𝑒𝑟𝑒, 𝐷𝑘=0

𝑘=
‖𝑃𝑛+1−𝑃𝑛‖

𝑑 = 𝑃𝑛 + 𝑘𝑑

(6.9)

And 𝑑 is the distance between measured points. The vector from corner to corner is

calculated in Equation (6.10):

�⃑� 1
2 = 𝑃2 − 𝑃1

�⃑� 2
3 = 𝑃3 − 𝑃2

�⃑� 2
1 = 𝑃1 − 𝑃3

(6.10)

The inspection points along the sides of the polygon can be found in the same way

as the inspection points inside the polygon using Equation (6.11).

𝑃𝑒𝑛,1 = 𝑃𝑛 + 𝐷�⃑� 𝑛
𝑛+1

𝑃𝑒𝑛,2 = 𝑃𝑛 + 𝐷�⃑� 𝑛
𝑛+1

𝑃𝑒𝑛,3 = 𝑃𝑛 + 𝐷�⃑� 𝑛
𝑛+1

(6.11)

Where 𝐷 is the same vector as previously specified. All of the points are stored in

transpose in a single matrix, creating a matrix n-by-3 in dimensions which represents

all of the inspection points in a single polygon, where n is the number of points in the

polygon. Because of the nature of the method that the inspection points are

205

calculated, the polygons have no requirement to be equilateral triangles, which is

useful for constructing entire obstacles.

Sphere Generation

The previous method of generating measured points in objects is very useful for

building highly detailed objects very quickly, but these objects must be modelled in

terms of their polygons before generation and this is very time consuming. A faster

method in terms of very quickly generating objects is to provide a centre point and

generate a sphere of measured points around it.

Firstly the azimuth and elevation angles must be calculated to generate each point

on the surface of the sphere with the correct spacing between them. This is once

again carried out using Equation (6.12).

𝑑 = 𝑟휃

∴

휃 =
𝑑

𝑟

(6.12)

Where d is the spacing between points and r is the radius of the sphere. Having

carried this calculation out, Equation (6.13) is used.

[
𝑋
𝑌
𝑍
] = 𝐶 + [

𝑟𝑐𝑜𝑠(𝐴)cos (𝐸)

𝑟𝑠𝑖𝑛(𝐴)cos (𝐸)
𝑟𝑠𝑖𝑛(𝐸)

]

where 𝐴 ∈ {−𝜋, 휃, 𝜋}, 𝐸 ∈ {−𝜋, 휃, 𝜋}

(6.13)

This generates a set of points which form the surface of a sphere. These points can

then be converted from T-space to C-Space.

206

6.1.2 Convert Obstacle Data into C-Space

Two methods have been used to convert the obstacles into C-Space. Both methods

decouple each of the links into its own problem and then convert the obstacle into C-

Space for each joint. Any collision in the first joint will occur over the whole range of

the 2nd and 3rd angles any collision in the second joint will occur over the whole

range of the 3rd angle. The first method uses trigonometry to calculate the angles for

collisions with the first and second joints in the arm and a series of simultaneous

equations to calculate the angles for collisions with the third joint. The second

method uses trigonometry to calculate the angle solutions to collisions along all three

links.

Method 1 – Trigonometry and Simultaneous Equation Solution

Collisions with obstacles can occur in this case with one of the three links in the 3-

DoF manipulator arm, and the links are temporarily decoupled to calculate collision

angles for each of them. Should the collision occur with the first link then the angles

responsible for the position of the other two links are irrelevant and so for the angles

of the first link that cause a collision, 𝛼, the other angles, 𝛽 and 𝛾, will collide

regardless of angle from – 𝜋 to 𝜋. The same occurs if the second link does not

collide but the third link does. The angle responsible for the position of the second

link is irrelevant so for a collision of the first link at a set combination of 𝛼 and 𝛽 there

will be a collision for all angles of 𝛾 between −𝜋 and 𝜋 radians.

Collision Range of First Link

Any collisions with the first link must occur if a polygon passes through the plane of

operation of the first link, inside a circle on the plane with its centre at the base point

of the manipulator and radius of the length of the first link. This circle represents the

maximum range of the first link.

207

Line:Plane Intersection

For each polygon in an object, the first thing that is calculated is whether or not it

crosses the plane of operation of the first link. This is done by calculating the line-

plane intersection of each of the edges of the polygon, which can be considered to

be lines of infinite length which intersect with one another. The plane of operation of

the first link is defined as a plane in the X-Y directions with z = 0.

In vector notation a plane can be expressed as Equation (6.14).

 (𝑝 − 𝑝0) ∙ 𝑛 = 0 (6.14)

The point 𝑝0 and 𝑝 are points on the plane. In this case 𝑝0 is the origin point of the

first link in the arm and 𝑝 is the point on the plane where a line intersects it. In this

case 𝑝 is the unknown. The variable n is a vector perpendicular to the plane, which

in this case is required to be equal to 𝑛 in Equation (6.15):

 𝑛 = [
0
0
1
] (6.15)

From vector mathematics, the dot product of two vectors is the cosine of the angle

between them. For a vector which is perpendicular to another the angle would be

π/2 radians, therefore the cosine would be 0, hence the 0 in Equation (6.14). The

vector equation for a line is shown in Equation (6.16).

 𝑝 = 𝑙1 + 𝑑𝐿 (6.16)

The variable 𝑝 in this equation is again the intersection between the line and the

plane. The variable 𝑙1 is a point on the line, in this case one of the corners of the

polygon, and 𝐿 is the direction unit vector towards another point on the line, in this

case the other polygon corner which bounds the line. The variable 𝑑 is the distance

208

along the vector to the point 𝑝. By substituting the line vector equation for 𝑝 into the

plane vector equation, Equation (6.17) is achieved:

 (𝑙1 + 𝑑𝐿 − 𝑝0) ∙ 𝑛 = 0 (6.17)

This can be rearranged using the process in Equation (6.18).

𝑑𝐿 ∙ 𝑛 + (𝑙1 − 𝑝0) ∙ 𝑛 = 0

𝑑𝐿 ∙ 𝑛 = (𝑝1 − 𝑙0) ∙ 𝑛

𝑑 =
(𝑝1 − 𝑙0) ∙ 𝑛

𝐿 ∙ 𝑛

(6.18)

This provides the distance 𝑑 which can be re-entered into the vector line equation to

find the line-plane intercept if 𝑑 is a real number. It is required to check that 𝑝 lies

between the two line edges. This is done by using the magnitudes of the vector

between the two corners, and the vectors from the corners to the intersection point,

displayed in Equation (6.19).

𝑚0
1 = |𝑙1|

𝑚0
𝑝 = |𝑙𝑝 − 𝑙1|

𝑚𝑝
1 = |𝑙1 − 𝑙𝑝|

(6.19)

If the point lies inside the two corners then Equation (6.20) is used.

 𝑚0
𝑝 + 𝑚𝑝

1 = 𝑚0
1 (6.20)

209

Line:Circle Intersection

Once it is determined how many of the edges of the polygon intersect with the plane,

they can be checked for intersections with the circle of maximum range of the first

link.

For the first link, any of the three lines of a polygon that pass through the plane of

operation of the link are inspected for their intersection with that plane. This leads to

one of four cases. 1) The entire polygon lies on the plane, in which case all three

lines intersect the plane at all points in the lines. 2) The polygon could intersect the

plane, in which case two of the lines would intersect with the plane, giving two

intersection points. 3) The polygon could be just touching the plane, in which case

two of the lines would intersect the plane at the point at which they intersect each

other, i.e. the corner of the polygon. 4) The polygon does not intersect with the plane

at all, in which case there are no intersection points. In the cases of intersections

with the plane, any intersection which occurs inside the circle whose radius is the

length of the first link, and whose origin is the origin of the first link (the first arm joint)

is inspected for the maximum angle range between them. This inspection relies on

the assumption that a continuous object will have a continuous range of collision

angles. This angle range when defined in terms of distance from the zero angle of

the joint is the range which will cause a collision between the obstacle and the first

link.

Figure 6-5 illustrates the possible cases of intersections between a polygon and the

circle which bounds the range of the first link in the manipulator arm. In cases 1 and

3 the crosses represent corners of the polygon. In case 2 the crosses represent

intersections between edges of the polygon and the plane of operation. In all cases

the black dots represent intersections between the polygon and the edge of the

reachable range of the link.

210

(a) Case 1: Polygon lies completely on

plane of operation of 1st link

(b) Case 2: Polygon intersects with plane

of operation of 1st link.

(c) Case 3: Polygon corner intersects

with plane of operation of 1st link

(d) Case 4: Polygon does not intersect

with plane of operation of 1st link

Figure 6-5: Different cases of intersection of polygons with the plane of operation of

the 1st link in the manipulator.

In case 1 each line is checked for a line-circle intersection. In case 2, the two line-

plane intersections are connected to form a line which is checked for a line-circle

211

intersection. In case 3, the distance from the centre of circle to the line-plane

intersection point is calculated. If it is less than the radius of the circle then the point

lies inside the circle. In case 4 there is no intersection between the polygon and the

plane, so there is no collision angle range for the first link.

For each line that occurs, it must be investigated for a line-circle intersection. This is

done by using the Euclidean line and circle equations in Equation (6.21).

𝑦 = 𝑚𝑥 + 𝑐

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑟2

(6.21)

Where 𝑎 and 𝑏 are the x and y coordinates of the centre of the circle respectively

and in this case are both 0. The line equation can be substituted into the circle

equation and the resulting quadratic equation solved to find both possible

intersections (if any occur).

𝑥2 + (𝑚𝑥 + 𝑐)2 = 𝑟2

∴

(𝑚2 + 1)𝑥2 + 2𝑚𝑥𝑐 + 𝑐2 + 𝑟2 = 0

(6.22)

This quadratic equation is solved using equation (6.23).

 𝑦 =
−𝑚𝑐 ± √−𝑐2 + 𝑚2𝑟2 + 𝑟2

(𝑚2 + 1)𝑥
 (6.23)

where the solutions are the y values of the line-circle intersections. The calculated

solutions can then be used to find the range of the first joint angle that causes a

collision.

212

Collision Range of Second Link

To find instances of collisions with the second joint is simpler than that of the first.

The direction in the X-Y plane that the polygon inspection point lies, which

corresponds to the joint angle of the first link (α), can be calculated as follows. If

𝑃𝑖 = [

𝐼𝑥
𝐼𝑦
𝐼𝑧

] then the angle of the first link 𝛼 can be calculated using Equation (6.24).

 𝛼 = arctan2 (
𝐼𝑦 − 𝑃0𝑦

𝐼𝑥 − 𝑃0𝑥
) (6.24)

Using this angle the joint between the first and second links can be found.

 𝑃1 = 𝑃0 + 𝑙1 [
cos 𝛼
sin 𝛼

0
] (6.25)

This point relates to the base point of the second link. The angle direction from this

point to the inspection point can now be calculated in Equation (6.26).

213

�⃑� 1
𝐼 = 𝑃𝑖 − 𝑃1

|�⃑� 1𝑥𝑦

𝐼
| = √(�⃑� 1𝑥

𝐼
)
2

+ (�⃑� 1𝑦

𝐼
)
2

𝛽 = arctan2(
�⃑� 1𝑧

𝐼

|�⃑� 1𝑥𝑦

𝐼
|
)

(6.26)

If the magnitude of �⃑� 1
𝐼 is smaller than or equal to 𝑙2 then the second link will collide

with the inspection point at that combination of 𝛼 and joint angles.

Due to the geometry of the arm, and the length of the second and third links being

longer than that of the first, it is possible for collisions between the second or third

links and an object when 𝛼 = 𝛼 ± 𝜋 rad (i.e. pointing in the opposite direction to the

object), therefore the process must be carried out again for that case.

Collision Range of Third Link

To investigate collisions between inspection points and the third link, the kinematic

equations that have been described in the previous chapter must be used. The

angle 𝛼 is calculated in the same way as it is for collisions with the second link.

Equations (6.27) to (6.34) show how the joint angle ranges of collisions with the third

link are calculated.

𝑃𝑥𝑦1 = |�⃑� 1𝑥𝑦

𝐼
|

𝑃𝑧1 = 0

(6.27)

 𝑥𝑦2 = −
𝐴𝐵 ± 𝑃𝑓𝑧√−𝐶𝐷 + 𝑙1

3 − 𝑃𝑓𝑥𝑦
3

𝐸
 (6.28)

214

where,

𝐴 = 𝑙1(𝑙2
2 − 𝑙3

2 + 𝑃𝑓𝑧
2 + 3𝑃𝑓𝑥𝑦

2) − 𝑃𝑓𝑥𝑦

𝐵 = 3𝑙1
2 + 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2

𝐶 = (𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2)

𝐷 = (𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 − 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2)

𝐸 = 2(𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2)

}

 (6.29)

 𝑥𝑦3 = ∓
𝐴 ∓ 𝑃𝑓𝑥𝑦𝐵 + 𝑃𝑓𝑧√𝐶 + 𝑙1

3 ∓ 𝑃𝑓𝑥𝑦
3

𝐹
 (6.30)

where,

𝐴 = 𝑙1(𝑙3
2 − 𝑙2

2 ± 𝑃𝑓𝑧
2 ± 3𝑃𝑓𝑥𝑦

2)

𝐵 = 3𝑙1
2 + 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2

𝐶 = −𝐷𝐸

𝐷 = 𝑙1
2 + 2(𝑙2𝑙3 − 𝑙1𝑃𝑓𝑥𝑦) − 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

𝐸 = 𝑙1
2 + 2(𝑙2𝑙3 + 𝑙1𝑃𝑓𝑥𝑦) − 𝑙2

2 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

𝐹 = 2(𝑙1
2 − 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2)

}

 (6.31)

𝑧2 =

𝑃𝑓𝑧

2
+

𝑃𝑓𝑧

𝑙2
3 − 𝑙3

3 ± 𝑙1√𝐴 ∓ 𝑃𝑓𝑥𝑦√𝐴
2

𝐷

(6.32)

and,

215

𝑧3 =

𝑃𝑓𝑧

2
−

𝑃𝑓𝑧

𝑙2
3 − 𝑙3

3 ± 𝑙1√𝐴 ∓ 𝑃𝑓𝑥𝑦√𝐴
2

𝐷

(6.33)

where,

𝐴 = −𝐵𝐶

𝐵 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

𝐶 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 − 𝑙2

2 + 2𝑙2𝑙3 − 𝑙3
2 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

𝐷 = 𝑙1
2 + 2𝑙1𝑃𝑓𝑥𝑦 + 𝑃𝑓𝑧

2 + 𝑃𝑓𝑥𝑦
2

}

 (6.34)

Summary of Calculations

This set of calculations produces a set of three-dimensional points with dimensions

that are equivalent to the angle ranges of each link. For the first joint 𝛼, 𝛽 and 𝛾

have a range of –𝜋 to 𝜋 radians. This is because a collision with the first link makes

the positions of the second and third links irrelevant. The same is true with 𝛾 for

collisions with the third link. The set of points generated for a collision with a polygon

provides a comprehensive scatter across the entire range of angles which the

manipulator arm cannot enter without colliding with the inspected polygon. This

represents the impermissible region caused by the range of collision angles for that

polygon.

Two-Link Equation Analysis

A series of 200 random two-dimensional points were generated and the resulting

geometries calculated using the inverse kinematics for a two-link arm configuration

derived in Chapter 3 are plotted in Figure 6-6.

In Figure 6-6 (a), the green geometries in the upper graph represent the arm

geometries where the randomly-generated point is achievable. The red geometries

216

in the lower graph represent the arm geometries where the randomly-generated

point is unachievable. Figure 6-7 (a) shows the positions of the randomly-generated

points used to calculate arm geometries in Figure 6-6 (a). As seen in the diagram,

the red points fall outside the maximum arm extension range, and correspond to the

unachievable arm geometries in the lower graph of Figure 6-6 (a). The green points

fall inside the maximum arm extension range and correspond to the achievable arm

geometries in the upper graph of Figure 6-6 (a). This shows that these equations are

viable for a two-link arm.

Three-Link Equation Analysis

The equations developed to calculate the arm geometry for a given collision point

have been tested using Monte Carlo Simulation. For the two-link and three-link

equation sets a series of random points in a range that includes the arm extension

range have been generated to test the effectiveness of the equations.

All of the points in the series of random two-dimensional points that fall outside the

achievable arm geometries when using the two-link arm configuration equations

were then recalculated using the inverse kinematics for the three-link arm

configuration derived in Chapter 3 and were plotted in Figure 6-6 and Figure 6-7.

In Figure 6-6 (b) the green and blue geometries in the upper graph represent the arm

geometries where the randomly-generated point is achievable. In a three-link

configuration such as this one, there are two possible geometric solutions for each

randomly-generated inspection point. The blue and green geometries correspond to

each of the two solutions. The red geometries in the lower graph represent the arm

geometries where the randomly generated point is unachievable. Figure 6-7 (b)

shows the positions of the randomly-generated points used to calculate arm

geometries in Figure 6-6 (b). As seen in the diagram, the red points fall outside the

maximum arm extension range, and correspond to the unachievable arm geometries

in the lower graph of Figure 6-6 (b). The green points fall inside the maximum arm

extension range and correspond to the achievable arm geometries in the upper

graph of Figure 6-7 (b). This shows that these equations are viable for a three-link

arm.

217

(a) 2nd link configuration of a two-link

arm.

(b) 2nd and 3rd link configuration of a

three-link arm.

Figure 6-6: Geometries of (a) two-link and (b) three-link arm configurations generated

by random demand end effector positions as inspection points.

(a) Two-link arm analysis.

(b) Three-link arm analysis.

Figure 6-7: Positions of the randomly-generated points used to calculate arm

geometries in Figure 6-6. The green points fall within the accessible range of each

arm configuration, whereas the red points are inaccessible.

218

As can be seen from Figure 6-6 and Figure 6-7, a large proportion of the points that

were unachievable with the two-link equations become achievable when calculated

using the three-link equations. It is also worth noting that the accessible range of the

three-link equations has a circular hole in the centre. Any inspection point that falls

inside this hole will be achievable by the two-link series of equations, as the lower

limit characteristic displayed by the first link is not present for the two link

configuration because the second link is longer than the first. In Figure 6-6 (a) the

green lines and in (b) the green and blue lines represent the geometries required

when the random points have fallen within the reachable range, of the arm. In both

diagrams the red lines represent the cases where the random points fall outside of

the reachable range.

Method 2 – Trigonometry Only

This method uses only the trigonometric inverse kinematics so find solutions to

collisions with all of the points measured points on an obstacle and points along the

entire range of each joint. For the first and second joints, this solution only requires

finding the angle between the measured point and the joint in question and then the

range from the measured point to the joint is compared with the length of the link. If

the Euclidean distance between the joint and the measured point is smaller than or

equal to the length of the link then there is a collision with the obstacle at that joint

angle. For the third joint the inverse trigonometric equations of end effector are

used. A vector of points representing inspection points along the third link are

inputted as the total length of the third link.

For joint 𝛼, the vectors 𝑃𝑥 and 𝑃𝑦 are the vectors which contain the X and Y

coordinates of each of the measured points in the obstacle. For this calculation only

the points where 𝑃𝑧 (the Z coordinates of the measured points) are 0, hence they lie

on the plane of the first link. The calculation of the 𝛼 angles of collisions between the

first link and any obstacles is given with Equation (6.35).

 Α = tan−1
𝑃𝑦

𝑃𝑥
 (6.35)

219

Where Α is the vector of joint angles found by the inverse tangent of the quotient of

the vectors 𝑃𝑦 and 𝑃𝑥. For each of these angles, the Euclidean distance to the point

from the origin is found using Equation (6.36) and for all those points where the

distance is less than or equal to the length of the link, 𝑙1, then the angle is kept as a

collision angle.

 𝑅 = √𝑃𝑥
2 + 𝑃𝑦

2 (6.36)

For joint 𝜎, the same method is used but in this case the location of the joint has to

be calculated. For each measured point, joint angle 𝛼 is calculated using the above

equation, and then the location of the joint between links 1 and 2 can be found using

the forward kinematics.

Since, in the case of the robotic arm presented in this thesis, the second joint is

larger than the first, there is the potential for two solutions to the joint angles 𝛼 and 𝜎.

There may be a solution when −𝜋𝑐 ≤ 𝛼 ≤ 𝜋𝑐, but also when 𝜋𝑐 ≤ 𝛼 ≤ 2𝜋𝑐. Thie

second possible range of 𝛼 angles is given by Equation (6.37).

 Α1 = Α and Α2 = Α − 𝜋 (6.37)

Given that this is the case, the two sets of solutions Σ can be found using the

schematic shown in Figure 6-8.

220

l1-l1

σ1θ

Pxy

Pxy – l1

Pxy + l1

Pz

P

σ2

l2

Figure 6-8 Arm geometry for the calculation of 𝝈.

In this case the 𝜎 angles can be calculated using Equation (6.38).

Σ1 = tan−1
𝑃𝑧

√𝑃𝑥
2 + 𝑃𝑦

2 − 𝑙1

Σ2 = tan−1
𝑃𝑧

√𝑃𝑥
2 + 𝑃𝑦

2 + 𝑙1

(6.38)

Again the Euclidean distance from the joint to the measured points is compared with

the length of the link, in this case 𝑙2, and if the Euclidean distance, calculated using

Equation (6.39), is smaller than or equal to 𝑙2 then there is a collision between the

link and the measured points.

𝑅1 = √(√𝑃𝑥
2 + 𝑃𝑦

2 − 𝑙1)
2
+ 𝑃𝑧

2, for 𝜎1.

𝑅2 = √(√𝑃𝑥
2 + 𝑃𝑦

2 + 𝑙1)
2
+ 𝑃𝑧

2, for 𝜎2.

(6.39)

221

For joint 3, the entirety of the 3rd link is taken into consideration since there are

multiple solutions for collisions with the 3rd link and an obstacle. To carry this set of

calculations out, the length of link 3, 𝑙3 is inputted as a vector from 0 to 𝑙3. The

schematic illustrating the collision geometries for the third link is given in Figure 6-9.

In this case O is the vector coordinates of the base of the manipulator arm. P is the

vector coordinates of a measured point (or all the measured points in the obstacle).

Again, the joint angles 𝛼1 and 𝛼2 can be calculated using the inverse tangent of the

XY vector between the measured point and the base of the 1st link in the manipulator

arm, shown in Equation (6.40).

η1

η4

σ1

σ2θ1

θ3

θ2 -θ2

-θ3

-l1

l3

l2

l3

l2

P
P

l3

l3

l2

l2

η3

θ6

-θ6

-θ5

σ4
θ4

θ5

σ3

l1

r1
r2

O
O

Figure 6-9 Arm geometry for the calculation of the 𝝈 and 𝜼 joint angle combination.

Α1 = tan−1
𝑃𝑦

𝑃𝑥

Α2 = 𝜋 + tan−1
𝑃𝑦

𝑃𝑥

(6.40)

The Euclidean distance (ℎ1 and ℎ2) between the measured points and the base of

the manipulator can be used along with the lengths of links 2 and 3 to find all of the

222

internal angles of the triangle made by these three lengths. Equations (6.41) to

(6.44) provide calculate the internal angles of the geometries shown in Figure 6-9.

𝑅1 = √(√𝑃𝑥
2 + 𝑃𝑦

2 − 𝑙1)
2
+ 𝑃𝑧

2, for 𝜎1, 𝜎2 and 휂1, 휂2.

𝑅2 = √(√𝑃𝑥
2 + 𝑃𝑦

2 + 𝑙1)
2
+ 𝑃𝑧

2, for 𝜎3, 𝜎4 and 휂3, 휂4.

(6.41)

Given the length of link three as a vector of points along the length of the link, 𝐿3, the

following set of equations will give the angles Θ1 to Θ6.

Θ1 = tan−1
𝑃𝑧

√𝑃𝑥
2 + 𝑃𝑦

2 − 𝑙1

Θ4 = tan−1
𝑃𝑧

√𝑃𝑥
2 + 𝑃𝑦

2 + 𝑙1

(6.42)

Θ2 = cos−1
𝑙2
2 + 𝑅1

2 − 𝐿3
2

2𝑙2𝑅1

Θ5 = cos−1
𝑙2
2 + 𝑅2

2 − 𝐿3
2

2𝑙2𝑅2

(6.43)

Θ3 = cos−1
𝑙2
2 + 𝐿3

2 − 𝑅1
2

2𝑙2𝐿3

Θ6 = cos−1
𝑙2
2 + 𝐿3

2 − 𝑅2
2

2𝑙2𝐿3

(6.44)

This set of equations now provides the necessary parameters to calculate the 𝜎 and

휂 values.

223

Σ1 = Θ1 + Θ2

Σ2 = Θ1 − Θ2

Η1 = 𝜋 − Θ3

Η2 = Θ3 − 𝜋

(6.45)

Σ3 = Θ4 + Θ5

Σ4 = Θ4 − Θ5

Η3 = π − Θ6

Η4 = Θ6 − 𝜋

(6.46)

This provides the full list of 𝛼, 𝜎 and 휂 for each point in the obstacle for all of the

inspection points along the length of link 3. This set of calculations provides the

entire range of joint angles which causes a collision between all of the measured

points in the obstacle and the entire arm.

Summary of T-Space to C-Space Conversion Methods

Both of these methods provide a suitable method of converting points in T-Space

into a C-Space map. However, the first method requires a large amount of sorting of

information to find which angle combinations fall within the range of each of the links

and this takes a large amount of calculation overheads and time. Even when both

methods use vector operations to reduce the number of calculations necessary,

method 1 takes 10 times as long to execute for an object of 250 points as method 2,

which only takes approximately 3 seconds for an obstacle containing approximately

16000 measured points. Clearly, the second method is much more efficient at

handling the T-Space/C-Space conversion; therefore this method shall be used for

the path generation technique.

224

Analysis of C-Space Objects

To determine how obstacles appear in C-Space, a single polygon has been used to

generate a C-Space object. Figure 6-10 illustrates the shape of an impermissible

region for a single polygon. In the diagram there are two illustrations. The illustration

on the left shows the position of a polygon in relation to the maximum arm expansion

radii in the plane of the first link. The black circles represent the inspection points on

the polygon, which is placed in the X-Z plane. The red circle illustrates the maximum

radius of the first link, the blue circle the maximum radius of the first and second links

and the green circle the maximum radius of the entire arm in the X-Y plane.

The diagram on the right of Figure 6-10 illustrates the components of the

impermissible region formed by this polygon in the expansion range of the arm.

There are two distinct shapes on the diagram. The shape made by the red, dark

blue and dark green regions represents the impermissible region caused by

collisions with the arm when the first link is pointing in a direction range towards the

polygon. Mirroring the colours of the maximum expansion radii in the diagram on the

left, the red shape is the impermissible region caused by collisions with the first link,

the dark blue shape is the impermissible region caused by collisions with the second

link, and the dark green shape is the impermissible region caused by collisions with

the third link. The other distinct shape, made up of the light blue and light green

impermissible regions represents the collisions between the polygon and arm when

the first link is pointing in a direction range which is opposite to the direction towards

the polygon. In this case, the first link will never collide, but the second and third

links, which have a longer length than the first link in this application, are able to

extend back in the direction of the polygon and collisions occur. The light blue shape

illustrates the impermissible region caused by collisions between the polygon and

the second link, and the light green shape illustrates the impermissible region

caused by collisions between the polygon and the third link in the case of the first link

pointing in a direction opposite to the direction of the polygon.

The reason that the impermissible regions of the first and second links extend

entirely through one or two dimensions of the space is because if the first link

collides with the polygon, then regardless of the direction of the other two links, the

collision occurs. So for a given α angle, all and angles cause a collision. The

225

same is the case for the second link. If the second link collides, then for the 𝛼 and

angles that cause the collision, the direction of the third link is irrelevant and the

collision will occur for all angles.

Figure 6-10: Impermissible region for a triangular polygon situated in the arm

extension range for all three links.

Figure 6-11 illustrates how the different impermissible regions for the different link

lengths are combined to form the overall impermissible region for the polygon. These

display the two distinct regions for 𝛼 in the direction range of the polygon in red, and

in the opposite direction range of the polygon in green. In this set of diagrams it is

particularly clear that the regions completely fill the space in some dimensions.

Figure 6-11 shows that the impermissible regions extend completely through the

angle dimension and the angle dimension for certain ranges of 𝛼.

226

Link-1 joint angle range (α°)

L
in

k
-2

 j
o

in
t
a

n
g

le
 r

a
n

g
e

 (
β

°)

(a) View of the 𝛼- plane.

Link-1 joint angle range (α°)

L
in

k
-3

 j
o

in
t
a

n
g

le
 r

a
n

g
e

 (
γ
 °

)

(b) View of the 𝛼- plane.

Link-2 joint angle range (β°)

L
in

k
-3

 j
o

in
t
a

n
g

le
 r

a
n

g
e

 (
γ
 °

)

(c) View of the 𝛼- plane.

Link-2 joint angle range (β°) Link-1 joint angle range (α°)

L
in

k
-3

 j
o

in
t
a

n
g

le
 r

a
n

g
e

 (
γ
 °

)

(d) View in all three servo angle

dimensions.

Figure 6-11: Impermissible region formed by inspection of a single polygon, as seen

from various directions.

Given that collisions with the first link completely fill the C-Space in the 𝜎 and 휂

dimensions, this will prevent the arm from navigating a large amount of the Task

Space. For this reason, future obstacles used will fall outside of the range of link 1 to

allow for navigation about the space.

227

6.1.3 Expand Impermissible Region to Permissible Boundary.

For each obstacle, a region in the C-Space exists that constitutes an impermissible

region for the combinations of control inputs. These forbidden areas can be plotted

as a three-dimensional graph, using the angle dimensions as the X, Y and Z

dimensions of the graph. Moving the arm into a geometry whereby the joint angle

combination falls inside this impermissible region would cause a physical collision.

To prevent any collisions with the impermissible region formed by the C-Space

obstacle, the impermissible region can be expanded to form a new shape which is

slightly larger than the original C-Space shape.

By expanding the impermissible region slightly a new region is created, the boundary

of which is unobstructed by the obstacle. When this new expanded shape is

bounded it will form a boundary that the arm can touch that will not cause a collision

provided that the arm does not cross inside it. To expand the impermissible region

of the obstacle each point must be expanded to a sphere (or a hemisphere), or

similar shape as will be explained, to provide a safe boundary around each point. To

carry out this expansion, the required action is for duplicate versions of the C-Space

points to be added to a set of vectors which contain a translation by the amount

which corresponds to several limitations of the system.

The first limitation of the system is the error in the LIDAR sensor, which could cause

the measurements to be off by a small amount (calculated to be in the region of

1.3 × 10−5 m or 1.35 × 10−5𝑐
 or 7.76 × 10−4°) which will form part of a boundary

region which will be expanded around the impermissible region. The second

limitation is the resolution of the sensor. Regardless of how small this resolution is,

the sensor may miss the very edges of obstacles when scanning for points in range.

This is shown in Figure 6-12. The red lines on the obstacle are areas where the

LIDAR sensor may not detect that there is an obstacle; 𝑟𝜃 is the angular resolution of

the LIDAR, 𝑟𝑠 is the relative spatial resolution of the sensor and the red lines on the

obstacle are the regions where the sensor has not detected any object.

228

Obstaclers

rθ

LIDAR

Figure 6-12 Effect of resolution of the LIDAR sensor on the detection of the corners

of an obstacle.

To prevent this from becoming a problem, the permissible boundary expansion can

also be expanded by the angular resolution of the sensor, since this will ensure that

any undetected parts of an obstacle will not be collided with. The third limitation

involves the accuracy of the joint servo encoders. If there is any noise or error in the

measurements taken by the joint then the arm will not be located where the guidance

method thinks that it is, and there may be a collision. A solution to this is to add a

value to the permissible boundary around obstacles which is equal to the maximum

measurement error of the servo sensors, hence avoiding a collision: The fourth

limitation that must be taken care of is the steady state error of the joints in the

dynamic model, which in Chapter 5 was shown to be 2° or 0.035𝑐. This means that

even when the system displays the dynamics presented in Chapter 5, there will still

be no collisions.

This vector appears as shown in Equation (6.47) where 𝐶𝑝𝑜𝑖𝑛𝑡𝑠 is the vector of points

in C-Space, 𝐶𝑝𝑜𝑖𝑛𝑡𝑠2 is the new vector of points in C-Space, 𝑒𝑙 is the angular error in

the LIDAR sensor, 𝑟𝜃 is the angular resolution of the LIDAR and 𝑒𝑠 is the

measurement error of the servo encoders. This new vector provides a cluster of

points with which to create a node graph from. In this case the angular error in the

LIDAR is negligible and the since the measured points in the obstacle are simulated,

the entirety of the obstacle has been detected by the LIDAR. The servo encoders in

229

this case are also considered to be ideal. For this reason 𝑒𝑙 , 𝑟𝜃 and 𝑒𝑠 will be

considered to be 0.

𝐶𝑝𝑜𝑖𝑛𝑡𝑠2 =

𝐶𝑝𝑜𝑖𝑛𝑡𝑠 + (𝑒𝑠𝑠 + 𝑒𝑙 + 𝑟𝜃 + 𝑒𝑠)

[

0
1

−1
0
0
0
0

0
1
0
1

−1
0
0

0
1
0
0
0
1

−1
0.7071
0.7071

−0.7071
−0.7071
0.5774
0.5774

0.7071
−0.7071
0.7071

−0.7071
0.5774

−0.5774

0
0
0
0

0.5774
0.5774

−0.5774
−0.5774
0.5774
0.5774

−0.5774
−0.5774

0.5774
−0.5774
0.5774

−0.5774
0.5774

−0.5774

0.5774
0.5774

−0.5774
−0.5774
−0.5774
−0.5774]

(6.47)

Figure 6-13 illustrates how the impermissible regions are expanded to create a

permissible boundary around them. In the diagrams the blue shape represents the

impermissible region for the arm with the first link in the direction of the polygon and

the yellow shape the impermissible region for the arm with the first link in the

opposite direction of the polygon. The darker region in the shapes are the

impermissible regions and the lighter enclosing shapes are the permissible

boundaries that have been created by expanding the impermissible regions.

230

Link-1 joint angle range (α°)

L
in

k
-2

 j
o

in
t
a

n
g

le
 r

a
n

g
e

 (
β

°)

(a) View of the 𝛼- plane.

Link-1 joint angle range (α°)

L
in

k
-3

 j
o

in
t
a

n
g

le
 r

a
n

g
e

 (
γ

°)

(b) View of the 𝛼- plane.

Link-2 joint angle range (β°)

L
in

k
-3

 j
o

in
t
a

n
g

le
 r

a
n

g
e

 (
γ

°)

(c) View of the - plane.

Link-1 joint angle range (α°)Link-2 joint angle range (β°)

L
in

k
-3

 j
o

in
t
a

n
g

le
 r

a
n

g
e

 (
γ

°)

(d) View in all three servo angle

dimensions.

Figure 6-13: Expansion of the impermissible region to create permissible boundary

around the impermissible region seen from various directions.

6.1.4 Node Graph Formation

This part of the method deals with the formation of a node graph in order to be able

to execute a path generation algorithm and generate a path. Two methods are

presented here. The first is to manipulate the permissible boundary regions to be

able to use them to form a node graph and plot a path around them. The second

231

method is to generate a grid of nodes over the entire space and remove node from

this graph which fall inside the permissible boundary regions.

In either case, the permissible boundary regions still contain all of the C-Space

points, including those which fall inside the boundaries. These superfluous points

can be removed in since they are not necessary. Also, the generation of surfaces

that bound these points is necessary in both methods. The first requires the use of

the edges of surfaces since they represent vertices connecting the nodes of the

permissible boundary. The second method requires the surfaces since it analyses

which points in the node graph of the entire space fall inside the closed shapes

formed by the surfaces.

Convex Hulls and Alpha Volumes

Due to the extensive inspection of each obstacle, a lot of the collision points will find

themselves inside the impermissible region for that obstacle. These points must be

removed before a node graph is generated, otherwise they will be connected to the

graph and this will allow the path generation algorithm the ability to use them in any

path it generates, risking a collision. To solve this problem a technique called an

alpha volume is used. This is the same as a convex hull, which is explained in the

next paragraph, but with another extra function which is described immediately

following the convex hull.

Convex Hull

A convex hull is a shape or volume which forms the boundary of a cloud of points.

This can be done in two or three dimensions. In the case of the map generation

technique described here, the method is used in three dimensions; however, for the

purposes of outlining the method, an example in two dimensions will be used.

Consider a farmer’s field with fence posts driven into it at random points across the

field and a rope is tied to one at the outside edge. The farmer then walks with the

other end of the rope all the way around the field and back to the first post. This

creates a boundary with the rope that, if pulled tight will form a convex, irregular

232

polygon with a high number of sides that entirely bounds the posts in the field. The

corners of this shape are the posts on the outside edge of the set of posts. This is

outlined in Figure 6-14 and Figure 6-15.

Figure 6-14 A 2-D pattern of inspection

points for illustration of the convex hull

technique for bounding a region of

points.

Figure 6-15 The same 2-D patter of

inspection points has now been bounded

using the convex hull technique.

As can be seen by these figures, the black line has completely encircled the brown

circles (our fence posts). This can be done by the following method:

 Start with the left-most point in the group and take a vector from it in a

leftward direction.

 Find the point in the remainder of the set, the vector to which has the smallest

angle from the original vector, when the angle is taken clockwise. This is the

next point; store it in a list with the previous ones.

 Take the new vector as the starting direction vector and repeat step 2.

 Repeat step 2 and 3 until the next point is the original one.

 The points in the list represent all of the points that bound the set.

This can be seen in Figure 6-16

233

t0

P0

t1

P2
t2

P3

α1

α2

Figure 6-16 Method by which the complex hull technique works.

This is a very good start; however it is only useful if the distribution of points forms a

convex shape. If there is a concave area to the shape, then the algorithm will ignore

it. For example in Figure 6-17 the black line clearly ignores an area where the

shape is concave, but the red line is a more accurate representation of the shape.

This is done using an alpha shape, or volume in three dimensions.

Figure 6-17 Limitations of the convex hull

technique and the result of using the

alpha hull technique.

Figure 6-18 Limitations and compromise

required when using the alpha volume

technique.

Alpha Shapes/Volumes

An alpha shape follows the same principal as a convex hull; however it also has a

tunnelling method to detect convex areas of a shape when a certain threshold is

achieved. The extra addition to the method is to investigate whether the distance

from the current point to the next one found by the concave hull method. If there is

234

another point which is closer with a larger direction angle it will use that as the next

point and choose its next vector to be back along the previous line. This is called

tunnelling and requires a tunnelling distance to check as the threshold value. There

is a drawback to using this extra part of the algorithm however, depending on the

required task. If the tunnelling distance is set too large then the algorithm will

continue to function in the same way as the convex hull and not detect any concavity

in the shape. If the tunnelling distance is set too short then the algorithm will begin

to pick up gaps in the shape where none exist. This is shown in Figure 6-18.

As can be seen in the figure, the algorithm tunnels into areas that it should not, and

even decides that one point is not connected to the rest. This is dangerous if the

tunnelling distance is not calibrated correctly, especially when in the case of the map

generation algorithm described in this thesis. Here the points are a spread of

inspection points across a continuous shape. The alpha shape algorithm could

conceivably decide that a surface on the shape does not exist in the control angle

domain, and subsequently there are surfaces inside the object, which could lead to a

potential collision.

This algorithm can be used in three dimensions, which allows it to generate surfaces

around objects, forming a volume in the same way as it forms a shape. This is

called an alpha volume. If it carries out this function to the two shortest angle points

in three dimensions it can form a triangular polygon, which can be used later in the

map generation.

Method 1 – Node Graph from Permissible Boundary Alpha Volumes

This method requires that each of the permissible boundaries are checked for

overlapping areas, and if so then the permissible boundaries are merged with one

another. Following this the remaining permissible boundaries are connected to one

another by their closest nodes. Finally, the C-Space version of the robotic

manipulator end effector start and desired end locations are calculated and

connected to the resulting node graph.

235

Merging of Overlapping Permissible Boundaries

Due to the nature of the environment there may be places where the permissible

boundary regions for two obstacles may be very close to one another. When the

regions are expanded to form the permissible boundaries it may be that these

regions overlap, and so they must be combined before a node graph is generated so

that nodes on the edge of one permissible boundary that find themselves inside

another are not included on the graph. This problem is solved simply by checking

whether there are points from different impermissible regions within a certain

distance of another impermissible region and if so then combining all of the points

from the two regions into one array, effectively turning them into one region.

Conversion of Object Permissible Boundaries into Node Graphs

Each permissible boundary is required to be converted to a node graph for use with

a pathing algorithm to find the shortest path between nodes in the graph. This is

done very simply. The alpha volume technique described in the previous chapter

finds polygon shaped surfaces around the edges of a scatter of points. These are

stored in a format known as a triangulation, which has two arrays. The first array is

an n-by-3 sized array which contains the coordinate data of the points in the

triangulation for n points in the object. The first column in the array is the coordinate

in the first dimension, normally 𝑥, but in the case of the ‘permissible boundaries’ this

is 𝛼. The second column represents the coordinates and the third column the

coordinates. This matrix is known as the index matrix, and is identical to the one

used by the node graph that is generated. The second matrix is an m-by-3

triangulation matrix, where m is the number of polygons that make up the surface of

the ‘permissible boundary’. Each of the elements in a row corresponds to a row of

the index matrix, each specifying the coordinates of one point. The three points that

are specified make up one of the m polygons in the boundary.

Converting the triangulation into a node graph is a very small, but potentially memory

intensive process, which has been dealt with later in this chapter. An matrix is

created of n-by-n dimensions where each element is infinite. This is to become an

adjacency matrix for the node graph. Before it is populated with costs, all of the

236

nodes are set to have no connections. The (1,1) to (n,n) diagonal elements are set to

0 as the angular cost from one point to itself is zero. Each row of the triangulation

matrix is then taken and the elements specified within it are connected to each other

in the adjacency matrix. This is done by calculating the resultant angle change

between each of the points and setting these as the cost to travel between those

nodes in the adjacency matrix.

 𝑇1 = [13 290 165] (6.48)

For example, if a row in the triangulation matrix was as presented in (6.48), then

elements (13,290), (290,13), (290,165), (165,290), (13,165) and (165, 13) would be

filled with the resultant angle change between the points that these element

identifiers refer to respectively.

This process is carried out for every ‘permissible boundary’ for the environment. It is

at this point that a limitation of computer memory becomes a problem. The

adjacency matrices for these permissible boundaries’ have the potential for several

thousand rows and columns in them. In this case, there are limitations to various

pieces of computer programming software, including Matlab, which cannot process

extremely large matrices so there is a limit to the size that the adjacency matrices

can become. This has the potential to create a problem when several adjacency

matrices are combined, and a solution has been found for this issue. The solution is

dealt with later in the chapter.

A second issue that only becomes clear at this point in the construction of the

adjacency matrices is as follows. The space in which the map is built is circular.

This means that where the impermissible region has dimensions of –𝜋 to 𝜋 radians,

a continuous shape is formed that is circular in that dimension, exactly like the

space. As −𝜋 and 𝜋 are both 180°, the region simply exits off one side of the map

and re-enters on the other only to travel completely across that dimension. This in

itself is not an issue as that means that there is a potential for some regions that are

technically accessible to be inaccessible due to the impermissible region cutting off

access completely to that area, which is physically possible in the real world. Take a

237

closed box for example. Theoretically the arm could be inside the box, but if all sides

of the box are closed then the inside is inaccessible from the outside and vice-versa.

The issue comes in that the techniques used so far do not know that the space is

circular and to the computer −𝜋 ≠ 𝜋. This means that when the impermissible

region stretch completely across one dimension, the alpha volume method connects

up the sides at the ends of the shape where the coordinate in that dimension is

either −𝜋 or 𝜋 radians.

Link-2 joint angle range (β°)

Link-1 joint angle range (α°)

L
in

k
-3

 j
o

in
t
a

n
g

le
 r

a
n

g
e

 (
γ

°)

Figure 6-19: Permissible boundary surface converted into a wire frame representing

the vertices in a node graph in the three servo angle dimensions.

The solution to this problem is as follows: If the shape covers one entire dimension

then expand the shape by several radians at each end; i.e. if a point has a value of

π, then duplicate it and add 0.1 radians to the duplicate in that dimension. If negative

π then duplicate and subtract 0.1 radians to the duplicate.

 Carry out the Alpha Volume generation method again to get a new

triangulation.

 For all points that are greater than π or less than –𝜋, then do not add to the

graph.

238

 If there is a point at 𝜋 or – 𝜋 in one dimension and another the other value of 𝜋

then connect them up in the node graph.

 The node graph for one ‘permissible boundary’ is shown in Figure 6-19.

The permissible boundary region is used to build connectivity and adjacency

matrices which represent the node graph used to generate a path. The wireframe

objects shown in Figure 6-19 are the representation of the vertices or connections

between nodes in that graph.

Connection of Permissible Boundary Node Graphs for all Obstacles

Having generated a node graph for each ‘permissible boundary and converted the

end effector start and required locations into angular space, the map needs to be

joined together. To reduce the computational load of large matrices this is done on a

two level basis. Each of the ‘permissible boundaries’ has its centre point calculated

and the boundaries are organised in order of increasing α position. This is because

the largest variation in real world position is in the direction so the ‘permissible

boundaries’ need to be connected in this direction to provide paths between them.

Each boundary is connected to the next as a single node in the list in the top tier of

the graph. The last in the list is also connected to the first in the same way as they

are next to one another in the space.

Method 2 – Whole Space Node Graph with Removal by Alpha Volume

Intersection

The above method is able to generate a node graph in the space, however, there are

several operations that are required to be carried out which are computationally and

time intensive. The following method aims to reduce a large amount of the

computational overheads in the above method. The following sets of calculations

are removed from this method:

 Checking for overlaps between permissible boundaries.

 Searching permissible boundaries for the closest points between them to

connect them together.

239

 Searching the edges of the space for paths which exceed the limitations of the

space and checking permissible boundaries in case they exceed the

limitations of the space.

 Having to create 2 different levels of node graph, a global node graph and

local node graphs for each permissible boundary to prevent memory

problems.

To achieve all of the above, this method only requires two processes. The first is to

create a node graph which covers the entirety of the space as though there are no

obstacles. The spacing of the nodes in the graph will again match the steady state

error values found in the previous chapter. The second is to check whether any of

the nodes in this graph fall inside the permissible boundaries of the obstacles in C-

Space and if so, removing them from both the list of indices and the adjacency

matrix for the space. The largest advantage to this method is that the node graph of

the unobstructed space can be generated a priori and only loaded when necessary,

saving large amounts of memory. Also, the number of nodes in this graph will only

reduce since nodes are removed when they are found to be obstructed by obstacles.

Figures Figure 6-20 to 6-24 illustrate the effectiveness of this method.

Figure 6-20 A sphere in T-space in

relation to the base point of the

manipulator arm.

Figure 6-21 C-space representation of the

sphere in relation to the manipulator arm.

240

Here the C-Space permissible boundary regions formed by a spherical object can be

seen. The next stage in the process is to create a node graph for the accessible C-

space. This is carried out by first creating a node graph for the space without any

obstacles. As specified in Chapter 5, the accessible region of the manipulator arm is

in the range of −180 ≤ 𝛼 ≤ 180,−40 ≤ 𝜎 ≤ 180,−180 ≤ 휂 ≤ 140.

The choice of spacing between nodes is important and relates to two limitations, the

first of which is related to the control limitations of the manipulator, the other is

related to the memory capabilities of the computer carrying out the node graph

construction. The first limitation is the steady state error of the joint angles. While

this has been taken care of in the expansion of impermissible regions into

permissible boundaries around which the arm can safely travel in section 6.1.3, the

nodes in the graph which is being generated are direct control requirements of the

joints and so if they have a smaller separation than the steady state error of the

system then the arm will be situated at the location of two different nodes in reality

and inside the guidance method. For this reason the spacing between nodes will be

set as the steady state error of the joints as a minimum. In this case 2° or 0.035𝑐.

The second limitation is that the computer which carries out the node graph

generation is limited in terms of memory, and a node graph with a small spacing will

have a very large number of nodes, increasing the size of the adjacency matrix in the

computer memory, hence increasing overheads and run time. For example, with the

angle range limitations for the manipulator arm used in this thesis, the size of the

adjacency matrix is as follows for the angle spacing of 1°, 2°, 5° and 10°.

Table 6-1 Numerical data showing the adjacency matrix size difference between node

graphs of different node spacings.

Node spacing 1° 2° 5° 10°

Adjacency

matrix size

79781 × 79781

= 6.365 × 109

20091 × 20091

= 403648281

3285 × 3285

= 10791225

851 × 851

= 724201

241

Clearly, the smaller the spacing between nodes in the graph, the larger the

adjacency matrix of the graph becomes, and this relationship is exponential. It is for

this reason that the node spacing has been selected as 5° or 0.087𝑐 to reduce the

computational overhead significantly.

The obtained set of C-Space permissible boundaries can be overlaid over the node

graph of the empty space. Figure 6-22 shows the It is clear that some of the angle

combinations that cause collisions fall outside of this space.

Figure 6-22 Sphere in C-space (red) overlaid over the unmodified node graph (black).

Figure 6-23 Nodes which collide with the sphere in C-space (red) to be removed from

the remainder of the node graph (blue).

242

The triangulation shown in Figure 6-24 illustrates the space that the removal of the

red nodes leaves behind. The triangulation itself is not used but displayed for

illustrative purposes.

Figure 6-24 Surface plot of a triangulation showing the complete node graph with the

colliding nodes removed.

The nodes in the graph of the empty space can be compared with the permissible

boundary regions and any nodes that fall inside these regions can be removed. The

red nodes in Figure 6-23 illustrate which nodes will be removed from the graph.

Summary of the Method

This method has advantages over the first method in that the preloaded node graph

already defines the space and, therefore, there is a reduction in computing

overheads because the algorithm does not have to search for areas of the C-Space

obstacles which exceed the limitations of the operational space of the manipulator

arm. There is also no computational overhead caused by the need to check each of

the permissible boundaries for overlaps since any overlap will be taken care of when

points are removed from the node graph. Again, the closest points between each of

the permissible boundaries do not have to be found, further reducing the amount of

243

computation. Finally, there is no need to create two levels of node graph. This is

because each individual node graph and list of index points stored separately cost

more in terms of memory than a node graph for the entire space together.

It is for this reason that the second method will be used to calculate the node graph

with which to generate paths through the T-Space.

6.1.5 Mapping of End Effector Start and Required Joint Positions

The end effector start and required positions have also to be mapped into the space

to allow them to be connected to the node graph. As with all the other inspection

points, when these points are mapped into the angle space, there are several

potential solutions. The solutions with the smallest resultant angular change (i.e.

closest together in the space) are chosen, provided that they do not appear inside

one of the ‘permissible boundaries’. If that is the case then that solution is

inaccessible. If all solutions are inaccessible then the start or require point in

Euclidean space is also inaccessible.

In Figure 6-19, the end effector start position and required end position have also

been mapped. The green circle represents the angle combination of the start

position and the red circle represents the angle combination of the required end

position. Table 6-2 illustrates the change in domain from the Euclidean domain to the

control domain.

Table 6-2 Change in domain from the Euclidean domain to the Control domain for the

end effector start and required end points used in the path generation example for

method 1.

End Effector Point

Identifier

Euclidean

Domain

Control

Domain

Start point (𝑃𝑠)
[
−0.0514 𝑚
−0.2915 𝑚

0 𝑚
] [

100°
0°
0°

]

244

Required end point (𝑃𝑟)
[
−0.0514 𝑚
0.2915 𝑚

0 𝑚
] [

−100°
0°
0°

]

The end effector start and required angle combinations are compared with the centre

point of each ‘permissible boundary’ in the space to find which nodes in the graph

they are closest to. These points are then connected to only the node that they are

closest to. This completes the map of the environment, including the end effector

start and required locations.

6.2 Summary of Environment Modelling

In this chapter a method of creating a navigable map of the environment has been

presented which will allow the robotic manipulator system to safely pass around the

obstacles in the environment. Once the obstacle data has been converted to C-

space and the resultant impermissible regions expanded into safe boundaries, two

methods of utilising the resultant information have been presented. The first was to

create an alpha volume of each of the permissible boundaries around objects and

then connect these alpha volumes together as a node graph. This method was very

high in computational complexity due to the amount of manipulation that had to be

carried out to make sure that it was contained in the region which is bounded by the

limitation of the manipulator arm. Also the resultant node graph was limiting in terms

of where in the space the manipulator could travel. The method was ensuring that

the manipulator could track around the edges of obstacles but could only navigate by

jumping between the edges of different obstacles. For this reason a second option

was investigated. The second method uses a pre-calculated node graph of the

empty space, which can then have any nodes which fall inside the alpha volumes for

the accessible boundary regions removed to leave a node graph of the remaining

accessible space. This method has an advantage over the other method in that the

edges of the space are already bounded since there are no nodes located outside of

the limitations of the manipulator arm, hence no extra manipulation of the node

graph is required. Also there is no need to check each triangulation for any overlap

since when two alpha volumes overlap, the first to be considered will remove all

245

nodes which intersect with it, and when the second alpha volume is considered, any

nodes which would have been located in the overlap region of the two alpha volumes

will have already been removed.

With a successful implementation of a node graph which contains the map of the

environment in C-space, Chapter 7 will investigate methods of generating a path

through the space before the complete method is validated by simulations in Chapter

8.

246

247

7 PATH GENERATION USING GRAPH THEORY

In the previous chapter of this thesis a method of converting obstacle data in T-

Space into a safe, usable map in C-space has been presented. Having accessibility

to a safe map of the environment is important since it provides a domain for a path to

be generated through, allowing the manipulator arm to navigate from A to B without

collision with obstacles. This chapter is responsible for the design decisions and

implementation of a path generation method which will satisfy the requirement of a

safe path through C-space. Figure 7-1 illustrates how the path generation method

fits into the context of the guidance method as a whole.

Sensor

Arm Position and

Pose

(Servo Encoders)

Simulated

Environment Data

User Input

Desired End

Effector Location

Map Conversion to

C-space

Plotting of Current

and Desired End

Effector Location

Path Generation Path Following
Arm Servo

Controllers

Arm Dynamics

Arm Kinematics

Figure 7-1 Flowchart showing the context of the path generation (orange) in relation

to the overall guidance method.

248

7.1 Path Generation in C-Space

A path generation algorithm is required to find the path from the start to required

angle combinations. Figure 7-2 shows how the node graph for one obstacle can be

represented graphically in C-Space, with a resultant generated path. The path

generation method will be detailed later in the chapter. This example is for the

triangular polygon previously presented in this chapter.

 (a) With wireframe (b) Without wireframe

Figure 7-2: Generated path (red line) from an end effector start point (green circle) in

the servo control domain to a desired end effector end point (blue circle) in the servo

control domain.

Figure 7-2 shows the shortest resultant angle change path from 𝑃𝑠 to 𝑃𝑟 through the

servo control angle space. The red line represents the generated path which follows

closely the edges of the permissible boundary layer.

249

(a) View of the 𝛼- plane.

(b) View of the 𝛼- plane.

(c) View of the - plane.

(d) View in all three servo angle

dimensions.

Figure 7-3: Generated path between the end effector start point (green circle) to the

desired end effector end point (blue circle).

Figure 7-3 illustrates the path once the space has been normalised to a -180° to

180° space in 𝛼, and . The red line represents the path, and the yellow circles are

the nodes in the node graph of the permissible boundary around the impermissible

regions. The dimensions of the servo control space have been normalised to show a

-180° to 180° square space. As can be seen in the diagram, one of the two

impermissible regions crossed the -180°/180° boundary in the α-angle dimension

and so half of the object appears greater than -180° and the other half as smaller

250

than 180°. This further illustrates the circularity of the space. This figure illustrates

the complete path that the arm must take in terms of the joint angle combinations

that will guide the end effector from its start location to its required end position,

while avoiding the obstacle with the entire arm. The list of angle combinations for this

path is given in Table 7-1.

Table 7-1: Joint angle combinations to guide the robotic manipulator in such a way as

to drive the end effector from a starting position to a required position while providing

effective avoidance for the entire manipulator.

Point ID 𝜶° ° °

1 -100 0 0

2 -121.695 -14.1908 0.1828

3 -159.75 -42.4559 -49.5

4 165.3354 -27.9574 -49.5

5 144.0931 -10.6416 -49.5

6 124.7179 -4.6067 -11.838

7 100 0 0

Alternatively, a complete example using the sphere as previously presented. Figure

7-4 illustrates the path generated by path generation method around the obstacle in

C-Space.

251

Figure 7-4 Spherical object in C-space with a safe path generated around it.

7.2 Comparison of Path Generation Techniques

Plotting a path through C-Space in the quickest way possible, while still maintaining

an accurate path around any obstacles is important. Based on the review of

literature carried out in Chapter 2, three pathing methods have been selected for

testing, Dijkstra’s Algorithm, Bellman-Ford’s Algorithm and a Breadth-first Search

Algorithm. Figures 7-5 a to c show the same spherical obstacle from earlier in the

chapter with a path generated around it for the same start and desired end effector

locations using the three specified pathing methods, Dijkstra’s Algorithm, the

Bellman-Ford Algorithm and a Breadth-first Search of the node graph. In these

figures there are 4 sets of lines. The red lines indicate the path made by the first

joint, the green lines indicate the path made by the second joint and the dark blue

line represents the path made by the end effector. The light blue lines show the

geometry of the manipulator arm at each of the waypoints in the C-Space path.

252

(a) Dijkstra’s Algorithm

(b) Bellman-Ford

(c) Breadth-first

Figure 7-5 Dijkstra’s Algorithm (a), the Bellman-Ford Algorithm (b) and Breadth-First

Algorithm (c) having plotted a path around the same spherical obstacle.

As can be seen from the figures, in this case all three pathing methods are able to

generate a path around the obstacles. In order to make a choice of pathing method,

all three must be compared in several scenarios. To compare the methods, they

have been tested in several scenarios with the same start and end locations.

Equation (7.1) shows the end effector starting location and Equation (7.2) the end

effector demand location.

253

 [

𝛼𝑠

𝜎𝑠

휂𝑠

] = [
−180°
45°
0°

] (7.1)

[

𝛼𝑑

𝜎𝑑

휂𝑑

] = [
180°
45°
0°

]
(7.2)

This means that the general direction of the path will always be the same. Following

this, obstacles will be added in the arc of the end effector motion with the

unobstructed path in order to provide obstructions which the arm has to navigate

about. Obstacles were added until there were 7 spheres obstructing the path from

the starting pose to the end pose.

Table 7-2 Results from a preliminary investigation of the three selected pathing

methods for different numbers of obstacles.

No.

Obs.
Dijkstra’s Algorithm Bellman-Ford Algorithm

Breadth-first

Algorithm

1

254

2

3

(Dijkstra)

5

7

Path Around 7 Spheres in T-Space (Bellman – Ford)

Z
D

is
ta

n
ce

 (
m

)

X Distance (m)

Y Distance (m)

255

By inspection it can be seen that in all three of the above methods, the paths that are

generated avoid collisions with the obstacles. Also, the general shape of the paths is

similar for the Dijkstra and Bellman-Ford Algorithms, but a very different path shape

is present for the Breadth-first Search method. An inspection of the run time for

each of the methods given the number of obstacles provides interesting results. The

figure below shows the run time of each algorithm for 1, 2 3, 5 and 7 obstacles. It

can be observed from the figure that the Breadth-first Algorithm consistently runs

2 × 10−2 𝑠 to 4 × 10−2 𝑠 faster than Dijkstra’s Algorithm. The Bellman-Ford Algorithm

was 2 × 10−2 𝑠 to 6 × 10−6 𝑠 slower again. This confirms the results presented

shown by Table 2-3 and Table 2-4 in the review of literature in Chapter 2. There is a

slight trend of all three algorithms speeding up with larger numbers of obstacles, and

this can be explained by the smaller number of accessible nodes to explore when

more of the nodes are removed from the graph because they lie inside an obstacle.

The Breadth-first Algorithm is faster than the other two methods because it is

designed to explore outwards from the starting point first and in this case will stop as

soon as it finds the target node. This means that it will find the path with the smallest

number of vertices, regardless of cost. The other two methods will continue to

search the graph for paths to the goal with shorter path costs, even if the resultant

path contains more vertices.

Figure 7-5 Algorithm run time for the selected path planning algorithms for different

numbers of obstacles

256

Regardless of the reasons why one method is faster than the others, all three

methods find a path within 0.1 seconds of each other, and since only one path has to

be generated, this difference is very small in regards to the run time of the entire

algorithm. A further set of tests will increase the size of the obstacles to reduce the

distance between them. It is also of note that in all of the above paths, the

algorithms generated a path around the entire cluster of obstacles rather than

through the cluster. Making the obstacles larger will increase the distance of the

path if it navigates around the perimeter of the cluster rather than through the cluster,

potentially encouraging the algorithms to travel through the smaller gaps between

the obstacles.

Each of the three methods will be investigated with 2 and 4 spheres with a Euclidean

distance between the origin of the manipulator arm and the centre of each sphere of

0.5657 m in the XY-plane, at coordinates of [0.4,0.4] m, [0.4,-0.4] m, [-0.4,0.4] m or

[-0.4,-0.4] m and either 0.6 m or 0m in the Z-direction. This provides a central

coordinate for each of the obstacles, which are 1 m apart from the adjacent

obstacles, where the radius of each sphere can be specified to allow for collisions

with both the 2nd and 3rd links and also provide a known separation between each

obstacle.

The investigation will consist of the same end effector start and desired geometries

in terms of joint angle and there will be two obstacles with centres at [0.4,0.4,0.6]

and [0.4,-0.4,0]. The radii of the two obstacles must be varied to change the spacing

between the two obstacles. A mathematical analysis can be used to calculate the

range of radii which should be investigated. At this point it is important to consider

that the permissible boundary expansion of 2° gives a total of 4° between the two

obstacles. For the maximum extension of the arm this translates into 0.067 m, and

for a Euclidean distance of approximately 0.64 m, which is the distance to the

halfway point between the two obstacles, the 4° safety margin translates to

approximately 0.05 m. This means that for the arm to be able to pass, the maximum

radius of each of the obstacles will be 0.475 m, since 0.05 + 2*0.475 is 1 m. In order

to test this, each of the methods will be tested for obstacle radii of 0.47 m, 0.475 m

and 0.48m.

257

For these radius selections the distance between the surfaces of each of the objects

is 0.94 m, 0.95 m and 0.96 m, and with the expanded permissible boundary, the safe

spacing between objects is 0.01, 0 m and -0.01 m respectively. This means that for

the three object radii selections, the path generation method should be able to

generate a safe path between the obstacles in the first case, theoretically generate a

safe path between the obstacles in the second case since the safe boundaries touch

but do not overlap, and in the third case, since the boundaries do overlap, there

should not be a safe path between the obstacles.

7.2.1 Bellman-Ford

(a) 0.47 m Obstacle Radius

X Distance (m)

(b) 0.475 m Obstacle Radius

X Distance (m)

(c) 0.48 m Obstacle Radius

Figure 7-6 Results of the path generation around two obstacles with 0.47 m, 0.48m

and 0.49m radii using the Bellman-Ford Algorithm.

258

Figure 7-6 displays the results for the Bellman-Ford Method. This set of results

shows that the Bellman-Ford method can find a suitable path with sphere radii of

0.47 m and 0.745 m. For the sphere radii of 0.48 m, the path generated collides with

one of the obstacles. This can be observed where the dark blue line showing the

path of the end effector disappears inside the sphere of an obstacle. This set of

results agrees with the predicted outcome prior to the path generations. A further

test of the ability of this method is to carry out the same path generation but for 4

obstacles with radius of 0.475 m rather than 2 obstacles. Figure 7-7 illustrates that

the Bellman-Ford Algorithm is capable of generating a path around the obstacles.

259

(a) X-Y View

(b) Y-Z View

(c) X-Z View

(d) 3-D View

Figure 7-7 Results of the path planning around 4 obstacles with 0.475 m radius using

the Bellman-ford algorithm.

260

7.2.2 Breadth-first

(a) 0.47 m Object Radius

(b) 0.475 m Object Radius

(c) 0.48 m Object Radius

Figure 7-8 illustrates the results for the Breadth-first Method.

X Distance (m)

261

(c) 0.47 m Object Radius

(d) 0.475 m Object Radius

(c) 0.48 m Object Radius

Figure 7-8 Results of the path generation around two obstacles with 0.47 m, 0.48m

and 0.49m radii using the Breadth-first Algorithm.

For the Breadth-first Method it can be seen from the results that the path generation

around the obstacles does not produce a safe and traversable path in any of the

above cases. The further path generation with 4 spheres further illustrates that this

method is not able to generate a safe path.

X Distance (m)

262

(a) X-Y View

Path Around 4 Spheres in T-Space (Breadth-First)

(a) X-Z View

Path Around 4 Spheres in T-Space (Breadth-First)

(c) Y-Z View (d) 3-D View

Figure 7-9 Results of the path planning around 4 obstacles with 0.475 m radius using

the Breadth-first algorithm.

263

7.2.3 Dijkstra

Figure 7-10 illustrates the results for the Dijkstra Path Generation Method.

X Distance (m)

Y Distance (m)

(a) 0.47 m Sphere Radius

(b) 0.475 m Sphere Radius

X Distance (m)

(c) 0.48 m Sphere Radius

Figure 7-10 Results of the path generation around two obstacles with 0.47 m, 0.48m

and 0.49m radii using Dijkstra’s Algorithm.

In the case of Dijkstra’s Algorithm a safe path has again been generated around the

obstacles with 0.47 m radius and 0.475 m radius, but not the obstacles with 0.48 m

radius, again confirming the prediction made upon selection of the scenarios to

investigate. Further investigation by plotting a path through 4 obstacles yields the

same results.

264

(a) X-Y View (b) Y-Z View

(c) X-Z View

(a) 3-D View

Figure 7-11 Results of the path planning around 4 obstacles with 0.475 m radius using

Dijkstra’s algorithm.

Given that Dijkstra’s Algorithm and the Bellman-Ford Algorithm both provide safe

paths around obstacles, but Dijkstra’s Algorithm executes slightly faster than the

265

Bellman-Ford Algorithm, which is reflected in the literature, Dijkstra’s Algorithm has

been selected for use as the path method of choice.

7.3 Path to Trajectory Conversion

Currently the path which is generated by the guidance method is a list of demanded

waypoints, but does not give any dynamic information for the arm to follow. Ideally,

each joint in the arm has been designed with identical dynamics in mind by tuning

the PID controller for each joint with an ideal step response matching the following

system dynamic model, as shown in (7.3):

 𝑅𝑖(𝑠) =
1

𝑠 + 1
 (7.3)

This means that each joint should reach approximately 63% of the final value in one

second and have a zero steady-state error. In reality, this is not the case since the

optimisation technique was not able to perfectly match this system behaviour in any

scenario for any joint, but was able to maintain system performance close to this.

Also, since the joints were tuned over discrete ranges, the selected gains will not be

ideal for every single one of the infinite angle combinations, therefore the

performance will never exactly match the ideal.

All of this means that the actual time response of each joint will not be identical and

the three joints will not meet their demanded joint angle at the same time. What can

be done in this case is to add dynamics to the path so that the demanded joint angle

changes more slowly than all three of the joints can respond. If this is the case they

should all be able to track the change in demand at the same time. If the change in

demanded joint angle was faster than the joints could respond, then they would all

respond at different speeds and so would reach the demanded angle at different

times. This means there would be a deviation from the path as each of the joints

would move in an uncoordinated way. This process is illustrated in Figure 7-12 and

Figure 7-17.

266

Figure 7-12 Time response of 3 different transfer functions with time constants of 0.5,

0.25 and 0.167 seconds.

In Figure 7-12, the response to a unit step of the transfer functions 𝐺1 =
2

𝑠+2
, 𝐺2 =

4

𝑠+4

and 𝐺3 =
8

𝑠+8
 are shown. It is clear that none of the three systems reach steady-state

at the same time. The following figure shows the response of the same three

systems to a signal which displays the dynamics of 𝑅 =
1

𝑠+1
 to the unit step. In

essence the three example systems are tracking the response of system R to the

unit step input.

Figure 7-13 Time response of systems 𝑮𝟏, 𝑮𝟐 and 𝑮𝟑 given an input which is

equivalent to the step response of system 𝑹.

Figure 7-13 shows the response of the system R to the unit step in magenta, and the

original three systems 𝐺1, 𝐺2, and 𝐺3 track the magenta signal. It is clear that the

speed of each system has an effect on how well it is able to track the response of R,

267

but as time increases all three of the systems converge on the shaped input R as it

tends towards the steady-state, hence they all appear to settle at approximately the

same time. Clearly there is still a difference between the responses of the system,

but the dynamics of the systems chosen in this example differ by a large amount to

exaggerate the difference between their responses to a unit step. In reality, all of

three of the joints in the arm are tuned to display the same behaviour and as such

the difference between them is much smaller. Figure 7-14 illustrates the effect if all

three of the systems have very similar dynamic behaviours.

Figure 7-14 Time response of 3 different transfer functions with similar time constants

of 𝟎. 𝟒, 𝟎. 𝟑 and 𝟎. 𝟐𝟖𝟔 seconds.

In this case, the three systems have similar dynamics, with each system being

described as follows; 𝐺4 =
2.5

𝑠+2.5
, 𝐺5 =

3

𝑠+3
 and 𝐺6 =

3.5

𝑠+3.5
. There is still a small

disparity between the speed at which each responds and consequently the time at

which each converges on the steady-state.

268

Figure 7-15 Time response of systems 𝑮𝟒, 𝑮𝟓 and 𝑮𝟔 given an input which is

equivalent to the step response of system 𝑹.

When inspecting the response of each of these systems to the shaped step it is clear

that the disparity still exists, but the time at which each of the systems converges on

the steady-state is almost identical. The distance between each of these responses,

both in the transient and when converging on the steady-state, is important since any

difference will correspond to a divergence from the desired path and the potential for

a collision with an obstacle. If all three of the systems displayed identical dynamics,

then it would not matter how fast or slow those dynamics were in terms of following

the path since they would follow a linear motion along the desired path. To illustrate

this a simple example of a single linear path will be simulated with three systems

representing a joint each, and the divergence from the path will be shown. This

investigation will be carried out with a step-based path and the same path with a

shaping filter such as the low pass filter
1

𝑠+1
 which has been used as the shaping

function throughout this section. In this example, the X-direction will be controlled by

a transfer function 𝐺4 =
2.5

𝑠+2.5
, the Y-direction controlled by transfer function 𝐺5 =

3

𝑠+3
,

and the Z-direction controlled by 𝐺6 =
3.5

𝑠+3.5
, therefore the system dynamics are

identical to those used in the above example. In this case the system will start at

coordinates [0,0,0] and be required to move to coordinates [1,2,3], which will be

shown in the figure below.

269

To illustrate the lack of difference between the path and trajectory once dynamic

information is removed, Figure 7-16 shows the two plotted through the space in

which they are operating.

Figure 7-16 Path through space and the trajectory which represents the same path but

with time information included.

As can be observed in the figure, the two lines lie directly on top of one another,

therefore the spatial parameters of the path and trajectory are identical, only the time

based information has changed. Figure 7-17 illustrates the difference in the system

output between the system following the path and the system using the trajectory to

follow the path. In Figure 7-17, the black line indicates the spatial demand of both

the path and the trajectory, and this is the line that the system would ideally follow.

The red line shows how the system tracks the path and the blue line shows how the

system tracks the trajectory. It is clear just from this figure that there is an

improvement in deviation from the desired path by using dynamic information as well

as spatial.

270

Figure 7-17 Behaviour of systems 𝑮𝟒, 𝑮𝟓 and 𝑮𝟔 as dimension components of a path

tracker when given the path as an input or the trajectory as an input.

To further illustrate this effect, the time response of each of the dimensions to the

demand path and to the demand trajectory is plotted in Figure 7-18. There are two

areas of each response which are of interest. The dashed lines between 0 and 1

seconds in the first plot and between 1 and 2 seconds in the second plot represent

the time constant of each dimension, i.e. the point at which each dimension reaches

63% of the final value. In both cases these points occur very close together, so the

initial response of each dimension is similar for both cases. The dotted lines which

occur between 1 and 2 seconds in the first plot and at approximately 5 seconds on

the second plot are the points at which the response reaches 1% of the final value,

and so can be considered to have arrived at the desired location. When the system

follows the demand path, the ‘settling time’ occurs at different times for each

dimension, but when following the trajectory there is a simultaneous arrival to the

demanded point.

271

Demand Path

Response to
Demand Path

Demand
Trajectory

Response to
Demand

Trajectory

Figure 7-18 Time response of each dimension to a demanded path and demanded

trajectory.

Since this is the case, the paths generated by the guidance method will be passed

through a filter to give them dynamic information. The time constant of the filter will

be designed such that the demanded change in position over time is slower than any

of the system dynamics, helping to reduce any deviation from the desired path. In

the case of the robotic manipulator dynamic model, the system is designed to

behave with dynamic characteristics of 𝑅 =
1

𝑠+1
, and while the system almost

achieves this in all of the different angle ranges, it is prudent to slow down the

trajectory by this amount plus a small tolerance to account for any PID gain sets

which are slower than this. By allowing the time constant of the trajectory to by 10%

more than the designed time constant this should enable the system to track the

trajectory through the majority of gain sets.

This means that the path will be passed through a low pass filter with the transfer

function 𝐹 =
0.9091

𝑠+0.9091
 to generate a suitable trajectory.

272

7.4 Summary of Robot Arm Guidance

Having investigated multiple methods of obtaining simulated obstacle data,

converting the obstacle data from T-Space to C-Space, creating a node graph which

avoids the obstacles and planning a path from start to end points on this graph a

selection for each can be made in order to combine them into a single algorithm

which is capable of planning a safe path for an entire arm around obstacles in T-

Space. The resultant algorithm carries out the above processes in the following way:

Table 7-3 List of processes carried out in the guidance algorithm.

O
b

s
ta

c
le

 D
a

ta

S
im

u
la

ti
o

n

1. Using the selected LIDAR angular resolution calculate the spacing

between points on the surface of an obstacle.

2. Calculate the change in azimuth and elevation from the centre of

the obstacles to each of the points on the surface.

3. Using the azimuth and elevation between each point and the

obstacle radius calculate the points on the surface of the spherical

obstacle.

273

T
-S

p
a
c

e
 t

o
 C

-S
p

a
c
e

 C
o

n
v

e
rs

io
n

4. Check the Z-coordinates of each point and for those with a Z-

coordinate of 0 m, indicating that the point lies on the XY-plane.

5. Using trigonometry calculate the angle between the base of the arm

and each of the selected measured point on the obstacle surface in

the XY-plan.

6. Calculate the XY-range between the base of the arm and the

selected measured points. If the distance is smaller than or equal

to the length of link 1, then there is a collision.

7. Using trigonometry calculate the elevation angle between the end

of link 1 and the measured points. Calculate the angle if the 𝛼

angle is 𝜋𝑐 away from the original angle.

8. Calculate the Euclidean distance between the end of link 1 and the

measured points in both the 𝛼 and 𝛼 ± 𝜋 cases. If the Euclidean

distances to the point are less than or equal to the length of link 2,

then there is a collision.

9. Using the same process as for link 2, calculate the length and angle

between the end of link 1 and the measured points for both the 𝛼

and 𝛼 ± 𝜋 cases.

10. Using the cosine rule calculate the angles 𝜎 and 휂 for a range of

length 3 from 0 to the full length of 𝑙3. This gives the entire range of

𝛼, 𝜎 and 휂 where collisions occur.

O
b

s
ta

c
le

E
x

p
a
n

s
io

n
 11. Add separate sets of points which are equivalent to the original but

translated in each axis by the steady-state error of each of the joints

found in Chapter 2.

12. Create the alpha-volume of each of the permissible boundaries.

274

N
o

d
e

 G
ra

p
h

 C
re

a
ti

o
n

13. Generate a blank node graph which is a grid of points where each

dimension fills the operating range of each of the arm joints, but

with spacing which corresponds to the steady-state error of the joint

angles found in Chapter 2.

14. Join the nodes in the graph together with their adjacent nodes

which all fall within the immediate horizontal adjacent nodes and all

diagonally adjacent nodes.

15. Investigate which nodes fall inside the permissible boundaries and

remove them from the adjacency matrix and list of indices.

M
a

p
 E

n
d

 E
ff

e
c

to
r

S
ta

rt
 A

n
d

 E
n

d

L
o

c
a

ti
o

n
s

16. Using the inverse kinematics calculate all possible angle solutions

for the end effector start and desired locations.

17. Sort the angle solutions and remove those which fall outside of the

operating range of the manipulator arm.

18. Find which of the remaining start and desired end effector locations

are closest to each other and add them to the node graph.

275

C
a
rr

y
 O

u
t

P
a

th
 G

e
n

e
ra

ti
o

n
 u

s
in

g
 D

ij
k
s

tr
a
’s

 A
lg

o
ri

th
m

19. Assign to very node an initial distance value. The distance to the

starting node is set to zero and all the others to infinite

20. All the nodes are marked as unvisited, except for the starting node

which is set as the current node. A set is created containing all the

unvisited nodes, which initially contains all of the nodes but the

starting one.

21. For the current node, consider all of its the nodes connected to is

that are in the set of unvisited nodes and calculate their distance

values. For example, if the current node is marked with a distance

of 10, and the vertex connecting it with a neighbour has length of 5,

then the distance the neighbour node through the current node will

be 10 + 5 = 15.

22. When the algorithm has considered all of the neighbour nodes of

the current node, mark the current node as visited and remove it

from the set of unvisited nodes. The current node will not require

inspecting again.

23. If the destination node has been marked as visited or if the distance

among the nodes in the set of unvisited nodes is infinity (when

planning a path from one node to another this occurs when there is

no connection between the initial node and remaining unvisited

nodes), then stop. The algorithm has finished.

24. Select the unvisited node that is marked with the smallest distance

from the current node, and set it as the new "current node" then go

back to step 3. If all neighbour nodes have been visited then go

back down the path to the nearest node that has a neighbour which

is unvisited.

The above table presents the algorithm which has been developed to plot a safe

path through the environment. Alongside the Kinematics and Dynamic Model

developed in Chapter 1, and the controller and PID tuning developed in Chapter 2,

the path generation technique developed in this chapter can be combined to validate

276

the method. In the next chapter, the entire method is tested to validate the guidance

method and the conclusions from the investigation are presented.

277

8 VALIDATION OF GUIDANCE METHOD BY SIMULATION

In Chapters 3 to 7 of this thesis a novel concept has been developed and

presented which in real-time generates a safe path for a 3-DoF robotic manipulator

through a close-proximity environment. In Chapter 3 a forward and inverse

kinematic model of the manipulator was developed to provide knowledge of the

location of the entire manipulator given a set of joint angles. Chapter 4 presented

the development of a dynamic model of a 3-DoF manipulator to provide a test bed

for use in the development of a guidance technique. Chapter 5 was responsible for

the selection and tuning of a control schema for the robotic manipulator dynamic

model to provide adequate system performance and also provide some of the design

specifications for the guidance method, especially in terms of safe boundaries

around obstacles. Chapters 6 and 7 detailed the design decisions and

implementation of a technique which could satisfy the requirements of the

manipulator arm dynamic model. In this chapter, several simulated scenarios of

increasing obstacle complexity are presented and the performance of the combined

controlled dynamic model and guidance method discussed.

8.1 Simulation Design

To assess the capability of the tuned arm and the guidance method together a series

of simulated environments with obstacles contained within them must be decided

upon. Each environment will get gradually more complex to test the limits of the

arm-guidance combination.

The first simulation to be carried out is to plan a path around a single obstacle since

this will show whether the arm can follow a simple path. Following this the number

of obstacles should be increased to add complexity to the path. Ideally the obstacles

should be placed such that the generated path is required to pass between them to

assess the manipulator arm’s ability to stay within the set confines of the accessible

space. If the arm is able to maintain the performance displayed in Chapter 2, then

278

the design parameters of the guidance method should prevent the arm from colliding

with any obstacle as it passes between them. In this case the arm displayed a

performance such that it was able to maintain a steady-state error of 2° or less and

no overshoot so the guidance method allows a safe region of 2° around each

obstacle in C-Space to provide the extra leeway that the arm requires when

navigating the environment. Therefore the obstacle locations will be designed such

that the guidance method can only just pass between them. This will mean that

when the dynamic model of the arm is driven along the demand path, any deviation

from the path would cause a collision with an obstacle. To test that the guidance

method and arm work together in the environment, any deviation larger than

2° ± 0.225° may cause a collision with an obstacle.

The first four environments will contain 1, 2, 3 and 4 obstacles respectively, and the

final two will increase the complexity further. The 5th scenario will contain 4 spheres

which are close enough together to overlap, leaving a small hole through which the

arm has to pass. The 6th scenario will contain a string of spheres close enough

together to overlap. This scenario is designed to force the arm to have to navigate a

narrow corridor where any deviation in any direction could cause a collision.

8.2 Results

The following section of this chapter presents the results from the simulated

scenarios.

8.2.1 Single Obstacle

This scenario contains a single sphere as an obstacle. The centre of the sphere is

located at [0.566,0,0] and the sphere radius is 0.3 m. The arm is required to move

the end effector from one side of the obstacle to the other without a collision. Figure

8-1 shows four different results. Subfigure (a) shows the planned path of the

manipulator around the spherical obstacle in T-space while subfigure (b) shows the

actual path that the manipulator model takes when tracking the planned path.

279

Subfigure (c) shows these two paths in contrast to one another in C-space which

results in two tracks overlapping one another.

(a) Planned Path in T-space

(b) Actual Path in T-space

(c) Demand and Actual Paths in C-space

280

(d) Path and Trajectory Demands, Actual Path and Tracking Error.

Figure 8-1 Results of simulation 1 showing the planned (a) and actual (b) path of the

manipulator through T-space, the planned and actual path through C-space (b) and

the locations of each joint in time (d).

It can be observed from the plot that the actual path (green) diverges slightly from

the planned path (black). Subfigure (d) has three sets of information. The first of the

subplots shows the planned path as a series of step inputs against time, with the

path also converted to a trajectory plotted on the same axes. The second of the

subplots shows the planned trajectory against time with the actual joint angles of the

arm plotted on the same axes and the third subplot shows the angular tracking error

of each joint over time.

In this case the guidance algorithm is able to generate a path which safely navigates

around the obstacle. When the arm is driven through the generated trajectory it is

able to follow the path with a small amount of deviation. By inspection of the motion

of the arm through T-Space, it would appear that the arm does not collide at any

point since none of the joint tracks disappear into the sphere and none of the cyan

281

arm geometries collide with the sphere. By inspecting the angular error of each joint

it is clear that none of the joints exceed an error of 0.04𝑐. In fact the largest error is

experienced by joint 휂, which is just short of 0.039𝑐, or 2.235°. This value does

exceed the allowed error by 0.01°. A further simulation with a smaller threshold of

0.05° to switch between waypoints was carried out following this simulation, and

Figure 8-2 and Figure 8-3 present the results.

Figure 8-2 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in

scenario 1.

282

Figure 8-3 Demand path and trajectory, actual path and tracking error over time for a

waypoint tolerance of 𝟎. 𝟓° in scenario 1.

In the case of the smaller tolerance before the path following algorithm allows the

system to move to the next waypoint, the arm was able to follow the path more

smoothly, with a maximum error of close to 0.029𝑐, which is approximately 1.7°. This

smaller error is well within the tolerances allowed by the guidance algorithm

therefore the arm does not collide with the obstacle. The reason for the previous

error value is that the threshold of 2° was large enough that the joints were still

converging on their steady-state value and so the angular velocity was sufficiently

high that the joints overshoot the next waypoint. This is especially true when

multiple waypoints exist in the same direction since the arm does not have to slow

down when the next waypoint is selected and so continues with a larger angular

velocity.

8.2.2 Two Obstacles

This scenario contains two spheres close together as obstacles in the environment.

The centre of the spheres are located at [0.53, 0.2, 0.7] and [0.53, -0.2, 0.2], again

with sphere radii of 0.3 m. The arm is required to move the end effector from one

side of one of the obstacles to the opposite side of the other without a collision.

Figure 8-4 contains the same series of results as Figure 8-1, but for scenario 2.

283

(a) Planned Path in T-space

(b) Actual Path in T-space

(c) Demand and Actual Paths in C-space

284

(d) Path and Trajectory Demands, Actual Path and Tracking Error.

Figure 8-4 Results of simulation 2 showing the planned (a) and actual (b) path of the

manipulator through T-space, the planned and actual path through C-space (b) and

the locations of each joint in time (d).

In the initial simulation for this scenario, the generated path is again capable of

avoiding all obstacles. The manipulator’s ability to follow the trajectory with a

waypoint tolerance of 2° again falls slightly short of the specification, with maximum

angular error on both 𝛼 and 휂 of more than 0.04𝑐, which is 2.3°. This angular error

exceeds the limit of 2.225°, which means that the arm is not capable of following the

path without a possible collision when the tolerance between waypoints is set as 2°.

285

Figure 8-5 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in

scenario 2.

Figure 8-6 Demand path and trajectory, actual path and tracking error over time for a

waypoint tolerance of 𝟎. 𝟓° in scenario 2.

In this scenario, once the tolerance for waypoint selection is reduced to 0.5°, the arm

displays a much greater performance when following the trajectory. The maximum

error on each joint is reduced to approximately 0.02𝑐, which is 1°. This would mean

286

that the arm would safely be able to follow the generated path around the obstacles,

however there is one point at which the joint angle error for 𝛼 still rises above 0.04𝑐.

This means that there is the potential at that point in time that the arm would collide

with an obstacle, but in this case, there is no collision. The reason behind the

avoidance of a collision is as follows. This error occurs in a transient, where both the

path and the trajectory are ahead of the actual position of the joints, so the error

does not give a clear indication of the deviation of the arm from the path. To

illustrate this statement Figure 8-7 and Figure 8-8 show the time response of a

system with similar estimated dynamics to the joints, 𝐺(𝑠) =
1

𝑠+1
 to the shaped

path/trajectory of a unit step using the filter transfer function 𝐹(𝑠) =
0.9091

𝑠+0.9091
, along

with the resultant error between the two. Given that the guidance method has

produced waypoints which are 10° or 0.175𝑐 apart, the input step will be the same

value.

Figure 8-7 Time response of demand path

and trajectory and actual manipulator

path.

Figure 8-8 Tracking error of manipulator

against trajectory.

In the case of a joint with the dynamics 𝐺(𝑠) =
1

𝑠+1
, the angular error experienced to

with a trajectory which changes the angle by 0.175𝑐 is 0.061𝑐. Provided that the

joints pass through the points in a path together, the arm will not deviate from the

path. A method of investigating this is to inspect the error graph for areas where the

287

three shape of the error for each joint does not line up in the time domain. For

example, in the error chart in Figure 8-9 the highlighted locations have a mismatch in

the shape of each joint error in time.

Figure 8-9Tracking error of manipulator joints in scenario 2. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path.

In the time ranges of 20-30 seconds, 40-50 seconds and 75-85 seconds there is a

mismatch in the error over time. This means that the joints are offset in from each

other on the trajectory and there will be divergence from the demanded path. This

can be seen by inspecting the plot of the path/trajectory and the actual path that the

arm takes, but only for the time regions highlighted Figure 8-9.

t = 20-30 s

t = 40-50 s

t = 75-85 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

Figure 8-10 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-9.

288

Inspection of Figure 8-10 shows that the areas of the actual path which have been

plotted are in fact the sections of the path where the arm has deviated in angle.

Fortunately, in this case, since the tolerance between demand and actual joint angle

has been reduced to 0.5° before the arm is allowed to move onto the next waypoint

the angular error for each joint is within the 2.225° limit, therefore the arm does not

collide with any obstacle.

8.2.3 Three Obstacles

This scenario contains three spheres close together as obstacles in the environment.

The centre of the spheres are located at [0.45, 0.36, 0.6], [0.45, -0.36, 0.6] and

[0.566, 0, 0], again with sphere radii of 0.3 m. In this case the generated path avoids

passing in between the obstacles so a further obstacle was implemented below the

third to force the path in between the obstacles. The additional sphere was

implemented at [0.566, 0, -0.2]. The arm is required to move the end effector from

one side of one of obstacle 1 to the opposite side of obstacle 2 without a collision.

Figure 8-11 contains the same series of results as Figure 8-1, but for scenario 3.

As with the previous two scenarios, the generated path is able to avoid the

obstacles, and the arm is able to follow the path, but does show some deviation.

Joint angle 휂 shows a maximum angular error of 0.055𝑐or 3.15°. This is larger than

the maximum limit by 40%, however where this order of magnitude of error occurs in

time, the shape of each of the error plots lines up, which is why the arm does not

collide with an obstacle. The arm has deviated from the trajectory mostly in time,

and only a small amount in space.

289

(a) Planned Path in T-space

(b) Actual Path in T-space

(c) Demand and Actual Paths in C-space

290

(d) Path and Trajectory Demands, Actual Path and Tracking Error.

Figure 8-11 Results of simulation 3 showing the planned (a) and actual (b) path of the

manipulator through T-space, the planned and actual path through C-space (b) and

the locations of each joint in time (d).

The region of most interest in this figure is that which is highlighted in red. In this

area the joint angle 휂 displays a very large error over a sustained period of time,

which may correspond to the deviation between the demanded path and the path

that the arm actually takes through space. This section of the path is displayed in

the following figure.

291

Figure 8-12 Tracking error of manipulator joints in scenario 3. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path.

t = 20-40 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

Figure 8-13 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-12.

Again it is clear from the figure that the regions on the error plot where the shape of

each joint error does not line up in time is corresponds to the section of the path

where the arm deviated from the demanded trajectory. By removing the time

element from the path and lining up the corresponding section of the demanded path

the spatial error can be investigated rather than the error over time. Figure 8-14 and

Figure 8-15 show the progress of the demanded and actual trajectories the angular

error between them in space rather than time. The first figure shows each of the two

trajectories with a coloured map as time progresses. The shortest time is blue and

the longest time is red.

292

Figure 8-14 Plot of planned C-space

trajectory and actual path over time. Blue

at the start and red at the end.

Figure 8-15 Tracking error over the time

range shown in Figure 8-14

As can be observed from inspection of the demanded and actual trajectories, the two

match up in time. Given this is the case, the maximum deviation of joint angle 휂 from

the path is 0.0425𝑐 or 2.44°. This is still outside the error limit for the arm. In this

case the error between the arm and the demanded trajectory when each is at the

same point along the path. To reduce this error further, the waypoint angle tolerance

is reduced from 2.225° to 0.5°. Figure 8-16 and Figure 8-17 display the results.

Figure 8-16 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in

scenario 3.

293

Figure 8-17 Demand path and trajectory, actual path and tracking error over time for a

waypoint tolerance of 𝟎. 𝟓° in scenario 3.

In the case of the simulation results presented in Figure 8-16 and Figure 8-17 above

two figures, the maximum angular error occurs in 휂, and is 0.0377𝑐, or 2.16°, which is

inside the tolerance, therefore the manipulator will not collide with an obstacle when

following the path. The areas where the manipulator has diverged from the path can

be predicted by inspecting the areas of the largest error where the error on each joint

does not line up in time. There are four time ranges where this occurs for this

scenario, 7 seconds to 21 seconds, 23 seconds to 28 seconds, 56 seconds to 61

seconds and 66 seconds to 80 seconds.

Figure 8-18Tracking error of manipulator joints in scenario 3. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path.

294

Plotting the actual path of the arm for these time ranges yields the result shown in

Figure 8-19.

t = 56-61 s

t =66-80 s t = 7-21 s

t = 23-28 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

Figure 8-19 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-18.

In this case the arm has diverged by the error amount shown, but this is less than

the 2.225° limit of the guidance method therefore the arm will not collide with its

environment.

8.2.4 Four Obstacles

This scenario contains three spheres close together as obstacles in the environment.

The centre of the spheres are located at [0.4, 0.4, 0.6], [0.4, -0.4, 0.6], [0.566, 0, 0.8]

and [0.566, 0, 0], again with sphere radii of 0.3 m. The arm is required to move the

end effector from one side of one of obstacle 1 to the opposite side of obstacle 2

without a collision. As with the other scenarios, the guidance method is capable of

planning a path which avoids all obstacles through the environment. In this case,

there is a large number of situations where the joint angle error on all three joints

exceeds the 0.03882 or 2.225° limit. For the same reason as explained in scenario 2,

this does not appear to have an impact on the ability of the arm to follow the path,

295

but the maximum angular error experienced by the arm can be reduced using the

same method as before. Figure 8-20 contains the same series of results as Figure

8-1, but for scenario 4.

(a) Planned Path in T-space

(b) Actual Path in T-space

(c) Demand and Actual Paths in C-space

296

(d) Path and Trajectory Demands, Actual Path and Tracking Error.

Figure 8-20 Results of simulation 4 showing the planned (a) and actual (b) path of the

manipulator through T-space, the planned and actual path through C-space (b) and

the locations of each joint in time (d).

The maximum error in 𝛼 coincides with peaks in 𝜎 and 휂 as well, indicating that it is a

transient and all three joints are following the path. An area of more interest is the

error in 𝛼 between 50 seconds and 85 seconds. This error is offset from the

corresponding 𝜎 and 휂 errors and has a magnitude of 0.05𝑐, or 2.9°. This suggests a

divergence from the demanded path.

297

Figure 8-21Tracking error of manipulator joints in scenario 4. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path.

An inspection of the actual path over this time range does indeed show a divergence

between the demanded path and the path that the manipulator actually takes.

t = 50-85 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

Figure 8-22 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-21.

In the case of the scenario presented in Figure 8-21 and Figure 8-22, reducing the

tolerance for switching to the next waypoint to 0.5° is able to reduce the error

experienced by each joint to that of less than 0.015𝑐, or 0.86°. This means that the

tuned dynamic model is capable of safely following the path without any collisions.

298

Figure 8-23 Demand and actual C-space paths with a waypoint tolerance of 𝟎. 𝟓° in

scenario 2.

Figure 8-24 Demand path and trajectory, actual path and tracking error over time for a

waypoint tolerance of 𝟎. 𝟓° in scenario 2.

8.2.5 Single Obstacle with Hole

In this scenario 4 spheres are used to construct a single obstacle with a hole through

which the arm is required to pass. The centre of each obstacle is placed at [0.43,

0.38, 0.4], [0.43, -0.38, 0.4], [0.566, 0, 0] and [0.566, 0, 0.7] and the radius of each

299

sphere is 0.3 m. This leaves a hole of approximate dimensions of 0.1 m by 0.1 m

square through which the arm must travel. Figure 8-25 contains the same series of

results as Figure 8-1, but for scenario 5.

(a) Planned Path in T-space

(b) Actual Path in T-space

(c) Demand and Actual Paths in C-space

300

(d) Path and Trajectory Demands, Actual Path and Tracking Error.

Figure 8-25 Results of simulation 5 showing the planned (a) and actual (b) path of the

manipulator through T-space, the planned and actual path through C-space (b) and

the locations of each joint in time (d).

In this case the manipulator arm clearly clips the obstacle. This can be seen

highlighted by the orange circle graph c in the above figure. In this case the angle 휂

is offset from the other two over this time range, and the angle error of joint 𝜎

reaches 0.084𝑐 or 4.8°, which combined causes the divergence.

Figure 8-26Tracking error of manipulator joints in scenario 5. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path.

301

The actual path of the manipulator plotted over this range highlights that this is the

case.

t = 42-70 s

End Effector Start Position
End Effector Required Position
Demand Path
Actual Path

Figure 8-27 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-26.

Reducing the tolerance on the waypoint selection from 2.225° to 0.5° again solves

the problem. The figures below show that with the tighter tolerances on the angular

error maximum before waypoints are selected allows the arm to follow the path, even

with a small amount of divergence across all joints over the entire path, without

colliding with the obstacle.

302

Figure 8-28 Actual path of manipulator arm in scenario 5 with a waypoint tolerance of

𝟎. 𝟓°.

Figure 8-29 Time based plots for planned path and trajectory, actual path and tracking

errors in scenario 5 with a waypoint tolerance of 𝟎. 𝟓°.

303

Figure 8-30 Planned and actual C-space paths for the manipulator arm in scenario 5

with a waypoint tolerance of 𝟎. 𝟓°.

8.2.6 Narrow Passage Between Two Long Obstacles

In the final scenario the obstacles chosen are two long, snakelike obstacles situated

one above the other, with a narrow gap between them. The arm is required to start

at one end of the passage and navigate its way to the other end of the passage.

Figure 8-31 contains the same series of results as Figure 8-1, but for scenario 6.

(a) Planned Path in T-space

(b) Actual Path in T-space

304

(c) Demand and Actual Paths in C-space

(d) Path and Trajectory Demands, Actual Path and Tracking Error.

Figure 8-31 Results of simulation 6 showing the planned (a) and actual (b) path of the

manipulator through T-space, the planned and actual path through C-space (b) and

the locations of each joint in time (d).

305

In this case the guidance method was able to successfully plan a path through the

environment which achieved the goal of navigating from one end of the trench to the

other. The arm was also able to follow the generated trajectory with one appreciable

divergence, but this did not have an impact on its ability to navigate through the

space without any collisions. Further investigation of this divergence is carried out

by again inspecting where the error on each joint are misaligned.

Figure 8-32Tracking error of manipulator joints in scenario 6. The highlighted areas

show where the three joint errors do not match up in time, predicting divergence from

the demand path.

The divergence of the manipulator from the required path appears to occur between

90 seconds and 120 seconds based upon the misalignment of the error of each joint.

The plot of the actual path of the manipulator in C-Space over this time reflects this

to be the case.

306

t = 90-120 s

Figure 8-33 C-space demand path for scenario 2 with the actual path plotted only for

the time ranges highlighted in Figure 8-32.

A reduction in the tolerance for the waypoint selection once again removes this

divergence from the path, and the manipulator arm is again capable of following the

generated path without any collision with obstacles.

Figure 8-34 Actual path of manipulator arm in scenario 5 with a waypoint tolerance of

𝟎. 𝟓°.

307

Figure 8-35 Time based plots for planned path and trajectory, actual path and tracking

errors in scenario 5 with a waypoint tolerance of 𝟎. 𝟓°.

Figure 8-36 Planned and actual C-space paths for the manipulator arm in scenario 5

with a waypoint tolerance of 𝟎. 𝟓°.

8.3 Summary

In this chapter a series of simulations was devised to test the ability of the developed

method of control and guidance of a 3-DoF robotic manipulator to plan and follow a

path through space that would avoid all obstacles in the environment.

308

The results show that in some cases the manipulator is able to follow the generated

paths without any problems, and as such the arm is able to navigate through the

environment without any collisions. In these cases one of two situations occurred.

Either the arm was able to navigate with a maximum angular error for each joint

which was less than the limit specified when generating the path, or the angular error

for one or more joints exceeded the limit, but this error the difference between the

demand and actual trajectories and so measures not only angular divergence from

the path, but also the lag between the time that the demand trajectory reaches a

given angle combination and the time the actual trajectory reaches the same angle

combination. In essence, the manipulator is following the path, but is behind the

demanded trajectory, so the error between them is not representative of a

divergence from the path.

In other cases, the manipulator was initially not able to follow the path with a small

enough error to avoid a collision. Reducing the tolerance of error that was allowed

before the path tracking would allow the next waypoint to be used provided time for

each of the joints to slow down as they converged on the waypoint. This prevented

overshoots caused by the inertia of the arm when required to change direction and

velocity instantaneously. This concept was described in more detail in section 5.5 of

the Manipulator Control chapter. A graph illustrating the phenomenon was displayed

in Figure 5-34.

In the final chapter of this thesis, the work carried out will be summarised and the

overall findings and contributions presented.

309

9 CONCLUSIONS

This chapter summarises the work carried out in this thesis in the context of the

conclusions drawn and the contributions made. The work presented in this thesis

was carried out to achieve the aim laid out in Chapter 1: to create novel path-

generation algorithm for a three-degree-of-freedom robotic manipulator arm to

provide the ability for safe navigation around obstacles in dangerous environments

such as those encountered during a mission of IED detection and disposal.

The first objective specified in Chapter 1 was the derivation of a dynamic model of a

3-DoF robotic manipulator arm, which was implemented in Chapter 4. This was

carried out using Newton-Euler mechanics with d’Alembert’s principle rather than

Lagrangian mechanics since the latter required significantly more computations (on

the order of 3 times more for the specific problem). The resulting model was

qualitatively validated with a series of input torques intended to produce a predicted

set of results. The resulting outputs of the system were compared to the predicted

result in order to validate whether the system is behaving in the expected manner

and the model was found to behave as expected.

The second objective specified in Chapter 1 was the implementation of a suitable

control schema for the developed dynamic model, which was implemented in

Chapter 5. The selected control method was a gain-scheduled PID controller and

the gains were selected by optimisation. Several optimisation methods including

Genetic Algorithms, Least Squares Minimisation and the Nelder-Mead method were

investigated. The least squares minimisation method followed by the Nelder-Mead

method were found to require the shortest computation time per optimisation but the

Genetic Algorithm displayed the capability of a fitness value hundreds of times better

for the manipulator arm tuning problem, therefore it was implemented in order to

carry out the optimisation and select a set of gains for the controller.

The third objective specified in Chapter 1 was to develop a guidance method for safe

navigation of the controlled dynamic model through close-proximity environments.

This implementation was presented in Chapters 6 and 7 of the thesis. This method

310

requires two parts: The first is to covert sensor data about obstacles from the

Euclidean domain into the joint-angle domain before carrying out the path generation

on a point mass in the joint angle domain; The second is to carry out path

generation on the C-space map created by the conversion of obstacle data into the

joint angle domain. To carry out the conversion to C-space, the inverse kinematics

of the manipulator arm were required to be solved. Several different solutions were

investigated and the method which was able to carry out the conversion of multiple

obstacles in the shortest time is presented in section 6.1.2 of this thesis starting on

page 219. This method required trigonometry only and was able to convert an

obstacle set containing on the order of 10000 points in less than 0.1 seconds.

Chapter 7 continues the development of the guidance technique by investigating

methods of path planning using a node graph. The results of the comparison

between Dijkstra’s Algorithm and the Bellman-Ford Algorithm confirm the

comparison of computational complexity included in the literature review. Three

methods were investigated and Dijkstra’s Algorithm was implemented in the

guidance method since it provided the shortest path with no collisions with obstacles

in the shortest computation time.

The final objective specified in Chapter 1 was the validation of the guidance method

to assess its strengths and limitations. This was presented in Chapter 8 using a

series of scenarios with increasing numbers of obstacles.

9.1 Further Conclusions

Further conclusions drawn as a result of the work carried out in this thesis are

described in the following paragraphs.

The investigation carried out in this thesis in order to develop a guidance method

suitable for path planning in close-proximity environments was able to gain

significant insights into the process of tuning PID controllers for the type of non-linear

system that is involved when dealing with robotic manipulator arms. The resultant

optimisation of PID control gains for the non-linear dynamic model derived in

Chapter 4 showed that for non-linear but continuous operation spaces for

manipulator arms, the gain profile produced would also be non-linear but continuous.

311

This also assisted with a second finding during the optimisation of the control for the

derived non-linear dynamic model. After having optimised the controller for the first

range of motion of the arm using a random initial estimate for the gains, the use of

the resultant solution as the initial estimate for the next range of motion (which is a

discrete step of the continuous range of operation of the manipulator) reduced the

number of required generations of the optimiser to converge on the specified fitness

value to half of the original optimisation; i.e. use of the solution set 𝐾1
2 from [

𝛼
𝜎
휂
]
1

→

[

𝛼
𝜎
휂
]

2

 as the initial predicted set of gains for the range of motion [
𝛼
𝜎
휂
]
2

→ [

𝛼
𝜎
휂
]

3

 reduced

the number of required generations for that optimisation by approximately half of that

of the original optimisation.

In Chapter 7, when converting a generated path to a trajectory, using a time constant

that is slower than that of the slowest joint in the manipulator arm reduces the

absolute error (or divergence) from the demanded path by the arm, but has very little

impact on the tracking error of the manipulator actual location from the time-based

trajectory demand. This is the case because the addition of time-based information

to the path means that the slowest joint follows the angle demand as fast as it can,

but the two other joints, which are faster than the slowest joint, are limited to the

speed at which the trajectory demand changes. This means that the three joints

arrive at the waypoint almost simultaneously. The reason for the tracking error

between the manipulator actual position and the demanded trajectory is the

dynamics of each joint, which provide a lag in time between the trajectory arriving at

a location and the dynamic model arriving at the same location.

It was found during the validation of the guidance technique in Chapter 8 that the

angle tolerance that the manipulator joints would have to be within from a waypoint

before moving to the next waypoint had a large effect on the ability of the arm to

follow the demanded path. A smaller tolerance (i.e. error between demanded joint

angles and actual joint angular positions) before switching to the next waypoint

allows 휃̇ to be reduced further, leading to less overshoot immediately after switching

to the next waypoint caused by the inertia of the manipulator arm, therefore less

divergence from the path.

312

The divergence from the demanded path can be predicted by inspecting error

between the demanded path and actual response of each joint. Where the error on

each joint does not occur at the same time, divergence from the path occurs. This is

useful when assessing whether the manipulator has followed the demanded path

since error between the actual manipulator and demand trajectory will always display

a tracking error due to the dynamics of the manipulator arm.

9.2 Research Contributions

The research carried out in this thesis is novel because it implements a path-

generation and following algorithm for a manipulator arm that is designed for use on

a skid-steer vehicle with the main purpose being IED disposal. This means that

there is no a priori knowledge of the environment at the start of every new mission,

and the algorithm has to generate a map in real-time of the environment in C-space

and generate a safe path around obstacles in order to reach the target end-effector

position.

While there is work presented in the literature on manipulator guidance that seeks to

solve the problem of path planning for the entire manipulator or attempts to solve the

problem of path planning for an end effector in real-time, no work exists in the

literature which combines all these factors, especially in a completely unknown

environment, and in such close proximity to obstacles.

This work has the potential to be expanded to higher degrees-of-freedom than the 3-

DoF manipulator used in this research, and initial investigation carried out in

11Appendix B has shown promising results, which show that this method is

applicable in real-time for higher degrees-of-freedom, currently up to 9-DoF. Work

using graph theory in C-space has not been shown out in the literature, and that it

has been implemented here shows that it can be used in this way, and highlights its

power in such a control domain since it has the capability to handle path planning in

an unlimited number dimensions providing that an adjacency matrix can be

calculated for n-dimensional points in a space.

In the literature many methods of path planning are investigated. These were further

explored in Chapter 2. While there are merits to each of the methods investigated,

313

none of them had the potential to be singularly applied to the application of IED

disposal. In this application the path-planning problem requires to be solved in real-

time, which some methods are able to do. However, this application also requires

path planning for a 3-DoF manipulator in a 3-D environment, which makes path

planning methods for planar manipulators inappropriate for this application. Some of

the methods for path planning discussed in the review of literature can satisfy these

two requirements but do not consider the entire manipulator, only the end effector.

Most of the methods presented in the literature are concerned with obstacle

avoidance, only approaching obstacles should there be no other option. However, in

this application it is reasonable to assume that IEDs are likely to be hidden amongst

or inside obstacles, so it is a requirement to get close to objects that may be hiding

the IED and follow their edges without collision since this could cause detonation. In

this application all of these requirements must be considered.

The major contribution of the research presented in this thesis is that existing

methods in the areas of robotic manipulator guidance and control, environment

mapping and path planning have been drawn together and combined in such a way

as to develop a guidance technique that is capable of satisfying all of the following

attributes.

 The developed technique is capable of path planning in high

complexity environments in real-time.

 It has the potential to be applicable to n-DoF manipulator arms for 3-D

environments.

 This method is capable of dealing with unknown environments as the

manipulator arm is installed on a mobile vehicle therefore the

environment is not a permanent reachable space that can be mapped

a priori.

 Joints are not decoupled for path generation and so there is only one

trajectory, therefore trajectories do not need to be resynchronised.

 This method is able to track around obstacles in the control domain

which translates into edge following in Euclidean space.

314

9.3 Advantages and Limitations of the Technique

The advantages of this algorithm are that it very quickly generates a trajectory that

allows for the entire arm to avoid obstacles in the environment while still achieving

the objective. The algorithm is very powerful in that it converts the three-dimensional

world into a map that includes the entire control domain data required to avoid

obstacles within it. This map will have the same dimensionality as the number of

degrees-of-freedom that are being controlled, but even at this state n×3-D paths

(one for each link in an arm) are converted into 1×n-D problem. A further advantage

of the algorithm is that converting the path-generation problem it into a graph theory

problem, which uses a 2-D connectivity matrix between nodes regardless of the

number of coordinate dimensions the nodes have, the problem is always reduced to

one of two dimensions. This means that even though the output of the algorithm is

an n-dimensional trajectory, the solution that is calculated is in fact only 2-D, so for

any n, an n×3-D problem becomes a 2-D one. This is very powerful since it reduces

the computational complexity of the path-planning problem significantly, especially at

higher degrees-of-freedom.

An advantage of using C-space as the domain of choice for the guidance method is

that both environment data and predicted measurement errors in sensors and errors

caused by the resolution of sensors can be take into account when generating the

safe boundaries around obstacles in C-space.

This method also has the advantage of using a pre-existing node graph representing

the accessible space of the manipulator arm with inaccessible nodes being

temporarily removed when an obstacle is detected meaning that the node graph

does not need to be repeatedly built, reducing computational overhead significantly.

A drawback of this method however, is that the computational memory available for

use in the system will limit the resolution of the node graph since smaller spacing

between nodes means more nodes in the graph.

A limitation to the developed technique is that inverse kinematic solutions become

more complex with increasing degrees-of-freedom and for an arm with more

degrees-of-freedom than the system used in this thesis the solution is

computationally intensive and takes significant time. If this problem can be solved

then the technique becomes very transferrable, especially since manufacturers of

315

automated manipulator arms will often derive the forward and inverse kinematics

during the design phase, so this information will be known prior to implementation of

the path-following algorithm. Also, once the inverse kinematic solution is known for a

specific arm, it does not need to be calculated again, and it does not need to be

calculated on-line, in real time.

316

317

10 FUTURE RESEARCH WORK

This chapter outlines the work which could be carried out in the future based on

the technique and investigation presented in this thesis. This future work could build

upon the contributions to the field of robotic manipulator guidance that are presented

here.

Further work that could be carried out in this area involves the mapping and path

planning when obstacles in the environment are no longer static. Since the

developed method is able to carry out these functions in real time, both the map and

generated path can be renewed repeatedly, there is no immediate issue from the

path-planning point of view. However, since the obstacles in the environment would

now be in motion, the path that has been generated may be obstructed at some time

in the future. The brief discussion on decision making which was carried out in

Section 2.4 regarding how to weight node graphs with probability of a vertex being

broken could be investigated here. Using historical data about the previous and

current states of obstacles in motion, predictions could be made about the future

motion of the obstacles, informing the probability weighting of the node graph, and

driving the manipulator arm through paths which are less likely to be obstructed.

The concept of using the joint-angle domain to map the environment and generate a

trajectory to guide the arm through it has the potential to be extended further than

only the three degree-of-freedom robotic manipulator arm. Given that a node graph

can be represented by a two-dimensional adjacency matrix which indicates which

nodes in the graph are connected directly to one another (adjacent), the coordinates

in the space that the nodes occupy do not have to be two or three-dimensional, they

can have coordinates in more than three dimensions. This would allow for the

conversion of a Euclidean map into a map in the control domain, where the number

of dimensions in the map represent the degrees-of-freedom of a four-, five-, six-, etc

degree-of-freedom manipulator, hence the map would have four, five or six

dimensions, respectively. This technique has the potential for providing a single

trajectory for an entire controllable vehicle with any number of control inputs.

318

This method of trajectory generation requires the knowledge of the inverse

kinematics of the robotic manipulator arm. The inverse kinematics often provide

multiple solutions to the problem of joint angle calculation based on the end effector

location. The number of joint angle solutions becomes larger for higher degrees of

freedom and this causes the technique to become very calculation intensive, given

that each solution must be calculated for points along each joint in the arm.

Therefore future work could concentrate on solving the inverse kinematics problem

of calculating multiple solutions to the joint angle combinations for a specific end

effector position.

During the development of the C-space mapping method, the issues of LIDAR

sensor and servo encoder error were briefly discussed as potential problems that

could affect the success of the manipulator arm to follow any planned path safely,

without collisions with obstacles; the given solution was to expand the safe boundary

around obstacles in C-space in order to compensate for this. Future work could

investigate the effects of these errors in more detail and propose solutions to these

effects. A further investigation in this area is to determine how the safe boundary

around obstacles in C-space must be expanded to take into account the thickness of

the arm.

A final area for future work would be to investigate the optimisation of the path

generation to generate minimum angular distance, minimum Euclidean distance, or

even minimum energy paths. This would involve the development of a solution for

time or energy optimal solutions to the path-planning problem by this method.

319

11 CLOSING SUMMARY

Based on the aim and objectives laid out in Chapter 1 of this thesis a path planning

technique for mobile 3-DoF manipulators was developed. This technique can, in

real-time, plan a safe path through an environment towards and around obstacles,

not just for the end effector but with consideration to the manipulator arm in its

entirety. The resultant technique operates in a problem space of path planning for

mobile robotic manipulators in a solution space which uses node graphs in C-space.

It is designed to overcome the problems inherent to close-proximity environments,

such as tight clearance between obstacles and high chances of collisions.

Simulation-based validation of the method was carried out in order to answer a

research question that was specified in Chapter 1 prior to the development of the

technique:

“Is it possible and feasible to implement a path-generation algorithm that is capable

of guiding a robotic manipulator arm through a close-proximity environment with the

aim of carrying out Improvised Explosive Device disposal missions?”

The work reported in this thesis demonstrates that it is possible and feasible to

implement a path-planning algorithm that can satisfy these requirements, and it is

achievable in real-time.

320

xlv

REFERENCES

Ab-Rahman, A. A. H. et al., 2005. Vestro: Velocity Estimation Using Stereoscopic

Vision. pp. 120-124.

Ahmadi, M., Polotski, V. & Hurteau, R., 2000. Path Tracking Control of Tracked

Vehicles. San Francsco, California. pp. 2938-2943.

Akai, D. et al., 2006. Pyroelectric infrared sensors with fast response time and high

sensitivity using epitaxial Pb(Zr, Ti)O3 films on epitaxial γ-Al2O3/Si substrates.

Sensors and Actuators A: Physical, 14 August. pp. 111-115.

Alexander, Q., 2003. A Survey of Robotic Coverage, Alabama:

Anon., 2001. Depth-first search. In: Introduction to Algorithms. s.l.:MIT Press and

McGraw-Hill, pp. 540-549.

Anon., 2001. Dijkstra's Algorithm. In: Introduction to Algorithms. s.l.:MIT Press and

McGraw-Hill, pp. 595-601.

Apkarian, P. & Adams, R. J., 1998. Advanced gain-scheduling techniques for

uncertain systems. IEEE Transactions on Control System Technology, January.pp.

21-32.

Audenaert, K., Peremans, H., Kawahara, Y. & Van Campenhout, J., 1992. Accurate

Ranging of Multiple Objects Using Ultrasonic Seonsors. pp. 1733-1738.

Back, T., 1995. Evolutionary algorithms in theory and pracitce: evolution strategies,

evolutionary programming , genetic algorithms.. Oxford: Oxford University Press.

Barshan, B. & Durrant-Whyte, H. F., 1995. Inertial Navigation Systems for Mobile

Robots. IEEE Transactions on Robotics and Automation, 11(3), pp. 328-342.

Bellman, R., 1958. On a routing problem. Quarterly of Applied Mathematics, 87-

90.Volume 16.

Beltran-Gonzalez, C. et al., 2007. Methods and techniques for intelligent navigation

and manipulation for bomb disposal and rescue operations. Rome, IEEE.

xlvi

Benet, G., Blanes, F., Simo, J. E. & Perez, P., 2002. Using Infrared Sensors for

Distance Measurement in Mobile Robots. Robotics and Autonomous Systems, 40(4),

pp. 255-266.

Biggs, N. E., Lloyd, K. & Wilson, R. J., 1976. In: Graph Theory, 1736-1936. :Oxford

University Press.

Binh, T., 1999. A multiobjective evolutionary algorithm. The study cases., Barleben:

Institute for Automation and Communication.

Binh, T. & Korn, U., 1997. MOBES: A Multiobjective Evolution Strategy for

Constrained Optimisation Problems. Proc. International Conference on Genetic

Algorithms, pp. 176-182.

Bjork, A., 1996. Numerical methods for least squares problems. :Siam.

Blanchett, T. P., Kember, G. C. & Dubay, R., 2000. PID Gain Scheduling Using

Fuzzy Logic. ISA Transactions, July, 39(3), pp. 317-325.

Buchberger, M., Jorg, K.-W. & von Puttkamer, E., 1993. Laserradar and Sonar

Based World Modeling and Motion Control for Fast Obstacle Avoidance of the

Autonomous Mobile Robot MOBOT-IV. pp. 534-540.

Burguera, A., González, Y. & Oliver, G., 2010. Underwater scan matching using a

mechanical scanned imaging sonar.

Burguera, A., Oliver, G. & González, Y., 2010. A trajectory based Framework to

Perform Underwater SLAM using Imaging Sonar Scans.pp. 1-6.

Butenko, S., Murphey, R. & Pardalos, P. eds., 2002. Path Planning for Unmanned

Aerial Vehicles in Uncertain and Adversarial Environments. In: Cooperative Control:

Models, Applications and Algorithms*. :Kluwer.

Caracciolo, L., De Luca, A. & Iannitti, S., 1999. Trajectory Tracking of a Four-Wheel

Differentially Driven Mobile Robot. Detroit, Michigan, US, pp. 2632-2638.

Caravita, L. et al., 2007. Control Strategies Applied to Waypoint Navigation and

Obstacle Avoidance Navigation. Advances in Control and Optimization of Dynamical

Systems, pp. 203-210.

xlvii

Cassandra, A. R., Kalebling, L. P. & Kurien, J. A., 1996. Acting Under Uncertainty:

discrete Bayesian models for mobile-robot navigation. pp. 963-972.

CBS, N. & McCarthy, C., 2010. Facebook: Once Social Graph to Rule Them All?.

[Online]

Available at: http://www.cbsnews.com/news/facebook-one-social-graph-to-rule-them-

all/

[Accessed 03 January 2016].

Chang, H. J., Lee, C. S. G., Lu, H.-S. & Hu, Y. C., 2007. P-SLAM: Simultaneous

Localization and Mapping With Environmental-Structure Prediction. IEEE

Transactions on Robotics, April, 23(2), pp. 281-293.

Chen, Y., Wang, Y. & Yu, X., 2012. Obstacle Avoidance Path Planning Strategy for

Robot Arm Based on Fuzzy Logic. Guangzhou, China, IEEE, pp. 1648-1653.

Chetty, R. M. K. & Ponnambalam, S. G., 2012. A Heuristic Approach Towards Path

Planning and Obstacle Avoidance Control of Planar Manipulator. Kuala Lumpur,

Malaysia, Springer Berlin Heidelberg, pp. 1-11.

Cloutier, J. R., 1997. State-Dependent Riccati Equartion Techniques: An Overview.

Albuquerque, New Mexico, pp. 932-936.

Colyer, R. E. & Economou, J. T., 1997. Modelling and Simulation of 4x4-wheel skid-

steer vehicles. Honolulu, U.S.A., pp. 301-304.

Colyer, R. E. & Economou, J. T., 1998. Comparison of Steering Geometries for

Multi-Wheeled Vehicles by Modelling and Simulation. Tampa, Florida, U.S.A., pp.

3131-3133.

Colyer, R. E. & Economou, J. T., 1999. Soft Modelling and fuzzy logic control of

wheeled skid-steer electric vehicles with steering prioritisation. International Journal

of Approximate Reasoning, Volume 22, pp. 31-52.

Coulter, R. C., 1992. Implementation of the Pure Pursuit Tracking Algorithm,

Pittsaburgh: s.n.

Csorba, M., 1997. Simultaneous Localisation and Mapping, Oxford:

xlviii

Deb, K., 2002. Multiobjective optimization using evolutionary algorithms. Repr. ed.

Chichester: J Wiley & Sons.

Denavit, J. & Hartenberg, R. S., 1955. A Kinematic Notation for Lower-Pair

Mechanics Based on Matrices. ASME Journal Of Applied Mechanics, Volume 23, pp.

215-221.

Dijkstra, E. W., 1959. A note on two problems in connexion with graphs. Numerische

Mathematik, Volume 1, pp. 269-271.

Ding, H., Zhou, M. & Stursberg, O., 2009. Ooptimal Motion Planning for Robotic

Manipulators with Dynamic Obstacles using Mixed-Integer Linear Programming.

Thessaloniki, Greece, IEEE, pp. 934-939.

Dissanayake, M. W. M. G. et al., 2001. A Solution to the Simultaneous Localization

and Map Building (SLAM) Problem. IEEE, pp. 229-241.

Doitsidis, L., Valavanis, K. & Tsourveloudis, N., 2002. Fuzzy Logic Based

Autmonomous Skid Steering Vehicle Navigation. Washington, DC., pp. 2171-2177.

Dorf, R. C. & Bishop, R. H., 2006. In: Modern Control Systems. s.l.:Pearson, p. 65.

dos Santos, R. R., Steffen, V. J. & de F. P. Saramago, S., 2008. Robot Path

Planning in Constrained Workspace by Using Optimal Control Techniques. Multibody

System Dynamics, 19(1-2), pp. 159-177.

Doucet, A., de Freitas, N., Murphy, K. & Russell, S., 2000. Rao-Blackwellised

Particle Filtering for Dynamic Bayesian Networks.., pp. 176-183.

Drumbeller, M., 2009. Mobile Robot Localization using Sonar. IEEE Transactions on

Pattern Analysis and Machine Intelligence, Issue 2, pp. 325-332.

D'Silva, T. & Miikkulainen, R., 2009. Learning Dunamic Obstacle Avoidance for a

Robot Arm Using Neuroevolution. Neural Processing Letters, 30(1), pp. 59-69.

Dubins, L. E., 1957. On Curves of Mimimal Length with a Constraint on Average

Curvature, and with Prescribeds Initial and Terminal Positions and Tangents.

American Journal of Mathematics, 79(3), pp. 497-516.

xlix

Dubowsky, S. & Vance, E. E., 1989. Planning Mobile Manipulator Motions

Considering Vehicle Dynamic Stability Constraints. Scottsdale, IEEE, pp. 1271-1276

vol.3.

Duda, R. O. & Hart, P. E., 1972. Use of the Hough transformation to detect lines and

curves in pictures. Communications of the ACM, 15(1), pp. 11-15.

Economou, J. T., 2002. Fuzzy Logic Force Modelling. Anchorage, Alaska, s.n., pp.

525-530.

Economou, J. T. & Colyer, R. E., 2000. Modelling of Skid Steering and Fuzzy Logic

Vehicle Ground Interaction. Chicago, Illinois, , pp. 100-104.

Economou, J. T., Colyer, R. E., Tsourdis, A. & White, B. A., 2002. Fuzzy Logic

Approaches for Wheeled Skid-Steer Vehicles. pp. 990-994.

Elfes, A., 1989. Using occupancy grids for mobile robot perception and navigation.

22(6), pp. 46-57.

Elfes, A. & Matthies, L., 2007. Sensor Integration for Robot Navigation: Combining

Sonar and Stereo Range Data in a Grid-Based Representation. pp. 1802-1807.

Endo, D., Okada, Y., Nagatani, K. & Yoshida, K., 2007. Path Following Control for

Tracked Vehicles Based on Slip-Compensating Odometry. pp. 2871-2876.

Euler, L., 1766. In: Commentationes Arithmetica Collectae. St. Petersburg: 66-70.

Everett, L. J. & Suryohadiprojo, A. H., 1988. A Study of Kinematic Models for

Forward Calibration of Manipulators. pp. 798-800.

Fang, Q. & Xie, C., 2004. A Study on Intelligent Path Following and Control for

Vision-Based Automated Guided Vehicles. pp. 4811-4815.

Ford, L. R. & Fulkerson, D. R., 1956. Maximal flow through a network. Canadian

Journal of Mathematics, Volume 8, pp. 399-404.

Frezza, R., 1999. Path Following For Air Vehicles in Coordinated Flight. pp. 884-889.

Gasparetto, A. & Zanotto, V., 2007. A new method for smooth trajectory planning of

robot manipulators. Mechanism and Machine Theory, April, 42(4), pp. 455-471.

l

Gasparetto, A. & Zanotto, V., 2008. A Technique for Time-Jerk Optimal Planning of

Robot Trajectories. Robotics and Computer-Integrated Manufacturiing, Volume 24,

pp. 415-426.

Gelbart, A. et al., 2003. FLASH Lidar Data Collections in Terrestrial and Ocean

Environments. pp. 27-38.

Goldberg, D., 1989. Genetic Algorithms in Search, Optimisation and Machine

Learning, Reading, MA: Addison-Wesley Profesisonal.

Goldenberg, A. et al., 2000. USA, Patent No. US6113343 A.

Gutin, G., Yeo, A. & Zverovich, A., 2002. Traveling salesman should not be greedy:

domination analysis of greedy-type heuristics for the TSP.. Discrete Applied

Mathematics, Volume 117, pp. 81-86.

Haddad, W. M., Bernstein, D. S. & Mustafa, D., 1991. Mixed-norm H2/H∞ regulation

and estimation: The discrete-time case. Systems and Control Letters, Volume 16,

pp. 235-247.

Hanebeck, U. D. & Schmidt, G., 1996. Set theoretic localization of fast mobile robots

using angle measurement techniques. Minneapolis, Minnesota, pp. 1387-1394.

Hanna, B., Chai, B.-B. & Hsu, S., 2005. Wide-Area Terrain Mapping By Registration

of Flash LIDAR Imager. pp. 193-207.

Hartenberg, R. S. & Denavit, J., 1964. Kinematic Synthesis of Linkages. New York:

McGraw-Hill.

Haschke, R., Weitnauer, E. & Ritter, H., 2008. On-Line Planning of Time-Optimal,

Jerk-Limited Trajectories. Nice, pp. 3248-3253.

Haupt, R. L. & Ellen, S., 2004. Practical genetic algorithms with DC-Rom. 2nd ed.

New York: J. Wiley & Sons.

Hellström, T. & Ringdahl, O., 2005. Autonomous Path Tracking Using Recorded

Orientation Steering Commands.

li

Hellström, T. & Ringdahl, O., 2006. Follow the Past - A Path Tracking Algorithm for

Autonomous Vehicles. International Journal of Vehicle Autonomous Systems, 4(2-4),

pp. 216-224.

He, P.-J., Gao, S.-S., Jiao, Y.-L. & Zheng, P., 2010. A Robust Adaptively Filtering

Algorithm in GPS/DR Integrated Navigation. pp. 3742-3745.

Hokuyo Automatic Co., Ltd., 2016. Hokuyo UTM-30LX. [Online]

Available at: https://www.hokuyo-aut.jp/02sensor/07scanner/utm_30lx.html

[Accessed 02 Jan 2016].

Hota, S. & Ghose, D., 2010. Rectilinear Path Following in 3D Space. Trends in

Intelligent Robotics, 103(4), pp. 210-217.

Huang, S. & Dissanayake, G., 2006. Convergence Analysis for Extended Kalman

Filter based SLAM. Orlando, pp. 412-417.

Ibraeem, M., 2010. Gyroscope-enhanced Dead Reckoning Localization System for

an Intelligent Walker.

Indiveri, G., Nuchter, A. & Lingemann, K., 2007. High Speed Differential Drive Mobile

Robot Path Following Control With Bounded Wheel Speed Commands. Rome, Italy,

pp. 2202-2207.

Julier, S. J. & Uhlmann, J. K., 2004. Unscented Filtering and Nonlinear Estimation.

pp. 401-422.

Jung, S. & Hsia, T. C., 1995. New Neural Network Control Technique for Non-model

Based Robot Manipulator Control. pp. 2928-2933.

Kawato, M., Furukawa, K. & Suzuki, R., 1987. A Hierarchical Neural-Network Model

For Control And Learning of Voluntary Movement. Biological Cybernetics, 57(3), pp.

169-185.

Kim, S. K., Silson, P., Tsourdos, A. & Shanmugavel, M., 2010. Dubins Path Planning

of Multiple Unmanned Airborne Vehicles for Communication Relay. Proceedings of

the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,

225(1), pp. 12-25.

lii

Kladis, G., Economou, J., Knowles, K. T. A. & White, B. A., 2008. Aerospace Energy

Conservation Utilising Optimum Methods. Harbin, China, IEEE, pp. 1-6.

Klanke, S. et al., 2006. Dynamic Path Planning for a 7-DOF Robot Arm. Beijing,

China, IEEE, pp. 3879-3884.

Koivo, A. J. & Guo, T. H., 1981. Contorl of Robotic Manipulator With Adaptive

Controller. pp. 271-276.

Korayem, M. H., Haghpanahi, M., Rahimi, H. N. & Nikoobin, A., 2009. Finite Element

Method and Optimal Control Theory for Path Planning of Elastic Manipulators. s.l.,

Springer-Verlag Berlin Heidelberg, pp. 118-126.

Koren, Y. & Borenstein, J., 2002. Potential Field Methods and their Inherent

Limitations for Mobile Robot Navigation. pp. 1398-1404.

Kostic, D., de Jager, B., Steinbuch, M. & Hensen, R., 2004. Modeling and

Identification for High-Performance Robot Control: An RRR-Robotic Arm Case

Study. IEEE Transactions on Control System Technology, November, 12(6), pp.

904-919.

Kozlowski, K. & Pazderski, D., 2004. Modelling and Control of a 4-Wheel Skid-

Steering Mobile Robot. International Journal of Applied Mathematics and Computer

Science, 14(4), pp. 477-496.

Kozlowski, K. & Pazderski, D., 2006. Paractical Stabilization of a Skid-Steering

Mobile Robot - A Kinematic-Based Approach. pp. 519-524.

Kruskal, J. B., 1956. On the Shortest Spanning Subtree of a Graph and the Traveling

Salesman Problem. Proceedings of the American Mathematical Society, Feb, 7(1),

pp. 48-50.

Kubota, N., Arakawa, T., Fukuda, T. & Shimojima, K., 1997. Trajectory generation for

redundant manipulator using virus evolutionary genetic algorithm. Albuquerque, NM,

US, IEEE, pp. 205-210.

Kuipers, B. & Byun, Y.-T., 1991. A robot exploration and mapping strategy based on

semantic hierarchy of spatial representations. Robotics and Autonomous Systems,

8(1-2).

liii

Kunz, T., Reiser, U., Stilman, M. & Verl, A., 2010. Real-Time Path Planning for a

Robot Arm in Changing Environments. Taipei, Taiwan, IEEE, pp. 5906-5911.

Lahouar, S., Zeghloul, S. & Romdhane, L., 2005. Path Planning for Manipulator

Robots in Cluttered Environments. American Society of Mechanical Engineers, s.n.,

pp. 633-639.

Langville, A. N. & Meyer, C. D., 2006. Google's PageRank and Beyond: The Sicence

of Search Engine Rankings. :Princeton University Press.

Lea, R. N., Hoblit, J. & Jani, Y., 1993. Fuzzy Logic Based Robotic Arm Control. pp.

128-133.

Le, A. T., Rye, D. & Durrant-Whyte, H., 1997. Estimation of Track-Soil Interactions

for Autonomous Tracked Vehicles. Albuquerque, New Mexico, pp. 1388-1393.

Lee, C. S. G., 1982. Robot Arm Kinematics, Dynamics, and Control. Computer,

December, 15(12), pp. 62-80.

Lee, C. S. G. & Chung, M. J., 1982. An Adaptive Control Strategy For Computer-

Based Manipulators. pp. 95-100.

Leven, P. & Hutchinson, S., 2002. A Framework for Real-Time Path Planning in

Changing Environments. International Journal of Robotics Research, Volume 21, pp.

999-1030.

Levitt, T. S. & Lawton, D. T., 1990. Qualitative Navigation for Mobile Robots. Artificial

Intelligence, 44(3).

Lin, C.-C., Kuo, L.-W. & Chuang, J.-H., 2005. Potential-Based Path Planning for

Robot Manipulators. Journal of Robotic Systems, 22(6), pp. 313-322.

Lucet, E., Grand, C., Salle, D. & Bidaud, P., 2009. Dynamic Yaw and Velocity

Control of the 6WD Skid-Steering Mobile Robot RobuROC6 Using Sliding Mode

Technique. St. Louis, U.S.A., pp. 4220-4225.

Lu, F. & Milios, E., 1997. Robot pose estimation in unknown environments by

matching 2d range scans. 18(3), pp. 249-275.

liv

Luh, J. Y. S., Walker, M. W. & Paul, R. P. C., 1980. Resolved-Acceleration Control of

Mechanical Manipulators. IEEE Transactions on Automatic Control, June, AC-25(3),

pp. 468-474.

Lundgren, J., 2010. Matlab File Exchange. [Online]

Available at: http://www.mathworks.co.uk/matlabcentral/fileexchange/28851-alpha-

shapes/content/alphavol.m

[Accessed 2012].

Lu, S. & Chung, J. H., 2005. Weighted Path Planning Based on Collision Detection.

Industrial Robot: An International Journal, pp. 477-484.

Lyapunov, A. & Walker, J., 1994. The General Problem of the Stability of Motion

(A.T. Fuller trans.). Journal Of Applied Mathematics, Volume 61, pp. 226-.

Macfarlane, S. & Croft, E. A., 2003. Jerk-bounded manipulator trajectory planning:

design for real-time applications. IEEE Transactions on Robotics and Automation,

February, 19(1), pp. 42-52.

Maclaurin, B., 2007. A Skid Steering Model With Track Pad Flexibility. Journal of

Terramechanics, 44(1), pp. 95-110.

Maclaurin, B., 2008. Comparing the steering performances of skid-and Ackermann-

steered vehicles. Proceedings of the Institution of Mechanical Engineers, Part D:

Journal of Automobile Engineering, 222(5), pp. 739-756.

Mandow, A. et al., 2007. Experimental Kinematics for Wheeled Skid-Steer Mobile

Robots. San Diego, California, pp. 1222-1227.

Martinez-Cantin, R. & Castellanos, J., 2005. Unscented SLAM for Large-Scale

Outdoor Environments. pp. 3427-3432.

Martinez, J. et al., 2004. Kinematic Modelling of Tracked Vehicles by Experimental

Identification. Sendai, Japan, pp. 1487-1492.

Martinez, J. et al., 2005. Approximating Kinematics for Tracked Mobile Robots.

International Journal of Robotics Research, 24(10), pp. 867-868.

McKinnon, K. I., 1998. Convergence of the Nelder-Mead Simplex Method to a

Nonstationary Point. SIAM Journal on Optimsation, 9(1), pp. 148-158.

lv

McLennan Serov Supplies, Ltd, 2014. M452E Servo Motor Datasheet.

Menegatti, E., Maeda, T. & Ishiguro, H., 2004. Image-based Memmory for Robot

Navigation Using Properties of Omnidirectional Images. Robotics and Autonomous

Systems, 47(4), pp. 251-267.

Meriam, J. L. & Kraige, L. G., 2012. Engineering Mechanics: dynamics (Vol. 2). 7th

ed. s.l.:John Wiley & Sons.

Merritt, H., 1946. The Evolution of a Tank Transmission. ARCHIVE: Proceedings of

the Institution of Mechanical Engineers 1847-1982 (vols 1-196), 154(1946), pp. 412-

428.

Mobus, R. & Kolbe, U., 2004. Multi-Target Multi-Object Tracking, Sensor Fusion of

Radar and Infrared. pp. 732-737.

Mohammad, T., 2009. Using Ultrasonic and Infrared Sensors for Distance

Measurment. World Academy of Science, Engineering and Technology, Volume 51.

Montemerlo, M. & Thrun, S., 2003. Simultaneous Localization and Mapping with

Unknown Data Association Using FastSLAM. pp. 1985-1991.

Montemerlo, M., Thrun, S., Koller, D. & Wegbreit, B., 2002. FastSLAM: A Factored

Solution to the Simultaneous Localization and Mapping Problem. pp. 593-598.

Montemerlo, M., Thrun, S., Koller, D. & Wegbreit, B., 2003. FastSLAM 2.0: An

Improved Particle Filtering Algorithm for Simulataneous Localization and Mapping

that Provably Converges. pp. 1151-1156.

Mooring, B. W. & Padavala, S. S., 1989. The Effect of Kinematic Model Complexity

on Manipulator Accuracy. pp. 593-598.

Moravec, H. & Elfes, A., 1985. High Resolution Maps from Wide Angle Sonar. pp.

116-121.

Murphy, K. P., 2000. Bayesian Map Learning in Dynamic Environments. Advances in

Neural Information Processing Systems, Volume 12, pp. 1015-1021.

Murray, D. & Little, J. J., 2000. Using Real-Time Stereo Vision for Mobile Robot

Navigation. Autonomous Robots, 8(2), pp. 161-171.

lvi

Nahapetian, N., Jahed Motlagh, M. R. & Analoui, M., 2008. PID Gain Tuning using

Genetic Algorithms and Fuzzy Logic For Robot Manipulator Control. pp. 346-350.

Nakamura, T., 2013. Real-Time 3-D Path Generation Method for a Robot Arm by a

2-D Dipole Field. Wollogong, Australia, IEEE, pp. 745-749.

Nebot, E. M., Durrant-Whyte, H. & Sheding, S., 1998. Frequency Domain Modelinh

of Aided GPS for Vehicle Navigation Systems. Robotics and Autonomous Systems,

25(12), pp. 72-83.

Nguyen, H. G. & Bott, J. P., 2000. Robotics for law enforcement: Applications

beyond explosive ordnance disposal. Boston, SPIE.

Niem, W. & Wingbermuhle, J., 1997. Automatic Reconstruction of 3D Objects Using

a Mobile Monoscopic Camera. pp. 173-180.

Nise, N. S., 1998. Time Response. In: Control Systems Engineering. s.l.:Wiley, pp.

178-179.

Novotny, P. M. & Ferrier, N. J., 1999. Using Infrared Sensors and the Phong

Illumination Model to Measure Distances. pp. 1644-1649.

Ojeda, L. & Borenstein, J., 2006. Non-GPS NAvigation for Emergency Responders.

pp. 12-15.

Padula, F. & Perdereau, V., 2011. A New Pseudoinverse for Manipulator Collision

Avoidance. Milan, Italy, pp. 14687-14692.

Pakki, K., Chandra, B., Gu, D.-W. & Postlethwaite, I., 2010. SLAM Using EKF, EH∞

and Mixed EH2/H∞ Filter. Yokohoma, Japan, IEEE, pp. 818-823.

Panzieri, S., Pascucci, F. & Ulivi, G., 2002. An Outdoor Navigation System Using

GPS and Interial Platform. IEEE/ASME Transactions on Mechatronics, 7(2), pp. 134-

142.

Pazderski, D. & Kozlowski, K., 2008. Trajectory Tracking of Underactuated Skid-

Steering Robot. Seattle, Washington, pp. 3506-3511.

Petridis, V. & Zikos, N., 2010. L-SLAM: reduced dimensionality FastSLAM

algorithms. pp. 1-7.

lvii

Prim, R. C., 1957. Shortest connection networks and some generalizations. Bell

System Technical Journal, Volume 36, pp. 1389-1491.

Raimondi, F. M. & Ciancimino, L. S., 2008. Intelligent Neruo-Fuzzy Dynamic Path

Following for Car-Like Vehicle. pp. 744-750.

Ramos, F., Gajamohan, M., Heubel, N. & Ritter, H., 2013. Time-Optimal Online

Trajectory Generation for Robotic Manipulators, Zürich: Institute for Dynamic

Systems and Control.

Rencken, W., 1993. Concurrent Localisation and Map Building for Mobile Robots

Using Ultrasonic Sensors. pp. 2192-2197.

Riaz, Z., Pervez, A., Ahmer, M. & Iqbal, J., 2010. A Fully Autonomous Indoor Mobile

Robot using SLAM. pp. 1-6.

Rosales, E. M. & Gan, Q., 2002. Forward and Inverse Kinematics Models for a 5-dof

Pioneer 2 Robot Arm, Essex:

Rosenfield, A. & Thurston, M., 2006. Edge and Curve Detection for Visual Scene

Analysis. IEEE Transactions on Computers, 100(5), pp. 562-569.

Rugh, W. J. & Shamma, J. S., 2000. Research on gain scheduling. Automatica,

October, 36(10).

Ryu, S. U., Kim, C. J. & Choi, K. H., 2007. Multi-Arm Path Generation Method for

Humanoid Robots. Jeju, Korea, IEEE, pp. 224-227.

Saridis, G. N. & Lee, C. G., 1979. An Approximation Theory of Optimal Control. IEEE

Transactions on Systems, Man and Cybernetics, March, SMC-9(3), pp. 152-159.

Schröter, C., Böhme, H.-J. & Gross, H.-M., 2007. Memory-Efficient Gridmaps in Rao-

Blackwellized Particle Filters for SLAM using Sonar Range Sensors. pp. 138-143.

Schröter, C. & Gross, H.-M., 2008. A sensor-independent approach to RBPF SLAM -

Map Match SLAM applied to Visual Mapping. Nice, pp. 2078-2083.

Shanmugavel, M., Tsourdos, A., White, B. A. & Zbikowski, R., 2007. Differential

Geometric Path Planning of Multiple UAVs. Journal of Dynamic Systems,

Measurement and Control, September, Volume 129, pp. 620-632.

lviii

Shanmugavel, M., Tsourdos, A., White, B. A. & Zbikowski, R., 2009. Co-operative

Path Planning of Multiple UAVs Using Dubins Paths with Clothoid Arcs. Control

Engineering Practice, 18(9), pp. 1084-1092.

Shen, X. & Deng, L., 1997. Game Theory Approach to Discrete H∞ Filter Design.

49(4), pp. 1092-1095.

Shiller, Z., Serate, W. & Hua, M., 1993. Trajectory Planning of Tracked Vehicles. pp.

796-801.

Shimizu, M. & Okutomi, M., 2007. Monocular Range Estimation through a Double-

Sided Half-Mirror Plate. pp. 347-354.

Shuang, G. et al., 2007. Skid Steering in 4-Wheel-Drive Electric Vehicle. pp. 1548-

1553.

Simionescu, P. A., 2014. Computer Aided Graphing and Simulation Tools. 1st ed.

Boca Raton: CRC Press.

Singh, S. & Leu, M. C., 1987. Optimal Trajectory Generation for Robotic

Manipulators Using Dynamic Programming. Journal of Dynamic Systems,

Measurement, and Control, 1 June, 1-09(2), pp. 88-96.

Soetanto, D., Lapiere, L. & Pascoal, A., 2003. Adaptive, Non-Singular Path-

Following Control of Dynamic Wheeled Robots. Rome, Italy, pp. 1765-1770.

Spero, D. J., 2004. A Review of Outdoor Robotics Research, Victoria, Australia:

Monash University.

Stasse, O., Dupitier, S. & Yokoi, K., 2006. 3D Object Recognition Using Spin-Images

for a Humanoid Stereoscopic Vision System. pp. 2955-2960.

Steeds, W., 1950. Tracked vehicles - an analysis of the factors involved in steering.

Proceedings of the Institute of Automobile Engineers, Volume 42, pp. 143-148.

Tan, C.-W. & Park, S., 2005. Design of Accelerometer-Based Inertial Navigation

Systems. IEEE Transactions on Instrumentation and Measurement, 54(6), pp. 2520-

2530.

lix

Tang, Z., Yang, M. & Pei, Z., 2010. Self-Adaptive PID Control Strategy Based on

RBF Neural Network for Robot Manipulator. s.l., s.n., pp. 932-935.

Technical Avenue Sdn Bhd, 2016. Technical Avenue UXM-30LN-PW Datasheet.

[Online]

Available at: http://www.technical-avenue.com/products-

search/type/viewtype/typeid/31/currentpage/2/lidar-laser-range-scanner.aspx

[Accessed 02 Jan 2016].

Thrun, S., Burgard, W. & Fox, D., 1998. A Probabilistic Approach to Concurrent

Mapping and Localization for Mobile Robots. Autonomous Robots, Volume 5, pp.

253-271.

Tomono, M., 2010. 3D Localization Based on Visual Odometry and Landmark

Recognition Using Image Edge Points. pp. 5953-5959.

Turney, J. L., Mudge, T. N. & Lee, C. S. G., 1980. Equivalence of Two Formulations

For Robot Arm Dynamics, Ann Arbor:

Velodyne LIDAR, 2016. High Definition LIDAR HDL-64E S2. [Online]

Available at: http://velodynelidar.com/lidar/products/brochure/HDL-

64E%20S2%20datasheet_2010_lowres.pdf

[Accessed 01 Jan 2016].

Walther, H., 2012. Ten applications of graph theory (Vol. 7). s.l.:Springer Science &

Business Media.

Wang, Y., 2005. Matlab File Exchange. [Online]

Available at: http://www.mathworks.co.uk/matlabcentral/fileexchange/7869-dijkstra-

algorithm-consistent-with-cyclic-paths/content/matlab-dijkstra-cycle/dijkstra.m

[Accessed 2011].

Wang, Z., Huang, S. & Dissanayake, G., 2007. D-SLAM: A Decoupled Solution to

Simultaneous Localization and Mapping. International Journal of Robotic Research,

Volume 26, pp. 187-204.

Wang, Z., Huang, S. & Dissanayale, G., 2007. Multi-robot simultaneous localization

and mapping using D-SLAM framework. pp. 317-322.

lx

Wanh, J.-H. & Gao, Y., 2010. Land Vehicle Dynamics-Aided Inertial Navigation.

IEEE Transactions on Aerospace and Electronic Systems, 46(4), pp. 1638-1653.

Wei, W. & Shimin, W., 2010. 3-D Path Planning using Neural Networks for a Robot

Manipulator. Changsha, IEEE, pp. 3-6.

White, B. A., Zbikowski, R. & Tsourdos, A., 2007. Direct Intercept Guidance using

Differential Geometry Concepts. IEEE Transactions on Aerospace and Electronic

Systems, July, 43(3), pp. 899-919.

Whitney, D. E., 1969. Resolved Motion Rate Control of Manipulators and Human

Prostheses. IEEE Transactions on Man-Machine Systems, Jun, MMS-10(2), pp. 47-

53.

Xin, M., Balakrishnan, S. N. & Huang, Z., 2001. Robust State Dependant Riccati

Equation Based Robot Manipulator Control. Mexico City, Mexico, pp. 369-374.

Yamada, K., Komada, S., Ishida, M. & Hori, T., 1998. Robust Control of Robot

Manipulators by MIMO Disturbance Observer. pp. 1451-1456.

Yamauchi, B., 1997. A frontier-based approach for autonomous exploration. pp. 146-

151.

Yamauchi, B., Schultz, A. & Adams, W., 1998. Mobile robot exploration and map-

building with continuous localization. pp. 3715-3720.

Yao, Z. & Gupta, K., 2007. Path Planning with General End-Effector Constraints.

Robotics and Autonomous Systems, Volume 55, pp. 316-327.

Zhang, Y., Zhang, Z. & Zhang, J., 2005. 3D Building Modelling with Digital Map,

Lidar Data and Video Image Sequences. The Phoitogrammetric Record, 20(111), pp.

285-302.

Zhang, Z., 1994. Iterative Point Matching for Registration of Free-Form Curves and

Surfaces. 13(2), pp. 119-152.

Zhao, Z.-Y., Tomizuka, M. & Isaka, S., 1992. Fuzzy gain scheduling of PID

controllers. Dayton, Oh, US., IEEE, pp. 698-703 vol. 2.

lxi

Zha, X. F., 2002. Optimal Pose Trajectory Planning for Robot Manipulators.

Mechanism and Machine Theory, Volume 37, pp. 1063-1086.

Zhuang, H., Roth, Z. S. & Hamano, F., 1992. A Complete and Parametrically

Continuous Kinematic Model for Robot Manipulators. IEEE Transactions on Robotics

and Automation, August, 8(4), pp. 451-463.

Zweiri, Y., Seneviratne, L. & Althoefer, K., 2003. Modelling and Control of an

Unmanned Excavator Vehicle. Proceedings of the Institution of Mechanical

Engineers, Part I: Journal of Systems and Control Engineering, 217(4), pp. 259-274.

xii

xiii

APPENDICES

Appendix A Genetic Algorithm Supplementary Information and

Results

In this appendix the full list of optimisation problems used in Chapter 5 is presented

in Table A-1 and Table A-2. Figure A-1 and Figure A-2 present the results of the

optimisation technique shown in Chapter 5 in an alternate way, with lines connecting

each result in order to assess trends. Figure A-3 to Figure A-25 display further

results from the random waypoint path testing used to validate the GA optimised PID

controller which was also carried out in Chapter 5.

Table A-1 Full list of optimisation problems used to validate the developed GA.

Function

Name

Function Search Domain

Ackley's

function

𝑓(𝑥, 𝑦) = −20𝑒−0.2√0.5(𝑥2+𝑦2) − 𝑒cos(2𝜋𝑥)+cos(2𝜋𝑦)

+ 20 + 𝑒

−5 ≤ 𝑥, 𝑦 ≤ 5

Sphere

function
𝑓(𝑥) = ∑𝑥𝑖

2

𝑛

𝑖=1

−∞ ≤ 𝑥𝑖 ≤ ∞,

1 ≤ 𝑖 ≤ 𝑛

2nd Order

Polynomial

𝑓(𝑥) = 3𝑥2 + 2𝑥 + 1 −∞ ≤ 𝑥 ≤ ∞

3 variable

quadratic

𝑓(𝑥, 𝑦, 𝑧) = √𝑥2 + 𝑦2 + 𝑧2 + 𝑥𝑦 + 𝑦𝑧 + 𝑥𝑧 −∞ ≤ 𝑥, 𝑦, 𝑧 ≤ ∞

Rosenbrock

function
𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖

2)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

−∞ ≤ 𝑥𝑖 ≤ ∞,

1 ≤ 𝑖 ≤ 𝑛

xiv

Beale's

function

𝑓(𝑥, 𝑦) = (1.5 − 𝑥 + 𝑥𝑦)2 + (2.25 − 𝑥 + 𝑥𝑦2)2

+ (2.625 − 𝑥 + 𝑥𝑦3)2

−4.5 ≤ 𝑥, 𝑦 ≤ 4.5

Goldestein-

Price

function

𝑓(𝑥, 𝑦) = (1 + (𝑥 + 𝑦 + 1)2(19 − 14𝑥 + 3𝑥2 − 14𝑦

+ 6𝑥𝑦 + 3𝑦2))(30 + (2𝑥 − 3𝑦)2(18

− 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦

+ 27𝑦2))

−2 ≤ 𝑥, 𝑦 ≤ 2

Booth's

Function

𝑓(𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2 + (2𝑥 + 𝑦 − 5)2 −10 ≤ 𝑥, 𝑦 ≤ 10

Bukin

Function

𝑓(𝑥, 𝑦) = 100√|𝑦 − 0.01𝑥2| + 0.01|𝑥 + 10| −15 ≤ 𝑥 ≤ −5,

−3 ≤ 𝑦 ≤ 3

Matyas

Function

𝑓(𝑥, 𝑦) = 0.26(𝑥2 + 𝑦2) − 0.48𝑥𝑦 −10 ≤ 𝑥, 𝑦 ≤ 10

Levi

Function

No. 13

𝑓(𝑥, 𝑦) = sin2(3𝜋𝑥) + (𝑥 − 1)2(1 + sin2(3𝜋𝑦))

+ (𝑦 − 1)2(1 + sin2(2𝜋𝑦))

−10 ≤ 𝑥, 𝑦 ≤ 10

Three-hump

Camel

Function

𝑓(𝑥, 𝑦) = 2𝑥2 − 1.05𝑥4 +
𝑥6

6
+ 𝑥𝑦 + 𝑦2

−5 ≤ 𝑥, 𝑦 ≤ 5

Easom

Function

𝑓(𝑥, 𝑦) = −cos(𝑥) cos(𝑦) 𝑒−((𝑥−𝜋)2+(𝑦−𝜋)2) −100 ≤ 𝑥, 𝑦

≤ 100

Cross-in-

tray

Function

𝑓(𝑥, 𝑦) =

−0.0001(sin(𝑥) sin(𝑦) 𝑒
|100−

√𝑥2+𝑦2

𝜋
|
+ 1)

0,1

−10 ≤ 𝑥, 𝑦 ≤ 10

xv

Eggholder

Function
𝑓(𝑥, 𝑦) = −(𝑦 + 47) sin (√|𝑦 +

𝑥

2
+ 47|)

− 𝑥 sin (√|𝑥 − (𝑦 + 47)|)

−512 ≤ 𝑥, 𝑦

≤ 512

Hölder table

Function 𝑓(𝑥, 𝑦) = − |sin(𝑥) 𝑐𝑜𝑠(𝑦)𝑒
|−1−

√𝑥2+𝑦2

𝜋
|
|

−10 ≤ 𝑥, 𝑦 ≤ 10

McCormick

Function

𝑓(𝑥, 𝑦) = sin(𝑥 + 𝑦) + (𝑥 − 𝑦)2 − 1.5𝑥 + 2.5𝑦 + 1 −1.5 ≤ 𝑥 ≤ 4,

−3 ≤ 𝑦 ≤ 4

Schaffer

No.2

Function

𝑓(𝑥, 𝑦) = 0.5 +
sin2(𝑥2 − 𝑦2) − 0.5

(1 + 0.001(𝑥2 + 𝑦2)2

−100 ≤ 𝑥, 𝑦

≤ 100

Schaffer

No.4

Function

𝑓(𝑥, 𝑦) = 0.5 +
cos2(sin|𝑥2 − 𝑦2|) − 0.5

(1 + 0.001(𝑥2 + 𝑦2)2

−100 ≤ 𝑥, 𝑦

≤ 100

Styblinski-

Tang

Function

𝑓(𝑥) =
∑ 𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖

𝑛
𝑖=1

2

−5 ≤ 𝑥𝑖 ≤ 5,

1 ≤ 𝑖 ≤ 𝑛

Simionescu

Function

𝑓(𝑥, 𝑦) = 0.1𝑥𝑦

Subject to: 𝑥2 + 𝑦2 ≤ (1 + 0.2 (cos 8 arctan
𝑥

𝑦
))

2

−1.25 ≤ 𝑥, 𝑦

≤ 1.25

Binh and

Korn

Function

min {
𝑓1(𝑥, 𝑦) = 4𝑥2 + 4𝑦2

𝑓2(𝑥, 𝑦) = (𝑥 − 5)2 + (𝑦 − 5)2
0 ≤ 𝑥 ≤ 5,

0 ≤ 𝑦 ≤ 3

Chakong

and Haimes

Function

min {
𝑓1(𝑥, 𝑦) = 2 + (𝑥 − 2)2 + (𝑦 − 1)2

𝑓2(𝑥, 𝑦) = 9𝑥 − (𝑦 − 1)2
−20 ≤ 𝑥, 𝑦 ≤ 20

xvi

Fonseca

and

Fleming

Function

min{
𝑓1(𝑥) = 1 − 𝑒

−∑ (𝑥𝑖−
1

√𝑛
)
2

𝑛
𝑖=1

𝑓2(𝑥) = 1 − 𝑒
−∑ (𝑥𝑖+

1

√𝑛
)
2

𝑛
𝑖=1

−4 ≤ 𝑥𝑖 ≤ 4,

1 ≤ 𝑖 ≤ 𝑛

Test

Function 4
min {

𝑓1(𝑥, 𝑦) = 𝑥2 − 𝑦

𝑓2(𝑥, 𝑦) = −0.5𝑥 − 𝑦 − 1

−7 ≤ 𝑥, 𝑦 ≤ 4

Kursawe

Function min

{

𝑓1(𝑥) = ∑ −10𝑒
−0.2√𝑥𝑖

2+𝑥𝑖+1
22

𝑖=1

𝑓2(𝑥) = ∑ |𝑥𝑖|
0.8 + 5 sin(𝑥𝑖

3)
3

𝑖=1

−5 ≤ 𝑥𝑖 ≤ 5,

1 ≤ 𝑖 ≤ 3

Schaffer

Function

No. 1

min = {
𝑓1(𝑥, 𝑦) = 𝑥2

𝑓2(𝑥, 𝑦) = (𝑥 − 2)2
−𝐴 ≤ 𝑥 ≤ 𝐴

Values of A from

10 to 105 have

been used

successfully.

Higher values of

A increase the

difficulty of the

problem.

Schaffer

Function

No. 2
min

{

𝑓1(𝑥) = {

−𝑥, 𝑖𝑓 𝑥 ≤ 1
𝑥 − 2, 𝑖𝑓 1 < 𝑥 ≤ 3
4 − 𝑥, 𝑖𝑓 3 < 𝑥 ≤ 4

𝑥 − 4, 𝑖𝑓 𝑥 > 4

𝑓2(𝑥) = (𝑥 − 5)2

−5 ≤ 𝑥 ≤ 10

Poloni’s

Two

Objective

Function

min {
𝑓1(𝑥, 𝑦) = 1 + (𝐴1 − 𝐵1(𝑥, 𝑦))

2
+ (𝐴2 − 𝐵2(𝑥, 𝑦))

2

𝑓2(𝑥, 𝑦) = (𝑥 + 3)2 + (𝑦 + 1)2

𝑤ℎ𝑒𝑟𝑒,

{

𝐴1 = 0.5 sin(1) − 2 cos(1) + sin(2) − 1.5 cos(2)

𝐴2 = 1.5 sin(1) − cos(1) + 2 sin(2) − 0.5 cos(2)

𝐵1(𝑥, 𝑦) = 0.5 sin 𝑥 − 2 cos 𝑥 + sin 𝑦 − 1.5 cos 𝑦

𝐵2(𝑥, 𝑦) = 1.5 sin 𝑥 − cos 𝑥 + 2 sin 𝑦 − 0.5 cos 𝑦

−𝜋 ≤ 𝑥, 𝑦 ≤ 𝜋

xvii

Zitzler-Deb-

Thiele's

Function

No.1

min

{

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)

0 ≤ 𝑥𝑖 ≤ 1,

1 ≤ 𝑖 ≤ 30

Zitzler-Deb-

Thiele's

Function

No.2

min

{

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)

2

0 ≤ 𝑥𝑖 ≤ 1,

1 ≤ 𝑖 ≤ 30

Zitzler-Deb-

Thiele's

Function

No.3

min

{

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 +
9

29
∑ 𝑥𝑖

30

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)
− (

𝑓1(𝑥)

𝑔(𝑥)
) sin(10𝜋𝑓1(𝑥))

0 ≤ 𝑥𝑖 ≤ 1,

1 ≤ 𝑖 ≤ 30

Zitzler-Deb-

Thiele's

Function

No.4

min

{

𝑓1(𝑥) = 𝑥1

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 91 + ∑ (𝑥𝑖
2 − 10 cos 4𝜋𝑥𝑖)

10

𝑖=2

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − √
𝑓1(𝑥)

𝑔(𝑥)

0 ≤ 𝑥1 ≤ 1,

−5 ≤ 𝑥𝑖 ≤ 5,

2 ≤ 𝑖 ≤ 10

Zitzler-Deb-

Thiele's

Function

No.6

min

{

𝑓1(𝑥) = 1 − 𝑒−4𝑥1 sin6(6𝜋𝑥1)

𝑓2(𝑥) = 𝑔(𝑥)ℎ(𝑓1(𝑥), 𝑔(𝑥))

𝑔(𝑥) = 1 + 9(
∑ 𝑥𝑖

10
𝑖=2

9
)

0.25

ℎ(𝑓1(𝑥), 𝑔(𝑥)) = 1 − (
𝑓1(𝑥)

𝑔(𝑥)
)

2

0 ≤ 𝑥𝑖 ≤ 1,

1 ≤ 𝑖 ≤ 10

xviii

Viennet

Function
min

{

𝑓1(𝑥, 𝑦) = 𝑜, 5(𝑥2 + 𝑦2) + sin (𝑥2 + 𝑦2)

𝑓2(𝑥, 𝑦) =
(3𝑥 + 2𝑦 + 4)2

8
+

(𝑥 − 𝑦 + 1)2

27
+ 15

𝑓3(𝑥, 𝑦) =
1

𝑥2 + 𝑦2 + 1
− 1.1𝑒−(𝑥2+𝑦2)

−3 ≤ 𝑥, 𝑦 ≤ 3

Osyczka

and Kundu

Function

min

{

𝑓1(𝑥) = −25(𝑥1 − 2)2 − (𝑥2 − 2)2 − (𝑥3 − 1)2

 −(𝑥4 − 4)2 − (𝑥5 − 1)2

𝑓2(𝑥) = ∑ 𝑥𝑖
2

6

𝑖=1

0 ≤ 𝑥1, 𝑥2, 𝑥6

≤ 10,

1 ≤ 𝑥3, 𝑥5 ≤ 5,

0 ≤ 𝑥4 ≤ 6

CTP1

Function
min {

𝑓1(𝑥, 𝑦) = 𝑥

𝑓2(𝑥, 𝑦) = (1 + 𝑦)𝑒
−

𝑥
1+𝑦

0 ≤ 𝑥, 𝑦 ≤ 1

Constr-Ex

Function min{
𝑓1(𝑥, 𝑦) = 𝑥

𝑓2(𝑥, 𝑦) =
1 + 𝑦

𝑥

0.1 ≤ 𝑥 ≤ 1,

0 ≤ 𝑦 ≤ 5

Table A-2 Graphical representation of all tested optimisation problems.

Function

Name

Function Surface Function

Name

Function Surface

Ackley's

function

Styblinski-

Tang

Function

Sphere

function

Simionescu

Function

xix

2nd Order

Polynomi

al

Binh and

Korn

Function

3 variable

quadratic

Chakong

and Haimes

Function

Rosenbro

ck

function

Fonseca and

Fleming

Function

Beale's

function

Test

Function 4

Goldestei

n-Price

function

Kursawe

Function

xx

Booth's

Function

Schaffer

Function No.

1

Bukin

Function

Schaffer

Function No.

2

Matyas

Function

Poloni’s Two

Objective

Function

Levi

Function

No. 13

Zitzler-Deb-

Thiele's

Function

No.1

Three-

hump

Camel

Function

Zitzler-Deb-

Thiele's

Function

No.2

xxi

Easom

Function

Zitzler-Deb-

Thiele's

Function

No.3

Cross-in-

tray

Function

Zitzler-Deb-

Thiele's

Function

No.4

Eggholde

r

Function

Zitzler-Deb-

Thiele's

Function

No.6

Hölder

table

Function

Viennet

Function

McCormic

k

Function

Osyczka and

Kundu

Function

xxii

Schaffer

No.2

Function

CTP1

Function

Schaffer

No.4

Function

Constr-Ex

Function

Single Objective Multi Objective

Figure A-1 Alternate representation of optimisation technique comparison (linear).

xxiii

Single Objective Multi Objective

Figure A-2 Alternate representation of optimisation technique comparison

(logarithmic).

xxiv

Figure A-3 Further PID controller testing

results.

Figure A-4 Further PID controller testing

results.

Figure A-5 Further PID controller testing

results.

Figure A-6 Further PID controller testing

results.

Figure A-7 Further PID controller testing

results.

Figure A-8 Further PID controller testing

results.

xxv

Figure A-9 Further PID controller testing

results.

Figure A-10 Further PID controller testing

results.

Figure A-11 Further PID controller testing

results.

Figure A-12 Further PID controller testing

results.

Figure A-13 Further PID controller testing

results.

Figure A-14 Further PID controller testing

results.

xxvi

Figure A-15 Further PID controller testing

results.

Figure A-16 Further PID controller testing

results.

Figure A-17 Further PID controller testing

results.

Figure A-18 Further PID controller testing

results.

Figure A-19 Further PID controller testing

results.

Figure A-20 Further PID controller testing

results.

xxvii

Figure A-21 Further PID controller testing

results.

Figure A-22 Further PID controller testing

results.

Figure A-23 Further PID controller testing

results.

Figure A-24 Further PID controller testing

results.

Figure A-25 Further PID controller testing results.

xxviii

Appendix B Extension of a 3-DoF Path Planning Algorithm to 9-DoF

Having validated the effectiveness of the algorithm for a 3-DoF manipulator arm,

initial simulations can be carried out to test the potential of the method to handle path

planning for manipulator arms of higher degrees of freedom. Since the arm in use

for this project is a 3-DoF arm, no inverse kinematic model has been developed in

order to convert environment data into c-space. Instead, simulated c-space data is

used by generating clusters of random n-dimensional numbers in an n-dimensional

space of varying size. This method of simulation allows for the number of degrees-

of-freedom in the c-space, the number of objects used, the number of inspection

points in the object, and the Euclidean maximum spread of each object, which gives

the ability to measure calculation time for different combinations of these points.

This version of the algorithm utilises, in the majority, previous development carried

out in this project. The method of forming a node map from a triangulation of a

shape, and the planning of the path through it for the manipulator by the use of

Dijkstra’s Algorithm is identical to that previously used. An algorithm for generating

the alpha hull of a cluster of points in n-dimensions has not been developed, but

Matlab’s ‘convhulln’ function, which can calculate the convex hull of a cloud of points

in up to 9-dimensions has been used instead. This means that the functionality of

the n-dimensional algorithm thus far can only work with its maximum effectiveness

when the cluster of points in the objects have no concavity, but future work will

investigate the tunnelling process into a convex hull in n-dimensions in order to

increase the ability of the algorithm to be able to handle concave objects.

Experimentation in this case will take the form of a series of Matlab simulated runs of

the algorithm for a set number of obstacles in a space with a fixed length in each of

the n-dimensions. The number of inspection points will be fixed, and the maximum

spread, hence the size of each shape, will also be fixed. This experiment will deal

with the effect of increasing the number of dimensions on the calculation time

required to generate the node map and plan a path in order to determine if the

algorithm can be used to generate a path through n-dimensional c-space. For this

investigation, the following specifications are used:

xxix

Table B-3 Parameters for the simulated C-space generation for use in the n-DoF path

planning experimentation.

Number of objects 100

Number of inspection points per object 100

Spread of points per object per dimension 3 m

Range of each dimension 100 m

`

This experiment is run ten times and then the mean of the time taken per run is used

to investigate the usability of the algorithm for each number of dimensions, i.e.

degrees-of-freedom. The results are displayed in the following figures.

(a) Multiple runs of path planner.

(b) Average of multiple path planner

runs.

Figure B-26 Results from a number of runs of the path planning algorithm for 2 to 9

degrees-of-freedom.

From these results it can be seen that it is possible to plan a path through a 9-

dimensional space, therefore for a 9-DoF manipulator arm. The time it takes to plan

a path increases exponentially with the number of degrees-of-freedom, but for 2 to 6

xxx

degrees-of-freedom, the time taken to calculate a path is on the order of seconds.

This can be seen in Figure B-27.

Figure B-27 Enlarged view of Figure B-26 to display only the results for path planning

in 2 to 6 degrees-of-freedom.

Based on these results it is feasible to use this algorithm to generate a path in 6D

space, so for 6-DoF. There are currently some limitations to this version of the path

planning algorithm in that the inverse kinematic solution to the arm in question still

has to be developed in order to convert environment data to the C-space. Also,

since the method of converting clouds of points in C-space in greater than 3D uses

the convex hull rather than an alpha hull with concavity, the method cannot currently

work for concave shapes in the C-space.

Appendix C List of Publications

C.1 Published Works

D. Galvão Wall, J. Economou, H. Goyder, K. Knowles, P. Silson, M. Lawrance,

(2015) Mobile Robot Arm Trajectory Generation for Operation in Confined

xxxi

Environments, Proceedings of the Institution of Mechanical Engineers, Part I: Journal

of Systems and Control Engineering. (vol. 229, part. 3, p215-234 DOI

10.1177/0950651814559760)

C.2 Submitted for Publication

D. Galvão Wall, J. T. Economou, D. Purdy, K. Knowles, Genetic Algorithm Gain

Scheduler Tuning for Quasi-Linear Parameter Variant Robotic Manipulator Dynamic

Model, European Control Conference (ECC 2016), Aalborg, Denmark.

J. T. Economou, D. Galvão Wall, K. Knowles, Novel System Energy and

Performance Analysis for Classical Inverted Pendulum Control Problem with

Guaranteed Stability, European Control Conference (ECC 2016), Aalborg, Denmark.

C.3 Submitted Abstracts

D. Purdy, D. Simner, D. Diskett, J. Economou, D. Wall, Yaw Stability Controller for

Tracked Vehicles, International Symposium on Advanced Vehicle Control (AVEC

2016), Munich, Germany.

J. Economou, D. Purdy, D. Galvão Wall, D. Diskett, D. Simner, Intelligent Based

Terrain Preview Controller for 3-axle Vehicle, International Symposium on Advanced

Vehicle Control (AVEC 2016), Munich, Germany.

C.4 Under Preparation

D. Galvão Wall, J. Economou, K. Knowles, GA-based controller tuning for a quasi-

linear parameter varying manipulator arm (2016) IMechE .Journal Article

xxxii

D. Galvão Wall, J. Economou, K. Knowles, A graph-theory-based C-space path

planner for mobile robotic manipulators in close-proximity environments. (2016)

IMechE .Journal Article

