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Abstract: The complexity of forward kinematic modelling increases with the increase in the degrees
of freedom for a manipulator. To reduce the computational weight and time lag for desired output
transformation, this paper proposes a forward kinematic model mapped with the help of the Radial
Basis Function Neural Network (RBFNN) architecture tuned by a novel meta-heuristic algorithm,
namely, the Cooperative Search Optimisation Algorithm (CSOA). The architecture presented is able to
automatically learn the kinematic properties of the manipulator. Learning is accomplished iteratively
based only on the observation of the input–output relationship. Related simulations are carried out
on a 3-Degrees of Freedom (DOF) manipulator on the Robot Operating System (ROS). The dataset
created from the simulation is divided 65–35 for training–testing of the proposed model. The metrics
used for model validation include spread value, cost and runtime for the training dataset, and Mean
Relative Error, Normal Mean Square Error, and Mean Absolute Error for the testing dataset. A
comparative analysis of the CSOA-RBFNN model is performed with an artificial neural network,
support vector regression model, and with with other meta-heuristic RBFNN models, i.e., PSO-
RBFNN and GWO-RBFNN, that show the effectiveness and superiority of the proposed technique.

Keywords: robotics; artificial intelligence; ROS; forward kinematic modelling; radial basis function
neural networks; cooperative search optimisation algorithm

1. Introduction

Robotics systems were first introduced as a technical means for the automation of
production processes. Hard labour has since then been reduced in terms of both basic and
auxiliary technical operations. Practice demonstrated that auxiliary operations, which are
monotonous and often strenuous, were hard to automate in the traditional sense [1]. Hence,
a deeper realisation and broad application of industrial robotics arose. The robotic systems
that perform motion in a form similar to actual human arm movements are generally listed
into the following three categories:

1. manipulation robotic systems;
2. mobile robots;
3. information and control robotic systems.

Industrial development has been primarily accomplished with the use of various types
of robotic manipulation systems. For the movement and manipulation of these systems,
kinematic modelling is utilised.

Kinematics is a category of classical mechanics which is responsible for the study of
physical motion, minus the consideration of forces and momentum. Robotic kinematics
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provide the fundamental components for mathematical modelling and analysis for the
structure of robotic manipulators. In general, a manipulator consists of a static base link,
other links connected by a series of joints and, finally, the end-effector/gripper. There are
many variants of joints that are used for robotic arm control which are derived from the
two basic joints, namely, prismatic and revolute/toroidal, as shown in Figure 1.

Figure 1. Types of joints: (a) articulated manipulator, (b) spherical manipulator, (c) SCARA manipu-
lator, (d) cylindrical manipulator.

The motion of the robotic arms is controlled by the actuators attached at each joint
of the manipulator. To move the position of an end-effector upon a certain trajectory,
a combination of angular/linear motions by the motors at each joint provide that path.
The equations that connect the position of the end-effector and the angular positions of the
joints are called the kinematic equations of the manipulator [2].

Specifically, the mapping of the end-effector in Cartesian space using the angular
displacement and linear displacement of the joints is called the forward kinematics, and the
transformation matrix with respect to the origin of the manipulator is called the forward
kinematic model of that manipulator. Conversely, by using the inverse of the transformation
matrix, the joint angles and linear displacement are calculated with an input of the end-
effectors’ coordinates in the cartesian space. An example of such type of transformation
matrix can be seen for a 3D frame movement, as shown in Figure 2.

Figure 2. Frame transformation: frame A is translated along Ap and rotated along one of the axes to
produce frame B.
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Frame A is the base frame and frame B is the transformed frame. Notice that frame B
has been translated and rotated. AP is the translation of frame A to frame B and A

B R is the
rotation of frame A to frame B. Using the simple laws of trigonometry, the rotation of each
axis is depicted with Equation (2).

A
B R = RxRyRz (1)

Rx =

1 0 0
0 cosθx −sinθx
0 sinθx cosθx

 Ry =

 cosθy 0 sinθy
0 1 0

−sinθy 0 cosθy

 Rz =

cosθz −sinθz 0
sinθz cosθz 0

0 0 1

 (2)

where θ is the angle of rotation along the relevant axis and R is the rotation matrix of that
axis. Therefore, the complete relationship of frame B to frame A, i.e., the base frame, can be
surmised with the transformation matrix seen in Equation (3). The zeros and one are added
to the matrix to make it a square matrix for ease in mathematical manipulation. Every
successive frame can be similarly transformed from the base frame by simply multiplying
its transformation matrix. A vector position X in the frame of B can be mapped with the
base frame A using Equation (4).

A
B T =

[ A
B R AP

0 0 0 1

]
(3)

AX = A
B T · BX (4)

To curb the complexity of devising such transformation matrices for a multi-faceted
manipulator, Denavit–Hartenburg [3] parameters are used, which stipulate that any serial
manipulator can be described as a kinematic model by specifying four parameters for each
link: ai length of the link, αi twist of the link, di offset of the link, and θi angle of the joint.

With the advancement in technology arises the need to reduce time in the order of
fractions of a second. Despite the ease of algebraic manipulation with the above-mentioned
kinematic modelling, the increase in the number of links and their complexity brings forth
numerical and geometric computations that require time and resources. It involves the
solving of a series of simultaneous non-linear equations and, usually, multiple non-unique
sets of solutions are obtained from one set of data.

Methods such as interval analysis [4], dialytic and algebraic eliminitaion [5], continua-
tion [6], and the Groebner basis approach [7] have been used as numerical approaches to
solve non-linear equations, but the problem of selecting an exact solution among several
ones needs further manipulation. In literature, two schemes were adopted to find a unique
solution, i.e., through auxiliary sensors and numerical procedures. The auxiliary sensors
method [8] has practical limitations, such as cost and measurement errors, while the numer-
ical iteration method [9] is sensitive to initial values and constraint equations. The problem
of the planar cable-direct-driven robot architecture was solved through translational ana-
lytical method [10]. The forward kinematic problem of a cablesuspended contour-crafting
robot was solved through a simple numerical method [11]. Despite how the kinematic
modelling problem is identified, it still poses a challenge to find unique solutions. With the
development of soft-computing-based methods, solving linear kinematic models in higher
speeds has provided sufficient solutions, as compared to the traditional algebraic ones [12].
To that effect, this paper proposes a soft-computing method, a Radial Basis Function Neural
Network based on a meta-heuristic optimisation algorithm to model the forward kinematics
of robotic manipulators.

2. Related Work

Soft computing aims at providing an understanding of the natural phenoma for
algorithm development by attempting to mimic imprecision. Real-world applications
contain uncertainties and imprecisions due to which a soft-computing-based mechanism is
required that maps and caters to the unknown vagueness in the input-to-output transfer
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function. In the context of manipulators, algebraic elimination methods are time consuming
and computationally expensive. In addition, the forward kinematics problem is not fully
solved by giving a set of possible solutions, i.e., a unique solution is still a challenge.
The identification of geometrical parameters is another complicated problem that requires
some dedicated procedures and tools.

To circumvent such issues, many researchers have introduced connectionist networks.
The array of interconnected neurons serve as a means to map the forward kinematic
task. For example, a holographic neural network (HNN) was proposed in [13] to model a
planar 3-Degrees of Freedom (DOF) manipulator. With the use of a multi-layer perceptron,
a kinematic model for the HEXA robot was generated in [14]. In [15], the authors aimed
at learning the forward kinematic behaviour of a hybrid parallel–serial structure-based
manipulator, the training of which was conducted by a meta-heuristic algorithm, i.e.,
a Particle Swarm Optimiser (PSO). For obtaining approximate but accurate solutions of
forward kinematic modelling for the Stewart platform, a popular parallel robots variant,
a classic machine learning technique, i.e., support vector machine, was used in [16]. The
kinematic problem of manipulators was addressed as a supervised learning problem
by [2], who proposed a Multi-Layer Perceptron (MLP) architecture which was tested on a
simulated robot for the 7-DOF Sawyer Robotic Arm. In [17], an Artificial Neural Network
(ANN) was used to control a 4-DOF robotic arm with a 2-DOF end effector attached on
bomb disposal robots to an error accuracy of about 5 mm. A neural network model using
the back-propagation algorithm was used on a Stewart platform to solve the problem
of asymmetric payload [18]. An MLP with one input layer, five hidden layers, and a
single output layer was used to solve the form of cable robots’ forward kinematics in [19].
A popular machine learning technique, Support Vector Regression (SVR), was modelled on
the Robotic Research Arm K-1207 to mimic the forward kinematic behaviour [20,21].

However, while the literature shows that much focus is being placed on this research
field, the problem of highly accurate and generalised network models still persists, espe-
cially for engineering design problems for robotic manipulators such as the machining
of aircraft parts or automotive manufacturing. This paper proposes a novel network
model that can provide end-effector position and solve the forward kinematic issue for a
3-DOF manipulator.

3. Methodology

It can be devised that the kinematic estimation of an end-effector pose can be computed
with the help of a supervised Machine Learning (ML) algorithm. The ML-based architecture
that shall be used for such computation needs to be pre-trained from the training samples
made from measurements. Once the training has been accomplished to a significant level
of accuracy, it can be used for end-effector positioning. Figure 3 conceptualises the training
process that is to be conducted offline with a dataset of labelled training samples. For the
purpose of this study, a 3-DOF robotic manipulator with three revolute type joints is to be
used for data sampling. Once the dataset has been generated, it will be fed into a Radial
Basis Function Neural Network architecture, tuned with the help of a novel Cooperative
Search Optimisation Algorithm. Finally, the output of the model will be compared with the
the true values of the robotic end-effector position and the relevant errors will be fed back
into the network for to update parameters and reduce errors. This section discusses how
each of the processes mentioned are developed.
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Figure 3. Training and validation model for kinematic estimation using an ML-based technique.

3.1. Dataset Preparation

First and foremost, the key goal is to prepare a dataset on which the proposed model
is to be trained. Therefore, the cartesian coordinates (X,Y,Z) of the end-effector position
are needed with respect to the joint angle of the 3-DOF robotic manipulator. An inherent
complication with this approach is that the Cartesian coordinates must be obtained from an
external sensor, and most mechanical manipulators possess only internal sensors. However,
if the geometric characteristics of the robot are known, then the training dataset can be also
generated from a simulated kinematic model of the robot.

To accomplish the proposed task of simulating the kinematic model of the robot,
the Robot Operating System (ROS) was employed. ROS is an open-source, meta-operating
system that is used for robot research and development. A 3-DOF robot with revolute joints
was created in ROS. Figure 4 shows the visualisation of the robot in RViZ [22].

Figure 4. Kinematic model of the 3-DOF manipulator designed in ROS-RVIZ. JA represents the the
joint angles while RA represents the arm length.

The robot’s state publisher tool is utilised to publish the state of the robot, i.e., the
transformation of the links, joints, and Cartesian positions. The tool basically broadcasts
the state of the robot as an ROS node. The model was constructed by reverse-engineering
the geometrical properties of the physical robot on a Unified Robotic Description Format
(URDF) model file. With the help of the URDF description and the joint states that publish
the joint positions, the manipulator was simulated, the joint angles of each link, and the
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Cartesian coordinate of the end-effector were sampled to create a dataset of 1000 randomly
generated entries. The sample dataset created can be seen in Table 1.

Table 1. Sample of the training dataset.

JA-1 JA-2 JA-3 x-axis y-axis z-axis

1.675 0.558 0 0.989 −1.4 1.844
6.2831 6.143 4.468 −0.978 −0.5 4.049
1.851 0.558 0.698 0.74 −0.893 1.375
1.675 5.724 0.139 1.176 −1.505 3.628
1.256 5.585 5.724 0.607 −0.91 4.63
1.117 6.143 0.698 1.161 −1.528 3.077

If the inverse mapping of the end-effector position to the joint angles’ vector is unique,
then the inverse kinematic model is considered to be well-posed. However, if the mapping
has many solutions, i.e., has many angle vectors that can obtain the desired end-effector
position, or if it has no solution, i.e., singularities, then the inverse kinematic model
is considered to be ill-posed. Singularities can be of two kinds: the first is where the
robotic manipulator is desired to bring the end-effector position outside of the manipulator
workspace, and second is caused by an alignment of the robot’s axes in space, leaving the
actual joint location indeterminate. To cater for these problems that will cause inefficiencies
for the training model, the dataset has been preprocessed, i.e., the non-existent data samples
have been removed, leaving the final trainable dataset of 100 distinct entries.

3.2. ML-Based Architecture

This section provides an overview of the network model and the novel method used
to tune the model for the robotic manipulator.

3.2.1. Radial Basis Function Neural Network (RBFNN)

Radial Basis Function (RBF) networks are a type of artificial neural network com-
monly used for function approximation problems. RBFNN is a popular alternative to the
Feed-Forward Back-Propagation Neural Network (FFBPNN), which was presented by
Broomhead and Lowe [23]. The weights and activation of a transfer function F provided
for the units determine the network’s behaviour. The output of a processing node is de-
termined by activation functions, which are mathematical formulas. By applying F to the
output value, the activation function maps the sum of weighted values provided to them,
which is then “fired” onto the next layer.

Linear Function (LF), Threshold Function (TF), Sigmoid Function (SF), and Radial
Basis Function (RBF) are four types of transfers or activation functions [24]. RBFs are a type
of activation function that consists of a collection of basis functions, one for each dataset.
RBF takes the following broad form, as depicted in Equation (5):

G(||X− µ||) (5)

where G is a nonlinear symmetric radial function (kernel); X is the input pattern; and µ is
the function’s centre. The RBF’s output is also symmetric to the related centre, which is a
significant feature. As a result, f (Xi) can be considered a linear combination of all the basis
functions’ outputs:

f (X) =
n

∑
i=1

wi G(||X− µ||) (6)

There are several common types of Radial Basis Functions, as represented in Table 2.
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Table 2. List of types of common Radial Basis Functions (RBFs).

Function Name Mathematical Form

Thin-plate spline G(x) = (x− µ)2 log(x− µ)
Multi-quadratic G(x) =

√
(x− µ)2 + σ2

Inverse multi-quadratic G(x) = 1√
(x−µ)2+σ2

Gaussian G(x) = exp (− (x−µ)2

σ2 )

RBFNN is a feed-forward NN model, as shown in Figure 5, in which the activation
function of the hidden unit is determined by the distance between the input vector and a
prototype vector. The proposed RBFNN consists of the input layer, the hidden layer, and
the output layer. The input layer consists of two neurons that take a manipulator’s joint
angular position as an input and compute the Cartesian coordinates of the end-effector as
the output. The input layer transmits the net input and output data to the next layer as:

xi(n) = neti (7)

yi(n) = f j[netj(n)]2 exp (netj(n)) , j = 1, 2, . . . (8)

where Mj = [M1 j, M2 j, . . . , Mi j]T and ∑j = diag( 1
σ2

1j
, 1

σ2
2j

, . . . , 1
σ2

ij
) are the mean and the

standard deviation of the Gaussian function, respectively. The output layer has a single
neuron with a node yk. The output signal is computed by making a summation of incoming
signals.

netk = ∑ j wjyj(n) (9)

yk = f k[netk(n)] = netk(n) (10)

where wj is the weight(s) that connects the hidden and output layers.

Figure 5. Fully connected 3-layered structure of RBFNN for forward kinematics prediction.

3.2.2. Cooperative Search Optimisation Algorithm (CSOA)

The model of an enterprise is mimicked and inspired by the Cooperative Search
Optimisation Algorithm (CSOA) [25], in which the staff represents the solutions and the
performance of every staff member represents the fitness function value. The sketch of
a team relationship is shown in Figure 6. Personal best solutions can be represented as
the board of supervisors while the board of directors represents the number of global best
solutions. Chairmen can be selected from the board of directors. The position updates of
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particles for high-quality solutions utilise different operators. The detailed mathematical
model of CSOA is presented below, in the form of different stages.

Figure 6. (a) Sketch map of an enterprise hierarchy. (b) Working mechanism of CSOA to converge
towards global optimum solution.

a. Team Building:

Like every meta-heuristic algorithm, CSOA also initialises the solutions randomly in
the whole search space, using Equation (11).

Xi = φ(Xmin, Xmax) (11)

where Xi is the randomly generated solution, φ is the function used to generate solutions
within the maximum Xmax and minimum value Xmin of the search space. After calculating
the fitness value of every solution, the elite vector M is created.

b. Team Communication Phase:

Each staff member can obtain a new message by sharing information with a chair-
person, the board of directors, and the supervisors. The mathematical model of the team
communication phase is presented in Equation (12).

Xi+1 = Xi + Ai + Bi + Ci (12)

Ai = log
(

1
φ(0, 1)

)
(gbest− Xi) (13)

Bi = α φ(0, 1)
[

1
M

M

∑
i=1

gbest− Xi

]
(14)

Ci = β φ(0, 1)
[

1
l

l

∑
i=1

pbest− Xi

]
(15)

where A represents the chairman’s knowledge, and B represents the knowledge of the board
of directors, which is the mean knowledge calculated from M. C represents the knowledge
of supervisors, which is the mean knowledge calculated from I. Xi+1 is the updated
position particle, gbest is the global best value, pbest is the personal best value, I represents
the vector of personal best group, and M represents the vector of elite solutions. The α and
β are the tuning parameters, which need to be adjusted for the required application.

c. Reflective Learning Phase:

Another way for staff to gain knowledge is by summing their own experiences
in the opposite direction. The mathematical model for the reflective learning phase is
shown below:

ci = 0.5 (Xmin + Xmax) (16)
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vi =

{
ri if (Xi+1 ≥ ci)

pi if (Xi+1 ≤ ci)
(17)

ri =

{
φ(Xmin + Xmax − Xi+1, ci) if (Xi+1 − ci) ≤ φ(0, 1)− (Xmax − Xmin)

φ(Xmax, Xmin + Xmax − Xi+1) otherwise
(18)

pi =

{
ci, φ(Xmin + Xmax − Xi+1) if (Xi+1 − ci) ≤ φ(0, 1)− (Xmax − Xmin)

φ(Xmin + Xmax − Xi+1, Xmax) otherwise
(19)

where vi is the ith value of the reflective solution at the i + 1 cycle. The pseudo-code of the
CSOA is shown in Algorithm 1.

Algorithm 1: Pseudo-code for CSOA algorithm.
Data: Random data in search space
Result: Output the best final solution
Initialise objective function and random population on search space;
Evaluate the fitness of all particles and create I and M vectors;
while termination criteria not met do

Update I and M vectors;
Obtain I group solutions using Equations (11)–(15);
Obtain I reflective solutions using Equations (16)–(19);
Using Equation (19), choose better I solution for next iteration;

end

4. Results

RBFNN suffers from low prediction accuracy if the parameters, i.e., the σ smoothing
parameter with the number of neurons in RBFNN, do not tune well. For effective training
and testing, these parameters need to be optimally tuned. In this paper, CSOA is used to
tune these parameters, and forward kinematic prediction is performed. The flow chart for
the training of RBFNN using CSOA is shown in Figure 7. Trained models are then tested
on the test data and the performance evaluation is performed.

First, the dataset is prepared, which is then divided into training and testing data with
a 65% to 35% ratio. After that, the RBFNN network is initialised and the train dataset is fed
into the RBFNN network. To effectively tune the smoothing parameter, the Cooperative
Search Optimisation Algorithm is initialised, which will update the value of the smoothing
parameter to obtain the best training accuracy.

This section discusses the proposed model for the forward kinematics prediction, and
after that, a comparison of the proposed techniques is made between GWO-RBFNN and
PSO-RBFNN. A statistical analysis is presented to check the sensitivity of the proposed
technique. To ensure a fair comparison, the number of iterations for the meta-heuristic
algorithm is set to 50 and the multi-agents that will converge toward the optimum solution
is set to 50 as well. The parameters set for the algorithm are shown in Table 3. The value of
the control parameters were chosen according to the literature presented for the algorithms
of PSO and GWO.

Table 3. Parameters set for meta-heuristic algorithms.

Technique Parameters Value

CSOA α 0.1
β 0.15

PSO C1 1.5
C2 1.5

GWO a 2.0
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Figure 7. Flowchart for training of RBFNN using CSOA technique.

4.1. CSOA-RBFNN Model

The smoothing parameter is an important parameter to tune in RBFNN, which is
condnucted by the CSOA. In this work, three different RBFNN networks are used for the
prediction of each axis position. So, the smoothing parameter needs to be tuned for each
axis dataset. The structure of the RBFNN used for the prediction of forward kinematics is
shown in Figure 8. The cost function used is the Normalised Mean Square Error (NMSE).
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Figure 8. RBFNN model for training and testing. Joint angle JA is used as the input and the Cartesian
coordinates of the end-effector is the output.

4.1.1. X-axis Prediction Results

In regression problems, the relative error, Normalised Mean Square Error, and the
Mean Absolute Error are the best indices to measure the performance of the prediction.
Figure 9 shows the comparison of predictions of the x-axis position, while the relative error
comparison is shown in Figure 10. The prediction curve shows that CSOA-RBFNN has
better prediction accuracy than GWO-RBFNN and PSO-RBFNN. The relative error curve
comparison also shows that the CSOA-RBFNN has a value close to zero, which is less than
GWO-RBFNN and PSO-RBFNN.

Figure 9. Comparison of actual x-axis position and predicted position from the meta-heuristic
RBFNN models.

As presented in Table 4, the optimal value of the smoothing factor achieved by CSOA-
RBFNN, GWO-RBFNN, and PSO-RBFNN are 2.2, 2.7, and 2.9, respectively. The best
cost during training, achieved by CSOA-RBFNN, is 0.0048; GWO-RBFNN is 0.0412 and
PSO-RBFNN is 0.2230.
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Figure 10. Comparison of relative error for x-axis prediction from actual position.

Table 4. Training dataset for x-axis.

Technique Optimal Spread Value Best Cost Runtime (s)

CSOA-RBFNN 2.200 0.0048 12.54
GWO-RBFNN 2.700 0.0412 13.19
PSO-RBFNN 2.900 0.2230 13.43

Table 5 shows the statistical analysis of the prediction made by the techniques on the
test data. The Mean Relative Error achieved by CSOA-RBFNN is 0.0098; GWO-RBFNN
is 0.3015 and PSO-RBFNN is 0.856. The statistical analysis shows that the CSOA-RBFNN
achieved high prediction accuracy, as compared to GWO-RBFNN and PSO-RBFNN, for
the x-axis.

Table 5. Testing dataset for x-axis.

Technique Mean RE NMSE MAE

CSOA-RBFNN 0.0098 0.0051 0.0334
GWO-RBFNN 0.3015 0.0486 0.0571
PSO-RBFNN 0.856 0.1421 0.0591

4.1.2. Y-axis Prediction Results

Figure 11 shows the comparison of predictions of the y-axis position, while the relative
error comparison is shown in Figure 12. The prediction curve shows that CSOA-RBFNN
has better prediction accuracy than GWO-RBFNN and PSO-RBFNN. The relative error
curve comparison also shows that the CSOA-RBFNN has a value close to zero, which is
less than GWO-RBFNN and PSO-RBFNN.

As presented in Table 6, the optimal value of the smoothing factor achieved by CSOA-
RBFNN, GWO-RBFNN, and PSO-RBFNN are 1.9, 2.1, and 2.5, respectively. The best
cost during training, achieved by CSOA-RBFNN, is 0.0083; GWO-RBFNN is 0.0225 and
PSO-RBFNN is 0.0861.

Table 7 shows the statistical analysis of the prediction made by the techniques on the
test data. The Mean Relative Error achieved by CSOA-RBFNN is 0.0355; GWO-RBFNN
is 0.086 and PSO-RBFNN is 0.3616. The statistical analysis shows that the CSOA-RBFNN
achieved high prediction accuracy, as compared to GWO-RBFNN and PSO-RBFNN, for the
y-axis. Thus, the CSOA-RBFNN has 90% less Mean Relative Error, 89.6% less NMSE, and
81.5% less MAE, as compared to the competing techniques, in its prediction of the y-axis.
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Figure 11. Comparison of actual y-axis position and predicted position from the meta-heuristic
RBFNN models.

Figure 12. Comparison of relative error for y-axis prediction from actual position.

Table 6. Training dataset for y-axis.

Technique Optimal Spread Value Best Cost Runtime (s)

CSOA-RBFNN 1.900 0.0083 16.05
GWO-RBFNN 2.100 0.0225 17.23
PSO-RBFNN 2.500 0.0861 16.78

Table 7. Testing dataset for y-axis.

Technique Mean RE NMSE MAE

CSOA-RBFNN 0.0355 0.0081 0.0064
GWO-RBFNN 0.0860 0.0141 0.0072
PSO-RBFNN 0.3616 0.0782 0.0331

4.1.3. Z-axis Prediction Results

Figure 13 shows the comparison of predictions of the z-axis position, while the relative
error comparison is shown in Figure 14. The prediction curve shows that CSOA-RBFNN
has better prediction accuracy than GWO-RBFNN and PSO-RBFNN. The relative error
curve comparison also shows that the CSOA-RBFNN has a value close to zero, which is
less than GWO-RBFNN and PSO-RBFNN.



Robotics 2022, 11, 43 14 of 17

Figure 13. Comparison of actual z-axis position and predicted position from the meta-heuristic
RBFNN models.

As presented in Table 8, the optimal value of the smoothing factor achieved by CSOA-
RBFNN, GWO-RBFNN, and PSO-RBFNN are 1.4, 2.1, and 7.2, respectively. The best
cost during training, achieved by CSOA-RBFNN, is 0.0321; GWO-RBFNN is 0.1426 and
PSO-RBFNN is 0.4307.

Table 8. Training dataset for z-axis.

Technique Optimal Spread Value Best Cost Runtime (s)

CSOA-RBFNN 1.400 0.0321 11.54
GWO-RBFNN 2.100 0.1426 13.22
PSO-RBFNN 7.200 0.4307 12.43

Figure 14. Comparison of relative error for z-axis prediction from actual position.

Table 9 shows the statistical analysis of the prediction made by the techniques on the
test data. The Mean Relative Error achieved by CSOA-RBFNN is 0.0121; GWO-RBFNN is
0.0287 and PSO-RBFNN is 0.0671. The statistical analysis shows that the CSOA-RBFNN
achieved high prediction accuracy, as compared to GWO-RBFNN and PSO-RBFNN, for
the z-axis.
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Table 9. Testing dataset for z-axis.

Technique Mean RE NMSE MAE

CSOA-RBFNN 0.0121 0.0329 0.0468
GWO-RBFNN 0.0287 0.1426 0.0861
PSO-RBFNN 0.0671 0.7281 0.1122

4.2. Comparative Study

This section propounds the comparison of the proposed RBFNN-CSOA technique
with the previously established soft-computing techniques, as postulated in the Related
Work section, i.e., the proposed model is compared with an ANN network and a Support
Vector Regression model.

An ANN model is created with a single 3-neuron input layer for the joint angles,
a hidden layer of 10 neurons, and a single output layer. The models are compared on each
axis on the pre-processed dataset. The comparative analysis is shown in Table 10.

The results for Mean Relative Error, NMSE, and MAE show the superiority and
accuracy of the proposed model over the SVR and ANN models. In cases where the number
of features for each data point exceeds the number of training data samples, the SVR model
underperforms while the back-propagation-based ANN model faces high time complexity
and vanishing gradient problems with complex, high-variance datasets. The usage of
the CSOA meta heuristic algorithm has better global minima-finding capabilities than its
predecessor techniques for forward kinematic modelling.

Table 10. Comparison with previously articulated models found in the literature.

Axis Technique Mean RE NMSE MAE

x-axis
RBFNN-CSOA 0.0355 0.0081 0.0064
ANN 0.103 0.092 0.044
SVR 0.068 0.015 0.0093

y-axis
RBFNN-CSOA 0.0098 0.0051 0.0334
ANN 0.031 0.104 0.024
SVR 0.0120 0.095 0.089

z-axis
RBFNN-CSOA 0.0355 0.0081 0.0064
ANN 0.095 0.0605 0.0112
SVR 0.076 0.0299 0.0092

5. Discussion

Formulating the suitable kinematics models for a robot mechanism is very crucial
for analysing the behaviour of industrial manipulators. Models presented in most of
the literature is accomplished using traditional geometric manipulation and/or the use
of transformation matrix standards such as the Denavit–Hartenburg (DH) table. Such
transformations present problems of computation and time complexity when high Degrees
of Freedom (DOFs) of robotic manipulators are introduced.

To circumvent such issues, the use of soft-computing techniques is introduced. The pro-
posed model, CSOA-RBFNN, is compared with previous studies of soft-computing tech-
niques and is also compared with other meta-heuristic algorithms to show the efficacy of
the model presented in the manuscript. The simulation of a 3-DOF robotic manipulator is
created in ROS-RVIZ, and a dataset is generated with 1000 random-position samples of
the manipulator.

Ill-posed kinematic modelling and singularities are created during the random sam-
pling processes for the dataset-generation process. To ensure the neural network is trained
accurately, redundant data needs to be removed from the dataset. Therefore, the dataset is
preprocessed to 100 trainable entries. Finally, the dataset is then split in a 65/35 ratio for
training and testing sets.
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A comparative analysis is performed with previous soft-computing models presented
in the literature. Secondly, a comparison of meta-heuristic techniques, both traditional and
new, for training a Radial Basis Function Neural Network is also postulated. The results
show that the proposed technique has better accuracy and relative errors. The use of
such techniques puts forward a better solution to kinematic modelling than previously
articulated techniques.

6. Conclusions and Future Work

Exact algebraic mapping of end-effector position in Cartesian space entails high
computational weight and time lag when there are many Degrees of Freedom (DOFs) for
the manipulator. This paper proposed a model for the forward kinematic estimation of
robotic manipulators using soft-computing techniques. A Radial Basis Function Neural
Network (RBFNN) tuned with the Cooperative Search Optimisation Algorithm (CSOA) was
used to determine the end-effector position of a 3-DOF robotic manipulator. Simulations
of the robotic manipulator, to create an angle joint to end-effector position dataset, were
conducted on the Robot Operating System (ROS). The CSOA-RBFNN model was trained
on 65% of the dataset, while the remainder was used for testing. The metrics used for the
analysis of the efficacy of the technique are optimal spread value, best cost, and runtime
for the training of the model, and Mean Relative Error, Normal Mean Square Error, and
Mean Absolute Error for the testing of the model. A comparative study of the model has
also been carried out with an artificial neural network, Support Vector Regression (SVR)
model, and other meta-heuristic techniques, i.e., Particle Swarm Optimisation (PSO)-based
RBFNN and Grey Wolf Optimiser (GWO)-based RBFNN models. The results show the
superiority of this paper’s technique, and that it is a better approach for solving kinematic
estimation problems in real-world applications.

While the modelling was performed in a pre-processed dataset generated from a
simulation, future work includes training the model and performing the validation process
in real time. Secondly, the venue of inverse kinematic modelling also presents a way
forward, although singularities and nonlinearities make the problem more difficult to
solve.
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