605 research outputs found

    Power Consumption Forecasting by Hybrid Deep Architectures with Data Fusion

    Get PDF
    Many of the deep learning solutions for time-series forecasting reported in the literature include complex neural networks that may not be directly employed by the practitioner in the field. In this study, we demonstrate how the standard deep neural network types, convolutional neural network (CNN) and long short-term memory (LSTM) network can be applied in the field of time-series forecasting. This study consists of two parts. The first part is to compare CNN and LSTM models with classical methods like Random Forest (RF) and ARIMA for the univariate electric power consumption task. The second part is to use the best performing model from the first part in the hybrid model and perform data fusion with the newly built hybrid model for the electric power consumption forecasting task. CNN and LSTM models outperform traditional methods when their performances are evaluated on the univariate electric power consumption data of Illinois, USA. We also illustrate the use of hybrid deep learning models composed of standard CNN and LSTM for data fusion with the aim of time-series forecasting. When the hybrid models are applied to the fused data of the electric power consumption data and the multivariate weather data of Illinois, USA, the forecasting performance is improved compared to that when only univariate data is used

    A Prediction Model of Power Consumption in Smart City Using Hybrid Deep Learning Algorithm

    Get PDF
    A smart city utilizes vast data collected through electronic methods, such as sensors and cameras, to improve daily life by managing resources and providing services. Moving towards a smart grid is a step in realizing this concept. The proliferation of smart grids and the concomitant progress made in the development of measuring infrastructure have garnered considerable interest in short-term power consumption forecasting. In reality, predicting future power demands has shown to be a crucial factor in preventing energy waste and developing successful power management techniques. In addition, historical time series data on energy consumption may be considered necessary to derive all relevant knowledge and estimate future use. This research paper aims to construct and compare with original deep learning algorithms for forecasting power consumption over time. The proposed model, LSTM-GRU-PPCM, combines the Long -Short-Term -Memory (LSTM) and Gated- Recurrent- Unit (GRU) Prediction Power Consumption Model. Power consumption data will be utilized as the time series dataset, and predictions will be generated using the developed model. This research avoids consumption peaks by using the proposed LSTM-GRU-PPCM neural network to forecast future load demand. In order to conduct a thorough assessment of the method, a series of experiments were carried out using actual power consumption data from various cities in India. The experiment results show that the LSTM-GRU-PPCM model improves the original LSTM forecasting algorithms evaluated by Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for various time series. The proposed model achieved a minimum error prediction of MAE=0.004 and RMSE=0.032, which are excellent values compared to the original LSTM. Significant implications for power quality management and equipment maintenance may be expected from the LSTM-GRU-PPCM approach, as its forecasts will allow for proactive decision-making and lead to load shedding when power consumption exceeds the allowed leve

    A hybrid LSTM neural network for energy consumption forecasting of individual households

    Get PDF
    Irregular human behaviors and univariate datasets remain as two main obstacles of data-driven energy consumption predictions for individual households. In this study, a hybrid deep learning model is proposed combining an ensemble long short term memory (LSTM) neural network with the stationary wavelet transform (SWT) technique. The SWT alleviates the volatility and increases the data dimensions, which potentially help improve the LSTM forecasting accuracy. Moreover, the ensemble LSTM neural network further enhances the forecasting performance of the proposed method. Verification experiments were performed based on a real-world household energy consumption dataset collected by the 'UK-DALEat project. The results show that, with a competitive training efficiency, the proposed method outperforms all compared state-of-art methods, including the persistent method, support vector regression (SVR), long short term memory (LSTM) neural network and convolutional neural network combining long short term memory (CNN-LSTM), with different step sizes at 5, 10, 20 and 30 minutes, using three error metrics

    An Ensemble Approach for Multi-Step Ahead Energy Forecasting of Household Communities

    Get PDF
    This paper addresses the estimation of household communities' overall energy usage and solar energy production, considering different prediction horizons. Forecasting the electricity demand and energy generation of communities can help enrich the information available to energy grid operators to better plan their short-term supply. Moreover, households will increasingly need to know more about their usage and generation patterns to make wiser decisions on their appliance usage and energy-trading programs. The main issues to address here are the volatility of load consumption induced by the consumption behaviour and variability in solar output influenced by solar cells specifications, several meteorological variables, and contextual factors such as time and calendar information. To address these issues, we propose a predicting approach that first considers the highly influential factors and, second, benefits from an ensemble learning method where one Gradient Boosted Regression Tree algorithm is combined with several Sequence-to-Sequence LSTM networks. We conducted experiments on a public dataset provided by the Ausgrid Australian electricity distributor collected over three years. The proposed model's prediction performance was compared to those by contributing learners and by conventional ensembles. The obtained results have demonstrated the potential of the proposed predictor to improve short-term multi-step forecasting by providing more stable forecasts and more accurate estimations under different day types and meteorological conditionspublishedVersio

    Prediction of Electrical Energy Consumption Using LSTM Algorithm with Teacher Forcing Technique

    Get PDF
    Electrical energy is an important foundation in world economic growth, therefore it requires an accurate prediction in predicting energy consumption in the future. The methods that are often used in previous research are the Time Series and Machine Learning methods, but recently there has been a new method that can predict energy consumption using the Deep Learning Method which can process data quickly for training and testing. In this research, the researcher proposes a model and algorithm which contained in Deep Learning, that is Multivariate Time Series Model with LSTM Algorithm and using Teacher Forcing Technique for predicting electrical energy consumption in the future. Because Multivariate Time Series Model and LSTM Algorithm can receive input with various conditions or seasons of electrical energy consumption. Teacher Forcing Technique is able lighten up the computation so that it can training and testing data quickly. The method used in this study is to compare Teacher Forcing LSTM with Non-Teacher Forcing LSTM in Multivariate Time Series model using several activation functions that produce significant differences. TF value of RMSE 0.006, MAE 0.070 and Non-TF has RMSE and MAE values of 0.117 and 0.246. The value of the two models is obtained from Sigmoid Activation and the worst value of the two models is in the Softmax activation function, with TF values is RMSE 0.423, MAE 0.485 and Non-TF RMSE 0.520, MAE 0.519.

    Analysing the Residential Electricity Consumption using Smart Meter

    Get PDF
    A massive amount of electricity usage may be accessed on an everyday and hourly basis due to the advancement of smart power measuring technology. Electricity demand management and utility load management are made easier by energy usage forecasts. The majority of earlier studies have concentrated on the power consumption of business clients or residential buildings, or they have experimented with individual household electricity usage using behavioral and occupant sensor information. This study used smart meters to examine energy usage at a single household level to enhance residential energy services and gather knowledge for developing demand response strategies.The power usage of various appliances in a single household is estimated, by utilizing Autoregressive Integrated Moving Average (ARIMA) modeling technique, which is applied to daily, weekly, and monthly information granularity. To select the household’s energy consumption dataset for this study, a multivariate time-series dataset describing the four-year electricity usage of a household is provided. The use of Exploratory Data Analysis (EDA) is utilizedfor the selection of features and data visualization. The correlation coefficients with the daily usage of the household have been computed for the characteristics prepared for the forecast. The top three major determinants with the top three positive significance are "temperature," "hour of the day," and "peak index." A single household's usage is inversely related to the variables having negative coefficients. It should be noticed that the correlations among a household's attributes with usage vary from one another. Finally, the power prediction is analyzed in a single household

    DECODE: Data-driven Energy Consumption Prediction leveraging Historical Data and Environmental Factors in Buildings

    Full text link
    Energy prediction in buildings plays a crucial role in effective energy management. Precise predictions are essential for achieving optimal energy consumption and distribution within the grid. This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption using historical energy data, occupancy patterns, and weather conditions. The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings compared to existing prediction models. We compare our LSTM model with established prediction methods, including linear regression, decision trees, and random forest. Encouragingly, the proposed LSTM model emerges as the superior performer across all metrics. It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007. An additional advantage of our developed model is its capacity to achieve efficient energy consumption forecasts even when trained on a limited dataset. We address concerns about overfitting (variance) and underfitting (bias) through rigorous training and evaluation on real-world data. In summary, our research contributes to energy prediction by offering a robust LSTM model that outperforms alternative methods and operates with remarkable efficiency, generalizability, and reliability.Comment: 11 pages, 6 figures, 6 table

    Predicting the Future

    Get PDF
    Due to the increased capabilities of microprocessors and the advent of graphics processing units (GPUs) in recent decades, the use of machine learning methodologies has become popular in many fields of science and technology. This fact, together with the availability of large amounts of information, has meant that machine learning and Big Data have an important presence in the field of Energy. This Special Issue entitled “Predicting the Future—Big Data and Machine Learning” is focused on applications of machine learning methodologies in the field of energy. Topics include but are not limited to the following: big data architectures of power supply systems, energy-saving and efficiency models, environmental effects of energy consumption, prediction of occupational health and safety outcomes in the energy industry, price forecast prediction of raw materials, and energy management of smart buildings

    An ensemble model for predictive energy performance:Closing the gap between actual and predicted energy use in residential buildings

    Get PDF
    The design stage of a building plays a pivotal role in influencing its life cycle and overall performance. Accurate predictions of a building's performance are crucial for informed decision-making, particularly in terms of energy performance, given the escalating global awareness of climate change and the imperative to enhance energy efficiency in buildings. However, a well-documented energy performance gap persists between actual and predicted energy consumption, primarily attributed to the unpredictable nature of occupant behavior.Existing methodologies for predicting and simulating occupant behavior in buildings frequently neglect or exclusively concentrate on particular behaviors, resulting in uncertainties in energy performance predictions. Machine learning approaches have exhibited increased accuracy in predicting occupant energy behavior, yet the majority of extant studies focus on specific behavior types rather than investigating the interactions among all contributing factors. This dissertation delves into the building energy performance gap, with a particular emphasis on the influence of occupants on energy performance. A comprehensive literature review scrutinizes machine learning models employed for predicting occupants' behavior in buildings and assesses their performance. The review uncovers knowledge gaps, as most studies are case-specific and lack a consolidated database to examine diverse behaviors across various building types.An ensemble model integrating occupant behavior parameters is devised to enhance the accuracy of energy performance predictions in residential buildings. Multiple algorithms are examined, with the selection of algorithms contingent upon evaluation metrics. The ensemble model is validated through a case study that compares actual energy consumption with the predictions of the ensemble model and an EnergyPlus simulation that takes occupant behavior factors into account.The findings demonstrate that the ensemble model provides considerably more accurate predictions of actual energy consumption compared to the EnergyPlus simulation. This dissertation also addresses the research limitations, including the reusability of the model and the requirement for additional datasets to bolster confidence in the model's applicability across diverse building types and occupant behavior patterns.In summary, this dissertation presents an ensemble model that endeavors to bridge the gap between actual and predicted energy usage in residential buildings by incorporating occupant behavior parameters, leading to more precise energy performance predictions and promoting superior energy management strategies
    • …
    corecore