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ABSTRACT 

 

 

The design stage of a building plays a pivotal role in influencing its life cycle 

and overall performance. Accurate predictions of a building's performance are 

crucial for informed decision-making, particularly in terms of energy 

performance, given the escalating global awareness of climate change and the 

imperative to enhance energy efficiency in buildings. However, a well-

documented energy performance gap persists between actual and predicted 

energy consumption, primarily attributed to the unpredictable nature of 

occupant behavior. 

Existing methodologies for predicting and simulating occupant behavior in 

buildings frequently neglect or exclusively concentrate on particular behaviors, 

resulting in uncertainties in energy performance predictions. Machine learning 

approaches have exhibited increased accuracy in predicting occupant energy 

behavior, yet the majority of extant studies focus on specific behavior types 

rather than investigating the interactions among all contributing factors. 

This dissertation delves into the building energy performance gap, with a 

particular emphasis on the influence of occupants on energy performance. A 

comprehensive literature review scrutinizes machine learning models 

employed for predicting occupants' behavior in buildings and assesses their 

performance. The review uncovers knowledge gaps, as most studies are case-

specific and lack a consolidated database to examine diverse behaviors 

across various building types. 

An ensemble model integrating occupant behavior parameters is devised to 

enhance the accuracy of energy performance predictions in residential 

buildings. Multiple algorithms are examined, with the selection of algorithms 

contingent upon evaluation metrics. The ensemble model is validated through 

a case study that compares actual energy consumption with the predictions of 

the ensemble model and an EnergyPlus simulation that takes occupant 

behavior factors into account. 
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The findings demonstrate that the ensemble model provides considerably 

more accurate predictions of actual energy consumption compared to the 

EnergyPlus simulation. This dissertation also addresses the research 

limitations, including the reusability of the model and the requirement for 

additional datasets to bolster confidence in the model's applicability across 

diverse building types and occupant behavior patterns. 

In summary, this dissertation presents an ensemble model that endeavors to 

bridge the gap between actual and predicted energy usage in residential 

buildings by incorporating occupant behavior parameters, leading to more 

precise energy performance predictions and promoting superior energy 

management strategies. 

 

 

 

 

 

 

 

 

 

  



 

7 

 

 

TABLE OF CONTENTS 

 TITLE PAGE 

   

DECLARATION 2 

DEDICATION 3 

ACKNOWLEDGEMENT 4 

ABSTRACT 5 

TABLE OF CONTENTS 7 

LIST OF FIGURES 11 

LIST OF TABLES 13 

LIST OF ABBREVIATIONS 15 

LIST OF APPENDICES 16 

CHAPTER 1 INTRODUCTION 18 

1.1. Overview 18 

1.2. Research Background 22 

1.3. Problem Statement 29 

1.4. Research Questions 30 

1.5. Research Aim and Objectives 30 

1.6. Scope of the Research 32 

1.7. Significance of the Research 32 

1.8. Research Challenges and Limitations 33 

1.9. Research Gap 34 

1.10. Operational Definitions and Technical 
Terms 36 

1.11. Thesis Structure 37 

CHAPTER 2 LITERATURE REVIEW 42 

2.1 Introduction 42 



 

8 

 

2.2 Occupants Behaviour and Building Energy 
Performance 44 

2.3 Impact of Occupants Behaviour 47 

2.3.1 Window Opening and Closing 48 

2.3.2 Shade and Blind Operation 48 

2.3.3 Lighting Control 48 

2.3.4 Thermostat and HVAC Adjustment 48 

2.3.5 Appliances Usage 49 

2.3.6 Occupancy and Occupant’s Movement 
(Passive) 49 

2.4 Techniques for Predicting Energy Consumption 49 

2.4.1 Simulation Techniques 49 

2.4.2 Machine Learning Techniques 51 

2.4.1.1 Linear and Logistic Regressions 52 

2.4.1.2 Bayesian Networks 53 

2.4.1.3 Decision Tree 54 

2.4.1.4 Support Vector Machines 54 

2.4.1.5 Artificial Neural Network 54 

2.4.2.6  Ridge Regression 55 

2.4.2.7  Lasso Regression 55 

2.4.2.8  Gradient Boosting 55 

2.4.2.9  Random Forest 56 

2.5 Literature on Occupant’s Active Behaviour 56 

2.5.1 Window Opening and Closing 57 

2.5.2 HVAC Control and Thermostat Adjustment 66 

2.5.3 Appliances Use 73 

2.5.4 Shades, Blinds and Lighting Control 78 

2.6 Energy Prediction Accuracy of Machine Learning 
Techniques 83 

2.7 Summary 91 

CHAPTER 3 RESEARCH METHODOLOGY 94 

3.1 Introduction 94 



 

9 

 

3.2 Research Design and Approach 95 

3.2.1 Research Strategy Phase 97 

3.2.2 Research Tactical Phase 98 

3.2.3 Research Operational Phase 99 

3.3 Operational Framework 99 

3.3.1 PHASE-1: Literature Review and 
Planning 99 

3.3.2 PHASE-2: Research Methodology 104 

3.4 Methodology of Literature Review 106 

3.4.1 Search Strategy 106 

3.4.2 Inclusion Criteria 108 

3.4.3 Exclusion Criteria 109 

3.4.4 Research Quality Valuation 109 

3.5 PHASE-3: Model Development 111 

3.6 PHASE 4: Data Collection and Analysis 113 

3.7 PHASE 5: Evaluation 115 

3.7.1 Evaluation 1 115 

3.7.2 Evaluation 2 115 

3.7.3 Evaluation 3 118 

3.8 Summary 118 

Chapter 4   ENSEMBLE MODEL ARCHITECTURE AND 
ALGORITHMIC DESIGN 121 

4.1 Introduction 121 

4.2 Lasso regression 121 

4.3 Ridge regression 123 

4.4 Random Forest 124 

4.5 Gradient Boosting Regression 125 

4.6 Proposed Model 127 

4.7 Summary 131 

Chapter 5   MODEL DEVELOPMENT AND EVALUATION 133 

5.1 Introduction 133 

5.2 Dataset Description 134 



 

10 

 

5.2.1. Data Acquisition 134 

5.2.2. Data Description 135 

5.2.3. Data Processing 136 

5.2.4. Data analysis 138 

5.3 Modeling Phase 140 

5.3.1. Algorithms selection 140 

5.3.2. Choice of ensemble 141 

5.3.3. Ensemble Model building 141 

5.3.4. Model Evaluation 142 

5.3.5. Model Results 143 

5.4. conclusion 145 

CHAPTER 6   MODEL VALIDATION 148 

6.1 Introduction 148 

6.2 Casestudy approach 149 

6.2.1 Case study selection 149 

6.2.2 Simulation model parameters and process 150 

6.2.3 Ensemble model parameters and execution 153 

6.3 Comparative analysis and results 156 

6.3.1 Input comparison and constraints 156 

6.3.2 Results comparison 157 

6.4 Limitations and future work 158 

6.5 Conclusion 159 

CHAPTER 7   CONCLUSION 161 

7.1 Summary 161 

7.2 Conclusions 163 

7.3 Limitations 163 

7.4 Future Research 164 

REFERENCES 165 

 

 

 



 

11 

 

 

 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 1 1 Factors influencing residential energy consumption.   18 

Figure 1 2 applications of the proposed machine learning ensemble model  21 

Figure 1 3 MPC approaches based on building energy prediction   23 

Figure 1 4 White-box energy performance prediction approach   23 

Figure 1 5 Black box energy prediction approach     24 

Figure 1 6 Occupant’s active and passive energy behaviours (Zendeh, 2019) 25 

Figure 1 7  Energy performance gap and accompanied uncertainties  27 

Figure 1 8  Influences on energy use      27 

Figure 1 9  Research structure       39 

Figure 2 1 Parameters influencing building energy use    43 

Figure 2 2 Effect of occupant behaviour on building energy performance 44 

Figure 2 3 Occupant’s behaviour       46 

Figure 2 4 Overview of machine learning models    51 

Figure 2 5 Number of studies for occupants’ behaviour    56 

Figure 2 6 Types of buildings       57 

Figure 2 7 Building types        65 

Figure 2 8 Machine learning algorithms for HVAC thermostats adjustment 66 

Figure 2 9 Building types        72 

Figure 2 10 Machine learning algorithms for plug loads/appliances use  72 

Figure 2 11 Building types        77 

Figure 2 12 algorithms for shades, blinds and lighting control   78 

Figure 3 1 Engineering research method process     95 

Figure 3 2 Structure of research phases. Wohlin and Aurum (2015)  96 

Figure 3 3 The procedure of research decision making    96 

Figure 3 4 Operational Framework               102 

Figure 3 5 Flow chart research methodology              104 

Figure 3 6 Search string                 106 

Figure 3 7 Search strategy                107 



 

12 

 

Figure 3 8 Quality score       110 

Figure 3 9 Conceptual model with occupants’ behaviour  112 

Figure 3 10 Structure of phase 4 and 5     113 

Figure 4 1 Lasso Regression      122 

Figure 4 2 Ridge regression      123 

Figure 4 3  Random Forest      124 

Figure 4 4 Gradient boosting      125 

Figure 4 5 Ensemble energy consumption prediction process  128 

Figure 4 6  ensemble process      128 

Figure 5 1  snippet of dataset      136 

Figure 5 2  Data skewness       137 

Figure 5 3  handling data skewness     137 

Figure 5 4  Histogram of energy use distribution    138 

Figure 5 5  impact of occupant behavior on energy performance  138 

Figure 5 6  algorithm training      139 

Figure 5 7  MAE and MSE evaluation metrics    139 

Figure 5 8  RMSE and MAPE evaluation metric    140 

Figure 5 9  snippet of pipelines      141 

Figure 5 10  ensemble model pipeline     141 

Figure 5 11 linearity vs normality vs Homoscedasticity   142 

Figure 5 12  actual vs predicted      143 

Figure 5 13  KWH results       143 

Figure 5 14  ensemble model actual vs predicted graph   143 

Figure 6 1  case study description      148 

Figure 6 2  heating schedule      148 

Figure 6 3  building geometry      149 

Figure 6 4  designbuilder inputs      150 

Figure 6 5  input insertion snippet      154 

Figure 6 6  combining datasets snippet     155 

Figure 6 7  prediction output snippet     155 

Figure 6 8  simulation results      157 

Figure 6 9  actual energy consumption     157 

 

 



 

13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

   

Table 1-1 Energy Efficiency Requirements in Different Regions. 23 

Table 1-2 Operational definitions 36 

Table 1-3 Mapping objectives and research questions 38 

Table 2-1 Theories Influencing Occupant Behavior and Energy Use 
in Buildings 46 

Table 3-1 Mapping of research methods with chapters 94 

Table 3-2  Gantt chart of research milestone 102 

Table 3-3 Phase 2 of operational framework 104 

Table 3-4 Quality assessment checklist 109 



 

14 

 

Table 3-5 Quality valuation of selected studies 110 

Table 3-6 Phase 3 of operational framework 112 

Table 3-7 Phase-4 of operational framework 114 

Table 4-1  Solo ML versus Ensemble merits and demirts 128 

Table 5-1 Occupant behavior and energy performance datasets
 134 

Table 5-2 Building related parameters             135 

Table 5-3 occupant related parameters 136 

Table 5-4 evaluation metrics for solo and ensemble models 143 

Table 6-1 Parameters of the model versus simulation           152 

Table 6-2 Ensemble model input 153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 

 

LIST OF ABBREVIATIONS 

AI - Artificial Intelligence 

ANN - Artificial Neural Networks 

ML - Machine Learning 

OB - Occupant Behaviour 

DT - Decision Tree 

EECPM - Ensemble Energy Consumption Prediction Model 

MMRE - Mean Magnitude of Relative Error 

MRE - Magnitude of Relative Error 

MSE - Mean Squared Error 

MAPE - Mean Absolute Percentage Error 

RMSE - Root Mean Squared Error 

MAD - Mean Absolute Deviation 

SLR - Systematic Literature Review 

SVR - Support Vector Regression 

RF - Random Forest 

NN - Neural Network 

HVAC - Heating, Ventilation, and Air Conditioning 

MPC - Model Predictive Control 

BPS - Building Performance Standards 

GB - Gradient Boost  

RT - Regression Tree 

MLR - Multiple Linear Regression 

LSTM - Long Short-Term Memory 

XGB - Extreme Gradient Boosting 

   

   

   

   

 

   



 

16 

 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

   

Appendix A                          machine learning code                               171 

Appendix B                            Design builder overview                              171 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

17 

 

 

 

 

AN ENSEMBLE MODEL FOR PREDICTIVE ENERGY 

PERFORMANCE: 

CLOSING THE GAP BETWEEN ACTUAL AND PREDICTED 

ENERGY USE IN RESIDENTIAL BUILDINGS 

 

 

 

 

 

 

 

 

 

 

Introduction 
Chapter 1 

 

 

 

 

 

 

 

 

 

 

 

 



 

18 

 

CHAPTER 1  

 

 

INTRODUCTION 

1.1. Overview 

Over recent years, energy consumption in residential buildings has 

experienced a significant increase, with global energy demand projected to 

rise by 28% by 2040 (IEA, 2017). This trend emphasizes the urgency of 

innovative solutions to ensure efficient energy use, thereby reducing the 

detrimental impacts of excessive consumption on the environment and the 

economy (Zuhaib et al., 2022). The residential sector alone accounts for 

approximately 29% of total global energy consumption (IEA, 2021), which 

further emphasizes the importance of addressing this issue. 

Building operations significantly impact energy consumption, with the 

building sector contributing to a sizable portion (about 36%) of global energy 

use (Nejat et al., 2015). Consequently, it is essential to enhance building 

energy efficiency through the implementation of precise and reliable energy 

consumption prediction models (Y. Jin et al., 2021; Olu-Ajayi et al., 2022b). 

Accurate prediction models facilitate better decision-making regarding energy 

conservation measures, retrofitting strategies, and policy formulation (Dong et 

al., 2023; Jami et al., 2021). 

Energy is a vital component of economic and social development 

(Mohamed & Lee, 2006; Song et al., 2023). However, the rising energy 

demand, limited resources to produce energy, and the need for high-quality 

energy at an affordable price have made sustainable growth challenging 

(Kaygusuz, 2012). The recent increase in energy prices in the UK and the cost 

of living crisis underscore the significance of finding efficient ways to meet the 

nation's energy needs (Farghali et al., 2023). In this context, achieving energy 

efficiency in residential buildings becomes a priority, given the sector's 

considerable contribution to overall energy consumption. 
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Occupant behavior plays a crucial role in energy demand, emphasizing 

the importance of utilizing energy efficiently (Harputlugil & de Wilde, 2021; 

Janda, 2011; Jia et al., 2017). Factors such as occupants' habits, preferences, 

and lifestyles significantly influence energy consumption patterns in residential 

buildings (Nia et al., 2022) (Fig 1.1). Accurate energy demand prediction for 

residential usage can lead to better energy management and conservation 

strategies, as it enables the identification of energy-saving opportunities and 

the tailoring of demand response programs (Pallonetto et al., 2020; Qureshi et 

al., 2011). 

Machine learning algorithms have shown promise in energy 

consumption prediction, accounting for the complex interplay between various 

factors influencing residential energy use (Mohammadiziazi & Bilec, 2020; Pan 

& Zhang, 2020). Machine learning approaches offer several advantages over 

traditional and simulation-based methods in energy consumption prediction. 

First, machine learning models can learn from large datasets and capture 

complex relationships between input features and energy consumption, 

thereby providing more accurate predictions (Bouktif et al., 2018). Second, 

Figure 1-1 Factors influencing residential energy consumption. 
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machine learning algorithms can adapt to changes in the underlying data 

distribution, making them suitable for handling non-stationary and noisy data 

(Padakandla et al., 2020).  

The performance of machine learning methods in numerous 

applications has been widely recognized, including energy consumption 

forecasting, fault detection and diagnosis, and demand-side management 

(Alamaniotis & Bargiotas, 2020; Fumo & Rocco, 2015). The use of IoT devices 

to collect context information about the indoor environment, coupled with 

various machine learning techniques, allows for the anticipation of future 

circumstances and energy requirements (Mashal et al., 2021; Khan et al., 

2020). This integration fosters more informed decision-making by enabling 

real-time monitoring, control, and optimization of energy consumption in 

residential buildings (Zhang et al., 2020; Jin et al., 2020). 

Existing building energy simulation tools, such as EnergyPlus and 

TRNSYS, can provide insights into energy consumption patterns (Crawley et 

al., 2008; Klein et al., 2010). However, these tools often require expert 

knowledge and detailed information about building characteristics, which may 

not always be available (Nouvel et al., 2015). Furthermore, these tools are 

computationally intensive and may not adequately capture the complexities of 

occupant behavior and their interactions with building systems (Ascione et al., 

2016). 

Recent advancements in data collection and processing technologies 

have paved the way for the development of data-driven models for energy 

consumption prediction. These models leverage data collected from various 

sources, such as smart meters, building automation systems, and 

environmental sensors, to train machine learning algorithms capable of 

predicting energy consumption patterns in residential buildings (Deb et al., 

2020; Sanaullah et al., 2020). The integration of these data sources with 

machine learning techniques offers a more comprehensive understanding of 

the factors influencing energy consumption and enables the development of 

more accurate and robust prediction models. 
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However, despite the promising results achieved by data-driven models, 

there is still room for improvement in terms of prediction accuracy and 

generalizability (Zhao & Magoules, 2012; Li et al., 2014). One of the key 

challenges is the selection of appropriate feature sets and the development of 

models that can effectively capture the complex interactions between various 

factors influencing energy consumption. Another challenge lies in the 

development of models that can adapt to changing conditions and provide 

reliable predictions under different scenarios. 

To address these challenges, the proposed occupancy behavioral-

based machine learning ensemble model will incorporate a diverse set of 

features, including building characteristics, and occupant behavior data. This 

comprehensive feature set will enable the model to better capture the complex 

relationships between various factors and their impact on energy consumption 

in residential buildings. 

Additionally, the proposed model will utilize ensemble learning 

techniques, which have been proven effective in improving the prediction 

accuracy and generalizability of machine learning models (Zhang & Qi, 2019; 

Zhou, 2012). By combining the strengths of Lasso, Ridge, Random forrest, and 

Extreme Gradient Boost algorithms, the ensemble model aims to achieve 

better overall performance, even in the presence of noisy and non-stationary 

data. 

The development and evaluation of the proposed model will be carried 

out using real-world datasets collected from residential buildings, ensuring its 

applicability and relevance to real-life situations (Li et al., 2018; Todeschi et 

al., 2020). A thorough comparison with existing models and approaches will 

be conducted to assess the performance of the proposed model and identify 

potential areas for improvement. 

Furthermore, the findings of this research can inform policymakers and 

stakeholders involved in the planning and development of sustainable urban 

environments. By identifying the key factors influencing residential energy 

consumption and demonstrating the effectiveness of machine learning models 
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in predicting energy use, this research can provide valuable insights for the 

design and implementation of energy efficiency policies, building codes, and 

regulations (Pérez-Lombard et al., 2008; Ürge-Vorsatz et al., 2015). 

In conclusion, this thesis aims to develop an innovative ensemble model 

for predictive energy performance in residential buildings, addressing the 

pressing need for accurate and reliable energy consumption prediction (Fig 

1.2). By integrating occupancy behavioral factors with advanced machine 

learning techniques, the proposed model seeks to close the gap between 

actual and predicted energy use, ultimately contributing to the sustainable 

growth and efficient energy management of residential buildings. The findings 

of this research have the potential to significantly impact various aspects of 

energy management, from demand response programs to policy development, 

ultimately fostering a more sustainable and energy-efficient future. 

 

1.2. Research Background 

The  prediction models are models that employ data mining and 

probability to predict outcomes (Witten et al., 2016). Building energy 

performance prediction models use a set of input parameters to quantify 

building energy demands (Krstić & Teni, 2017). These prediction models are 

Figure 1-2 Potential applications of the proposed machine learning ensemble model  

 



 

23 

 

commonly used to predict the energy use to identify patterns, changes in 

energy use, or ensure that energy use meets energy requirements. Building 

energy performance prediction is an aid in guiding decision making to support 

building codes, evaluate different design or renovation alternatives, guide 

occupants and stakeholders (Swan & Ugursal, 2009).  In UK, Europe, and 

worldwide, buildings are bound to reach minimum requirements in terms of 

energy efficiency as per the Energy Efficiency Requirements in Different 

Regions table (Table 1.1). Thus, building energy performance prediction 

became a growing concern area for researchers in their attempt to conserve 

energy, minimise energy waste and achieve the required energy targets in 

buildings. 

 

Table 1-1 Energy Efficiency Requirements in Different Regions. 

 

Region Energy Efficiency Requirements Reference 

UK • Minimum EPC rating of E for privately rented properties 

• Minimum EPC rating of E for new tenancies and 

renewals, and for all private rented properties by 2023 

• Ten Point Plan for a Green Industrial Revolution 

• Higher energy efficiency standards for new homes from 

2025 
 

(UK Government, 2018) 

(UK Government, 2020) 

(UK Government, 2019) 

(UK Government, 2023) 

Europe • Various energy efficiency targets for 2020 and 2030 

• All new buildings to be nearly zero-energy buildings by 

end of 2020, and all existing buildings to be renovated 

to NZEB standard by 2050 

• Headline EU energy efficiency target for 2030 of at least 

32.5% 
 

(European Commission, 

2018) 

(European Commission, 

2021) (European 

Commission, 2022) 

Worldwide • Efforts to limit temperature increase to 1.5°C, including 

measures to improve energy efficiency in buildings and 

other sectors 

(UNFCCC, 2019) 

(IEA TCP, 2021) 
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Various energy prediction approaches have been developed and 

utilised depending on different levels of details and input requirements. 

Literature has revealed and categorized these approaches as black, white and 

grey box approaches (Borgstein et al., 2016; Foucquier et al., 2013; Koulamas 

et al., 2017; Krstić & Teni, 2017; Li et al., 2014) shown in Figure 1.3. 

 

 

 

White box models, defined as physical models, are calculation-based 

models that rely on engineering approach to model building components and 

systems shown in Figure 1.4. These models depend on a high level and details 

of inputs to ensure the accuracy of the simulation. EnergyPlus (Crawley et al., 

2000), IES VE, DOE-2, TRANSYS and ESP-r are the most used white box 

approaches for energy performance simulations (Castaldo & Pisello, 2018; 

Zou et al., 2018).  

 

 

 

  

 

Black box models are data-driven models based on advanced statistical 

and machine learning approaches shown in Figure 1.5. These models use 

monitoring/empirical settings to find connection and trends between outputs 

and inputs, and make deductions and predictions without the required 

Input 

Physical 
characteristics 

 

Dynamic simulation based on 
thermodynamic equations 

Output 

Energy 

performance 

 

Figure 1-3 MPC approaches based on building energy prediction 

Figure 1-4 White-box energy performance prediction approach 
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knowledge of the physical systems (Koulamas et al., 2017; Krstić & Teni, 

2017).  

 

 

 

 

 

Grey box models are hybrid models that employ statistical and data-

driven approach combined with specific knowledge derived from physical 

building characteristics (Krstić & Teni, 2017). The building energy models 

accuracy varies according to its purpose, breadth of input parameters, data 

abundance, and level of accuracy in the data itself. The availability and 

accuracy of such elements define the reliability of the predictive model to 

provide appropriate results.  

The influence of building occupants on energy usage has been extensively 

examined, yet there remains a persistent discrepancy between anticipated and 

actual energy usage in buildings (Delzendeh et al., 2017). This indicates a 

need for more in-depth research to comprehend the patterns of behavior 

among occupants. The spectrum of actions by occupants that influence the 

energy usage of a building includes the operation of appliances, the opening 

and closing of windows and doors, the utilization of hot water, the adjustment 

of heating, ventilation, and air conditioning (HVAC) systems such as 

thermostat settings, the use of lighting, and the manipulation of blinds 

(Barthelmes, Becchio, et al., 2017). Occupant behavior is not limited to direct 

interactions with energy-consuming devices; it also includes indirect 

contributions such as the generation of body heat, which contributes to the 

internal heat load of a building (Buso et al., 2015). Categorizing the various 

ways occupants actively and passively contribute to a building's energy profile 

is crucial for a more nuanced understanding of their overall impact on energy 

consumption. In their study, Zendeh (2019) offers a delineation of these 

behaviors in Figure 1.6.  

 

 

Training data Prediction Black box 

Figure 1-5 Black box energy prediction approach 
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A fundamental part for building design and construction is decision 

making, in which achieving national and international targets, and meeting 

objectives and requirement is crucial.  There is a great emphasis on building 

energy performance prediction, as well as the enabling of energy efficiency 

measures amongst the scientific research community as buildings are one of 

the main energy consuming sectors with an estimate of  one third of total 

energy resources (Paone & Bacher, 2018; Pérez-Lombard et al., 2008). This 

consumption has been on the rise over the last decade, thus rationalizing the 

need to minimize building energy performance. To address this concern, more 

energy efficient building design and operational solutions are put in place 

(UNEP, 2016), which are projected through energy performance predictions. 

Energy performance prediction facilitates the exploration of different scenarios 

and the investigation various solutions to utilize the energy in buildings in the 

most effective manner (Mehta et al., 2013).  

Since the importance of predicting the building energy performance is 

Figure 1-6 Occupant’s active and passive energy 

behaviours (Zendeh, 2019) 
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established as a mean to achieve energy conservation and promote effective 

building use Huang et al. (2014), the process of building energy performance 

prediction is constantly under study to provide more reliable and reinforce 

building energy optimization. When predicting building energy performance, 

the outcome is typically determined through building simulation software. 

Energy simulation software provides the potential to analyze the energy usage 

patterns and predict the overall energy performance (Huang et al., 2014). 

Nevertheless, for the model to obtain reliable outcomes, time, skill, and high 

level of accuracy and details are needed  (Buratti et al., 2014).  

The prediction relies heavily on the well-informed identification and 

understanding of all the parameters contributing in the building energy 

consumption and their integration in the model (Demanuele et al., 2010). 

Those parameters include building physical and thermal characteristics, 

climatic and meteorological  conditions, building control systems and services, 

indoor environmental quality requirements, and occupant related inputs (Krstić 

& Teni, 2017; Yu et al., 2010). The inclusion and the reliable estimation of all 

these parameters, and the comprehension of their impact on building energy 

performance results in more accurate energy prediction, which support 

minimizing the building performance gap, and optimizing energy performance 

(Yu et al., 2011).   

As per definition, the energy performance gap is the gap between actual 

and predicted energy performance (De Wilde, 2014). One of the most 

influential factors contributing to this gap is said to be occupant’s behaviours 

and its estimation which, in most cases, is based on unrealistic, oversimplified 

and unreliable energy-behavioural assumptions shown in Figure 1.7 (Buso et 

al., 2015; De Wilde, 2014; Haldi & Robinson, 2011; A. C. Menezes et al., 

2012). Providing valid energy predictions implies extensive recognition and 

comprehension of occupant’s behaviour in buildings and their impact on 

energy performance. This currently presents a challenge due to the 

complicated, stochastic and sophisticated nature of occupant’s behaviour (Yan 

& Malkawi, 2013).  
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Since the impact of occupants behaviour on energy performance is 

highlighted, more advanced methods that are able to learn from the interaction 

between the occupant and buildings are needed to predict the building energy 

performance (Alaaeddine & Wu, 2017; Tam et al., 2018). The energy used in 

a residential building is influenced by climatic, social, economic and cultural 

context is shown in Figure 1.8. 

 

 
 
 

 

 

 

 

 

 

 

 

 

Numerous attempts to incorporate the impact of occupant’s behavioural 

parameters in simulation models have been made in order to provide more 

accuracy and reliability (Jang & Kang, 2016; Wang & Ding, 2015; Yu et al., 

2011; Zhao & Magoulès, 2012). Those attempts proved that building energy 

performance calculation has a nonlinear dependency on various number of 

external and internal variables with high level dimensional data (Huang et al., 

2014). The machine learning approaches have been widely studied as 

prediction approaches for their ability to map  nonlinear dependencies, and 

deal with high dimensional data (Okujeni et al., 2014). Machine learning 

Figure 1-7 Energy performance gap and accompanied uncertainties 

Figure 1-8 Influences on energy use 
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approaches are capable to deliver otherwise challenging tasks, such as 

classification of behavioural patterns, and providing insights and prediction 

from complex datasets. Therefore, machine learning approaches to model and 

predict occupant’s behaviour energy-related parameters affecting building 

energy performance are being sought for in this research. By accurately 

quantifying the impact of occupant’s behaviour on energy performance, more 

reliable energy performance prediction can be achieved; hence a step forward 

towards supporting energy efficiency targets and related building policies and 

regulations.   

1.3. Problem Statement 

Predicting energy consumption in residential buildings with precision is crucial 

for climate change mitigation and sustainable development (Lim & Yun, 2017). 

However, a significant discrepancy between estimated and actual energy use 

persists, largely due to the current predictive models' simplistic assumptions 

about occupant behavior (Barthelmes, Becchio, et al., 2017). This gap not only 

undermines the economic and environmental efforts but also highlights the 

necessity for models that capture the nuanced dynamics of human interactions 

with their living spaces. 

Studies have established the profound influence of occupant behavior on 

building energy performance. Yet, there is a clear shortfall in integrating the 

full spectrum of these behaviors into predictive models, which limits the 

understanding of their effects on energy consumption. The focus of existing 

research on a select few active behaviors, like lighting (Gunay et al., 2017) and 

thermostat adjustments (Gunay et al., 2018), which doesn’t account for the 

interconnected nature of these actions within the broader ecosystem of 

residential energy use. 

For instance, thermostat adjustments are not standalone actions but are part 

of a complex interplay involving internal heat gains from appliances, the 

physical presence of occupants, and external climatic conditions. Similarly, the 

decision to open windows for ventilation is a behavior that interacts with 

heating and cooling demands, personal comfort levels, and preferences for 

natural over mechanical ventilation. 
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This research responds to the need for an integrated approach that 

acknowledges the complexity and interdependence of occupant behaviors. It 

proposes an ensemble machine learning model that enhances the precision of 

energy consumption predictions by accounting for occupant behaviors. The 

model leverages the combined strengths of Lasso regression, Ridge 

regression, Random Forest, and Gradient Boosting to form a robust framework 

capable of capturing the intricate patterns of energy use.  

 

1.4. Research Questions 

The research questions below are devised to answer the hypothesis: 

RQ1: What specific shortcomings exist within the current literature regarding 

the influence of occupant behavior on residential energy performance, 

and how can they be addressed? 

RQ2: How to develop an occupancy behaviour-based ensemble machine 

learning model to improve energy consumption accuracy prediction of 

residential buildings using Lasso regression, Kridge regression, 

Random forrest, and Gradient boosting? 

RQ3: How can the accuracy of the proposed occupant behavior-inclusive 

ensemble machine learning model be assessed? 

RQ4: How to validate the reliability and real-world applicability of the proposed 

ensemble machine learning model for energy prediction? 

1.5. Research Aim and Objectives 

1.5.1. Research Aim 

The aim of this research is to develop an ensemble machine learning model 

informed by occupant behavior to narrow the discrepancy between predicted 

and actual energy consumption in residential buildings. By comprehensively 

incorporating the various factors that influence occupants' behaviors into 
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energy prediction models, the research seeks to enhance the precision and 

reliability of these predictions. 

The proposed ensemble model aims to offer energy modelers a 

comprehensive framework that enhances the precision of energy performance 

predictions by factoring in the multifaceted interactions of occupant behaviors. 

This framework is intended to guide informed design and operational choices 

that bolster energy efficiency within residential environments. 

 

Hypothesis:  

Developing an occupancy behaviour-based ensemble machine learning model 

will improve the accuracy of energy performance predictions in residential 

buildings compared to traditional simulation methods. 

 

1.5.2. Research Objectives 

The main objective of this research is: 

“To Improve Energy Consumption Accuracy Prediction of Residential 

Buildings” 

To achieve aim, the following objectives are formulated: 

RO1: To identify most prominent occupants related parameters influencing 

the residential building energy performance, systematically review and 

evaluate the machine learning algorithms to determine the best fitting 

algorithm to be applied to predict the energy consumption.  

RO2: To develop an ensemble machine learning predictive model for 

residential buildings energy consumption accuracy based on 

occupant’s behavior-based inputs.  

RO3: To evaluate the improvement of prediction accuracy of an ensemble 

machine learning model by comparing existing  solo models. 

RO4: To validate the applicability of the proposed ensemble predictive model 

with diverse evaluation metrics. 
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RO5: To validate the applicability of the proposed ensemble predictive model 

by applying in a real residential building and compare to simulation 

results. 

1.6. Scope of the Research 

In recent years, many researchers focus on predicting energy 

consumption in residential sector due to its importance in growth and economic 

development of the country. Because of imbalance use of energy in residential 

buildings due to seasonal and nonlinear behaviour of energy consumption, 

many countries suffer from energy crisis and some of the countries waste extra 

energy due to ineffective prediction of energy consumption. Hence there is a 

need to predict energy consumption accurately to cover the above-mentioned 

issues. There is a compelling need for improving accuracy of residential 

building energy predictions to be more occupant’s behaviour oriented to 

provide more reliable energy predictions and hence minimize the performance 

gap. Improved prediction accuracy along with low error rate can significantly 

contribute to the economic development of the country. Resultantly, not only 

energy wastage significantly reduces but energy crisis can also significantly 

have covered.  

The main contribution of this research is to propose an occupancy 

behaviour-based ensemble machine learning model to reduce the gap 

between actual and predicted energy consumption residential buildings by 

integrating all factors contributing to occupants’ behaviours into building 

energy predictions. The inclusion of occupant’s behaviour impact on energy 

consumption is the focus of this research as this serves in minimizing the 

energy performance gap and provide more reliability in predictions.  

1.7. Significance of the Research 

A significant amount of energy is wasted every year due to incorrect 

usage which can be reduced by using energy effectively. To reduce energy 

wastage intelligent solutions are required which can be overcome using 

accurate energy consumption prediction. Minimizing the energy performance 
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gap has been a challenge over the past decades for researchers and buildings 

energy modelers, achieving the anticipated performance and abiding to energy 

codes is indispensable.  

To increase building energy utilization, a specific effective strategy must 

be put out. Building managers may make better decisions and more effective 

use of all sorts of equipment by using building energy consumption prediction. 

As a result, this approach is efficient and useful for reducing building energy 

use and raising energy utilization. Ineffective use of energy leads in a 

considerable annual loss of energy; hence waste may be decreased by doing 

so. There is also an imbalance in energy usage that can be the result of energy 

crisis as energy demands are increased with the development of smart 

systems in residential and industrial sectors. Hence there is a need to predict 

energy consumption using intelligent computing which is possible to predict 

with machine learning models. Due to the importance of energy consumption 

prediction, many researchers focused on this area very actively. Many 

researchers develop solo models to predict energy consumption and provide 

results with improved accuracy and low error rates but only a few researchers 

focused on ensemble models. Due to the best of knowledge, this area is still 

thirsty and needs attention to meet the desired accuracy with low error rates. 

The inclusion of occupant’s behaviour impact on energy consumption is the 

focus of this research as this serves in minimizing the energy performance gap 

and provide more reliability in predictions. The proposed ensemble model will 

provide guidelines for energy modellers to improve the accuracy of energy 

predictions and understand all possible scenarios and outcomes of occupant 

behaviour in way informed design decisions can be deduced to promote 

energy efficiency in residential buildings. 

1.8. Research Challenges and Limitations 

• Sample Size Determination: The unpredictable and heterogeneous nature 

of human behavior complicates the process of choosing a representative 

sample size that reflects the diverse biological, physical, and social traits of 

occupants (Alaaeddine & Wu, 2017). 
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• Monitoring Frequency: The need for data collection frequency varies; 

activities like shade adjustment or window usage demand more frequent 

observation compared to longer-term behaviors like appliance usage (Fekri 

et al., 2021). 

• Data Collection Period: While occupant behavior data is typically gathered 

over set periods, ranging from days to multiple years, this often 

necessitates generalization, despite the need for ongoing monitoring to 

capture the nuances of seasonal behavior changes (Candanedo et al., 

2017). 

• Ethical and Privacy Considerations: The collection of occupant behavior 

data is fraught with ethical and privacy issues, as well as organizational, 

legal, and practical challenges that limit the scope of data gathering 

(Delzendeh et al., 2017). 

• Sensor Complexity and Cost: Deploying sensors for detailed behavior data 

collection can be prohibitively expensive and technically complex which is 

the reason for using existing datasets (Jiang et al., 2021). 

• Survey Reliability: The reliance on surveys and questionnaires introduces 

the risk of inaccurate data due to the potential for occupants to misreport 

or incorrectly remember their actions (A. C. Menezes et al., 2012). 

• Unacknowledged Constraints: The research must recognize and account 

for additional factors that influence occupant behavior, such as noise 

pollution affecting window usage, and the specific constraints of different 

building types. This tends to be a challenge due to limited data (Alaaeddine 

& Wu, 2017). 

• In-depth Study of Occupant Characteristics: There is a gap in the extensive 

study and quantification of occupant characteristics as factors influencing 

energy consumption (Zou et al., 2018). 

 

1.9. Research Gap 

The research gaps investigated in this thesis are described below: 

GAP 1: The review reveals a higher number of studies is required to gain 

confidence in the reliability and competency of occupant 
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behavioral patterns detection, and prediction of energy 

performance. 

GAP 2: There is a scarcity of adaptive and reusable modelling 

approaches that can be used to predict the occupant’s behaviour 

different buildings or different occupant’s selection.  

GAP 3: Most of the studies are focused on commercial and office 

settings which presents a gap in scrutinising other building types, 

this often relates to the unavailability of data, and lack of access 

in other building types or privacy concerns in such the case of 

residential buildings. 

GAP 4: Lack of acknowledgement of additional constraints can impact 

occupant’s behaviour such as noise pollution (windows opening) 

and building type related constraints is another finding from this 

research. Moreover, Occupant’s characteristics (social, 

biological, etc.) are not studied extensively and quantified as 

contributing factors. 

GAP 5:  The different types of studies have been conducted on energy 

consumption prediction accuracy categories. However, complex 

ensembles including random forest, gradient boost, lasso, and 

ridge have not been ensembled with higher accuracy so far in 

the research literature. Researchers are showing increased 

interest in exploring ensemble techniques for achieving accurate 

energy consumption prediction results based on investigations 

that have revealed the accuracy improvement potential of this 

technique. It is also found that an ensemble technique produced 

better prediction results than a solo techniques. 
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1.10. Operational Definitions and Technical Terms 

The methodology of this study is grounded in quantitative analysis. However, 

it does engage with a number of terms that possess expansive definitions 

within the scholarly discourse. These terms are presented in Table 1.2. 

Table 1-2 Operational definitions 

Terms Definition Description 

Energy Behavior  

 

Occupants’ activities that affects 

energy consumption of a building 

whether actively or passively.  

Active Energy Behavior  

 

The deliberate and intentional 

actions of occupants that affect the 

energy usage of a building, including 

the use of appliances, electricity, hot 

water, and the opening of windows, 

fall under the category of activities 

that impact energy consumption. 

Passive Energy Behavior  

 

The unintentional activities, 

particularly the production of 

metabolic heat, which can impact the 

energy consumption of a building. 

Occupancy  

 

The state of being present in/ or to 

occupy a space.  

Energy Consumption  

 

The use of energy simulation tools to 

predict building energy consumption 

by incorporating realistic inputs 

collected from primary data. 

EnergyPlus  

 

EnergyPlus is a building energy 

simulation software that is supported 

by the United States Department of 

Energy (DOE) and administered by 

the National Renewable Energy 

Laboratory (NREL). Engineers, 

designers, and researchers make 
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use of EnergyPlus to forecast energy 

and water consumption, including 

heating, cooling, ventilation, lighting, 

and electricity usage, in buildings. 

Lasso Regression Lasso regression is a type of linear 

regression method that uses L1 

regularization technique. 

Ridge Regression Ridge regression is a type of linear 

regression method that uses L2 

regularization technique. 

Random Forest Random forest is a machine learning 

algorithm that uses an ensemble of 

decision trees to improve the 

accuracy of the prediction by 

reducing overfitting and increasing 

the robustness. 

Gradient boosting Gradient boosting is a machine 

learning algorithm that builds a 

sequence of weak learners, which 

are decision trees, to improve the 

accuracy of the prediction by 

reducing bias and variance. 

1.11. Thesis Structure 

Table 1.3 displays the correlation between the research questions and the 

chapters they are addressed in, as well as the alignment of the research 

objectives in the subsequent chapters. 
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Table 1-3 Mapping objectives and research questions 

RQs 2 3 4 5 6 

1 RQ1/RO1 

 

   

2  RQ2/RO2   

3    RQ3/RO3 

4   
 RQ4/RO4/O

5 

There are six chapters in this thesis. The overview of the remainder 

chapter of thesis is shown in Figure. 1.9.  

CHAPTER 1 This chapter includes Introduction to research, research 

background, problem statement, research questions 

(RQ), research objectives (RO), scope, significance of 

research, Challenges and limitations, research gaps and 

operational definitions.  

CHAPTER 2  This includes a comprehensive review on the prediction 

of energy consumption in buildings (tools and methods), 

the gap between the actual and predicted energy 

consumption in buildings and the impacts of occupants’ 

passive and active behaviours on energy consumption in 

buildings are presented.  

Besides this, the review of the determinants of energy 

consumption in residential buildings, occupant’s 

behaviour and energy performance gap, review of present 

building energy performance simulation approaches, 

current approaches to modelling and predicting 

occupants’ behaviours, Machine learning approaches, 

prediction of occupant behaviour by means of machine 

learning, gaps and findings. 

CHAPTER 3  This chapter contains a review of methods used to study 

the impacts of occupants’ behaviours on building energy 

consumption, followed by, detailed description of 

INTRODUCTION 

LITERATURE REVIEW 

RESEARCH METHODOLOGY 
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research method employed in this study including 

research philosophy, research approach, methodological 

choice, research strategy model development, data 

collection techniques and evaluation methods.  

CHAPTER 4 Diving into the Algorithm selection, the model’s 

description, modelling process in details. 

CHAPTER 5 In this chapter, the model is developed following steps 

detailed in the previous chapter. The results and 

evaluation take place.  

CHAPTER 6 This chapter shares the case study development. It 

includes further discussions on the results achieved 

through the ensemble machine learning model, validation 

of improvement in the prediction accuracy of energy 

consumption in residential buildings by incorporating 

occupants’ realistic energy behaviours.  

CHAPTER 7 This chapter contains the conclusion of the research 

linked with research objectives, in addition to future work.

  

 

 

MODEL ARCHITECTURE 

MODEL DEVELOPMENT & 
EVALUATION 

Model validation 

Conclusion 
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Figure 1-9 Research structure 
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AN ENSEMBLE MODEL FOR PREDICTIVE ENERGY 

PERFORMANCE: 

CLOSING THE GAP BETWEEN ACTUAL AND PREDICTED 

ENERGY USE IN RESIDENTIAL BUILDINGS 

 

 

 

 

 

 

 

 

 

 

Literature Review 
Chapter 2 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 

 

 

CHAPTER 2  

 

 

LITERATURE REVIEW 

2.1 Introduction 

There is a significant emphasis on building energy performance and the 

prompting of energy efficiency measures amongst the scientific research 

community. Buildings are one of the primary energy consumers with an 

estimate of one-third of total energy resources (Paone & Bacher, 2018). The 

building energy use has been significantly rising over the last decade, which 

accounts for 40% of total energy use and the electrical use for the residential 

and commercial buildings accounting for almost 60% of the total electricity use 

Shabani and Zavalani (2017). Thus, the demand to reduce building energy 

consumption are high. Therefore, more energy efficient building design and 

operational solutions have been put in place Cao et al. (2016), which are 

analysed through energy performance simulation, modelling and prediction.  

Energy performance prediction enables the exploration of different 

scenarios and investigating various solutions to reach optimised energy 

performance and utilise the energy in buildings in the most effective manner. 

Since the predicting the building energy performance has been established as 

a means to achieve energy conservation and explore alternative scenarios to 

promote effective building use the process of building energy performance 

prediction is always under study and development to become more reliable in 

reinforcing building energy optimisation and decision making (Huang et al., 

2014). Building energy performance prediction depends heavily on the well-

informed identification and understanding of all the parameters contributing to 

the building energy consumption and their integration in the prediction model. 

Those parameters include building physical and thermal characteristics, 

indoor/outdoor climatic and metrological conditions, building control systems 
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and services, indoor environmental quality requirements, and occupant related 

inputs (Krstić & Teni, 2017). The inclusion and reliable estimation of all these 

parameters, and the comprehension of their impact on building energy 

performance would result in more accurate energy prediction, which could 

support minimising the performance gap, and optimising the building energy 

performance.   

The energy performance gap is disclosed as the gap between actual 

and predicted energy performance (De Wilde, 2014). One of the most 

influential factors contributing to the gap is said to be occupants behaviour and 

the energy estimates based on unrealistic, oversimplified and unreliable 

energy-behavioural assumptions (Buso et al., 2015; De Wilde, 2014). 

Providing accurate energy predictions implies great recognition and 

comprehension of occupant’s behaviour in buildings and their impact on 

energy performance, this has proven to be challenging and complicated as 

occupants have stochastic and sophisticated behaviours (Yan & Malkawi, 

2013). The realization of the impact of occupants behaviour on energy 

performance calls for providing alternative approaches to predict energy 

performance that can learn from the interaction between the occupant and the 

building (Alaaeddine & Wu, 2017). Numerous attempts to incorporate the 

impact of occupant’s behavioural parameters affecting the building energy 

performance in simulation models have been explored to provide more 

accuracy and reliability (Jang & Kang, 2016; Wang & Ding, 2015). The 

prediction attempts testified that building energy performance calculation has 

a nonlinear dependency on a various number of external and internal variables 

with high-level dimensional data (Huang et al., 2014).   

Machine learning approaches have been taken into consideration as 

prediction approaches for their ability to map nonlinear dependencies and deal 

with high dimensional data. Machine learning approaches can deliver 

otherwise challenging tasks, such as classification of behavioural patterns, and 

providing insights and prediction from complex data sets, which enables to 

answer critical questions about the impact occupant’s behaviour on energy 

performance. Therefore, machine learning approaches to model and predict 
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occupant’s behaviour energy-related parameters affecting building energy 

performance are being sought for in this paper to establish the current state of 

the art machine learning approach in predicting the impact of occupant’s 

behaviour for energy analysis.     

2.2 Occupants Behaviour and Building Energy Performance  

Occupant behaviour impacts the building energy consumption; the way 

that occupants act, interact with building affect energy utilisation (Barthelmes, 

Becchio, et al., 2017). Occupant behaviour in buildings is reported as one of 

the most influential factors of the energy performance gap (Hong et al., 2017). 

Other influential parameters contributing to the performance gap are building 

physical characteristics and systems, load calculations, climatic and weather 

data which have been widely studied (Delzendeh et al., 2017). However, the 

inaccurate representation and quantification of occupant’s energy-related 

behaviour in buildings remain the critical factors that require further 

investigation. Figure 2.1 provides an overview of the parameters affecting the 

building energy use, which undoubtedly complicate the energy usage 

prediction, while Figure 2.2 provides an overview on the parameters 

influencing occupant behaviour and in return the building energy use.  

 

 

 

 

 

 

 

 

Figure 2-1 Parameters influencing building energy use 

Reasons behind the difficulty of occupant behaviour prediction lie 

among the uncertainties accompanying human nature, the difficulty in 

identification of the drivers and needs affecting occupant’s behaviour, the 

limited ability to quantify and estimate occupant’s behaviour, and the lack of 

detail and abundance of data related to occupant’s behaviour. Also, occupant 
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behaviours representation in the building performance simulation tools relies 

on assumptions, predefined schedule, oversimplified inputs, fixed settings and 

deterministic rules which conflicts with the stochastic and diverse nature of the 

actual behaviour (Yan et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 Effect of occupant behaviour on building energy performance 

For reliable energy performance predictions, better representation of 

occupant behaviour is essential. Numerous studies explored the energy-

related behavioural aspect of occupants and its impact on building energy 

performance. Reported variation in building energy use based on occupants 

behaviour is present in numerous studies (Fabi et al., 2013; A. C. K. d. 

Menezes et al., 2012). The factors leading to the variations in occupants 

behaviour are also analysed;  such as occupants lifestyle (Barthelmes, 

Becchio, et al., 2017; Becchio et al., 2016), occupancy and household 

characteristics, occupants characteristics such as gender and age (Indraganti 

et al., 2015), drivers, attitudes, needs and values (D’Oca et al., 2014; Fabi et 

al., 2016; Hong et al., 2015; Huebner et al., 2015). Moreover, motivating 

drivers of occupants behaviors were explored in an attempt to provide 

standardized quantitative descriptions. For example, (Nicol & Humphreys, 

2010) looked into Adaptive comfort theory. Adaptive comfort theory drivers of 

occupants’ behavior were explored in an attempt to provide standardized 

quantitative descriptions. It relates that occupants can tolerate greater 
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fluctuation in acceptable temperature ranges when they are adapted to their 

environment. The study showed that allowing building occupants to interact 

with control systems leads to higher satisfaction and greater tolerance for 

fluctuations in acceptable temperature ranges. This can result in a reduction 

in energy consumption by up to 30% (Hong & Lin, 2013). Encouraging 

occupants to adopt comfort-adaptive energy-saving behaviors can be a cost-

effective investment. This theory has been researched and tested to firmly 

verify  that neutrality can be attained in indoor temperatures ranging almost 10 

K above 21.6 degrees Celsuis, which is the productivity optimum. This all 

depends on the occupiers’  prior thermal history (de Dear et al., 2013). In 

addition to that, looked into social practice theory. This theory has been utilized 

to inspect the impact of social behavior on energy use. It studied routine 

activities and behaviors, such as  washing clothes, and taking a shower. The 

social practice theory highlighted that occupants can be shaped by their 

routines which is impacted by a combination of factors such as social norms, 

individual circumstances, technology, history. All of these which can affect how 

the occupant consume energy. Table 2.1 shows some theories that are 

prominent in understanding occupant behavior energy use in buildings 

(Higginson et al., 2015).  
 

Table 2-1 Theories Influencing Occupant Behavior and Energy Use in Buildings 

Theory Description Impact on Energy Use 

Social Practice 
Theory (Higginson et 
al., 2015) 

SPT considers the interplay between 
technology, social norms, and everyday life, 
and how routines evolve over time. 

Provides insights into the 
influence of social norms on 
energy use behavior 

Behavioral Comfort 
Theory (Paciuk, 
1989) 

This theory examines the relationship between 
the physical environment and occupant 
comfort, which can influence energy use 
behavior. 

Understanding how occupant 
comfort preferences impact 
energy use 

Theory of Planned 
Behavior (Conner & 
Armitage, 1998) 

TPB posits that attitudes, subjective norms, 
and perceived behavioral control can influence 
behavior, including energy use. 

Identifying factors that drive 
intentional energy use 
behavior 

Diffusion of 
Innovation Theory 
(Kaminski, 2011) 

This theory examines how new ideas or 
innovations spread through social networks, 
which can influence the adoption of energy-
efficient technologies. 

Identifying the factors that 
impact the adoption of new 
energy-efficient technologies 

Maslow's Hierarchy 
of Needs Theory 

This theory suggests that human needs are 
arranged in a hierarchy, with basic 
physiological and safety needs being the most 
important. 

Understanding how basic 
human needs can impact 
energy use behavior 
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2.3 Impact of Occupants Behaviour  

Occupants contribute to the energy use in building and affect the indoor 

environment through their presence and action in the buildings. Hong et al. 

(2016) defined occupant’s energy-related behaviour as the interaction of 

occupants with the building, which involves the control of shades and blinds, 

adjusting the thermostats and HVAC systems, windows opening and closing, 

control of light, use of appliances, and occupant’s movement between spaces 

shown in Figure 2.3. Moreover, energy-related behavioural adaptations 

include the adjustment of clothing, change in metabolic rate and consumption 

of drinks which affects occupant’s perception of comfort and consequently 

influence their actions and energy performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 Occupant’s behaviour 

 

Delzendeh et al. (2017) categorised the effect of occupant’s behaviour into two 

categories: 

i. Passive effect - occupancy, heat and moisture gains from occupants 

ii. Active effect - occupant’s interaction with the building and its systems  

 

The passive and active behaviours can be summarised as follows: 
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2.3.1 Window Opening and Closing  

Windows provide occupants with a mean to control the visual and 

thermal comfort level by adjusting the window state (open/ajar/close). 

Windows operation and state is related to providing appropriate indoor air 

quality and thermal satisfaction as per the occupant’s preference (Bruce-

Konuah, 2014). Changes in ventilation rates are present when an occupant 

change the window state.  The operation of windows has proven to have a 

significant impact on building energy use. As a result, this impacts on the 

overall building energy performance (Olu-Ajayi et al., 2022a).  

2.3.2 Shade and Blind Operation 

Shades and blinds control provide the occupant with a mean to adapt 

to their visual and thermal comfort level and satisfaction concerning privacy, 

daylight levels, glare, solar gains, as well as workplace illuminance. Shades 

and blinds could be controlled manually or mechanically depending on the 

devices in the building. The adjustment of shade or blind angle, position,  and 

tilt, as well as the rate of interaction of the occupant with the shades and blinds, 

affect building energy use, lighting use, peak loads, and consequently building 

energy performance (Truong et al., 2021).  

2.3.3 Lighting Control 

Dimming and switching on/off lighting devices are based on occupants 

physical and visual comfort levels and satisfaction. The control of lighting could 

also be affected by occupants energy awareness levels, workplace policies 

and social factors (Somu et al., 2020).  

2.3.4 Thermostat and HVAC Adjustment  

The adjustment of thermostat set points and control of the HVAC 

system are the result of occupant’s thermal comfort preferences. The 

accessibility to the control system depends on building types and size; for 

example, occupants have complete access and control to thermostat 
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adjustment in residential units while lacking control in multifunctional public 

spaces. The adjustment of thermostat set-points and HVAC control has a 

direct effect on building energy use (Perera et al., 2014).  

2.3.5 Appliances Usage  

The use of building appliances contributes to building energy use by 

influencing electricity consumption. The appliances also have an impact on 

heat gains, which in turn promotes other occupant’s behaviour. The use of 

appliances is determined by the occupant's needs and type of activity. The 

prediction of plug loads contributes to building energy performance predictions 

(Hong et al., 2016).  

2.3.6 Occupancy and Occupant’s Movement (Passive)  

Occupants’ actions and interaction with building systems are dependent 

on the presence of occupants in the building in the first place. The occupancy 

of space, occupant’s movement and density altogether impact building energy 

performance. Indoor air requirements, internal heat gains and energy 

consumption in a building are affected by the occupant’s presence, schedules 

and density within building spaces (Dong et al., 2021).  

2.4 Techniques for Predicting Energy Consumption 

2.4.1 Simulation Techniques 

The direct input or control approach establishes the semantics of occupant-

related inputs, similar to other model inputs like building geometry, 

constructions, internal heat gains, and HVAC systems. In this method, users 

input and define temporal schedules for thermostat settings (cooling and 

heating temperature set points), occupants, lighting, plug loads, and the HVAC 

system. This approach necessitates that users compute schedules beforehand 

based on the correlations between environmental conditions and occupant 

actions in the occupant behavior models. Occupant behavior pre-calculation 

outputs rely on pre-defined rules, default values, or assumed environmental 
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conditions. Users might need to manually adjust the pre-calculation 

assumptions based on simulated results several times to ensure their 

accuracy. 

This can be challenging, particularly when certain dynamic indoor parameters 

(e.g., air temperature) are used on both sides of the correlation function (e.g., 

switching on or off air conditioners when feeling hot or cold). In this approach, 

static set points (e.g., temperature set point) are commonly employed as an 

approximation to determine occupant actions and create schedules, which 

might reduce the accuracy of the occupant behavior models (Zendeh, 2019). 

The second approach involves utilizing occupant behavior models, typically 

within a dedicated module. Although the built-in occupant behavior models 

approach offers a straightforward way to model specific the parameters in 

models, the limited availability of built-in models restricts its flexibility. 

In the user function or custom code method, users can create functions or 

custom code within a building energy model input file to implement new 

building operation and supervisory controls or override existing or default ones. 

For instance, EnergyPlus features an energy management system, and DOE-

2 has a user function feature that provides such functionality (Yan et al. 2015). 

This technique affords flexibility by permitting users to simulate a building 

energy model without recompiling the source code. It caters to both 

deterministic and stochastic occupant bevahior models, employing built-in or 

custom-developed stochastic mathematical functions (Delzendeh et al., 2017). 

Co-simulation is a simulation approach that enables various components to be 

modeled by separate simulation tools running concurrently, exchanging 

information within a unified process (Wetter, 2011).   Presently, the most 

sophisticated visual comfort and blind control models rely on image-based 

annual glare analysis from numerous perspectives within a scene. These 

models employ a combination of tools, such as RADIANCE, DIVA-for-RHINO, 

DAYSIM, Dialux, EVALGLARE, and other relevant software, to achieve a 

comprehensive understanding of the scene and its visual comfort aspects 

(Gunay et al., 2014). Also,  instances can be found in computational fluid 

dynamics based studies on natural ventilation, which predict the performance 

of large-scale, naturally ventilated buildings with tools such as ANSYS-fluid, 

COMSOL, and Autodesk CFD (Wang et al., 2008). In conclusion, simulation 
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tools play a critical role in understanding and predicting occupant behavior and 

building performance. The availability of various approaches, such as direct 

input or control, built-in occupant behavior models, user functions or custom 

code, and co-simulation, provides researchers and energy modelers with 

options to tailor their analysis according to specific needs. However, It is crucial 

to consider the limitations and strengths of these approaches.  As building 

design becomes more complex and occupant behavior patterns continue to 

evolve, advancements in simulation tools and the integration of occupant 

behavior models will be vital for creating energy-efficient, comfortable, and 

sustainable built environments. 

2.4.2 Machine Learning Techniques 

Machine learning is statistical based computational learning, which 

utilises the theory of statistics to provide mathematical models through making 

an inference from a sample dataset. In simple terms, it is inferring knowledge 

from data; and its learning is the execution of a computer program to optimise 

the parameters of a model using the training data or experience.   

There are various types of machine learning techniques applied for 

various purposes; such as predictive types that make predictions on the future 

forecasting, and descriptive types which gain knowledge from data to identify 

risk factors (Kodratoff, 2014). Machine learning algorithms can be broken into 

supervised and unsupervised as shown in Figure 2.4. Supervised (predictive), 

infers a function from labelled training data, knowledge is present on input and 

output data (previous history on the input data, such as subject-related data 

and performance measures and performance results). Both input and output 

data are used to make predictions. In supervised learning, the algorithm is 

trained, and at the end of the process, the function that best describes the input 

data is selected. Training data containing the input/predictors is introduced, as 

well as the output data, and from this data, patterns and insights are presented. 

Supervised learning algorithms intend to model relationships and 

dependencies between the target prediction output and the input features such 

that predictions of the output values for new data based on those relationships 

learned from the previous data sets are available.  
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On the other hand, Unsupervised algorithms train with unlabelled data 

for pattern detection and descriptive modelling. These algorithms try to use 

techniques on the input data to mine for rules, detect patterns and summarise 

and group the data points which help in deriving meaningful insights and 

describe the data better to the users. The main types of unsupervised learning 

algorithms include Clustering algorithms, association rule learning algorithms, 

k-means for clustering problems, and Apriori algorithm for association rule 

learning problems.  

 

 

 

 

 

 

 

 

 

Figure 2-4 Overview of machine learning models 

A brief description of common algorithms for machine learning 

algorithms and their applications are presented as follows.  

2.4.1.1 Linear and Logistic Regressions 

It is a statistical technique used in the fields of finance, investing, and 

other discipline that aims to establish the nature and strength of the 

relationship between a single dependent variable and several independent 

variables. Regression algorithms are the most common algorithms for general 

and simplified predictions. One of the common and early uses of regression 

applications is for load predictions such as electrical loads. Regressions are 
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built on historical data and aim at explaining the relationship between one 

dependent variable and a set of independent variables using linear 

combinations of the latter or estimating probabilities using underlying logistic 

functions (Tso & Yau, 2007). Regressions are used to find the impact of a 

variable based on historical data and predict future scenarios using new 

datasets. Linear regression is used for continuous targets, while logistic 

regression is for categorical targets. For energy predictions, some of the 

examples of the application of regression algorithm are to predict cooling loads 

Li and Huang (2013), in which multiple linear regression is used to relate 

predicted cooling load to multiple input variables including outdoor air 

temperature, solar horizontal radiation, room temperature set point etc. The 

use of multiple linear regression showed high-level accuracy and precision in 

their study when measuring prediction accuracy and precision (Mean bias 

error and coefficient of variance). Zhao et al. (2013) employed linear 

regression to predict the space occupancy schedule based on total energy 

consumption, which showed feasibility and applicability in prediction results.  

2.4.1.2 Bayesian Networks 

Bayesian networks are graphical models demonstrating probabilistic 

relationships among a set of random variables.  Bayesian network is applied 

to model and explain a domain, support decision making under uncertainty, 

and find most probable configurations of variables. Bayesian Networks assign 

probability factors to outputs according to an analysis of a set of input 

parameters. 

 According to Darwiche (2009), Bayesian networks involves the 

following  components: 

i. The structure of the network defined as a directed acyclic graph, in 

which the random variables are presented by nodes, while 

dependencies among variables are represented by directed edges. 

ii. Conditional probability distributions assigned for the variables. 
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Bayesian networks have been frequently applied in the real world for 

forecasting, diagnosis, automated visions in general. Also, Bayesian networks 

have been applied to predict occupants movements, cooling and heating 

loads, and overall energy consumption (Yan & Malkawi, 2013). 

2.4.1.3 Decision Tree 

Decision tree is considered one of the main algorithms for classification 

and prediction tools due to its hierarchical structure. A decision tree is 

considered a hierarchical model consisting of a set of decision rules that 

recursively arranges the input parameters into homogeneous zones. The 

decision tree can be a regression or classification tree. Its purpose is to provide 

a prediction by defining a set of decision rules based on the input parameters. 

Decision tree deals with the interaction between parameters and provides high 

efficiency with low computational effort (Singh et al., 2016). Decision tree 

allows the extraction of needed information from databases and has been 

widely employed in for business, predictions, and management.  

2.4.1.4 Support Vector Machines 

Support Vector Machine (SVM) is a machine learning algorithm that 

provides a sparse pattern of solutions and flexible control on the model 

complexity. It is commonly applied to map original input variables into high-

dimensional feature space which introduces the non-linearity in the 

solution(Singh et al., 2016). SVM has shown high capability in dealing with 

classification problems in many fields, namely medical and bioinformatics.  

Also, it has been applied to predict building energy use in various case studies 

(Paudel et al., 2015; Solomon et al., 2011). 

2.4.1.5 Artificial Neural Network 

Artificial Neural Network (ANN) techniques are nonlinear statistical 

learning techniques resembling the biological neural configuration. ANN has 

the remarkable capability in modelling complex and nonlinear patterns. It has 
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been applied widely to predict energy use, and occupants’ movements. A 

standard ANN architecture consists of input, output, and hidden layers. ANN 

is employed as a random function approximation tool that can capture complex 

relationships between inputs and outputs and model dynamic problems. As 

such, ANN provides ease of use in modelling problems that are difficult to 

explain (Wang & Srinivasan, 2017).  

2.4.2.6  Ridge Regression 

                Ridge regression is a statistical technique used for examining data 

with multi-linearity. Ridge uses a penalty to define the magnitude of the 

coefficients, leading to their shrinkage toward zero. This, subsequently, leads 

to a more steady and interpretable model. Ridge has been widely used to 

predict occupants’ behavior in buildings, since it can provide high correlations 

by handling multiple predictors. The technique provided  promising results in 

improving the accuracy of energy use  prediction models (Ding et al., 2021; 

Wang et al., 2020). 

 

2.4.2.7  Lasso Regression 

             Similar to ridge regression, Lasso also deals with data with 

multicollinearity and leads to a more sparse model by handling regularities. 

Lasso can handle high-dimensional data with a large number of predictors, 

which makes it a solid algorithm when looking at the high number of predictors 

related to building energy performance (Deng et al., 2018). 

 

2.4.2.8  Gradient Boosting 

            Gradient Boosting is an ensemble machine-learning algorithm. It 

combines multiple weak models to build a strong predictive model. Gradient 

boosting aims to minimize residual errors by the addition of decision trees. 

Since it can handle complex relationships between parameters as well as non-

linearity, this algorithm has been used widely to predict occupants’ behavior in 
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building with promising improvement in accuracy to energy use models (Deng 

et al., 2018; Guo et al., 2023; Wang et al., 2019).  

.  

2.4.2.9  Random Forest 

            Random Forest is a notable ensemble machine learning algorithm 

widely used for delivering strong predictive models.  RF combines multiple 

decision trees. Those decision trees are built by the random selection of 

subsets of features and data points.  Those decision trees are then combined 

to make predictions. Since RF handles complex responses and relationship as 

well as accounting for the interaction between predictors, it has been used to 

predict energy performance while accounting for the complexity in occupants’ 

behavior (Ahmad et al., 2017; Azar et al., 2022; Deng et al., 2018; Wang et al., 

2018).   

 

2.5 Literature on Occupant’s Active Behaviour 

The literature search identifies the four principal occupant’s actions 

based on the number of studies shown in Figure 2.5. The four actions 

represent occupants active behaviour and have been studied extensively as 

these actions, and their combinations aim to improve or maintain the 

occupant’s indoor environmental quality and comfort, consequently affecting 

the energy use in buildings (Fabi et al., 2011). The attempts to predict each of 

these actions through machine learning categories are studied and explored 

separately. Thus, this review and discussion are divided into four parts.  

i. Window opening and closing 

ii. HVAC control and thermostats adjustment 

iii. Appliances use  

iv. Shades, blinds and lighting control 

A review of window control modelling attempt employing advanced 

statistical and machine learning approaches is presented in Table 2.2. 
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Figure 2-5 Number of studies for occupants’ behaviour 

2.5.1 Window Opening and Closing 

The control of windows is a part of occupants behaviour that needs to 

be taken in consideration when simulating building energy performance, this 

way more reliable presentation of the occupant's response to the indoor 

environment quality, thermal comfort levels, and ventilation preferences are 

reflected (Fabi et al., 2012)S1. Having established that the control of windows 

for providing ventilation in the building is a parameter that needs to be 

considered, this parameter depends on the state of window decided by the 

building occupants which in turn is triggered by indoor and/or outdoor 

temperature, the activeness or passiveness of the occupant, amongst other 

factors. There have been several attempts to model and predict the occupant's 

control of windows and its impact on energy consumption  (D’Oca et al., 2014; 

Wei et al., 2015)S2,S3. D’Oca et al. (2014)S2, proposed a probabilistic modelling 

approach utilising multivariate logistic regression to combine the energy model 

probabilistic user profile for window and thermostat control was developed; 

significant findings of this study reiterated the lack of reliability of the 

oversimplified occupant profiles in the conventional energy simulation tools. 

These models aim to provide more adaptive window control schedule and 

more receptiveness to the environmental conditions demonstrated by actual 

occupants in buildings. Some of these models takes into consideration the 

window controlling behaviour of occupants based on the indoor/outdoor air 

conditions which neglects the individuality and stochastic nature of occupant’s 

behaviour which is an outcome of behavioural drivers, needs and triggers 

based on a combination of physical, psychological, social, and comfort-related 

and preferential aspects of the occupants. Other models provide over-
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representation of the window state being close; hence leading to biased 

results,  or are tuned to specific occupants; hence introducing additional or 

different occupant to the model proves to be ineffective (Markovic et al., 

2018)S4. The occupant control of windows and its impact on occupant’s 

behaviour should reflect the stochastic nature and complexity of occupant’s 

behaviour and cannot rely on deterministic approaches of modelling. 

Therefore, more modelling attempts of windows control are being researched 

and explored using machine learning and stochastic models. From the study 

of Table 2.1, publications involving windows opening prediction by machine 

learning has a steady flow over the years. However, it peaked in the year 2021 

due to the rise of interest and awareness to the ability of machine learning to 

provide better predictions. It is also noticeable that office building and 

residential buildings have the highest share of the studies when predicting 

windows opening behaviour (43% each). However, only a small amount of 

studies involved educational buildings (2%), and another type of buildings such 

as hospitals and laboratories (2%) shown in Figure 2.6. This might be due to 

the limitation in monitoring and data availability for those buildings, and the 

restricted access of window control by occupants. However, a further study 

involving a wide range of buildings is needed to cover the prediction of 

windows control in various scenarios.  

 

 

 

 

 

 

 

Figure 2-6 Types of buildings 

Shi et al. (2018)S5 studied windows opening/closing behaviour and their 

various influencing factors. Logistic regression models in variable seasons 

identified as cooling/heating/ transitional seasons are utilised for predicting the 

state of the window (open. Closed, ajar). The study realised that occupants 

respond to the indoor air condition and relative humidity, which affects their 

office
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window control in all seasons. The logistic regression models are validated, 

and the results show a promising accuracy level higher than 70%. Reported 

limitation of this study is the small size of sample data. Other studies (Kim et 

al., 2017; Li et al., 2015; Valentina et al., 2012; Yao & Zhao, 2017)S6,S7,S8,S9 

utilised logistic regression to provide predictive model  to provide better 

understanding and prediction of the window control behaviour of occupants. 

The number of buildings, the nature of the study (field study, monitoring 

campaign, survey, questionnaires), and consequently the quality and 

availability of the data input deferred in each study. The results indicated that 

various variables impact the window opening/closing behaviour, and the 

models perform better when compared to the predefined and oversimplified 

schedules of window control behaviour provided in the conventional 

approaches. Li et al. (2015)S7 revealed that bias is introduced when the 

outdoor temperature is not in-between 15 °C and 30 °C. Kim et al. (2017)S6 

deduced that temperature of 25 °C is the favourable temperature for window 

opening to provide natural ventilation, and personal and demographic 

characteristics have a significant impact on occupants use of mechanical 

ventilation. Most of these models did not include values influencing the window 

state that was to be predicted and rather relied on the environmental conditions 

as per the data available.  

Dutton and Shao (2010)S10 used a co-simulation approach with 

EnergyPlus to provide a more reliable simulation of window control behaviour; 

Logistic regression algorithms were utilised to develop the probabilistic model 

for a school. The aim was to determine the probability of proportion of window 

open, and it relied on the post-occupancy study and concurrent measurement 

of window state along with environmental conditions and energy use data. The 

behavioural predictions tended to provide more accuracy than the model 

taking into consideration the temperature set points. Calì et al. (2016)S11 

determined that there is a relationship between window opening and the 

concentration of carbon dioxide and the time of day, and between window 

closing and time of day and outdoor temperature. Their findings concluded that 

logistic regression provides a robust analysis method to study the occupants' 

window control. Although findings show that the regression models provided 
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more accuracy when compared to the standard simulation methods for window 

control, the models lack the depth of identification of behavioural patterns 

based on occupant related parameters and the underlying factors leading to 

the change of window state, the focus is more on the state of the window and 

its relationship to environmental conditions. This could be due to the limitations 

of data provided, the time and expenses for model training, and the 

complicated modelling approach.  

Markovic et al. (2017)S4 studied the performance of several 

classification algorithms for detecting occupant's behaviour in terms of 

windows control; the used algorithms are SVM, Random Forests, and their 

combination with Dynamic Bayesian Network DBN. The results show that 

Random Forest approaches had better performance accuracy when predicting 

the window state. Although all these approaches provided better accuracy than 

conventional prediction methods using the available simulation tools, 

limitations lie in the inability of learning every individual occupant's behaviour 

without an intensive training which requires more time and computational 

efficiency. Markovic also applied deep learning methods to predict windows 

opening (Markovic et al., 2018). The developed model was a multi-layered 

neural network which resulted in high-performance results and improved 

accuracy while maintaining low complexity levels. The limitations were in the 

sample size in the study and its lack of inclusion of different climate zones and 

various range of occupants.   Kim et al. (2018)S12 proposed a modelling 

approach for personal comfort employing machine learning algorithms 

(Classification tree, Gaussian process classification, gradient boosting 

method, SVM, random forest and logistic regression). The model aimed to 

predict individual thermal preferences. The logistic regression, random forest, 

and SVM have proven to provide a higher level of accuracy. These comfort 

models could provide a better understanding of occupants needs and hence 

understanding to their control of building systems such as windows control. 

The limitations lied in the size of the data sets, computational challenges and 

model complexities. Barthelmes, Heo, et al. (2017)S13 attempted to capture the 

complicated relationship between window opening and various contributing 

factors using a Bayesian network model. The model showed promising 
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predictive accuracy for predicting occupants window control behaviour. (Stazi 

et al., 2017)S14 assessed the influence of recorded parameters on windows 

status. The results revealed that daily routine and habits highly influence 

students' behaviours. (Jones et al., 2017)S15 understanding the probability of 

opening and closing windows based on indoor and outdoor environment 

factors and according to the time of the day and season. The results concluded 

that indoor and outdoor relative humidity affected occupants' window operation 

behaviour. 

 

 

 



 

62 

 

Table 2.2 Studies of Windows control modelling 

Study Ref. Purpose Model ML method Building Type Input Data Output Data Results 

S1 (Fabi et al., 

2013) 

The procedure is applied at 

models of occupants’ 

interactions with windows 

(opening and closing 

behaviour).  

 

a probabilistic 

approach for 

modelling  

 

Linear regression 20 simulations 

of 

the same 

model 

indoor 

environmental parameters and 

external climate conditions 

and the behaviour of the building 

occupants (window 

opening, thermostatic radiator 

valves’ set-point, occupancy 

sensors, etc.), 

probability 

distributions of energy 

consumption and 

indoor environmental 

quality depending on 

user behaviour. 

 

large variations range between 

behaviour patterns in the 

groups with natural ventilation 

and mechanical ventilation 

S2 (D’Oca et al., 

2014) 

Combining probabilistic user 

profiles for both window 

opening and thermostat set-

point adjustments into one 

building energy model  

Probabilistic 

modelling  

Multivariant logistic 

regression 

fifteen 

naturally 

ventilated 

dwellings 

located 10 to 

25 km 

from 

Copenhagen 

field monitoring campaign of 

indoor and outdoor climate 

conditions and occupants control 

actions 

Probability of control 

actions of window 

opening 

and thermostat set 

point 

Major findings of this research 

demonstrated the weakness of 

standardized occupant 

behaviour profile in energy 

simulation tools 

 

S3 Wei et al., 

2015 

studying human adaptive 

behaviour in non-

airconditioned 

buildings  

Human adaptive 

models (adaptive 

preference model, 

occupancy 

scheduling model 

and behaviour 

determining 

model) 

 four non-air-

conditioned 

buildings 

Occupants’ characteristics 

(gender, occupation, origins, 

location within building floors, 

distance to windows), 

preferences on adaptive 

behaviour,  

Building performance 

simulation  

valuable trends and potential 

influencing factors have been 

identified  

S4 (Markovic et 

al., 2017) 

Analyzing the performance 

of several classification 

algorithms for detecting 

occupants’ interactions with 

windows 

Several 

classification 

models 

support vector 

machines, random 

forests, and their 

combination with 

dynamic Bayesian 

networks  

Office building 

in Frankfurt 

Germany, over 

two years 

data.  

Data include indoor climate and 

outdoor climate features, as well 

as occupants’ presence and 

actions (occupancy. Occupancy 

status, time.)  

Frequency and time 

duration of the 

window opening 

actions 

 

random forests outperformed 

all alternative approaches for 

identifying the window status in 

office buildings. 
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S5 (Shi et al., 

2018) 

Studying window 

opening/closing behaviours 

and their different 

influencing factors 

Stochastic models Logistic regressions two naturally 

ventilated 

hospital wards 

in Nanjing, 

China. 

One-year field measurement, the 

effects of air quality and the 

climatic parameters on window 

opening/closing behaviours. 

 

Prediction of the 

window 

opening/closing state 

 

Model promised adaptable with 

results of accuracy bigger than 

70%. 

 

S6 (Kim et al., 

2017) 

better understanding 

residential adaptive thermal 

comfort behaviours 

 

Predictive models  

 

logistic regression 

models  

 

42 households 

in two 

neighbouring 

Australian 

cities  

 

Questionnaire surveys and 

instrumental monitoring 

indoor- and outdoor-climatic data 

 Weekly Online comfort 

questionnaire, participants’ 

demographic and personal 

information  

 

predicting occupant 

adaptive behaviours  

based on different 

variables  

The analysis indicated that an 

outdoor temperature of 25 °C 

was the most favourable 

condition, maximising the use 

of natural ventilation. The 

paper pointed out personal and 

demographic characteristics 

can have a significant impact 

on the householder’s decision 

to use their air-conditioning 

system. 

S7 (Li et al., 

2015) 

Investigating window-

opening behaviour during 

the transition seasons when 

air-conditioner is inoperative 

Monte Carlo 

simulation method  

 

Logistic regression 

mode 

 

A five-storey 

office building 

in Chongqing  

 

Window opening status, indoor 

outdoor air conditions, climatic 

data  

probability of window 

opening 

 

When the outdoor temperature 

is beyond the range of 

between 15 °C and 30 °C, bias 

exists. 

 

S8 (Valentina et 

al., 2012) 

estimating the effect of the 

control on windows by 

different user behaviour  

patterns measurements of 

indoor climate and outdoor 

environmental parameters 

and window "opening and 

closing" actions 

probabilistic 

models of 

inhabitants' 

window "opening 

and closing" 

 

Logistic and linear 

regression  

15 dwellings 

from January 

to August 

2008 in 

Denmark. 

 

 Indoor environment parameters, 

Outdoor environment 

parameters,Window state 

(open/closed) 

the probability of 

opening the window 

for four user profile, 

the degree of opening 

was then predicted. 

the predefined schedule for the 

window control underestimates 

the opening and closing events 

compared to the probabilistic 

models 

S9 (Yao & Zhao, 

2017) 

Determining factors 

influencing residential 

occupants' window opening 

behaviour and analyzing the 

A stochastic model 

of occupants' 

window opening 

behaviour  

multi-variate linear 

logistic regression 

 

9 naturally 

ventilated 

residences in 

survey the occupants with 

questionnaire to ascertain the 

factors that may drive them 

opening or closing the windows. 

the "success" 

probability of window 

opening  

The results indicate that 

influence of the identified 

variables on window opening 

behaviour was significant. 



 

64 

 

relationship between 

probability of window 

opening and individual 

studied explanatory 

variables. 

 Bei-jing during 

spring 

 

The occupied periods, 

monitoring the windows’ status 

and environment factors. 

 

S10 (Dutton & 

Shao, 2010) 

Simulating with energy plus 

to provide 

more realistic picture of 

window opening 

behaviour in the model 

probabilistic model Logistic regression A naturally 

ventilated 

elementary 

school in the 

UK. 

Post occupancy study; 

Concurrent measurement of 

window open 

state, CO2 concentration, 

temperature, and 

exterior environmental 

conditions, classroom 

daily occupancy levels and 

monthly building 

energy usage. 

Probability of the 

proportion of 

windows open 

Predictions of both CO2 

concentration and building 

energy performance, using the 

occupant behaviour model, 

were shown to give more 

accurate predictions than a 

model based on temperature 

setpoints. 

S11 (Calì et al., 

2016) 

Identification of drivers for 

window control 

statistical method 

 

Logistic regression 

analysis 

three 

refurbished 

buildings  

 

Air temperature, Relative 

humidity, CO2 concentration, 

Volatile organic compounds, 

Light on the ceiling, 

Infrared/visible light ratio, 

Window opening sensors 

(open/closed). 

Drivers for opening 

closing windows  

Logistic regression was 

confirmed to be a strong and 

logistic robust analysis 

methodology for investigating 

the drivers for occupants to 

interact with the built 

environment.  

 The most common drivers for 

opening action are time of the 

day and CO2 concentration. 

The most common drivers for 

closing action are outdoor 

temperature and time of the 

day. 

S12 (Kim et al., 

2018) 

Predicting individuals' 

thermal comfort responses 

instead of the average 

personal comfort 

model 

 

Classification Tree, 

Gaussian Process 

Classification, Gradient 

Boosting Method, SVM, 

Office building 

in California 

field study examining the 

behaviour and thermal comfort 

perceptions of 38 occupants, 

individuals' thermal 

preference 

 

RF, SVM, logistic regression 

showed higher accuracy. 

The paper deduced that 

personal comfort models could 
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response of a large 

population 

 

Random Forest, 

Logistic regression.  

PCS chair data, survey data, 

and environmental data 

 

 

provide more accurate 

representations of occupants' 

comfort needs and desires. 

 

S13 (Barthelmes, 

Heo, et al., 

2017) 

Capturing underlying 

complicated relationships 

between 

windows opening and 

various influencing factors  

Stochastic 

modelling 

BN model 

 

residential 

apartment 

located in 

Copenhagen, 

Denmark 

 

Outdoor and indoor variables 

and window status and time of 

the day 

 

Windows opening 

behaviour 

the validation measures 

confirmed the high predictive 

power of the model and its 

successful application for 

modelling window control 

behaviour. 

 

S14 (Stazi et al., 

2017) 

Assessing the influence of 

recorded parameters on 

windows status 

Adaptive 

behavioural 

models 

 

Linear and logistic 

regression models 

 

a high school 

in Italy 

 

Outdoor and indoor conditions, 

users' adaptive actions 

And interaction with windows 

monitoring 

probability of window 

opening/closing 

 

Paper deduced that daily 

routine and habits highly 

influence students' behaviours 

 

S15 (Jones et al., 

2017)  

 

Understanding the 

probability of opening and 

closing windows based on 

indoor and outdoor 

environment factors 

nd according to the time of 

the day and season 

stochastic models 

 

multivariate logistic 

regression 

 

ten UK 

dwellings  

over a year 

the physical environmental and 

contextual variables 

 

Probability of the main 

bedroom window will 

be opened or closed 

in the next 10 min. 

 

The paper concludes that 

indoor and outdoor relative 

humidity affected occupants' 

window operation behaviour. 
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2.5.2 HVAC Control and Thermostat Adjustment 

The control of Heating, Ventilation, and Air Conditioning (HVAC) and 

thermostats adjustments is another parameter that needs to be considered 

when studying the impact of occupant’s behaviour on building energy 

performance. This parameter is affected by numerous variables such as 

occupancy and density, clothing factor, thermal comfort preferences, indoor 

and/or outdoor temperature, the activeness or passiveness of the occupant, 

amongst other factors. The ASHRAE handbook Heating et al. (2000) takes into 

consideration the occupants control of thermostats and HVAC uses a defined 

temperature and humidity range as a thermal comfort preference for 

occupants. More consideration of the stochastic nature and complexity of 

occupant’s behaviour need to be addressed to provide more accuracy. A 

review of HVAC and thermostat adjustments modelling approaches by 

employing advanced statistical and machine learning approaches is presented 

in Table 2.3.  

From the study of Table 2.3, publications involving thermostats adjustment and 

HVAC control prediction by machine learning have noticed an increase in the 

year 2017 and 2018 due to the awareness to the capability of machine 

Learning approaches to provide better predictions. Limitations in the 

diversification of case studies are noticed as per this review. The case studies 

only include residential and office buildings with residential buildings having 

the highest share of 63% while office buildings are having a share of 37% 

shown in Figure 2.7. 
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Figure 2-7 Building types 
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A wide range of Machine Learning algorithms is employed for predicting the 

thermostat and HVAC control by building occupants shown in Figure 2.8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8 Machine learning algorithms for HVAC and thermostats adjustment 

Regression approaches also represent the highest portion of models 

studies (45%). This relates to the lower level of complexity of regression 

models when compared to more advanced machine learning models. Gunay 

et al. (2018)S16 studied the occupant’s interaction with thermostats in private 

office spaces, by developing a univariate thermostat use model employing 

univariate logistic regression. The iterative learning process showed a 2°C–

3°C reduction in the set-points during the heating season and a 2°C–3°C 

increase in the set-points during the cooling season concerning the default 

22°C set-point. Santin (2011)S17 attempted to identify the occupant behavioural 

patterns associated with the energy spent on heating and to determine the 

household and building characteristics that could contribute to the 

development of energy-User Profiles in residential buildings. The study 

demonstrated relationships between occupant behaviour and household 

characteristics. However, limitation lied in difficulty to demonstrate 

relationships between energy use and behavioural patterns and household 

groups. Also, a regression approach employed for a residential setting 

Tanimoto et al. (2008)S18 proved that the deterministic approach of occupant 

schedule provides overestimated assumption when compared to the used 

approach to estimate cooling demands. Jain et al. (2016)S19 applied a 

Linear regression 
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statistical model to estimate the air-conditioning state using Linear regression. 

The model reached accuracies as high as 97% for the prediction of the air 

conditioning energy use in 7 houses in Delhi. Andersen et al. (2011)S20 

modelled heating set points preferences by employing linear regression 

approach based on simultaneous measurement of the set- point of 

thermostatic radiator valves in 13 houses in Denmark. Their study aimed to 

increase the reliability of energy simulations.  Major findings included that the 

occupant’s behaviour was governed by varied habits and the environmental 

variables are the important contributors when it comes to set point 

adjustments.  

Advanced machine learning algorithms had a share of 55% of the 

reviewed studies. In one study, an artificial neural network model is developed 

to establish the relationship air temperature and relative humidity and 

occupants thermal-related behaviour (Deng & Chen, 2018)S21. Another study 

related to thermal related preferences used a number of machine learning 

algorithms (classification tree, Gaussian process classification, gradient 

boosting method, SVM, random forest and logistic regression) to develop a 

predictive personal comfort model) (Kim et al., 2018)S22. In addition to that, a 

neural network model is developed to study the thermal control strategies to 

create better thermal conditions and maintain occupants comfort (Moon & Kim, 

2010)S23. These studies proved to have reliable accuracy and establish the link 

between the indoor environment and its effect on occupant behaviour and vice 

versa.  Koehler et al. (2013)S24 developed a hybrid model by employing the 

machine learning and preheat algorithms to match heating controls to 

occupants’ preferences and routines. This study offered a chance to improve 

automated control systems and a mixed-initiative system for controlling 

occupant’s thermostats. Kruusimägi et al. (2018)S25 developed a heating 

control system that delivers thermal comfort and energy efficiency and 

evaluating its fitness for purpose in real-life contexts through learning users' 

room-specific presence profiles and thermal preferences. Simulation results 

confirmed that the algorithm functions as intended and that it can reduce 

energy need by a factor of seven compared with EnergyStar recommended 

settings for programmable thermostats. 
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Nägele et al. (2017)S26 evaluated the performance of each heating control 

approach in terms of energy consumption and comfort for occupants using 

ANN-based thermal control models for residential buildings algorithm. The 

results revealed that automated setpoint variation; heating control approaches 

bear the potential to significantly increase energy efficiency in the residential 

sector. Ghahramani et al. (2017)S27
 simulated different control policies using 

EnergyPlus. The proposed algorithm resulted in 31.17% energy savings 

compared to the baseline operations (22.5 °C and 3 K). The algorithm has a 

superior performance in all climate zones for the goodness of measure. Lim 

and Yun (2017)S28 investigated the implications of adaptive comfort control. 

Simulation with EnergyPlus Runtime Language (ERL) for modelling occupant 

behaviour. A dynamic thermostat control based on an adaptive comfort model 

is an effective method to reduce cooling energy consumption under future 

climate change.  

Overall, the studies showed that machine learning approaches provide 

more reliability in predicting thermostats adjustment and HVAC control based 

on identifying occupant’s thermal preferences. Limitations in these studies lie 

in consideration of occupant’s traits and their impact on thermostats 

adjustment.  

 

 

 

 

 

 

 

 

 

 

 

 



 

70 

 

Table 2.3 Studies of HVAC control and thermostat adjustment 
Study Reference Purpose Procedure ML Method Building type Input data Output data Results 

S16 (Gunay et al., 

2018) 

Studying occupants interact 

with their thermostats 

 

univariate 

thermostats use 

models 

 

univariate logistic 

regression  

 

private office 

spaces 

 

occupancy, temperature, and 

relative humidity data 

 

indoor temperature 

as the predictor 

variable 

 

the iterative learning process 

resulted in a 2°C–3°C reduction in 

the set-points during the heating 

season and a 2°C–3°C increase in 

the set-points during the cooling 

season with respect to the default 

22°C set-point in both seasons. 

S17 (Santin, 2011) To determine Behavioural 

Patterns associated with the 

energy spent on heating and to 

identify household and building 

characteristics that could 

contribute to the development 

of energy-User Profiles 

 

Statistical 

analysis 

 Residential 

buildings  

Household survey concerned 

with detailed data on occupant 

behaviour and paired wirh data 

on building characteristics  

 

 

Behavioural 

patterns and user 

profiles  

this study established clear 

relationships between occupant 

behaviour and household 

characteristics. However, it seems 

difficult to establish relationships 

between energy consumption and 

Behavioural Patterns and 

household groups. 

S18 (Tanimoto et 

al., 2008) 

estimating the cooling demand 

in residential 

context 

Stochastic 

model 

Linear regression Residential setting  15 min activities of occupants, 

based on published data on 

occupant behaviour. 

 

probabilistic 

variations in 

occupant 

behaviour, 

likelihood of 

switching air-

conditioning on or 

off 

the conventional procedure based 

on determinant calculation and a 

daily constant occupants’ schedule 

results in incredibly huge 

overestimates compared with 

those produced by the novel 

method  

S19 (Jain et al., 

2016) 

estimating Airconditioning state  Statistical model  Linear regression 7 homes in Delhi 2200 hours of usage data from 

the different 

ACs, room types, and thermostat 

temperatures 

AC energy 

consumption prior 

to usage 

and estimate 

energy 

consumption post-

usage. 

The model achieved an average 

accuracy of 85.3% and 83.7% with 

the best accuracy of 97.0% and 

93.3% for the estimation and 

prediction of AC energy 

consumption respectively, across 

all homes. 
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S20 (Andersen et 

al., 2011) 

To Increase reliability of energy 

simulation by including 

occupants heating setpoints 

preferences 

Statistical model Linear regression 15 dwellings in 

Denmark 

Simultaneous measurement of 

the set- point of 

thermostatic radiator valves, and 

indoor and 

outdoor environment 

characteristics 

Variations in 

individual 

behaviour patterns 

the behaviour was governed by 

different but distinct habits in the 

13 dwellings. There are 

Correlations between 

environmental variables and set 

point on the thermostatic radiator 

valves 

S21 (Deng & 

Chen, 2018) 

to determine the relationship 

between air temperature and 

relative humidity, and 

occupants’ thermal sensations 

and behaviour. 

 

ANN model  Artificial neural 

network  

Offices and 

apartments/houses 

data on the thermal 

environment, thermal 

sensations, and occupants’ 

behaviour; air temperatures, 

relative humidity, clothing levels, 

thermal sensations, thermostat 

setpoints, and room occupancy 

predicting thermal 

comfort 

 

The behaviour of occupants could 

be a significant parameter for 

evaluating indoor environments in 

buildings. 

 

S22 (Kim et al., 

2018) 

predicting individuals’ thermal 

preference 

 

Personal comfort 

model  

6 machine learning 

algorithms 

Classification Tree, 

Gaussian Process 

Classification, 

Gradient Boosting 

Method, SVM, 

Random Forest, 

Logistic regression.  

Office building  field data including Personal 

comfort system control 

behaviour, environmental 

conditions and mechanical 

system settings 

 

individuals' thermal 

preference 

 

personal comfort models improved 

predictive accuracy compared to 

conventional models 

 

S23 (Moon & Kim, 

2010) 

to develop residential thermal 

control strategies for creating 

more comfortable thermal 

conditions.  

ANN models 

 

Ann algorithms typical two-story 

single-family home 

in the U.S 

 

Setpoints, weather data, 

simulation results 

Predict air 

temperature profile 

and energy 

consumption. 

ANN-based predictive and 

adaptive control strategies created 

more comfortable thermal 

conditions 
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S25 (Kruusimägi 

et al., 2018) 

Developing a heating control 

system that delivers thermal 

comfort and energy efficiency 

and evaluating its fitness for 

purpose in real-life contexts 

through learning users' room-

specific presence profiles and 

thermal preferences 

Heating control 

model  

spatiotemporal 

heating control 

algorithm 

(unspecified) 

three domestic 

homes 

 

temperature set-point, 

occupants' thermal sensation 

feedback, occupant-dependant 

departure schedules 

 

prediction of 

occupants' 

presence and 

preferred set-point 

temperature 

 

simulation results confirmed that 

the algorithm functions as 

intended and that it can reduce 

energy need by a factor of seven 

compared with EnergyStar 

recommended settings for 

programmable thermostats.  

S26 (Nägele et al., 

2017) 

Evaluation of the performance 

of each heating control 

approach in terms of energy 

consumption and comfort for 

occupants 

Statistical model ANN-based thermal 

control models for 

residential buildings 

algorithm 

households in 

Southern Germany 

were collected 

over a 14-month 

period 

data on in-room temperature, 

heating behaviour and 

occupancy patterns 

 

Performance of 

heating controls 

Intelligently. automated setpoint 

variation; heating control 

approaches bear the potential to 

significantly increase energy 

efficiency in the residential sector. 

S27 (Ghahramani 

et al., 2017) 

Optimizing energy use Simulating 

different control 

policies using 

EnergyPlus 

 

metaheuristic (k-

nearest neighbour 

stochastic hill 

climbing), machine 

learning (regression 

decision tree), and 

self-tuning (recursive 

brute-force search) 

components 

small office 

building 

 

real-time data, stored in building 

automation systems (e.g., 

gas/electricity consumption, 

weather, and occupancy) 

 

Optimal operation 

setting 

The proposed algorithm resulted in 

31.17% energy savings compared 

to the baseline operations (22.5 °C 

and 3 K). The algorithm has a 

superior performance in all climate 

zones for the goodness of 

measure 

 

S28 (Lim & Yun, 

2017) 

investigating the implications of 

adaptive comfort control. 

Simulation 

with EnergyPlus 

Runtime 

Language (Erl) 

for modelling 

occupant 

behaviour. 

 Office building in 

Seoul, Korea  

Climatic, weather data, energy 

consumption, cooling loads.  

quantification of 

the effects of 

adaptive comfort 

control 

on current and 

future cooling 

energy 

consumption in the 

context of climate 

change 

a dynamic thermostat control 

based on an adaptive comfort 

model is an effective method to 

reduce cooling energy 

consumption under future climate 

change 
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2.5.3 Appliances Use 

The use of appliances is an important factor when considering 

occupants behaviour and their impact on energy performance as appliances 

represent a noticeable percentage of the overall energy consumption  

(between 20 and 30%) (Cetin et al., 2014; Kavousian et al., 2015). The studies 

for appliances and plug controls represented the least amount of publications 

in this review. As for the building types, the limitations in the diversification of 

case studies are also present in the case of appliances use prediction with a 

percentage of 67% for residential buildings and 33% for office buildings shown 

in Figure 2.9. 

 

 

 

 

 

 

 

 

Figure 2-9 Building types 

 

There is a wide range of machine learning algorithms used for the 

prediction of appliances use with varied percentages presented in Figure 2.10. 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 Machine learning algorithms for plug loads/appliances use 
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A review of appliances used approaches by employing advanced 

statistical and machine learning techniques is presented in Table 2.4. Wang et 

al. (2018)S29 developed models using several machine learning algorithms to 

predict building electricity usage with part synesthetic case study office and an 

existing office building in Iowa. The algorithms employed included multiple 

linear regressions, adaptive linear filter algorithms, Gaussian Mixture Model 

Regression (GMMR). The GMMR provided the highest performance amongst 

the other algorithms. Stochastics models were developed to provide feature 

ranking for appliances energy use prediction in a low energy house 

Candanedo et al. (2017)S30, the algorithms encompassed multiple linear 

regression, SVM with the radial kernel, GBM, random forest. Findings of this 

study include the identification of a relationship between weather and 

appliances use which presumably relates to the increase of occupancy with 

certain weather conditions (rain, snow, wind), and consequently increased the 

use of appliances. Moreover, zones such as the kitchen, laundry room, living 

room and bathrooms have the highest contribution in the use of appliances. 

This highly depends on occupancy, the function of space, and the type of 

appliance in the identified zones. In terms of the prediction accuracy, The GBM 

and RF models proved to have better accuracy when compared to the SVM-

radial and multiple linear regression. One limitation identified in this study is 

the size of the data set used which is derived from a single case study.  

Mahdavi et al. (2016)S31 provided a simplified and stochastic model 

based on linear regression and other machine learning algorithms to study the 

relationship between occupancy presence patterns and plug loads in office 

buildings. The stochastic model was compared to the simplified model. The 

results showed that the stochastic model had better performance in terms of 

plug loads peaks and distribution. The limitation of this study also lied on the 

data availability and limited set of empirical data obtained from one case study. 

Also, neural network for short term appliances load forecasting in different 

houses is employed for the development of knowledge and data-driven model 

to forecast the chance of the use of a particular appliance during a given 

period.  Historical data concerning the energy usage of different appliances 

and their past consumption is considered as a part of input data (Basu et al., 
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2013)S32. The results showed that lighting appliances had the highest 

predictability amongst other appliances. Moreover, a rule mining clustering 

algorithm is utilized to distinguish major associations between energy 

consumption and use of appliances; users annotated activities (cooking, 

working..), time of day, and day of the week (Rollins & Banerjee, 2014)S33. This 

study was able to derive important associations between the aforementioned 

factors which promote energy saving and optimisation.  
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Table 2.4 Studies of Appliances Use 

Study Reference Purpose procedure ML Method Building 

type 

Input data Output data Results 

S29 (Wang et al., 

2018) 

developing models for 

predicting building energy use 

 

data-driven  

models 

multiple linear regression, 

adaptive linear filter algorithms 

(least mean square (LMS), 

normalized least mean square 

(NLMS), and recursive least 

square (RLS)), and Gaussian 

mixture model regression 

(GMMR) 

 synthetic large-size office 

building from DOE reference 

building models, the other 

building is an existing office 

building located in Des 

Moines, Iowa. 

 

 

predict hourly energy 

usages in two buildings 

 

The GMMR models 

outperform the adaptive 

filter methods 

 

S30 (Candanedo et 

al., 2017) 

feature ranking 

 for the appliances energy use 

prediction 

 

Stochastic 

models 

(a) multiple linear regression, 

(b) support vector machine with 

radial kernel, (c) random forest 

and (d) gradient boosting 

machines (GBM).  

low-energy 

house 

 

measurements of 

temperature and humidity 

sensors from a wireless 

network, weather from a 

nearby airport station and 

recorded energy use of 

lighting fixtures. 

different relationships 

between parameters 

 

The GBM and RF models 

improved the prediction 

compared to the SVM-

radial and multiple linear 

regression.  

 

S31 (Mahdavi et al., 

2016) 

Studying Relationship 

between occupants’ presence 

patterns and plug loads 

 

Simplified and 

stochastic 

models  

 

Linear regression, others office 

buildings  

 

long-term observational data 

monitored ccupancy, 

presence, plug loads.  

relationship between 

inhabitants’ presence, 

installed power for 

equipment, and the 

resulting electrical 

energy use.  

The stochastic model 

performed better in terms 

of plug loads’ peak and 

distribution. 

 

S32 (Basu et al., 

2013) 

to forecast if a particular 

appliance will start during a 

given hour or not.  

 

Knowledge and 

data driven 

model  

Neural networks for short-term 

load forecasting 

 

Different 

houses  

 

historical data concerning the 

energy usage of different 

appliances, past 

consumption.  

appliance usage 

prediction 

 

he prediction with decision 

tables for lighting usage in 

dwellings gives the highest 

accuracy in all the tested 

cases. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/energy-use
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/linear-filters
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S33 (Rollins & 

Banerjee, 

2014) 

identify significant 

associations between energy 

usage and four key features: 

hour of the day, day of the 

week, use of other appliances 

in the home, and user-

supplied annotations of 

activities such as working or 

cooking. 

Cluster analysis rule mining algorithm 

(DBSCAN clustering algorithm) 

 

six homes 

across the 

United 

States. 

 

raw energy consumption data 

from several devices in each 

home and uses a novel in situ 

approach for soliciting user 

annotations to describe 

activities performed. 

 

Associations Impacting 

Energy Consumption 

 

while time-based 

associations are observed 

most frequently, 

associations between 

devices are common and 

often stronger than time-

based associations 
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2.5.4 Shades, Blinds and Lighting Control 

The modelling and prediction of occupants control of shades and blinds 

as well as the use of lighting were one of the first occupant behavioural controls 

explored, with an attempt to provide energy saving options by optimising 

lighting systems and their use. Figure 2.11 shows the lack of diversity in 

building types used as case studies in which office buildings dominate the 

overall studied cases with a staggering percentage of 84% where only one 

case study was a residential complex, and another was mixed-use commercial 

and office building.  

 

 

 

 

 

 

 

 

 

Figure 2-11 Building types 

The machine learning algorithms used for the prediction of shades, 

blinds, or/and lighting control are of varying percentages as present in Figure 

2.12. Once again, regression models were the most common models used for 

the predictions with a percentage of 67% while the rest of the algorithms 

combined formed a percentage of 33%. A review of shades, blinds and lighting 

control approaches by employing advanced statistical and machine learning 

techniques is presented in Table 2.5.  

A Bayesian modelling approach developed by Sadeghi et al. (2017)S34 

attempted to model the interaction of private offices occupants with shading 

and electrical lighting systems. The model employed Bayesian discrete 

regression using individual occupant’s characteristics and attributes governing 

occupants/shading and occupants/electric lighting interactions as part of input 

data. 
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Figure 2-12 algorithms for shades, blinds and lighting control 

The study suggested that occupants related attributes are significant 

indicators of occupants shading and lighting interactions, and to expand the 

predictive performance of the model, the incorporation of occupant’s traits as 

features in shading action models is recommended. Moreover, the modelling 

approach increased the prediction accuracy of occupant’s interactions with 

shading and electrical lighting in building performance simulation tool. The 

shortcomings of the model lied upon the limited amount of data, the uncertainty 

resulting from it, and the validation process. To improve the understanding of 

occupant’s behaviour and their manual control of lighting and shading, multiple 

linear regressions and logistic regressions analysis were set in place in 8 single 

occupied offices (da Silva et al., 2013)S35. The analysis showed that electric 

lighting and shading control were influenced more by occupational dynamics 

i.e., occupants’ arrival and departure, than by the environmental conditions. 

Shading and lighting deployment patterns and events probability were 

predicted.  Inconveniency of associating results with occupants shading and 

lighting control patterns were present when using other case studies or 

experimental conditions. In another study, personalized visual satisfaction 

profiles in private daylit offices were inferred using a Bayesian approach (Xiong 

et al., 2018)S36. The results showed reliable visual satisfaction profiles with 

predicted uncertainty based on the Bayesian model’s performance. 
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Table 2.5 Studies of shades, blinds and lighting control 

Study Reference Purpose Procedure ML Method Building type Input data Output data Results 

S34 (Sadeghi et 

al., 2017) 

Modeling human interactions 

with shading and electric 

lighting systems  

Bayesian  

Model  

Bayesian discrete 

regression 

 

private offices with 

motorized roller 

shades and dimmable 

electric lights. 

 

dataset from a field study; 

environmental parameters 

as well as individual 

characteristics and human 

attributes governing 

human-shading and – 

electric lighting 

interactions. 

Prediction of 

interactions with  

Shading and lighting  

besides environmental 

variables, human attributes are 

significant predictors of human 

interactions, and improve the 

predictive performance when 

incorporated as features in 

shading action models. 

S35 (da Silva et 

al., 2013) 

to further our understanding of 

occupants' behaviour 

regarding the manual control 

of electric lighting in 

combination with shading 

control. 

regression 

analysis  

A linear multiple 

regression, 

logistic 

regressions  

 

 

Eight single-occupied 

offices  

 

environmental variables 

including workplane 

illuminance, window and 

background luminance 

and transmitted solar 

radiation, occupancy, 

occupant characteristics  

predict shading 

deployment patterns, 

shading events 

probability 

 

 

electric lighting and shading 

control were influenced more by 

occupational dynamics (arrival 

and departure) than by the 

environmental conditions 

 

S36 (Xiong et al., 

2018) 

developing personalized visual 

satisfaction profiles 

 

Bayesian 

approach 

Bayesian 

inference  

private daylit offices  

 

Personalized visual 

satisfaction profiles 

derived from comparative 

preferences 

Prediction of different 

personalized visual 

satisfaction profiles 

Model performance results 

show reliable profiles with 

predicted uncertainty. 

S37 (Fabi et al., 

2014) 

to describe occupants’ 

switching on-off control over 

lighting 

 

probabilistic 

models  

multivariate 

logistic regression 

 

three different office 

rooms 

 

based on measurements 

of indoor climate 

parameters, outdoor 

environmental conditions 

and artificial lights “switch 

on/off” actions 

light-switch 

behaviour  

 

Two predictive light-switch 

behaviour models were inferred 

in relation to the number of 

actions carried out by the users 

(active or passive) 

 

S38 (Yao, 2014) to determine the impact of the 

control behaviour of solar 

shades on energy 

performance. 

 

stochastic model 

for manual solar 

shades, Co-

simulation with 

Energy plus 

Logistic 

regression 

a typical office 

building with internal 

roller shades in hot 

summer and cold 

winter zone  

field measurements and 

logit analysis 

 

factor s in driving 

solar shading 

adjustment  

 

Previous studies on manual 

solar shades may overestimate 

energy savings. 
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S39 (Gunay et al., 

2017) 

Analyze the light-switch and 

blinds use behaviours 

 

Behavioural model  discrete-time 

Markov logistic 

regression 

ten private offices 

 

concurrent solar 

irradiance, ceiling 

illuminance, and 

occupancy data 

 

blind closing and light 

switching actions 

 

the use of an adaptive lighting 

and blinds control algorithm can 

substantially reduce the lighting 

loads in office buildings – 

without adversely affecting the 

occupant comfort 

S40 (Haldi et al., 

2017) 

predict the scope and effects 

of behavioural diversity 

regarding building occupant 

actions on window openings, 

shading devices and lighting. 

generalised linear 

mixed models 

 

Linear 

regressions  

an office building in 

Switzerland and 

residential units in 

Germany and 

Denmark 

 

behavioural data from 

three long-term 

monitoring campaigns 

 

Prediction of building 

occupant actions  

 

 

S41 (Huchuk et al., 

2016) 

 simplified model-

based predictive 

control  

 

 a south-facing 

perimeter office space 

in Ottawa, Canada. 

 

   

S42 (Zhou et al., 

2015) 

generate lighting schedules as 

inputs to building simulation 

 

Stochastic models 

 

Logistic 

regression 

15 office buildings 

 

measured data 

occupancy, lighting 

pattern, indoor and 

outdoor conditions 

lighting consumption 

schedule 

 

ighting energy use was mainly 

driven by the occupant 

schedule. 

S43 

 

(Zhang & 

Barrett, 2012) 

Studying Window blind control  

 

stochastic model  

 

Single variable 

Linear and logistic 

regression 

naturally ventilated 

office building in 

Sheffield’s, UK 

 

A field study of occupants’ 

window opening 

behaviour concerned with 

daily windows positioning, 

indoor and outdoor 

climatic data 

 

the probability of 

windows being open 

given the outdoor 

temperature  

 

manual window control, as 

indicated by the proportion of 

windows opened, has a strong 

correlation with outdoor air 

temperature, the season of 

year, time of a day and 

occupancy pattern. 

Also, windows orientation 

S44 (Parys et al., 

2011) 

Model occupancy, use of 

shading system, window 

operation, control of artificial 

lighting, heat gains by 

behavioural model 

coupled with 

building simulation 

smodel 

Logistic 

regression 

Office buildings    
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appliances and the control of 

heating and cooling setpoints.  

 

S45 (Reinhart & 

Wienold, 

2011) 

 Provide computer-based 

daylighting analysis 

 

Annual daylight 

glare probability 

profiles combined 

with an occupant 

behaviour model 

 

 Office building  field study data that 

monitored long term 

occupancy and use of 

light switches and shading 

devices, climatic data 

 

annual shading 

profiles and visual 

comfort conditions, 

autonomy plots, 

energy loads, 

operational energy 

costs and 

greenhouse gas 

emissions. 

 

 

S46 (Haldi & 

Robinson, 

2010) 

prediction of the usage of 

shading devices 

 

stochastic model 

for simulating blind 

usage 

 

Logistic 

regression 

office buildings 

 

initial blind status, indoor 

and outdoor illuminance 

, the occupancy, thermal 

and visual parameters 

influencing actions on 

shading devices 

Shading devices 

usage  

 

S47 (Daum & 

Morel, 2010) 

the influence of lighting and 

blind control models on the 

heating, cooling, and lighting 

energy loads  

 

Stochastic models Logistic 

regressions 

Office room    
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Moreover, predictive probabilistic models were derived to describe occupants 

on/off lighting control in 3 different office rooms by employing multivariate 

logistic regression (Fabi et al., 2014)S37. Only interactions of categorical and 

continuous variables were studied to avoid modelling complexities.  The study 

deduced that there is a negative correlation between the probability of 

switching on the ceiling lamps and the room temperature, sun elevation, and 

daylight coming from windows. Another relevant study presented a co-

simulation of the stochastic model for manual solar shades with EnergyPlus 

(Yao, 2014)S38. The stochastic model relied on logistic regressions and proved 

more reliability while confirming the limitations and overestimation of previous 

studies on manual solar shades. A noteworthy study is based on a behavioural 

model derived from adaptive lighting and blind control algorithms designed to 

examine the blinds and light switch occupants control behaviour in ten private 

offices (Gunay et al., 2017)S39. The results demonstrate that the adaptive light 

and blinds control algorithms can be utilised to provide a substantial reduction 

in energy use derived from lighting loads while adjusting and responding to the 

occupant's visual comfort. The studies S40-S47 are explained in Table 2.5. 

2.6 Energy Prediction Accuracy of Machine Learning Techniques 

This section provides the details of energy prediction accuracy of 

machine learning techniques shown in Table 2.6. Fayaz and Kim (2018) 

compared ANFIS (adaptive neuro-fuzzy inference system) and ANN (artificial 

neural network) and the dataset has been gathered from four multi storied 

residential building. The authors addressed the proper utilization of energy 

which is a lot wasted annually. The proposed model is evaluated using MAE, 

RMSE and MAPE evaluation metrics. The results revealed that ANFIS 

outperform ANN model in prediction accuracy. Truong et al. (2021) compared 

XGB (extreme gradient boost), MLR (multiple linear regression), and Shallow 

ANN for a better result. The dataset was created using synthetically data (six 

household residential building data) and the Deep ANN Machine learning 

approach. The accomplishment the system's technological impediments to 

accurate load forecasting were addressed with the goal of enabling larger 

adoption of the decentralized generation model and better decision-making. 
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Due to reduced efficiency caused by substantial transmission losses and 

waste energy, the centralized electricity producing model has several 

disadvantages for the environment and end-user. It may be used to optimize 

learning rate, momentum, iteration, and batch size, which are all hyper-

parameters related to ANN models. Parhizkar et al. (2021) compared LR 

(linear regression), SVR (support vector machine), RT (regression tree), RF 

(random forest), and KNN (k nearest neighbor) for a better accuracy. The 

dataset was created using meteorological data (gathered over the last four 

years from residential buildings and four different datasets) and deep machine 

learning. The technique of preprocessing (principal component analysis) was 

utilized. They tackled the achievement of removing noisy features in 

conjunction with a prediction approach for improved and more effective 

decision-making. Climate change, building structure, occupation, and 

geographic location all contribute to energy waste.  

Lei et al. (2021) compared BPNN (back propagation neural network), 

ENN (elman neural network), FNN (fuzzy neural network), and RS-DBN (rough 

set mixed with deep belief neural network) for a superior result. The dataset 

included in the paper was compiled from a variety of sources. Rough set 

reduction data was collected from 100 civil public buildings, as well as data 

from a university's laboratory building, and a deep learning method was 

employed in conjunction with a rough set theory technique. The 

accomplishment improves energy system control and utilization through 

precise prediction, as well as lessen influence factors, which they addressed. 

Inadequacy of physical-model-based and statistical approaches, ML method, 

and energy waste previous research was lacking, and the data was limited.  
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Table 2.6 Energy prediction accuracy of machine learning techniques 

Authors Technique Algorithm Prediction Accuracy 

MAE RMSE MAPE MRE R2 MAD CV 

Fayaz and 

Kim (2018) 

Deep 

Extreme 

Learning 

Machine 

ANFIS 2.45 2.81 6.12 X X X X 

ANN 2.43 4.85 7.08 X X X X 

Truong et al. 

(2021)  

Deep ANN 

Machine 

learning 

Deep ANN X 111.20 X X 97.5 X X 

XGB X 270.85 X X 84.9 X X 

MLR X 634.65 X X 17.2 X X 

Shallow 

ANN 

X 636.76 X X 16.6 X X 

(Parhizkar et 

al., 2021) 

Deep 

machine 

learning 

(Principal 

component 

analysis) 

RF(Te) X 0.23 X X 0.9 X X 

RT(Ta) X 1.02 X X 0.9 X X 

RF(Ya) X 0.21 X X 0.9 X X 

RT(BA) X 1 X X 0.9 X X 

(Lei et al., 

2021) 

Deep 

learning 

algorithm 

and 

integrated 

with rough 

set theory 

DBN X 0.05 0.05 X X X X 

RS-DBN X 0.03 0.03 X X X X 

DBN X 0.04 0.04 X X X X 

RS-DBN X 0.02 0.02 X X X X 

(Nie et al., 

2021) 

 

GBRT 

RNN -29.4 1.4 X X X X X 

SVM 89.4 70.5 X X X X X 

ARIMA 87.4 92.9 X X X X X 

ARIMA-

GBRT 

96.1 91.4 X X X X X 

ARIMA-

RNN 

96.5 92.1 X X X X X 

(Kim & Cho, 

2019b) 

Deep 

Learning 

CNN-LSTM 

LR 0.502 0.651 83.7 X X X X 

LSTM 0.526 0.717 44.3 X X X X 

CNN-

LSTM 

0.331 0.595 32.8 X X X X 

LR 0.319 0.384 41.3 X X X X 

LSTM 0.243 0.323 35.7 X X X X 

CNN-

LSTM 

0.238 0.308 31.8 X X X X 

Le et al. 

(2019) 

Deep 

Learning 

CNN & Bi-

LSTM 

LR 0.502 0.652 83.7 X X X X 

LSTM 0.526 0.717 44.3 X X X X 

CNN-

LSTM 

0.332 0.596 32.8 X X X X 

EECP-CBL 0.392 0.546 50.0 X X X X 

LR 0.320 0.385 41.3 X X X X 

LSTM 0.244 0.324 35.7 X X X X 

CNN-

LSTM 

0.238 0.309 31.8 X X X X 

EECP-CBL 0.177 0.220 21.2 X X X X 

Wen et al. 

(2020) 

Deep 

Learning 

(DRNN-

GRU) 

DRNN-

GRU 

0.34 0.51 3.50 X X X X 

DRNN-

LSTM 

0.39 0.56 3.64 X X X X 

Deep RNN 0.94 1.11 8.59 X X X X 

MLP 1.67 2.20 14.4 X X X X 

ARIMA 1.70 2.25 15.0 X X X X 

SVM 2.14 2.84 32.7 X X X X 

MLR 4.60 6.07 37.7 X X X X 

Deep 

Learning 

FNN 0.70 1.05 X X 0.47 X X 

DFNN 0.55 0.84 X X 0.53 X X 
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Nie et al. (2021) developed a unique energy consumption prediction 

model to simulate and predict energy use with greater accuracy. The wasting 

of a large amount of energy has a negative impact on the environment. The 

dataset was collected from a residential residence, and GBRT (gradient 

boosting regression tree) was utilized to modify GB using the RT of fixed size 

(Kiprijanovsk

a et al., 

2020) 

TCN 0.50 0.78 X X 0.59 X X 

LSTM 0.54 0.81 X X 0.54 X X 

GRU 0.54 0.80 X X 0.54 X X 

HousEEC 0.23 0.44 X X 0.90 X X 

Dong et al. 

(2021) 

Ensemble 

energy and 

pattern 

classification 

SPD X 4.44 X X X X 0.06 

SVR X 7.35 X X X X 0.09 

ANN X 5.71 X X X X 0.10 

Syed et al. 

(2021) 

Novel Hybrid 

Deep 

Learning 

model 

LR 85.5 137.2 70.3 X X X 0.10 

ELM 53.4 90.1 65.8 X X X 0.16 

LSTM 4.3 6.33 2.5 X X X 0.99 

DL-LSTM 3.4 5.44 2.0 X X X 0.8 

Peng et al. 

(2021) 

EDA-LSTM SVR 22.0 24 17.9 X X X X 

RFR 24.0 27.0 19.3 X X X X 

AdaBoost 

R 

28.0 31.0 22.2 X X X X 

LSTM 38.0 48.0 5.6 X X X X 

Dual A-

LSTM 

32.0 41.0 4.1 X X X X 

EDA-LSTM 26.0 31.0s 4.3 X X X X 

(Somu et al., 

2020) 

ISCOA-

LSTM 

ARIMA 0.37 0.48 X X X X X 

DBNR 0.32 0.41 X X X X X 

SVR 0.14 0.15 X X X X X 

GA-LSTM 0.32 0.14 X X X X X 

PSO-

LSTM 

0.42 0.09 X X X X X 

SCA-LSTM 0.44 0.46 X X X X X 

ISCOA-

LSTM 

0.03 0.05 X X X X X 

Kim and Cho 

(2019b) 

CNN-LSTM 

neural 

network 

LSTM 0.6 0.8 X 51.4 X X X 

GRU 0.6 0.8 X 51.3 X X X 

Bi-LSTM 0.5 0.8 X 51.1 X X X 

CNN-

LSTM 

0.3 0.6 X 34.8 X X X 

Jamil et al. 

(2021) 

Block chain 

deep 

learning 

peer-to-peer 

RNN 422.2 567.5 2.94 X 0.9 X X 

LSTM 377.2 519.9 2.6 X 0.9 X X 

RF 1328.

2 

1064.2 14.7 X 0.4 X X 

XGBoost 943.3 793.1 9.91 X 0.5 X X 

X.-B. Jin et 

al. (2021) 

Attention 

based 

Encoder-

Decoder with 

Bayesian 

optimization 

(GRU-

LSTM) 

RNN 512.6 613.2 X X X X X 

LSTM 498.8 600.4 X X X X X 

GRU 487.9 586.8 X X X X X 

GRU-

LSTM 

458.9 550.3 X X X X X 



 

87 

 

technique. Kim and Cho (2019b) compared LSTM (long short-term memory), 

LR (linear regression), and CNN-LSTM for a superior result. LSTM is utilized 

as a classifier, and CNN is used to extract complicated characteristics from 

images. The dataset was collected from collected data on energy usage from 

residential houses over a four-year period, and Deep learning CNN-LSTM 

approach was employed. They addressed the achievement of minimizing 

energy waste and economic loss, as well as effective forecast. There is a lot 

of energy waste from various places and for various causes. They need to 

collect energy consumption from a larger number of houses to confirm it, as 

well as other factors such as occupancy and major effects.  

Le et al. (2019) compared LR (linear regression), LSTM (long short-term 

memory), EECP-CBL (electric energy consumption prediction model utilizing 

the combination of CNN and Bi-LSTM) to provide a better result. A CNN Bi-

LSTM is a bidirectional LSTM and CNN architecture that is combined. It learns 

both character level and word level characteristics in the original formulation 

for named entity recognition. The dataset was obtained from the IHEPC 

(individual household electric power consumption dataset) dataset. Data on 

energy use from the previous five years was collected, and Deep Learning 

CNN and Bi-LSTM techniques were applied.  This cuts down on energy waste 

and economic disruption while also allowing for more precise predictions. They 

addressed these issues to make better decisions about how to save energy. 

For a variety of causes, a lot of energy is squandered. The waste of a 

significant amount of energy has a negative economic impact.  The results 

showed that several strategies, such as evolutionary algorithms and optimized 

models, must be used to increase performance. Wen et al. (2020) compared 

with DRNN-GRU is done to see whose results are better Deep RNN, MLP, 

ARIM, SVM, and DRNN-LSTM. The dataset for the paper was compiled from 

The Deep Learning (DRNN-GRU) technique was utilized to gather the load 

demand data for residential structures from the Data port website. Achieve 

excellent forecasting accuracy with few input variables by accounting for time 

dependencies. The issue is the rise in daily load demand and energy 

consumption. The drawback is that deeper networks and finer-grained data 

might potentially be used. An LSTM-based neural network, Pecan Street, and 
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deep learning techniques are employed (Kiprijanovska et al., 2020). Extensive 

datasets for household electricity consumption were gathered. Accurate load 

forecasting results are provided by the proposed model. False closest 

neighbor algorithm (FNN), deep feedforward neural network (DFNN), temporal 

convolutional network (TCN), long short-term memory (LSTM), gated recurrent 

unit (GRU), and houseEEC are compared. To creates a new classifier that 

performs better than any of its constituent classifiers, ensemble learning 

generates a variety of basic classifiers. These base classifiers may vary in 

terms of the training data, representation, or the algorithm being employed. 

Dong et al. (2021) used ensemble energy and pattern categorization. The 

achievement is each prediction model has the capacity to manage a single 

pattern and provide more precise predictions. The authors compared the best 

results of SVR and ANN for SPD (Stacking Pattern Decision).  

Syed et al. (2021) proposed a New Deep Learning Framework for 

Classifying Hyperspectral images using subspace-Based Feature Extraction 

and Convolutional neural networks and compared LR, ELM, & LSTM. Eight 

textual tweets and review datasets of various disciplines are used to build and 

test hybrid deep sentiment analysis learning models that integrate long-term 

memory networks, convolutional neural networks, and support vector 

machines. The dataset utilized was compiled from information gathered from 

residential buildings using a novel hybrid deep learning model approach. 

Enhancing load and scheduling prediction accuracy is the accomplishment. 

The issue is overusing energy-consuming equipment wastes a significant 

portion of the energy used in buildings. The restriction is that training an energy 

forecasting model might potentially be done in parallel with bidirectional 

LSTMs to accomplish distributed computing. Peng et al. (2021) compared SVR 

RFR, AdaBoost Regression, and LSTM with the purpose of ensuring the best 

results. The dataset analyze three years' worth of daily electricity consumption 

data from residential buildings in Shanghai's Pudong neighborhood. (Somu et 

al., 2020) compared ARMIA (auto regressive integrated moving average) SV 

regression, BN regression to get the best outcome.  

Jamil et al. (2021) compared RNN, LSTM, RF, and XGBoost to see 

which produces the best results. The dataset used was compiled using the 
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block-chain deep learning (peer-to-peer) technique with data from the Korean 

province of Jeju. The accomplishment is the intelligent peer-to-peer energy 

trading, data analysis, and predictive analysis supported by smart contracts.  

Energy consumption is increasing in today’s world due to the sharp 

increase in human population and technological development. Hence more 

accurate prediction of energy consumption is important. Kim and Cho (2019b) 

proposed a hybrid model based on CNN and LSTM. The authors used CNN 

for the extraction of complex features from multiple variables and LSTM for 

modelling irregular time series data. Using the proposed model this study 

achieves better results as compared to previous studies in this area and 

records a small value of root mean square error. Pham et al. (2020) presented 

a proposed random forest (RF) based model for short-term energy 

consumption prediction. Five one-year datasets are used in this study for 

analysis of models. Models such as the RF model, M5P, and Random Tree (RT) 

are compared for comparative analysis. For evaluation of the results, accuracy 

measures are used such as MAE, MAPE, RMSE, and SI. The experimental 

results indicated that the RF model has a better prediction accuracy in the 

prediction.  

Divina et al. (2020) proposed a neuro-evaluation-based approach using 

genetic algorithms to find the optimal set of hyper parameters to configure the 

deep neural network. This method is then used   to forecast the electrical energy 

consumption. The right set of hyper parameters is significantly helpful to deep 

neural networks for excellent performance. The proposed model performance 

is then assessed by experimenting using a large dataset of 10 years in Spain. 

The results are obtained using MRE and SD as accuracy measures. After 

comparing the results with NDL, CNN, LSTM, FFNN, ARIMA, DT, GBM, RF, 

EV, NN, and ENSEMBLE, the authors claimed that the methodology they 

proposed has the capability for short-term electric energy prediction, and on 

the specific dataset that is used achieved the top performances.  

Chitalia et al. (2020)  proposed a framework for short-term energy 

prediction to capture non-linearity. The author explored nine multiple hybrid 

neural networks and clusters. Data of five commercial buildings are combined 
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from five multiple places in Bangkok Thailand, Hyderabad-India, Virginia-USA, 

New York-USA, and Massachusetts-USA. The author RMSE, MAPE, and CV 

as an accuracy measure. The results proved that the deep learning algorithms 

provide 20–45% perfection in energy prediction performance in a comparison 

with other conventional models for both hour-ahead and 24-ahead load 

prediction.  

Fekri et al. (2021) proposed an online Adaptive RNN has the capability 

of learning freshly arriving data continuously and updating weights of RNN 

according to the current data. The new method is evaluated on the real-world 

data taken from five household customers provided by London Hydro. LP, 

linear, passive-aggressive, bagging, and KNN regression, RNN are used for 

comparative analysis using MSE and MAE as accuracy measures. The results 

proved that the proposed method achieved higher accuracy than the traditional 

offline long short-term memory network and five other online algorithms.  

 

Kim and Cho (2019a) predicted residential energy consumption using artificial 

intelligence neural networks which optimize using trial and error operators 

which lack prior knowledge. For comparative analysis of model’s household, 

the UCI repository is used for datasets collection. The proposed model 

achieves the best prediction of the results in terms of accuracy and lowermost 

mean square error (MSE) as compared to conventional models. 

(He et al., 2019) extracted important features from external factors affecting 

the energy use forecasting by LASSO regression. The author then developed 

a LASSO-QRNN model to predict annual electricity consumption. The model 

was evaluated using MAP E and RMSE showing precision in prediction.  

The results of machine learning models’ energy accuracy consumption 

prediction are elaborated in following Table 2.7. 
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Table 2.7 Prediction accuracy results of machine learning techniques 

Studies Technique MSE RMSE MAE MAPE 

 
LT ST LT ST LT ST LT ST 

(Le et al., 2019)  

EECP-CBL 
0.29 0.05 0.54 0.22 0.39 0.98 50.09 11.66 

Divina et al. (2020)  
NDL 

1.4 

 
3.01 ❌ ❌ ❌ ❌ ❌ ❌ 

Pham et al. (2020)  
RF ❌ ❌ 5.18 

 

2.2 

 

3.4 
1.47 23.52 

 

9.3 

Chitalia et al. (2020)   LSTM 

❌ ❌ 6.35 2.47 ❌ ❌ 74.51 19.22 

Fekri et al. (2021)  

RNN+LSTM 66.98 28.82 
❌ ❌ 

21.1
8 

11.88 ❌ ❌ 

Kim and Cho (2019a) PSO-based CNN- 
LSTM 0.39 0.44 ❌ ❌ ❌ ❌ ❌ ❌ 

(He et al., 2019) Lasso-QRNN 
❌ ❌ ❌ 2.04 ❌ ❌ ❌ 0.05 

 

2.7 Summary 

This chapter aimed to establish a better understanding of how 

occupant’s behaviour can be better predicted through machine learning 

approaches to improve building energy predictions. In this chapter, machine 

learning approaches have been reviewed with the goal of their application in 

advancing occupant behaviour modelling and prediction. Due to the 

occupant’s behaviour stochastic nature, in most cases, it is difficult to 

extrapolate building occupant related parameters. Energy simulation 

approaches alone without the consideration of the impact of occupant’s 

behaviour may fail to obtain accurate simulations and predictions. Studying 

and predicting occupant energy behaviour is complex and presents non-

linearity in data, patterns of behaviour, dependencies, relationships and 

constraints, hence in most cases data is over or under fitted. However, 

machine learning methods can deal with non-linearity and provide more 

reliable outcomes. It is evidenced that the machine learning approach can 

extrapolate valid, insightful, and inclusive building occupant behaviour 

patterns.  

This chapter concludes the following advantages and limitations in 

terms of occupant’s behaviour prediction employing machine learning 

approaches. 
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i. Machine learning approaches have proven to provide more reliable 

predictions when compared with the deterministic approaches   with 

accuracy levels reflected throughout the review sections. It provides a 

better understanding of occupant’s behaviour stochastic nature and 

incorporation of its impact on building energy performance. This all 

contributes to better building energy performance prediction and 

minimising the performance gap.  

ii. The key limitations are represented by shortcomings in the model 

validation process, and the generality of estimate parameters in which 

some variables are based on estimated values instead of the actual 

values due to the lack of adequate datasets. This, in turn, affects the 

validity of the models. 

iii. As evidenced in the review, some cases presented the difficulty of 

relating machine learning modelling results with occupant behavioural 

control patterns derived from other case studies or different conditional 

input process. For example, a predictive model applied for residential 

buildings requires different inputs (conditional and non-conditional) to 

school buildings. Also, this relates to the lack of state-of-the-art 

predictions on different types of case studies which is mainly limited to 

residential and office building as evidenced by the reviewed papers 

where these buildings represented over 90% of the case studies. 

iv. A high level of expertise is needed to achieve an accuracy as machine 

learning approaches can be complicated by nature, and a high level of 

knowledge is needed to develop the model. 
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CHAPTER 3  

 

 

RESEARCH METHODOLOGY 

3.1 Introduction 

In this research, the research questions are answered using multiple 

research methods. It can, therefore, be regarded as a mix research method. 

Research methods are selected based on their suitability to answer each 

research question. The first research question RQ1 is related to the 

investigation of energy consumption prediction models and accuracy 

improvement in ensemble and solo machine learning techniques; the second 

research question RQ2 is about the development of the occupant’s behaviour-

based machine learning model to improve energy consumption accuracy 

prediction of residential buildings; the RQ3 and RQ4 are associated with the 

evaluation and applicability of the proposed model respectively. Table 3.1 

depicts the research methodology used in this research.  

Table 3-1 Mapping of research methods with chapters 

Research Methods 2 3 4 5 6 7 
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Literature Review 

(Secondary study) 
✓ 

 

    

Engineering  ✓    

Experiments   ✓ ✓  

Comparison 

Evaluation performance metrics 
   ✓  
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3.2 Research Design and Approach 

There are four categories of conducting research such as scientific, 

engineering, empirical and analytical (Hasselbring & Giesecke, 2006). In the 

first stage of the scientific method, the problem needs to be observed 

thoroughly; then a model shall be proposed. In the second stage, the proposed 

model shall be validated using formal methods and theory to prove the 

hypotheses. In the last stage, this process will eventually be repeated as far 

as possible. 

Instead, the engineering methodology involves analyzing existing 

solutions to gain knowledge on how to develop a better solution and testing it 

to verify hypotheses. In the empirical method, the first step is to formulate a 

model. The statistical or qualitative methods must be established accordingly 

to validate the given hypotheses. In the final stage, the planned model must 

be applied to case-study for evaluation purpose. Alternatively, the 

methodology of an analytical method is different; in this case, first, a formal 

theory is formulated then the proposed theory is established to derive results. 

These results are then compared with empirical observation if possible. 

Looking at the above categories, this study has selected the 

engineering method. The primary focus of supporting the engineering 

methodology is to prioritize the design and construction of a more efficient 

solution than the current solutions available. Therefore, the engineering 

method is the most suitable research method to be applied to this research as 

the main purpose of this research is to improve the accuracy prediction of 

energy consumption of residential buildings. The engineering method contains 

four steps which are (1) observe the existing solutions; (2) propose a new 

solution; (3) develop the proposed solution; and (4) measure an analyze as 

shown in Figure 3.1. 
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Observe the 
exisitng 
solution

Propose a 
better 

solution

Develop the 
proposed 
solution

Measure & 
Analyse

 

 

 

  

 

 

Figure 3-1 Engineering research method process 

 

In the first step, the prior studies on energy consumption prediction 

models and accuracy improvement in ensemble and solo machine learning 

techniques in residential buildings are reviewed. As part of this study, existing 

models, methods, techniques, and frameworks for predicting energy 

consumption accuracy were analyzed. After this analysis, an ensemble 

machine learning model based on occupancy behavior was proposed in order 

to improve the accuracy of energy consumption prediction for residential 

buildings. In the third step, the idea behind the proposed solution is to 

incorporate machine learning techniques to make an ensemble model. The 

model development stage is discussed in chapter 4. In the last step, the 

solution is evaluated using evaluation metrics and real case studyand if it fails 

to achieve the objectives of this research, these four steps shall be repeated 

to find a better solution for the problems in this research. 

This study utilized the research plan guidelines proposed by Wohlin and 

Aurum (2015) to design its research structure. The research plan was 

structured into three phases: strategy, tactical, and operational, with a total of 

eight decision points, as illustrated in Figure 3.2. Various methods were 

available for executing each decision point. 
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Figure 3-2 Structure of research phases. Wohlin and Aurum (2015) 

 

This research applied the guidelines to map the decision making procedure of the 

research design onto the research structure illustrated in Figure 3.3. 

 

Figure 3-3 The procedure of research decision making  

 

3.2.1 Research Strategy Phase 

Outcome: This research aims to propose a novel ensemble machine learning 

model for improving the accuracy prediction of energy consumption of 

residential buildings. The proposed model aims to solve a specific problem of 
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residential buildings accuracy prediction. Thus, the research outcome of this 

study is based on applied research. 

Logic: In this research, the deductive method was employed for research 

logic. The deductive reasoning involves moving from general to specific in a 

top-down approach. It begins with a theory, develops hypotheses from that 

theory, and then collects and analyzes data to test those hypotheses. This 

research followed the same approach by first identifying the problem through 

a thorough literature review, establishing a hypothesis regarding energy 

consumption accuracy prediction, and evaluating it after collecting and 

analyzing data. The hypothesis that 'the application of machine learning 

techniques can provide more accurate energy predictions and reliable 

occupant behaviour considerations' was tested by employing quantitative 

methods to confirm it. 

Purpose: The primary objective of this research is to create a machine 

learning method for energy performance prediction of buildings that considers 

and incorporates all factors affecting occupant behavior. The main focus is to 

improve the prediction accuracy compared to existing models by including the 

impact of occupant behavior on energy consumption. The goal is to reduce the 

energy performance gap and provide more reliable predictions.  

Approach: This research has adopted the positivist approach, which is 

characterized by an objective and empirical approach to obtain accurate and 

reliable results that can be replicated. The role of the researcher is limited to 

the collection and analysis of "objective" data to achieve quantifiable 

outcomes. 

3.2.2 Research Tactical Phase 

Research Process: For the research process decision point, a quantitative 

method was chosen as the research focuses on the accuracy prediction of 

energy consumption in residential buildings, which requires various metrics for 
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evaluation and statistical techniques to analyze data. As for the research 

methodology, a case study approach was utilized as it allows for multiple 

analyses and different perspectives to be applied to the selected software 

projects. 

Research Methodology: As for the research methodology, a case study 

approach was utilized as it allows for multiple analyses and different 

perspectives to be applied to the selected software projects. 

3.2.3 Research Operational Phase 

Data Collection: Datasets and case studies are used for data collection 

methodology. Whereas this research aims to improve the accuracy prediction 

of energy consumption.  

Data Analysis: This research has used statistical analysis to analyze data 

using python statistical libraries such as NumPy, SciPy, Sci-kit learn, in order 

to provide descriptive analysis, factors important analysis, occupants impact 

analysis, regression and machine learning analysis. 

3.3 Operational Framework 

In this section, the plan for implementing the research objectives in each stage 

of the study is described. Figure 3.4 illustrates the operational framework, 

including all processes and sub-processes, as well as the activities conducted 

and the delivered outcome.  

 

3.3.1 PHASE-1: Literature Review and Planning 

In the planning phase, a thorough examination of the activities that will 

take place in each stage of the research was conducted. A Gantt chart that 

outlines the milestones and deadlines for each phase of the research was 

developed to ensure well-timed execution of the thesis. The Gantt chart is 

presented in Table 3.2. Every step of the research process was completed in 
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detail at this phase. The Gantt chart for research milestones was primarily 

created to ensure prompt research execution. A research milestone is a 

structured, established description of the problem that the study is attempting 

to solve. It facilitates research planning by dividing the activities into important 

subtasks. It is useful for defining the milestones and paths between them.  

At this phase, every step of the research process had been meticulously 

finished. The main goal the Gantt chart for the research milestones was to 

guarantee swift research execution. An organized, formal explanation of the 

issues that the study is aiming to answer is a research millstone. It makes 

research planning easier by breaking down the tasks into significant subtasks.  

The chart was utilized to specify the milestones and the routes to be 

taken to achieve them. The research was split into three primary stages: 

investigation, model development, and evaluation, with each stage having sub-

tasks and planning milestones. During the literature review phase, the current 

state of energy consumption prediction models and the accuracy improvement 

in both solo and ensemble machine learning techniques were explored, which 

aimed to achieve the first research objective of investigating the energy 

consumption prediction models and accuracy improvement in ensemble and 

solo machine learning techniques.  

This phase provided a literature review and the output of the review 

delivered insights to the occupant related parameters affecting energy 

performance. It analysed the machine learning techniques that best captures 

occupant’s behaviour for more accurate energy predictions. This has provided 

the foundation to the implementation phases of the research. Understanding 

occupant’s behaviour can yield better building energy predictions. In this 

phase, several machine learning approaches have been studied with the goal 

of advancing occupant behaviour modelling and prediction. Due to the 

occupant’s behaviour stochastic nature, in most cases it is difficult to 

extrapolate building occupant related parameters from explored case studies 

by using conventional approaches. Conventional approaches may fail to obtain 

accurate simulations and prediction resulting from its limitation to handle 

complex and non-linear problems, and reflect the patterns of data, the 

dependencies, relationships and constraints, in most cases data is over or 
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under fitted. However, machine learning methods evidenced the ability to 

extrapolate valid, insightful, and inclusive building occupant behaviours 

patterns.  

In conclusion, in terms of occupant’s behaviour prediction by means 

machine learning algorithms the following advantages and limitations are 

presented:  

The advantages lie in the following: 

i) providing more reliable predications when compared with the 

conventional simulation approaches in most cases. 

ii) providing a better understanding of occupant’s stochastic nature and its 

impact. 

iii) contributing to better building energy performance prediction and 

minimizing the performance gap.  

The key limitations are summarized as follows:  

i) shortcomings in the model validation process.  

ii) Difficulty of relating machine learning modelling results with occupant 

behavioural control patterns derived from other case studies or different 

conditional input.  

iii) The complexity and level of knowledge needed to develop the model. 

iv) Cost and computational power required. 

v) The lack of state of art predictions on different types of case studies. 

vi) The complexity of use and interoperability of the model with other 

simulation models. 

This phase presented an overview of machine learning approaches with 

an endeavour to overcome the shortcomings of the conventional prediction 

models by providing reliable models of energy-related behaviour with higher 

accuracy and reusability potential. Tables 3.2 and figure 3.4 summarises 

research roadmap and operational framework.
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Table 3-2 Gantt chart of research milestone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No Task Dur Start Finish

Jan-June Jul-Dec Jan-June Jul-Dec Jan-June Jul-Dec Jan-June Jul-Dec Jan-June Jul-Dec

STAGE-1 To investigate and analyze the existing 

energy consumption prediction models, 

approaches and methods

2 Y 01-Jan-18 31-Dec-19

Preliminary research initiation and plan 6M 01-Jan-18 30-Jun-18

Literature review on existing energy consumption 

prediction approaches 

1Y6M 01-Jul-18 31-Dec-19

STAGE-2 To design and develop ensemble energy 

consumption prediction model 

1Y 01-Jan-20 31-Dec-20

Research design, methodology and strategy 3M 01-Jan-20 31-Mar-20

Operational framework 2M 01-Apr-20 31-May-20

Development of proposed ensemble energy 

consumption prediction model 

4M 01-Jun-20 30-Sep-20

Conceptual and mathematical relationship 

justification

3M 01-Oct-20 31-Dec-20

STAGE-3 To evaluate the proposed ensemble 

energy consumption prediction model

2Y 01-Jan-21 31-Dec-22

Preparation of data collection 4M 01-Jan-21 30-Apr-21

Collect evidence 4M 01-May-21 31-Aug-21

Editing and coding data  4M 01-Sep-21 31-Dec-21

Computation of energy consumption 4M 01-Jan-22 30-Apr-22

Evaluation process 4M 01-May-22 31-Aug-22

Interpretation of results 4M 01-Sep-22 31-Dec-22

1

2

3

2018 2019 2020 2021 2022
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Figure 3-4 Operational Framework
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3.3.2 PHASE-2: Research Methodology 

During this phase, the research design, strategy, methodology, as well 

as the operational framework are developed to ensure the viability and 

accessibility of the research. Those phases were previously discussed in this 

chapter. However, the flowchart for the research methodology is presented in 

Figure 3.5. In addition, the design of an ensemble energy consumption 

prediction model is proposed at the end of this phase. A summary of the 

operational framework activities and outputs are presented in Table 3.3. 

 Table 3 -3 Phase 2 of operational framework 

          

           

           

       

 

 

 

 

 

 

          

            

Phase-2 

Activities resources outputs 

Research design Libraries for literature 
review 
Research methodology 

 
Engineering 

methodology 

Research strategy Decision making procedure  Research strategy 
phases 

Research methodology Flowchart (figure 3.5) flowchart 

Operational framework Coding and simulation Indepth development  
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Figure 3-5 Flow chart research methodology 
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3.4 Methodology of Literature Review 

The systematic review follows the guidelines set by Kitchenham and 

Charters (2007). It evaluates the machine learning techniques used to predict 

the impact of occupant’s behaviour on building energy performance. The 

review investigates the machine learning techniques used to predict 

occupant’s behaviour contribution to building energy consumption to 

complement the building energy model to provide accurate and more reliable 

result and reduce the performance gap. This research summarizes the 

methods and results of selected machine learning techniques in predicting 

occupant’s behaviour and their impact on energy performance and identifies 

any gaps in current research to identify areas for future research. 

This research review covers the following points.  

i) Explores the machine learning techniques for predicting occupant’s 

behaviour and their impact on building energy performance found in 

current literature, 

ii) Highlights the benefits and drawbacks for identified machine learning 

techniques in terms of predicting occupant’s behaviour on energy 

performance,  

iii) Assesses the extent of accuracy expected for predicting the impact of 

occupant’s behaviour when applying machine learning techniques.  

3.4.1 Search Strategy 

The review's search process consists of two stages. In the first stage, relevant 

studies were identified by searching through six commonly used digital 

libraries: Science Direct, IEEE, ACM Library, Web of Science, spronger , and 

SCOPUS. The search was limited to articles published from 2005-2022, and 

the search query string was tailored to each database to find studies related to 

the research questions depicted in Figure 3.6. 
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Figure 3-6 Search string 

The literature review sheds light on the application of machine learning 

approach to predict occupants related parameters contribution building energy 

performance; it provides an appraisal of current literature to explore the 

adaption of the machine learning approaches in building energy performance 

prediction.  

Figure 3.7 shows PRISMA flow diagram of the search strategy for the 

literature review process. A total of 317 research papers were obtained from 

the six digital libraries used in the first stage of the search strategy, and were 

downloaded for further examination. The downloaded studies were combined 

in Endnote version X20, and duplicates were removed, resulting in 174 

studies. In the second stage, inclusion/exclusion criteria were applied by 

manually examining the title, abstract, introduction, and conclusion/full text of 

the remaining studies, which resulted in 86 primary studies that met the 

inclusion criteria. The list of relevant papers was continuously updated 

whenever a new paper was found.In the general search, four main keywords 

are used in the search: energy modelling, prediction, occupant’s behaviour, 

and machine learning, taking into consideration their alternative spellings and 

synonyms to select any papers where they were found in the title, abstract and 

keywords. Papers that are not peered reviewed in the recognized publication 

are excluded, as well as papers that did not discuss the application of machine 

learning algorithms in building energy prediction. For more inclusion and 

specifics on the subject, a further search was made through the selected 

search engines using more subject-specific words. For more specific search, 

the search is broken down into the categorized occupant’s actions and 

occupancy (windows opening, shades and blinds, plug loads or appliances, 

adjustments of thermostats, lighting), along with the keywords: energy 

modelling, prediction, and machine learning. This allowed us to narrow down 

our search to 86 publications specifically covering the use of selected machine 

energy consumption* AND occupant’s behaviour* 

(energy OR consumption OR occupants OR occupancy OR behaviour) 

AND (estimate OR predict OR forecast OR calculate) AND (machine 

learning) AND (modelling OR method OR technique OR approach) AND 

language (English) 
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learning algorithm in predicting one or more occupant’s behaviours and/or 

occupancy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-7 Search strategy 

3.4.2 Inclusion Criteria  

To ensure the relevance and usefulness of the selected studies, inclusion and 

exclusion criteria are applied in accordance with the research questions and 

search process. Studies meeting the following characteristics are included:  

• written in the English language,  

• centered around solo and ensemble models, methods, techniques, 

or approaches for energy consumption prediction,  

• focused on energy consumption, prediction, forecasting, or 

calculation and published in peer-reviewed conferences or journals, 

• utilization of machine learning algorithms in predicting energy 

consumption in residential buildings. 
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3.4.3 Exclusion Criteria 

The studies included in this research were required to comply with certain 

characteristics. Specifically, studies had to be based on empirical research and 

consider the impact of occupant behavior on energy consumption. Additionally, 

only studies focused on machine learning techniques were included, and those 

not meeting these criteria were excluded. 

3.4.4 Research Quality Valuation  

To assess the quality of the primary studies, a customized version of the quality 

assessment checklist proposed by Kitchenham et al. (2007) was used. This 

checklist has been used in previous SLR studies such as those by Idri et al. 

(2016) and Wen et al. (2012). The customized checklist consists of 12 

questions aimed at evaluating the quality, accuracy, dependability, and impact 

of the selected studies (table 3.4). Each question was scored on a three-point 

scale: Yes has 1 point, No has 0 points, and Partial has 0.5 points. Forming a 

max score of twelve. To be included in this study, a primary study had to 

achieve an acceptable quality score greater than the passing score of half the 

max score, any study below the average was excluded. A total of 7 papers 

failed to achieve the inclusion score of above 6. The quality scores of the 

remaining 62 primary studies are summarized in Table 3.5 and Figure 3.8. 

 

 

Table 3-4 Quality assessment checklist 

Question Score 

1. Are the objectives of the research clear? 
1 y, 0 n, 

0.5 p 

2. Was the study designed to reach the stated aims? 
1 y, 0 n, 

0.5 p 

3. Are the machine learning techniques used detailed and 

described? 

1 y, 0 n, 

0.5 p 

4. Did it undertake variable measurements with reliability? 
1 y, 0 n, 

0.5 p 
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5. Did it include the data collection methodology? 
1 y, 0 n, 

0.5 p 

6. In case the answer was yes, was it described 

comprehensively? 

1 y, 0 n, 

0.5 p 

7. Was the study transparent? 
1 y, 0 n, 

0.5 p 

8. Were evaluation metrics used to evaluate the mode? 
1 y, 0 n, 

0.5 p 

9.  Are the limitations discussed? 
1 y, 0 n, 

0.5 p 

10.  Does this relate to my research questions? 
1 y, 0 n, 

0.5 p 

11.  Did the model present any significant findings? 
1 y, 0 n, 

0.5 p 

12.  Are there any solid conclusions drawn from the results? 
1 y, 0 n, 

0.5 p 

 
Table 3-5  Quality valuation of selected studies 
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3.5 PHASE-3: Model Development 

The preliminary studies also defined the gaps in the current models 

resulting from the design of the new conceptual model for improving 

occupant’s behavior-based energy consumption accuracy prediction using a 

combination of machine learning techniques to make an ensemble. Table 3.6 
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Figure 3-8 Quality score 
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summarizes the detailed activities and deliverable of the model development 

phase of the operational framework. 

Table 3-6 Phase 3 of operational framework 

 

Figure 3.9 shows the conceptual model with the input variables and 

occupant’s characteristics. The predicted output is the total energy 

consumption, while the predictors are occupants, and occupant behaviour 

related parameters (listed below). The predictive model is built to predict the 

energy performance in dwellings based on the impact of occupant behavioral 

parameters:  

i) Use of appliances, number of appliances 

ii) Number of windows and doors 

iii) Type of thermostats and occupants use of thermostats 

iv) Type of air-conditioning, number of units, occupants use 

v) Type and number of lightings, interaction with lighting units 

vi) Occupant’s characteristics (gender, age, number of occupants, 

education levels, income) 

vii) Occupancy and presence during weekdays and weekends. 

 

 

 

 

 

 

PHASE-3:  

Activities resources outputs 

Phase 3.1.  
Design ensemble energy 
consumption prediction model 

rationale and 
relationships and 
rational 

model 

Phase 3.2.  
Develop proposed ensemble 
energy consumption prediction 
model 

numerical calculation  Ensemble energy 
consumption 
prediction model 
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Figure 3-9 Conceptual model with occupants’ behaviour 

3.6 PHASE 4: Data Collection and Analysis 

In this phase, the dataset from American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) global occupant 

behaviour database is collected and statistical analysis of the data is provided 

to generate results that will be evaluated and discussed. Table 3.7 provides a 

summary of the detailed activities and the expected outcome of this phase of 

the operational framework. The dataset is used to measure the solution by 

applying the collected data on the proposed ensemble model to compute 

predictive energy consumption. Data from several data sources reflecting the 

type and inclusiveness of data needed to develop the machine learning model. 

The dataset covers occupants related parameters, building related parameters 

as well as the energy consumption in buildings. The dataset types, plan and 

stages of evaluation are shown in Figure 3.10. 
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Table 3-7 Phase-4 of operational framework 

The outcomes are analyzed by varius evaluation metrics. Those 

metrics, and the findings are presented in chapters 5 and 6. 

  

 

 

 

  

 

  

 

 

Figure 3-10 Structure of phase 4 and 5 

PHASE-4: DATA COLLECTION AND ANALYSIS 

Activities resources outputs 
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behaviour database  

Charts, graphs, 
Predictive energy 
consumption 

analysis Evaluation and simulation results 

  

E
xe

cu
tio

n 
of

 d
at

a 
co

lle
ct

io
n 

 

Type of data 

Dataset repository Data collection plan Evaluation 

Apply 
collected 
data on 

proposed 
model to 
predict 
energy 

consumption 

Assess the 
accuracy 

prediction and 
Applicability of 
the ensemble 

model 

Quantitative 
Archival data  

Methodology 

STAGE 1 
 

STAGE 2 
 

- comparison with other algorithms 
- evaluation metrics 
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occupants, education levels, 
income) 
Occupancy and presence 
during weekdays and 
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3.7 PHASE 5: Evaluation 

This phase addresses RQ3 and RQ4: During this phase, the proposed 

ensemble model is evaluated to determine its applicability. The evaluation 

process involves comparing the actual prediction with the prediction generated 

by the proposed model. Evaluation metrics are used to evaluate the model, 

and two evaluation aspects will be considered. 

3.7.1 Evaluation 1 

To address the RQ3, the first evaluation aspect is to assess the 

accuracy of prediction improvement of the ensemble model. The solo machine 

learning models are compared to the ensemble model. Evaluation metrics are 

employed to statistically analyze the results produced by the models.  

In this evaluation, the following hypothesis is evaluated: 

i. Null Hypothesis (H0): The energy consumption prediction accuracy of 

an ensemble prediction model is not better than the existing solo 

models.  

ii. Alternative Hypothesis (H1): The energy consumption prediction 

accuracy of an ensemble prediction model is better than the existing 

solo models.  

3.7.2 Evaluation 2 

To answer RQ4, the proposed ensemble model's predictive reliability and 

applicability are evaluated using various commonly used evaluation metrics 

such as Magnitude of Relative Error (MRE), Mean Magnitude of Relative Error 

(MMRE), Mean Absolute Deviation (MAD), Mean Squared Error (MSE), Root 

Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE).  

In this evaluation aspect, the following hypothesis is evaluated: 
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i. Null Hypothesis (H0): The ensemble prediction model is not applicable 

to accurately predict the energy consumption of residential buildings.  

ii. Alternative Hypothesis (H1): The ensemble prediction model is 

applicable to accurately predict the energy consumption of residential 

buildings.  

The MRE is defined as the ratio of actual to predicted consumption. The MRE 

is calculated according to the below (3.1). 

 

MRE = 
|𝐚𝐜𝐭𝐮𝐚𝐥 𝐞𝐟𝐟𝐨𝐫𝐭−𝐞𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐝 𝐞𝐟𝐟𝐨𝐫𝐭|

 𝐚𝐜𝐭𝐮𝐚𝐥 𝐞𝐟𝐟𝐨𝐫𝐭
 

 
The MMRE value is calculated using the MRE values through the following 

equation(3.2). 

 

MMRE =   

Where, 

n = number of observations       

The MMRE is utilised to detect the amount of predicted consumption to check  

the under-prediction or over-prediction attributes in assessment to the actual 

prediction. Because of its characteristic independent-of-units.   

 

The mean squared error (MSE) is a common loss function used in introductory 

machine learning. To calculate the MSE, actual data is averaged across the 

entire dataset and the squared difference between the actual and estimated 

values is calculated. This is represented by the following equation(3.3). 

 

MSE = 

Where, 

▪ n = number of observations and ‘e’ prediction error value 

1

1 n

iMRE
n


2

1

1 n

ie
n


(3.1) 

(3.2) 

(3.3) 
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The root mean square, commonly referred to as the roots squared deviations, 

is one of the techniques more regularly that used evaluate the correctness of 

predictions. It displays the distance function among actual measurements and 

forecast. Compute the root-mean-square by calculating the residual 

(discrepancy among forecast as well as true) for each data point, as well as its 

norms, average, and squared. RMSE is often used in supervised machine 

learning algorithms since it demands and makes use of direct measures on 

every predicted data set. It is calculated by using the Equation (3.4). 

 

RMSE= 
√∑ ||𝑦(𝑖)−𝑦𝑖||𝑁

𝑖=1 2

𝑁
 

Where, ‘n’ is the number of observations. 

Usually, range between all statistics point and the mean is known as an 

average relative difference of a dataset. It offers us a sense of how variables 

a dataset is. The mean absolute deviation can be calculated by using the 

Equation (3.5): 

Step 1: Determine the Means 

Step 2: Determine the appropriate ranges that every single item must be 

above the means. 

Step 3: Adding those deviation equally 

Step 4: Divides the total from the quantity of input values. 

MAD= 
𝑥𝑖−𝑥

𝑛
 

A means relative percentage errors could be used to assess an accurateness 

's efficiency in algorithms. The MAPE is a lost functional which precisely 

identifies a model's mistake. The MAPE is calculated simply calculating the 

relative differences among the real and predicted numbers, then divided by the 

real values. These fractions for all variables are added to determine the means. 

More concisely, the formula for the MAPE is shown in Equation (3.6) 

 

MAPE=
1

𝑛
∑

|𝐴 − 𝐹
𝐴|

𝑛
𝑖=1  

(3.4) 

(3.5) 

(3.6) 
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= urges combining the entire variables produced. 

N= it representative sampling enough 

a= it indeed the true worth 

f= it an anticipated worth 

 

3.7.3 Evaluation 3 

Evaluation 3 aimed to compare the performance of the developed ensemble 

model in predicting the energy consumption of a building in kWh/m2/annum, 

to (1) the actual energy consumption of a real case study taken from Annex53 

(IEA) and (2) the simulation results of the same case study conducted on 

DesignBuilder by using existing inputs, schedules, and assumptions of missing 

occupant behavioral parameters, and predicting energy consumption using 

EnergyPlus. 

 

 

3.8 Summary 

The chapter provided an  indepth  outlook of research methodology.. 

The engineering method is used as a research methodology. The engineering 

method is performed in four steps which are (1) observe the existing solutions; 

(2) propose a better solution; (3) develop the proposed solution; and (4) 

measure and analyze. This section provides an elaboration on the research 

design, which includes the research structure, decision-making process, and 

its three main phases. It also highlights the operational framework, which 

consists of five phases and provides a detailed explanation of each of these 

phases. The proposed ensemble model is designed and clarified in each base 

model with its functionality to create an ensemble.  

The archival data from American Society of Heating, Refrigerating and 

Air-Conditioning Engineers (ASHRAE) global occupant behavior database is 
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used as the data collection method. The case study is adopted from annex53 

(IEA) and simulated to compare results. The research process involved a 

structured approach to data collection, evaluation, and analysis. Through this 

process, the accuracy and applicability of the proposed ensemble energy 

consumption prediction model were determined. 
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Chapter 4 

 

 

ENSEMBLE MODEL ARCHITECTURE AND ALGORITHMIC DESIGN 

4.1 Introduction 

This chapter presents the development and overview of the proposed 

ensemble model to improve prediction accuracy of energy consumption of 

residential buildings by integrating all the factors influencing occupant’s 

behaviours. The discussion in this chapter is structured to four-layer units used 

in this model on conceptual and mathematical relationship justification of the 

base models such as 1) Lasso regression, 2) Ridge regression 3) Random 

forest regressor 4) Gradient Boost. Lastly a summary is presented to conclude 

the chapter. 

4.2 Lasso regression 

Lasso regression is a linear regression algorithm using L1 regularization so 

that the model can have sparse coefficients. It penalizes the large coefficients, 

and drives the model to rely only on the most important predictors for making 

predictions. Lasso regression is particularly employed when the dataset is  

highly dimensional with many potential predictors but only a few are truly 

important. This aligns with our research aim of predicting energy use based on 

the highly dimensional number of predictors. Lasso is select the most important 

predictors for the model inorder to provide more accurate predictions. 

The equation for Lasso regression is represented as follows: 

y = β0 + β1x1 + β2x2 + ... + βpxp + ɛ 

where; 

 y represents the response variable, 

β0 represents the y-intercept or constant,  

β1 to βp represents the regression coefficients for the predictor variables x1 to 

xp,  
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and ɛ represents the error term. 

Inaddition,  Lasso regression uses regularization, which is represented by λ. 

The equation with the regularization term is: 

y = β0 + β1x1 + β2x2 + ... + βpxp + ɛ + λ * ∑|βi| 

where; 

λ is the regularization parameter, 

 and |βi| represents the absolute value of the regression coefficient for the ith 

predictor variable.  

The L1 regularization aids in reducing the variance of the model and improving 

the predictive accuracy.  

The Lasso regression process can be divided into the following parts:  

Part 1: similar to any algorithm, data need to be processed where 

missing    values are removed, data is scaled and categorical 

variables are encoded if they are available.   

Part 2: feature selection, which includes the penalty term that shrinks 

the least important coefficients value to zero, focusing only on 

the most important features or predictors.  

Part 3: After features are selected, the data is split into training and 

testing datasets.The lasso model is then trained on the training 

dataset, in which the model will learn the selected features or 

predictors coefficients and the optimal regulization parameters. 

Part 4: After training the model using the training dataset, the model 

performance is evaluated on the testing set for validation. This 

means the model is performing on new not trained on data.  

Part 5: The model performance can be assessed by evaluation metrics, 

and if the results are not satisfactory, the regularization 

parameters can be tuned and the model can be evaluated again 

until the results are satisfactory.  

Part 7: once the model is satisfactory, the model can be used on new 

data to provide prediction. 

 

Figure 4.1 provides a flow chart of the Lasso regression model architecture. 
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Figure 4-1 Lasso Regression  

4.3 Ridge regression 

       Ridge regression, similar to lasso,  is another linear regression technique. 

However it uses the L2 regularization so the model can avoid being overfitted.  

Similar to Lasso, λ is the regularization term. The Ridge regression equation 

with the regularization term is as follows: 

y = β0 + β1x1 + β2x2 + ... + βpxp + ɛ + λ * ∑(βi^2) 

 where; 

 λ is the regularization term, 

and βi^2 represents the squared value of the regression coefficient for the ith 

predictor variable.  

The Ridge regression algorithm aims to reduce the sum of squared residuals. 

This in return, helps in reducing the variance of the prediction model and 

improving overall accuracy. Ridge also deals with high dimensional data with 

various predictors, such as our case.  
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Figure 4-2 Ridge regression 

The Ridge regression components are presented in figure 4.2 and can be 

summarized into the following parts:  

Part 1: cleaning the data and processing, splitting into training and 

testing datasets.   

Part 2: feature scaling, where the data is standardized to zero means 

and unit variance.   

Part 3: After features are scaled, the model is then defined including its 

hyperparameters. 

Part 4: the model is then fitted by finding its optimal hyperparameters. 

Part 5: The model performance is then evaluated using evaluation 

metrics. 

Part 6:           Hyperparameters are tuned to improve the model performance 

if needed.   

Part 7: The optimal model is chosen to perform predictions. 

 

4.4 Random Forest 

Random Forest is an ensemble learning algorithm that structures multiple 

decision trees at training time and yields the class of the individual trees. 

Random Forest is known to handle complex datasets and recognize the most 

important features for the predictions. RF is also able to handle missing data 

while at the same time maintaining high prediction accuracy. RF constructs 

multiple decision trees by using bootstrapped samples of the dataset and then 

randomly selecting subsets of features to build each tree. This is used to 



 

125 

 

aggregate the predictions from the n number of trees to make a final prediction. 

The Random Forest algorithm can be represented as follows: 

 

Part 1: cleaning the data and processing..   

Part 2: Random selecting features subsets from the dataset.    

Part 3: After features subsets are selected,  decision trees are created 

using bootstrapped data sample from the feature subsets.  

Part 4: the second and third part of this process is reiterated to create a 

forest of decision trees.  

Part 5: The prediction of each tree is aggregated to form the final 

prediction. The prediction is based on the average of all trees.  

 Figure 4.3 draws the process and architecture of Random Forest. 

 

 

Figure 4-3 Random Forest 

 

4.5 Gradient Boosting Regression 

Gradient Boosting is another machine learning technique that can handle both; 

classification and regression. It combines multiple models which are weak and 

learn everytime to produce stronger model.  GBR adjusts the weights of the 

parameter points based on residual errors of the models. The errors are then 



 

126 

 

calculated between the predicted values and the actual values. These residual 

errors are then used to train a new model that is added to the ensemble. The 

iteration process is repeated n times until it reaches the final model which is 

satisfactory. Gradient Boosting exhibits many hyperparameters, which can be 

tuned to improve its performance, such as the learning rate, the number of 

trees in the ensemble, and the maximum depth of the decision trees. Figure 

4.4 describes the process of gradient boosting.  

 

Figure 4-4  Gradient Boosting 

 

The steps followed by gradient boosting algorithm can be summarized by the 

following parts: 

Part 1: cleaning the data and processing..   

Part 2: Make n1 prediciton through fitting a simple decision tree to the 

model.     

Part 3: calculate the residual error of the n1 prediction.   
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Part 4: Boosting, which means fiting a new model n2 to the residuals of 

the first model n1. This leads to the model learning and improving 

predictions.   

Part 5: iterate this process n times to improve predictions.   

Part 6: combination of all models to obtain the final model prediction.    

 

4.6 Proposed Model 

The preliminary studies also defined the gaps in the current models 

resulting from the design of the new proposed model for improving occupant’s 

behaviour-based energy consumption accuracy prediction using a 

combination of machine learning techniques to make an ensemble using 

Lasso, Ridge, RF, and GBR.  

Over the past few decades, lots of research have been conducted on 

various types of energy consumption prediction techniques and lot of models 

have been proposed to achieve high accuracy. To overcome the drawbacks 

and combine the strengths of energy consumption prediction techniques, a 

new technique called ensemble prediction has been explored. It consists of 

combining more than one technique to predict the energy consumption by 

means of a combination rules. Based on the usage of ensemble or 

combinations of methods, this methodology is now being applied to predict 

tasks in data mining. According to data mining studies, ensemble methods 

produce more accurate results than single methods. This has inspired the 

researchers to use ensemble methods in various fields. The basic idea behind 

using ensemble prediction is that each single technique has its merits and 

demerits, we can minimize the limitations by integrating techniques via 

ensemble prediction, which may lead to more accurate prediction. Table 4.1 

explores these merits and demerits of our solo algorithms and the ensemble 

model. The table is derived based on evidence from the extensive literature 

review in chapter 2 and common understanding of each algorithm. 
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Table 4.1 Solo ML versus Ensemble merits and demirts 

Feature / Model Ridge 

Regression 

Lasso 

Regression 

Random 

Forest 

Gradient 

Boosting 

Ensemble 

Model 

High-dimensional 

datasets 

 
X X X X 

Nonlinear 

relationships 

  
X X X 

Sparse data 
 

X 
  

X 

Outliers X X X X X 

Feature selection 
 

X X X X 

Interactions between 

features 

  
X X X 

Missing data X X X X X 

Heterogeneous data 
  

X X X 

Time-series data X X 
 

X X 

Categorical data 
 

X X X X 

 

 Ensemble techniques use combination rules such as mean, median, Inverse 

Rank Weighted Mean, etc. to create an ensemble. These methods can be 

classified into two categories: 

i) Homogeneous: used to refer to an ensemble that consolidates one 

base model with no less than two distinct combinations of one ensemble 

learning. 

ii) Heterogeneous: used to refer to an ensemble of two or more different 

base models. 

Researchers have piloted various empirical studies to assess ensemble 

energy consumption techniques. Some of these studies were dedicated to 

dealing only with homogeneous ensembles, heterogeneous ensembles, or 

both types of techniques. Each base technique can compensate for prediction 

errors made by other base methods. The ensemble energy consumption 

prediction process is shown in Figure 4.5. 
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Figure 4-5 Ensemble energy consumption prediction process 

Figure 4.6 shows the ensemble process of our ensembles ridge, lasso, 

RF, and GBR algorithms. The predicted output is the total energy consumption, 

while the predictors are building, occupants, and occupant behavior related 

parameters. The predictive model is built to predict the energy performance in 

residential buildings based on the impact of occupant behavioral parameters.  

 

Figure 4-6 ensemble process 
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The model takes in the input parameters including the use of appliances and 

the number of appliances, the number of windows and doors, the type of 

thermostats and occupants' use of thermostats, the type of air conditioning, 

the number of units, the occupants' use, the type and number of lightings, the 

interaction with lighting units, the occupant's behavior, and occupancy and 

presence during weekdays and weekends. A full breakdown of the dataset 

description is presented in chapter 5. The input data then ensues to each 

individual model, which are the chosen models; Lasso Regressor, Ridge 

Regressor, Random Forest Regressor, and Gradient Boosting. The models 

then produce their respective predictions based on the steps detailed in this 

chapter above. The predictions from each model are then combined using the 

Weighted Voting Regressor. The weighted voting regressor assigns weights 

to all the models according to their individual performance. The weighted 

predictions are then combined to generate the final Energy Use Prediction. 

Since energy use prediction is calculated based on the four base models, an 

ensemble model is then formed.  

The breakdown of our model in detail is presented in the following parts: 

Part 1: Cleaning the data and processing.  This includes: dealing with 

missing values, creating dummy variables, splitting data into 

numerical and categorical data, dealing with skewness, and 

removing outliers. 

Part 2: The input data is pre-processed using the 'StandardScaler' 

function to transform the data into a standard normal distribution.  

Part 3: The preprocessed data is then fed into the four different 

regression models: Lasso, Ridge, Gradient Boosting, and 

Random Forest. Each model has their own defined sets of 

hyperparameters. Lasso and Ridge models use regulation 

techniques to select important features and prevent overfitting. 

Random Forest and Gradient Boosting combine multiple models 

to improve overall prediction accuracy and avoid underfitting.  

Part 4: After the four models are being fitted, a weighted voting 

regressor model combines their predictions. The model then 

provides the final prediction based on the weighted average.  

Part 5: The output of the ensemble model is an energy use prediction. 
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4.7 Summary 

The proposed ensemble machine learning approach has been 

presented in this chapter which gives the answer to RQ2.  

“How to develop an occupancy behavior-based ensemble machine learning model to improve 

energy consumption accuracy prediction of residential buildings using Lasso regression, 

Ridge regression, Random Forest, and Gradient boosting?” 

A novel ensemble machine learning model to improve the prediction 

accuracy of energy consumption of residential buildings that combines these 

algorithms is proposed. The prediction results of the four algorithms are 

ensembled weighted voted regressor. Finally, the energy consumption 

prediction is calculated based on four base models, hence an ensemble model 

is developed.  
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Chapter 5 

 

 

MODEL DEVELOPMENT AND EVALUATION 

5.1 Introduction 

This chapter provides a comprehensive overview of the entire model 

development process. Firstly, it covers the collection of datasets, including 

their source and a detailed description of the datasets, highlighting their 

features, size, and structure, as well as any potential issues or limitations. 

Next, the chapter delves into the exploratory data analysis process. 

Exploratory data analysis is performed to examine the dataset including but 

not limited to, structure, patterns, and trends.   This allows a deeper 

understanding of the data, especially in terms of quantifying the occupant 

behavior’s impact on energy performance. This leads to making informed 

decisions about the modeling process.   

The data pre-processing stage is also discussed in detail. This includes 

techniques such as addressing skewness, handling missing values, and 

identifying and addressing outliers. Pre-processing is a crucial step to ensure 

that the data is in a suitable form for carrying out the modeling stage. 

The chapter then moves on to the process of evaluating algorithms. This 

involves training and comparing several algorithms and assessing their 

performance by means of evaluation metrics.  

The next step is building an ensemble model using the selected models. The 

models are selected based on their evaluation scores and their merits when 

ensembled (refer to table 4.1). The models are combined to form an ensemble 

with improved accuracy in the predictions. 

Finally, the chapter concludes with the validation and evaluation of the model. 

This involves assessing the model's performance on a separate validation 

dataset to ensure that it is robust and generalizable. The chapter also covers 

techniques for interpreting the results and identifying areas for improvement in 

the model. 
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5.2      Dataset Description 

5.2.1. Data Acquisition 

In building energy use data acquisition, especially in the case of developing 

machine learning models, acquiring a comprehensive dataset covering all 

factors that affect energy performance and occupant behavior can be 

challenging (Seyedzadeh et al., 2020; Zhang et al., 2022). The process of 

collecting big datasets is a dissuading task since it requires a significant 

number of resources and time. Moreover, the dataset collections should cover 

a range of years, buildings, and locations collected to ensure that the model 

has sufficient data to provide accurate results. In addition, occupant behavior 

data is usually collected through IoT sensors which can hinder privacy, 

especially in a residential setting (Jiang et al., 2021; Sayed et al., 2022). 

Hence, conducting a primary data collection process can be expensive and 

time-consuming, which is impractical for most solo researchers. Therefore, 

researchers often acquire publicly available datasets that have been collected 

and validated by other institutions to overcome these limitations. For my 

research objectives, various datasets were investigated in terms of suitability 

for model development. Table 5.1 summarizes available datasets considered 

based on size and input parameters.   

 

Table 5.1  Occupant behavior and energy performance datasets 

Dataset/ database 
Name 

Description Source Sample 
Size 

Commercial Building 
Energy Consumption 
Survey (CBECS) 

National survey of 
energy use and related 
building characteristics 

Energy Information 

Administration (EIA, 2021) 

~5,600 
buildings 

ASHRAE Global 
Thermal Comfort 
Database II 

Thermal comfort 
survey data collected 
from around the world 

American Society of 
Heating, Refrigerating and 
Air-Conditioning Engineers 

(ASHRAE, 2021) 

~21,000 
responses 

UCI Appliances 
Energy Prediction 

Energy use of home 
appliances 

UCI Machine Learning 

Repository (Repository., 
2020) 

20,000 
observations 

ASHRAE Global 
Occupant Behavior 
Database 

Occupant behavior 
survey data collected 
from around the world 

American Society of 
Heating, Refrigerating and 
Air-Conditioning Engineers 

(ASHRAE, 2018) 

~10,000 
responses 
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Residential Energy 
Consumption Survey 
(RECS) 

National survey of 
energy use and related 
building characteristics  

Energy Information 

Administration (EIA, 2021) 

~5,600 
household 

 

Asessing suitable database was undertaken based on the following criteria: 

1. Size of database, level of completeness and details.  
2. Relevance of data related to occupant behavior parameters as 

well as occupants.  
3. Validity and reliability of the data collection methods in the 

database 
4. Diversity of case studies in the dataset 
5. Accessibility of the dataset.  
6. Ease of understanding of data.  

 
5.2.2. Data Description  

The dataset (ASHRAE, 2018) reflected the type and inclusiveness of data 

needed to develop the ensemble machine learning. The data covers 

occupants related parameters, building related parameters as well as the 

energy consumption in buildings as detailed in table 5.2 and table 5.3.  

Table 5.2 Building related parameters 

 

DOEID Unique identifier for each respondent 

TOTROOMS Total number of rooms in the housing unit, excluding 
bathrooms 

DOOR1SUM Number of sliding glass doors 

WINDOWS Number of windows 

NUMFRIG Number of refrigerators used 

NUMFREEZ Number of separate freezers used 

STOVEN Number of stoves 

STOVE Number of separate cooktops 

OVEN Number of separate ovens 

MICRO Microwave oven used 

DISHWASH Have dishwasher 

CWASHER Have clothes washer in home 

DRYER Have clothes dryer in home 

DESKTOP Number of desktop computers 

NUMLAPTOP Number of laptop computers 

NUMTABLET Number of tablet computers or e-readers 

INTERNET Internet access at home 

EQUIPM Main space heating equipment type 

THERMAIN Any thermostats 

AIRCOND Air conditioning equipment used 

COOLTYPE Type of air conditioning equipment used 

THERMAINAC Thermostat for central air conditioner 
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PROTHERMAC Programmable thermostat for central air conditioner 

LGTINNUM Number of light bulbs installed inside the home 

SMARTTHERM Smart thermostat 

total area sqf Total square footage (used for publication) 

KWH Total site electricity usage, in kilowatthours, 2015 

 

Table 5.3 occupant related parameters 

 

OVENUSE Frequency of use of oven part of stove 

NUMMEAL Frequency hot meals are cooked 

DWASHUSE Frequency of dishwasher use 

WASHLOAD Frequency of clothes washer use 

DRYRUSE Frequency of clothes dryer use 

TVCOLOR Number of televisions used 

TVONWD1 Most-used TV usage on weekdays 

TVONWE1 Most-used TV usage on weekends 

HEATHOME Space heating used 

EQUIPMUSE Main heating equipment household behavior 

NUMWHOLEFAN Number of whole house fans used 

FUELH2O Fuel used by main water heater 

LGTIN4 Number of inside light bulbs turned on at least 4 
hours a day 

SMARTMETER Home has an electricity smart meter 

USECENAC Central air conditioner household behavior 

NHSLDMEM Number of household members 

NUMADULT Number of household members age 18 or older 

NUMCHILD Number of household members age 17 or 
younger 

ATHOME Number of weekdays someone is at home 

PROTHERMAC Programmable thermostat for central air 
conditioner 

PROTHERM Programmable main thermostat 

INTDATA Household has access to smart meter interval 
data 

 

5.2.3. Data Processing  

Dataset exploration and analysis forms the first step to model the relationship 

between energy use and the input parameters. The goal of this step is to analyse 

the dataset and identify the factors that affect energy use. This eventually leads 

to the development of the  model and accurate energy use prediction.   

The data processing, analysis, and model development were performed in a 

Jupyter notebook using Python, as Python provides numerous libraries for 

machine learning, data analysis, and processing. 
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a. Data examination: 

Data examination is a crucial step in the data analysis and modelling process. 

It involves cleaning and transforming raw data into a format that is suitable for 

handling. 

The dataset consists of 8741 columns which are the studied buildings sorted 

by different IDs, and 49 columns which are 22 related to occupants and 

occupants behavior, 26 related to building characteristics and the energy use 

in kwh. Figure 5.1 presents a snippet of this dataset. 

 

 

Figure 5-1 snippet of dataset 

 

b. Replacing missing or invalid values:  

The script checks for missing values in the dataset, and prints the number of 

columns with missing values for each type of column. : The script fills missing 

values in specific columns using imputation methods which replaces missing 

values with mean values.  

c. Defining categorical and numerical columns:  

The script then divides the dataset columns into categorical and numerical 

columns, and prints the number and names of each type of column. 

d. Creation of indicator variables 

Dummy variables, also known as indicator variables, are created to convert 

categorical variables into a numerical format in such a way it can be processed 

for machine learning application. This presents the categorical data in a 

numerical format.  

e. Handling data skewness 

The skewness of variables is checked and addressed. Skewness refers to the 

asymmetry in the distribution of the data. Figure 5.2 shows a sample of the 

skewed data. When the distribution is not normally distributed, a negative 
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impact can be achieved on certain algorithms. Log transformation is used as 

a common technique for handling skewed data.  

The results in figure 5.3 show that the skewness of each variable has been 

reduced after applying the log transformation. This indicates that the 

distributions of the transformed variables are closer to a normal distribution, 

which can improve the performance of machine learning algorithms.  

 

Figure 5-2 Data skewness 

 

 
Figure 5-3 handling data skewness 

 

f. Handling outliers 

outliers in the data are detected and removed using z-scores. Z-scores are a 

measure of how far away a data point is from the mean of the dataset, in terms 

of standard deviations. A z-score greater than 5 or less than -5 indicates that 

the data point is more than 5 standard deviations away from the mean, which 

is a very extreme value and is likely an outlier. 

 

5.2.4. Data analysis 

The distribution of values in the dataset is visualised for identifying patterns or 

issues in the data. Heatmap is developed as well to visualise the relationship 

between parameters. The code appendix A provides extensive insights on the 
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analysis. Figure 5.4 shows the histogram of energy consumption distribution 

in the dataset. 

 

Figure 5-4 Histogram of energy use distribution 

 

To understand the impact of occupant behavior on the energy use, a 
simple linear regression model is trained on the whole variables and then the 
impact of occupant behavioral variables is calculated. Firstly the data is split 
into features x and target y and the absolute value of the coefficient is 
determined and sorted according to impact (Fig 5.5).  

 

 
Figure 5-5 weighted impact of occupant behavior on energy performance 
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5.3 Modeling Phase 

5.3.1. Algorithms selection 

Following the data processing, The dataset is split into training and testing 

sets, which allowed us to run experiments and identify the optimal algorithms 

for our ensemble model A variety of models are fitted. The algorithms selection 

was based on the literature review of machine learning algorithms of chapter 

2. Figure 5.6 shows the trained algorithms and Figures 5.7 and 5.8 provide box 

plots of the cross-validation results for the algorithms based scoring metric.  

 

Figure 5-6 algorithm training 

 

Figure 5-7 MAE and MSE evaluation metrics 
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Figure 5-8 RMSE and MAPE evaluation metric 

 

5.3.2. Choice of ensemble  

Based on the results of the evaluation metric and the merits of each algorithm 

the choice of model was an ensemble of Lasso, ridge, Rf and gradient 

boosting. The algorithms performed well in terms of both mean absolute error 

and mean squared error and have also achieved relatively lower root mean 

squared error and higher coefficient of determination (R-squared) values. 

Therefore, these models might be good candidates for further analysis and 

selection. 

Ensemble model improves prediction accuracy and robustness by combining 

the chosen models. Moreover, the ensemble voting employs weighting voting 

to inform the prediction values. 

5.3.3. Ensemble Model building 

The data is split into training and testing datasets with the features (X) and 

target variable (y) representing the input variables and the output energy use 

in kWh from the dataset. The data is then split into training and testing sets 

using a 70-30 split ratio. Four different pipelines are developed, each using a 

different regression algorithm: Ridge regression, Lasso regression, Gradient 

Boosting regression, and Random Forest regression. For each pipeline, the 

code defines a set of hyperparameters to be tested using a grid search with 5-

fold cross-validation. After fitting each pipeline to the training data, the code 

generates predictions on the testing data (figure 5.9). The below metrics are 

used to evaluate the accuracy of our model in comparison to the individual 

algorithms. 
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Figure 5-9 snippet of pipelines 

 

The final prediction is then obtained by aggregating the predictions of all the 

models, using a voting scheme (Fig 5.10). There are several types of voting 

schemes that can be used in ensemble voting, including: 

Majority Voting: In this scheme, the final prediction is the one that is predicted 

by the majority of the individual models. This is the most commonly used voting 

scheme in ensemble voting. 

Weighted Voting: In this scheme, each individual model is assigned a weight, 

and the final prediction is obtained by taking a weighted average of the 

predictions of all the models.   

The weighted voting is then performed to combine the 4 pipelines and build 

the ensemble mode. 

 

Figure 5-10 ensemble model pipeline 

 

 

5.3.4. Model Evaluation 

The table 5.4 shows the performance metrics of the different regression 

algorithms for the energy use prediction model. The metrics used for 

evaluation are R-squared, RMSE, recall, MAE, and MAPE. The algorithms 
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evaluated are Ridge regression, Lasso regression, Gradient Boosting 

regression, Random Forest regression, and an ensemble method. The 

ensemble method shows the best performance with an R-squared of 0.74, 

RMSE of 3475.88, recall of 1.0, MAE of 3061.36, and MAPE of 0.32. On the 

other hand, The solo algorithms show lower performance in comparison to the 

ensemble. 

 

Table 5.4 evaluation metrics for solo and ensemble models 

Model R-

squared 

RMSE Recall MAE MAPE 

Ridge 0.531048 4524.985266 0.991587 3329.832761 0.577304 

Lasso 0.532457 4518.183342 0.992188 3322.499182 0.674544 

Gradient 

Boosting 

0.624321 4557.326378 1.000000 3308.138354 0.558364 

Random 

Forest 

0.509503 4627.763719 1.000000 3401.046959 0.462632 

Ensemble 0.741171 3475.882982 1.000000 3061.362711 0.322259 

 

5.3.5. Model Results 

Goodness of fit is essential for evaluating linear regression models and is 

determined based on linearity, homoscedasticity, and homogeneity criteria 

(Fig 5.11). 

 

Figure 5-11 linearity vs normality vs Homoscedasticity 
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 Our model exhibited excellent goodness of fit, as demonstrated in the figure 

5.12, which shows the actual versus predicted values for the test set. 

 

Figure 5-12 actual vs predicted 

 

Also, Predictions were performed on the testing datasets which shows good 

accuracy when comparing actual versus predicted. Figure 5.13 shows a 

snippet of code results showing actual versus predicted energy in kwh and 

the residual difference.Moreover, figure 5.14 shows plotted results. 
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Figure 5-13 kwh results 

 

 

Figure 5-14 ensemble model actual vs predicted graph 

 

 

5.4. conclusion 

This model development findings indicate that employing ensemble machine 

learning model, in  combining Ridge, Lasso, and Gradient Boosting, and 

random forest can substantially enhance the accuracy of energy consumption 

regression models. Future work may focus on exploring other modeling 
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techniques, addressing limitations, and further refining the model to improve 

prediction accuracy. 

This chapter answers the research question 3  
“How to evaluate the accuracy prediction improvement of the proposed occupancy” 

The model is evaluated using a set of metrics and performed predictions which 

were compared to actual energy use.  
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CHAPTER 6 

 

 

MODEL VALIDATION 

6.1 Introduction 

In this chapter, we discuss the model validation process of our ensemble 

model through a real case study. The case study involves the simulation and 

prediction of energy use in a residential building through design builder and 

energy plus software, and the results are compared against the actual energy 

performance of the building and the ensemble model. 

The purpose of this case study is to evaluate the accuracy and effectiveness 

of our ensemble model in predicting energy use in a real-world scenario. To 

do so, we first collected data on various features that could impact energy use 

in the building, including occupancy behavior, building characteristics. The 

data is then used as an input to our ensemble model, which combines the 

predictions of several regression algorithms to achieve higher accuracy and 

lower errors. 

To validate our model, we conducted a simulation of the building's energy use 

based on the collected data and compared it to the predictions of our ensemble 

model. We also compared our model's predictions to the actual energy 

performance of the building to evaluate its accuracy. 

The results of our validation process showed that our ensemble model 

outperformed the simulation in predicting energy use in the building.  

These results suggest that our ensemble model is an effective tool for 

predicting energy use in residential buildings, and can provide more accurate 

and reliable predictions than traditional simulation models and regression 

algorithms. This has significant implications for building owners, managers, 

and policymakers, as it can help identify opportunities for energy savings and 
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inform decision-making related to building energy use. Overall, our case study 

provides evidence for the effectiveness of ensemble models in energy 

prediction, and highlights the importance of model validation in ensuring 

accurate and reliable predictions.  

This chapter concludes with answers for our research questions and validation 

of our hypothesis.  
 

6.2 Casestudy approach 

6.2.1 Case study selection  

The selection of the case study was based on its suitability to our dataset, as 

well as the availability of relevant parameters that could be used to develop 

the design-builder, such as layouts and schedules. The chosen case study 

was adapted from the study conducted by (Yoshino et al., 2017). The figures 

below provide detailed information on the case study including a description of 

the case study and heating power schedule as shown in figure 6.1 and figure 

6.2.  

 

Figure 6-1 case study description 

 

 

Figure 6-2 heating schedule 
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6.2.2 Simulation model parameters and process 

In the process of simulating a case study, there were challenges related to 

privacy concerns regarding occupant tracking and identification. However, our 

case study includes occupant behavior and energy results was adequate to 

carry simulation and energy prediction. 

The simulation process involved several steps. First, the building geometry 

was developed (Fig 6.3).  

 

Figure 6-3 building geometry 

 

The number of occupants, their schedule, and metabolic rate were provided. 

The cooling and heating set points, equipment power density and schedule, 

construction template, window layout and type, lighting power density and 

schedule, HVAC type, HVAC schedule were all adjusted to reflect the case 

study and suit the simulation requirements. Figure 6.4 provides a snippet from 

designbuilder parameter input. 
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Figure 6-4 designbuilder inputs 

 

EnergyPlus is a comprehensive building energy simulation program that relies 

on a detailed set of input data to model the energy dynamics of a building. The 

inputs for EnergyPlus can be quite extensive and are typically organized into 

an Input Data File (IDF). Below is a simplified table 6.1 that outlines some of 

the key categories and inputs required for a simulation in EnergyPlus and how 

these categories compares to the ensemble model input parameters 

presented in the next section. 

This table provides an overview of the types of inputs that are typically required 

for an EnergyPlus simulation. Each category can have many specific 

parameters that need to be defined based on the building being modeled. The 

inputs are highly detailed to allow for an accurate simulation of the building's 

energy performance under various conditions. 

 

In summary, the simulation process involved adjusting various building 

parameters to achieve energy prediction by running the simulation on energy 

plus. By using the appropriate tools and settings, the simulation was able to 

provide an energy prediction for the case study. 
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Table 6.1 

Parameters of the model versus simulation 

Design Builder 
Parameter 

Value Comparison to ML model parameter 

Building geometry Based on layout 

Total square footage (used for 
publication) 
Total number of rooms in the housing 
unit,  
Number of sliding glass doors, 
windows.. 

Number of people 
0.0169 people/m2; 
calculated based on 
numbers given  

Number of household members 

Occupant Schedule 
Different for each zone, 
based on TM59 

Number of weekdays someone is at 
home 

Metabolic rate 
110 W/person; default 
input  

Number of household members age 18 
or older 
Number of household members age 17 
or younger 

Cooling set point / 
setback point 

25/28, default input N/A 

Heating set point / 
setback point 

18/12; default input N/A 

Equipment power 
density 

3.06 W/m2; default input  

Number of refrigerators used 
Number of separate freezers used 
Number of stoves 
Number of separate cooktops 
Number of separate ovens 
Microwave oven used 
Number of desktop computers 
Number of laptop computers 
Number of tablet computers or e-
readers 
Internet access at home 
Have dishwasher 
Have clothes washer in home 
Have clothes dryer in home 
Number of televisions used 

Equipment 
schedule 

Different for each zone, 
based on TM59 

Frequency hot meals are cooked 
Frequency of dishwasher use 
Frequency of clothes washer use 
Frequency of clothes dryer use 
Most-used TV usage on weekdays 
Most-used TV usage on weekends 
Frequency of use of oven part of stove 
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Lighting power 
density 

2.5116 W/m2; default 
input 

Number of light bulbs installed inside the 
home 

Lighting schedule 
Different for each zone, 
based on TM59 

Number of inside light bulbs turned on at 
least 4 hours a day 

HVAC type Heat pump 

Space heating used 
Main space heating equipment type 
Any thermostats 
Programmable main thermostat 
Air conditioning equipment used 
Type of air conditioning equipment used 
Thermostat for central air conditioner 
Programmable thermostat for central air 
conditioner 
Number of whole house fans used 
Fuel used by main water heater 

HVAC schedule 
Different for each zone, 
based on TM59 

Space heating usage 
Main heating equipment household 
behavior 
Central air conditioner household 
behavior 

 

 

6.2.3 Ensemble model parameters and execution 

In order to run the data derived from the case study in our model the following 

steps are followed. Using pandas library, the data is imported from a CSV file 

where the parameters of the input variables are saved (Table 6.2).  

 

Table 6.2 Ensemble model input 

Parameter Value Category Description Source 

TOTROOMS 9 Geometry Total number of rooms dataset 

DOOR1SUM 4 Geometry Number of doors layout 

WINDOWS 42 Geometry Number of windows layout 

NUMFRIG 1 Appliances Number of refrigerators layout 

NUMFREEZ 1 Appliances Number of freezers layout 

STOVEN 1 Appliances Number of stove-oven 
combinations 

layout 

OVENUSE 5 Behavioral Frequency of oven use inferred 

STOVE 1 Appliances Number of standalone 
stoves 

layout 

OVEN 1 Appliances Number of standalone 
ovens 

layout 

MICRO 1 Appliances Number of microwaves layout 

NUMMEAL 7 Behavioral Frequency of hot meals 
cooked 

inferred 

DISHWASH 0 Appliances Number of dishwashers layout 

DWASHUSE 0 Behavioral Frequency of 
dishwasher use 

inferred 
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CWASHER 1 Appliances Number of washing 
machines 

layout 

WASHLOAD 4 Behavioral Frequency of wash 
loads 

inferred 

DRYER 1 Appliances Number of dryers layout 

DRYRUSE 4 Behavioral Frequency of dryer use inferred 

TVCOLOR 3 Appliances Number of color TVs inferred 

TVONWD1 2 Behavioral TV usage on weekdays inferred 

TVONWE1 3 Behavioral TV usage on weekends inferred 

DESKTOP 0 Appliances Number of desktop 
computers 

layout 

NUMLAPTOP 3 Appliances Number of laptop 
computers 

inferred 

NUMTABLET 5 Appliances Number of tablet 
computers 

inferred 

INTERNET 1 System Presence of internet 
access 

inferred 

HEATHOME 1 System Space heating usage dataset 

EQUIPM 1 System Age of main space 
heating equipment 

inferred 

THERMAIN 1 System Presence of any 
thermostats 

dataset 

PROTHERM 1 System Presence of 
programmable main 
thermostat 

dataset 

EQUIPMUSE 2 Behavioral Main heating 
equipment household 
behavior 

inferred 

AIRCOND 1 System Air conditioning 
equipment usage 

inferred 

COOLTYPE 2 System Type of air conditioning 
equipment used 

Given 

THERMAINAC 0 System Thermostat for central 
air conditioner 

dataset 

PROTHERMAC 1 System Programmable 
thermostat for central air 
conditioner 

dataset 

USECENAC 1 System Central air conditioner 
household behavior 

inferred 

NUMWHOLEFAN 0 Appliances Number of whole house 
fans 

layout 

FUELH2O 5 System Fuel used by main 
water heater 

dataset 

LGTINNUM 20 Lighting Number of light bulbs 
installed inside the home 

layout 

LGTIN4 20 Behavioral Number of inside light 
bulbs turned on at least 4 
hours a day 

inferred 

SMARTTHERM 1 System Presence of smart 
thermostat 

inferred 

SMARTMETER 1 System Presence of smart 
meter 

dataset 

NHSLDMEM 5 Demograph
ics 

Number of household 
members 

dataset 

NUMADULT 2 Demograph
ics 

Number of adults in the 
household 

inferred 

NUMCHILD 3 Demograph
ics 

Number of children in 
the household 

inferred 
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ATHOME 5 Behavioral Number of weekdays 
someone is at home 

inferred 

Total Area sqf 3067 Geometry Total area in square 
feet 

dataset 

 

The data is then combined with the training and testing data from the Ashrae 

dataset. Categorical variables are encoded using dummy encoding technique. 

The necessary transformations are applied to the input to fit the scaler and 

ensemble model. Logarithmic transformation is applied to the same columns 

as the Ashrae dataset. The 'id' column is dropped, and the same scaler is used 

to transform the input. Finally, the trained regression model is used to predict 

the energy consumption output for the given input data using the 'predict' 

method. 

Code snippet is presented below showing the data input in figure 6.5, data 

combination with the existing dataset in figure 6.6, and the output prediction 

value in figure 6.7.  

 

Figure 6-5 input insertion snippet 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-6 combining datasets snippet 
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Figure 6-7 prediction output snippet 

 

6.3 Comparative analysis and results 

6.3.1 Input comparison and constraints 

In terms of building energy performance, the approaches for simulation and 

predictive modeling can vary significantly, particularly in terms of input 

requirements. EnergyPlus simulations typically rely on a standardized set of 

inputs that define the physical and operational characteristics of a building. 

These inputs can often be set to default values when specific data is not 

available, ensuring that the simulation can still proceed with reasonable 

assumptions about typical building behavior. 

For the ensemble machine learning model developed in this study, the input 

parameters are distinct, especially concerning occupant behavior. The model 

leverages a set of occupant-related inputs, as specified in table 6.2, which 

includes variables such as oven and stove usage, meal frequency, appliance 

use, and occupancy patterns. These inputs are crucial as they directly 

influence the energy consumption patterns within the residential setting. 

The data for these occupant variables is sourced from the case study or 

deduced based on the information provided therein. When the case study 

lacks specific details, we resort to making educated assumptions. These 

assumptions are informed by historical data and similar case studies, which 

have been analyzed through machine learning techniques. Our model benefits 

from being trained on extensive datasets, which permeate it with the capability 

to infer or predict inputs with a degree of confidence. 

This approach allows for a more nuanced understanding of occupant behavior 

and its impact on energy performance. While the EnergyPlus simulation 

provides a baseline by using standard and default inputs, our ensemble model 
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has a layer of occupant behavior complexity, offering predictions that are 

potentially more aligned with the actual energy usage patterns. 

By integrating these diverse data sources and leveraging the predictive power 

of machine learning, the ensemble model aims to reduce the gap between 

predicted and actual energy consumption. This is particularly important in the 

context of residential buildings, where occupant behavior is a significant and 

often variable component of energy use.  

 

6.3.2 Results comparison  

The energy consumption results were obtained by executing both the 

simulation model and ensemble model. The actual energy consumption was 

then compared against these results. Upon analysis, it was found that the 

actual energy consumption was approximately 11329 kwh/m2/a when using 

the simulation model (figure 6.8).  

On the other hand, the ensemble model predicted the energy consumption to 

be around 2100.5 kwh/m2/a (figure 6.7). However, the actual energy 

consumption turned out to be approximately 2400 kwh/m2/a (figure 6.9). 

 

Figure 6-8 simulation results 

 

Based on the results obtained from this case study, it can be concluded that 

the ensemble model developed in this study performed well in predicting the 

energy consumption of residential buildings. This can be seen from the 

comparison of the actual energy consumption with the predicted energy 

consumption by the ensemble model. This suggests that the ensemble model 

can be developed and used as a reliable tool for predicting energy 

consumption in residential buildings, which can be useful for energy efficiency 

improvement and cost reduction. This in return leads to closing the gap 
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between actual and predicted energy performance while accounting for 

occupant behaviors parameters.  

 

Figure 6-9 actual energy consumption 

 

It is plausible that the simulation's assumptions, particularly regarding 

occupant behavior and equipment schedules, were not reflective of the actual 

conditions. This misalignment could be a contributing factor to the simulation's 

poor performance. The ensemble model, on the other hand, benefits from a 

more dynamic input set that accounts for occupant behavior, which is a critical 

determinant of energy consumption in residential buildings. 

 

 

6.4 Limitations and future work 

A limitation of our study is that assumptions had to be made for certain 

parameters related to occupant behaviors in the ensemble model since the 

values were not available in the case study literature. However, based on the 

results of this particular case study, our model performed well. It is important 

to note that since the dataset is limited and access to a larger number of case 

studies is not possible, we need to build more confidence in our model's 

accuracy as we gather more data. 

Another limitation of our study is that the ensemble model is based on machine 

learning algorithms that require a large amount of data to train and optimize. 

Since we only used one case study to train our model, there is a possibility that 

the model may not generalize well to other buildings with different 

characteristics. 

In addition, our study only focused on energy consumption prediction and did 

not take into account other important factors such as indoor environmental 

quality and occupant comfort. Future studies can explore the integration of 

these factors into the model to provide a more comprehensive analysis of 

building performance. 
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Another area for future work is to incorporate real-time data from building 

automation systems and IoT devices to improve the accuracy of the model. 

This would allow for more dynamic and responsive predictions of energy 

consumption and occupant behavior. 

Finally, it is important to continue to validate and refine the model with more 

case studies from different regions and building types. This would help to 

improve the model's accuracy and robustness, as well as increase its 

applicability to a wider range of buildings and contexts. 

 

6.5 Conclusion  

In conclusion, the validation of the ensemble model against the case study and 

the simulation from EnergyPlus reveals its superior predictive accuracy. 

However, it is imperative to acknowledge the limitations that may have 

influenced the validation outcomes. The assumptions made for certain 

parameters, especially those pertaining to occupant behavior, could have 

introduced a degree of uncertainty in the simulation model predictions. Future 

work should aim to minimize these assumptions by incorporating real-time 

data and expanding the dataset to include a more diverse range of case 

studies. This would not only enhance the model's accuracy but also its 

generalizability across different building types and occupant profiles. 
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CHAPTER 7 

 

 

CONCLUSION 

7.1 Summary 

This research embarked on developing an ensemble machine learning model 

to predict residential building energy consumption accurately. The journey 

began with defining specific objectives aimed at addressing the existing gap 

between predicted and actual energy use, with a keen focus on integrating 

occupant behavior into the predictive models. 

To achieve these objectives, the following measures were taken: 

• Objective 1: Identification of Influential Parameters  

Through a systematic review and evaluation of machine learning 

algorithms, we identified critical occupant-related parameters influencing 

residential energy performance. An extensive dataset was used to analyze 

and understand the correlation between these parameters and energy 

consumption. 

• Objective 2: Development of the Ensemble Model  

An ensemble machine learning model incorporating Lasso regression, 

Ridge regression, Random Forest, and Gradient Boosting was developed. 

This model was tailored to include a comprehensive set of occupant 

behavior parameters to enhance prediction accuracy. 

• Objective 3: Improvement of Prediction Accuracy  

The model's accuracy was rigorously evaluated by comparing it against 

solo prediction models. The ensemble approach significantly improved 

prediction accuracy, validating the hypothesis that a machine learning 

model informed by occupant behavior can outperform traditional methods. 

• Objective 4: Validation of Model Reliability and Applicability  
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The final validation utilized a case study to demonstrate the real-world 

applicability of the ensemble model. The model's predictions were 

compared to actual energy consumption data, confirming its reliability and 

practical value. 

The findings revealed that the ensemble model effectively reduces the gap 

between predicted and actual energy use, thereby validating the research 

hypothesis. Notably, the model demonstrated superior performance over 

traditional simulation method using designbuilder and energyplus, particularly 

in capturing the nuances of occupant behavior. 

In conclusion, the ensemble machine learning model represents a significant 

advancement in predictive accuracy for residential building energy 

consumption. It stands as a testament to the potential of machine learning in 

transforming the field of energy modeling, offering a pathway to more 

sustainable building management practices. The successful validation of the 

model reaffirms the value of incorporating a broad spectrum of occupant 

behavior into predictive models, which can significantly impact energy 

conservation strategies and policies globally. 

 

this research aimed to develop an occupancy behavior-based ensemble 

machine learning model to reduce the gap between actual and predicted 

energy consumption in residential buildings by integrating all factors 

contributing to occupants' behaviors into building energy predictions. The 

inclusion of occupant behavior impact on energy consumption was the primary 

focus of this research, as it sought to minimize the energy performance gap 

and provide more reliable predictions. 

In line with the research objectives, this study has successfully developed an 

ensemble machine learning predictive model for residential building energy 

consumption that incorporates occupant behavior-based inputs. The model 

was evaluated and validated, demonstrating its potential for improving the 

accuracy of energy consumption predictions and fostering better energy 

management strategies. The findings of this research can provide valuable 

guidance for energy modelers, building designers, and policymakers seeking 

to promote energy efficiency in residential buildings while considering the 

complex and often unpredictable nature of occupant behavior.  
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7.2 Conclusions 

The study's conclusions are manifold: 

The ensemble model showcased an advantage in predicting residential energy 

energy performance by incorporating detailed occupant behavior data. 

The predictive accuracy of the ensemble model was systematically validated 

against actual energy use, underscoring its practical applicability in real-world 

settings. 

This research contributes to the body of knowledge by providing a robust 

methodological framework for developing energy prediction models that 

integrate diverse and dynamic parameters affecting residential energy use. 

This study's approach addresses the critical challenge of reducing the energy 

performance gap, offering a tool that can enhance energy efficiency measures 

and sustainability in the residential sector. It also lays the groundwork for 

incorporating machine learning into building energy management, steering 

towards more intelligent and adaptive systems. 

The generalizability of these findings is promising, given the model's capacity 

to accommodate various building types and occupant profiles. It paves the way 

for deploying similar models in diverse contexts, contributing to global efforts 

in energy conservation and climate change mitigation. 

 

7.3 Limitations 

Despite the model's success, the research encountered limitations: 

• The ensemble model's predictive accuracy is contingent on the richness of 

the dataset. In cases where detailed occupant behavior data were not 

available, assumptions were made, which may limit the model's precision. 

• The study's scope was restricted to a single case study for validation, which 

may not fully represent the diversity of residential settings. 

• The current model focuses solely on energy consumption, omitting other 

relevant aspects such as thermal comfort and indoor environmental quality. 
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7.4 Future Research 

Future research directions include: 

• Expanding the dataset to include a wider array of residential settings, 

occupant behaviors, and climate zones to enhance the model's 

robustness and generalizability. 

• Integrating real-time data from IoT devices and building management 

systems to capture dynamic changes in occupant behavior and 

environmental conditions. 

• Including other dimensions of building performance in the model, such 

as indoor air quality and occupant comfort, to develop a more holistic 

tool for building energy management. 

• Applying the model in longitudinal studies to verify its performance over 

longer periods and under various seasonal conditions. 
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Appendix A – Supplementary Material [code] (accessible via hyperlink) 

Appendix B – Supplementary Material [simulation input] (accessible via hyperlink) 
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