2,271 research outputs found

    A multidisciplinary research approach to energy-related behavior in buildings

    Get PDF
    Occupant behavior in buildings is one of the key drivers of building energy performance. Closing the “performance gap” in the building sector requires a deeper understanding and consideration of the “human factor” in energy usage. For Europe and US to meet their challenging 2020 and 2050 energy and GHG reduction goals, we need to harness the potential savings of human behavior in buildings, in addition to deployment of energy efficient technologies and energy policies for buildings. Through involvement in international projects such as IEA ECBC Annex 53 and EBC Annex 66, the research conducted in the context of this thesis provided significant contributions to understand occupants’ interactions with building systems and to reduce their energy use in residential and commercial buildings over the entire building life cycle. The primary goal of this Ph.D. study is to explore and highlight the human factor in energy use as a fundamental aspect influencing the energy performance of buildings and maximizing energy efficiency – to the same extent as technological innovation. Scientific literature was reviewed to understand state-of-the-art gaps and limitations of research in the field. Human energy-related behavior in buildings emerges a stochastic and highly complex problem, which cannot be solved by one discipline alone. Typically, a technological-social dichotomy pertains to the human factor in reducing energy use in buildings. Progressing past that, this research integrates occupant behavior in a multidisciplinary approach that combines insights from the technical, analytical and social dimension. This is achieved by combining building physics (occupant behavior simulation in building energy models to quantify impact on building performance) and data science (data mining, analytics, modeling and profiling of behavioral patterns in buildings) with behavioral theories (engaging occupants and motivating energy-saving occupant behaviors) to provide multidisciplinary, innovative insights on human-centered energy efficiency in buildings. The systematic interconnection of these three dimensions is adopted at different scales. The building system is observed at the residential and commercial level. Data is gathered, then analyzed, modeled, standardized and simulated from the zone to the building level, up to the district scale. Concerning occupant behavior, this research focuses on individual, group and collective actions. Various stakeholders can benefit from this Ph.D. dissertation results. Audience of the research includes energy modelers, architects, HVAC engineers, operators, owners, policymakers, building technology vendors, as well as simulation program designers, implementers and evaluators. The connection between these different levels, research foci and targeted audience is not linear among the three observed systems. Rather, the multidisciplinary research approach to energy-related behavior in buildings proposed by this Ph.D. study has been adopted to explore solutions that could overcome the limitations and shortcomings in the state-of-the-art research

    An Application of Data Analytics to Outcomes of Missouri Motor Vehicle Crashes

    Get PDF
    Motor vehicle crashes are a leading cause of death in the United States, cost Americans $277 billion annually, and generate serious psychological burdens. As a result, extensive vehicle safety research focusing on the explanatory factors of crash severity is undertaken using a wide array of methodological techniques including traditional statistical models and contemporary data mining approaches. This study advances the methodological frontier of crash severity research by completing an empirical investigation that compares the performance of popular, longstanding techniques of multinomial logit and ordinal probit models with more recent methods of decision tree and artificial neural network models. To further the investigation of the benefits of data analytics, individual models are combined into model ensembles using three popular combinatory techniques. The models are estimated using 2002 to 2012 crash data from the Missouri State Highway Patrol Traffic Division - Statewide Traffic Accident Records System database, and variables examined include various driver characteristics, temporal factors, weather conditions, road characteristics, crash type, crash location, and injury severity levels. The accuracy and discriminatory power of explaining crash severity outcomes among all methods are compared using classification tables, lift charts, ROC curves, and AUC values. The CHAID decision tree model is found to have the greatest accuracy and discriminatory power relative to all evaluated modeling approaches. The modeling reveals that the presence of alcohol, driving at speeds that exceed the limit, failing to yield, driving on the wrong side of the road, violating a stop sign or signal, and driving while physically impaired lead to a large number of fatalities each year. Yet, the effect of these factors on the probability of a severe outcome is dependent upon other variables, including number of occupants involved in the crash, speed limit, lighting condition, and age of the driver. The CHAID decision tree is used in conjunction with prior literature and the current Missouri rules of the road to provide better formulated driving policies. This study concludes that policy makers should consider the interaction of conditions and driver related contributing factors when crafting future legislation or proposing modifications in driving statues

    Machine learning for smart building applications: Review and taxonomy

    Get PDF
    © 2019 Association for Computing Machinery. The use of machine learning (ML) in smart building applications is reviewed in this article. We split existing solutions into two main classes: occupant-centric versus energy/devices-centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories: (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed, and compared; open perspectives and research trends are discussed as well. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building management systems. This is by considering all types of ML tools, buildings, and several categories of applications, and by structuring the taxonomy accordingly. The article ends with a summary discussion of the presented works, with focus on lessons learned, challenges, open and future directions of research in this field

    An ensemble model for predictive energy performance:Closing the gap between actual and predicted energy use in residential buildings

    Get PDF
    The design stage of a building plays a pivotal role in influencing its life cycle and overall performance. Accurate predictions of a building's performance are crucial for informed decision-making, particularly in terms of energy performance, given the escalating global awareness of climate change and the imperative to enhance energy efficiency in buildings. However, a well-documented energy performance gap persists between actual and predicted energy consumption, primarily attributed to the unpredictable nature of occupant behavior.Existing methodologies for predicting and simulating occupant behavior in buildings frequently neglect or exclusively concentrate on particular behaviors, resulting in uncertainties in energy performance predictions. Machine learning approaches have exhibited increased accuracy in predicting occupant energy behavior, yet the majority of extant studies focus on specific behavior types rather than investigating the interactions among all contributing factors. This dissertation delves into the building energy performance gap, with a particular emphasis on the influence of occupants on energy performance. A comprehensive literature review scrutinizes machine learning models employed for predicting occupants' behavior in buildings and assesses their performance. The review uncovers knowledge gaps, as most studies are case-specific and lack a consolidated database to examine diverse behaviors across various building types.An ensemble model integrating occupant behavior parameters is devised to enhance the accuracy of energy performance predictions in residential buildings. Multiple algorithms are examined, with the selection of algorithms contingent upon evaluation metrics. The ensemble model is validated through a case study that compares actual energy consumption with the predictions of the ensemble model and an EnergyPlus simulation that takes occupant behavior factors into account.The findings demonstrate that the ensemble model provides considerably more accurate predictions of actual energy consumption compared to the EnergyPlus simulation. This dissertation also addresses the research limitations, including the reusability of the model and the requirement for additional datasets to bolster confidence in the model's applicability across diverse building types and occupant behavior patterns.In summary, this dissertation presents an ensemble model that endeavors to bridge the gap between actual and predicted energy usage in residential buildings by incorporating occupant behavior parameters, leading to more precise energy performance predictions and promoting superior energy management strategies

    Visualised inspection system for monitoring environmental anomalies during daily operation and maintenance

    Get PDF
    PurposeVisual inspection and human judgement form the cornerstone of daily operations and maintenance (O&M) services activities carried out by facility managers nowadays. Recent advances in technologies such as building information modelling (BIM), distributed sensor networks, augmented reality (AR) technologies and digital twins present an immense opportunity to radically improve the way daily O&M is conducted. This paper aims to describe the development of an AR-supported automated environmental anomaly detection and fault isolation method to assist facility managers in addressing problems that affect building occupants’ thermal comfort.Design/methodology/approachThe developed system focusses on the detection of environmental anomalies related to the thermal comfort of occupants within a building. The performance of three anomaly detection algorithms in terms of their ability to detect indoor temperature anomalies is compared. Based on the fault tree analysis (FTA), a decision-making tree is developed to assist facility management (FM) professionals in identifying corresponding failed assets according to the detected anomalous symptoms. The AR system facilitates easy maintenance by highlighting the failed assets hidden behind walls/ceilings on site to the maintenance personnel. The system can thus provide enhanced support to facility managers in their daily O&M activities such as inspection, recording, communication and verification.FindingsTaking the indoor temperature inspection as an example, the case study demonstrates that the O&M management process can be improved using the proposed AR-enhanced inspection system. Comparative analysis of different anomaly detection algorithms reveals that the binary segmentation-based change point detection is effective and efficient in identifying temperature anomalies. The decision-making tree supported by FTA helps formalise the linkage between temperature issues and the corresponding failed assets. Finally, the AR-based model enhanced the maintenance process by visualising and highlighting the hidden failed assets to the maintenance personnel on site.Originality/valueThe originality lies in bringing together the advances in augmented reality, digital twins and data-driven decision-making to support the daily O&M management activities. In particular, the paper presents a novel binary segmentation-based change point detection for identifying temperature anomalous symptoms, a decision-making tree for matching the symptoms to the failed assets, and an AR system for visualising those assets with related information.EPSRC, Innovate U

    Building occupancy modelling at the district level: A combined copula-nested hazard-based approach

    Get PDF
    Planning and managing an energy system in a district require a comprehensive understanding and accurate modelling of people's occupancy and circulation among multiple buildings. Due to the lack of occupancy modelling tools for district scale analysis, energy models still use simplified occupancy patterns provided in building codes and standards. However, the simplified information restricts the reflection of complex occupancy patterns driven by urban heterogeneity. This paper fills this research gap and presents a hazard-based model combined with nested copula dependence to describe the complex occupants' interactions between buildings in a district, enabling the characterisation of irregular occupancy patterns in special cases. The proposed model is calibrated using Wi-Fi authentication data from the Imperial College London (UK) South Kensington campus and is validated using the following days of the same data by evaluating the performance of predicted occupancy patterns both on average and day by day. The validation results demonstrate that the model can accurately capture the effects of the urban environment on occupancy duration and choice of transition within a district. Mean Absolute Percentage Errors (MAPEs) of average-pattern predictions are between 7% and 16% for most buildings, though a bit lower in accuracy for the Library and Food Hall predictions with MAPEs of 32%–36%. We also discuss the contributions of the proposed occupancy model to potential future applications, including efficient building space use, local energy planning and management
    corecore