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Abstract 

Motor vehicle crashes are a leading cause of death in the United States, cost 

Americans $277 billion annually, and generate serious psychological burdens.  As a 

result, extensive vehicle safety research focusing on the explanatory factors of crash 

severity is undertaken using a wide array of methodological techniques including 

traditional statistical models and contemporary data mining approaches. This study 

advances the methodological frontier of crash severity research by completing an 

empirical investigation that compares the performance of popular, longstanding 

techniques of multinomial logit and ordinal probit models with more recent methods of 

decision tree and artificial neural network models.  To further the investigation of the 

benefits of data analytics, individual models are combined into model ensembles using 

three popular combinatory techniques.   

The models are estimated using 2002 to 2012 crash data from the Missouri State 

Highway Patrol Traffic Division - Statewide Traffic Accident Records System database, 

and variables examined include various driver characteristics, temporal factors, weather 

conditions, road characteristics, crash type, crash location, and injury severity levels.  The 

accuracy and discriminatory power of explaining crash severity outcomes among all 

methods are compared using classification tables, lift charts, ROC curves, and AUC 

values.   

The CHAID decision tree model is found to have the greatest accuracy and 

discriminatory power relative to all evaluated modeling approaches.  The modeling 

reveals that the presence of alcohol, driving at speeds that exceed the limit, failing to 

yield, driving on the wrong side of the road, violating a stop sign or signal, and driving 
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while physically impaired lead to a large number of fatalities each year.  Yet, the effect of 

these factors on the probability of a severe outcome is dependent upon other variables, 

including number of occupants involved in the crash, speed limit, lighting condition, and 

age of the driver.  The CHAID decision tree is used in conjunction with prior literature 

and the current Missouri rules of the road to provide better formulated driving policies.  

This study concludes that policy makers should consider the interaction of conditions and 

driver related contributing factors when crafting future legislation or proposing 

modifications in driving statues.   
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Chapter 1 – Introduction  

Motor vehicle crashes are the leading cause of death for young people in the 

United States, and are a leading cause of death for Americans of all ages (Centers for 

Disease Control and Prevention, 2015).  Crashes on US roadways result in a fatality 

every 16 minutes, and led to 32,719 deaths and 2,313,000 injuries in 2013 (National 

Highway Traffic Safety Administration, 2014).  Traffic crashes not only result in the loss 

of invaluable lives, but also cost Americans $277 billion annually in lost wages, 

rehabilitation, medical care, etc. (Blincoe et al., 2010).  Additionally, traffic crashes 

render serious psychological burdens, such as grief, stress, depression, guilt and travel 

anxiety for victims and their families (Mayou et al., 1993).  As a result of these 

devastating effects, academicians and practitioners have undertaken extensive national 

and state-level traffic safety research focusing on the explanatory factors of traffic 

crashes and crash injury severity.  

1.1 Research Techniques 

To investigate crash severity data, researchers employ a wide array of 

methodological techniques with varying advantages and limitations that may lead to 

complementary, conflicting and/or inaccurate results.  Savolainen et al. (2011) conducted 

a review of the methodological tools employed for statistical analysis of crash injury 

severity, and found ordered logit and probit models, binary logit and probit models, and 

multinomial logit models to be the most common.  While not frequently used, the authors 

indicated that contemporary techniques including artificial neural networks (ANN) “may 

be better served for prediction of injury outcomes” (Savolainen et al., 2011, p. 1673) and 

decision tree models are an effective data mining technique.  Additionally, Abdelwahab 
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and Abdel-Aty (2001) argued that the learning capabilities and adaptive nature of ANN 

models could possibly be superior to traditional techniques in modeling injury severity, 

and called for future investigation of the use of ANN models in transportation safety 

applications.  Furthermore, Chang and Wang (2006) called for future work in comparing 

decision tree model results with traditional models such as ordered probit and logistic 

regression models.   

While researchers have made substantial progress in crash injury severity 

modeling, “major methodological and data challenges have yet to be fully resolved” 

(Savolainen et al., 2011, p. 1674).  Accordingly, addressing these challenges “must be a 

priority in future crash-injury research” (Savolainen et al., 2011, p.1674), and “not 

expanding the methodological frontier, and continuing to use methodological approaches 

with known deficiencies, has the potential to lead to erroneous and ineffective safety 

policies that may result in unnecessary injuries and loss of life” (Mannering and Bhat, 

2014, p. 16). 

1.2 Research Questions  

Driven by the physical, emotional and economic costs that follow motor vehicle 

crashes, it is important to examine and assess the relative merits of the different 

methodological approaches used for predicting crash severity outcomes.  Yet few studies 

have compared the differing modeling approaches and no studies have been identified in 

which methodologies have been ensembled to attempt to gain greater accuracy and 

predictive power for injury severity outcomes.  Even so, some researchers have theorized 

that combining different modeling types can create ensemble models with the ability to 
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obtain greater accuracy relative to the individual models (Hansen and Salamon, 1990; 

Polikar, 2006).   

1.3 Objectives  

This research contributes to the body of existing literature by responding to the 

call for expanding the methodological frontier in crash injury severity research.  An 

empirical investigation is performed to determine if traditional techniques, contemporary 

models or model ensembles offer greater accuracy and predictive power for crash injury 

severity outcomes.   

This study uses crash data compiled by the Missouri Highway Patrol for the years 

2002 to 2012 to develop, evaluate and ensemble (1) multinomial logit, (2) ordinal probit, 

(3) artificial neural networks and (4) decision tree models to compare the accuracy and 

predictive power of each approach in order to identify the best approach for influencing 

safety policies.  This research contributes to the current body of literature by evaluating 

the relative accuracy and power of varying modeling types estimated on a single large 

dataset of vehicle crashes, and by identifying relationships among contributing variables 

to crash severity to produce findings that will contribute to potential Missouri legislation 

and education materials to enhance overall driver safety.    

Specifically, the results from this study contribute to the current body of literature 

by addressing the following detailed research objectives: 

(1) Build and estimate four different models: multinomial logit, ordinal probit, 

artificial neural network and decision tree models, and assess the performance of 

each individual model by examining the relative performance of the estimated 

model on a training subset and a testing subset of the data.   
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(2) Combine the estimated multinomial logit, ordinal probit, artificial neural 

network and decision tree models to build an ensemble model to test if the 

amalgamation of the multiple methodologies enhances the classification accuracy 

of crash injury severity on a training subset and a testing subset of the data.   

(3) Examine and compare the predictive importance of variables as estimated by 

each individual model and the model ensemble to determine the contributory 

factors that have the greatest impact on crash injury severity outcomes.  

(4) Gain greater insight into relationships in the crash data by examining how 

crash injury severity is affected by a wide range of possible explanatory variables.   

(5) Evaluate findings relative to current Missouri driving policy and law to 

provide information for transportation planning, education and policy to enhance 

transportation safety efforts.   

1.4 Organization of the Research 

The research is presented in seven chapters.  Chapter One includes background 

and justification, as well as the problem statement and objectives for this study.  Chapter 

Two provides a review of relevant research for each methodological approach, in 

addition to a summary of the significant findings derived from the body of literature.  

Chapter Three identifies gaps in the current body of literature, recounts the call for 

further research in this area, and indicates the specific research questions to be answered 

by this study.  Chapter Four presents details regarding the data and the methodological 

techniques employed.  Chapter Five provides an analysis of the estimation and results of 

the individual models and the model ensembles.  Chapter Six presents a discussion of 
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findings and insights derived from the estimated models. Finally, Chapter Seven 

identifies research implications, limitations, and potential areas for future research.   

Chapter 2 - Literature Review  

Prior research has employed a wide array of methodological tools to better 

understand the factors that affect crash injury severity.  Savolainen et al. (2011) 

conducted a review of the methodological tools employed for statistical analysis of crash 

injury severity, and identified the approaches as follows:  

 Artificial neural networks 

 Bayesian hierarchical binomial logit 

 Bayesian ordered probit 

 Binary logit and binary probit 

 Bivariate binary probit 

 Bivariate ordered probit 

 Classification and regression tree 

 Generalized ordered logit 

 Heterogeneous outcome 

 Heteroskedastic ordered logit/probit 

 Log-linear  

 Markov switching multinomial logit 

 Mixed generalized ordered logit 

 Mixed joint binary logit-ordered logit 

 Multinomial logit 

 Multivariate probit 

 Nested logit 

 Ordered logit and ordered probit 

 Partial proportional odds 

 Random parameters (mixed) logit 

 Random parameters (mixed) ordered 

logit 

 Random parameters ordered probit 

 Sequential binary logit 

 Sequential binary probit  

 Sequential logit 
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Of these, the study identified the most commonly employed techniques to be 

ordered logit and ordered probit (approximately 30%), binary logit and binary probit 

(approximately 16%), and multinomial logit (approximately 13%).  While not commonly 

used methods, the authors indicated that neural networks “may be better served for 

prediction of injury outcomes” (Savolainen et al., 2011, p. 1673) and that decision tree 

models are an effective data mining technique.  

Mannering and Bhat (2014) expanded upon Savolainen et al. (2011) by 

identifying methodological developments and applications that have occurred since 2011.  

The authors identified additional publications that employed binary logit/probit models (1 

publication), multinomial logit models (3 publications), nested logit models (3 

publications), sequential logit/probit models (1 publication), ordered logit/probit models 

(8 publications), generalized ordered outcome models (5 publications), 

bivariate/multivariate ordered probit models (4 publications), mixed logit model (random 

parameters logit model) (7 publications), finite-mixture/latent-class and Markov 

switching models (5 publications), mixed ordered probit (random parameters probit) 

model (1 publication), and spatial and temporal correlations (1 publication).  The authors 

identified no additional studies using artificial neural networks or decision tree models.   

Following Savolainen et al. (2011) and Mannering and Bhat (2014) as guides, this 

study conducted a literature review of the most common techniques used in crash injury 

severity analyses (ordered logit probit, binary logit and probit, and multinomial logit - 

and the contemporary approaches used in crash injury severity analyses - artificial neural 

networks and decision trees).  Table 2.1 provides a summary of the prior research 

identified.   
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Table 2.1: Summary of Prior Research 

 

This study discovered the aforementioned literature reported both complementary 

and contradictory findings.  A summary of the significant findings related to driver 

characteristics, contributing circumstances, temporal factors, weather characteristics, and 

road conditions is presented below, followed by a detailed review of each model type. 

2.1 Summary of Significant Findings in Crash Severity Research 

2.1.1 Driver Characteristics  

 Delen et al. (2006) and Kuhnert et al. (2000) reported age as a significant factor in 

influencing injury severity; whereas Khattak et al. (1998) suggested that the impact of 

the adult driver category on crash injury severity was not different than that of the 

young driver category, when controlling for other factors.  

Binary Logit/Probit

Shibata and Fukuda (1994) Farmer et al. (1997) Khattak et al. (1998) Krull et al. (2000)

Zhang et al. (2000) Al-Ghamdi (2002) Bedard et al. (2002) Toy and Hammitt (2003)

Ballesteros et al. (2004) Chang and Yeh (2006) Sze and Wong (2007) Chimba and Sando (2009)

Pai (2009) Rifaat and Tay (2009) Haleem and Abdel-Aty (2010) Peek-Asa et al. (2010)

Kononen et al. (2011) Moudon et al. (2011) Santolino et al. (2012) Yu and Abdel-Aty (2014)

Multinomial Logit

Shankar and Mannering (1996) Carson and Mannering (2001) Abdel-Aty and  Abdelwahab (2004) Ulfarsson and Mannering (2004)

Khorashadi et al. (2005) Islam and Mannering (2006) Kim et al. (2007) Malyshkina and Mannering (2008)

Savolainen and Ghosh (2008) Schneider et al. (2009) Malyshkina and Mannering (2010) Rifatt et al. (2011)

Ye and Lord (2011) Schneider and Savolanien (2011) Eluru (2013) Yasmin and Eluru (2013)

Amarasingha and Dissanayake (2013) Ye and Lord (2014)

Ordered Logit/Probit

Khattak et al. (1998) Klop and Khattak (1999) Renski et al. (1999) Khattak (2001)

Khattak et al. (2002) Kockelman et al. (2002) Quddus et al. (2002) Abdel-Aty (2003)

Austin and Faigin (2003) Kweon et al. (2003) Zajac and Ivan (2003) Khattak and Rocha (2003)

Donnell and Mason (2004) Khattak and Targa (2004)  Abdel-Aty and Keller (2005) Lee and Abdel-Aty (2005)

Shimamura et al. (2005) Gårder (2006) Lu et al. (2006) Oh (2006)

Pai and Saleh (2007) Gray et al. (2008) Pai and Saleh (2008) Wang et al. (2009)

Xie et al. (2009) Amarasingha and Dissanayake (2010) Haleem and Abdel-Aty (2010) Jung et al. (2010)

Quddus et al. (2010) Ye and Lord (2011) Zhu and Srinivasan (2011) Abay (2013)

Jiang et al. (2013a) Jiang et al. (2013b) Eluru (2013) Yasmin and Eluru (2013)

Ye and Lord (2014) Ariannezhad  et al. (2014)

Artifical Neural Networks

Mussone et al. (1999) Abdelwahab and Abdel-Aty (2001) Abdelwahab and Abdel-Aty (2002) Abdel-Aty and Abdelwahab (2004)

Bayam et al. (2005) Delen et al. (2006) Chimba and Sando (2009)

Decision Tree

Stewart (1996) Kuhnert et al. (2000) Sohn and Shin (2001) Bayam et al. (2005)

Abdel-Aty and Keller (2005) Yan and Radwan (2006) Chang and Wang (2006) Abellán et al. (2013)

Eustace et al. (2014)
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 Khattak and Rocha (2003) found that young drivers increase the risk of higher injury 

severity in single-vehicle crashes, and Lu et al. (2006) indicated that young drivers 

have a greater risk of injury severity when traffic volume on roadways is moderately 

high.  Yet, Haleem and Abdel-Aty (2010) found that young drivers have lesser risk of 

severe injury at unsignalized intersections. 

 Khattak et al. (2002) reported that advancing age increases the likelihood of more 

severe injuries, and a one year increase in drivers’ age beyond 74 years old decreases 

the risk for minor injury and increases the risk of a moderate, severe, or fatal injury.   

 Additional studies also found older drivers to have higher risks of incapacitating or 

fatal injury, given a crash occurs (Bédard et al., 2002; Abdel-Aty, 2003; Abdelwahab 

and Abdel-Aty, 2002; Schneider et al., 2009; Rifaat et al., 2011; Yasmin and Eluru, 

2013). 

2.1.2 Contributing Circumstances  

 Chang and Wang (2006) found that contributing circumstances and driver actions are 

critical in determining crash injury severity.   

Inattention 

 Zhu and Srinivasan (2011) reported distracted drivers as having a higher risk of 

greater injury severity, given a truck-only crash occurs.  

Passenger Presence 

 Studies found passenger presence increases the risk of injury (Savolainen and Ghosh, 

2008; Schneider et al., 2009; Khorashadi et al., 2005), and it was reported that crash 

injury severity increases as the number of vehicle passengers increase (Renski et al., 

1999; Oh, 2006).  
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Alcohol 

 Many studies reported alcohol intoxication significantly increases the risk of severe 

injury (Khattak et al., 1998; Renski et al., 1999; Krull et al., 2000; Bédard et al., 

2002; Khattak et al., 2002; Kockelman and Kweon, 2002; Abdel-Aty, 2003; Zajac 

and Ivan, 2003; Donnell and Mason, 2004; Delen et al, 2006; Rifaat and Tay, 2009; 

Schneider et al., 2009; Wang et al., 2009; Moudon et al., 2011; Yasmin and Eluru, 

2013) and fatality (Islam and Mannering, 2006; Rifaat et al., 2011). 

 When the vehicle driver is intoxicated, results suggested that the risk of injury for a 

bicyclist (Kim et al., 2007) or motorcyclist (Schneider and Savolainen, 2011) 

involved in the collision increases by a large margin; and, Siddiqui et al. (2006) 

discovered  that being struck by an intoxicated driver is one of the largest fatal injury 

risk factors for pedestrians.  

 Model results for rear-end collisions found that alcohol was the most significant 

factor that effect the likelihood of a driver striking another vehicle (Yan and Radwan, 

2006); and, Eustace et al. (2014) suggested that alcohol and drug use increase the 

probability of run-off-road injury severity levels. 

Speed 

 A dozen studies reported that speeding (Khattak et al., 1998; Khattak and Rocha, 

2003; Schneider et al., 2009) and higher speed limits (Renski et al., 1999; Khattak et 

al., 2002; Oh, 2006; Gårder, 2006; Malyshkina and Mannering, 2010; Savolainen and 

Ghosh, 2008; Haleem and Abdel-Aty, 2010; Zhu and Srinivasan, 2011; Yasmin and 

Eluru, 2013) significantly increase the risk of severe injury.   
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 Zajac and Ivan (2003) found that, given a collision between a car and a pedestrian, 

speed limit did not significantly affect pedestrian injury severity as expected.  

 As the ratio of the estimated speed at the time of the crash to the posted speed limit 

increases, results indicated that the level of injury severity increases (Abdelwahab and 

Abdel-Aty, 2001; Abdelwahab and Abdel-Aty, 2002). 

 Research suggested that driving at speeds too fast for conditions increases the risk of 

crash severity (Rifaat and Tay, 2009) and crashes resulting in fatality (Shibata and 

Fukuda, 1994; Bédard et al., 2002).    

Speed and Interaction Variables  

 Results uncovered that the interaction of higher speed limits and alcohol increase the 

risk of crash injury severity (Yan and Radwan, 2006; Eustace et al., 2014).  Eustace et 

al. (2014) found that females driving in a higher posted speed limit have a higher risk 

of injury, and males with drug involvement driving in a higher posted speed limit 

have a higher risk of injury.  

2.1.3 Temporal Factors 

Time of Day 

 Research indicated that peak travel time (Khattak et al., 1998) and higher annual daily 

traffic (Klop and Khattak, 1999) decrease the risk of injury severity.   

 Many studies reported that crashes occurring at night increase the risk of injury (Krull 

et al., 2000; Quddus et al., 2002; Abdel-At, 2003; Rifaat et al., 2011; Yasmin and 

Eluru, 2013).   

 Conversely, studies also reported that crashes during day-light hours increase the risk 

of injury (Krull et al., 2000; Savolainen and Ghosh, 2008).  
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Lighting 

 Findings indicated that dark, unlit conditions increase injury severity (Klop and 

Khattak, 1999; Rifaat and Tay, 2009; Haleem and Abdel-Aty, 2010), favorable 

lighting conditions decrease injury severity at freeway diverge areas (Wang et al., 

2009), dusk (over dark) reduce the risk of severe injury at unsignalized intersections 

(Haleem and Abdel-Aty, 2010), and darkness increases the risk of greater injury 

severity for older drivers (Khattak et al., 2002).   

2.1.4 Weather Characteristics  

 Wang et al. (2009) found that favorable weather decreases injury severity; and, 

Abdel-Aty (2003) reported that adverse weather increases injury severity.   

 Yet, Khattak et al. (1998) found adverse weather to significantly decrease the risk of 

severe injury for crashes; and Delen et al. (2006) indicated that weather conditions 

and time of crash are not influential in crash injury severity. 

2.1.5 Road Conditions  

 Lu et al. (2006) claimed that road condition has the greatest influence on crash 

severity; however, Jiang et al. (2013b) concluded that improved road quality does not 

essentially reduce injury severity. 

 Khattak et al. (1998), Rifaat and Tay (2009), and Quddus et al. (2010) reported that 

wet/slippery road surface decreases the risk of severe injury; yet, Krull et al. (2000) 

and Zhu and Srinivasan (2011) found that dry surfaces increase the risk of severity for 

truck-only crashes.   
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2.2 Review of Methodological Approaches 

2.2.1 Binary Logit and Probit  

Savelonien et al. (2011) identified seventeen studies and Mannering and Bhat 

(2014) identified an additional study in which binary logit and probit methodologies were 

used to analyze motor vehicle crash-injury severity.  The analyzed binary outcomes 

related to the crash were fatal or nonfatal personal injury (Shibata and Fukuda, 1994; Al-

Ghamdi, 2001; Bédard et al., 2002; Ballesteros et al., 2002; Chang and Yeh, 2006), 

severe injury (fatal or incapacitating) or non-severe injury (Farmer et al., 1997; Krull et 

al., 2000; Toy and Hammitt, 2003;  Chimba and Sando, 2009; Pai, 2009; Haleem and 

Abdel-Aty, 2010; Peek-Asa et al., 2010; Kononen et al., 2011) injured or not injured 

(Rifaat and Tay, 2009), fatal/severely injured or slightly injured (Sze and Wong, 2007) 

hospitalized or not hospitalized (Santolino et al., 2012), crash involvement or 

noninvolvement (Khattak et al. (1998), and pedestrian fatality/disability or no pedestrian 

fatality/disability (Moudon et al., 2011). 

A review of the literature that employed binary logit and probit methodologies 

uncovered significant findings related to weather characteristics, road characteristics, and 

contributing circumstance.  Excerpts from these findings are presented below, followed 

by a more detailed summary of each piece of research.    

 Higher speed limits, greater speed of travel, and driving at speeds too fast for 

conditions increase the risk of crash severity (Rifaat and Tay 2009) and crashes 

resulting in one or more fatalities (Shibata and Fukuda, 1994; Bédard et al., 2002).    
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 Khattak et al. (1998) and Rifaat and Tay (2009) reported a higher probability of crash 

severity on wet road surfaces; yet, Krull et al. (2000) found that dry pavement 

increases the probability of severe injury. 

 Al-Ghamdi (2001) found that the odds that a fatal crash will occur due to running a 

red light were 2.72 times higher than non-running-red-light crashes, and the odds 

ratio of being involved in a fatal crash in a wrong-way related crash were three times 

higher than a failure-to-yield related crash.   

 Rifaat and Tay (2009) and Haleem and Abdel-Aty (2010) found a greater likelihood 

of crash severity during darkness; yet, Krull et al. (2000) reported greater severity 

during daylight hours.   

 Alcohol intoxication by the driver results in a greater likelihood of crash severity 

(Krull et al., 2000; Bédard et al., 2002; Rifaat and Tay, 2009; Moudon et al., 2011). 

 Drivers aged 80+ are associated with higher fatality odds (Bédard et al., 2002); and, 

young drivers experience a reduced probability of severe injury (Haleem and Abdel-

Aty, 2010). 

Shibata and Fukuda (1994) 

 Shibata and Fukuda (1994) developed two unconditional multiple logistic 

regression models (using dummy variables) to (1) evaluate the relationship strength for 

driver’s license, speed, alcohol use and seatbelt/helmet use when controlling for age and 

(2) simultaneously control for age and other factors to determine the likelihood that a 

crash would result in ‘death’ or ‘uninjured’.  Results suggested that unlicensed drivers 

had a higher likelihood of fatality resulting from a crash, and the risk increased when the 

unlicensed driver was a male motorcyclist.  Additionally, the authors reported that the 
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risk for fatality increased as speed increased, and seatbelt and helmet use prevented 

fatalities for both genders and types of drivers (motorcyclists and non- motorcyclists).  

The authors concluded that education and supervision of speed, alcohol use, and 

seatbelt/helmet use would lead to reduction of traffic fatalities.   

Farmer et al. (1997) 

 Farmer et al. (1997) investigated the relationship of vehicle and crash 

characteristics with injury severity for two-vehicle side impact crashes.  The authors used 

chi-square statistics and logistic regressions to assess the individual and simultaneous 

effects of occupant, vehicle and crash characteristics on the probability of a serious injury 

occurring.  Results indicated that light truck occupants were less likely to be seriously 

injured than car occupants.  Additionally, right-angle crashes were more likely to cause a 

rollover, light trucks were 14 times more likely to roll when side struck than cars, and the 

likelihood of serious injury for the subject vehicle increased as the speed limit increased.  

The authors concluded that side-struck occupants in cars had a higher probability of 

being seriously injured than those in light trucks, and seat belts enhanced injury 

prevention for far-side occupants in side-impact crashes.  

Khattak et al. (1998) 

Khattak et al. (1998) explored the adverse impact of weather on crash risk using 

binary probit models.  Results suggested that on limited-access roadways drivers did not 

compensate for poor visibility and slippery road surface, which resulted in a greater 

likelihood for crash involvements and sideswipes. 
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Krull et al. (2000) 

Krull et al. (2000) explored the events leading to rollovers and the effect of 

rollovers on driver injury.  The authors employed binary regression models to help 

identify the factors that affect crash severity, and to provide a numerical relationship 

between the factors and the probability that a fatal or incapacitating injury would occur.  

For the pooled model including Michigan and Illinois data, results indicated that rollover 

involvement, passenger cars, no restraint, alcohol use, day light, rural roads, higher speed 

limits, and dry pavement increased the probability of severe injury.  The authors 

concluded by recommending rollover-prevention efforts to focus on improved ditch 

designed and curve treatments.   

Zhang et al. (2000) 

 Zhang et al. (2000) examined the relationship between potential risk factors and 

crash injury severity when a motor vehicle traffic crash involved an elderly driver.  

Factors examined included age and sex of the driver, driver condition, driver action, seat 

belt use, ejection from the vehicle, month, day and hour of collision, road alignment, 

roadway configuration, road surface condition, speed limit, weather conditions, light 

conditions, crash configuration, vehicle type, vehicle maneuver, medial/physical 

conditions (chronic diseases or physical handicaps), and use of alcohol.  The authors 

developed multivariate unconditional logistic regression models (using dummy variables) 

to estimate the magnitude of each factor in relation to crash injury severity.  Results 

indicated that medical and physical conditions increase the risk of fatality for drivers 

aged 75 years and older.  The authors concluded by calling for future research to examine 

driver actions, such as failing to yield and traffic signs violation.   
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Al-Ghamdi (2001) 

 Al-Ghamdi (2001) developed a logistic regression model to identify the most 

probable factors that affect crash injury severity in Saudi Arabia.  Results suggested that 

the odds of a fatal crash occurring at a non-intersection location are 2.62 higher than at an 

intersection.  Additionally, model outcomes indicated that the odds of a fatal crash will 

occur because of running a red light are 2.72 times higher than non-running-red-light 

crashes, and the odds ratio of being involved in a fatal crash in a wrong-way related crash 

are three times higher than a failure-to-yield related crash.  In response to these findings, 

the authors concluded that logistic regression is a promising tool in providing meaningful 

interpretations for safety improvements.   

Bédard et al. (2002) 

Bédard et al. (2002) used the US Department of Transportation’s Fatal Accident 

Reporting System database to investigate driver fatalities, given a single-vehicle crash 

with fixed objects occurred.  Explanatory variables included in the study are driver 

characteristics (age, gender, blood alcohol concentration, seatbelt use), crash 

characteristics (impact direct, vehicle deformity, vehicle speed), vehicle characteristics 

(air bags, weight, wheelbase length, model year, vehicle age), and the outcome variable, 

injury severity, was dichotomized as fatal or non-fatal.  Findings suggested that female 

drivers, a blood alcohol level of greater than 0.30, driver-side impacts, speeds exceeding 

69 mph, and drivers aged 80+ were associated with higher fatality odds.  The authors 

concluded that seatbelt use, speed reduction and driver-side impact reduction may 

prevent fatalities; and, safety measures and policy associated with older drivers and 

female drivers may need to be addressed separately.    
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Toy and Hammitt (2003) 

Toy and Hammitt (2003) investigated the relative attributes of cars on the 

probability that a serious and fatal injury would result in a two-vehicle crash, and 

compared these results with LTVs.  The authors obtained 6,481 observations from two-

vehicle crashes that occurred during 1993 to 1999 from the Crashworthiness Data 

System.  They developed a conceptual framework based on existing literature, which 

incorporated potential personal risk factors: own vehicle factors (mass, stiffness, 

geometry), other vehicle factors (mass, stiffness, geometry), own driver factors (age, 

gender, restraint use, behavior), crash factors (severity, configuration), and other driver 

factors (behavior).  Additionally, the authors constructed a logistic regression model with 

the binary outcome of ‘seriously injured or killed’ or ‘not seriously injured or killed’, 

conditional on a crash occurring.  Results indicated that vehicle characteristics have a 

significant impact on risk, and SUVs, vans and pickups appear more crashworthy than 

cars.  Additionally, pickup drivers face less risk or serious injury than car drivers, and 

drivers who have a collision with pickups are more than twice at risk than when striking a 

car.  Overall, findings indicated that vehicle mass, body type and crash severity increase 

the ability of the passenger vehicle to protect its occupants during a crash (i.e. 

crashworthiness of the passenger vehicle).   

Ballesteros et al. (2002) 

 Ballesteros et al. (2002) studied 1995 to 1999 data of pedestrians who had been 

treated at a Maryland trauma center or died as a result of being struck by a car, sport 

utility vehicle (SUV), pick-up truck (PU), or van.  The authors obtained vehicle type data 

from the Maryland Automated Accident Reporting System database, injuries data from 
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the Maryland Trauma Registry, and fatality data from the Maryland Office of Chief 

Medical Examiner records, and linked the databases together in order to trace pedestrians 

from the crash scene to the final medical outcome.  The authors categorized outcome 

variables as pedestrian mortality (fatal, non-fatal), pedestrian injury severity score (≤3, 4-

8, 9-15, 16-24, >25), and pedestrian injuries to specific body regions.  Independent 

variables included vehicle type (conventional automobile, SUV, PU, or van), speed limit 

(≤25, 30-35, >40 mph), and weight (≤2454, 2455-2906, 2907-3394, >3395 lbs.).  Results 

indicated that compared to conventional cars, pedestrians who had been struck by an 

SUV or PU had a higher probability of severe injury and death; and, the increased risk 

could be attributed primarily to the heavier vehicle weight and faster vehicle speed.  

Additionally, pedestrians who were struck by an SUV, PU, or van at lower speeds were 

more likely to incur traumatic brain, thoracic, and abdominal injuries than those hit by a 

conventional car.  The authors suggested that pedestrian injuries could be alleviated 

through vehicle design modifications.   

Chang and Yeh (2006) 

 Chang and Yeh (2006) developed two logistic regression models to assess the risk 

factors that increased the likelihood of fatality for non-motorcycle drivers and 

motorcyclists in single-vehicle crashes, and to compare the differing risk factors between 

the two driver types.  The results indicate that the amount of fatal injuries for 

motorcyclists in single-vehicle crashes was higher than non-motorcycle drivers.  Both 

types of drivers, male gender, older in age, and time between 2200 and 0600 hours were 

found to increase the likelihood of a fatal crash.  The authors concluded by 

recommending that to reduce the risk of fatal crashes for both motorcyclists and non-
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motorcycle drivers’, seatbelt-use, running-speed management, rider’s risk perceptions, 

and road quality should be enhanced.   

Sze and Wong (2007) 

 Sze and Wong (2007) explored factors that lead to pedestrian injury severity 

resulting from traffic crashes in Hong Kong.   Findings indicated that, given a collision 

occurs, male gender and under 15 years-old, occupying an overcrowded or obstructed 

footpath, and a daytime crash on a road with severe/moderate congestion have a lower 

risk of pedestrian mortality and severe injury.  The authors called for more extensive data 

collection and comprehensive analysis of pedestrian flow and risk factors.  

Chimba and Sando (2009) 

 Chimba and Sando (2009) compared artificial neural networks (ANN) and probit 

(OP) models for their prediction power in highway traffic crash injury severity levels 

coded as 0 for property damage only, possible injury, and non-incapacitating and 1 for 

incapacitating and fatal crashes.  The authors claimed that while many studies have 

applied a form of the ANN technique to predict crash counts, few have applied the 

methodology to injury severity modeling.  The authors collected data for crashes 

occurring in 2003 on arterial segments of the Florida state highway system from the 

Florida Department of Transportation, which resulted in 1,271 records.   Findings 

indicated that the ANN resulted in an approximate prediction accuracy of 83.3%, while 

the OP had a prediction accuracy of 65.5%.  This finding suggests that a well-structured 

ANN can produce higher prediction performance relative to the OP approach.    

 

 



 

20 

Copyright, Jill M. Bernard, 2015 

Pai (2009) 

 Expanding upon Pai and Saleh’s (2007) exploration of motorcyclists’ crash injury 

severity at T-junctions, Pai (2009) examined the factors impacting motorcyclist injury 

severity given a motorcycle-car angle crash occurred at a T-junction.  The authors 

estimated two binary logistic models with differing explanatory variables (model 1: angle 

perpendicular collisions and model 2: oblique collisions) to assess killed or seriously 

injured motorcyclists over slight injuries, as explained by vehicle, weather, temporal, 

human and environmental factors.  Estimation results suggested that the most dangerous 

crash patterns were those in which one traveling-straight motorcycle collided with a 

right-turn/left-turn car traveling from a minor road, primarily at stop-controlled and yield-

controlled junctions.  The authors presumed that this occurrence resulted from right-of-

way/failure-to-yield violation, and that this finding could be used to enhance law 

enforcement efforts and safety educations programs.     

Rifaat and Tay (2009) 

Rifaat and Tay (2009) explored how differing street patterns affect crash injury 

severity.  The authors collected 35,993 observations from Alberta Transportation crash 

data from 2003 to 2005 with variables including road characteristics, drivers’ 

characteristics, crash characteristics, environmental conditions and vehicle attributes.  

They developed a binary regression model to determine the likelihood that, given a two-

vehicle crash, an injury to any person involved would occur.  Findings suggested that the 

loops and lollipops pattern was the only statistically significant road pattern (at a 90% 

confidence level) that decreased injury risk of crashes, and the gridiron pattern was the 

only type of street pattern to increase the risk of injury, which suggested that roads with 
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frequent curves are marginally safer.  Additionally, crash severity was higher on divided 

roads with no barrier, on wet surfaces, during darkness, when alcohol was used by the 

driver, when turning left across path and stop signs, and when driving at speeds too fast 

for conditions.   

Haleem and Abdel-Aty (2010) 

 Haleem and Abdel-Aty (2010) compared ordered probit, binary probit and nested 

logit methodologies to aid in the selection of the best modeling technique for injury 

severity analysis for crashes occurring at unsignalized intersections in Florida.  The 

authors developed two separate models to analyze the relationship between severe 

injuries (incapacitating injury and fatal injury), non-severe injuries (property damage 

only, possible injury, and non-incapacitating injury), and explanatory characteristics at 

three and four legged intersections.  Findings indicated that lack of stop lines, one left 

turn lane, larger right shoulder width, and smaller intersections increase the probability of 

severe injury, and lower speed limits, young drivers, crashes occurring at dusk (over 

dark), and highly-urbanized areas reduce probability of severe injury.  When comparing 

the binary probit and the ordinal probit frameworks, the authors concluded that the 

aggregated binary probit model had a lower Akaike information criterion (AIC) and a 

higher likelihood at convergence, which indicated that the binary probit model better fit 

the data.   

Peek-Asa et al. (2010) 

 Peek-Asa et al. (2010) examined traffic crashes for 10 through 18 year-old Iowa 

drivers who were involved in a crash from 1995 to 2004.  The authors developed a binary 

logit model to analyze the likelihood that a crash would result in a fatal or severe injury 
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as the result of a rural setting (both population-based and crash location based), driver 

variables, crash characteristics, and environmental characteristics.  Results indicated that 

remote rural teens were less likely to be involved in a crash than urban teens; and, 

suburban, rural and remote rural teens aged 10 through 15 had a higher fatal and severe 

crash rate when compared to urban teens.  Findings indicated failure to yield to be the 

most common circumstance contributing to a crash for both urban and rural teen drivers.  

Reckless driving, speeding, and animal collisions were more commonly reported crash 

causes for urban drivers, and fatality rates were higher for urban drivers when following 

too closely.  Results suggested the likelihood that a rural teen driver was involved in a 

fatal or severe injury crash is five times greater than a rural teen driver, and rural teen 

drivers are more likely to be involved in crashes that are single-vehicle, late at night, 

resulting from failing to yield and crossing the center divider.  The authors recommended 

the implementation of intervention programs to address specific rural roadway risk 

factors for teenage drivers. 

Kononen et al. (2011) 

 Kononen et al. (2011) developed a binomial logistic regression model to assess if 

delta-v (the change in vehicle velocity due to the force of the crash), direction of impact, 

vehicle type, belt use, number of impacts, age and gender in order to determine affect 

crash injury severity.  Results denoted that significant predictors of serious injury 

resulting from a crash were delta-v, seat belt use, and crash direction.   

Moudon et al. (2011) 

 Moudon et al. (2011) estimated the likelihood that a motor vehicle and pedestrian 

collision would result in a pedestrian fatality or disability.  The authors developed binary 
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logit models to analyze state routes and city routes, and included independent variables 

from the individual level (pedestrian socio-demographic characteristics, pedestrian 

behavior characteristics, driver behavior driver vehicle action), road environment 

(temporal characteristics of collision, road characteristics, traffic conditions), and 

neighborhood environment (density, land use destinations, neighborhood wealth).  

Results suggested that alcohol use on state routes increased the risk of injury severity; 

and females, older pedestrians, and more than one pedestrian involved increased the risk 

of severe injury on both road types. 

Santolino et al. (2012) 

Santolino et al. (2012) obtained 16,081 observations from the Spanish motor 

insurance database, and developed regression models to examine the likelihood that a 

motor vehicle crash results in hospital admittance and the duration of the stay.  The 

authors reported that age, gender, vehicle type, location and nature of the injuries were 

significant influencers in the risk of hospital admittance and/or length of stay required for 

recovery.  Notable findings indicated that older men with head and lower torso fractures 

and injuries had a higher probability of being hospitalized, and older men had a higher 

likelihood of a longer hospital recovery time.  The authors concluded that understanding 

the relationship between hospital admittance and duration of stay can help form policy 

and educate practitioners.    

2.2.2 Multinomial Logit Models  

Savelonien et al. (2011) identified eighteen studies and Mannering and Bhat 

(2014) reported four additional studies in which multinomial logit methodologies were 

used to analyze crash injury severity with outcomes categorized as three, four or five 
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levels.  The three-level approach identified examined the risk of property damage only or 

no-injury, injury, and fatality (Shankar and Mannering, 1996; Carson and Mannering, 

2001; Islam and Mannering, 2006; Malyshkina and Mannering, 2008; Malyshkina and 

Mannering, 2010; Rifaat and Tay, 2011), the two four-level approaches identified 

examined the risk of non-injury or property damage only, possible injury, evident injury 

or non-incapacitating, and fatal/disabling injury or fatal/incapacitating (Ulfarsson and 

Mannering, 2004; Khorashadi et al., 2005; Savolainen and Ghosh, 2008; Amarasingha 

and Dissanayake, 2013; Yasmin and Eluru, 2013) and possible or no injury, non-

incapacitating, incapacitating, and fatal (Kim et al., 2007), and the five-level approach 

identified examined the risk of property damage only, possible injury, non-incapacitating 

injury, incapacitating injury, and fatal injury (Schneider et al., 2009; Schneider and 

Salovainen, 2011; Ye and Lord, 2014).   

A review of the literature that employed multinomial logit models discovered 

significant findings related to weather characteristics, road characteristics, and 

contributing circumstances were discovered.  Excerpts from these findings are presented 

below, followed by a more detailed summary of each piece of research.    

 Given a crash occurrence, findings suggested that older drivers have higher risks of 

incapacitating or fatal injury (Schneider et al., 2009; Rifaat et al., 2011; Yasmin and 

Eluru, 2013). 

 Studies suggested passenger presence increases the risk of injury (Savolainen and 

Ghosh, 2008; Schneider et al., 2009; Khorashadi et al., 2005) and the risk of fatality 

for young males and middle-aged males (Islam and Mannering, 2006).  



 

25 

Copyright, Jill M. Bernard, 2015 

 Research indicated that speeding and higher speed limits increase the risk of injury 

(Savolainen and Ghosh, 2008; Schneider et al., 2009; Malyshkina and Mannering, 

2010; Yasmin and Eluru, 2013), the likelihood of fatality for middle-aged men (Islam 

and Mannering, 2006), and the risk of injury severity when the crash occurs at a rural 

location (Khorashadi et al., 2005).   

 Studied reported alcohol impairment increases the risk of injury (Schneider et al., 

2009; Yasmin and Eluru, 2013) and fatality (Islam and Mannering, 2006; Rifaat et al., 

2011).  When the vehicle driver was intoxicated, findings suggested that the risk of 

injury for a bicyclist (Kim et al., 2007) or motorcyclist (Schneider and Savolainen, 

2011) involved in the collision increase by a large margin. 

 Savolainen and Ghosh (2008) reported that crashes during day-light hours increase 

the risk of injury; yet, contradictory findings indicated that crashes occurring at night 

increase the risk of injury (Rifaatt et al., 2011; Yasmin and Eluru, 2013).   

 One study found that crashes during the spring and summer seasons increase the 

likelihood of injury occurring in some states (Savolainen and Ghosh, 2008), while 

another study suggested that the winter season increase the risk of injury (Rifaatt et 

al., 2011). 

Shankar and Mannering (1996)  

Shankar and Mannering (1996) developed a multinomial logit model to determine 

the likelihood that a single-vehicle motorcycle crash would result in property damage 

only, possible injury, or fatality based on helmet use, location (interstate or arterial), high 

displacement, intersections, and/or alcohol intoxication.  Findings suggested that a 

helmeted-rider and a fixed object interaction increased the risk of fatality; no-helmet and 
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a fixed-object interaction increased the risk of evident injury; no-helmet and alcohol-

impairment riding interaction increased the risk of fatality; no-helmet and low-speed 

interaction increased the risk of evident and disabling injury; alcohol-impaired riding 

increased the risk of fatality, evident and disabling injuries; motorcycle displacement 

increased the risk of fatality, evident or disabling injury; age-displacement interaction 

increased the risk of property damage, possible injury and disabling injury; motorcycle 

rider age increased the risk of fatality and disabling injury; ejection of rider increased the 

risk of any form of injury relative to property damage; speeding increased the risk of 

fatality, evident injury and disabling injury; rider inattention increased the risk of evident 

and disabling injury; interstate riding increased the risk of disabling and possible injury; 

and, wet pavement and not-raining interaction increased the risk of possible injury and 

property damage. 

Carson and Mannering (2001) 

 Carson and Mannering (2001) evaluated the usefulness of ice-warning signs in 

Washington to analyze the impact of road characteristics on highway safety when ice was 

present.  The authors developed a multinomial logit structure to determine the probability 

of a crash resulting in a fatal, injury, or property damage only outcome.  However, the 

model did not identify temporal, traffic, roadway, spatial or crash placement 

characteristics to significantly influence crash injury severity; and, the results suggested 

that the presence of ice-warning signs did not significantly affect the severity of crashes 

when ice was involved.   
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Abdel-Aty and Abdelwahab (2004b) 

Abdel-Aty and Abdelwahab (2004b) analyzed rear-end crashes categorized as 

regular passenger car striking regular passenger car; regular passenger car striking light 

truck; light truck striking regular passenger car; and light truck striking light truck.  The 

authors developed a  multinomial logit model as the basis for four additional nested logit 

models to develop an appropriate nesting structure to examine rear-end crash types, 

driver gender of the striker vehicle, younger driver age (between 15 and 24), older driver 

age (75 and older), light condition, traffic single and driver distraction data.  The final 

model indicated the significant variables to be driver’s age, traffic control device, action 

initiated by the lead vehicle, gender, inattention, and vision obstruction of the driver of 

the striker vehicle.  The authors concluded that the risk of a car-truck rear-end crash 

increased when the driver of the striker vehicle was distracted, light truck vehicles 

obscure the visibility of drivers of other passenger vehicle, and that vision obstruction of 

the striker vehicle is the most prominent effect on rear-end crashes.   

Ulfarsson and Mannering (2004) 

 Ulfarsson and Mannering (2004) estimated statistical models to examine the 

differences in crash injury severity between male and female drivers when a passenger 

car, pickup, sport-utility vehicle (SUV) or minivan was involved in a collision. The 

authors estimated separate frequency and percentage distribution models for male and 

female drivers for seven combinations of vehicle-crash categories using observations 

from 1993 to 1996 obtained from the Washington State Department of Transportation.  

Additionally, the authors designed separate multinomial logit models to analyze the effect 

of driver characteristics, driver violations, driver action proceeding crash, vehicle 
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characteristics, road and operating characteristics, crash characteristics, environmental 

characteristics, and temporal characteristics on the likelihood of a crash resulting in non-

injury, possible injury, evident injury, or fatal/disabling injury for male and female 

genders.  Results indicated that female drivers of passenger cars who collide with a 

SUV/minivan have a higher risk of possible injury when avoidance maneuvers are 

exhibited; though, the same avoidance maneuvers increase the risk of evident injury for 

male drivers of passenger cars.  Additionally, findings suggested that when sudden 

slowing occurs, a male driver of a passenger car has an increased risk of evident injury 

and a female driver of a passenger car has an increased risk of fatal/disabling injury.  

When striking a barrier, male drivers have a decreased risk of greater severity, while 

female drivers have an increased risk of greater severity.  The authors claimed that the 

observed differences suggest that behavioral and physiological factors impact injury 

severity, and reported that lack of seat-belt restraint and alcohol use lead to an increased 

probability of higher injury-severity for both genders.  Lastly, findings did not suggest 

driver age as statistically significant in each model; however, in the models where driver 

age was significant, the risk of injury severity increased for drivers who were at most 25-

years-old and for drivers at least 65-years-old. 

Khorashadi et al. (2005) 

Khorashadi et al. (2005) developed a multinomial model to explore factors that 

significantly impact crash injury severity for passenger-vehicle and large-truck drivers.  

The authors combined records from the California Department of Transportation and the 

California Highway Patrol to obtain weather conditions, geometric data, road conditions, 

roadway terrain, pavement surface data, driver-related data, and speed limit data in order 
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to estimate the severity of injury (categorized as no injury, complaint of pain, visible 

injury, and severe/fatal injury).  Variables reported to have a significant increase on 

injury severity for urban but not rural crashes were driver age between 15 and 22, beyond 

left shoulder collision, broadside collision, and a vehicle model year older than 1981.  

The authors concluded that these differences suggest interactions between driver behavior 

and environmental conditions play an integral role in injury severity. 

Islam and Mannering (2006) 

 Islam and Mannering (2006) explored the effect of driver aging on male and 

female single-vehicle crash injury severity to evaluate the effectiveness of safety 

countermeasures using 1999 data from Indiana’s Accident Information System.  The 

authors developed six models: young female drivers (aged 16 to 24), young male drivers 

(aged 16 to 24), middle-aged female drivers (aged 25 to 64), middle-aged male drivers 

(aged 25 to 64), older female drivers (aged 65 and older), and older male drivers (aged 65 

and older).  Likelihood ratio tests indicated that the hypothesis that the female and male 

injury severity models would produce equal coefficient estimates could be rejected, and 

significant statistical evidence suggested differences of injury severity by age for both 

genders.  Notable results signified that rollovers increased the probability of fatality by 

220% for older males, but only 116% for middle-aged males.  When at least one 

passenger was present, probability of fatality was 114% and 70% for young males and 

middle-aged males respectively, but no significant effect for older males.   When no seat 

belt was used, the risk of injury for young females increased by 119%, for middle-aged 

females increased by 164%, and for older females increased by 187%.  Crashes in rural 

areas increased risk of fatality by 208% for young females, but had no significant impact 
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on older female age categories.  For middle-aged men, falling asleep at the wheel and 

speeding increased the risk of fatality (not found significant in female middle-aged 

drivers).  Finally, for middle-aged females, illness and alcohol increased the likelihood of 

fatality; yet, neither was identified as a statistically significant factor for middle-aged 

men.    

Kim et al. (2007) 

 Kim et al. (2007) developed a multinomial model to examine bicyclist injury 

severity resulting from a motor vehicle crash.  Model results indicated that bicyclists who 

were at least 55 years old have a higher probability of a fatality than younger age groups, 

and helmet use decreases the risk of fatality and possible injury.  Additionally, findings 

indicated bicyclist intoxication increases the risk of a fatal injury resulting from a crash 

with a vehicle; and, when the vehicle driver is intoxicated, the risk of fatality and 

incapacitating injury increase by a large margin.  Results also suggested that as vehicle 

speed increases, the likelihood of a fatal and incapacitating injury for the bicyclist 

increase.  Additional findings suggested collisions involving pickup trucks involve higher 

risk of all injury types, and head-on collisions, curved roads, and collisions in inclement 

weather increase the likelihood of a bicyclist fatality.  The authors concluded that that 

behavior modification (such as helmet use), engineering, and policy can aid in the 

reduction of bicyclist injury severity resulting from a collision with a motor vehicle.   

Malyshkina and Mannering (2008) 

 In response to the increased interstate speed limit in Indiana, Malyshkina and 

Mannering (2008) assessed the relationship between speed limit and observed crash 

injury severity.  The authors conducted a cross-sectional data comparison of the different 
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speed limits for specific roadways for a single year (2004 or 2006).  This approach 

indicated that the estimates for injury severity on interstates with a 65 mph speed limit in 

2004 that increased to 70 mph in 2006 did not significantly change.  The authors 

concluded that the higher speed limits on Indiana Interstates did not significantly affect 

crash injury severity.   

Savolainen and Ghosh (2008) 

 Savolainen and Ghosh (2008) examined the risk of vehicle, environmental and 

driver characteristics on driver injury severity resulting from deer-vehicle crashes 

(DVCs).  The authors estimated the underreporting rate for DVC at approximately 50%, 

and therefore chose a multinomial logit since this methodology does not create the same 

biased and inconsistent model coefficient estimates that an ordered probability model 

could create.  Results suggested that, given a deer-related crash occurs, younger drivers 

and female drivers have a higher risk of injury compared to older drivers and male 

drivers respectively.  The use of a safety belt decreased the risk of moderate or severe 

injury, and air bag usage decreased the risk of property damage only and 

incapacitating/fatal injury.  Additionally, findings suggested passenger presence, crashes 

during day light hours, run-off-the-road crashes, spring and summer season, and high 

speed to increase the likelihood of injury occurring.     

Schneider et al. (2009) 

 Schneider et al. (2009) assessed driver injury severity to improve safety on rural 

Texas highways.  The authors reported that driver injury had a higher likelihood of 

occurring in the medium curve radius group, and injuries were most severe when the 

crash vehicle ran off the road.  Horizontal and vertical curvature in combination increased 
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the risk of fatal crashes when the curvature was of medium radius by 560%.  Findings 

suggested that as driver age increase, so does the risk of incapacitating or fatal injury; 

and, female drivers have a 23 to 31% higher probability of being injured than male 

drivers.  Additionally, results indicated that driver fatigue, speeding, drug or alcohol use, 

and passenger presence increase the likelihood of a crash resulting in an injury.  Finally, 

model outcomes indicated that motorcyclists have a higher risk of being seriously injury 

or killed, and belt use increases the probability that no injury will occur. 

Malyshkina and Mannering (2010) 

 Malyshkina and Mannering (2010) compared thirteen design exceptions on 

roadway segments and 35 design exceptions at bridges with 26 roadways and 69 bridges 

without design exceptions in order to assess the impact of design exceptions on crash 

frequency and injury severity.  The authors developed multinomial logit models and 

mixed multinomial logit models to assess the likelihood of severity, and multinomial 

negative binomial models to assess the likelihood of crash frequency.  Estimation results 

indicated that vehicle age increases the risk of fatality, and snow and slush reduces the 

risk of fatality and injury.  Findings suggested that crashes that did not occur at an 

intersection and those that did occur in an urban area have a lower risk of injury.  Results 

also suggested that female drivers, higher posted speed limits, and driver-related causes 

increase the likelihood injury.  Additionally, when assessing crash frequency, findings 

indicated that asphalt surface, the presence of interior shoulders, and a higher degree of 

curvature have a lower crash risk; and, urban roads, longer road-segments, and an 

increased number of ramps have an increased crash risk.  The authors concluded that the 
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current process of design expectations has sufficiently avoided adverse safety 

implications.  

Rifaatt and Tay (2011) 

 Rifaatt and Tay (2011) developed a multinomial logit model to identify the effect 

of various street patterns - grid-iron, warped parallel, mixed and loops and lollipops - on 

the risk of injury severity for pedestrians and bicyclist involved in a crash.  Findings 

implied that, when compared to other designs, the loops and lollipops pattern have a 

higher probability that an injury will be no-fatal, and older drivers and drivers under the 

influence have a higher risk fatality, given a crash occurs.  Additional findings indicated 

that the risk of a fatality increases when the pedestrian or bicyclist is involved in a crash 

on a divided road with a barrier, and the risk of injury increases during the winter season 

and darkness hours.   

Ye and Lord (2011) 

 Ye and Lord (2011) investigated the effect of underreporting of crash data when 

assessing crash severity on multinomial logit, ordered probit and mixed logit models by 

evaluating how each model performed for different unreported rates.  The authors used a 

Monte-Carlo approach to verify the underreporting effects on the models, and evaluated 

the bias through comparison of estimation results to observed crash data from the Texas 

Department of Public Safety and the Texas Department of Transportation.  The authors 

proposed using the Weighted Exogenous Sample Maximum Likelihood Estimator 

(WESMLE) to account for underreporting conditions.  Findings suggested that the root-

mean-square-error (RMSE) increased when using the maximum likelihood estimator for 

all three models.  When ordering outcomes, the lowest severity has the largest 
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underreported rate; and, the WESMLE performed well regardless of the size of the 

unreported rate for each model.  The authors concluded that to minimize bias, fatal 

crashes should be set as the baseline severity for the mixed logit and multinomial logit 

models, while the ordered probit model should rank crash severity in descending order.   

Schneider and Salovainen (2011) 

 Schneider and Salovainen (2011) developed multinomial logit models to examine 

motorcycle crash data to assess the effects of rider characteristics, crash characteristics, 

roadway geometry and environmental factors on crash injury severity.  The estimation 

results indicated that helmet use is the most effective means of risk reduction for a fatal 

or severe injury, which reinforces previous findings.  Additionally, the authors concluded 

that alcohol, female gender, motorcycle speed and age increase the risk of incapacitating 

or fatal injuries.   

Eluru (2013) 

 Eluru (2013) explored the appropriate model choice for injury severity analysis 

through the comparison of ordered response methodologies (ordered logit model and 

generalized ordered logit model) with unordered response methodologies (multinomial 

logit models).  The author developed simulation models with three independent variables 

and four alternate ordered dependent variables to compare the performance of the 

frameworks.  Parameters were selected so that the models would generate consistent 

shares for the parameter set.  To assess the model fit, the author compared the generalized 

ordered logit and the ordered logit models to the unordered models using the likelihood 

ratio test.  The Bayesian Information Criterion was employed to measure the comparison 

for the generalized ordered logit and the multinomial logit models.  Model estimation 
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comparison results indicated that, when compared to the multinomial model, the 

generalized ordered logit model performed satisfactorily.  The authors concluded that the 

results provide credibility to the generalized ordered logit model. 

Yasmin and Eluru (2013) 

 Expanding upon Eluru (2013), Yasmin and Eluru (2013) explored methodological 

approaches used to assess driver injury severity in traffic crashes by comparing ordered 

response methodologies (order logit, generalized ordered logit, mixed generalized order 

logit) with unordered response methodologies (multinomial logit, nested logit, ordered 

generalized extreme value logit, and mixed multinomial logit).  The authors selected data 

in which a private passenger vehicle collided with either another passenger vehicle or 

fixed object, and used a final dataset of approximately 30,371 records (12,170 records for 

estimation and 18,201 records for validation).  They categorized injury outcomes as no 

injury (65.9%), possible injury (15.1%), non-incapacitating injury (12.1%), and 

incapacitating/fatal injury (6.96%).  (Due to the small sample of fatal occurrences, 0.7%, 

fatalities were combined with incapacitating injuries.)  The authors categorized 

explanatory variables as driver characteristics (gender, age, restraint use, alcohol and 

drug use); vehicle characteristics (type and age); roadway design and operational 

attributes (class, seed limit, interaction type and traffic control device); crash 

characteristics (driver ejection, roll over, air bag deployment, collision location, manner 

of collision); and, environmental factors (time and road surface condition).   Estimation 

results suggested that drivers under the age of 25 have a lower risk that an injury will be 

severe.  Model results found that the effect of driver age of at least 65 was only 

significant in the mixed multinomial logit model, and this population has a greater risk of 
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incapacitating/fatal injury.  Mixed generalized order logit results suggested a higher risk 

for injury during the morning peak and off-peak periods; yet, the mixed multinomial logit 

model results indicated that night-time has a higher likelihood of non-incapacitating and 

incapacitating/fatal injuries.  Findings suggested that seatbelt use significantly decreases 

the risk of injury, and alcohol impairment increases the risk of injury.  Additionally, 

findings indicated that passenger car type and older vehicles have a higher risk of injury, 

and as speed limits increase the risk for injury increases.  The authors used a two-step 

approach to compare the unordered to the ordered models: step 1) the likelihood ratio 

established the superior model within each framework; step 2) the non-nested measure 

application compared the superior model from each framework.  The authors concluded 

that the variable effect across the mixed generalized ordered logit and mixed multinomial 

logit were similar.  When comparing the two models for underreporting and validation, 

results suggested that the frameworks performed extremely similarly.  Results did not 

suggest either the unordered or ordered frameworks to outperform the other at either the 

aggregate or disaggregate levels.  The authors concluded that the approaches offer 

comparable prediction for the risk of crash injury severity.   

Amarasingha and Dissanayake (2013)  

Amarasingha and Dissanayake (2013) developed a multinomial model to examine 

the impact of contributory factors on crash severity for young drivers involved in crashes 

in Kansas to improve safety. The authors categorized driver ages as teen (15 to 19 years 

old), young adult (20 to 24 years old) and experienced (25 to 64 years old) and sub-

partitioned based on gender to examine fatal and severe injury, injury, possible injury and 

not injured.  Findings suggested that teen drivers have a higher risk of injury severity 
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when involved in crashes over other age categories, yet young males decrease the 

likelihood of a more severe injury.  Additionally, seatbelts reduce the probability of 

severe injuries for young drivers, while air bags increase the risk for greater severity for 

young drivers.   

Ye and Lord (2014) 

 Ye and Lord (2014) built upon Ye and Lord (2011) by comparing the sample size 

requirements for multinomial logit, ordered probit and mixed logit models.  The research 

investigated the probability of crash injury severity given a single-vehicle collision 

occurred with a fixed object on a rural two-way highway.  Using crash injury severity 

data from 1998 to 2001 provided by the Texas Department of Transportation and the 

Texas Department of Public Safety, the authors explored 25,175 outcomes with 27 

explanatory variables categorized as geometric variables, driver characteristics, 

environmental conditions, etc.  The authors reported the mixed logit model to be more 

“interpretive” than the multinomial logit model, since the parameter effects can vary 

across crashes in the mixed logit model.    Additionally, they reported that the ordered 

probit model did not have the same interpretive power as the other methodologies, since 

the effects of the explanatory variables are restricted to ordered probabilities using 

identical coefficients.  The authors combined simulation data with the four-year crash 

records to compare sample size effects on the three models.  Findings included that the 

ordered probit model required the smallest samples and the mixed logit model required 

the largest samples as explained by the number of parameters being estimated.  Overall 

results indicated that all three models improved in accuracy when sample size increase, 

the mixed logit and multinomial logit are more sensitive to smaller sample sizes, and the 
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minimum sample size for the ordered probit, multinomial logit and mixed logit are 2,000 

5,000, and 10,000 observations respectively.     

2.2.3 Ordered Probit and Ordered Logit  

Crash injury severity outcomes can be perceived as being inherently ordered, and 

as a result, ordered categorical models are very commonly used in injury severity 

research.  Savelonien et al. (2011) identified thirty-five studies and Mannering and Bhat 

(2014) reported eight studies (however seven studies were reclassified), and this review 

discovered one additional recent study in which ordered probit or ordered logit 

methodologies analyzed crash injury severity.  Apart from Donnell and Mason (2004), Lu 

et al. (2006), Jung et al. (2010), Quddus et al. (2010), Abay (2013) and Ariannezhad et al. 

(2014), all of the studies presented below applied the ordered probit technique.   

From a review of the relevant literature, studies presented the ordered discrete 

outcomes categorized on three, four, five, and seven levels: 

Three-levels: slight injury, serious injury, and fatal injury (Quddus et al., 2002; Pai and 

Saleh, 2007; Gray et al., 2008; Quddus et al., 2010); no injury, slight injury, 

killed/serious injury (Pai and Saleh, 2008); property damage only, injury, fatality  

(Donnell and Mason, 2004; Lu et al., 2006; Ariannezhad et al., 2014); and, property 

damage only, possible injury/non-incapacitating injury, incapacitating/fatal injury (Jung 

et al., 2010). 

Four-levels: no injury, possible injury, non-incapacitating injury, and incapacitating/fatal 

injury (Yasmin and Eluru, 2013; Abdel-Aty, 2003; Wang et al., 2009); no injury/possible, 

evident/minor injury, incapacitating injury, fatal injury (Kockelman and Kweon, 2002; 
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Shimamura et al., 2005; Gårder, 2006; Oh, 2006; Zhu and Srinivasan, 2011; Jiang et al., 

2013a); and, no damage, slight damage, extensive, total wreck (Quddus et al., 2002). 

Five-levels: no injury/property damage only, minor/possible injury, moderate/non-

incapacitating injury, severe/incapacitating injury, killed (Khattak et al., 1998; Klop and 

Khattak, 1999; Renski et al., 1999; Khattak, 2001; Khattak et al., 2002; Austin and 

Faigin, 2003; Zajac and Ivan, 2003; Khattak and Targa, 2004; Abdel-Aty and Keller, 

2005; Lee and Abdel-Aty, 2005; Siddiqui et al., 2006; Xie et al., 2009; Amarasingha and 

Dissanayake, 2010; Ye and Lord, 2011; Ye and Lord, 2014). 

Seven-levels:  minor and no injury, moderate, serious, severe, critical, maximum injury 

(Khattak and Rocha, 2003). 

The literature review uncovered significant findings related to driver 

characteristics, contributing circumstances, temporal factors, weather characteristics, and 

road characteristics.  Excerpts from these findings are presented below, followed by a 

more detailed summary of each piece of research.    

Age 

 Khattak and Rocha (2003) found that young drivers have greater risk of higher injury 

severity in single-vehicle crashes, and Lu et al. (2006) indicated that young drivers 

have a greater risk of injury severity when traffic volume on roadways is moderately 

high.  Yet, Haleem and Abdel-Aty (2010) found that young drivers have lesser risk of 

severe injury at unsignalized intersections.   

 Khattak et al. (2002) reported that advancing age increases the likelihood of more 

severe injuries, and a one year increase in drivers’ age beyond 74 years-old decreases 

the risk for minor injury and increases the risk of a moderate, severe, or fatal injury.   
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 For crashes occurring on roadway sections, Abdel-Aty (2003) found that drivers over 

the age of 68 have a higher risk for greater injury severity; and, Zhu and Srinivasan 

(2011) reported that truck drivers over the age of 45 have a higher likelihood that the 

impact of the crash will be more severe.   

 Conversely, Khattak et al. (1998) found that the impact of the adult driver category on 

crash injury severity was not different than that of the young driver category.  

Inattention 

 Zhu and Srinivasan (2011) found that distracted drivers have a higher risk of greater 

injury severity given a truck-only crash occurs.  

Passenger presence 

 Renski et al. (1999) and Oh (2006) found that crash injury severity increases as the 

number of vehicle passengers’ increase.  

Speeding 

 Findings suggested speeding (Khattak et al., 1998; Khattak and Rocha, 2003) and 

higher speed limits (Renski et al., 1999; Khattak et al., 2002; Oh, 2006; Gårder, 2006; 

Haleem and Abdel-Aty, 2010; Zhu and Srinivasan, 2011) to significantly increase the 

risk of severe injury.  Khattak and Targa (2004) suggested that crashes occurring in 

work zones with higher posted speed limits incur greater harm and risk of injury.   

 Yet, Zajac and Ivan (2003) reported that, given a collision between a car and a 

pedestrian, speed limit does not significantly impact pedestrian injury severity as 

expected.  

 

 



 

41 

Copyright, Jill M. Bernard, 2015 

Alcohol 

 Studies reported alcohol intoxication to significantly increase the risk of severe injury 

(Khattak et al., 1998; Renski et al., 1999; Khattak et al., 2002; Kockelman and 

Kweon, 2002; Abdel-Aty, 2003; Zajac and Ivan, 2003; Donnell and Mason, 2004; 

Wang et al., 2009); and, Siddiqui et al. (2006) reported that one of the largest fatal 

injury risk factors for pedestrians is being struck by an intoxicated driver. 

Temporal 

 Research showed peak travel time (Khattak et al., 1998) and higher annual daily 

traffic (Klop and Khattak, 1999) to decrease the risk of injury severity.   

 Findings suggested that more severe injuries occur from midnight to 3:59am (Quddus 

et al., 2002), and nighttime increases the risk for greater injury severity (Khattak, 

2001; Abdel-Aty, 2003).  

 Studies also reported that dark, unlit conditions increase injury severity (Klop and 

Khattak, 1999), favorable lighting conditions decrease injury severity at freeway 

diverge areas (Wang et al., 2009), crashes occurring at dusk (relative to dark) reduces 

the risk of severe injury at unsignalized intersections (Haleem and Abdel-Aty, 2010), 

and darkness increases the risk of greater injury severity for older drivers (Khattak et 

al., 2002).   

Weather 

 Studies suggested that favorable weather decreases injury severity at freeway diverge 

areas (Wang et al., 2009), and adverse weather increases injury severity at signalized 

intersections (Abdel-Aty, 2003).   
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 Yet, studies also reported that adverse weather significantly decreases the risk of 

severe injury for crashes that occur on limited-access roadways (Khattak et al., 1998). 

Road 

 Abdel-Aty (2003) found that horizontal curves increase the risk of higher severity for 

crashes occurring on roadway sections; and, Oh (2006) reported that sharper 

horizontal curves and higher crest vertical curves increase injury severity.   

 Khattak et al. (1998) and Quddus et al. (2010) reported that wet/slippery road surface 

decreases the risk of severe injury; yet, Zhu and Srinivasan (2011) found that dry 

surfaces increase the risk of severity for truck-only crashes.   

 Lu et al. (2006) claimed that road conditions have the greatest influence on crash 

severity; however, Jiang et al. (2013b) concluded that improved road quality does not 

essentially reduce injury severity. 

Khattak et al. (1998) 

 Khattak et al. (1998) explored the impact of adverse weather on crash type and 

injury severity by examining limited-access roadways in North Carolina.  Data from 1990 

to 1995 from the Highway Safety Information System database was accessed, and results 

of an ordered probit model indicated that adverse weather, slippery road surfaces, and 

peak travel time significantly decrease the risk of severe injury; single-vehicle 

involvement, speeding, and alcohol/drug intoxication significantly increase the risk of 

severe injury; and curves and grade did not significantly impact injury.  Model results 

revealed that the adult driver category is not different from the young driver category, 

and male drivers have a higher risk of being severely injured than females.  The study 

recognized underreporting as a limitation of the study, especially relevant since crashes 
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occurring during adverse weather are often unreported.  However, the authors claimed 

that the driver non-reporting bias was likely to be small, since the severity considered 

was based on injuries only.   

Klop and Khattak (1999) 

 Klop and Khattak (1999) explored the impact of roadway and crash variables on 

motor vehicle and bicycle crash injury severity on two-lane roads in North Carolina.  The 

authors developed two ordered probit models to assess if differences in injury severity 

existed between rural cases and all cases, as explained by roadway and environmental 

variables; however, comparison between models did not reveal a significant difference.  

Results did signify that higher annual daily traffic decrease injury severity; and, foggy 

conditions, straight-grades, curved grades, and dark, unlit conditions increase injury 

severity.  The authors recommended that additional research should examine the effects 

of personal characteristics and behaviors on injury severity.       

Renski et al. (1999) 

 Renski et al. (1999) hypothesized that speed limit increases would increase 

driving speeds, and therefore increase the risk of crash injury severity.  Using 1995 to 

1997 interstate roadway data from the Highway Safety Research Center of North 

Carolina, the authors developed ordered probit models to estimate the risk of injury 

severity.  Models used three study segments (speed limits increased from 55 to 60 mph, 

55 to 65 mph, or 65 to 70 mph) and two control segments (unchanging speed limits at 55 

or 65 mph) to compare road segments before and after the date of the speed limit change.  

Results revealed that segments in which speed limits were increased by 10 mph had a 

greater impact on crash severity than segments where speeds were increased by 5 mph.  
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Findings also suggested that overturned vehicle, alcohol use, trees and poles increase the 

level of the most severely injured, and crash severity increases as the number of vehicle 

passengers’ increases, with a greater increase from two to three occupants.   

Khattak (2001) 

 Khattak (2001) investigated crash injury severity of lead and following drivers, 

where a lead driver (Driver 1) was struck by a following driver (Driver 2) that may be 

struck by a third following driver (Driver 3).  The authors estimated three ordered probit 

models to analyze crash injury severity for the lead and following drivers using a total of 

487 three-vehicle crashes and 3,425 two-vehicle crashes.  Findings indicated that, given a 

three-vehicle crash, Driver 1 and Driver 3 are less likely to be injured, and Driver 2 is 

more likely to be injured.  Model results ascertained that nighttime increases the risk of 

injury severity, snow/ice increases the risk of injury severity for Driver 2, and drivers of 

larger vehicle types are less likely to sustain an injury than are drivers of passenger cars.   

Khattak et al. (2002) 

 Khattak et al. (2002) investigated whether driver, environment, vehicle, roadway 

and crash factors increase the risk of crash injuries of older drivers, and quantified the 

significant factors on varying severity levels for older driver injuries.  The model results 

signified that advancing age increases the likelihood of more severe injuries, and older 

male drivers incur more severe injuries than older female drivers.  Results suggested 

alcohol intoxication, higher speed limits, farm vehicles, crashes in rural areas, darkness, 

overturned vehicles, vehicles colliding with parked vehicles, vehicles striking fixed 

objects, and vehicles hitting trains increase injury severity for older drivers, and that for a 

one year increase in driver’s age beyond 74 years old, the likelihood of a minor injury 
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decreases and the risk of a moderate, severe, and fatal injury increases.  The authors 

concluded that additional studies should focus on crash causation and injury severity for 

older drivers.   

Kockelman and Kweon (2002) 

 Kockelman and Kweon (2002) developed an ordered probit methodology to 

examine injury severity, given a two-vehicle or single-vehicle crash occurred.  Model 

estimations suggested that gender, vehicle type, alcohol use, number of vehicles 

involved, and the manner of the collision effect injury severity.  Model results revealed 

that head-on and rollover collision result in more serious injury levels, light-duty trucks 

have a lesser effect on injury severity, pick-ups and SUVs have a greater likelihood to 

rollover, and males and younger drivers in newer cars at slower speeds have a risk of 

lower injury severity.   

Quddus et al. (2002) 

 Quddus et al. (2002) compared the effect of roadway, rider, and environmental 

factors on motorcycle injury severity to vehicle damage severity for motorcycle crashes 

occurring in Singapore.  The authors developed an ordered probit model to explore the 

hypotheses that (1) roads with a higher degree of engineering standards have lower 

severity levels and (2) younger drivers have more severe crashes that diminish over time.  

A time trend variable for the month in which the crash occurred had a negative effect for 

both injury and damage severity, which suggested that an unobserved factor influenced 

crash severity.  Additional findings suggested that more severe injuries occur from 

midnight to 3:59am, and the risk of fatality increases for crashes that result in the 

motorcyclists overturning or striking an off-road object.  Additionally, results indicated 
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that two way streets, crashes occurring on the outermost lane, and wet road surface 

increase the likelihood of severe injuries and severe damage to the motorcycle.  Finally, 

findings inferred that non-Singaporeans have more severe injuries, drivers younger than 

30 have more severe motorcycle damage, men have a 100% greater likelihood of a total 

wreck, and passenger presence increases the risk of injury, but decreases the risk of 

damage.   

Abdel-Aty (2003) 

 Abdel-Aty (2003) developed an ordered probit model to assess driver injury 

severity, given a crash in a toll plaza, roadway section, or at a signalized intersection 

occurs.  The authors obtained crash data from 1996 to 1997 from the Florida traffic crash 

database, and 17,647 drivers involved in 7,894 crashes were extracted.  Results suggested 

that for crashes occurring on roadway sections, female drivers, older drivers (over 68 

years-old), alcohol, nighttime, and horizontal curves increase the risk for higher injury 

severity, for crashes occurring at signalized intersections, inclement weather and dark-

street lighting increase the risk of higher injury severity and at-fault drivers experience 

less severe injuries, and for crashes occurring at toll plazas, electronic toll collection 

system equipped vehicles and drivers who stopped in the electronic toll collection lane 

increase the risk of higher injury severity.   

Austin and Faigin (2003) 

 Austin and Faigin (2003) explored the vehicle types and crash circumstances that 

increase the risk of injury severity for older drives.  The authors gathered information 

from the 2001 National Household Travel Survey and the 1995 Nationwide Personal 

Transportation survey for traffic exposure, from the National Automotive Sampling 
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System-General Estimates System to capture crash involvement data, and from the 

Fatality Analysis Reporting System to derive fatality and incapacitating injury 

information.  The study presented an ordered probit model to analyze the effect of age 

(grouped as 25-44, 45-64, 65-74, and 75+) on injury severity levels (categorized as fatal, 

incapacitating, moderate, minor and property damage only).  Results suggested that the 

fatality rate for 25-44 year-olds, 65-74 year-olds, and 75+ fell from 1997 to 2001, which 

suggested that improvements in safety had a greater impact on older drivers than younger 

drivers.  However, older driver involvement in fatal crashes was still 30% greater than the 

next oldest group.  Results also indicated that crash involvement for older drivers is 

greater in passenger cars, relative to light truck and utility vehicles; and, for drivers 75+, 

side-impact crashes have a higher likelihood of fatality and seriously injured outcomes.   

Kweon and Kockelman (2003) 

 Kweon and Kockelman (2003) investigated the effect passenger vehicle type 

(cars, minivans, pickups, motorcycles and SUVs) on the probability of motor vehicle 

crash injury severity for rollover and non-rollover cases.  Model results indicated that 

SUV rollovers are more prevalent, and male drivers are more likely to sustain injury in a 

pickup or minivan.  Middle-age and older females are more likely than males to rollover 

when driving a passenger car, and female drivers of all ages are more apt to rollover 

when driving an SUV.  Results suggested that car drivers experience non-rollover crashes 

and non-severe injury more than other vehicle type drivers, with the exception of young 

females where pickups are the highest.   All female drivers, young males, and older male 

drivers have a higher risk of fatality from a SUV rollover than a passenger car.  Findings 

also suggested that female drivers of SUVs, pickups and minivans have a higher risk of a 
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fatality given a crash (which could be attributed to the increased possibility of SUVs and 

pickups rollover), and young and middle aged male drivers of cars have a greater risk of a 

fatality given a crash.  The authors concluded that the differences between genders are 

small; however, the difference across age groups is severe and additional research in this 

area is necessary.     

Zajac and Ivan (2003) 

 Zajac and Ivan (2003) explored the roadway and area features that may impact 

driving speeds, which in turn may influence pedestrian injury severity.  The authors 

examined crashes in which pedestrians were struck while crossing the road at locations 

where mainline traffic was not controlled by signals or stop signs using data from the 

Connecticut Department of Transportation.  The study presented ordered probit models to 

explore the impact of area type (downtown, compact residential, village, downtown 

fringe, medium-density commercial, low-density commercial, and low-density 

residential), pedestrian age, vehicle type, alcohol involvement, light condition, road 

surface condition, and weather conditions on injury severity (fatal; disabling injury; not 

disabling injury, but visible; probability injury, but not visible; no injury).  Results 

indicated that speed limit, on-street parking, and roadway width does not significantly 

impact pedestrian injury severity as expected.  Additionally, findings inferred that 

downtown and compact residential areas have a lower risk of severe injury than low-

density residential areas, and low-density and medium-density commercial areas have a 

lower risk of severe injury than village and downtown fringe. Finally, model results 

suggested that pedestrians who are at least 65-years-old, vehicle type, and driver and 

pedestrian alcohol involvement increase the risk of pedestrian injury severity. 
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Khattak and Rocha (2003) 

 Khattak and Rocha (2003) explored the impact of SUV rollovers on crash injury 

severity, and found that, when a rollover was the single indicator variable, rollovers 

increase injury severity.  Findings indicated that SUV drivers have a lower risk of severe 

injury by nearly 24%, and that wearing seatbelts and the presence of airbags decrease 

severe injury.  Additionally, results reveled that driving off the road, losing control, 

speeding, female drivers, young drivers, and vehicle ejection significantly increase injury 

severity for single-vehicle crashes.  

Donnell and Mason (2004) 

 Donnell and Mason (2004) developed regression models to predict injury severity 

of median-related crashes in Pennsylvania.  The authors obtained cross-median collisions 

(CMC) and 4,416 median barrier crash observations from the Pennsylvania Department 

of Transportation.  The study presented an ordinal logistic regression model from a 

measurement model in which the latent variable was linked to an observed variable, and 

Fisher scoring algorithms were used to fit the model.  Model results suggested that an 

ordinal regression model adequately fit the CMC data, and results from the CMC model 

suggested that drug use and a curvilinear alignment increase the probability that, given a 

crash occurred, the outcome would be fatal.   The interstate median barrier crash model 

violated the proportional odds assumption (which could be a result of the small number 

of fatal crashes in this category); and therefore, was re-estimated using a nominal logistic 

regression.  The model results indicated that wet surface, traffic volumes, drug or alcohol 

use, the presence of an interchange entrance ramp, and the interaction between the 
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presences of an interchange entrance ramp and drug or alcohol use impact crash injury 

severity.   

Khattak and Targa (2004) 

Khattak and Targa (2004) explored the impact of work zone characteristics on 

injury severity and total harm for truck-involved collisions.  The authors explored the 

total harm of the crash by assigning an economic value to each injury level and summing 

the costs for each injury (i.e. the total harm variable included medical emergency service 

costs, employer costs, traffic delay costs, victim work loss costs and property damage 

costs).  The study presented cost estimations for crashes in North Carolina, including 

quality of life, as $2,925,100 for fatal injury, $144,796 for severe/incapacitating injury, 

$37,486 for moderate/non-incapacitating injury, $17,916 for minor/possible injury, and 

$3,904 for property damage only.  Ordered probit and ordinary least squares (OLS) 

regression (three ordered probit and three OLS log-transformed models) respectively 

using 572 multi-vehicle truck-involved crash records estimated injury severity and total 

harm.  Model results indicated that when a crash occurs in a work zone located on two-

way undivided roadways the risk of harm and injury increases.  Additionally, findings 

suggested that closing the roadway and detouring traffic to the opposite side of the road 

has a significantly higher risk of injury and total harm, and a crash occurring in this 

manner was suggested to have a 38.5% increased chance of injury and cost of $43,584.  

Finally, results indicated that crashes occurring adjacent to the work area, in work zones 

with higher posted speed limits, and when stop/yield/warning flashing signs are present 

incur greater harm and risk of injury.   
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Abdel-Aty and Keller (2005) 

Abdel-Aty and Keller (2005) hypothesized that crash injury levels were affected 

by crash- and intersection-specific characteristics.  Expanding upon Abel-Aty (2003), the 

authors developed ordered probit models to assess 33,592 crashes that occurred in 832 

intersections from 2000 and 2001.  Findings for the severity models for intersection 

characteristics suggested that division on the minor road, right turn channelization on the 

major road, and an increase in the number of lanes and speed limit on the minor road 

decrease the expected level of injury.  Additionally, the authors estimated a hierarchical 

tree-based regression model to estimate the expected crash frequency for each crash 

injury severity level.  Results indicated that the most significant factors for no-injury 

crashes, possible injury, non-incapacitating injury and incapacitating injures are traffic 

volume of the major road, the number of lanes on the minor road, the number of 

exclusive right turn lanes, and the average daily traffic on the minor road, respectively.  

The authors concluded that models should be developed for each level of severity as 

opposed to a single model for predicting the overall severity level, and the tree-based 

regression improves the understanding of the importance of specific factors on individual 

levels of severity.   

Lee and Abdel-Aty (2005) 

 Expanding upon Abdel-Aty and Keller (2005), Lee and Abdel-Aty (2005) 

analyzed vehicle pedestrian crashes at intersections in Florida by examining the 

relationship between pedestrian, driver, traffic and environmental characteristics and 

frequency/injury severity of pedestrian crashes.  Using data from the Florida Traffic 

Crash Records from 1999 to 2002, the authors developed two log-linear models to 
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examine crashes resulting from driver fault and pedestrian fault.  Results suggested that 

pedestrian collisions occur less frequently at rural signalized intersections, and it was 

proposed that drivers are more careful when approaching traffic signals than stop/yield 

signs in rural areas.  Also, model results revealed that middle age men are more likely to 

be involved in a pedestrian collision as both pedestrians and as drivers, children younger 

than 14 have a high risk of being involved in a pedestrian-fault crash, and the risk of 

crash frequency at the fault of the pedestrian increases at signalized intersections.  

Findings also suggested that the interaction of nighttime and alcohol intoxication 

increases the risk of a pedestrian-caused crash more than crashes resulting from the fault 

of the driver.  The authors then estimated ordered probit models to examine injury 

severity.  Results suggested that older pedestrians (65+ years-old), female pedestrians, 

pedestrians under the influence of drugs/alcohol, higher vehicle speed, and rural areas 

increase the risk of sustaining higher injury levels.  Overall model results indicated that 

pedestrians’ age and alcohol/drug use, speed of the vehicle at time of crash, location of 

the crash, presence of traffic control, weather, lighting, and vehicle type are closely 

related to pedestrian injury severity.  To examine the underlying behavioral factors that 

lead to pedestrian crashes, the authors collected walking trip data from a household travel 

survey.  From this analysis, findings inferred that the relationship between the number of 

pedestrian crashes to the total duration of walking was underestimated for the older 

pedestrian population.  The authors recommended enhanced driver education and traffic 

regulation with these modifications targeted towards middle-aged male drivers, that the 

dangers of drinking and walking be made clearer to the public, and an increased number 

of traffic signals and street lights be installed in rural areas.  
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Shimamura et al. (2005) 

Shimamura et al. (2005) assessed the effect of rear-seat passengers’ use of 

seatbelts on the injury severity of front-seat occupants.  The authors examined five 

analyses: 1) the influence of belted and unbelted rear-seat passenger on driver injury 

severity, 2) the influence of belted and unbelted rear-seat passenger on front-seat 

passenger injury severity, 3) the effectiveness of seatbelt use by rear-seat passengers, 4) 

the effectiveness of seatbelt use by driver with no passengers, and 5) the effectiveness of 

seatbelt use by front-seat passengers with no rear-seat passengers.  Results indicated that 

the number of vehicles with seriously injured or killed drivers is expected to decrease by 

25% if unbelted rear-seat passengers initiate seatbelt use, and decrease by 28% if 

unbelted front-seat passengers initiate seatbelt use.   

Gårder (2006) 

Gårder (2006) analyzed data from the Maine Department of Transportation for 

head-on crashes that occurred between 2000 and 2002.  The authors developed ordered 

probit models to assess the influence of road surface conditions, light conditions, 

temporal conditions, heavy-vehicle involvement, shoulder width, and speed limit on 

crash injury severity (fatal, incapacitating, evident, and possible).  Findings indicated that 

head-on crashes were primarily caused by speeding or driving too fast for conditions and 

driver inattention/distraction.  Results also suggested that increased speed limits lead to 

an increase in crashes that result in a fatality or incapacitating injury, and wider shoulder 

width and higher-speed roads lead to a greater risk of injury severity.  Consequently, the 

authors recommended widening of two-lane roads, extra travel lanes, and speed reduction 

to reduce crash injury severity of head-on collisions. 
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Lu et al. (2006) 

 Lu et al. (2006) analyzed the magnitude and predictability of median crossover 

crashes on crash injury severity.  The models included 12 explanatory variables for 

estimation of crash severity: crash date, geometry, light condition, liquor involvement, 

weather condition, road cause, road condition, weekday, driver age, total average drive 

time, median width, and reaction time.  Model results found crash date, weather 

condition, road condition, road cause, and reaction time to have the greatest influence on 

crash severity.  Results also indicated that younger drivers have a greater risk of injury 

severity when traffic volume on roadways is moderately high; and, seasonal factors of ice 

and snow increase the risk of severity of a median crossover crash.         

Oh (2006) 

 Oh (2006) developed ordered probit regression models to assess the statistical 

relationship between crash injury severity and traffic maneuvers, roadway geometrics, 

and weather at urban four-legged signalized intersections.  Findings suggested that, for 

models for all crash records, sharper horizontal curves, more vehicle occupants, higher 

speed limits, and higher crest vertical curves increase injury severity.  While, wider 

medians, more driveways and higher annual average daily traffic on major roads, 

protected left turn lane, and lighted conditions decrease injury severity.  Findings for 

models where two-vehicle crashes occurred suggested sharper horizontal curves, more 

vehicle occupants, and higher speed limits increase injury severity; though, higher traffic 

flows on major roads, manner of collision, and less commercial driveways decrease 

injury severity levels.  When three or more-vehicle crashes occurred, model results 

suggested that longer sight distance, right turn lane presence, and higher annual average 
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drive time on the minor road decrease injury severity.  The authors concluded that while 

uncovering explanatory variables may describe some association with injury severity, it 

does not necessary imply the causation of injury severity; therefore, additional research in 

this area is necessary.    

Siddiqui et al. (2006) 

 Siddiqui et al. (2006) examined the impact of light conditions and crossing 

locations on pedestrian injury severity, given a collision with a motor vehicle.  Results 

indicated that the largest fatal injury risk factors for pedestrians are age of at least 65 

years old, struck by an intoxicated driver, involved in a crash on a US road, foggy 

conditions, pedestrian intoxication, struck by a driver with physical disability, and struck 

by a large vehicle.  Model results revealed that, when considering the effects of light 

condition and location, dark without lighting and midblock locations with any light 

condition has the greatest risk for pedestrian fatality.  

Pai and Saleh (2007) 

 Pai and Saleh (2007) hypothesized that motorcyclists are more susceptible to 

severe injuries in approach-turn collisions (when one vehicle approaching straight 

collides with an approaching vehicle turning right) at T-junctions.  The authors estimated 

three ordered probit models to examine injury severity: 1) injury severity occurring from 

a crash where stop or give-way signs controlled the junction; 2) injury severity occurring 

from a crash at an uncontrolled junction; and 3) injury severity occurring from a crash at 

a signalized junction.  Results from model 1 implied that male or elderly riders, riding in 

the early morning, riding in a spring or summer month, street lights unlit, riding on a non-

built-up road, riding under fine weather, greater engine size, collisions with bus or heavy 
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good vehicle, and a collision between a motorcycle and a vehicle traveling in the same 

direction have the greatest association with the risk of increased injury level.  Results 

from model 2 implied that greater engine size, elderly rider, riding in early morning, 

riding under fine weather, riding on the weekend, street lights unlit, collision with a bus 

or heavy good vehicle, riding on a non-built-up road, and a head-on collision or 

approach-turn collision between a motorcycle and vehicle have the greatest association 

with the risk of increased injury level.  Finally, model 3 suggested that male riders, 

heavier engine size, riding during fine weather, riding on a non-built-up road, collisions 

with bus or heavy good vehicle, collisions between a vehicle/motorcycle approaching 

straight and an oncoming motorcycle/vehicle that turns right into the path of the first 

vehicle/motorcycle, and head-on collisions between a motorcycle a vehicle have the 

greatest association with the risk of increased injury level.  The study concluded that the 

separate analysis enables insights to lessen motorcyclists’ injury severity levels for 

collisions at three-legged junctions in the UK. 

Gray et al. (2008) 

 Gray et al. (2008) examined characteristics that effect crash injury severity for 

young male drivers in order to enhance road safety measures.  The authors obtained 

National Road Accident data from 1991 to 2003 for Great Britain, and estimated ordered 

probit models to assess the risk that, given a crash involving a young male driver occurs, 

the outcome will be fatal, serious or slight injury.  Findings indicated that greater injury 

severity occurs early in the morning, on Thursdays, Fridays, Saturdays and Sundays, 

during darkness, on wet roads, if a volatile movement ensues, if an object is hit off the 

carriageway, and if a hazard is located in the carriageway.  The authors concluded by 
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calling for research with similar modeling for young female drivers with a comparison of 

results to young male drivers.   

Pai and Saleh (2008) 

 Expanding upon Pai and Saleh (2007), Pai and Saleh (2008) explored 

motorcyclist crash injury severity in approach-turn collisions at T-junctions in the UK by 

focusing on the impact of junction control measures and driver’s failure to yield.  The 

authors estimated two ordered models to assess 1) a motorcycle approaching straight 

collides with a vehicle traveling from the opposite direction and turning right, and 2) a 

vehicle approaching straight collides with a motorcycle traveling from the opposite 

direction and turning right.  Results indicated that junctions controlled by give-way, stop 

signs, or marking result in more severe injury for a motorcyclist.  Additionally, findings 

suggested motorcyclists to be 16 times more likely to be involved in an approach-turn 

head-on collision with a vehicle, and more likely to result in a higher risk of greater 

injury severity.   

Wang et al. (2009) 

 Wang et al. (2009) examined data from the Florida Department of Transportation 

to identify factors that impact crash injury severity at freeway diverge areas.  The authors 

developed and compared the results of an ordered probit model and a partial proportional 

odds (PPO) model, and examined data for four ramp types: Type I, parallel from a 

tangent single-lane exit ramp; Type II, single-lane exit ramp without a taper; Type III, 

two-lane exit ramp with an optional lane; and Type IV, two-lane exit ramp without an 

optional lane.  Results from the ordered probit model suggested that crashes occurring at 

a diverge area with downgrades or upgrades or curved alignment, alcohol or drug use, 
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off-peak hours, and collision with a barrier result in more severe injuries; while, 

favorable weather and lighting, longer deceleration lane on diverge area, and diverge 

areas in business zones decrease the risk of severe injuries.  The PPO model results 

implied that shorter ramp length, off-peak period, alcohol or drug-use increase the risk of 

injury severity; and, favorable weather conditions, crashes occurring in business zones, 

heavy-vehicle involvement, and sideswiping crashes decrease the level of injury severity.  

Additionally, findings inferred that the exit ramp type has no significant effect on crash 

injury severity when a crash occurs at a freeway diverge area.  The study concluded that 

when comparing the two models, the PPO model was better at fitting the observations 

than the ordered probit model (PPO pseudo-R
2
 = .0406; ordered probit pseudo-R

2
 = 

.0273).   

Xie et al. (2009) 

 Xie et al. (2009) estimated ordered probit models and Bayesian ordered probit 

(BOP) models to assess crash injury severity.  To compare the two models, the authors 

obtained data from the 2003 NASSGES, and extracted a total of 76,994 records.  Findings 

revealed that when the sample size was large, model fitting results for both models were 

closely related.  However, when the sample size was reduced to 100 records, results 

indicated that the BOP model produced better predictions.   

Amarasingha and Dissanayake (2010) 

Amarasingha and Dissanayake (2010) developed ordered probit models to 

examine the contributing factors for injury severity of older drivers for crashes occurring 

in rural and urban areas in Kansas.  Categories of injury severity were no injury, possible 

injury, non-incapacitating injury, incapacitating injury, and fatal outcome; categories of 

explanatory variables were driver related, crash related, environmental related, and 
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roadway related; and, the data was sub-partitioned based on age.  Findings suggested that 

most of the driver-related variables (i.e. age, gender, passengers, seat belt use, and 

alcohol) were significant in affecting injury severity for older drivers; only cars (as 

opposed to other vehicle types) have a significant effect on injury severity given an urban 

crash, speed increases injury severity, and head-on, rear-end and angle crashes increase 

the likelihood of more severe injuries in both rural and urban areas.    

Haleem and Abdel-Aty (2010) 

 Haleem and Abdel-Aty (2010) compared ordered probit, binary, and nested logit 

methodologies to aid in the selection of the best modeling technique for injury severity 

analysis for crashes occurring at unsignalized intersections.  The authors used geometric, 

traffic and driver-related data from six counties in Florida to explore the effect of traffic 

and roadway covariates on crash injury-severity.  The Florida Department of 

Transportation provided data for 10,722 crashes occurring over four years at unsignalized 

intersections.  The study used two separate models to analyze the relationship between 

severe injuries and non-severe injuries, and explanatory characteristics at three and four 

legged intersections.  Findings indicated that lack of stop lines, one left turn lane, larger 

right shoulder width, and smaller intersections increase the probability of severe injury; 

and, lower speed limits, young drivers, crashes occurring at dusk (relative to dark), and 

highly-urbanized areas reduce probability of severe injury.  When comparing the binary 

probit and the ordinal probit frameworks, results suggested that the aggregated binary 

probit model had a lower AIC and higher likelihood of convergence, indicating that the 

binary probit model better fit the data.  The authors claimed that this finding indicates 
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that the aggregate model performs better when analyzing injury severity, given a crash at 

an unsignalized intersection. 

Jung et al. (2010) 

 Jung et al. (2010) applied rain-related crash data and real-time information to 

assess weather conditions and aid in the prediction of crash severity outcomes.  The 

authors compiled four databases to obtain 33 explanatory variables categorized as driver 

demographics, roadway geometrics, collision types, pavement conditions, vehicle types, 

and temporal and weather conditions, and ordinal logistic and sequential logistic 

regression models were developed.  Results revealed that a backward implementation of 

the sequential logistic regression model outperformed others in the prediction of crash 

injury severity.  Statistically significant factors that affect crash injury severity in rainy 

weather were identified as rainfall intensity, roadway terrain, wind speed, drivers’ 

gender, and safety belt use.    

Quddus et al. (2010) 

 Quddus et al. (2010) investigated the relationship between the level of traffic 

congestion and individual crash injury severity by employing an ordered logit model, a 

heterogeneous choice model (HCM), and a partially constrained generalized ordered logit 

(PC-GOLOGIT) model.  Diagnostic tests suggested that the ordered logit model was not 

appropriate for the data, both the HCM and the PC-GOLOGIT model fit the data equally 

well, and the results between the HCM and the PC-GOLOGIT were consistent.  

Estimation results indicated that the level of traffic congestion did not affect crash injury 

severity; increases in traffic flow, darkness, wet road surface, and decreases in road 
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curvature resulted in decrease severity; and, three-lane stretches, weekdays, and single-

vehicle crashes increase severity.   

Ye and Lord (2011) 

 Ye and Lord (2011) investigated the effect of underreporting of crash data on 

injury severity estimations using multinomial logit, ordered probit and mixed logit 

models, and evaluated how each model performed for different unreported rates.  The 

authors proposed using the Weighted Exogenous Sample Maximum Likelihood 

Estimator (WESMLE) to account for underreporting conditions.  Results determined that 

the root-mean-square-error (RMSE) increased when using the maximum likelihood 

estimator for all three models; the lowest ordered severity level had the largest 

underreported rate; and, the WESMLE performed well regardless of the magnitude of the 

unreported rate for each model.  The authors concluded that to minimize bias, fatal 

crashes should be set as the baseline severity for the mixed logit and multinomial logit 

models, while the ordered probit model should rank crash severity in descending order 

(from fatal to property-damage-only).   

Zhu and Srinivasan (2011) 

Zhu and Srinivasan (2011) assessed injury severity for large-truck crashes using 

data from the 2001 to 2003 Large Truck Crash Causation Study, which contained 

approximately 1,000 crashes from 24 sites in 17 states.  The authors developed ordered 

probit models to assess injury severity as explained by crash type, fire, crash location 

roadway design characteristics, road-surface conditions, and temporal characteristics.  

Results suggested that for truck-only crashes, collisions with fixed objects, on non-

interstate highways, on multi-lane highways, at a higher speed, on the weekend, on dry 



 

62 

Copyright, Jill M. Bernard, 2015 

surface, with heavy cargo (>20,000kg) and during dark but lighted conditions had a 

greater risk of severe injury.  In addition, older truck drivers (>45 years old), African-

American drivers, taller drivers, drivers with less experience, and distracted drivers were 

involved in more severe crashes.  For collisions between trucks and cars, findings 

suggested emotional factors (such as depression) and fatigue to result in more severe 

crashes.  Interestingly, results indicated that seatbelt use was insignificant in both the 

truck-only crashes and truck-car crashes.     

Abay (2013) 

   Abay (2013) explored pedestrian injury severity relative to road user 

characteristics using alternative disaggregated models.  The study presented four models: 

standard fixed-parameter ordered logit (OL), random parameters ordered logit (RPOL), 

standard fixed-parameter multinomial logit (MNL), and mixed logit (MXL).  Findings 

suggested that substantial differences in the marginal effect of the variables in the OL 

with the RPOL and MXL exist, and the underestimation can lead to misinformed safety 

planners.  For example, the OL model underestimated the effect of an older-aged 

pedestrian and the effect of being struck by a driver proceeding straight-ahead, which 

could misguide guide policy intended to help vulnerable road users.  Consequently, the 

researchers called for more “encompassing, flexible and alternative model specification 

when analyzing injury severity data” (p. 132). 

Jiang et al. (2013a)  

Jiang et al. (2013a) examined the effect of curbs on single-vehicle crash injury 

severity by use of a zero inflated ordered probit (ZIOP) model to compensate for the 

potential bias imposed by the traditional ordered probit model in situations of highly 
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unbalanced occurrences of a specific category of the dependent variable.  The ZIOP 

model assumes that injury severity is the result of injury propensity and injury severity.  

Using 2003 to 2007 data from the Illinois Highway Safety Information Database, the 

authors discovered that single-vehicle crashes that occur on curbed roadways are more 

likely to be injury prone, and the existence of a curb decreases the risk of severe injury 

when the crash is in the injury prone category.   Moreover, findings suggested that the 

presence of curbs have a higher risk of non-injury and minor injury and a lower risk of 

incapacitating injury and fatality.   

Jiang et al. (2013b) 

 Jiang et al. (2013b) linked together data from the Tennessee Roadway 

Information Management System and the Tennessee Department of Transportation’s 

Pavement Management System to obtain crash information and pavement management 

status for the state route highways from 2004 to 2008.  The authors examined injury 

severity for three types of two-vehicle crashes: rear-end collisions, sideswipe collisions, 

and angle collisions.  The study presented and compared an ordered probit and a 

Bayesian ordered probit model based on the parameter estimates.  As expected due to the 

large sample size, results from both models for each type of crash were very close.  

Results from the Bayesian ordered probit model suggested that annual average daily 

traffic, speed limit, peaking hour, rural/urban location, and light condition were 

consistently significant across a crash types; and, pavement distress index, rut depth and 

rut depth difference were not statistically significant.  Results suggested that two-vehicle 

sideswipe, rear-end and angle crashes that occur on rougher roads are less likely to incur 
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a severe injury.  The authors concluded that improved road quality does not essentially 

reduce injury severity, given a two-vehicle crash occurs.  

Eluru (2013) 

 Eluru (2013) explored the appropriate model choice for injury severity analysis 

through the comparison of ordered response methodologies (an ordered logit model and a 

generalized ordered logit model) with unordered response methodologies (a multinomial 

logit model).  The authors created simulations with three independent variables and four 

alternatives ordered dependent variables to compare the performance of the frameworks.  

The authors selected parameters so that the models would generate consistent sample 

shares for the parameter set.  To assess model fit, the study compared generalized ordered 

logit and the ordered logit models using the likelihood ratio test, and used the Bayesian 

Information Criterion to compare the generalized ordered logit and the multinomial logit 

models.  Model estimation results indicated that, when compared to the multinomial 

model, the generalized ordered logit model performed satisfactory.  The authors 

concluded that the results provide credibility to the generalized ordered logit model. 

Yasmin and Eluru (2013) 

 Expanding upon Eluru (2013), Yasmin and Eluru (2013) explored methodological 

approaches used to assess driver injury severity in traffic crashes by comparing ordered 

response methodologies (order logit, generalized ordered logit, and mixed generalized 

order logit) with unordered response methodologies (multinomial logit, nested logit, 

ordered generalized extreme value logit, and mixed multinomial logit).  The authors 

selected data in which a private passenger vehicle collided with either another passenger 

vehicle or a fixed object from the 2010 General Estimates System, and a final dataset of 
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30,371 records were used.  To measure the comparison of the overall fit of the models, 

the study employed the likelihood ratio test to compare the ordered models to one 

another, and to compare the unordered models to one another.  The study presented a 

two-step approach to compare the unordered to the ordered models: 1) use the likelihood 

ratio test to establish the superior model within each framework and 2) compare the 

superior model from each framework using a non-nested measure application.  

Estimation results suggested that drivers under the age of 25 and occupants wearing 

seatbelts have a lower risk of severe injury.  Additionally, findings indicated that drivers 

who are under the influence of alcohol and those driving older vehicles have a higher risk 

of injury, and as speed limit increases the risk for injury increases. The authors 

determined that neither the unordered or ordered frameworks outperform the other at 

either the aggregate or disaggregate level, and concluded that the findings signify that the 

different approaches offer comparable prediction for the risk of crash injury severity.   

Ye and Lord (2014) 

 Ye and Lord (2014) built upon Ye and Lord (2011) by comparing the sample size 

requirements for estimating multinomial logit, ordered probit and mixed logit models.  

The research investigated the probability of crash injury severity given a single-vehicle 

collision occurred with a fixed object on a rural two-way highway.  Using crash injury 

severity data from 1998 to 2001 provided by the Texas Department of Transportation and 

the Texas Department of Public Safety, the authors explored 25,175 outcomes with 27 

explanatory variables categorized as geometric variables, driver characteristics, 

environmental conditions, etc.  The study reported that the ordered probit model does not 

have the same interpretive power as the other methodologies, since the effects of the 
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explanatory variables are restricted to ordered probabilities using identical coefficients.  

Additionally, the ordered probit model has threshold values that are fixed across 

observations, which can lead to inconsistent model estimation.  The authors combined 

simulation data with the four-year crash records to compare scale size effects on the three 

models.  Findings included that confidently estimating an ordered probit model required 

the smallest samples and fitting the mixed logit model required the largest sample.  

Overall results indicated that all three models improved in accuracy when sample size 

increased, the mixed logit and multinomial logit were more sensitive to smaller sample 

sizes, and an approximate reasonable minimum sample size for the ordered probit, 

multinomial logit and mixed logit models are 2,000 5,000, and 10,000 respectively.     

Ariannezhad et al. (2014) 

 Ariannezhad et al. (2014) examined the impact of conditional, environmental, 

rider, crash and roadway characteristics on motorcycle crash severity in the suburban 

areas of Iran.  The authors developed an ordered logit model to analyze crash injury 

severity, and results suggested that greater injury severity occurs on weekends, during the 

fall and winter months, during night hours, during foggy weather, when road 

imperfections are present, and on curved and level roads.  Additionally, findings 

suggested that drivers aged younger than 25 and older than 60, not having driving 

experience/permit, not wearing a helmet, speeding, losing control of the motorcycle, 

overtaking, colliding with large vehicles, disobeying driving rules, and who are 

inattentive, fatigued and hasty are associated with crashes with greater injury severity.   
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2.2.4 Decision Tree Models  

Savolainen et al. (2011) categorized one study as ‘classification and regression 

tree.’ This literature review discovered eight additional studies in which decision tree 

models were estimated to analyze crash injury severity.  Even though this review found 

that relatively little research has employed such an approach, Savolainen et al. (2011) 

remarked that decision tree models are an effective data mining technique, Abdel-Aty 

and Keller (2005) claimed that tree-based regression improves the understanding of the 

importance of specific factors on individual levels of severity, Oh (2006) concluded that 

variables associated with injury severity levels may not be the cause of injury severity 

and additional research in this area is necessary, and Abay (2013) called for a more 

encompassing and alternative model specification for injury severity data analysis.   

A review of the literature wherein tree model techniques were used to uncover 

complex crash patterns is presented below.  Below, specific findings related to driver 

characteristics, contributing circumstances, temporal factors, and road characteristics are 

identified, followed by a more detailed review of each piece of research.    

 Kuhnert et al. (2000) concluded that the most important factor for predicting crash 

injury severity is age; and, Yan and Radwan (2006) found that drivers under the age 

of 21 and over 75 have the greatest risk of rear-end collisions. 

 Findings suggested that the interaction of higher speed limits and alcohol increases 

the risk of crash injury severity (Yan and Radwan, 2006; Eustace et al., 2014).   

 Eustace et al. (2014) found that females in circumstances of higher posted speed 

limits have higher risk of injury, and males with drug involvement in higher posted 

speed limit circumstances have a higher risk of injury.  
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 Model results for rear-end collisions indicated that alcohol is the most significant 

factor impacting a drivers’ striking another vehicle (Yan and Radwan, 2006); and, 

Eustace et al. (2014) found that alcohol and drug use increase the probability of run-

off-road injury severity levels. 

 Yan and Radwan (2006) found that the risk for a rear-end collision is higher for 

daytime condition than nighttime condition.  

 Wet or slippery road surfaces were found to increase the risk of incapacitating injury 

for rear-end collisions (Yan and Radwan, 2006); and, male drivers in crashes on wet 

road surfaces were found to have a higher risk of injury severity (Eustace et al., 

2014).  

 Chang and Wang (2006) reported that contributing circumstances and driver actions 

are critical in determining crash injury severity.   

Stewart (1996) 

 Stewart (1996) presented a classification tree model and regression tree model in 

roadway safety studies.  The model included injury severity, locality, number of lanes, 

speed limit, highway class, roadway feature, vehicle type, and model year group as the 

analysis variables.  The study illustrated three example models: 1) the classification tree 

model using binary variables to estimate the likelihood of a severe or fatal injury; 2) the 

regression tree model using continuous variables to estimated average injury severity 

costs; and 3) classification and regression tree (CART) to identify interactions to be 

included in a Poisson crash model.  From the comparison of the performance of the 

example models, the author concluded that CART models are a useful tool in each of 

these roles.   
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Kuhnert et al. (2000) 

 Kuhnert et al. (2000) combined multivariate adaptive regression spline (MARS) 

and classification and regression tree (CART) models with logistic regression to illustrate 

the improved information provided for crash injury severity.  The authors collected data 

via case interviews of hospitalized patients following motor vehicle crashes in Brisbane, 

Australia from 1997 to 1998.  Information gathered included driving experience, driver 

aggression, general safety precautions, and demographic variables; and, a follow-up 

questionnaire was used to obtain additional information of driver attitude, behavior and 

experience.  Using the data obtained, the authors estimated CART, MARS, and logistic 

regression models.  The CART model produced an overall accuracy of 79.4%, and 

yielded results that suggested older drivers who do not wear a seatbelt and older female 

drivers who do not wear seatbelts are high risk groups.  Findings inferred that the most 

important factor was age.  The MARS model had an overall accuracy of 83.2% and 

results suggested that respondents with little experience, respondents between the age of 

30 and 45 with many years of experience, and respondents between the ages of 40 and 80 

with little experience were the three major areas of risk.  The logistic regression model 

produced an overall accuracy of 75.9%, and suggested seatbelt use as the only significant 

variable.  As deemed important from the MARS model results, the authors incorporated 

age and experience results into the logistic regression model, and found the interaction 

between age and experience statistically significant.  The authors encouraged the use of 

MARS and CART as exploratory tools for a more detailed analysis when using 

conventional and well-known methods. 
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Sohn and Shin (2001)  

Sohn and Shin (2001) developed decision tree, neural network, and logistic 

regression models to assess the factors that affect traffic crash injury severity in Korea.   

The classification tree identified the six factors used in the neural network and logistic 

regression models (accident mode, road width, car shape, speed before accident, violent 

driving, and protective device).  Model results revealed protective device (i.e. safety belt 

use or helmet improperly worn) as the most influential variable for classification of crash 

severity.  The model identified decision tree rules as: if no protective device is used and 

car to pedestrian collision occurs, then fatality or injury is likely to occur; if no protective 

device is used and a car-to-car frontal collision or car-to-car when turning collision and 

violent driving occurs, then fatality or injury is likely to occur; and if no protective device 

is used and a car collision against a wall or barricade with the car shape bonnet occurs, 

then property damage is likely to occur.  The study then trained a neural network for 

crash severity using the same dataset, and did not find the classification accuracy to be 

significantly different from the decision tree.  Finally, the authors fit a logistic regression 

using the same six aforementioned variables.  The estimation suggested accident type and 

speed before the crash to be the only statistically significant factors; and, if car to car 

frontal collision, car to car collision when passing, car to car collision when parking and 

car to car collision when turning occur, injury and death has a higher likelihood of 

occurring.  Overall, the authors concluded that variable reduction was effective, and the 

three models were not significantly different in performance.  
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Bayam et al. (2005) 

 Bayam et al. (2005) provided a meta-analysis of prior literature on older drivers 

and illustrated the use of data mining techniques for injury severity analysis.  The study 

reported that for older drivers the risk of fatality increases, left-turn crashes are more 

common, the tendency to strike fixed objects increases, the risk of fatality substantially 

increases at speeds exceeding 69 mph, driving distance decreases, more time is taken to 

turn, visual abilities decline, slower speeds are driven, and crashes occurring at 

intersections have a higher risk of fatality.   Upon completion of the literature review, the 

authors reported that little data mining had been used for examination of older drivers and 

crashes to identify hidden patterns and relationships.  Using survey results, the study 

presented a CART models to predict the occurrence of a crash or non-crash, given driver, 

roadway, vehicle, and other variables.  The tree depth was five layers, and the age 

variable represented the root node split.  The model accuracy for the trained model and 

the test model was 81.1% and 68.78% respectively.  The authors suggested the small 

sample size to be the cause of the poor predictive power in the test data; and, as a result, 

findings were not robust enough to be generalizable.  However, the authors claimed that a 

larger data set “could be quite useful for this type of application” (p. 623).  Additionally, 

the authors identified over-fitting as a limitation of the decision tree approach, and an 

approach that either stops the tree from growing or prunes the tree after it has been fit 

may be used to correct the issue.  The authors concluded that data mining should be used 

to discover unknown relationships for crashes for senior and teenage drivers.   
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Abdel-Aty and Keller (2005) 

Abdel-Aty and Keller (2005) hypothesized that crash injury levels were affected 

by crash and intersection specific characteristics.  Expanding upon Abel-Aty (2003), the 

authors developed ordered probit models to assess 33,592 crashes that occurred in 832 

intersections from 2000 and 2001.  The study presented three ordered probit models (1) 

independent variables equaled crash types, 2) independent variables equaled intersection 

characteristics, and 3) independent variables equaled a combination of crash types and 

intersection characteristics) to determine the factors that impact crash severity, and to 

determine if a difference existed when the models were based on completeness of the 

data.  Findings suggested that division on the minor road, right turn channelization on the 

major road, and an increase in the number of lanes and speed limit on the minor road 

decrease the expected level of injury.  For the third severity model using both crash types 

and intersection characteristics as independent variables, collisions involving bicyclists or 

pedestrians had the highest likelihood of severe injury; angle, head-on and left-turn 

collisions had the highest likelihood of a higher injury severity level; and, median 

presence and higher speed limit on the minor road lowered the likelihood of a severe 

injury.  The study also presented a hierarchical tree-based regression model to estimate 

the expected crash frequency for each crash injury severity level.  Results indicated that 

the most significant factors for no-injury crashes, possible injury, non-incapacitating 

injury and incapacitating injures are traffic volume of the major road, the number of lanes 

on the minor road, the number of exclusive right turn lanes, and the average daily traffic 

on the minor road, respectively.  The authors concluded that the models should be 

developed for each level of severity as opposed to predicting the overall severity level, 



 

73 

Copyright, Jill M. Bernard, 2015 

and the tree-based regression improves the understanding of the importance of specific 

factors on individual levels of severity.   

Yan and Radwan (2006) 

 Yan and Radwan (2006) used the classification tree approach to investigate 

factors of rear-end crashes that occur at signalized intersections.  The Florida crash data 

used was restricted to two-vehicle, rear-end collisions, and the striking driver was 

considered to be the at-fault party.  The authors developed a classification tree based on 

the entropy algorithm, it = –pt log (pt) – (1 – pt) log (1 – pt), to split the data until each 

subset reached the appropriate level: Model 1, two-vehicle crashes at a signaled 

intersection categorized as rear-end crashes and non-rear-end crashes; Model 2, only rear-

end crashes categorized as striking and struck.  Model 1 results suggested the most 

important variables to split the data are speed limit, alcohol use, and crash injury severity, 

a higher probability for rear-end crash to occur at an intersection if the speed limit was 

45-55 mph, and an increased likelihood of no injury or possible injury for crashes 

occurring at these higher speeds.  Findings also inferred that alcohol combined with 

either lower or higher speed limits increase the likelihood of a rear-end crash occurring, 

the risk for a rear-end collision is higher for daytime conditions than nighttime 

conditions, and wet or slippery road surfaces increase the risk of rear-end collisions and 

incapacitating injury.  Model 2 results indicated that alcohol was the most significant 

factor impacting a drivers’ striking another vehicle.  Model results suggested that drivers 

under the age of 21 and over 75 have the greatest risk of rear-end collisions.  As a result, 

the authors recommended speed limit reduction to 40 mph at signalized intersections, 

enforcement for reducing alcohol intoxicated drivers, and additional education for drivers 
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under the age of 21 years-old for reducing rear-end crashes at signalized intersections, 

and concluded that the classification trees are an appropriate approach in investigating 

crash propensity.   

Chang and Wang (2006) 

Chang and Wang (2006) developed a CART model to examine the impact of 

gender, age, sobriety condition, crash location, vehicle type, contributing circumstance 

and collision type on crash injury severity.  Model results illustrated an initial split based 

on vehicle type; and, suggested that bicyclist, motorcyclists and pedestrians have the 

highest risk, and contributing circumstance, collision type, and driver action are 

important in determining crash injury severity.  The authors concluded by calling for 

future work in comparing CART model results with traditional models such as ordered 

probit and logistic regression models.   

Abellán et al. (2013)  

 Abellán et al. (2013) developed decision trees to analyze traffic crash severity for 

motorcyclists in Granda, Spain.  The authors extracted single-vehicle crash observations 

that occurred on two-lane rural highways from 2003 to 2009 for a total of 1,801 

observations, and identified the following rules as having a high risk of a severe injury 

outcome for motorcyclists: when only one occupant was involved in a single vehicle 

crash; when at-fault motorcyclists were involved in a run-off-road crash in favorable 

weather conditions; when male motorcyclists were involved in a run-off-road crash as the 

result of driver characteristics; and when male motorcyclists were involved in a run-off-

road crash in favorable weather.  Findings inferred additional rules to be a high risk of 

killed/seriously injured crashes on two-lane rural highways when no safety barriers are in 
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place: motorcyclists with no-restrained site distance; crashes in the evening in good 

weather conditions with no lighting; and crashes with pedestrians during favorable 

weather when the driver is male. The authors concluded that the method allowed for a 

high number of rules to be identified, and the method could be extrapolated for studies on 

other datasets.  

Eustace et al. (2014) 

Eustace et al. (2014) employed classification tree models in conjunction with 

generalized ordered logit models to examine factors that contribute to injury severity for 

run-off-road crashes in Ohio.  Results indicated that the most important predictor 

variables as run-off-road crash types, road condition, vehicle type, posted speed limit, 

gender, road contour, alcohol- and drug-related factors.  The study then presented an 

ordered logit regression using maximum likelihood and results confirmed the significant 

factors that increase the probability of run-off-road injury severity levels to be curves and 

grades, alcohol and drug use, female victims, wet-roadway surfaces, overturn/rollover 

crashes, and speed limits of at least 40 mph.  Important interactions identified by the 

decision tree model included: females on higher posted speed limits have higher risk of 

injury; males with drug involvement and a higher posted speed limit have a higher risk of 

injury; alcohol use on a road with speed limits over 40 mph have higher risk of injury; 

and, male drivers in crashes on wet road surfaces have higher risk of injury.  The authors 

concluded that not only does the decision tree model analysis identify significant factors 

of injury severity, it also allows for the detection of multi-level interactions.   
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2.2.5 Artificial Neural Networks 

Abdelwahab and Abdel-Aty (2001) argued that the learning capabilities and 

adaptive nature of ANN models make this methodology possibly superior to traditional 

techniques, and called for future investigation of the use of ANN models in transportation 

safety applications.  Additionally, Savolainen et al. (2011) stated that ANN models 

“provide a robust function for prediction and classification problems” (p. 1673).  Yet, 

Chimba and Sando (2009) claimed that while many studies have applied a form of the 

ANNs technique to predict crash counts, few have applied the methodology to injury 

severity modeling.  Savolainen et al. (2011) categorized only two studies as ‘artificial 

neural networks’, Mannering and Bhat (2014) identified a single study, and three 

additional studies were discovered in which ANN models were developed to analyze 

crash injury severity.   

A review of literature of neural network techniques that examined crash injury 

severity is presented below.  Below, specific findings related to driver characteristics, 

contributing circumstances, temporal factors, and road characteristics are identified, 

followed by a more detailed review of each piece of research.    

 Prior results suggested age as a significant factor in influencing injury severity, and 

older drivers have a greater risk of injury (Abdelwahab and Abdel-Aty, 2001; 

Abdelwahab and Abdel-Aty, 2002). 

 Delen et al. (2006) found that alcohol/drug intoxication is a significant factor in 

influencing injury severity.  

 As the ratio of the estimated speed at the time of the crash to the posted speed limit 

(referred to as the speed ratio) increase, findings suggested that the level of injury 
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severity increases (Abdelwahab and Abdel-Aty, 2001; Abdelwahab and Abdel-Aty, 

2002). 

 Abdelwahab and Abdel-Aty (2002) discovered that rural areas are more dangerous 

than urban areas, given a crash occurs. 

 Delen et al. (2006) reported that weather conditions and time of crash are not 

influential in crash injury severity.  

 Mussone et al. (1999) found no significant correlation between accident index (the 

ratio of the number of crashes for a given intersection and the number of crashes at 

the most dangerous intersection) and meteorological conditions or road surface 

conditions. 

Mussone et al. (1999) 

Mussone et al. (1999) developed ANN models to assess the accident index (the 

ratio of the number of crashes for a given intersection and the number of crashes at the 

most dangerous intersection) for crashes occurring at intersections.  A feed-forward 

neural network used back-propagation learning, and the optimal network structure 

consisted of ten neurons for eight variables - day/night, flow, virtual conflicts, real 

conflicts, intersection, accident type, road surface, and weather – four hidden nodes, and 

one output node – accident index.  The authors reported the following significant 

findings: night-time collision for any crash type at a signalized intersection has the 

highest degree of danger; any crashes with a pedestrian at non-signalized intersection at 

night time has the highest degree of danger; no significant correlation between accident 

index and meteorological conditions or road surface conditions exists; accident index is 

greater at a unsignalized intersection with average complexity over an unsignalized 
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intersection with the same complexity; accident index is greater for small signalized 

intersection over small unsignalized intersection; virtual conflict is less important than 

real conflict points (not dependent on traffic light); and, the accident index at an 

intersection does not depend on crash type.  

Abdelwahab and Abdel-Aty (2001)  

 Abdelwahab and Abdel-Aty (2001) developed ANN models to predict injury 

severity for crashes occurring at signalized intersections.  The authors used crash data 

from 1997 from Central Florida, and obtained 2,336 cases (split into a training set (2,000) 

and a testing set (336)).  The study presented multilayer perception (MLP) neural 

networks, fuzzy adaptive resonance theory (ART) neural networks, and ordered logit for 

comparison, and suggested that the MLP had better generalizable performance.  The 

authors conducated a simulation experiment with all combinations of input variables to 

develop the MLP neural network, so as to assign an output severity level for each input 

pattern to allow for an understanding of the specific factors that lead to severe injuries.  

Results suggested that the level of injury severity increases as the speed ratio (the ratio of 

the estimated speed at the time of the crash to the posted speed limit) increases, and older 

drivers and female drivers have a greater risk of injury.  Findings also indicated that at-

fault drivers are less likely to be injured than not-at-fault drivers, and seatbelt use 

decreases the risk of severe injury.  The authors claimed that the learning capabilities and 

adaptive nature of ANN models are important features that make this model superior to 

traditional techniques; and, that “MLP in particular, and ANNs in general, have 

promising potential in modeling injury severity” (p.12-13).  The authors end by calling 

for future investigation of the use of ANN models in transportation safety application.       
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Abdelwahab and Abdel-Aty (2002) 

 Expanding upon Abdelwahab and Abdel-Aty (2001), Abdelwahab and Abdel-Aty 

(2002) developed statistical models and ANNs to assess traffic safety at toll plazas.  The 

authors obtained crash reports for 1999 and 2000 from the Central Florida expressway 

system consisting of ten main-line toll plazas and 42 on/off ramp toll plazas with an 

annual average daily traffic (AADT) of 420,000 vehicles.  They developed a logit model 

and Radial Basis Function (RBF) model, a type of ANN, to assess frequency and injury 

severity, given a crash occurs before a toll plaza, at a toll plaza, or after a toll plaza.  

Findings suggested a two-level nested logit model to be the best model to describe the 

probabilities of crash location.  Model results indicated that he significant variables 

effecting the likelihood of a crash occurring are E-pass use, plaza type, vehicle type, and 

peak period.   The RBF model was identified as the best model for assessing crash injury 

severity; and, results suggested that older drivers, female drivers, and E-pass users have a 

greater risk for injury, and seatbelt use was found to decrease the risk of severe injury.  

The authors concluded by recommending improvements in lane markings to be 

undertaken, lane width should be wide enough to accommodate large trucks, and signage 

should be appropriately represented before and at the plaza location.    

Abdel-Aty and Abdelwahab (2004a) 

Abdel-Aty and Abdelwahab (2004a) expanded upon Abdelwahab and Abdel-Aty 

(2001 and 2002) by comparing the viability and benefits of MLP and ART neural 

networks in predicting traffic crash injury severity.  The authors developed and compared 

MLP, fuzzy ARTMAP (a type of ART) neural networks and ordered probit, and found 

the MLP model to perform better than the other two models.  Results indicated that as the 
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ratio of the estimated speed at the time of the crash to the posted speed limit (i.e. speed 

ratio) increases, injury severity also increases; older drivers have a greater risk of injury; 

female drivers have a greater risk of severe injury; and rural areas are more dangerous 

than urban areas.   

Bayam et al. (2005) 

 Bayam et al. (2005) provided a meta-analysis of prior literature on older drivers 

involved in crash incidents and illustrated the use of data mining techniques for injury 

severity analysis.  The meta-analysis of the literature suggested that for older drivers: the 

risk of fatality increases, left-turn crashes are more common, the tendency to strike fixed 

objects increases, the risk of fatality substantially increases at speeds exceeding 69 mph, 

driving distance decreases, more time is taken to turn, visual abilities decline, slower 

speeds are driven, and crashes occurring at intersections have a higher risk of fatality.   

Upon completion of the literature review, findings inferred that little data mining had 

been used for examination of older drivers and crashes to identify hidden patterns and 

relationships.  The authors conducted a survey to explore key characteristics (e.g. 

temporal information, passenger presence, number of crashes, etc.) of older drivers 

residing in Montgomery County, Maryland.  Using survey data, the final neural network 

included 22 input layer nodes, two first hidden layer nodes and three second hidden layer 

nodes, and reached an accuracy of 87.5%.  Results suggested strong relationships 

between the comfort level in certain driving situations and crash injury severity.  From 

this, the authors concluded that if elderly drivers feel comfortable to change direction, the 

risk of crash involvement decreases.    
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Delen et al. (2006) 

Delen et al. (2006) developed a series of ANNs to model non-linear relationships 

between crash injury severity and crash-related factors, given a multi-vehicle collision 

crash, single vehicle fixed-object crash, or single vehicle rollover crash occur.  The 

authors accessed data from the National Automotive Sampling System General Estimates 

System and obtained 30,358 records from 1995 to 2000.  The study presented eight 

binary MLP neural network models with different levels of crash injury severity as the 

output layer.  Significant factors identified as influencing injury severity are seat belt use, 

alcohol/drug intoxication, age and gender, and vehicle role.  Results suggested that 

weather conditions and time of crash are not influential.  The authors concluded that no 

single factor appeared to be a key determinate of injury severity; yet, a factor could act as 

an enabler or obstacle when combined with other factors.   

Chimba and Sando (2009) 

 Chimba and Sando (2009) compared ANN models and ordered probit (OP) 

models in the prediction power of highway traffic crash injury severity.  The authors 

claimed that while many studies have applied a form of the ANNs technique to predict 

crash counts, few have applied the methodology to injury severity modeling.  However, 

computer technology advancements make the ANN technique feasible for crash severity 

prediction.  The study’s objective was to present an approach for optimizing the number 

of hidden neurons, and then to compare the back-propagation ANN performance with the 

OP method.  The authors accessed data for crashes occurring in 2003 on arterial segments 

of the Florida state highway system and obtained 1,271 records.  The model presented 

various ANN outputs based on differing amounts of hidden neurons, epochs and learning 
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rates, and results were compared to a trained network performance.   When comparing 

the prediction accuracy of the ANN and OP models, results suggested that the ANN 

resulted in an approximate prediction accuracy of 83.3%, while the OP had a prediction 

accuracy of 65.5%.  This suggests that a well-structured ANN can produce higher 

prediction performance relative to the OP approach.  The authors concluded by 

suggesting future research consider multiple injury severity levels as the network outputs, 

as well additional input variables to determine injury severity.   

Chapter 3 - Research Purpose 

3.1 Research Purpose  

As the literature review makes clear, researchers have employed a wide array of 

methodological techniques when examining crash data; and, each approach encompassed 

varying advantages and limitations with the potential to lead to complementary, 

conflicting and/or inaccurate results.  Yet, few studies have directly compared the varying 

benefits and results of different modeling techniques (Ye and Lord, 2014).   

Abdel-Aty (2003) compared ordered probit, multinomial logit and nested logit 

methods to model injury severity.  Compared to the ordered probit, the multinomial logit 

methodology produced poorer results in all tested applications, which was evident from 

lower likelihood ratio indexes.  Also compared to the ordered probit model, the best 

nested model of six developed multinomial logit models resulted in only a slight 

improvement in the goodness-of-fit measure and had a negligible effect on the 

classification accuracy.  Due to the difficulty of determining the best nested model given 

the vast number of different possible nesting structures, the authors recommend the 
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ordered probit as an easy to estimate and well performing model for assessing crash 

injury severity.   

Haleem and Abdel-Aty (2010) compared ordered probit, binary probit and nested 

logit methodologies to aid in the selection of the best modeling technique for injury 

severity analysis for crashes occurring at unsignalized intersections.  The authors 

developed two separate models to analyze the relationship between severe injuries 

(incapacitating injury and fatal injury), non-severe injuries (property damage only, 

possible injury, and non-incapacitating injury), and explanatory characteristics at three 

and four legged unsignaled intersections.  Comparing the binary probit and the ordinal 

probit frameworks, they found that the aggregated binary probit model had a lower 

Akaike Information Criterion (AIC) and higher likelihood of convergence, indicating that 

the binary probit model better fit the data.  The authors claimed that this finding 

suggested that the aggregate model performs better when analyzing injury severity, given 

a crash at an unsignalized intersection. 

More recent efforts compared injury severity model structures (Abay, 2013a; 

Yasmin and Eluru, 2013; Ye and Lord, 2014).  Abay (2013) investigated the choice of 

‘state of the art’ injury severity models by examining the sensitivity of the model results 

to empirical inferences.  The author estimated four models: standard fixed-parameter 

ordered logit (OL), random parameters ordered logit (RPOL), standard fixed-parameter 

multinomial logit (MNL), and mixed logit (MXL).  Findings suggested that substantial 

differences in the marginal effect of the variables in the OL model compared with the 

RPOL and MXL models existed, and underestimation of the effects of important driver 

behaviors can lead to misinformed safety planners.  For example, when compared to the 
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RPOL and MXL estimations, the OL model underestimated the effect of an older-aged 

pedestrian being struck by a driver proceeding straight-ahead, which could misguide 

policy intended to help vulnerable pedestrians.   

Yasmin and Eluru (2013) explored methodological approaches used to assess 

driver injury severity in traffic crashes by comparing ordered response methodologies 

(ordered logit, generalized ordered logit, mixed generalized ordered logit) with 

methodologies that either neglect the natural ordering of the response outcome or require 

artificial constructs to consider ordering (multinomial logit, nested logit, ordered 

generalized extreme value logit, and mixed multinomial logit).  The authors used a two-

step approach to compare the unordered to the ordered models: step 1) established the 

superior model within each methodological framework using the likelihood ratio test; 

step 2) compared the superior models from each framework using a non-nested measure.  

The authors determined that neither the unordered or ordered frameworks outperformed 

the other at either the aggregate or disaggregate level.  The authors concluded that their 

findings signified that the different approaches offer comparable prediction for the risk of 

crash injury severity.   

Ye and Lord (2014) compared the sample size requirements for estimating 

multinomial logit, ordered probit and mixed logit models.  The authors reported the 

mixed logit model to be more interpretive than the multinomial logit model, since the 

parameter effects can vary across crashes in the mixed logit model.  Additionally, results 

indicated that the ordered probit model did not have the same interpretive power as the 

other methodologies, as the effects of the explanatory variables are restricted to 

impacting ordered probabilities using identical coefficients across the ordered outcomes. 
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The authors combined simulation data with the four-year crash records to compare 

sample size effects on the three models.  Results suggested that the ordered probit model 

required the smallest samples and the mixed logit model required the largest samples.  

Overall results indicated that all three models improved in accuracy as sample size 

increased, the mixed logit and multinomial logit were more sensitive to smaller sample 

sizes, and the minimum sample size for the ordered probit, multinomial logit and mixed 

logit are approximately 2,000, 5,000, and 10,000 observations respectively.     

While prior research has made substantial progress in crash injury severity 

modeling, “major methodological and data challenges have yet to be fully resolved” 

(Savolainen et al., 2011, p. 1674).  Accordingly, addressing these challenges “must be a 

priority in future crash-injury research” (Savolainen et al., 2011, p.1674), and “not 

expanding the methodological frontier, and continuing to use methodological approaches 

with known deficiencies, has the potential to lead to erroneous and ineffective safety 

policies that may result in unnecessary injuries and loss of life” (Mannering and Bhat, 

2014, p. 16).   

To expand the methodological frontier and advance the future of crash injury 

research, this study will build upon the current body of literature by comparing four 

methodological techniques used in crash injury severity models and by creating model 

ensembles that combine popular, longstanding crash injury severity models with 

contemporary data analytic techniques to examine the accuracy and validity of 

simultaneously employing multiple methodologies.  This research will estimate, compare, 

and ensemble (1) multinomial logit, (2) ordinal probit, (3) artificial neural networks and 

(4) decision tree models to attempt to gain greater insight into relationships in Missouri 
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crash data and to examine how crash injury severity differs with numerous possible 

explanatory variables.  By doing so, the combination of modeling techniques are 

expected to uncover more intricate relationships amongst explanatory variables, and 

provide better information for transportation planning, education and policy that will 

enhance transportation safety efforts. 

3.2 Research Objectives 

(1) Build four differing model types (multinomial logit, ordinal probit, artificial 

neural network and decision tree models), and assess the performance of each 

individual model by examining the relative accuracy of the model on a training 

subset and a testing subset of the data.   

(2) Combine multinomial logit, ordinal probit, artificial neural network and 

decision tree models to build a model ensemble to test if the combination of the 

multiple methodologies enhances the classification accuracy of crash injury 

severity on a training subset and a testing subset of the data.   

(3) Examine and compare the predictive importance of variables generated by 

each individual model and the model ensemble to determine the factors that have 

the greatest effect on crash injury severity outcomes.  

(4) Gain greater insight into relationships in the crash data by examining how 

crash injury severity is affected by a wide range of possible explanatory variables.   

(5) Evaluate findings relative to current Missouri driving policy and law to 

provide information for transportation planning, education and policy to enhance 

transportation safety efforts.   
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3.2.1 Research Questions  

Q1: What insights do the multinomial logit, ordinal probit, artificial neural network, 

decision tree and model ensemble each reveal from the data?  

Q2: What is the relative accuracy and discriminatory power of each model in comparison 

with the accuracy of the model ensemble? 

Q3: When adjacent severity outcomes are grouped, what is the relative discriminatory 

power of each model compared to the discriminatory power of the model ensemble? 

Q4:  What findings are derived from the model with the greatest accuracy and/or 

discriminatory power, and do these findings support prior research?  

Q5:  Do the findings support current Missouri public policy or point to needed 

revision?     

Chapter 4 – Data and Methodology  

4.1 Data  

The Missouri State Highway Patrol (MoHWP) Traffic Division collects and 

preserves crash report data, and codes and classifies the reports for entry into the 

Statewide Traffic Accident Records System (STARS) database.  The intent of the 

STARS program is to provide timely and accurate traffic crash information to support 

operation and management of traffic safety (Missouri Traffic Records Committee, 2002).  

MoHWP provided traffic, personal, and vehicle crash data files from 2002-2012 from the 

STARS database, which contained 3,902,742 individual records.   

The MoHWP is responsible for training police officers on the proper collection, 

processing and completion of the STARS crash report through the use of the Missouri 

Uniform Crash Report form and field reporting procedures, and obligations for STARS 
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reporting are specified in Missouri statue 43.250 (Missouri Traffic Records Committee, 

2002).  Law enforcement officers who investigate a vehicle crash must file crash reports 

to the Superintendent of the MoHWP within ten days of the investigation when a vehicle 

crash results in injury to or death of a person or when total property damage appears to be 

five hundred dollars or more to one vehicle (Missouri Traffic Records Committee, 2002).  

The Superintendent of the MoHWP appoints a standing committee to provide direction 

and coordination for improvement to STARS and the Missouri Uniform Crash Report. 

The following agencies have representation on the committee: AAA - Automobile Club 

of Missouri, Bridgeton Police Department, Cass County Sheriff's Office, Columbia 

Police Department, Federal Highway Administration, Federal Motor Carrier Safety 

Administration, Kansas City Police Department, Missouri Department of Health, 

Missouri Department of Revenue, Missouri Department of Transportation, Missouri 

Safety Center, Missouri Safety Council, Missouri State Highway Patrol, National 

Highway Traffic Safety Administration, Platte County Sheriff's Department, Poplar Bluff 

Police Department, Regional Justice Information System, St. Charles County Sheriff's 

Department, St. Joseph Police Department, St. Louis County Highway Department, St. 

Louis Metropolitan Police Department, Springfield Police Department, and Town and 

Country Police Department (Missouri Traffic Records Committee, 2002).   

4.1.2 Data Description  

This study uses three relevant datasets from the STARS database: accident level 

data, vehicle level data and personal level data.  Each dataset, which is categorized in the 

Missouri State Highway Patrol Record Specification form, contains an array of 

information that is linked together using the accident number and person number.  
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MoHWP provided 151 variables grouped as crash time and date, notification and report 

time and date, agency and highway patrol information, crash severity, number injured 

and killed, number and type of vehicle, crash location, highway information, speed limit, 

driver characteristics, driver contributing circumstances, temporal factors, weather 

conditions, road characteristics, crash type, licensing state, license type, vehicle damage, 

vehicle action, restraint and helmet use, airbag deployment, pedestrian characteristics, 

and pedestrian contributing circumstances.  The years 2002-2012 are combined from the 

three datasets into a single dataset containing 3,902,742 observations.   

Drawing upon the reviewed literature, as illustrated in Table 4.1, the variables 

suggested to affect crash injury severity include: age, gender, number of occupants, speed 

limit, light conditions, weather conditions, road conditions and characteristics, and 

contributing circumstances.   
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Table 4.1: Variables Suggested by Reviewed Literature to Affect Crash Injury Severity 

 

As a result, the following variables have been included in the analysis: 

Crash Injury Severity  

The Missouri Traffic Records Committee (2001) measures the injury severity of a crash 

as follows  

1. Fatality – when one or more person dies as the result of the crash within 30 days of 

the incident. 

2. Injury - any crash in which a (1) disabling injury, (2) evident but not disabling injury, 

or (3) probable but not apparent injury is received by one or more people as a result 

of the incident.   

Variables Reviewed Liturature

Age 

Kuhnert et al. (2000); Abdelwahab and Abdel-Aty (2001); Bédard et al. 

(2002); Khattak et al. (2002); Abdel-Aty (2003); Khattak and Rocha 

(2003); Abdelwahab and Abdel-Aty (2004); Delen et al. (2006); Lu et al. 

(2006); Schneider et al. (2009); Haleem and Abdel-Aty (2010); Rifatt et al. 

(2011); Yasmin and Eluru (2013)

Gender

Kuhnert et al. (2000); Abdelwahab and Abdel-Aty (2001); Abdel-Aty 

and Abdelwahab (2003); Abdel-Aty and Abdelwahab (2004); Ulfarsson 

and Mannering (2004); Delen et al. (2006); Islam and Mannering (2006); 

Savolainen and Ghosh (2008); Schneider et al. (2009); Malyshkina and 

Mannering (2010b); Schneider and Salovainen (2011); Eustace et al. 

(2014)

Number of Occupants Renski et al. (1999); Oh (2006)

Speed Limit 

Renski et al. (1999); Khattak et al. (2002); Oh (2006); Gårder (2006); 

Malyshkina and Mannering (2010); Savolainen and Ghosh (2008); 

Haleem and Abdel-Aty (2010); Zhu and Srinivasan  (2011); Yasmin and 

Eluru (2013)

Light Conditions

Klop and Khattak (1999); Rifatt and Tay (2009); Haleem and Abdel-Aty 

(2010); Wang et al. (2009); Haleem and Abdel-Aty (2010); Khattak et al. 

(2002)

Weather Conditions Khattak et al. (1998); Abdel-Aty (2003); Wang et al. (2009)

 Road Conditions & 

Characteristics 

Khattak et al. (1998); Krull et al. (2000); Lu et al. (2006); Rifatt and Tay 

(2009); Quddus et al. (2010); Zhu and Srinivasan (2011)

Contributing Circumstances Chang and Wang (2006)
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3. Property Damage - any crash in which property was damaged, but no person was 

killed or injured as a result of the incident.  A report for the STARS database is not 

required for property damage of less than $500.00.  

Driver Characteristics 

Age 

Gender: Male, Female , Unknown 

Total Number of People Involved   

Contributing Circumstances  

After a crash occurs, the crash investigator identifies at least one of the following 

contributing circumstances at the driver level : Vehicle Defects, Improperly Stopped, 

Speed - Exceed Limits, Too Fast for Conditions, Improper Passing, Violation Stop 

Sign/Signal, Wrong Side - Not Passing, Following Too Close, Improper Signal, Improper 

Backing, Improper Turn, Improper Lane Usage/Change, Wrong Way (One-Way), 

Improper Start from Park, Improperly Parked, Failed to Yield, Alcohol, Drugs, Physical 

Impairment, Distracted/Inattentive,  Vision Obstructed, Driver Fatigue/Asleep
*
, Failed to 

Dim Lights
*
, Failed to Use Lights

*
, Improper Towing/Pushing

*
, Overcorrected

*
, 

Improper Riding/Clinging to Vehicle Exterior
*
, Failed to Secure Load/Improper 

Loading
*
, Animal(s) in Roadway, Object/Obstruction in Roadway

*
, Other, and Unknown.  

Temporal Factors 

Day of Week: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday  

Light Conditions: Daylight, Dark - Streetlights On, Dark - Streetlights Off, Dark - No 

Streetlights, Indeterminate, Unknown 

 

                                                           
*
Contributing circumstance included in data collection in 2012. 
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Weather Conditions 

Conditions: Clear, Cloudy, Rain, Snow, Sleet, Freezing, Fog/Mist, Indeterminate  

Road Characteristics 

Road Conditions: Other/Unknown, Dry, Wet, Snow, Ice, Mud, Slush, Standing Water, 

Moving Water, Dry  

Road Alignment: Unknown, Curve, Straight  

Road Profile: Unknown, Hill/Grade, Crest, Level 

Road Surface: Unknown, Asphalt, Brick, Gravel, Dirt/Sand, Multi-Surface, Concrete 

Speed Limit: 15mph, 20mph, 25mph, 30mph, 35mph, 40mph, 45mph, 50mph, 55mph, 

60mph, 65mph, 70mph, Unknown 

Crash Type 

Type: Animal, Bicyclist/Pedalcyclist, Fixed Object, Other Object, Pedestrian, Train, 

Motor Vehicle in Transport, Motor Vehicle on Other Roadway, Parked Motor Vehicle, 

Non-Collision Overturn, Non-Collision, Other, Animal Drawn Vehicle/Animal Ridden 

Trans, Working Motor Vehicle, Fire / Explosion, Immersion, Jackknife, Fell/Jumped 

from MV, Cargo/Equipment Loss/Shift 

Location 

Crash Location: On Roadway, Off Roadway  

4.1.2.1 Variable Frequencies 

Initial data exploration uses cross tabulations to examine the frequency of injury 

severity, given a crash occurs, conditional on the values of individual explanatory 

variables.  To be included in this analysis, observations must meet the following criteria:  

 Crash occurs among the years 2002 to 2012. 
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 Crash occurs in the state of Missouri.  

 The person involved in the crash is the driver of a motor vehicle or other 

transport device. 

 The driver is found to have contributed to the crash. 

 The driver’s licensing state is Missouri.  

When employing these criteria, the unit of analysis is a Missouri licensed motor vehicle 

driver who contributed to a reported crash in Missouri in 2002 through 2012.  By 

selecting this sub-population, the analysis focuses on the circumstances effecting crash 

severity for drivers who contribute to the crash occurrence, while eliminating those 

drivers who were merely victims in the sense that they did not contribute to the crash.  

Additionally, evaluation of drivers licensed by the state of Missouri who are involved in a 

reported crash in the state of Missouri provides a commonality for comparison that 

allows for potential prescriptive training and policy recommendations.   

When considering motor vehicle drivers with a Missouri issued driver’s license 

who contributed to a reported crash, cross tabulation results identify 1,282,919 

observations in the dataset with the crash severity distributed as 0.6% fatal, 28.1% injury 

and 71.3% property damage only.  The frequencies of crash severity partitioned by each 

categorical explanatory variable are presented in Tables 4.2 through 4.13 below.   

The MoHWP groups drivers ages into categories termed: Young Driver, a driver 

under the age of 21; Middle Driver, a driver between the ages of 21 and 54; Mature 

Driver, a driver 55 years of age or older.  The sum of the number of Missouri licensed 

drivers for the years 2002 to 2012 by age group and by gender are presented in Tables 4.2 
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and 4.3 respectively.  The numbers in parentheses in Tables 4.2 and 4.3 are the number of 

incidents per drivers’ licenses year. 

As illustrated in Table 4.2, the total number of crashes per driver licensed year 

decreases as the age group increases, as does the number of crashes per driver licensed 

year of each crash severity level.  Additionally, as illustrated in Table 4.3, the total 

number of crashes per driver licensed year for male drivers is greater than for female 

drivers, which is also the case for each level of crash severity.   

Table 4.2: Frequency of Crash Severity by Age Group 

Driver Age Group Fatal Injury 
Property 

Damage 
Total 

Drivers’ 

Licensed 

Years
1 

Young (< 21 years-old) 1,477 

(0.0005) 

85,040 

(0.0274) 

206,732 

(0.0666) 

293,249 

(0.0945) 

3,101,902 

 

Middle (≥21 and <55 years-old 4,875 

(0.0002) 

212,662 

(0.0079) 

534,448 

(0.0198) 

751,985 

(0.0279) 

26,968,574 

 

Mature (≥55 years-old) 1,750 

(0.0001) 

60,999 

(0.0046) 

164,450 

(0.0123) 

227,199 

(0.0170) 

13,377,387 

 

Unknown 1 1,897 8,588 10,486 0 

Total  8,103 360,598 914,218 1,282,919 43,447,863 
1 
Data obtained from US Department of Transportation, Federal Highway Administration (2015) 

Table 4.3: Frequency of Crash Severity by Gender 

Driver 

Gender 
Fatal Injury 

Property 

Damage 
Total 

Drivers’ 

Licensed 

Years
1 

Male 5,969 

(0.0003) 

203,373 

(0.0091) 

519,901 

(0.0232) 

729,243 

(0.0325) 

22,435,329 

 

Female 2,133 

(0.0001) 

157,130 

(0.0068) 

389,201 

(0.0168) 

548,464 

(0.0237) 

23,172,730 

 

Unknown 0 39 4,936 4,975 0 

Missing  1 56 180 237 0 

Total 8,103 360,598 914,218 1,282,919 45,608,059 
1 
Data obtained from US Department of Transportation, Federal Highway Administration (2015) 
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Table 4.4: Frequency of Crash Severity by Contributing Circumstances 

Contributing Circumstance Fatal Injury 
Property 

Damage 
Total 

Vehicle Defects 132 9,124 26,079 35,335 

Improperly Stopped on Roadway 33 1,750 4,929 6,712 

Speed  Exceed Limit 1,457 15,015 14,806 31,278 

Too Fast for Conditions 2,253 74,516 138,927 215,696 

Improper Passing 232 4,348 14,694 19,274 

Violation of Stop Sign/Signal 420 23,589 33,184 57,193 

Wrong Side - Not Passing 1,229 11,630 13,387 26,246 

Following Too Close 167 53,943 166,735 220,845 

Improper Signal 7 713 2,356 3,076 

Improper Backing 15 1,772 39,412 41,199 

Improper Turn 99 10,390 36,398 46,887 

Improper Lane Usage/Change 1,517 31,257 84,691 117,465 

Wrong Way (One-Way) 91 749 1,126 1,966 

Improper Start from Park 4 667 3,181 3,852 

Improperly Parked 2 226 1,215 1,443 

Failed to Yield 983 75,623 170,798 247,404 

Alcohol  2,107 30,180 35,372 67,659 

Drugs 337 4,552 5,250 10,139 

Physical Impairment 422 13,507 13,238 27,167 

Inattention 1,734 107,057 290,602 399,393 

Vision Obstructed 626 32,534 88,554 121,714 

Driver Fatigue/Asleep 7 656 921 1,584 

Failed To Dim Lights 0 2 11 13 

Failed To Use Lights 1 40 49 90 

Improper Towing/Pushing 0 11 55 66 

Overcorrected 60 1,044 1,222 2,326 

Improper Riding/Clinging to Vehicle 

Exterior 

0 21 9 30 

Failed To Secure Load/Improper Loading 0 25 402 427 

Animal(s) in Roadway 11 765 3,002 3,778 

Object/Obstruction in Roadway 2 153 654 809 

Other 14 961 2,772 3,747 

Total 
1
 13,962 506,820 1,194,031 1,714,813 

1 
The sum of the frequency of contributing circumstance can exceed the number of cases, since multiple 

citations of contributing circumstance may be present in a given crash.   
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Table 4.5: Frequency of Crash Severity by Day of Week 

Day of 

Week 
Fatal Injury 

Property 

Damage 
Total 

Sunday 1,175 38,591 78,527 118,293 

Monday 1,009 50,335 132,289 183,633 

Tuesday 977 52,131 138,591 191,699 

Wednesday 1,037 52,871 141,930 195,838 

Thursday 1,072 53,540 143,463 198,075 

Friday 1,318 62,633 165,442 229,393 

Saturday 1,502 50,421 113,767 165,690 

Unknown 13 76 209 298 

Total  8,103 360,598 914,218 1,282,919 

 

Table 4.6: Frequency of Crash Severity by Light Condition 

Light Condition Fatal Injury 
Property 

Damage 
Total 

Indeterminate 56 3,944 12,465 16,465 

Dark - Streetlights On 895 51,042 130,773 182,710 

Dark - Streetlights Off 235 4,860 11,060 16,155 

Dark - No Streetlights 2,401 39,362 57,931 99,694 

Daylight 4,515 261,341 701,812 967,668 

Missing  1 49 177 227 

Total  8,103 360,598 914,218 1,282,919 

 

Table 4.7: Frequency of Crash Severity by Weather Condition 

Weather Condition Fatal Injury 
Property 

Damage 
Total 

Cloudy 2,368 95,787 231,930 330,085 

Rain 395 24,747 67,902 93,044 

Snow 113 7,036 24,846 31,995 

Sleet 16 1,160 3,360 4,536 

Freezing 44 2,015 5,409 7,468 

Fog/Mist 91 2,426 4,883 7,400 

Indeterminate 27 1,403 10,303 11,733 

Clear 5,045 225,786 564,684 795,515 

Missing 4 238 901 1,143 

Total 8,103 360,598 914,218 1,282,919 
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Table 4.8: Frequency of Crash Severity by Road Surface 

Road Surface Fatal Injury 
Property 

Damage 
Total 

Unknown 14 2,618 15,186 17,818 

Asphalt 6,620 283,922 695,042 985,584 

Brick 1 167 916 1,084 

Gravel 325 9,674 15,914 25,913 

Dirt or Sand 16 448 842 1,306 

Multi Surface 152 5,713 15,297 21,162 

Concrete 975 58,055 171,010 230,040 

Missing 0 1 11 12 

Total 8,103 360,598 914,218 1,282,919 

 

Table 4.9: Frequency of Crash Severity by Road Conditions 

Road Conditions Fatal Injury 
Property 

Damage 
Total 

Other/Unknown 53 2,936 9,318 12,307 

Wet 1,047 61,424 163,216 225,687 

Snow 133 8,005 29,687 37,825 

Ice 78 4,622 13,340 18,040 

Dry 6,792 283,569 698,589 988,950 

Missing 0 42 68 110 

Total 8,103 360,598 914,218 1,282,919 

 

Table 4.10: Frequency of Crash Severity by Road Alignment 

Road Alignment Fatal Injury 
Property 

Damage 
Total 

Unknown 10 1,873 13,835 15,718 

Curve 2,941 68,059 129,811 200,811 

Straight 5,152 290,666 770,572 1,066,390 

Total  8,103 360,598 914,218 1,282,919 

Table 4.11: Frequency of Crash Severity by Road Profile  

Road Profile Fatal Injury 
Property 

Damage 
Total 

Unknown 24 3,696 19,815 23,535 

Hill/Grade 4,271 114,574 240,829 359,674 

Crest 287 10,148 21,055 31,490 

Level 3,520 231,985 631,679 867,184 

Missing  1 195 840 1,036 

Total 8,103 360,598 914,218 1,282,919 
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Table 4.12: Frequency and Percentage of Crash Severity by Crash Type  

Crash Type Fatal Injury 
Property 

Damage 
Total 

Animal 10  

(0.3%) 

490 

(16.2%) 

2,531 

(83.5%) 

3,031 

(100%) 

Bicyclist/Pedalcyclist 18  

(0.8%) 

1,867 

(84.0%) 

337 

(15.2%) 

2,222 

(100%) 

Fixed Object 3,368 

(1.5%) 

86,792 

(37.6%) 

140,431 

(60.9%) 

230,591 

(100%) 

Other Object 42  

(0.8%) 

1,124 

(22.1%) 

3,930 

(77.1%) 

5,096 

(100%) 

Pedestrian 205 

(4.4%) 

4,124 

(88.5%) 331 (7.1%) 

4,660 

(100%) 

Train 69  

(19.8%) 

133 

(38.1%) 

147 

(42.1%) 

349 

(100%) 

Motor Vehicle in Transport 3,312 

(0.4%) 

240,416 

(25.6%) 

694,141 

(74.0%) 

937,869 

(100%) 

Motor Vehicle on Other Roadway 82 

(4.1%) 

541 

(27.1%) 

1,374 

(68.8%) 

1,997 

(100%) 

Parked Motor Vehicle 85  

(0.1%) 

6,344 

(10.2%) 

56,050 

(89.7%) 

62,479 

(100%) 

Non-Collision Overturn 843  

(3.1%) 

16,718 

(61.5%) 

9,606 

(35.4%) 

27,167 

(100%) 

Non-Collision Other 66  

(1.0%) 

1,888 

(27.5%) 

4,918 

(71.6%) 

6,872 

(100%) 

Other 3  

(0.5%) 

161 

(27.5%) 

422 

(72.0%) 

586 

(100%) 

Total 8,103 

(0.6%) 

360,598 

(28.1%) 

914,218 

(71.3%) 

1,282,919 

(100%) 

 

Table 4.13: Frequency of Crash Severity by Crash Location 

Crash Location Fatal Injury 
Property 

Damage 
Total 

Crash On Roadway 4,090 255,949 709,414 969,453 

Crash Off Roadway 4,013 104,649 204,804 313,466 

Total 8,103 360,598 914,218 1,282,919 

 

The study presents chi-square tests to determine if significant differences exist 

between the frequencies of crash outcomes across the different categories of the 

individual variables.  Interesting observations from the chi-square tests and other relevant 

remarks regarding the data are as follows: 
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 A statistically significant difference among age groups and their relationship with 

crash injury severity exists at the 0.05 significance level (χ
2
 = 428.641; p = 

0.000), with fatal outcomes more prevalent for middle-aged drivers and mature 

drivers, injury outcomes more prevalent for young drivers and middle-aged 

drivers, and property damage outcomes more prevalent for mature drivers.  

 The most often cited contributory factor is inattention (33.5%).  

 The top three cited circumstances that contribute to a fatality are driving too fast 

for conditions (27.8%), alcohol (26.0%), and inattention (21.4%). 

 For younger drivers, the contributing circumstances of following too close (χ
2
 = 

890.454; p = 0.000), inattention (χ
2
 = 39.385; p = 0.000), driving too fast for 

conditions (χ
2
 = 7,315.776; p = 0.000), speeding (χ

2
 = 3,705.197; p = 0.000), 

driving on the wrong side of the road (χ
2
 = 217.586; p = 0.000), overcorrecting (χ

2
 

= 91.432; p = 0.000), and vision obstructed (χ
2
 = 483.381; p = 0.000) are more 

prevalent than for older drivers (21+ years-old) at a 0.05 significance level.  

 For mature drivers, the contributing circumstances of failing to yield (χ
2
 = 

12,154.163; p = 0.000), improper backing (χ
2
 = 1,692.303; p = 0.000), improper 

lane usage (χ
2
 = 219.905; p = 0.000), improper signal (χ

2
 = 43.305; p = 0.000), 

improper start (χ
2
 = 13.036; p = 0.000), improper turn (χ

2
 = 1,42.693; p = 0.000), 

improperly parked (χ
2
 = 10.823; p = 0.001), improperly stopped (χ

2
 = 57.518; p = 

0.000), physical impairment (χ
2
 = 2,584.381; p = 0.000), violation of stop-

sign/signal (χ
2
 = 577.468; p = 0.000),  driving the wrong way on a one-way street 

(χ
2
 = 17.955; p = 0.000), improper towing (χ

2
 = 3.991; p = 0.000), and striking an 
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object in the roadway (χ
2
 = 17.991; p = 0.000) are more prevalent than for 

younger drivers (<55 years-old) at a 0.05 significance level.  

 A statistically significant difference between genders with respect to crash injury 

severity exists at the 0.05 significance level (χ
2
 = 2828.094; p = 0.000), with fatal 

outcomes and property damage outcomes more prevalent for male drivers and 

injury outcomes more prevalent for female drivers.  

 The contributing circumstances of overcorrected (χ
2
 = 5.598; p = 0.018), 

inattention (χ
2
 = 34.496; p = 0.000), improper turn (χ

2
 = 6.306; p = 0.012), and 

failed to yield (χ
2
 = 67.332; p = 0.000) are more prevalent for female drivers. 

 The contributing circumstances of speeding (χ
2
 = 1332.012; p = 0.000), driving 

too fast for conditions (χ
2
 = 5.900; p = 0.015) improper passing (χ

2
 = 20.698; p = 

0.000), improper lane usage (χ
2
 = 4.942; 0.026), alcohol intoxication (χ

2
 = 

198.025; 0.000) and drug use (χ
2
 = 6.061; p = 0.014) are more prevalent for male 

drivers. 

4.2 Methodology 

The study employs IBM SPSS 22.0 and IBM SPSS Modeler 15.0 to develop and 

ensemble multinomial logit, ordinal probit, artificial neural network, and decision tree 

models to predict the effect of certain factors on crash injury severity.  Descriptions of the 

abovementioned models are as follows.  

4.2.1 Multinomial Logit Model  

The multinomial logit model is an unordered methodological approach used to 

predict the probability of three or more categorical dependent outcomes, given a set of 

independent variables.  This approach assumes independence of irrelevant alternatives 
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(IIA) in which the presence or absence of alternative dependent outcomes does not 

impact the relative probability of modeled dependent outcomes.  Many research studies 

have chosen the multinomial logit approach to account for underreporting when assessing 

crash injury severity (since not all crashes are reported, the ability to accurately assess 

data is limited and can lead to a biased estimates when using crash prediction models) 

(Ye and Lord, 2011).  Multinomial logit models do not consider the natural ordering of 

outcomes (if present) and might be considered less parsimonious than ordered models.  

However, they offer greater explanatory power relative to ordered models due to the 

additional exogenous effects that may be explored (Eluru, 2013); for example, the effect 

of changing environmental conditions on the likelihood of an outcome, while all other 

variables are held constant.   

The multinomial logit model is presented below (Savolainen et al. 2011).   

𝑃𝑛(𝑖) =  
EXP[𝛽𝑖

𝑇 • X𝑖𝑛]

∑ EXP𝑖 [𝛽𝑖
𝑇 • X𝑖𝑛]

 

where 

βi = a vector of estimable parameters  

Xin = a vector of observable characteristics that may impact the probability of 

crash severity outcome i for observation n 

Pn(i) = the probability of the crash severity outcome i for observation n 

The estimation is completed using maximum likelihood methods, and uses the 

likelihood ratio test to assess if a statistically significant difference exists between the 

estimated model and a model in which all of the parameter coefficients are zero.  

Additionally, the number and percentage of correct predictions may be used to evaluate 

prediction accuracy.  Finally, model effectiveness is evaluated using the proportional by 
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chance accuracy criteria, which is calculated by summing the squared proportion that 

each group represents of the sample (White, 2013) and comparing this “by chance” 

accuracy to model forecast accuracy. 

4.2.2 Ordered Logit and Probit Models 

When alternative categorical outcomes are ordinal in nature and share common 

trend and unobservable effects, unordered response models can produce inconsistent 

estimates (Abay, 2013).  Therefore, when the value of the response category has a 

meaningful sequential order (e.g. level of injury severity), ordered probit and ordered 

logit models may be used to account for the ordinal nature of the dependent variable.  

Estimation is usually accomplished using maximum likelihood methods, and the 

estimated relationship can be tested by using probability scores as the predicted values of 

the ordinal categorical outcomes.  The ordered logit and probit models produce similar 

results; however, differences do occur since estimations are derived from assumed 

differing error distributions (logit – cumulative standard logistic distribution and probit – 

cumulative standard normal distribution).  The ordered probit model has been chosen for 

this analysis, since it is the more popular of the two approaches used in prior literature.  

Drawing upon Abdel-Aty (2003) the ordered probit model has the following 

form: 

𝑃𝑛(1) =  𝜑(𝛼1 − 𝛽1𝑋𝑛) 

𝑃𝑛(𝑗) =  𝜑(𝛼𝑗 − 𝛽𝑗𝑋𝑛) −  𝜑(𝛼𝑗−1 − 𝛽𝑗−1𝑋𝑛), 𝑗 = 2, … , 𝐽 − 1 

𝑃𝑛(𝐽) =  1 − ∑ 𝑃𝑛

𝐽−1

𝑗=1

(𝑗) 

where  



 

103 

Copyright, Jill M. Bernard, 2015 

φ = the cumulative standard normal distribution  

αj = the alternative specific constant 

βj = a vector of estimable coefficients 

Xn = a vector of measurable characteristics 

Pn(j) = the probability that subject n belongs to category j 

The predicted outcome is the j-value with the largest probability. 

The ordered probit model assumes that the vector of estimable coefficients in the 

model do not vary for each categorical outcome, and the Brant test of parallel lines is 

used to test whether this assumption (i.e. the proportional odds assumption or, 

alternatively, the parallel lines assumption) holds true.  A significant test statistic 

indicates that the parallel lines assumption has been violated.   

4.2.3 Decision Tree Model 

Decision tree models may be used for classification of occurrences into pre-

specified groups, for prediction of values of a dependent variable based on values of 

independent variables, and for data exploration in model building.  The tree is built by 

applying decision rules sequentially that split a larger heterogeneous population into 

smaller more homogeneous subsets (termed nodes) based on the single, most predictive 

input factor (Eustace et al., 2014).  Subset purity is measured and evaluated using the 

Gini coefficient as the measure of purity to determine the best split for the subset 

(Mingers, 1989a), and factors deemed statistically homogenous, with respect to the target 

outcome, are combined (Trnka, 2010).  Splitting continues for each node until no more 

splits are possible or until pre-defined stopping parameters (e.g. maximum tree depth or 

minimum number of records in branch) are reached.  
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Figure 4.1: Structure of a Decision Tree (Bayam et al., 2005) 

 

Decision trees have several advantages over other models, which include 

nonlinear relationships between variables do not affect performance, the data partitioning 

yields insights into input / output relationships, each path of the decision tree contains an 

estimated risk factor, missing values are accommodated automatically, and the output is 

simple to understand and interpret.  However, overfitting of the model can occur if the 

learning algorithm fits data that is irrelevant (i.e. noise), which results in a model that 

may not be generalizable (Bayam et al., 2005).  Fortunately, to avoid overfitting and 

improve generalization, pruning may be used to remove lower-level splits that do not 

significantly contribute the generalized accuracy of the model (Mingers, 1989b).   

Various decision tree algorithms, including Classification and Regression Tree 

(CART) and Chi-square Automatic Interaction Dedication (CHAID), build and prune 

decision trees in differing ways.  CART creates binary trees by splitting records at each 

node, and builds larger trees that are then pruned back to mitigate overfitting.  CHAID 

creates wider, non-binary trees (often with many terminal nodes connected to a single 

branch) and automatically prunes the decision tree to avoid overfitting of the model 

(Bayam et al., 2005).  Model fit is evaluated by testing the hypotheses that a difference 

between the classification accuracy (i.e. percentage of correct classifications) of the 
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testing set and the training set is present.  If a significant difference exists, then 

overfitting is suggested. 

4.2.4 Artificial Neural Network 

In large data sets, artificial neural networks (ANN) are useful in exploring 

complex nonlinear relationships.  The model may be estimated without hypothesizing 

relationships between the dependent and independent variables a priori (Abdelwahab and 

Abdel-Aty, 2001), uses minimal assumptions, and acquires relationship understanding 

through learning or training processes that rely upon information from previous 

observations to predict new observations (Savolinen et al., 2011).  ANN consists of three 

layers: an input layer that represents the input variables, hidden layer(s) that uncover 

patterns between the input and output variables, and an output layer that contains the 

outcome variables (Bayam et al., 2005).  

Figure 4.2: Structure of a Multilayer Perception Neural Network (Bayam et al., 

2005) 

 

The multilayer perception (MLP) network, a type of ANN, has been found to be 

“a robust function approximator for prediction and classification problem[s]” (Delen et 

al., 2006, p. 437).  The MLP involves a general mapping procedure and is comprised of 

many simple processors each with a small amount of local memory.  The three layers, as 
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illustrated in Figure 4.2, include input layers with K nodes and a bias node, hidden layers 

with J nodes and a bias node, and output layers with I nodes and no bias node 

(Abdelwahab and Abdel-Aty, 2001).   

The MLP network estimation is completed in two phases: a training phase that 

uses a collection of patterns for learning in order to train the network, and a testing phase 

that compares the output from the trained network to the desired output in order to test for 

classification accuracy (Abdelwahab and Abdel-Aty, 2002).  The MLP is trained using a 

back-propagation algorithm, and allows only feed-forward connections (Abdelwahab and 

Abdel-Aty, 2001) that use directed arrows as coefficients (i.e. weights) (Delen et al., 

2006).    

ANN models, including MLP networks, are advantageous in capturing the 

relationship between factors and outcomes by possessing the following characteristics 

(Abdelwahab and Abdel-Aty, 2001):       

 Nonlinear input-output mapping: ANNs learn nonlinear mapping directly from 

training data. 

 Generalization: ANNs fit the desired function that allows for generalization.   

 Adaptability: ANNs can adjust connection weights and network structure to optimize 

behaviors.  

 Fault tolerance: The large numbers of connections produced by ANNs allow for 

redundancy and each node relies on local information.    

Unfortunately, too many hidden layers can result in overfitting and too few can result 

in high statistical bias (Bayam et al., 2005).  Additionally, this approach does not provide 
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a straightforward translation of the weights of the links, and it does have greater 

computational burden over the aforementioned methodologies (Bayam et al., 2005).   

4.2.5 Model Ensemble  

Advances in data mining techniques utilize ensemble learning to (1) reduce the 

impact of inaccurate model selection, (2) properly represent data distributions, and (3) 

enhance predictive performance (Dietterich, 2000; Polikar, 2006).  As illustrated in 

Figure 4.3, ensemble-based systems draw upon multiple experts by creating and 

combining the outputs of individual models, with the intent to produce a combination of 

models that has greater performance (e.g. prediction) over any single model (Polikar, 

2006).   

 

Figure 4.3: Model Ensemble Illustration 

 

To obtain greater accuracy relative to the individual models, diversity in ensemble 

learning must be present (Hansen and Salamon, 1990); and, can be created by combining 

different modeling types (Polikar, 2006).  As a result, it is instinctual that if proper 

diversity is attained and each model produces different errors, then a strategic 

combination of the models will reduce the total error (Polikar, 2006).  Diversity may be 
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achieved by using differing modeling types and/or using different subsets of data 

(Polikar, 2006). 

The basic procedure to ensemble models employs the following logic:  

Step I: Create multiple models of differing types and evaluate each model. 

Step II: Construct and evaluate an ensemble of these models. 

A. When the constituent model results concur, use the unanimous prediction.   

B. When the constituent model results conflict, use a scoring method to combine 

predictions.   

a. Choose one of several scoring strategies (Kittler et al., 1998; Polikar, 

2006).  

i. Algebraic combiners: minimum rule, maximum rule, sum rule, 

product rule, median rule, and mean rule  

ii. Voting based methods: majority voting and weighted majority 

voting 

iii.  Probability voting: highest probability and highest mean 

probability 

iv.  Other: Softmax smoothing, Borda count, behavior knowledge 

space, and Dempster-Schafer rule.  

b. If voting is tied, select value using either random selection or highest 

confidence.   

The dataset is randomly partitioned into a training set and a holdout subset, i.e. a 

testing set, to test for model accuracy.  The accuracy of the final model ensemble is 

compared with the accuracy of the constituent models used in the ensemble by examining 
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the confusion matrices (i.e. confidence matrices).  Additionally, the diversity of opinion 

amongst the models used in the ensemble will be measured to assess the extent that 

predictions vary across the base models.  Finally, the area under the ROC curve (AUC) is 

used to assess the models’ ability to distinguish between the outcome groups (i.e. levels 

of injury severity) to examine the quality of each model relative to randomly choosing an 

outcome (i.e. not using a model at all and assigning outcomes at random). 

Chapter 5 – Analysis  

5.1 Examination of Individual Models  

Multinomial logit, ordinal probit, decision tree and artificial neural network 

models are estimated to predict the effect of certain factors on crash injury severity, and 

then the performance the individual models is assessed by examining the relative 

discriminatory power of each model on a training subset and a testing subset of the data. 

5.1.1 Multinomial Logit 

A multinomial logit regression model is estimated to analyze the factors that 

affect crash injury severity.  Using the unit of analysis defined in Chapter 4, observations 

in the data set include crashes in which the person involved was the driver of a motor 

vehicle who contributed to a reported crash in Missouri in the years 2002 through 2012, 

and held a valid driver’s license issued by the state of Missouri at the time of the crash.  

A main-effects model that includes the covariate and factor direct effects, but does not 

include interaction effects between variables, is estimated.  The base category is set to 

property damage only, and maximum-likelihood is used to estimate the parameters of the 

model. 
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Initial model runs suggested that a perfect prediction (quasi-separation) existed 

for the three categorical severity outcomes with respect to the variables of (1) 

contributing circumstances, (2) road conditions, (3) road surface, (4) weather conditions, 

(5) light conditions, (6) crash type, and (7) day of the week.  The quasi-separation is 

resolved by combining certain variables and categories with similar magnitudes and by 

removing certain categories and variables.  For the variables classified as Contributing 

Circumstances, Improper Signal, Improper Start from Park, Improperly Parked, Driver 

Fatigue/Asleep, Failed to Dim Lights, Failed to Use Lights, Improper Towing/Pushing, 

Improper Riding/Clinging to the Vehicle Exterior, Failed to Secure Load/Improper 

Loading, Object/Obstruction in the Roadway are combined with the Other variable, and 

the variable Unknown is removed.  For the variable Road Conditions, the categories of 

Ice/Frost, Mud, Slush, Standing Water, and Moving Water are combined with the 

category of Other/Unknown.  For the variable Road Surface, the categories of Brick, 

Dirt/Sand, and Multi-Surface are combined into one category.  For the variable Speed 

Limit, the categories of 15mph and 20mph are combined, 25mph and 30mph are 

combined, 35mph and 40mph are combined, 45mph and 50mph are combined, 55mph 

and 60mph are combined, and 65mph and 70mph are combined.  For the variable Light 

Conditions, the categories of Indeterminate and Unknown are combined.  For the 

variables Age and Gender, the category of Unknown is excluded.  The variables of Day 

of the Week and Crash Type are removed from the analysis.  Finally, 2,195 cases with 

missing values are removed.  Using this criterion, the final multinomial model is 

estimated using the variables identified in Table 5.1; and, the number of observations and 

distribution across injury severities for the sample are shown in Table 5.2. 
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Table 5.1: Variables Included in Multinomial Model  

 

Driver Characteristics

Age Young (<21 years-old); Middle (≥21 and <55 years-old); Mature (≥ 55 years-old); Unknown

Gender Male; Female; Unknown

Vehicle Occupants

Total Number of Occupants 1 to 149

Contributing Circumstances

Alcohol Present = 1; Not Present = 0

Animal(s) in Roadway Present = 1; Not Present = 0

Distracted/Inattentive Present = 1; Not Present = 0

Drugs Present = 1; Not Present = 0

Failed to Yield Present = 1; Not Present = 0

Following Too Close Present = 1; Not Present = 0

Improper Backing Present = 1; Not Present = 0

Improper Lane Usage/Change Present = 1; Not Present = 0

Improper Passing Present = 1; Not Present = 0

Improper Turn Present = 1; Not Present = 0

Improperly Stopped Present = 1; Not Present = 0

Other Present = 1; Not Present = 0

Overcorrected Present = 1; Not Present = 0

Physical Impairment Present = 1; Not Present = 0

Speed - Exceeds Limit Present = 1; Not Present = 0

Too Fast for Conditions Present = 1; Not Present = 0

Vehicle Defects Present = 1; Not Present = 0

Violation Stop Sign/Signal Present = 1; Not Present = 0

Vision Obstructed Present = 1; Not Present = 0

Wrong Side - Not Passing Present = 1; Not Present = 0

Wrong Way (One Way) Present = 1; Not Present = 0

Location

Crash Location On Roadway; Off Roadway

Road Characteristics

Road Conditions Other/Unknown; Wet; Snow; Ice: Dry

Road Alignment Unknown; Curve; Straight

Road Profile Unknown; Hill/Grade; Crest; Level

Road Surface Unknown; Asphalt; Gravel; Brick/Dirt/Sand/Multi-Surface, Concrete

Speed Limit 15 or 20mph; 25 or 30mph; 35 or 40mph; 45 or 50mph; 55 or 60mph; 65 or 70mph; Unknown

Environmental Factors

Weather Conditions Cloudy; Rain; Snow; Sleet; Freezing Rain; Fog/Mist; Indeterminate; Clear

Light Conditions Indeterminate; Dark-Streetlights On; Dark-Streetlights Off; Dark-No Streetlights; Daylight

Dependent Variable

Injury Severity Fatal; Injury; Property Damage Only
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Table 5.2: Frequency of Crash Severity for Selected Dataset  

 

The dataset is randomly partitioned into a training set (75%; n=948,679) to 

estimate the model, and a testing set (25%; n=316,784) to assess model accuracy, 

generalizability, and overfitting.  The data partitioning was completed prior to estimating 

all models, so that identical observations are used for training of the each of the four 

categories of models (multinomial logit, ordered probit, decision tree, and artificial neural 

network).  If an estimated model performs similarly on the training set and the testing set, 

it is inferred that the estimated model is not overfit to the dataset.   

For the multinomial model estimated on the training set, the overall goodness of 

fit test, presented in Table 5.3, with 948,679 observations yields a χ
2
 = 130,650.385 with 

112 degrees of freedom and a p-value of 0.000.  Table 5.4 presents the pseudo R-Square 

values for the training set; Table 5.5 presents the standard errors and p-values for each 

independent variable for the training set; Table 5.6 presents the parameter estimates and 

equation specific significance tests for the training set of the model with the baseline 

category of “property damage only”; and, Tables 5.7 and 5.8 present the model 

coincidence matrices (also referred to as the classification table) for the training and 

testing sets. 

 

 

 
 

Injury Severity Frequency

Fatal 8,096        

Injury 358,162    

Property Damage 899,205    

Total 1,265,463 
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Table 5.3: Multinomial Model Fitting Information  

 
Model Fitting Information 

Model 

Model Fitting 

Criteria Likelihood Ratio Tests 

-2 Log 

Likelihood Chi-Square df Sig. 

Intercept Only 769,957.259    

Final 639,530.874 130,650.385 112 .000 

 

Table 5.4: Multinomial Model Pseudo R-Square 
 

Pseudo R-Square 

Cox and Snell .098 

Nagelkerke .137 

McFadden .082 
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Table 5.5: Multinomial Model Likelihood Ratio Test 

Likelihood Ratio Tests 

Effect 

Model Fitting 

Criteria Likelihood Ratio Tests 

-2 Log Likelihood 

of Reduced 

Model Chi-Square df Sig. 

Intercept 639530.874 .000 0 . 

Alcohol  644336.640 4839.766 2 .000 

Drugs 640063.587 536.713 2 .000 

Failed to Yield 643534.816 4007.942 2 .000 

Following Too Close 640332.406 805.532 2 .000 

Improper Backing 647124.804 7597.930 2 .000 

Improper Lane Usage 639881.061 354.186 2 .000 

Improper Passing 639724.796 197.922 2 .000 

Improper Turn 639724.538 197.664 2 .000 

Improperly Stopped 639549.721 22.847 2 .000 

Distracted/Inattentive 640077.383 550.508 2 .000 

Physical Impairment 645118.004 5591.130 2 .000 

Speed – Exceeds Limit 646673.615 7146.740 2 .000 

Too Fast for Conditions 643412.597 3885.723 2 .000 

Vehicle Defects 639587.934 61.060 2 .000 

Violation Stop Sign/Signal 646156.218 6629.344 2 .000 

Wrong Side – Not Passing 641663.543 2136.669 2 .000 

Wrong Way (One Way) 639800.023 273.149 2 .000 

Overcorrected 639676.792 149.918 2 .000 

Total Number of Occupants 667721.349 28194.475 2 .000 

Animal(s) in Roadway 639712.871 185.997 2 .000 

Other 639557.920 31.046 2 .000 

Vision Obstructed 639623.763 96.889 2 .000 

Crash Location On/Off Roadway  641906.921 2380.047 2 .000 

Road Conditions 641744.538 2229.664 8 .000 

Road Alignment 639698.527 175.653 4 .000 

Road Profile  640752.994 1234.120 6 .000 

Weather Conditions  639666.371 163.497 14 .000 

Light Conditions 640124.753 609.879 8 .000 

Speed Limit 658125.198 18618.323 12 .000 

Age Groups 640135.580 612.706 4 .000 

Gender 640283.150 756.276 2 .000 

Road Surface 640527.963 1013.089 8 .000 
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Table 5.6: Multinomial Model Parameter Estimates 

Crash Severity B 

Std. 

Error Wald Sig. Exp(B) 

Fatal Intercept -7.321 .165 1979.362 .000   

Alcohol  1.095 .032 1172.772 .000 2.990 

Drugs .969 .062 241.740 .000 2.635 

Failed to Yield .313 .041 59.297 .000 1.368 

Following Too Close -1.795 .081 489.339 .000 .166 

Improper Backing -2.161 .261 68.479 .000 .115 

Improper Lane Usage .261 .031 69.245 .000 1.299 

Improper Passing .156 .072 4.756 .029 1.169 

Improper Turn -.730 .103 50.493 .000 .482 

Improperly Stopped -.008 .178 .002 .965 .992 

Distracted/Inattentive -.082 .031 7.146 .008 .921 

Physical Impairment .947 .056 288.868 .000 2.577 

Speed – Exceeds Limit 2.337 .035 4472.594 .000 10.355 

Too Fast for Conditions .518 .032 264.997 .000 1.679 

Vehicle Defects -.641 .091 49.857 .000 .527 

Violation of Stop Sign/Signal .960 .054 320.788 .000 2.612 

Wrong Side – Not Passing 1.477 .036 1650.889 .000 4.380 

Wrong Way (One Way) 1.881 .122 239.254 .000 6.561 

Overcorrected .830 .141 34.430 .000 2.293 

Total Number of Occupants .252 .004 5030.091 .000 1.287 

Animal(s) in Roadway -1.677 .306 29.975 .000 .187 

Other  -.770 .168 21.088 .000 .463 

Vision Obstruction .146 .045 10.456 .001 1.158 

Crash Location = On Roadway -.307 .029 110.307 .000 .736 

Crash Location = Off Roadway  0 . . . .  

Road Conditions = 

Other/Unknown 
-.465 .148 9.864 .002 .628 

Road Conditions = Wet -.650 .047 193.334 .000 .522 

Road Conditions = Snow -1.337 .115 134.333 .000 .263 

Road Conditions = Ice -1.197 .126 89.510 .000 .302 

Road Conditions = Dry 0 . . . .  

Road Alignment = Unknown -.558 .344 2.641 .104 .572 
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Road Alignment = Curve .253 .027 90.032 .000 1.288 

Road Alignment = Straight 0 . . . .  

Road Profile = Unknown -.527 .220 5.714 .017 .590 

Road Profile = Hill/Grade .607 .024 615.832 .000 1.834 

Road Profile = Crest .456 .065 48.903 .000 1.578 

Road Profile = Level 0 . . . .  

Weather Conditions = Cloudy .104 .028 13.840 .000 1.110 

Weather Conditions = Rain -.019 .069 .075 .784 .981 

Weather Conditions = Snow -.232 .125 3.435 .064 .793 

Weather Conditions = Sleet -.539 .262 4.222 .040 .584 

Weather Conditions = Freezing 

Rain 
-.001 .161 .000 .995 .999 

Weather Conditions = Fog/Mist .326 .114 8.263 .004 1.386 

Weather Conditions= 

Indeterminate 
.560 .208 7.280 .007 1.751 

Weather Conditions = Clear 0 . . . .  

Light Conditions = 

Indeterminate 
.036 .138 .068 .795 1.037 

Light Conditions = Dark – 

Streetlights On 
.156 .040 15.044 .000 1.169 

Light Conditions = Dark – 

Streetlights Off 
.345 .073 22.456 .000 1.413 

Light Conditions = Dark – No 

Streetlights 
.549 .030 329.547 .000 1.731 

Light Conditions = Daylight 0 . . . .  

Speed Limit =15 or 20 mph  -.273 .214 1.635 .201 .761 

Speed Limit = 25 or 30 mph .370 .161 5.267 .022 1.447 

Speed Limit = 35 or 40 mph 1.101 .158 48.489 .000 3.007 

Speed Limit = 45 or 50 mph 1.718 .159 116.366 .000 5.574 

Speed Limit = 55 or 60 mph 2.500 .157 254.312 .000 12.177 

Speed Limit = 65 or 70 mph 2.578 .159 263.028 .000 13.175 

Speed Limit = Unknown 0 . . . .  

Age Group = Young Driver 

(<21) 
-.923 .038 587.074 .000 .397 

Age Group = Middle Drivers 

(≥ 22 and <55) 
-.614 .030 414.859 .000 .541 
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Age Group = Mature Driver( ≥ 

55 and ≤ 98) 
0 . . . .  

Gender = Male .348 .026 174.405 .000 1.416 

Gender = Female 0 . . . .  

Road Surface = Unknown -.715 .276 6.721 .010 .489 

Road Surface = Asphalt .285 .036 62.852 .000 1.330 

Road Surface = Gravel .033 .069 .225 .635 1.033 

Road Surface = Brick, Dirt, 

Sand, Multi-Surface 
.008 .086 .009 .923 1.008 

Road Surface = Concrete 0 . . . .  

Injury Intercept -1.944 .017 13769.026 .000   

Alcohol  .623 .009 4345.180 .000 1.864 

Drugs .454 .022 429.469 .000 1.574 

Failed to Yield .425 .007 4038.495 .000 1.530 

Following Too Close -.023 .007 11.114 .001 .977 

Improper Backing -1.749 .026 4687.989 .000 .174 

Improper Lane Usage -.124 .008 251.958 .000 .883 

Improper Passing -.248 .019 178.316 .000 .780 

Improper Turn -.144 .012 141.771 .000 .866 

Improperly Stopped .142 .029 23.163 .000 1.152 

Distracted/Inattentive .128 .006 530.220 .000 1.136 

Physical Impairment 1.027 .014 5644.775 .000 2.792 

Speed – Exceeds Limit .892 .013 4901.107 .000 2.439 

Too Fast for Conditions .448 .007 3836.542 .000 1.566 

Vehicle Defects -.021 .013 2.511 .113 .979 

Violation of Stop Sign/Signal .805 .010 6755.705 .000 2.237 

Wrong Side – Not Passing .479 .014 1174.046 .000 1.614 

Wrong Way (One Way) .634 .051 157.153 .000 1.885 

Overcorrected .529 .045 139.322 .000 1.698 

Total Number of Occupants .210 .001 24688.622 .000 1.233 

Animal(s) in Roadway -.501 .043 134.734 .000 .606 

Other  -.048 .021 5.288 .021 .953 

Vision Obstruction .071 .007 91.165 .000 1.074 

Crash Location = On Roadway  -.296 .006 2363.152 .000 .744 

Crash Location = Off Roadway  0 . . . .  
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Road Conditions = 

Other/Unknown 
-.172 .024 52.223 .000 .842 

Road Conditions = Wet -.207 .008 671.580 .000 .813 

Road Conditions = Snow -.669 .018 1404.447 .000 .512 

Road Conditions = Ice -.488 .020 582.832 .000 .614 

Road Conditions = Dry 0 . . . .  

Road Alignment = Unknown -.243 .035 49.354 .000 .785 

Road Alignment = Curve .039 .006 43.793 .000 1.040 

Road Alignment = Straight 0 . . . .  

Road Profile = Unknown -.166 .023 52.079 .000 .847 

Road Profile = Hill/Grade .109 .005 534.030 .000 1.115 

Road Profile = Crest .157 .013 143.084 .000 1.170 

Road Profile = Level 0 . . . .  

Weather Conditions = Cloudy .011 .005 3.923 .048 1.011 

Weather Conditions = Rain -.053 .011 23.047 .000 .948 

Weather Conditions = Snow -.133 .019 49.425 .000 .876 

Weather Conditions = Sleet -.147 .037 15.641 .000 .863 

Weather Conditions = Freezing 

Rain 
-.031 .029 1.183 .277 .969 

Weather Conditions = Fog/Mist .039 .027 2.076 .150 1.040 

Weather Conditions= 

Indeterminate 
-.169 .035 23.447 .000 .844 

Weather Conditions = Clear 0 . . . .  

Light Conditions = 

Indeterminate 
.005 .020 .059 .808 1.005 

Light Conditions = Dark – 

Streetlights On 
.020 .006 10.167 .001 1.020 

Light Conditions = Dark – 

Streetlights Off 
-.067 .019 12.480 .000 .935 

Light Conditions = Dark – No 

Streetlights 
.147 .008 334.397 .000 1.158 

Light Conditions = Daylight  . . . .  

Speed Limit =15 or 20 mph  -.241 .020 152.506 .000 .786 

Speed Limit = 25 or 30 mph .177 .014 157.898 .000 1.193 

Speed Limit = 35 or 40 mph .541 .014 1540.020 .000 1.718 

Speed Limit = 45 or 50 mph .596 .015 1652.840 .000 1.815 
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Speed Limit = 55 or 60 mph .874 .014 3819.589 .000 2.396 

Speed Limit = 65 or 70 mph .581 .016 1349.088 .000 1.788 

Speed Limit = Unknown 0 . . . .  

Age Group = Young Driver 

(<21) 
-.019 .007 8.198 .004 .981 

Age Group = Drivers (≥ 22 and 

<55) 
-.001 .006 .018 .894 .999 

Age Group = Mature Driver( ≥ 

55 and ≤ 98) 
0 . . . .  

Gender = Male -.097 .004 524.506 .000 .908 

Gender = Female 0 . . . .  

Road Surface = Unknown -.006 .026 .055 .814 .994 

Road Surface = Asphalt .142 .006 646.160 .000 1.152 

Road Surface = Gravel .085 .015 31.675 .000 1.089 

Road Surface = Brick, Dirt, 

Sand, Multi-Surface 
-.135 .016 68.398 .000 .874 

Road Surface = Concrete 0 . . . .  

a. The reference category is: Property Damage Only  

As illustrated in Table 5.5, the likelihood ratio tests indicate that all variables are 

significant in the model at the 0.000 significance level.  The Fatality equation in Table 

5.6 suggests that the likelihood that a crash results in a fatality increase as the total 

number of occupants increases, speed limits increase, and the contributory circumstances 

of speed exceeding the limit, driving the wrong way on a one-way, driving on the wrong 

side of the road when not passing, alcohol use, drug use, violating a stop sign or signal, 

and driving while physically impaired are noted.  Furthermore, the results suggest that the 

likelihood that a crash results in a fatality is lower when the driver is young (less than 21 

years old), and the contributory circumstances of improper backing, following too close, 

striking an animal/animal obstruction, snow, and ice are noted.   

Additionally, the Injury equation in Table 5.6 suggests that injuries are more 

likely for crashes when the number of occupants increases, and the contributory 
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circumstances of alcohol, physical impairment, driving the wrong way on a one-way 

street, speed exceeding the limit, violation of a stop sign or signal, and increased speed 

limits are noted.  The results also indicate that injuries are less likely for crashes where 

the contributory circumstances of improper backing, animal obstruction, and snow are 

noted.   

The coincidence matrices for the training and testing sets, presented in Tables 5.7 

and 5.8, illustrate how well the model correctly classifies cases.  The matrices indicate 

that the multinomial model has an overall classification accuracy rate of 72.0% for both 

the training set and the testing set, which suggests that the model is not overfit to the 

training dataset.   

Table 5.7: Multinomial Model Coincidence Matrix for the Training Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 21 2,486 3,516 0.3% 

Injury 48 38,754 229,663 14.4% 

Property Damage 15 29,912 644,264 95.6% 

Overall Percentage 0.0% 7.5% 92.5% 72.0% 

 

Table 5.8: Multinomial Model Coincidence Matrix for the Testing Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 12 855 1,206 0.6% 

Injury 11 12,755 76,931 14.2% 

Property Damage 5 9,698 215,311 95.7% 

Overall Percentage 0.0% 7.4% 92.6% 72.0% 
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The factors with the greatest predictor importance for crash injury severity (i.e. 

the relative importance of each predictor in estimating the model) are calculated from the 

testing partition.  The model determines predictor importance by computing the reduction 

in variance of the target attributable to each predictor via a sensitivity analysis.  For 

details of the sensitivity analyses employed, see Chapter 29 of the IBM SPSS Modeler 15 

Algorithms Guide (2012), Saltelli et al. (2004) and Saltelli (2002).   
The predictor importance chart shows the top predictive factors and their relative 

importance values, which are normalized to sum to unity.  Figure 5.1 presents the top ten 

factors suggested to have greatest importance in estimating the multinomial model. 

Figure 5.1: Multinomial Model Predictor Importance 

 

Lift curves are often used to illustrate the improvement that a model provides over 

a “random” guess of the dependent variable, to compare the accuracy of predictions 

among multiple models, and to help identify which model most accurately forecasts 

outcomes for subsets of cases (Vuk and Curk, 2006).  The points on a lift curve are 

computed by determining the ratio between the number of correct results of a particular 

outcome predicted by the model and the expected number of correct results of that 
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outcome using no model for segments of the population (Fawcett, 2006).  To create a lift 

curve, the cases are assorted in descending order of the estimated probability of an 

outcome, and the chart is constructed with the cumulative proportion of the total number 

of cases on the x-axis and the ratio of the cumulative number of true positives to the 

cumulative random number of true positives on the y-axis (Shmueli et al., 2011).  The 

chart illustrates the observations from a selected outcome (e.g. fatality, injury, or property 

damage only) that are classified correctly, referred to as the true positives (Shmueli et al., 

2011).  A good classifier will have a high lift when only a small number of cases are 

selected, and will decrease to unity as the number of cases selected increases (Shmueli et 

al., 2011). 

Figures 5.2, 5.3, and 5.4 present lift charts for the multinomial model for fatal, 

injury and property damage only outcomes respectively.  The red lines represent the ratio 

of the expected number of positive fatal outcomes (Figure 5.2), the expected number of 

positive injury outcomes (Figure 5.3), and the expected number of property damage only 

outcomes (Figure 5.4) to their sample proportions that would be predicted if the outcomes 

were simply selected at random (unity).  Tables 5.9, 5.10, and 5.11 provide the lift values 

for the fatal, injury, and property damage only lift charts for the training and testing sets 

and the number of expected, observed, cumulative expected and cumulative observed 

cases for the testing sets for each decile.   

Inspection of the figures and tables indicates that the multinomial logit model 

provides significant and similar lifts for each severity outcome for both the training and 

testing data partitions.  Further inspection reveals greater lift for fatal outcomes than for 
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injury outcomes with injury outcomes also providing greater lift than property damage 

only outcomes across both the training and testing data partitions.  

Figure 5.2: Multinomial Logit Lift Chart for Fatal Outcomes 

 

Table 5.9: Lift Values, Expected and Observed Counts per Decile for Fatal 

Outcomes  

Decile 
Lift 

Training Set 

Lift 

Testing Set 

Expected 

Outcomes 

Testing Set 

Observed 

Outcomes 

Testing Set 

Cumulative 

Expected 

Testing Set 

Cumulative 

Observed 

Testing Set 

1 6.3625 6.1651 1,223.50 1,278 1,223.50 1,278 

2 4.0561 3.9894 320.77 376 1,544.27 1,654 

3 2.9797 2.9571 173.01 185 1,717.28 1,839 

4 2.3390 2.3251 105.56 89 1,822.84 1,928 

5 1.9299 1.9141 69.87 56 1,892.71 1,984 

6 1.6324 1.6305 48.35 44 1,941.06 2,028 

7 1.4139 1.4134 33.62 23 1,974.68 2,051 

8 1.2448 1.2446 22.10 13 1,996.78 2,064 

9 1.1109 1.1079 12.43 3 2,009.21 2,067 

10 1.0 1.0 4.70 6 2,013.91 2,073 
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Figure 5.3: Multinomial Logit Lift Curve for Injury Outcomes 

 

Table 5.10: Lift Values, Expected and Observed Counts per Decile for Injury 

Outcomes 

Decile 
Lift 

Training Set 

Lift 

Testing Set 

Expected 

Outcomes 

Testing Set 

Observed 

Outcomes 

Testing Set 

Cumulative 

Expected 

Testing Set 

Cumulative 

Observed 

Testing Set 

1 1.8761 1.8786 17,445.63 16,850 17,445.63 16,850 

2 1.71 1.7197 13,131.65 13,998 30,577.28 30,848 

3 1.5896 1.5947 11,200.40 12,064 41,777.68 42,912 

4 1.4847 1.4921 9,757.94 10,623 51,535.62 53,535 

5 1.3877 1.3955 8,754.91 9,053 60,290.53 62,588 

6 1.3019 1.3067 7,799.85 7,737 68,090.38 70,325 

7 1.2199 1.2246 6,951.64 6,564 75,042.02 76,889 

8 1.1466 1.1482 6,205.71 5,508 81,247.73 82,397 

9 1.0775 1.0784 5,256.24 4,660 86,503.97 87,057 

10 1.0 1.0 3,062.78 2,640 89,566.75 89,697 
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Figure 5.4: Multinomial Logit Lift Curve for Property Damage Only Outcomes 

 

Table 5.11: Lift Values, Expected and Observed Counts per Decile for Property 

Damage Only Outcome 

Decile 
Lift 

Training Set 

Lift 

Testing Set 

Expected 

Outcomes 

Testing Set 

Observed 

Outcomes 

Testing Set 

Cumulative 

Expected 

Testing Set 

Cumulative 

Observed 

Testing Set 

1 1.286 1.2899 28,601.61 29,024 28,601.61 29,024 

2 1.2417 1.2446 26,391.23 26,990 54,992.84 56,014 

3 1.2123 1.217 25,430.22 26,139 80,423.06 82,153 

4 1.1882 1.1912 24,669.59 25,064 105,092.65 107,217 

5 1.1621 1.1653 23,794.97 23,882 128,887.62 131,099 

6 1.1356 1.1379 22,818.29 22,525 151,705.91 153,624 

7 1.1074 1.1083 21,772.02 20,939 173,477.93 174,563 

8 1.0763 1.0769 20,264.89 19,287 193,742.82 193,850 

9 1.043 1.0432 1,819.68 17,418 195,562.50 211,268 

10 1 1 13,263.86 13,746 208,826.36 225,014 

 
According to Fawcett (2006), when an outcome is rare (the distribution of outcomes 

is highly skewed) and the proportion of outcomes can change, model evaluation based 

solely on the true positive rate (lift charts) may not reveal the true discriminatory power 

of a model in a sample since the lift depends on the ratio of positives to negatives in the 

sample.  Receiver Operating Characteristic (ROC) curves are an alternative construct 

employed to assess a model’s capability to discriminate amongst outcomes at various 
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thresholds (Provost and Fawcett, 1997; Fawcett, 2006).  ROC curves are constructed by 

plotting the true positive rate (the sensitivity) against a false positive rate (1-the 

specificity) for subsets of the observations, and are calculated as follows (Fawcett, 2006).   

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  

Following Fawcett (2006), ROC curves are constructed to assess the multinomial 

model’s capability to (1) predict a fatal outcome relative to property damage and injury 

only outcomes and to (2) predict a property damage only outcome relative to fatal and 

injury outcomes.  These curves help evaluate the model’s prediction of the outcome with 

the greatest severity, a fatality outcome, against the two non-fatal outcomes, as well as to 

evaluate the model’s prediction capability of the least severe outcome, a property damage 

only outcome, versus the two more severe outcomes, fatality and injury outcomes.  

Figures 5.5 and 5.6 present the ROC curves and illustrate that the multinomial model 

better predicts fatal versus non-fatal outcomes and non-injury versus injury outcomes 

than if no model is used and the outcomes are randomly assigned.  

By calculating the area under the ROC curve (AUC), this study quantifies the 

significance of the findings of the ROC curve.  The AUC is a widely recognized measure 

of discriminatory power (Worster et al., 2006) and quality of probabilistic classifiers 

(Vuk and Curk, 2006).  The AUC measures the classifiers’ performance across the entire 

range of potential outcome distributions (Vuk and Curk, 2006), and is equal to the 

likelihood of assigning a higher probability that injury or death will occur for randomly 

selected cases  where injury or death does occur than for cases where injury or death does 
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not occur (Fawcett, 2006).  A maximal AUC value of 1.0 suggests a perfectly 

discriminating model and an AUC value of 0.5 suggests no discriminative value (Worster 

et. al 2006); and, no accurate classifier should have an AUC of less than 0.5 (Fawcett, 

2006).  The AUC for the multinomial model’s performance are 0.883 for the predicted 

probability of a fatal outcome relative to a nonfatal outcome (presented in Tables 5.12) 

and 0.695 for a non-injury outcome relative to an injury outcome (presented in Tables 

5.13), both of which are different from 0.5 at asymptotically significant levels of 0.000 

suggesting that the multinomial model has good discriminatory power.   
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Figure 5.5: Multinomial Logit ROC Curve Fatal Outcome using the Testing Set  

 

 

Table 5.12: AUC for Multinomial Logit Prediction of Fatal Outcome using the 

Testing Set 
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Figure 5.6: Multinomial Logit ROC Curve Property Damage Only Outcome using 

the Testing Set 

 

Table 5.13: AUC for Multinomial Logit Prediction of Property Damage Only 

Outcome using the Testing Set 
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Important findings for the Multinomial Logit Model include: 

 Classification accuracy rate equals 72.0% for both the training set and the testing 

set. 

 AUC for a fatal outcome equals 0.883 for the testing set.  

 AUC for a property damage only outcome equals 0.695 for the testing set. 

 The AUC scores are both significantly greater than 0.5, indicating significant 

discriminatory power. 

  The three most important predictors of crash severity are speed – exceeds limit, 

total number of occupants involved, and improper backing.  

5.1.2 Ordered Probit 

To utilize the information in the natural ordering of the crash injury severity 

outcomes, an ordered probit regression model is developed with the outcome thresholds 

(property damage only, injury and fatality) assumed to be a natural ascending order.  The 

development of the ordered probit model uses the case selection criteria and factors 

employed in the final multinomial logit model, and the model is estimated using the 

maximum likelihood method. The proportional odds assumption (also referred to as the 

parallel regressions assumption or the parallel lines assumption) is tested, since this 

single equation model invokes this assumption.  The null hypothesis for this test is that 

the values of the coefficients of the independent variables are the same across response 

categories (Long, 1997; Williams, 2008).  The Brant test of parallel lines for the 

estimated ordered probit model produces a chi-square of 6,544.677 with 59 degrees of 

freedom which is significant at a level of less than 0.000, as illustrated in Table 5.14.  

Therefore, the null hypothesis is rejected.  Rejecting the null hypothesis can lead to 
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inconsistent model estimation (Eluru et al. 2008); and therefore, this approach is not 

carried forward.    

Table 5.14: Test of Parallel Lines 

 

5.1.3 Decision Tree  

Decision tree models can yield additional insights into the relationships between 

the explanatory variables and crash injury severity.  As described in Chapter 4, decision 

tree algorithms, including CART and CHAID techniques, build and prune decision trees 

in differing methods to mitigate against possible overfitting.  CART builds larger trees 

that are then pruned back to mitigate overfitting, while CHAID automatically prunes the 

decision tree to avoid overfitting of the model (Bayam et al., 2005).  Both CART and 

CHAID trees are estimated, the discriminatory performance of each algorithm is 

evaluated, and the model with the greatest discriminatory power is identified and carried 

forward as a constituent ensemble model.  The models’ performances are compared by 

calculating and evaluating the classification accuracy and the AUC values for each 

model.   
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The CART algorithm nodal splitting criteria are set to a minimum absolute value 

of 100 records in a parent branch and a minimum of 50 records in a child branch as the 

stopping criteria; the Gini coefficient is used as the impurity measure for the categorical 

targets; the maximum tree depth is set to 15 branches; and, the tree is pruned by merging 

leaves on the same branch using a value of one as the maximum difference in risk in 

standard errors.  The estimation of the CART model considers the explanatory variables 

included in the final multinomial logit regression model, identified in Table 5.1, to 

analyze crash injury severity on three levels: property damage only, injury and fatality, 

and uses the predetermined partitioned dataset to test the classification accuracy of the 

model and to examine for overfitting   The final CART decision tree model finds 23 

variables significant (indicated in Table 5.15), includes 948,679 observations in the 

training set and 316,784 in the testing set, and results in an analysis accuracy of 72.32% 

and 72.30% for the training set and the testing set respectively (presented in Tables 5.16 

and 5.17).   

Table 5.15: Explanatory Variables used in Estimation of CART model 

Speed – Exceed Limits Alcohol Road Alignment 

Too Fast for Conditions Physical Impairment Road Conditions 

Violation Stop Sign/Signal Overcorrected Road Profile 

Wrong Side – Not Passing Animal Weather Conditions 

Improper Backing Other Light Conditions 

Improper Turn Total Number of Occupants On/Of Roadway 

Improper Lane Usage Speed Limit Vision Obstructed 

Failed to Yield Road Surface   
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Table 5.16: CART Coincidence Matrix for the Training Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 0 1,760 4,263 0.0% 

Injury 0 33,743 234,722 12.6% 

Property Damage 0 21,837 652,654 96.8% 

Overall Percentage 0.0% 6.0% 94.0% 72.32% 

 

Table 5.17: CART Coincidence Matrix for the Testing Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 0 606 1,4676 0.0% 

Injury 0 11,170 78,527 12.5% 

Property Damage 0 7,140 217,874 96.8% 

Overall Percentage 0.0% 6.0% 94.0% 72.30% 

 

The CHAID algorithm nodal splitting criteria is set to a minimum absolute value 

of 100 records in a parent branch and a minimum of 50 records in a child branch, and the 

maximum tree depth is set to 15 branches.  The Pearson measure is used as the chi-square 

measure for categorical targets, and the significance level for both splitting and merging 

is set to 0.05.  The estimation of the CHAID model considers the explanatory variables 

identified in Table 5.1, and uses the predetermined partitioned dataset to test the 

classification accuracy of the model and to examine for overfitting.  The final CHAID 

decision tree model suggests 30 variables are significant (indicated in Table 5.18), 

includes 948,679 observations in the training set and 316,784 in the testing set, and 

results in an analysis accuracy of 73.06% and 73.0% for the training set and the testing 

set respectively (presented in Tables 5.19 and 5.20).   
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Table 5.18: Explanatory Variables used in Estimation of CHAID Model 

Alcohol Improperly Stopped Wrong Way (One-Way) Road Alignment 

Drugs Distracted/Inattentive Total Number of Occupants Road Profile  

Failed to Yield Physical Impairment Improper Turn Weather Conditions  

Following Too Close Speed – Exceed Limits Other Light Conditions 

Improper Backing Too Fast for Conditions Vision Obstructed Speed Limit 

Improper Lane Usage Vehicle Defects On Off Roadway Crash Age Groups 

Improper Passing Violation Stop Sign/Signal Road Conditions Gender 

Wrong Side – Not Passing Road Surface     

 

Table 5.19:  CHAID Coincidence Matrix for the Training Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 0 3,175 2,848 0.0% 

Injury 0 63,279 205,186 23.6% 

Property Damage 0 44,398 62,793 93.4% 

Overall Percentage 0.0% 11.7% 88.3% 73.06% 

 

Table 5.20:  CHAID Coincidence Matrix for the Testing Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 0 1,084 989 0.0% 

Injury 0 21,011 68,686 23.4% 

Property Damage 0 14,758 210,256 93.4% 

Overall Percentage 0.0% 11.6% 88.4% 73.0% 

 

As described in section 5.1.1, the AUC measures a classifiers’ performance across 

the entire range of outcome distributions (Vuk and Curk, 2006), and is equal to the 

probability that a classifier will rate a randomly chosen positive outcome higher than a 

randomly chosen negative outcome (Fawcett, 2006).  The AUC results for the CART and 

CHAID’s capabilities to predict a fatal outcome relative to non-fatal outcomes are 0.761 

and 0.898 for the testing set, respectively.   The AUC results for the CART and CHAID’s 

capabilities to predict a property damage only outcome relative to injury outcomes are 

0.667 and 0.717 for the testing set, respectively.  As a result of its lesser classification 
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accuracy and AUC values, as illustrated in Table 5.21, the CHAID algorithm is carried 

forward, so as to consider the best decision tree approach for the ultimate model 

ensemble.    

Table 5.21: Accuracy Comparison of CHAID and CART Models 

Decision 

Tree 

Approach 

Classification 

Accuracy 

Training Set 

Classification 

Accuracy 

Testing Set 

AUC Value 

Fatal vs. 

Nonfatal  

Training Set 

AUC Value 

Fatal vs. 

Nonfatal  

Training Set 

AUC Value 

Non-injury 

vs. Injury 

Training Set 

AUC Value 

Non-injury 

vs. Injury 

Training Set 

CHAID 73.06% 73.00% 0.899 0.898 0.717 0.717 

CART 72.32% 72.30% 0.759 0.761 0.667 0.667 

The factors with the greatest predictor importance for crash injury severity for the 

CHAID decision tree are calculated.  The predictor importance chart shows the top 

predictive factors and their relative values, which are normalized to sum to unity.  Figure 

5.7 presents the top ten factors suggested to have greatest importance in estimating the 

CHAID model. The CHAID model findings suggest the variable total number of 

occupants to be the most important variable for predicting crash injury severity, which 

splits the tree into three initial branches: ≤1 occupant, >1 and <3 occupant(s), and ≥3 

occupants.  Appendices 1, 2, and 3 present partial branches for each of these splits. 

Figure 5.7: CHAID Model Predictor Importance 
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Figures 5.8, 5.9, and 5.10 present lift charts for the CHAID decision tree for fatal, 

injury, and property damage only outcomes for the training and testing partitions. The red 

lines represent the ratio of the expected number of positive fatal outcomes (Figure 5.8), 

the expected number of positive injury outcomes (Figure 5.9), and the expected number 

of property damage only outcomes (Figure 5.10) to their sample proportions that would 

be predicted if the outcomes were simply selected at random (unity).  Tables 5.22, 5.23, 

and 5.24 provide the lift values for the fatal, injury, and property damage only lift charts 

for the training and testing sets and the number of expected, observed, cumulative 

expected and cumulative observed cases for the testing sets for each decile.     

Inspection of the figures and tables indicates that the CHAID model provides 

significant and similar lifts for each severity outcome for both the training and testing 

data partitions.  Further inspection reveals greater lift for fatal outcomes than for injury 

outcomes with injury outcomes also providing greater lift than property damage only 

outcomes across both the training and testing data partitions.  

Figure 5.8: CHAID Lift Chart for Fatal Outcomes 
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Table 5.22: Lift Values, Expected and Observed Counts per Decile for Fatal 

Outcomes 

Decile 
Lift 

Training Set 

Lift 

Testing Set 

Expected 

Outcomes 

Testing Set 

Observed 

Outcomes 

Testing Set 

Cumulative 

Expected 

Testing Set 

Cumulative 

Observed 

Testing Set 

1 6.6900 6.5877 1,384.33  1,365  1,384.33  1,365  

2 4.2623 4.1703 366.18  364  1,750.51  1,729  

3 3.0679 3.0418 139.44  164  1,889.95  1,893  

4 2.3858 2.3704 69.04  72  1,958.99  1,965  

5 1.9478 1.9370 36.24  43  1,995.23  2,008  

6 1.6414 1.6373 20.48  28  2,015.71  2,036  

7 1.4121 1.4113 8.35  12  2,024.06  2,048  

8 1.2397 1.2390 4.20  6  2,028.26  2,054  

9 1.1065 1.1062 0.00  8  2,028.26  2,062  

10 1.0 1.0 0.00  11  2,028.26  2,073  

 

Figure 5.9: CHAID Lift Chart for Injury Outcomes 
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Table 5.23: Lift Values, Expected and Observed Counts per Decile for Injury 

Outcomes 

Decile 
Lift 

Training Set 

Lift 

Testing Set 

Expected 

Outcomes 

Testing Set 

Observed 

Outcomes 

Testing Set 

Cumulative 

Expected 

Testing Set 

Cumulative 

Observed 

Testing Set 

1 2.0630 2.0602 18,560.10 18,471 18,560.10 18,471 

2 1.8391 1.8441 14,520.59 14,616 33,080.69 33,087 

3 1.6803 1.6849 12,193.40 12,280 45,274.09 45,367 

4 1.5564 1.5577 10,602.20 10,522 55,876.29 55,889 

5 1.4374 1.4400 8,578.08 8,701 64,454.37 64,590 

6 1.3286 1.3324 6,983.42 7,112 71,437.79 71,702 

7 1.2337 1.2375 5,979.40 5,977 77,417.19 77,679 

8 1.1577 1.1592 5,530.62 5,508 82,947.81 83,187 

9 1.0827 1.0834 4,281.36 4,268 87,229.17 87,455 

10 1.0 1.0 2,239.90 2,242 89,469.07 89,697 

 

Figure 5.10: CHAID Lift Chart for Property Damage Only Outcomes 
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Table 5.24: Lift Values, Expected and Observed Counts per Decile for Property 

Damage Only Outcome 

Decile 
Lift 

Training Set 

Lift 

Testing Set 

Expected 

Outcomes 

Testing Set 

Observed 

Outcomes 

Testing Set 

Cumulative 

Expected 

Testing Set 

Cumulative 

Observed 

Testing Set 

1 1.3049 1.3071 29,424.03 29,415 29,424.03 29,415 

2 1.2593 1.2620 27,379.19 27,372 56,803.22 56,787 

3 1.2254 1.2291 26,127.65 26,190 82,930.87 82,977 

4 1.2045 1.2069 25,680.37 25,654 108,611.24 108,631 

5 1.1818 1.1832 24,625.92 24,483 133,237.16 133,114 

6 1.1549 1.1558 23,002.35 22,937 156,239.51 156,051 

7 1.1224 1.1232 20,882.18 20,876 177,121.69 176,927 

8 1.0889 1.0896 19,273.18 19,210 196,394.87 196,137 

9 1.0508 1.0510 16,773.86 16,698 213,168.73 212,835 

10 1.0 1.0 12,118.83 12,179 225,287.56 225,014 

 

As described in section 5.1.1, the ROC curves are constructed to visualize and 

evaluate the model’s capability to predict (1) a fatal outcome relative to property damage 

and injury only outcomes and (2) a property damage only outcome relative to fatal and 

injury outcomes.  Figures 5.11 and 5.12 present the ROC curves and illustrate that the 

CHAID decision tree better predicts fatal versus non-fatal outcomes and non-injury 

versus injury outcomes than if no model was used and the outcomes were randomly 

assigned.  

By calculating the area under the ROC curve (AUC), this study quantifies the 

significance of the findings of the ROC curve.  As earlier described, the maximal AUC 

value of 1.0 suggests a perfect classifier (Worster et al., 2006); and, no useful classifier 

should have an AUC of less than 0.5, the AUC for a random classifier (Fawcett, 2006).  

The AUC for the CHAID decision tree’s performance are 0.898 for the predicted 

probability of a fatal outcome relative to a nonfatal outcome (presented in Table 5.25), 

and 0.717 for a non-injury outcome relative to an injury outcome (presented in Table 
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5.26), both of which are significantly different from 0.5 at the 0.000 level and suggest 

that the CHAID model has good discriminatory power.   

Figure 5.11: CHAID Decision Tree ROC Curve Fatal Outcome using the Testing Set 

 

Table 5.25: AUC for CHAID Decision Tree Prediction of Fatal Outcome using the 

Testing Set 
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Figure 5.12: CHAID Decision Tree ROC Curve Property Damage Only Outcome 

using the Testing Set 

 

Table 5.26: AUC for CHAID Decision Tree Prediction of Property Damage Only 

Outcome using the Testing Set  
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Important findings for the CHAID Decision Tree include: 

 Classification accuracy rate equals 73.06% and 73.0% for the training set and the 

testing set respectively.  

 AUC for a fatal outcome equals 0.898 for the testing set. 

 AUC for a property damage only outcome equals 0.717 for the testing set. 

 The AUC estimates are significantly greater than 0.5, indicating significant 

discriminatory power. 

 The top three most important predicators of crash severity are the total number of 

occupants, speed limit, and speed – exceeds limit. 

5.1.4 Artificial Neural Network 

Prior literature has found the Multilayer Perceptron (MLP) algorithm, a type of 

ANN, to be a robust estimator (Delen et al., 2006) and useful in the analysis of crash 

injury severity (Abdelwahab and Abdel-Aty, 2001; Abdel-Aty and Abdelwahab, 2004a).  

Following previous research, this study develops MLP networks to assess crash injury 

severity, given the independent variables identified in Table 5.1.    

As described in Chapter 4, the MLP network operates in two phases: a training 

phase that uses a collection of patterns for learning in order to train the network, and a 

testing phase that compares the output from the trained network to the desired output to 

test for classification accuracy (Abdelwahab and Abdel-Aty, 2002).  The MLP is trained 

using a back-propagation algorithm, and allows only feed-forward connections 

(Abdelwahab and Abdel-Aty, 2001) that use directed arrows as coefficients (i.e. weights) 

(Delen et al., 2006).  The partitioned data is used to estimate the MLP to create an input 

layer, hidden layers, and output layers to explain relationships between variables as 
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described in Chapter 4 section 4.2.4.  The parameters are set so that hidden layers are 

automatically computed, the overfit prevention is 30.0%, and the confidence is based on 

the probability of the predicted value.  The final training model includes 948,679 

observations, has 1 hidden layer, 11 neurons (indicated in Table 5.27), and a 

classification accuracy of 72.84% for the training set and 72.89% for the testing set 

(presented in Tables 5.28 and 5.29).   

Table 5.27: Explanatory Variables (Neurons) used in the ANN  

Speed – Exceeds Limit Speed Limit Physical Impairment 

Violation Stop Sign/Signal Wrong Side – Not Passing Alcohol 

Weather Conditions Improper backing Light conditions 

Total Number of Occupants Bias   

 

Table 5.28: ANN Coincidence Matrix for the Training Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 7 2,942 3,074 0.1% 

Injury 24 59,801 208,640 22.3% 

Property Damage 9 42,952 631,230 93.6% 

Overall Percentage 0.0% 11.1% 88.9% 72.84% 

 

Table 5.29: ANN Coincidence Matrix for the Testing Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 0 991 1,082 0.0% 

Injury 8 20,091 69,598 22.4% 

Property Damage 5 14,187 210,822 93.7% 

Overall Percentage 0.0% 11.1% 88.9% 72.89% 
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Figure 5.13 presents the effect diagram, which displays the network of 

independent variables to the crash injury severity outcomes; and, Table 5.30 presents the 

coefficients table, which displays the coefficient estimates that indicate the relationship 

among variables between one layer and the next layer.   

Figure 5.13: ANN Effect Diagram 
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Table 5.30: ANN Coefficients Table 

Y V4 

15.1111 Bias 

14.2222 Wrong Way 

13.3333 Overcorrected 

12.4444 Total Number of Occupants 

11.5556 Improper Backing 

10.6667 Speed – Exceeds Limit 

9.7778 Wrong Side 

2.6667 Physical Impairment 

1.7778 Animal 

0.8889 Improperly Stopped 

14.6667 Bias 

13.3333 Hidden layer activation 

12.000 Hidden layer activation 

10.6667 Hidden layer activation 

9.3333 Hidden layer activation 

8.000 Hidden layer activation 

6.6667 Hidden layer activation 

5.3333 Hidden layer activation 

4.000 Hidden layer activation 

2.6667 Hidden layer activation 

1.3333 Hidden layer activation 

8.8889 Speed Limit=05-20 mph 

8.000 Speed Limit=25-30 mph 

7.1111 Speed Limit=35-40 mph 

6.2222 Speed Limit=45-50 mph 

5.3333 Speed Limit=55-60 mph 

4.4444 Speed Limit=65-70 mph 

3.5556 Speed Limit=Unknown 

12.000 Crash Severity=Fatal 

8.000 Crash Severity=Injury 

4.000 Crash Severity=Property Damage 
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The predictor importance chart shows the top predictive factors and their relative 

importance values, which are normalized to sum to unity.  Figure 5.14 presents the top 

ten factors suggested to have greatest importance in estimating the ANN model.  

Figure 5.14: ANN Predictor Importance 

 

Figures 5.15, 5.16, and 5.17 present lift charts for the ANN for fatal, injury, and 

property damage only outcomes in the training and testing sets.  The red lines represent 

the ratio of the expected number of positive fatal outcomes (Figure 5.15), the expected 

number of positive injury outcomes (Figure 5.16), and the expected number of property 

damage only outcomes (Figure 5.17) to their sample proportions that would be predicted 

if the outcomes were simply selected at random (unity).  Tables 5.31, 5.32, and 5.33 

provide the lift values for the fatal, injury, and property damage only lift charts for the 

training and testing sets and the number of expected, observed, cumulative expected and 

cumulative observed cases for the testing sets for each decile.     
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Figure 5.15: ANN Lift Curve for Fatal Outcomes 

 

Table 5.31: Lift Values, Expected and Observed Counts per Decile for Fatal 

Outcome 

Decile 
Lift 

Training Set 

Lift 

Testing Set 

Expected 

Outcomes 

Testing Set 

Observed 

Outcomes 

Testing Set 

Cumulative 

Expected 

Testing Set 

Cumulative 

Observed 

Testing Set 

1 6.1382 6.0734 1,235.38 1,259 1,235.38 1,259 

2 3.9598 3.9074 287.29 361 1,522.67 1,620 

3 2.9404 2.9104 143.42 190 1,666.09 1,810 

4 2.3269 2.3022 84.15 99 1,750.24 1,909 

5 1.9047 1.8977 60.24 58 1,810.48 1,967 

6 1.6199 1.6064 43.89 31 1,854.37 1,998 

7 1.4094 1.4031 28.38 38 1,882.75 2,036 

8 1.2417 1.2398 18.45 20 1,901.20 2,056 

9 1.1089 1.1079 12.27 11 1,913.47 2,067 

10 1.0 1.0 5.27 6 1,918.74 2,073 
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Figure 5.16: ANN Lift Curve for Injury Outcomes 

 

Table 5.32: Lift Values, Expected and Observed Counts per Decile for Injury 

Outcome 

Decile 
Lift 

Training Set 

Lift 

Testing Set 

Expected 

Outcomes 

Testing Set 

Observed 

Outcomes 

Testing Set 

Cumulative 

Expected 

Testing Set 

Cumulative 

Observed 

Testing Set 

1 2.0296 2.0395 18,358.16 18,282 18,358.16 18,282 

2 1.8072 1.8194 14,316.38 14,357 32,674.54 32,639 

3 1.6551 1.6646 12,013.70 12,155 44,688.24 44,794 

4 1.5374 1.5433 10,551.38 10,578 55,239.62 55,372 

5 1.4245 1.4276 8,528.21 8,653 63,767.83 64,025 

6 1.3200 1.3246 7,051.50 7,261 70,819.33 71,286 

7 1.2287 1.2326 6,026.16 6,108 76,845.49 77,394 

8 1.1503 1.1514 5,137.58 5,226 81,983.07 82,620 

9 1.078 1.0786 4,373.28 4,455 86,356.35 87,075 

10 1.0 1.0 2,717.40 2,622 89,073.75 89,697 
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Figure 5.17: ANN Lift Curve for Property Damage Only Outcomes 

 

Table 5.33: Lift Values, Expected and Observed Counts per Decile for Property 

Damage Only Outcome 

Decile 
Lift 

Training Set 

Lift 

Testing Set 

Expected 

Outcomes 

Testing Set 

Observed 

Outcomes 

Testing Set 

Cumulative 

Expected 

Testing Set 

Cumulative 

Observed 

Testing Set 

1 1.2883 1.2905 28,953.17 29,037 28,953.17 29,037 

2 1.2479 1.2499 27,288.78 27,218 56,241.95 56,255 

3 1.2209 1.2245 26,515.58 26,405 82,757.53 82,660 

4 1.1993 1.2022 25,614.42 25,541 108,371.95 108,201 

5 1.1766 1.1781 24,562.55 24,344 132,934.50 132,545 

6 1.1496 1.1513 23,048.67 22,884 155,983.17 155,429 

7 1.1182 1.1204 20,964.76 21,049 176,947.93 176,478 

8 1.0860 1.0872 19,507.26 19,235 196,455.19 195,713 

9 1.0495 1.0498 16,966.67 16,894 213,421.86 212,607 

10 1 1 12,366.69 12,407 225,788.55 225,014 

 

Inspection of the figures and tables indicates that the ANN model provides 

significant and similar lifts for each severity outcome for both the training and testing 

data partitions.  Similar to the multinomial and CHAID models, further inspection reveals 

greater lift for fatal outcomes than for injury outcomes with injury outcomes also 
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providing greater lift than property damage only outcomes across both the training and 

testing data partitions.  

ROC curves are constructed for the training set to visualize and evaluate the 

network’s capability to predict (1) a fatal outcome relative to property damage and injury 

only outcomes and to predict (2) a property damage only outcome relative to fatal and 

injury outcomes.  Figures 5.18 and 5.19 present the ROC curves and illustrate that the 

ANN better predicts fatal versus non-fatal outcomes and non-injury versus injury 

outcomes than if no model was used and the outcomes were randomly assigned.  

AUC values are calculated; and, as earlier described, the maximum AUC value of 

1.0 suggests a perfect classifier (Worster et al., 2006) and any useful classifier should 

have an AUC of greater than 0.5 (Fawcett, 2006).  The AUC values for the ANN model 

are 0.859 for the predicted probability of a fatal outcome relative to a nonfatal outcome 

(presented in Table 5.34) and 0.706 for a non-injury outcome relative to an injury 

outcome (presented in Table 5.35), both of which are significantly different from 0.5 at 

the 0.000 level suggesting that the ANN model has good discriminatory power.   
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Figure 5.18: ANN ROC Curve Fatal Outcome using the Testing Set 

 

Table 5.34: AUC for ANN Prediction of Fatal Outcome using the Testing Set 
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Figure 5.19: ANN ROC Curve Property Damage Only Outcome using the Testing 

Set 

 

Table 5.35: AUC for ANN Prediction of Property Damage Only Outcome using the 

Testing Set  
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Important findings from the ANN analyses include: 

 Classification accuracy rate equals 72.84% for the training set and 72.89% for the 

testing set. 

 AUC for a fatal outcome equals 0.859 for the testing set. 

 AUC for a property damage only outcome equals 0.706 for the testing set. 

 Both AUC scores are significantly greater than 0.5, indicating above-chance 

accuracy. 

 The top three most important predicators of crash severity are total number of 

occupants, speed – exceeds limit, and speed limit. 

5.2 Ensembles of Models 

As described in Chapter 4 section 2.5, recent advances in data mining techniques 

utilize ensemble learning to (1) reduce the impact of inaccurate model selection, (2) 

better represent data distributions, and (3) enhance predictive performance (Dietterich, 

2000; Polikar, 2006).  The fundamental procedure to create an ensemble of models 

employs the following logic:  

 Step I: Create multiple models of differing types and evaluate each model. 

 Step II: Compute an ensemble score value derived from these models using a 

combinatory rule.  

 Step III: Evaluate the performance of the model ensemble using the 

combinatory rule.  

The final multinomial logit, CHAID decision tree, and ANN models are used to 

score the model ensemble using three common combinatory rules (Kittler et al., 1998): 

Majority Voting, Weighted-Majority Voting, and Max Rule.  The study assesses the 
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accuracy and discriminatory power of each model ensemble by examining the confidence 

matrices, the ROC curves, and the AUC values of each ensemble against the training set 

(75%) and testing set (25%) data partitions also described in Chapter 4.   

5.2.1 Majority Voting 

The first ensemble, the Majority Voting scoring method, combines the individual 

model forecasts of crash severity for an observation by tallying the number of times each 

possible severity value is forecast and selecting the value with the highest total as the 

ensemble forecast (Kittler et al., 1998).  If the voting is tied, the scoring method uses the 

value with the highest confidence.  This ensemble model results in a classification 

accuracy of 73.02% for the training set and 72.99% for the testing set as presented in 

Tables 5.36 and 5.37.   

Table 5.36: Majority Voting Ensemble Coincidence Matrix for the Training Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 2 2,910 3,111 0.0% 

Injury 1 53,810 214,654 20.0% 

Property Damage 2 35,260 638,929 94.8% 

Overall Percentage 0.0% 9.7% 90.3% 73.02% 

 

Table 5.37: Majority Voting Ensemble Coincidence Matrix for the Testing Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 1 1,010 1,062 0.0% 

Injury 0 17,869 71,828 19.9% 

Property Damage 1 11,657 213,356 94.8% 

Overall Percentage 0.0% 9.6% 90.4% 72.99% 
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ROC curves are constructed to visualize and evaluate the Majority Voting 

Ensemble’s capability to predict (1) a fatal outcome relative to property damage and 

injury only outcomes and to predict (2) a property damage only outcome relative to fatal 

and injury outcomes.  Figures 5.20 and 5.21 present the ROC curves and illustrate that 

this ensemble approach does not significantly better predict fatal versus non-fatal 

outcomes and non-injury versus injury outcomes than if no model was used and the 

predicted outcomes were randomly assigned.  

AUC values are calculated; and, as earlier described, a maximum AUC value of 

1.0 suggests a perfect classifier (Worster et al., 2006) and any useful classifier should 

have an AUC significantly greater than 0.5 (Fawcett, 2006).  The AUC value for the 

Majority Voting Ensemble is found to be 0.503 for the predicted probability of a fatal 

outcome relative to a nonfatal outcome (presented in Table 5.38), which is not 

significantly different from 0.5, and 0.605 for the predicted probability for a non-injury 

outcome relative to an injury outcome (presented in Table 5.39), which is significantly 

different from 0.5 at the 0.000 level, but much lower than the AUC for each constituent 

model.  These relatively low AUC values suggest that, overall, the Majority Voting 

Ensemble does not have good discriminatory power, and that when the distribution of 

outcomes is highly skewed as they are here, Majority Voting is not a useful combinatory 

rule.   



 

156 

Copyright, Jill M. Bernard, 2015 

Figure 5.20: Majority Voting Ensemble ROC Curve Fatal Outcome using the 

Testing Set 

 

Table 5.38: AUC for Majority Voting Ensemble Prediction of Fatal Outcome using 

the Testing Set 
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Figure 5.21: Majority Voting Ensemble ROC Curve Property Damage Only 

Outcome using the Testing Set 

 

Table 5.39: AUC for Majority Voting Ensemble Prediction of Property Damage 

Only Outcome using the Testing Set 

 



 

158 

Copyright, Jill M. Bernard, 2015 

5.2.2 Weighted-Majority Voting  

When using the Weighted-Majority Voting combinatory rule, the constituent 

model votes are weighted based on the confidence of each model for each severity 

prediction, the weights are summed, and the outcome with the highest total is selected 

(Littlestone and Warmuth, 1994).  The confidence for the final prediction is the sum of 

the weights for the selected outcome divided by the number of models included in the 

ensemble (Littlestone and Warmuth, 1994); and, if the voting is tied, the outcome is 

randomly selected.  This scoring method has a classification accuracy of 73.02% for the 

training set and 72.99% for the testing set (presented in Tables 5.40 and 5.41).   

Table 5.40: Weighted-Majority Voting Ensemble Coincidence Matrix for the 

Training Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 2 2,910 3,111 0.0% 

Injury 1 53,810 214,654 20.0% 

Property Damage 2 35,260 638,929 94.8% 

Overall Percentage 0.0% 9.7% 90.3% 73.02% 

 

Table 5.41: Weighted-Majority Voting Ensemble Coincidence Matrix for the 

Testing Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 1 1,010 1,062 0.0% 

Injury 0 17,869 71,828 19.9% 

Property Damage 1 11,657 213,356 94.8% 

Overall Percentage 0.0% 9.6% 90.4% 72.99% 
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ROC curves are constructed to visualize and evaluate the ensemble’s capability to 

predict (1) a fatal outcome relative to property damage and injury only outcomes and to 

predict (2) a property damage only outcome relative to fatal and injury outcomes.  

Figures 5.22 and 5.23 present the ROC curves and illustrate that this ensemble 

combinatory rule significantly better predicts fatal versus non-fatal outcomes and non-

injury versus injury outcomes than if no model was used and the predicted severity 

outcomes were randomly assigned.  Additionally, the ensemble ROC curve for the 

prediction of fatal outcomes versus non-fatal outcomes is everywhere above the 

individual model ROC curves, signifying that the ensemble better predicts fatal versus 

non-fatal outcomes than all of the individual modeling approaches.  Yet, for the 

prediction of non-injury outcomes versus injury outcomes, the ensemble ROC curve 

intersects the CHAID decision tree ROC curve.  This suggests that the ensemble better 

predicts non-injury versus injury outcomes than the individual modeling approaches, with 

the exception of the CHAID decision tree. 

The AUC values for the Weighted-Majority Voting Ensemble are 0.901 for the 

predicted probability of a fatal outcome relative to a nonfatal outcome (presented in 

Table 5.42) and 0.706 for a non-injury outcome relative to an injury outcome (presented 

in Table 5.43).  Both AUC values are significantly different from 0.5 at the 0.000 level, 

which suggests that the Weighted-Majority Voting Ensemble has good discriminatory 

power.  It is also evident that the ensemble has a higher AUC value than the individual 

models when predicting the probabilities of a fatal outcome relative to a nonfatal 

outcome; yet, the ensemble has a slightly lower AUC value than the CHAID decision tree 

when predicting a non-injury outcome relative to an injury outcome.   
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Figure 5.22: Weighted-Majority Voting Ensemble ROC Curve Fatal Outcome using 

the Testing Set 

 

Table 5.42: AUC for Weighted-Majority Voting Ensemble Prediction of Fatal 

Outcome using the Testing Set 
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Figure 5.23: Weighted-Majority Voting Ensemble ROC Curve Property Damage 

Only Outcome using the Testing Set 

 

Table 5.43: AUC for Weighted-Majority Voting Ensemble Prediction of Property 

Damage Only Outcome using the Testing Set 
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5.2.3 Max Rule 

When using the max rule combinatory rule (also referred to as the highest 

confidence wins rule) to create the model ensemble, the rule selects the individual 

constituent model with the highest propensity value of all predicted values to generate the 

prediction value for the model ensemble (Kittler et al., 1998).  This scoring method has a 

classification accuracy of 72.84% for the training set and 72.83% for the testing set 

(presented in Tables 5.44 and 5.45).   

Table 5.44: Max Rule Ensemble Coincidence Matrix for the Training Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 4 2,800 3,219 0.1% 

Injury 3 47,365 221,097 17.6% 

Property Damage 5 30,492 643,694 95.5% 

Overall Percentage 0.0% 8.5% 91.5% 72.84% 

 

Table 5.45 Max Rule Ensemble Coincidence Matrix for the Testing Set 

Classification 

Observed 

Predicted 

Fatal Injury 

Property 

Damage Percent Correct 

Fatal 3 962 1,108 0.1% 

Injury 2 15,807 73,888 17.6% 

Property Damage 1 10,124 214,889 95.5% 

Overall Percentage 0.0% 8.5% 91.5% 72.83% 

 

ROC curves are constructed to visualize and evaluate the ensemble’s capability to 

predict (1) a fatal outcome relative to property damage and injury only outcomes and to 

predict (2) a property damage only outcome relative to fatal and injury outcomes.  

Figures 5.24 and 5.25 present the ROC curves and illustrate that the ensemble 
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significantly better predicts fatal versus non-fatal outcomes and non-injury versus injury 

outcomes than if no model was used and the outcomes were randomly predicted.  

Moreover, the ensemble ROC curves for prediction of fatal outcomes versus non-fatal 

outcomes and injury outcomes versus non-injury outcomes are ubiquitously above all of 

the individual model ROC curves, again with the exception of the CHAID decision tree.  

This suggests that the ensemble better predicts fatal versus non-fatal outcomes and non-

injury versus injury outcomes than the individual modeling approaches, with the 

exception of the CHAID model. 

AUC values are calculated for the Max Rule Ensemble, which equal 0.898 for the 

predicted probability of a fatal outcome relative to a nonfatal outcome (presented in 

Table 5.46) and 0.711 for a non-injury outcome relative to an injury outcome (presented 

in Table 5.47).  Both AUC values are significantly different from 0.5 at the 0.000 level, 

which suggests that the Max Rule Ensemble has good discriminatory power.  

Additionally, it is evident that this ensemble has higher AUC values than all of the 

individual models, with the exception of the CHAID model. 
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Figure 5.24: Max Rule Ensemble ROC Curve Fatal Outcome using the Testing Set 

 

Table 5.46: AUC for Max Rule Ensemble Prediction of Fatal Outcome using the 

Testing Set 
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Figure 5.25: Max Rule Ensemble ROC Curve Property Damage Only Outcome 

using the Testing Set 

 

Table 5.47: AUC for Max Rule Ensemble Prediction of Property Damage Only 

Outcome using the Testing Set 
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5.2.4 Summary of Ensemble Findings 

Important findings for the model ensembles include: 

 All ensemble approaches have similar classification accuracy for the training set 

and for the testing set as illustrated in Table 5.48.   

 The Weighted-Majority Voting Ensemble approach results in the highest AUC 

values for both fatal versus nonfatal outcomes (0.901) and injury versus non-

injury outcomes (0.715) as presented in Table 5.48.   

 The AUC scores for the Weighted-Majority Voting Ensemble and Max Rule are 

both significantly greater than 0.5, which indicates above-chance accuracy. 

 The relatively low AUC values suggest that the Majority Voting Ensemble model 

does not have good discriminatory power; and, when the distribution of outcomes 

is as highly skewed as it is here, Majority Voting is not a useful ensembling 

method.   

 The ROC curves for the Weighted-Majority Voting Ensemble and Max Rule 

Ensemble for the prediction of fatal versus non-fatal outcomes are above or equal 

to all the individual model ROC curves, signifying that these ensemble models 

predict fatal versus non-fatal outcomes better than or equal to the individual 

modeling approaches.   

 The ROC curves for the Weighted-Majority Voting Ensemble and Max Rule 

Ensemble for the prediction of non-injury versus injury outcomes is ubiquitously 

above the individual models’ ROC curves, with the exception of the CHAID 

decision tree.  This suggests that the ensemble models better predict non-injury 
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versus injury outcomes than the individual modeling approaches, excluding the 

CHAID model. 

Table 5.48: Accuracy and AUC Comparison of Ensemble Models 

Ensemble 

Approach 

Classification 

Accuracy 

Training Set 

Classification 

Accuracy 

Testing Set 

AUC Value 

Fatal vs. 

Nonfatal 

Testing Set 

AUC Value 

Injury vs. 

Non-injury 

Testing Set 

Majority 

Voting 
73.02% 72.99% 0.503 0.605 

Weighted-

Majoring 

Voting 

73.02% 72.99% 0.901 0.715 

Max Rule 72.84% 72.83% 0.898 0.711 

 

5.3 Relative Model Discriminatory Power 

 Table 5.49 presents the classification accuracy and AUC values for each of the 

individual models used for the model ensemble and for the three model ensemble 

techniques.  The study compares AUC values to determine if there is a significant 

difference between the models’ abilities to predict (1) a fatal outcome relative to property 

damage and injury only outcomes and to predict (2) a property damage only outcome 

relative to fatal and injury outcomes.  Since the models are derived from and evaluated 

against the same set of training and test cases and are therefore likely to be correlated, the 

differences between area under the two ROC curves is assessed by calculating a critical 

ratio z, defined by Hanley and McNeil (1983) as: 

𝑧 =
𝐴1 − 𝐴2

√𝑆𝐸1
2 + 𝑆𝐸2

2 − 2𝑟𝑆𝐸1𝑆𝐸2

  

where  

Ai = AUC Value for model 1 and model 2      i = 1, 2 

SEi = Standard Error for model 1 and model 2     i = 1, 2 
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r = Estimated correlation coefficient between A1 and A2.  This ratio is 

asymptotically distributed as a standard normal random variable and permits a test of the 

significance of the difference between the two areas under the curves.   

Table 5.49: Individual Model and Model Ensemble Comparison 

Model 

Approach 

Classification 

Accuracy 

Training Set 

Classification 

Accuracy 

Testing Set 

AUC Value 

Fatal vs. 

Nonfatal 

Testing Set 

AUC Value 

Injury vs. 

Non-injury 

Testing Set 

Multinomial 

Logit 
72.00% 72.00% 0.883 0.695 

CHAID 

Decision Tree 
73.06% 73.00% 0.898 0.717 

ANN 72.84% 72.89% 0.859 0.706 

Majority Voting 

Ensemble 
73.02% 72.99% 0.503 0.605 

Weighted-

Majoring 

Voting 

Ensemble 

73.02% 72.99% 0.901 0.715 

Max Rule 

Ensemble 
72.84% 72.83% 0.898 0.711 

 

Results suggest a statistically significant difference between the AUC values of 

the CHAID model and the Multinomial Logit model for both fatal versus non-fatal 

outcomes (z = 5.66; p < 0.0001) and injury versus non-injury outcomes (z = 33.95; p < 

0.0001).  Additionally, there is a significant difference between the AUC values of the 

CHAID model and the ANN model for both fatal versus non-fatal outcomes (z = 12.41; p 

< 0.0001) and injury versus non-injury outcomes (z = 21.57; p < 0.0001).  Among the 

individual model approaches examined, the CHAID decision tree is clearly best at 

predicting crash injury severity.   



 

169 

Copyright, Jill M. Bernard, 2015 

The study compares the model ensemble approaches with statistically significant 

AUC values, Weighted-Majority Voting and Max Rule, to determine if there are 

significant differences between the two ensembles’ prediction capabilities.  Results 

indicate that there is not a significant difference between the AUC values of the 

Weighted-Majority Voting Ensemble and Max Rule Ensemble for fatal versus non-fatal 

outcomes (z = 1.67; p = 0.0949), while there is a significant difference in AUC values for 

injury versus non-injury outcomes (z = 8.16; p < 0.0001).   

The study then compares the CHAID AUC values to the Weighted-Majority 

Voting Ensemble AUC values to determine if there are significant differences between 

the prediction capabilities of the best individual model and the best ensemble model.  

Results suggest that there is not a significant difference between the AUC values of the 

CHAID model and the Weighted-Majority Voting Ensemble for fatal versus non-fatal 

outcomes (z = 1.67; p = 0.0949), yet there is a statistically significant difference between 

the AUC values for injury versus non-injury outcomes (z = 4.08; p < 0.0001) with the 

CHAID model providing better discriminatory power.   

Of the modeling approaches examined, the CHAID decision tree renders the 

greatest accuracy and discriminatory power for predicting crash injury severity due to its 

greater classification accuracy and higher AUC values.  Additionally, relative to the other 

modeling approaches, the CHAID method uncovers more complex interactions between 

predictor factors and also benefits by straightforward interpretability.  As a result of these 

findings, the study uses the CHAID model to assess if findings support prior research and 

the current Missouri rules of the road in order to offer policy recommendations in 

Chapter 6.    
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Chapter 6 – Discussion 

6.1 Model Findings and Insights  

To illustrate the insights afforded by the CHAID decision tree, provide a context 

within which to evaluate reductions in motor vehicle crash risk, and examine possible 

changes in Missouri driving statues, decision rules focusing on the variables with the 

greatest predictor importance in the CHAID model (presented in Figure 5.7) are 

examined.  As described in Chapter 4.2.3, the algorithm constructs the CHAID decision 

tree by sequentially applying decision rules that split a larger heterogeneous population 

into smaller more homogeneous subsets (termed nodes) based on the single, most 

predictive input factor (Eustace et al., 2013).   

Number of Occupants  

The CHAID model identifies total number of occupants as the best predictor to 

form the first branch of the decision tree, partitioning the training set into three branches 

characterized as single occupant, two or three occupants, or more than three occupants.   

Figure 6.1: First Branch of CHAID Decision Tree – Total Number of Occupants  
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As illustrated in Figure 6.1, the probability that a fatal outcome (Category 1) will 

occur increases as the number of occupants involved in the crash increases - 0.455% for 

single occupant crashes, 0.994% for crashes involving two or three occupants, and 

1.099% for crashes involving more than three occupants.  Interestingly, the probability 

that an injury outcome (Category 2) will occur does not necessarily increase as the 

number of occupants increase.  When increasing the total number of occupants from a 

single occupant to two or three occupants, the likelihood of an injury outcome increases 

from 22.159% to 43.397%; yet, when increasing the number of occupants to more than 

three occupants, the likelihood of an injury outcome decreases to 39.486%.  Both 

findings indicate nonlinearity, and illustrate the importance of using the CHAID decision 

tree for analysis of non-linear effects.   

Speed Limit 

The CHAID model identifies speed limit as the second most important predictor 

variable, serves as the second branch for single occupant crashes.  As illustrated in Figure 

6.2, for single occupant crashes, the probability of a fatal or injury outcome increases for 

speed limit zones of up to 55mph and 60mph.  Yet, a change from 55mph and 60mph to 

65mph and 70mph decreases the likelihood that the outcome will be fatal or injurious, 

which could be contributed to the type of roads in which this speed limit is typically 

present in Missouri (e.g. interstates).  This finding further solidifies the importance of 

using CHAID decision trees to analyze non-linear effects.   
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Figure 6.2: Single Occupant Crash Branch Two – Speed Limit 

 

Zone 1 = 05mph and 20mph; zone 2 = 25mph and 30mph; zone 3 = 35mph and 40mph; zone 4 = 

45mph and 50mph; zone 5 = 55mph and 60mph; zone 6 = 65mph and 70mph; and zone 9 = Unknown   

Speeds - Exceed limit 

Crashes involving the third most important predictor of crash injury severity, 

driving at speeds that exceed the posted limit, are more likely to cause of fatal and injury 

outcomes for each partition of number of occupants.  For single occupant crashes, driving 

at speeds that exceed the limit in zones of 35mph or 40mph and 65mph or 70mph 

increases the chance of a fatal outcome from 0.133% to 3.689% and from 0.760% to 

4.746% respectively.  For crashes with two or three occupants, driving at speeds that 

exceed the limit in zones of 35mph or 40mph and 45mph or 50mph increases the chance 

of a fatal outcome from 0.233% to 4.671% and 0.568% to 6.534% respectively.  Finally, 

for crashes with more than three occupants, driving at speeds that exceed the limit 

increases the chance of a fatal outcome occurring as speed limit zones increase: 25mph or 

30mph = 3.409%; 35mph or 40mph = 6.902%; 45mph or 50mph = 8.543%; 65mph or 

70mph = 13.223%. 

Additionally, the results reveal important interactions between speeding and other 

circumstances.  For example, for single occupant crashes, a young driver (under the age 

of 21) driving at speeds that exceed the limit in a speed limit zone of 25mph to 30mph 
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and 65mph to 75mph has a lesser chance of a fatal outcome (0.676% and 3.049%) than 

older drivers (2.063% and 1.105% respectively for middle aged drivers and mature 

drivers in 25mph/30mph zones and 5.714% for both older groups in 65mph/75mph 

zones).  For crashes with two or three occupants, driving at speeds that exceed the limit in 

a speed zone of 35mph or 45mph during dark, but lit conditions increases the likelihood 

of a fatal outcome from 2.607% to 8.108%, yet decreases the likelihood of an injury 

outcome of 70.142% to 66.366% when compared to driving at speeds that exceed the 

limit during other lighting conditions.   

Alcohol 

Crashes that occur while driving under the influence of alcohol, the fourth most 

important predictor, also have greater crash severity regardless of the number of 

occupants involved in the crash; yet, its importance is more prevalent for crashes 

involving multiple occupants.  As presented in Appendix 2 and 3, the presence of alcohol 

represents the second split in the decision tree for two and three occupant crashes, where 

alcohol presence increases the probability of a fatal outcome and an injury outcome from 

0.778% to 5.175% and 42.411% to 62.486% respectively, and for more than three 

occupant crashes, where alcohol presence increases the probability of a fatal outcome and 

an injury outcome from 0.856% to 7.023% and 38.676% to 59.273% respectively.   

Additionally, results reveal dangerous interaction effects between alcohol and 

other variables.  For example, for single occupant crashes, driving under the influence of 

alcohol in a speed limit zone of 65mph or 70mph increases the probability of a fatal 

outcome from 0.820% to 3.053% and of an injury outcome from 24.742% to 42.215%, 

compared with similar circumstances when alcohol is not present.  When adding 
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speeding to alcohol use at such high speeds, the risk of a fatal outcome and an injury 

outcome increase to 6.024% and 56.024% respectively.   

For crashes involving two or three occupants, a crash occurring when alcohol is 

present increases the probability of a fatal outcome from 0.763% to 5.181% and the 

probability of an injury outcome from 42.380% to 62.327% compared to crashes when 

alcohol is not present.  Moreover, adding speeding when on a hill or a crest to this 

scenario increases the probability of a fatal outcome and injury outcome to 20.882% and 

65.429% respectively.   

When a crash involves three or more occupants, the probability of a fatal outcome 

increases from 0.866% to 7.103% and an injury outcome increases from 38.752% to 

60.276% when alcohol is present; when speeding is included, the chance of a fatal and an 

injury outcome increase to 17.221% and 65.558% respectively.   Finally, when adding a 

dark light condition (with no streetlights or streetlights off) to this scenario, the chance of 

a fatal outcome increases to 26.627% and an injury outcome increases to 62.130%. 

Failing to Yield 

Crashes involving the fifth most important predictor of crash injury severity, 

failing to yield, are also more likely to cause fatal and injury outcomes and failure to 

yield has important interaction effects with other characteristics.  For instance, when 

failing to yield is present and a single occupant on-roadway crash in a speed limit zone 

65mph or 70mph occurs, the chance of a fatal or injury outcome increases from 0.471% 

and 19.260% to 0.972% and 25.791% respectively than if failing to yield is not present.  

For crashes with two or three occupants, drivers who fail to yield in a speed limit zone of 
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65mph or 70mph have a greater chance of a fatal outcome (4.708%) and injury outcome 

(53.861%) than if the driver yielded properly.   

Violation of Stop Sign/Signal 

Crashes involving a violation of a stop sign or signal, the sixth most important 

predictor, have a greater risk of a fatal or injury outcome in all decision rules identified 

and dangerous interactions are evident.  For instance, for crashes with more than three 

occupants, mature drivers driving in a speed limit zone of 25mph, 30mph, or unknown 

and violating a stop sign or signal have a greater chance of a fatal outcome (1.866%) than 

their younger counterparts (0.325%).  Additionally, for crashes with more than three 

occupants, driving at speeds that exceed the posted limit of 35mph or 40mph and 

violating a stop sign or signal has a greater chance of a fatal outcome (16.471%) than if 

speeding does not a occur (0.697%). 

Physical Impairment 

Crashes involving physical impairment, the seventh most important predictor of 

crash severity, are also more likely to cause fatal and injury outcomes.  This factor is 

particularly prevalent in single occupant crashes, which may be attributed to other 

occupants’ awareness of physical conditions and discouraging a physically impaired 

driver from operating the vehicle.  Additionally, results reveal a dangerous interaction 

between mature drivers driving while physically impaired and speed limit.  For instance, 

for single occupant crashes, mature drivers who are physically impaired and driving in a 

speed limit zone of 65mph or 70mph have a 3.551% of a fatal outcome and a 44.299% 

chance of an injury outcome, given a crash occurs.   
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Wrong Side – Not Passing 

Crashes involving driving on the wrong side of the road are more likely to cause a 

fatal outcome in all instances.  For example, for single occupant crashes, driving on the 

wrong side of the road in a speed limit zone of 55mph or 60mph results in 4.900% chance 

of a fatal outcome and a 35.844% injury outcome.  For crashes with more than three 

occupants, an on-road crash while driving on the wrong side of the road in a speed limit 

zone of 55mph or 60mph results in a 9.432% chance of a fatal outcome and a 49.332% 

chance of an injury outcome.   

Crash Location On/Off Roadway 

Crash location, the ninth most important predictor for crash severity, does not 

consistently increase or decrease crash severity.  In some situations, on-roadway crashes 

have a greater severity risk while in others off-roadway crashes have a greater severity 

risk, which further supports the importance of analyzing interaction effects.  For instance, 

for single occupant crashes, driving at speeds that exceed the posted limit of 45mph or 

50mph and having an off-roadway crash increases the chance of a fatal outcome from 

0.255% to 1.233% and an injury outcome from 21.649% to 36.96%.  For crashes with 

more than three occupants, when driving in a speed limit zone of 55mph or 60mph and 

alcohol is present, an on-roadway crash has a greater chance of a fatal outcome than an 

off-roadway crash (9.412% and 8.892%).  Yet, under the same scenario when driving in a 

speed limit zone of 65mph or 70mph, an on-roadway crash has a lesser chance of a fatal 

outcome than an off-roadway crash (6.278% and 10.227%).  Interestingly, the greatest 

likelihood of a non-property damage outcome (84.11%) occurs when the driver is under 
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the influence of alcohol, driving in a speed limit zone of 55mph or 60mph and has an off-

roadway crash that involves more than three occupants (presented in Appendix 4).   

Improper Backing  

Crashes involving improper backing, the final most important predictor of 

severity, are less likely to cause a fatal or injury crash.  For all crashes, improperly 

backing in speed limit zones of 05mph to 20mph has a lesser probability of a fatal 

outcome.  For single occupant crashes, the most likely non-injury crash (99.485% 

property damage only-Category 3) occurs when the driver improperly backing in a speed 

limit zone of 25 mph or 30 mph on a road with straight or unknown alignment and has an 

off-roadway crash (presented in Appendix 5).   

 6.1.1 Comparison of Findings with Prior Research   

Expanding upon the discussion above, these findings are both consistent with and 

differ from findings of prior research.  Similar key factors for crash severity prediction 

are recognized in the literature including the number of occupants involved in the crash, 

driver age, alcohol intoxication, speed, lighting conditions, weather conditions, and road 

characteristics.   

Number of Occupants 

The CHAID model indicates that as the total number of occupants involved in a 

crash increases, so does the probability that a fatal outcome will occur.  This result is 

consistent with prior research findings that crash injury severity probabilities increase as 

the number of vehicle passengers increase (Renski et al., 1999; Oh, 2006).    
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Speed Limit/Speed - Exceed Limit 

This study’s results also are consistent with previous research findings that higher 

speed limits significantly increase the risk of severe injury outcomes (Renski et al., 1999; 

Khattak et al., 2002; Oh, 2006; Gårder, 2006; Malyshkina and Mannering, 2010; 

Savolainen and Ghosh, 2008; Haleem and Abdel-Aty, 2010; Zhu and Srinivasan, 2011; 

Yasmin and Eluru, 2013).  For example, for single occupant crashes, lower driving speed 

limits are found to decrease the probability of a fatal outcome.  Moreover, for multiple 

occupant crashes, as speed limits increase, the chance of a fatal outcome increases.  

Additionally, model results which suggest that driving at speeds that exceed the limit 

have a greater risk of injury are consistent with prior research (Khattak et al., 1998; 

Renski et al., 1999; Khattak et al., 2002; Khattak and Rocha, 2003; Gårder, 2006; Oh, 

2006; Savolainen and Ghosh, 2008; Schneider et al., 2009; Haleem and Abdel-Aty, 2010; 

Malyshkina and Mannering, 2010; Zhu and Srinivasan, 2011; Yasmin and Eluru, 2013).  

For instance, for crashes with two or three occupants, driving at a speed that exceeds the 

posted limit of 20mph to 50mph increases the chance of a fatal outcome.  For crashes 

with more than three occupants, driving at speeds that exceed the speed limit increases 

the chance of a fatal outcome occurring as speed limits increase. 

Importantly, in agreement with prior research (Yan and Radwan, 2006; Eustace et al., 

2014), this study also identifies interaction effects between speed limit/speeding and 

other factors.  For example, single occupant on-roadway crashes that occur when driving 

at speeds that exceed the posted limit of 45mph or 50mph increase the chance of a fatal 

outcome from 0.212% to 4.449% and an injury outcome from 21.429% to 43.52% than if 

speeding was not present.  It is also suggested that for two or three occupant crashes, 
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males driving at speeds that exceed the posted limit of 45mph or 50mph have an greater 

chance of a fatal outcome (7.950%) relative to their female counterparts (1.010%).  

Finally, for crashes involving two or three occupants, a 20.870% chance of a fatal 

outcome and a 68.216% of an injury outcome results when driving at speeds that exceed 

the limit while under the influence of alcohol.  

Driver Age  

Results from this study are consistent with prior research findings that age is a 

significant factor in predicting injury severity (Delen et al., 2006; Kuhnert et al., 2000), 

yet this study does not find age to have as great an importance for crash severity 

outcomes as previous findings.  Importantly, though, this study agrees with prior 

research’s assertion that the effect of young drivers on injury severity is circumstantial 

(Khattak and Rocha, 2003; Lu et al., 2006; Haleem and Abdel-Aty, 2010; Bernard and 

Sweeney II, 2015).  For example, CHAID model results suggests that for single occupant 

crashes with a young driver (under the age of 21) driving at speeds that exceed the posted 

limit of 25mph or 30mph is more likely to cause a fatal crash (0.676%) than for older 

drivers.  Yet, a young driver driving at speeds that exceed the posted limit of 35mph or 

40mph during dark, unlit conditions is more likely to cause a fatal outcome (5.128%) and 

an injury outcome (37.5%) than their middle aged counterparts.   

Agreeing with prior research (Bédard et al., 2002; Khattak et al., 2002; 

Abdelwahab and Abdel-Aty, 2002; Abdel-Aty, 2003; Schneider et al., 2009; Rifaatt et al., 

2011; Yasmin and Eluru, 2013), the model suggests mature drivers have a circumstantial 

increased likelihood for greater injury severity.  For example, in a crash involving three 

or more occupants, mature adults driving in a speed limit zone of 25mph, 30mph, or 
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unknown and violating a stop sign or signal have a greater chance of a fatal outcome 

(1.866%) than their younger counterparts (0.325%).  Yet, for single occupant crashes 

with middle aged drivers driving at speeds who exceed the posted limit of 35mph or 

40mph are more likely to have a fatal outcome (4.517%) and an injury outcome (44.4%) 

than that of other age groups (2.109% fatal and 37.316% injury).  

Alcohol  

Study results are consistent with previous literature that alcohol use is a 

significant factor for predicting crash injury severity, and the presence of alcohol 

increases the likelihood of injury or fatality (Khattak et al., 1998; Renski et al., 1999; 

Krull et al., 2000; Bédard et al., 2002; Khattak et al., 2002; Kockelman and Kweon, 

2002; Abdel-Aty, 2003; Zajac and Ivan, 2003; Donnell and Mason, 2004; Delen et al, 

2006; Islam and Mannering, 2006; Rifaatt and Tay, 2009; Schneider et al., 2009; Wang et 

al., 2009; Moudon et al., 2011; Rifaatt et al., 2011; Yasmin and Eluru, 2013).  For 

example, when a crash involves a single occupant in a speed limit zone of 65mph or 

70mph and alcohol is a contributing circumstance, the probability of a fatal outcome 

dramatically increases from 0.891% to 32.555% and the probability of an injury outcome 

increases from 24.645% to 42.057% than if no alcohol is present.  Additionally, when a 

crash involves two or three occupants and alcohol is a contributing factor, the likelihood 

of a fatality increases from 0.763% to 5.181% and the likelihood of an injury outcome 

increases from 42.380% to 62.327%.  Finally, when a crash involves more than three 

occupants and alcohol is present, the probability of a fatal outcome increases from 

0.886% to 7.103% and the probability of an injury outcome increases from 38.752% to 

60.276%.   
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Additional Comparison 

Lighting Conditions 

Model results are also consistent with previous research which concludes that crashes 

that occur during dark, unlit conditions have greater injury severity (Klop and Khattak, 

1999; Khattak et al., 2002; Rifaatt and Tay, 2009; Haleem and Abdel-Aty, 2010).  For 

example, a single occupant crash involving a young driver or a mature driver driving in a 

speed limit zone of 35mph or 40mph during dark, unlit conditions are more likely to have 

a fatal outcome (5.128%) and an injury outcome (37.5%) than if driving during other 

lighting conditions.  Additionally, for crashes involving three or more occupants, driving 

under the influence of alcohol at speeds that exceed the limit results in a 17.38% chance 

of a fatal outcome, yet adding a light condition of dark and no streetlights to this scenario 

increases the chance of a fatal outcome to 24.675%.  Findings also suggest that for 

crashes involving two or three occupants, driving at speeds that exceed the limit in a 

speed zone of 35mph to 45mph during dark, but lit conditions has a likelihood of a fatal 

outcome of 8.108% and an injury outcome of 66.366%. 

Weather Conditions  

Model results with respect to the effects of weather conditions on severity 

outcomes help clarify previous research findings.  The CHAID model suggests that in 

certain circumstances adverse weather can either increase likely crash severity (as 

reported by Wang et al., 2009; Abdel-Aty, 2003), yet in other circumstances decrease 

likely crash severity (as reported by Khattak et al., 1998).  Single occupant crashes that 

occur during cloudy, rainy, freezing, or clear weather conditions are more likely to cause 

fatal and injury outcomes than snow, sleet, fog, mist, and indeterminate conditions when 
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the speed limit zone is unknown.  Additionally, two or three occupant on-roadway 

crashes that occur when the driver is driving too fast for conditions in a speed limit zone 

of 55mph or 60mph during dark but lit lighting conditions during weather conditions of 

cloudy, rainy, snowy and freezing are more likely to cause an injury outcome than during 

sleet, foggy, indeterminate and clear conditions.  Yet, a two or three occupant crash that 

occurs during snowy or freezing weather conditions is more likely to cause an injury 

outcome but less likely to cause a fatal outcome than other weather conditions when a 

young driver is driving too fast for conditions on wet or unknown road conditions in a 

speed limit zone of 25mph or 30mph.    

Road Characteristics  

Finally, model results suggest that road conditions do not have high predictor 

importance, which differs from prior findings that road conditions have a great influence 

on crash severity (Lu et al., 2006).   

6.2 Implications of Findings 

6.2.1 Risk Assessment 

 To provide a context for understanding the relative reduction in overall risks 

associated with reducing the frequency of driver behaviors that importantly contribute to 

the likelihood of different crash severity outcomes, historic outcomes are examined to 

determine annual upper and lower bounds on the changes in the number of drivers 

involved in fatal, injury or property damage only crashes if selected contributory 

circumstances might be individually entirely eliminated.  Due to the limitations of the 

modeling software, the annual bounds are estimated using the training set data and are 
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calculated for each severity outcome by dividing the number of outcomes in the training 

set by the number of effective years in the training dataset (11 * 0.75).   

Considering the contributing circumstances that have the greatest predictor 

importance for severe crash outcomes, lower and upper bounds for changes in the annual 

number of drivers involved in each of the three severity outcomes are determined by 1) 

removing the contributing circumstance for each driver and assuming the crash still 

occurs with severity outcome probabilities now determined by the outcome probabilities 

of the complementary node (a ceteris paribus lower bound)  and 2) removing the 

contributing circumstance and alternatively assuming that the driver is not involved in a 

crash at all (an upper bound).  This bounding technique presumes that no casual 

relationships exist among contributing circumstances in estimating the lower bounds and, 

alternatively, that the removed contributing circumstance was solely responsible for 

causing the accidents in estimating the upper bounds. 

Table 6.1 presents the lower and upper bounds of the reductions in the annual 

numbers of drivers involved in fatalities, injury, and property damage outcomes 

associated with the six most important contributing circumstances.   
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Table 6.1: Estimated Annual Reductions in the Number of Drivers Involved in Each 

Severity Outcome if a Contributing Circumstance is Eliminated 

Contributing 

Circumstance 

Fatal Injury 
Property Damage 

Only 
N

1
 

Estimated 

Lower 

Bound 

Estimated 

Upper 

Bound 

Estimated 

Lower 

Bound 

Estimated 

Upper 

Bound 

Estimated 

Lower 

Bound
2
 

Estimated 

Upper 

Bound 

 

Speed - Exceed 

Limit 
107 133 477 1,344 -801 1,325 2,802 

Alcohol 135 191 841 2,741 -1,418 3,187 6,119 

Failed to Yield 43 88 1412 6,779 -1,455 15,268 22,135 

Violation - Stop 

Sign/Signal 
16 39 692 2,133 -708 2,956 5,128 

Wrong-Side 67 110 157 1,065 -224 1,212 2,388 

Physical 

Impairment 
11 36 427 1,215 -437 1,190 2,442 

  

 As illustrated in Table 6.1, the elimination of the specific contributing 

circumstance clearly changes the distribution of the number of drivers involved in the 

three outcomes.  For example, alcohol involvement has significant detrimental effects on 

the number of Missouri drivers involved in fatal outcomes.  When eliminating alcohol as 

a contributing circumstance and assuming the crash then does not occur, 191 fewer 

annual driver contributions towards fatal crashes might be prevented.  When eliminating 

alcohol as a contributing circumstance and assuming the crash still does occur, the 

estimated severity outcomes are redistributed and at least 135 fatal accident outcomes per 

year might be avoided.  It is apparent that many fatalities, injuries, and property damage 

outcomes might be prevented by completely eliminating these contributing 

circumstances; therefore, the findings from this study are compared with the current 

Missouri driving policy in order to identify possible driving statue modifications that 

could have a significant impact on improving public safety.  

                                                           
1
 N = Number of estimated cases per year. 

2
 A negative value for property damage only outcome represents an increase for the least severe outcome, 

given the assumption that the crash still occurs. 
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6.2.2 Implications of Findings for Missouri Driver Guide - Rules of the Road 

Key findings presented in section 6.1 have important implications for possible 

changes in the current Missouri Driver Guide - Rules of the Road.  Drawing upon these 

findings, policy recommendations are identified and discussed for the contributing 

circumstances that greatly increase the likelihood of more severe outcomes of motor 

vehicle crashes: total number of occupants, speed limit, driving at speeds that exceed the 

limit, driver age, and alcohol use.   

Number of Occupants 

As earlier described, model results strongly suggest that as the number of 

occupants involved in a crash increases, so does the probability of a more severe 

outcome.  While seatbelt use is not considered as a predictor of injury severity in this 

study as there is no data regarding the seatbelt usage of all vehicle occupants, prior 

research has found the use of seatbelt restraints reduces the probability of fatal and injury 

outcomes (Shibata and Fukuda, 1994; Farmer et al., 1997; Bédard et al., 2002; Ulfarsson 

and Mannering, 2004; Chang and Yeh, 2006; Islam and Mannering, 2006; Kononen et 

al., 2011; Amarasingha and Dissanayake, 2013; Yasmin and Eluru, 2013).   According to 

the National Highway Traffic Safety Administration, seatbelt usage reduced the number 

of fatalities by approximately 13,000 in 2009; and approximately 4,000 more fatal 

outcomes would have be avoided if all occupants had been properly restrained 

(Department of Transportation (US), 2010).  Current Missouri seatbelt-use policy 

requires only the driver and front-seat passengers to use seatbelts; and, findings suggest 

revising the Missouri Driver Guide - Rules of the Road to require all vehicle occupants to 

be properly restrained since doing so reduces the risk of injury or fatality for possibly 
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unrestrained passengers thereby reducing the likelihood of an injury or fatality crash 

outcome. 

Speed Limit/Speed - Exceed Limit 

The Missouri Driver Guide states that “speed limit signs indicate the maximum 

speed allowed by law, and do not mean that all parts of the road can be safely driven at 

those speeds under all conditions.  The speed limit is the maximum allowable speed in 

ideal conditions” (p. 37); and, it is recommended that driving speed be adjusted as 

appropriate for changes in road conditions and characteristics, visibilities, other road 

users, and weather conditions.  As previously suggested the interaction of speed limit and 

driving at speeds that exceed the limit increase the likely severity of crash outcomes, 

which is confirmed by the aforementioned statements made by.  For example, driving at 

speeds that exceed the posted limit of 35mph to 45mph during dark, but lit conditions has 

an increased likelihood of a fatal outcome than when speeding during other lighting 

conditions.  As a result, it is recommended that patrol units be aware that dark conditions 

increase the probability of severe outcomes and adjust accordingly.    

Additionally, the likelihood of a fatal crash is higher when driving on the wrong 

side of the road in speed limit zones of 45mph to 60mph and when failing to yield in a 

speed limit zone of 65mph or 70mph than if these contributing circumstances are not 

present.  Following successful application in North Carolina and California, many states 

have adopted innovative strategies to reduce wrong-way driving such as lowering the 

height of “Do Not Enter” and “Wrong Way” signs, increasing the size of signage, 

locating signage on both sides of the exit travel lane, changing lighting and minor ramp 

geometrics, and illuminating “Wrong Way” signs that flash when a wrong-way vehicle is 
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detected (Zhou and Rouholamin, 2014).  As a result, the study may infer that in higher 

speed limit zones preventive measures to reduce driving on the wrong side of the road 

and failing to yield, such prominent signage, are of great importance.   

Driver Age 

Current Missouri law requires that all first time drivers obtain an instruction 

permit followed by an intermediate license before graduating to a full driver’s license, 

referred to as the Graduated Driver License (GDL) law (Missouri Department of 

Revenue, 2014b).  Findings from this study suggest that the GDL law might be re-

evaluated in light of the interaction between age, other variables that increase injury 

severity outcomes, and the elevated frequency of crash occurrence for younger drivers 

(Table 4.2).  For instance, when a young driver is driving in a speed limit zone of 35mph 

or 40mph during dark, unlit conditions, a greater chance of a fatal and injury outcome 

exists than when driving during other lighting conditions.  Upon evaluating the 

effectiveness of GDL programs before and after implementation, Ulmer et al. (2000) and 

the Office of Governor's Highway Safety Representative (2001) found significant 

reductions in severe crashes during night restricted hours.  Moreover, according to the 

Insurance Institute for Highway Safety, Highway Loss Data Institute (2015) GDL Crash 

Reduction Calculator, increasing Missouri GDL night time restriction from 1:00am to 

8:00pm could result in a 5% reduction in total claims and a 12% reduction in fatal 

crashes.  This suggests that this age group might have restricted privileges for driving 

after dusk, and implies that this restriction be implemented throughout all three stages of 

the GDL program in order to reduce the risk of severe crashes.  Finally, the importance of 

the young age of the driver on the prediction of crash severity prominently occurs in 
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single occupant crashes.   Insurance Institute for Highway Safety, Highway Loss Data 

Institute (2015) suggests that when teenage passengers are prohibited in vehicles operated 

by a teenage drivers, such as in Alaska, California, Colorado, Connecticut, D.C., Georgia, 

Indiana, Maine, Maryland, Massachusetts, Nevada, Oregon, Utah, Vermont, Washington, 

West Virginia, fatal crash rates for 15 to 17-year-old drivers are 21% lower than when 

two or more passengers are allowed.   This suggests that throughout the stages of the 

GDL program that drivers should be accompanied in the front, passenger seat by a 

licensed driver who is at least 21 years old. 

This study also identifies and recognizes important findings concerning older 

drivers and possible policy revisions even in light of their low frequency of crash per 

driver year as in Table 4.2.  For example, in single occupant crashes, mature drivers (55 

years of age or older) have an increased chance of a severe outcome when driving 

physically impaired than when driving unimpaired.  According to Braitman et al. (2014), 

when passengers are present the risk of fatal crash is 43% lower for drivers 65 to 74-

years-old and 38% lower for drivers at least 75 years-old.   These findings suggest that 

consideration might be given to restricting drivers in this age group with physical 

impairments from driving alone, since the presence of other passengers could aid in 

assessing the physical state and capabilities of the aged driver.  

Alcohol 

Driver alcohol use is one of the most significant predictors of crash injury 

severity.  Currently under Missouri law, drivers who are found guilty of driving while 

intoxicated (DWI) may be subject to paying a fine, having his/her license revoked, or 

being imprisoned as illustrated in Figures 6.1 and 6.2 (Missouri Department of Revenue, 
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2014a).  Moreover, if someone is injured or killed as a result of driving under the 

influence of alcohol, the driver may “spend 2 to 7 years in jail, pay a $5,000 fine, and/or 

lose your driver license for 5 years” (Missouri Department of Revenue, 2014a, p.77).  

Because of the large increase in the probabilities of injury and fatal outcomes when 

driving under the influence of alcohol, these laws may not be stringent enough in the 

prevention of drinking and driving given the clear large increase in the likelihood of 

severe outcomes.  Additionally, Missouri law currently requires any person guilty of a 

second alcohol intoxication-related traffic offense to install an ignition interlock device 

on all vehicles operated by the offender before reinstating driving privileges (Missouri 

Department of Transportation, 2013).  Since drivers with a BAC above the legal limit that 

are involved in fatal crashes are six times more likely to have a prior DWI conviction 

(Department of Transportation (US), 2014) to deter multiple offenses from occurring all 

DWI first-time offenders could be required the use of ignition interlocks. 

Figure 6.3: Administrative Actions for DWI (Source: Missouri Department of 

Revenue, 2014a, p. 78) 
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Figure 6.4: Court Convicted Actions for DWI (Source: Missouri Department of 

Revenue, 2014a, p. 79) 

  

Additionally, research suggests that injuries and fatalities from impaired driving 

can be prevented through community-based approaches (DeJong and Hingson, 1998; 

Holder et al., 2000; Shults et al., 2009).  The Missouri Department of Revenue 

encourages such approaches through reporting drunk drivers by calling 911 and 

providing law enforcement with the license plate number of the vehicle, a physical 

description of the car and driver, and the vehicle’s location (Missouri Department of 

Revenue, 2014a).  However, in order to reduce the number of DWI drivers on Missouri 

roadways, this study recommends that this process be simplified and that a hotline and/or 

web-notification mechanism be considered (with possible rewards) for reporting DWIs.  

Finally, to further reduce DWIs, Missouri law enforcement agencies implement 

sobriety checkpoints at temporary, random locations (Reynolds, 1989).  Research 
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indicates that high-profile enforcement efforts, specifically frequent sobriety checkpoints, 

are effective in reducing alcohol-related fatal crashes (Elder et al., 2002), and recent 

studies found such checkpoints reduce the number of fatal outcomes by 20% (Shults et 

al., 2001).  As earlier described, a strong interaction is found between high speed limits, 

alcohol intoxication, and crash severity.  As a result, this study recommends that future 

DWI checkpoints might be located at on-ramps to high speed highways and interstates to 

reduce the amount of intoxicated drivers driving at high speeds.  

Chapter 7 – Conclusions  

7.1 Conclusions  

To expand the methodological frontier and advance the future of crash severity 

research, this study compares and combines different methodological techniques to 

uncover more intricate relationships amongst explanatory variables and provide better 

information to enhance transportation safety efforts.  To do so, the following research 

questions are answered.  

Q1: What insights do the multinomial logit, ordinal probit, decision tree, artificial 

neural network, and model ensembles each reveal in the data?   

The multinomial logit, ordinal probit, decision tree, ANN, and model ensembles each 

reveal important findings as described in Chapter 5 and summarized as follows:    

Multinomial Logit 

For the multinomial model estimated on the training set, the overall goodness of 

fit test with 948,679 observations yields a χ
2
 = 130,650.385 with 112 degrees of freedom 

and a p-value of 0.000.  The classification accuracy rate equals 72.0% for both the 

training set and the testing set, and the AUC scores are significantly greater than 0.5 

indicating significant discriminatory power.  The three most important predictors of 
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crash severity are speed – exceeds limit, total number of occupants involved, and 

improper backing.  

Ordinal Probit 

The Brant test of parallel lines for the estimated ordinal probit model produces a chi-

square of 6,544.677 with 59 degrees of freedom, which is significant at a level of less 

than 0.000; therefore, the fundamental proportional odds assumption underlying the 

ordered probit model is rejected.  Rejecting the proportional odds assumption can lead to 

inconsistent model estimation (Eluru et al. 2008), and this approach is not carried 

forward.   

Decision Tree  

Both CART and CHAID trees are estimated and compared by evaluating the 

classification accuracy and the AUC values for each model.  The CHAID algorithm 

provides greater classification accuracy and AUC values than does the CART algorithm; 

therefore, the CHAID approach is carried forward.  The classification accuracy rate for 

the CHAID equals 73.06% for the training set and 73.06% for the testing set; and, the 

AUC estimates indicate significant discriminatory power.  The top three most important 

predicators of crash severity are the total number of occupants, speed limit, and speed – 

exceeds limit. 

ANN 

The MLP ANN uses partitioned data to create an input layer, hidden layers, and 

output layers to explain relationships between variables.  The final training model 

includes 948,679 observations, has 1 hidden layer, 11 neurons, and a classification 

accuracy of 72.84% for the training set and 72.89% for the testing set.  AUC scores are 
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significantly greater than 0.5, indicating above-chance discriminatory power.  The top 

three most important predicators of crash severity are total number of occupants, speed – 

exceeds limit, and speed limit. 

Model Ensembles 

The study uses the final multinomial logit, CHAID decision tree, and ANN 

models to score the model ensemble using three common combinatory rules: Majority 

Voting, Weighted-Majority Voting, and Max Rule.  The accuracy and discriminatory 

power of each model ensemble is assessed by examining the confidence matrices, the 

ROC curves, and the AUC values of each ensemble. 

 All ensemble approaches have similar classification accuracy for the training set 

and for the testing set. 

 The Weighted-Majority Voting Ensemble approach results in the highest AUC 

values for both fatal versus nonfatal outcomes and injury versus non-injury 

outcomes. 

 The AUC scores for the Weighted-Majority Voting Ensemble and Max Rule are 

both significantly greater than 0.5, which indicates above-chance discriminatory 

power. 

 The relatively low AUC values suggest that the Majority Voting Ensemble model 

does not have good discriminatory power; and, when the distribution of outcomes 

is as highly skewed as it is here, Majority Voting is not a useful ensembling 

method.   

 The ROC curves for the Weighted-Majority Voting Ensemble and Max Rule 

Ensemble for the prediction of fatal versus non-fatal outcomes are everywhere 



 

194 

Copyright, Jill M. Bernard, 2015 

above or equal to all the individual model ROC curves, signifying that these 

ensemble models predict fatal versus non-fatal outcomes better than or equal to 

the individual modeling approaches.   

 The ROC curves for the Weighted-Majority Voting Ensemble and Max Rule 

Ensemble for the prediction of non-injury versus injury outcomes are everywhere 

above the individual models’ ROC curves, with the exception of the CHAID 

decision tree.  This suggests that the ensemble models better predict non-injury 

versus injury outcomes than the individual modeling approaches, with the 

exception of the CHAID model. 

Q2: What is the relative accuracy of each model in comparison with the accuracy of 

the model ensembles? 

 Table 7.1 provides the relative accuracy of each model and model ensembles.  As 

presented, the CHAID decision tree renders the greatest classification accuracy for both 

the training and testing sets compared to each individual model and model ensemble 

approach.   
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Table 7.1: Individual Model and Model Ensemble Classification Accuracy 

Model 

Approach 

Classification 

Accuracy 

Training Set 

Classification 

Accuracy 

Testing Set 

Multinomial 

Logit 
72.00% 72.00% 

CHAID 

Decision Tree 
73.06% 73.00% 

ANN 72.84% 72.89% 

Majority Voting 

Ensemble 
73.02% 72.99% 

Weighted-

Majoring 

Voting 

Ensemble 

73.02% 72.99% 

Max Rule 

Ensemble 
72.84% 72.83% 

 

Q3: When adjacent severity outcomes are grouped, what is the relative 

discriminatory power of each model compared to the discriminatory power of the 

model ensembles? 

The study compares AUC values for each of the individual models and the three 

model ensemble techniques to determine if there is a significant difference between the 

models’ abilities to predict (1) a fatal outcome relative to property damage and injury 

only outcomes and to predict (2) a property damage only outcome relative to fatal and 

injury outcomes.  Results suggest that there is a statistically significant difference 

between the AUC values of the CHAID model and the Multinomial Logit model and the 

CHAID model and the ANN model for both fatal versus non-fatal outcomes and injury 

versus non-injury.   

Additionally, the study compares model ensemble approaches with statistically 

significant AUC values, Weighted-Majority Voting and Max Rule, to determine if there 

are significant differences between the two ensembles’ prediction capabilities.  Results 
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indicate that there is not a significant difference between the AUC values of the 

Weighted-Majority Voting Ensemble and Max Rule Ensemble for fatal versus non-fatal 

outcomes, while there is a significant difference in AUC values for injury versus non-

injury outcomes.   

Finally, the study compares the CHAID AUC values with the Weighted-Majority 

Voting Ensemble AUC values, and results suggest that there is not a significant 

difference between the AUC values of the CHAID model and the Weighted-Majority 

Voting Ensemble for fatal versus non-fatal outcomes, yet there is a statistically 

significant difference between the AUC values for injury versus non-injury outcomes 

with the CHAID model providing better discriminatory power.   

Q4:  What findings are derived from the model with the greatest accuracy and/or 

discriminatory power and do these findings support prior research?  

The CHAID decision tree model is found to have the greatest accuracy and 

discriminatory power relative to a main effects multinomial logit model, ANN model, 

and each of the three model ensembles; and, the findings derived from the CHAID model 

are both consistent with and differ from findings of prior research.  For example, the 

CHAID model indicates that as the total number of occupants involved in a crash 

increases, so does the probability that a fatal outcome will occur, which is consistent with 

prior research findings that crash injury severity probabilities increase as the number of 

vehicle passengers increase.  CHAID results are also consistent with previous research 

findings that higher speed limits and the presence of alcohol significantly increase the 

risk of severe injury outcomes.  Additionally, findings are consistent with prior research 

claims that age is a significant factor in predicting injury severity, yet this study does not 

find age to have as great an importance for crash severity outcomes as prior research.  
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The CHAID model also suggests that certain environmental conditions can increase 

likely crash severity in certain situations, and in yet other circumstances decrease likely 

crash severity.  Finally, model results suggest that road conditions do not have high 

predictor importance, which differs from prior findings that road conditions have a great 

influence on crash severity. 

Q5:  Do the findings support current Missouri public policy or point to needed 

revisions?   

Among the individual model approaches examined, the CHAID decision tree is 

clearly best at predicting crash injury severity, and the interaction effects of variables 

identified by the CHAID model are important when analyzing Missouri crash severity 

data.  For example, it is readily discovered that driving while under the influence of 

alcohol, driving at speeds that exceed the limit, failing to yield, driving on the wrong side 

of the road, violating a stop sign or signal, and driving while physically impaired lead to a 

significant number of fatalities each year in Missouri.  Yet, the effect of these factors on 

the probability of a severe outcome is dependent upon other variables, including the 

number of vehicle occupants involved in the crash, the speed limit, actual driving speed, 

lighting conditions, and driver’s age.  As a result, this study indicates that policy makers 

should consider the interaction of driver related contributory circumstances and other 

conditions when formulating future legislation intended to reduce the number of fatal 

outcomes and save lives of Missouri highway drivers and passengers. 

As presented in Chapter 6 section 6.2.2, findings support current Missouri public 

policy, still needed revisions are evident.  Therefore, the following specific policy 

recommendations are identified and their likely effectiveness discussed: 



 

198 

Copyright, Jill M. Bernard, 2015 

1. To deter multiple offences from occurring, penalties could be modified to 

require the use of ignition interlocks by all first-time convicted DWI 

offenders. 

2. DWI checkpoints could be located at on-ramps to highways and interstates 

to reduce the amount of intoxicated drivers driving at high speeds.  

3. To prevent/deter drivers from entering high speed limit zones (highways 

and interstates) on the wrong-side of the road and going the wrong way, 

barriers, such as larger or illuminated "wrong-way" and "do not enter" 

signs could be considered.  

4. To reduce crash fatalities, actions that deter/reduce driving at speeds that 

exceed limit during dark conditions (such as increased patrol) could be 

implemented.   

5. To reduce the probability of a severe outcome, young drivers could have 

restricted privileges for driving after dusk throughout the GDL program.   

6. To reduce the probability of a severe outcome, young drivers could be 

accompanied in the front, passenger seat by a licensed driver who is at 

least 21 years old throughout the GDL program.  

7. To reduce the probability of fatalities, it is recommended that mature 

drivers with physical impairments be required to drive with a licensed 

driver of at least 21 years old.    

7.2 Limitations and Future Research 

Limitations of this research exist and may be resolved through future research 

endeavors.  First, this study considers data compiled from the entire state of Missouri and 
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the general findings may not be appropriate in specific differentiated locations throughout 

the state.  Future research may address this limitation by partitioning data into smaller 

regions of Missouri (urban, rural, suburban, county, zip code, and other meaningful 

partitions) and by examining regional factors and their effect on injury severity in order 

to contribute to localized legislation.   

Second, this study considers only Missouri data.  Future research may apply the 

same methodological approach to additional state crash datasets to assess policy 

implications for various locations.   

Third, additional or alternate variables may be considered in future research to 

broaden the research to other factors that may contribute differentially to crash severity.  

These include variables such as seasonality, peak driving times, highway class, rural 

versus urban location, crash type, and vehicle action.    

Fourth, this study does not differentiate between types of motor vehicles (e.g. 

large truck, personal passenger, commercial).  Future studies may partition data based on 

vehicle type to examine if explanatory variables and policy implications differ by vehicle 

type.  Additionally, future research may apply the methodological techniques presented 

here to other modes of transportation and assess safety measures, risk, and disruptions 

beyond roadways.   

 Lastly, this study limits itself to the comparison of four individual modeling 

techniques and three ensemble scoring methods.  Future studies may introduce additional 

methodological approaches for comparison and model ensembling.   
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Appendices  

Appendix 1: Partial CHAID Tree - Single Occupant 
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Appendix 2: Partial CHAID Tree – Two or Three Occupants 
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Appendix 3: Partial CHAID Tree – More than Three Occupants 
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Appendix 4: CHAID Branch with Greatest Probability of a Severe Outcome  
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Appendix 5: CHAID Branch with Least Probability of a Severe Outcome 
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