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Abstract

Motor vehicle crashes are a leading cause of death in the United States, cost
Americans $277 billion annually, and generate serious psychological burdens. As a
result, extensive vehicle safety research focusing on the explanatory factors of crash
severity is undertaken using a wide array of methodological techniques including
traditional statistical models and contemporary data mining approaches. This study
advances the methodological frontier of crash severity research by completing an
empirical investigation that compares the performance of popular, longstanding
techniques of multinomial logit and ordinal probit models with more recent methods of
decision tree and artificial neural network models. To further the investigation of the
benefits of data analytics, individual models are combined into model ensembles using
three popular combinatory techniques.

The models are estimated using 2002 to 2012 crash data from the Missouri State
Highway Patrol Traffic Division - Statewide Traffic Accident Records System database,
and variables examined include various driver characteristics, temporal factors, weather
conditions, road characteristics, crash type, crash location, and injury severity levels. The
accuracy and discriminatory power of explaining crash severity outcomes among all
methods are compared using classification tables, lift charts, ROC curves, and AUC
values.

The CHAID decision tree model is found to have the greatest accuracy and
discriminatory power relative to all evaluated modeling approaches. The modeling
reveals that the presence of alcohol, driving at speeds that exceed the limit, failing to
yield, driving on the wrong side of the road, violating a stop sign or signal, and driving

Xiii
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while physically impaired lead to a large number of fatalities each year. Yet, the effect of
these factors on the probability of a severe outcome is dependent upon other variables,
including number of occupants involved in the crash, speed limit, lighting condition, and
age of the driver. The CHAID decision tree is used in conjunction with prior literature
and the current Missouri rules of the road to provide better formulated driving policies.
This study concludes that policy makers should consider the interaction of conditions and
driver related contributing factors when crafting future legislation or proposing

modifications in driving statues.
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Chapter 1 — Introduction

Motor vehicle crashes are the leading cause of death for young people in the
United States, and are a leading cause of death for Americans of all ages (Centers for
Disease Control and Prevention, 2015). Crashes on US roadways result in a fatality
every 16 minutes, and led to 32,719 deaths and 2,313,000 injuries in 2013 (National
Highway Traffic Safety Administration, 2014). Traffic crashes not only result in the loss
of invaluable lives, but also cost Americans $277 billion annually in lost wages,
rehabilitation, medical care, etc. (Blincoe et al., 2010). Additionally, traffic crashes
render serious psychological burdens, such as grief, stress, depression, guilt and travel
anxiety for victims and their families (Mayou et al., 1993). As a result of these
devastating effects, academicians and practitioners have undertaken extensive national
and state-level traffic safety research focusing on the explanatory factors of traffic
crashes and crash injury severity.
1.1 Research Techniques

To investigate crash severity data, researchers employ a wide array of
methodological techniques with varying advantages and limitations that may lead to
complementary, conflicting and/or inaccurate results. Savolainen et al. (2011) conducted
a review of the methodological tools employed for statistical analysis of crash injury
severity, and found ordered logit and probit models, binary logit and probit models, and
multinomial logit models to be the most common. While not frequently used, the authors
indicated that contemporary techniques including artificial neural networks (ANN) “may
be better served for prediction of injury outcomes” (Savolainen et al., 2011, p. 1673) and

decision tree models are an effective data mining technique. Additionally, Abdelwahab
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and Abdel-Aty (2001) argued that the learning capabilities and adaptive nature of ANN
models could possibly be superior to traditional techniques in modeling injury severity,
and called for future investigation of the use of ANN models in transportation safety
applications. Furthermore, Chang and Wang (2006) called for future work in comparing
decision tree model results with traditional models such as ordered probit and logistic
regression models.

While researchers have made substantial progress in crash injury severity
modeling, “major methodological and data challenges have yet to be fully resolved”
(Savolainen et al., 2011, p. 1674). Accordingly, addressing these challenges “must be a
priority in future crash-injury research” (Savolainen et al., 2011, p.1674), and “not
expanding the methodological frontier, and continuing to use methodological approaches
with known deficiencies, has the potential to lead to erroneous and ineffective safety
policies that may result in unnecessary injuries and loss of life” (Mannering and Bhat,
2014, p. 16).

1.2 Research Questions

Driven by the physical, emotional and economic costs that follow motor vehicle
crashes, it is important to examine and assess the relative merits of the different
methodological approaches used for predicting crash severity outcomes. Yet few studies
have compared the differing modeling approaches and no studies have been identified in
which methodologies have been ensembled to attempt to gain greater accuracy and
predictive power for injury severity outcomes. Even so, some researchers have theorized

that combining different modeling types can create ensemble models with the ability to
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obtain greater accuracy relative to the individual models (Hansen and Salamon, 1990;
Polikar, 2006).
1.3 Objectives

This research contributes to the body of existing literature by responding to the
call for expanding the methodological frontier in crash injury severity research. An
empirical investigation is performed to determine if traditional techniques, contemporary
models or model ensembles offer greater accuracy and predictive power for crash injury
severity outcomes.

This study uses crash data compiled by the Missouri Highway Patrol for the years
2002 to 2012 to develop, evaluate and ensemble (1) multinomial logit, (2) ordinal probit,
(3) artificial neural networks and (4) decision tree models to compare the accuracy and
predictive power of each approach in order to identify the best approach for influencing
safety policies. This research contributes to the current body of literature by evaluating
the relative accuracy and power of varying modeling types estimated on a single large
dataset of vehicle crashes, and by identifying relationships among contributing variables
to crash severity to produce findings that will contribute to potential Missouri legislation
and education materials to enhance overall driver safety.

Specifically, the results from this study contribute to the current body of literature
by addressing the following detailed research objectives:

(1) Build and estimate four different models: multinomial logit, ordinal probit,

artificial neural network and decision tree models, and assess the performance of

each individual model by examining the relative performance of the estimated

model on a training subset and a testing subset of the data.
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(2) Combine the estimated multinomial logit, ordinal probit, artificial neural
network and decision tree models to build an ensemble model to test if the
amalgamation of the multiple methodologies enhances the classification accuracy
of crash injury severity on a training subset and a testing subset of the data.
(3) Examine and compare the predictive importance of variables as estimated by
each individual model and the model ensemble to determine the contributory
factors that have the greatest impact on crash injury severity outcomes.
(4) Gain greater insight into relationships in the crash data by examining how
crash injury severity is affected by a wide range of possible explanatory variables.
(5) Evaluate findings relative to current Missouri driving policy and law to
provide information for transportation planning, education and policy to enhance
transportation safety efforts.
1.4 Organization of the Research
The research is presented in seven chapters. Chapter One includes background
and justification, as well as the problem statement and objectives for this study. Chapter
Two provides a review of relevant research for each methodological approach, in
addition to a summary of the significant findings derived from the body of literature.
Chapter Three identifies gaps in the current body of literature, recounts the call for
further research in this area, and indicates the specific research questions to be answered
by this study. Chapter Four presents details regarding the data and the methodological
techniques employed. Chapter Five provides an analysis of the estimation and results of

the individual models and the model ensembles. Chapter Six presents a discussion of
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findings and insights derived from the estimated models. Finally, Chapter Seven
identifies research implications, limitations, and potential areas for future research.
Chapter 2 - Literature Review

Prior research has employed a wide array of methodological tools to better
understand the factors that affect crash injury severity. Savolainen et al. (2011)
conducted a review of the methodological tools employed for statistical analysis of crash

injury severity, and identified the approaches as follows:

o Acrtificial neural networks e Ordered logit and ordered probit

e Bayesian hierarchical binomial logit e Partial proportional odds

e Bayesian ordered probit e Random parameters (mixed) logit

e Binary logit and binary probit e Random parameters (mixed) ordered
e Bivariate binary probit logit

e Bivariate ordered probit e Random parameters ordered probit

o Classification and regression tree e Sequential binary logit

o Generalized ordered logit e Sequential binary probit

e Heterogeneous outcome e Sequential logit

e Heteroskedastic ordered logit/probit
e Log-linear

e Markov switching multinomial logit
e Mixed generalized ordered logit

e Mixed joint binary logit-ordered logit
e Multinomial logit

e Multivariate probit

o Nested logit
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Of these, the study identified the most commonly employed techniques to be
ordered logit and ordered probit (approximately 30%), binary logit and binary probit
(approximately 16%), and multinomial logit (approximately 13%). While not commonly
used methods, the authors indicated that neural networks “may be better served for
prediction of injury outcomes” (Savolainen et al., 2011, p. 1673) and that decision tree
models are an effective data mining technique.

Mannering and Bhat (2014) expanded upon Savolainen et al. (2011) by
identifying methodological developments and applications that have occurred since 2011.
The authors identified additional publications that employed binary logit/probit models (1
publication), multinomial logit models (3 publications), nested logit models (3
publications), sequential logit/probit models (1 publication), ordered logit/probit models
(8 publications), generalized ordered outcome models (5 publications),
bivariate/multivariate ordered probit models (4 publications), mixed logit model (random
parameters logit model) (7 publications), finite-mixture/latent-class and Markov
switching models (5 publications), mixed ordered probit (random parameters probit)
model (1 publication), and spatial and temporal correlations (1 publication). The authors
identified no additional studies using artificial neural networks or decision tree models.

Following Savolainen et al. (2011) and Mannering and Bhat (2014) as guides, this
study conducted a literature review of the most common techniques used in crash injury
severity analyses (ordered logit probit, binary logit and probit, and multinomial logit -
and the contemporary approaches used in crash injury severity analyses - artificial neural
networks and decision trees). Table 2.1 provides a summary of the prior research

identified.
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Table 2.1: Summary of Prior Research

Binary Logit/Probit

Shibata and Fukuda (1994)
Zhang et al. (2000)
Ballesteros et al. (2004)

Pai (2009)

Kononen et al. (2011)
Multinomial Logit

Shankar and Mannering (1996)
Khorashadi et al. (2005)
Savolainen and Ghosh (2008)
Ye and Lord (2011)
Amarasingha and Dissanayake (2013)
Ordered Logit/Probit
Khattak et al. (1998)
Khattak et al. (2002)

Austin and Faigin (2003)
Donnell and Mason (2004)
Shimamura et al. (2005)
Paiand Saleh (2007)

Xie et al. (2009)

Quddus et al. (2010)

Jiang et al. (2013a)

Ye and Lord (2014)
Artifical Neural Networks
Mussone et al. (1999)
Bayam et al. (2005)
Decision Tree

Stewart (1996)

Abdel-Aty and Keller (2005)
Eustace et al. (2014)

Farmer et al. (1997)
Al-Ghamdi (2002)
Chang and Yeh (2006)
Rifaat and Tay (2009)
Moudon et al. (2011)

Carson and Mannering (2001)
Islam and Mannering (2006)
Schneider et al. (2009)
Schneider and Savolanien (2011)
Ye and Lord (2014)

Klop and Khattak (1999)
Kockelman et al. (2002)

Kweon et al. (2003)

Khattak and Targa (2004)

Gérder (2006)

Gray et al. (2008)

Amarasingha and Dissanayake (2010)
Ye and Lord (2011)

Jiang et al. (2013b)

Ariannezhad et al. (2014)

Abdelwahab and Abdel-Aty (2001)
Delen et al. (2006)

Kuhnert et al. (2000)
Yan and Radwan (2006)

Khattak et al. (1998)

Bedard et al. (2002)

Sze and Wong (2007)

Haleem and Abdel-Aty (2010)
Santolino et al. (2012)

Krull et al. (2000)

Toy and Hammitt (2003)
Chimba and Sando (2009)
Peek-Asa et al. (2010)
Yu and Abdel-Aty (2014)

Abdel-Aty and Abdelwahab (2004) Ulfarsson and Mannering (2004)

Kimet al. (2007)

Malyshkina and Mannering (2008)

Malyshkina and Mannering (2010)  Rifatt et al. (2011)

Eluru (2013)

Renski et al. (1999)

Quddus et al. (2002)

Zajac and Ivan (2003)
Abdel-Aty and Keller (2005)
Lu et al. (2006)

Pai and Saleh (2008)

Haleem and Abdel-Aty (2010)
Zhu and Srinivasan (2011)
Eluru (2013)

Yasmin and Eluru (2013)

Khattak (2001)
Abdel-Aty (2003)

Khattak and Rocha (2003)
Lee and Abdel-Aty (2005)
Oh (2006)

Wang et al. (2009)

Jung et al. (2010)

Abay (2013)

Yasmin and Eluru (2013)

Abdelwahab and Abdel-Aty (2002) Abdel-Aty and Abdelwahab (2004)

Chimba and Sando (2009)

Sohn and Shin (2001)
Chang and Wang (2006)

Bayam et al. (2005)
Abellan et al. (2013)

This study discovered the aforementioned literature reported both complementary

and contradictory findings.

A summary of the significant findings related to driver

characteristics, contributing circumstances, temporal factors, weather characteristics, and

road conditions is presented below, followed by a detailed review of each model type.

2.1 Summary of Significant Findings in Crash Severity Research

2.1.1 Driver Characteristics

e Delen et al. (2006) and Kuhnert et al. (2000) reported age as a significant factor in

influencing injury severity; whereas Khattak et al. (1998) suggested that the impact of

the adult driver category on crash injury severity was not different than that of the

young driver category, when controlling for other factors.
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Khattak and Rocha (2003) found that young drivers increase the risk of higher injury
severity in single-vehicle crashes, and Lu et al. (2006) indicated that young drivers
have a greater risk of injury severity when traffic volume on roadways is moderately
high. Yet, Haleem and Abdel-Aty (2010) found that young drivers have lesser risk of
severe injury at unsignalized intersections.

Khattak et al. (2002) reported that advancing age increases the likelihood of more
severe injuries, and a one year increase in drivers’ age beyond 74 years old decreases
the risk for minor injury and increases the risk of a moderate, severe, or fatal injury.
Additional studies also found older drivers to have higher risks of incapacitating or
fatal injury, given a crash occurs (Bédard et al., 2002; Abdel-Aty, 2003; Abdelwahab
and Abdel-Aty, 2002; Schneider et al., 2009; Rifaat et al., 2011; Yasmin and Eluru,

2013).

2.1.2 Contributing Circumstances

Chang and Wang (2006) found that contributing circumstances and driver actions are

critical in determining crash injury severity.

Inattention

Zhu and Srinivasan (2011) reported distracted drivers as having a higher risk of

greater injury severity, given a truck-only crash occurs.

Passenger Presence

Studies found passenger presence increases the risk of injury (Savolainen and Ghosh,
2008; Schneider et al., 2009; Khorashadi et al., 2005), and it was reported that crash
injury severity increases as the number of vehicle passengers increase (Renski et al.,

1999; Oh, 2006).
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Alcohol

Many studies reported alcohol intoxication significantly increases the risk of severe
injury (Khattak et al., 1998; Renski et al., 1999; Krull et al., 2000; Bédard et al.,
2002; Khattak et al., 2002; Kockelman and Kweon, 2002; Abdel-Aty, 2003; Zajac
and Ivan, 2003; Donnell and Mason, 2004; Delen et al, 2006; Rifaat and Tay, 2009;
Schneider et al., 2009; Wang et al., 2009; Moudon et al., 2011; Yasmin and Eluru,
2013) and fatality (Islam and Mannering, 2006; Rifaat et al., 2011).

When the vehicle driver is intoxicated, results suggested that the risk of injury for a
bicyclist (Kim et al., 2007) or motorcyclist (Schneider and Savolainen, 2011)
involved in the collision increases by a large margin; and, Siddiqui et al. (2006)
discovered that being struck by an intoxicated driver is one of the largest fatal injury
risk factors for pedestrians.

Model results for rear-end collisions found that alcohol was the most significant
factor that effect the likelihood of a driver striking another vehicle (Yan and Radwan,
2006); and, Eustace et al. (2014) suggested that alcohol and drug use increase the

probability of run-off-road injury severity levels.

Speed

A dozen studies reported that speeding (Khattak et al., 1998; Khattak and Rocha,
2003; Schneider et al., 2009) and higher speed limits (Renski et al., 1999; Khattak et
al., 2002; Oh, 2006; Garder, 2006; Malyshkina and Mannering, 2010; Savolainen and
Ghosh, 2008; Haleem and Abdel-Aty, 2010; Zhu and Srinivasan, 2011; Yasmin and

Eluru, 2013) significantly increase the risk of severe injury.
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Zajac and lvan (2003) found that, given a collision between a car and a pedestrian,
speed limit did not significantly affect pedestrian injury severity as expected.

As the ratio of the estimated speed at the time of the crash to the posted speed limit
increases, results indicated that the level of injury severity increases (Abdelwahab and
Abdel-Aty, 2001; Abdelwahab and Abdel-Aty, 2002).

Research suggested that driving at speeds too fast for conditions increases the risk of
crash severity (Rifaat and Tay, 2009) and crashes resulting in fatality (Shibata and

Fukuda, 1994; Bédard et al., 2002).

Speed and Interaction Variables

Results uncovered that the interaction of higher speed limits and alcohol increase the
risk of crash injury severity (Yan and Radwan, 2006; Eustace et al., 2014). Eustace et
al. (2014) found that females driving in a higher posted speed limit have a higher risk
of injury, and males with drug involvement driving in a higher posted speed limit

have a higher risk of injury.

2.1.3 Temporal Factors

Time of Day

Research indicated that peak travel time (Khattak et al., 1998) and higher annual daily
traffic (Klop and Khattak, 1999) decrease the risk of injury severity.

Many studies reported that crashes occurring at night increase the risk of injury (Krull
et al., 2000; Quddus et al., 2002; Abdel-At, 2003; Rifaat et al., 2011; Yasmin and
Eluru, 2013).

Conversely, studies also reported that crashes during day-light hours increase the risk
of injury (Krull et al., 2000; Savolainen and Ghosh, 2008).

10
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Lighting

Findings indicated that dark, unlit conditions increase injury severity (Klop and
Khattak, 1999; Rifaat and Tay, 2009; Haleem and Abdel-Aty, 2010), favorable
lighting conditions decrease injury severity at freeway diverge areas (Wang et al.,
2009), dusk (over dark) reduce the risk of severe injury at unsignalized intersections
(Haleem and Abdel-Aty, 2010), and darkness increases the risk of greater injury

severity for older drivers (Khattak et al., 2002).

2.1.4 Weather Characteristics

Wang et al. (2009) found that favorable weather decreases injury severity; and,
Abdel-Aty (2003) reported that adverse weather increases injury severity.

Yet, Khattak et al. (1998) found adverse weather to significantly decrease the risk of
severe injury for crashes; and Delen et al. (2006) indicated that weather conditions

and time of crash are not influential in crash injury severity.

2.1.5 Road Conditions

Lu et al. (2006) claimed that road condition has the greatest influence on crash
severity; however, Jiang et al. (2013b) concluded that improved road quality does not
essentially reduce injury severity.

Khattak et al. (1998), Rifaat and Tay (2009), and Quddus et al. (2010) reported that
wet/slippery road surface decreases the risk of severe injury; yet, Krull et al. (2000)
and Zhu and Srinivasan (2011) found that dry surfaces increase the risk of severity for

truck-only crashes.
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2.2 Review of Methodological Approaches
2.2.1 Binary Logit and Probit

Savelonien et al. (2011) identified seventeen studies and Mannering and Bhat
(2014) identified an additional study in which binary logit and probit methodologies were
used to analyze motor vehicle crash-injury severity. The analyzed binary outcomes
related to the crash were fatal or nonfatal personal injury (Shibata and Fukuda, 1994; Al-
Ghamdi, 2001; Bédard et al., 2002; Ballesteros et al., 2002; Chang and Yeh, 2006),
severe injury (fatal or incapacitating) or non-severe injury (Farmer et al., 1997; Krull et
al., 2000; Toy and Hammitt, 2003; Chimba and Sando, 2009; Pai, 2009; Haleem and
Abdel-Aty, 2010; Peek-Asa et al., 2010; Kononen et al., 2011) injured or not injured
(Rifaat and Tay, 2009), fatal/severely injured or slightly injured (Sze and Wong, 2007)
hospitalized or not hospitalized (Santolino et al., 2012), crash involvement or
noninvolvement (Khattak et al. (1998), and pedestrian fatality/disability or no pedestrian
fatality/disability (Moudon et al., 2011).

A review of the literature that employed binary logit and probit methodologies
uncovered significant findings related to weather characteristics, road characteristics, and
contributing circumstance. Excerpts from these findings are presented below, followed
by a more detailed summary of each piece of research.

e Higher speed limits, greater speed of travel, and driving at speeds too fast for
conditions increase the risk of crash severity (Rifaat and Tay 2009) and crashes

resulting in one or more fatalities (Shibata and Fukuda, 1994; Bédard et al., 2002).
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Khattak et al. (1998) and Rifaat and Tay (2009) reported a higher probability of crash
severity on wet road surfaces; yet, Krull et al. (2000) found that dry pavement
increases the probability of severe injury.

Al-Ghamdi (2001) found that the odds that a fatal crash will occur due to running a
red light were 2.72 times higher than non-running-red-light crashes, and the odds
ratio of being involved in a fatal crash in a wrong-way related crash were three times
higher than a failure-to-yield related crash.

Rifaat and Tay (2009) and Haleem and Abdel-Aty (2010) found a greater likelihood
of crash severity during darkness; yet, Krull et al. (2000) reported greater severity
during daylight hours.

Alcohol intoxication by the driver results in a greater likelihood of crash severity
(Krull et al., 2000; Bédard et al., 2002; Rifaat and Tay, 2009; Moudon et al., 2011).
Drivers aged 80+ are associated with higher fatality odds (Bédard et al., 2002); and,
young drivers experience a reduced probability of severe injury (Haleem and Abdel-

Aty, 2010).

Shibata and Fukuda (1994)

Shibata and Fukuda (1994) developed two unconditional multiple logistic

regression models (using dummy variables) to (1) evaluate the relationship strength for

driver’s license, speed, alcohol use and seatbelt/helmet use when controlling for age and

(2) simultaneously control for age and other factors to determine the likelihood that a

crash would result in ‘death’ or ‘uninjured’. Results suggested that unlicensed drivers

had a higher likelihood of fatality resulting from a crash, and the risk increased when the

unlicensed driver was a male motorcyclist. Additionally, the authors reported that the
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risk for fatality increased as speed increased, and seatbelt and helmet use prevented
fatalities for both genders and types of drivers (motorcyclists and non- motorcyclists).
The authors concluded that education and supervision of speed, alcohol use, and
seatbelt/helmet use would lead to reduction of traffic fatalities.

Farmer et al. (1997)

Farmer et al. (1997) investigated the relationship of wvehicle and crash
characteristics with injury severity for two-vehicle side impact crashes. The authors used
chi-square statistics and logistic regressions to assess the individual and simultaneous
effects of occupant, vehicle and crash characteristics on the probability of a serious injury
occurring. Results indicated that light truck occupants were less likely to be seriously
injured than car occupants. Additionally, right-angle crashes were more likely to cause a
rollover, light trucks were 14 times more likely to roll when side struck than cars, and the
likelihood of serious injury for the subject vehicle increased as the speed limit increased.
The authors concluded that side-struck occupants in cars had a higher probability of
being seriously injured than those in light trucks, and seat belts enhanced injury
prevention for far-side occupants in side-impact crashes.

Khattak et al. (1998)

Khattak et al. (1998) explored the adverse impact of weather on crash risk using
binary probit models. Results suggested that on limited-access roadways drivers did not
compensate for poor visibility and slippery road surface, which resulted in a greater

likelihood for crash involvements and sideswipes.
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Krull et al. (2000)

Krull et al. (2000) explored the events leading to rollovers and the effect of
rollovers on driver injury. The authors employed binary regression models to help
identify the factors that affect crash severity, and to provide a numerical relationship
between the factors and the probability that a fatal or incapacitating injury would occur.
For the pooled model including Michigan and Illinois data, results indicated that rollover
involvement, passenger cars, no restraint, alcohol use, day light, rural roads, higher speed
limits, and dry pavement increased the probability of severe injury. The authors
concluded by recommending rollover-prevention efforts to focus on improved ditch
designed and curve treatments.

Zhang et al. (2000)

Zhang et al. (2000) examined the relationship between potential risk factors and
crash injury severity when a motor vehicle traffic crash involved an elderly driver.
Factors examined included age and sex of the driver, driver condition, driver action, seat
belt use, ejection from the vehicle, month, day and hour of collision, road alignment,
roadway configuration, road surface condition, speed limit, weather conditions, light
conditions, crash configuration, vehicle type, vehicle maneuver, medial/physical
conditions (chronic diseases or physical handicaps), and use of alcohol. The authors
developed multivariate unconditional logistic regression models (using dummy variables)
to estimate the magnitude of each factor in relation to crash injury severity. Results
indicated that medical and physical conditions increase the risk of fatality for drivers
aged 75 years and older. The authors concluded by calling for future research to examine

driver actions, such as failing to yield and traffic signs violation.
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Al-Ghamdi (2001)

Al-Ghamdi (2001) developed a logistic regression model to identify the most
probable factors that affect crash injury severity in Saudi Arabia. Results suggested that
the odds of a fatal crash occurring at a non-intersection location are 2.62 higher than at an
intersection. Additionally, model outcomes indicated that the odds of a fatal crash will
occur because of running a red light are 2.72 times higher than non-running-red-light
crashes, and the odds ratio of being involved in a fatal crash in a wrong-way related crash
are three times higher than a failure-to-yield related crash. In response to these findings,
the authors concluded that logistic regression is a promising tool in providing meaningful
interpretations for safety improvements.

Bédard et al. (2002)

Bédard et al. (2002) used the US Department of Transportation’s Fatal Accident
Reporting System database to investigate driver fatalities, given a single-vehicle crash
with fixed objects occurred. Explanatory variables included in the study are driver
characteristics (age, gender, blood alcohol concentration, seatbelt use), crash
characteristics (impact direct, vehicle deformity, vehicle speed), vehicle characteristics
(air bags, weight, wheelbase length, model year, vehicle age), and the outcome variable,
injury severity, was dichotomized as fatal or non-fatal. Findings suggested that female
drivers, a blood alcohol level of greater than 0.30, driver-side impacts, speeds exceeding
69 mph, and drivers aged 80+ were associated with higher fatality odds. The authors
concluded that seatbelt use, speed reduction and driver-side impact reduction may
prevent fatalities; and, safety measures and policy associated with older drivers and

female drivers may need to be addressed separately.
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Toy and Hammitt (2003)

Toy and Hammitt (2003) investigated the relative attributes of cars on the
probability that a serious and fatal injury would result in a two-vehicle crash, and
compared these results with LTVs. The authors obtained 6,481 observations from two-
vehicle crashes that occurred during 1993 to 1999 from the Crashworthiness Data
System. They developed a conceptual framework based on existing literature, which
incorporated potential personal risk factors: own vehicle factors (mass, stiffness,
geometry), other vehicle factors (mass, stiffness, geometry), own driver factors (age,
gender, restraint use, behavior), crash factors (severity, configuration), and other driver
factors (behavior). Additionally, the authors constructed a logistic regression model with
the binary outcome of ‘seriously injured or killed” or ‘not seriously injured or killed’,
conditional on a crash occurring. Results indicated that vehicle characteristics have a
significant impact on risk, and SUVs, vans and pickups appear more crashworthy than
cars. Additionally, pickup drivers face less risk or serious injury than car drivers, and
drivers who have a collision with pickups are more than twice at risk than when striking a
car. Overall, findings indicated that vehicle mass, body type and crash severity increase
the ability of the passenger vehicle to protect its occupants during a crash (i.e.
crashworthiness of the passenger vehicle).

Ballesteros et al. (2002)

Ballesteros et al. (2002) studied 1995 to 1999 data of pedestrians who had been
treated at a Maryland trauma center or died as a result of being struck by a car, sport
utility vehicle (SUV), pick-up truck (PU), or van. The authors obtained vehicle type data

from the Maryland Automated Accident Reporting System database, injuries data from
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the Maryland Trauma Registry, and fatality data from the Maryland Office of Chief
Medical Examiner records, and linked the databases together in order to trace pedestrians
from the crash scene to the final medical outcome. The authors categorized outcome
variables as pedestrian mortality (fatal, non-fatal), pedestrian injury severity score (<3, 4-
8, 9-15, 16-24, >25), and pedestrian injuries to specific body regions. Independent
variables included vehicle type (conventional automobile, SUV, PU, or van), speed limit
(<25, 30-35, >40 mph), and weight (<2454, 2455-2906, 2907-3394, >3395 Ibs.). Results
indicated that compared to conventional cars, pedestrians who had been struck by an
SUV or PU had a higher probability of severe injury and death; and, the increased risk
could be attributed primarily to the heavier vehicle weight and faster vehicle speed.
Additionally, pedestrians who were struck by an SUV, PU, or van at lower speeds were
more likely to incur traumatic brain, thoracic, and abdominal injuries than those hit by a
conventional car. The authors suggested that pedestrian injuries could be alleviated
through vehicle design modifications.

Chang and Yeh (2006)

Chang and Yeh (2006) developed two logistic regression models to assess the risk
factors that increased the likelihood of fatality for non-motorcycle drivers and
motorcyclists in single-vehicle crashes, and to compare the differing risk factors between
the two driver types. The results indicate that the amount of fatal injuries for
motorcyclists in single-vehicle crashes was higher than non-motorcycle drivers. Both
types of drivers, male gender, older in age, and time between 2200 and 0600 hours were
found to increase the likelihood of a fatal crash. The authors concluded by

recommending that to reduce the risk of fatal crashes for both motorcyclists and non-
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motorcycle drivers’, seatbelt-use, running-speed management, rider’s risk perceptions,
and road quality should be enhanced.
Sze and Wong (2007)

Sze and Wong (2007) explored factors that lead to pedestrian injury severity
resulting from traffic crashes in Hong Kong. Findings indicated that, given a collision
occurs, male gender and under 15 years-old, occupying an overcrowded or obstructed
footpath, and a daytime crash on a road with severe/moderate congestion have a lower
risk of pedestrian mortality and severe injury. The authors called for more extensive data
collection and comprehensive analysis of pedestrian flow and risk factors.

Chimba and Sando (2009)

Chimba and Sando (2009) compared artificial neural networks (ANN) and probit
(OP) models for their prediction power in highway traffic crash injury severity levels
coded as O for property damage only, possible injury, and non-incapacitating and 1 for
incapacitating and fatal crashes. The authors claimed that while many studies have
applied a form of the ANN technique to predict crash counts, few have applied the
methodology to injury severity modeling. The authors collected data for crashes
occurring in 2003 on arterial segments of the Florida state highway system from the
Florida Department of Transportation, which resulted in 1,271 records.  Findings
indicated that the ANN resulted in an approximate prediction accuracy of 83.3%, while
the OP had a prediction accuracy of 65.5%. This finding suggests that a well-structured

ANN can produce higher prediction performance relative to the OP approach.
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Pai (2009)

Expanding upon Pai and Saleh’s (2007) exploration of motorcyclists’ crash injury
severity at T-junctions, Pai (2009) examined the factors impacting motorcyclist injury
severity given a motorcycle-car angle crash occurred at a T-junction. The authors
estimated two binary logistic models with differing explanatory variables (model 1: angle
perpendicular collisions and model 2: oblique collisions) to assess killed or seriously
injured motorcyclists over slight injuries, as explained by vehicle, weather, temporal,
human and environmental factors. Estimation results suggested that the most dangerous
crash patterns were those in which one traveling-straight motorcycle collided with a
right-turn/left-turn car traveling from a minor road, primarily at stop-controlled and yield-
controlled junctions. The authors presumed that this occurrence resulted from right-of-
way/failure-to-yield violation, and that this finding could be used to enhance law
enforcement efforts and safety educations programs.

Rifaat and Tay (2009)

Rifaat and Tay (2009) explored how differing street patterns affect crash injury
severity. The authors collected 35,993 observations from Alberta Transportation crash
data from 2003 to 2005 with variables including road characteristics, drivers’
characteristics, crash characteristics, environmental conditions and vehicle attributes.
They developed a binary regression model to determine the likelihood that, given a two-
vehicle crash, an injury to any person involved would occur. Findings suggested that the
loops and lollipops pattern was the only statistically significant road pattern (at a 90%
confidence level) that decreased injury risk of crashes, and the gridiron pattern was the

only type of street pattern to increase the risk of injury, which suggested that roads with
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frequent curves are marginally safer. Additionally, crash severity was higher on divided
roads with no barrier, on wet surfaces, during darkness, when alcohol was used by the
driver, when turning left across path and stop signs, and when driving at speeds too fast
for conditions.

Haleem and Abdel-Aty (2010)

Haleem and Abdel-Aty (2010) compared ordered probit, binary probit and nested
logit methodologies to aid in the selection of the best modeling technique for injury
severity analysis for crashes occurring at unsignalized intersections in Florida. The
authors developed two separate models to analyze the relationship between severe
injuries (incapacitating injury and fatal injury), non-severe injuries (property damage
only, possible injury, and non-incapacitating injury), and explanatory characteristics at
three and four legged intersections. Findings indicated that lack of stop lines, one left
turn lane, larger right shoulder width, and smaller intersections increase the probability of
severe injury, and lower speed limits, young drivers, crashes occurring at dusk (over
dark), and highly-urbanized areas reduce probability of severe injury. When comparing
the binary probit and the ordinal probit frameworks, the authors concluded that the
aggregated binary probit model had a lower Akaike information criterion (AIC) and a
higher likelihood at convergence, which indicated that the binary probit model better fit
the data.

Peek-Asa et al. (2010)

Peek-Asa et al. (2010) examined traffic crashes for 10 through 18 year-old lowa

drivers who were involved in a crash from 1995 to 2004. The authors developed a binary

logit model to analyze the likelihood that a crash would result in a fatal or severe injury
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as the result of a rural setting (both population-based and crash location based), driver
variables, crash characteristics, and environmental characteristics. Results indicated that
remote rural teens were less likely to be involved in a crash than urban teens; and,
suburban, rural and remote rural teens aged 10 through 15 had a higher fatal and severe
crash rate when compared to urban teens. Findings indicated failure to yield to be the
most common circumstance contributing to a crash for both urban and rural teen drivers.
Reckless driving, speeding, and animal collisions were more commonly reported crash
causes for urban drivers, and fatality rates were higher for urban drivers when following
too closely. Results suggested the likelihood that a rural teen driver was involved in a
fatal or severe injury crash is five times greater than a rural teen driver, and rural teen
drivers are more likely to be involved in crashes that are single-vehicle, late at night,
resulting from failing to yield and crossing the center divider. The authors recommended
the implementation of intervention programs to address specific rural roadway risk
factors for teenage drivers.

Kononen et al. (2011)

Kononen et al. (2011) developed a binomial logistic regression model to assess if
delta-v (the change in vehicle velocity due to the force of the crash), direction of impact,
vehicle type, belt use, number of impacts, age and gender in order to determine affect
crash injury severity. Results denoted that significant predictors of serious injury
resulting from a crash were delta-v, seat belt use, and crash direction.

Moudon et al. (2011)
Moudon et al. (2011) estimated the likelihood that a motor vehicle and pedestrian

collision would result in a pedestrian fatality or disability. The authors developed binary
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logit models to analyze state routes and city routes, and included independent variables
from the individual level (pedestrian socio-demographic characteristics, pedestrian
behavior characteristics, driver behavior driver vehicle action), road environment
(temporal characteristics of collision, road characteristics, traffic conditions), and
neighborhood environment (density, land use destinations, neighborhood wealth).
Results suggested that alcohol use on state routes increased the risk of injury severity;
and females, older pedestrians, and more than one pedestrian involved increased the risk
of severe injury on both road types.

Santolino et al. (2012)

Santolino et al. (2012) obtained 16,081 observations from the Spanish motor
insurance database, and developed regression models to examine the likelihood that a
motor vehicle crash results in hospital admittance and the duration of the stay. The
authors reported that age, gender, vehicle type, location and nature of the injuries were
significant influencers in the risk of hospital admittance and/or length of stay required for
recovery. Notable findings indicated that older men with head and lower torso fractures
and injuries had a higher probability of being hospitalized, and older men had a higher
likelihood of a longer hospital recovery time. The authors concluded that understanding
the relationship between hospital admittance and duration of stay can help form policy
and educate practitioners.

2.2.2 Multinomial Logit Models

Savelonien et al. (2011) identified eighteen studies and Mannering and Bhat

(2014) reported four additional studies in which multinomial logit methodologies were

used to analyze crash injury severity with outcomes categorized as three, four or five
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levels. The three-level approach identified examined the risk of property damage only or

no-injury, injury, and fatality (Shankar and Mannering, 1996; Carson and Mannering,

2001; Islam and Mannering, 2006; Malyshkina and Mannering, 2008; Malyshkina and

Mannering, 2010; Rifaat and Tay, 2011), the two four-level approaches identified

examined the risk of non-injury or property damage only, possible injury, evident injury

or non-incapacitating, and fatal/disabling injury or fatal/incapacitating (Ulfarsson and

Mannering, 2004; Khorashadi et al., 2005; Savolainen and Ghosh, 2008; Amarasingha

and Dissanayake, 2013; Yasmin and Eluru, 2013) and possible or no injury, non-

incapacitating, incapacitating, and fatal (Kim et al., 2007), and the five-level approach
identified examined the risk of property damage only, possible injury, non-incapacitating
injury, incapacitating injury, and fatal injury (Schneider et al., 2009; Schneider and

Salovainen, 2011; Ye and Lord, 2014).

A review of the literature that employed multinomial logit models discovered
significant findings related to weather characteristics, road characteristics, and
contributing circumstances were discovered. Excerpts from these findings are presented
below, followed by a more detailed summary of each piece of research.

e Given a crash occurrence, findings suggested that older drivers have higher risks of
incapacitating or fatal injury (Schneider et al., 2009; Rifaat et al., 2011; Yasmin and
Eluru, 2013).

e Studies suggested passenger presence increases the risk of injury (Savolainen and
Ghosh, 2008; Schneider et al., 2009; Khorashadi et al., 2005) and the risk of fatality

for young males and middle-aged males (Islam and Mannering, 2006).
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Research indicated that speeding and higher speed limits increase the risk of injury
(Savolainen and Ghosh, 2008; Schneider et al., 2009; Malyshkina and Mannering,
2010; Yasmin and Eluru, 2013), the likelihood of fatality for middle-aged men (Islam
and Mannering, 2006), and the risk of injury severity when the crash occurs at a rural
location (Khorashadi et al., 2005).

Studied reported alcohol impairment increases the risk of injury (Schneider et al.,
2009; Yasmin and Eluru, 2013) and fatality (Islam and Mannering, 2006; Rifaat et al.,
2011). When the vehicle driver was intoxicated, findings suggested that the risk of
injury for a bicyclist (Kim et al., 2007) or motorcyclist (Schneider and Savolainen,
2011) involved in the collision increase by a large margin.

Savolainen and Ghosh (2008) reported that crashes during day-light hours increase
the risk of injury; yet, contradictory findings indicated that crashes occurring at night
increase the risk of injury (Rifaatt et al., 2011; Yasmin and Eluru, 2013).

One study found that crashes during the spring and summer seasons increase the
likelihood of injury occurring in some states (Savolainen and Ghosh, 2008), while
another study suggested that the winter season increase the risk of injury (Rifaatt et

al., 2011).

Shankar and Mannering (1996)

Shankar and Mannering (1996) developed a multinomial logit model to determine

the likelihood that a single-vehicle motorcycle crash would result in property damage

only, possible injury, or fatality based on helmet use, location (interstate or arterial), high

displacement, intersections, and/or alcohol intoxication. Findings suggested that a

helmeted-rider and a fixed object interaction increased the risk of fatality; no-helmet and
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a fixed-object interaction increased the risk of evident injury; no-helmet and alcohol-
impairment riding interaction increased the risk of fatality; no-helmet and low-speed
interaction increased the risk of evident and disabling injury; alcohol-impaired riding
increased the risk of fatality, evident and disabling injuries; motorcycle displacement
increased the risk of fatality, evident or disabling injury; age-displacement interaction
increased the risk of property damage, possible injury and disabling injury; motorcycle
rider age increased the risk of fatality and disabling injury; ejection of rider increased the
risk of any form of injury relative to property damage; speeding increased the risk of
fatality, evident injury and disabling injury; rider inattention increased the risk of evident
and disabling injury; interstate riding increased the risk of disabling and possible injury;
and, wet pavement and not-raining interaction increased the risk of possible injury and
property damage.

Carson and Mannering (2001)

Carson and Mannering (2001) evaluated the usefulness of ice-warning signs in
Washington to analyze the impact of road characteristics on highway safety when ice was
present. The authors developed a multinomial logit structure to determine the probability
of a crash resulting in a fatal, injury, or property damage only outcome. However, the
model did not identify temporal, traffic, roadway, spatial or crash placement
characteristics to significantly influence crash injury severity; and, the results suggested
that the presence of ice-warning signs did not significantly affect the severity of crashes

when ice was involved.
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Abdel-Aty and Abdelwahab (2004b)

Abdel-Aty and Abdelwahab (2004b) analyzed rear-end crashes categorized as
regular passenger car striking regular passenger car; regular passenger car striking light
truck; light truck striking regular passenger car; and light truck striking light truck. The
authors developed a multinomial logit model as the basis for four additional nested logit
models to develop an appropriate nesting structure to examine rear-end crash types,
driver gender of the striker vehicle, younger driver age (between 15 and 24), older driver
age (75 and older), light condition, traffic single and driver distraction data. The final
model indicated the significant variables to be driver’s age, traffic control device, action
initiated by the lead vehicle, gender, inattention, and vision obstruction of the driver of
the striker vehicle. The authors concluded that the risk of a car-truck rear-end crash
increased when the driver of the striker vehicle was distracted, light truck vehicles
obscure the visibility of drivers of other passenger vehicle, and that vision obstruction of
the striker vehicle is the most prominent effect on rear-end crashes.

Ulfarsson and Mannering (2004)

Ulfarsson and Mannering (2004) estimated statistical models to examine the
differences in crash injury severity between male and female drivers when a passenger
car, pickup, sport-utility vehicle (SUV) or minivan was involved in a collision. The
authors estimated separate frequency and percentage distribution models for male and
female drivers for seven combinations of vehicle-crash categories using observations
from 1993 to 1996 obtained from the Washington State Department of Transportation.
Additionally, the authors designed separate multinomial logit models to analyze the effect

of driver characteristics, driver violations, driver action proceeding crash, vehicle
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characteristics, road and operating characteristics, crash characteristics, environmental
characteristics, and temporal characteristics on the likelihood of a crash resulting in non-
injury, possible injury, evident injury, or fatal/disabling injury for male and female
genders. Results indicated that female drivers of passenger cars who collide with a
SUV/minivan have a higher risk of possible injury when avoidance maneuvers are
exhibited; though, the same avoidance maneuvers increase the risk of evident injury for
male drivers of passenger cars. Additionally, findings suggested that when sudden
slowing occurs, a male driver of a passenger car has an increased risk of evident injury
and a female driver of a passenger car has an increased risk of fatal/disabling injury.
When striking a barrier, male drivers have a decreased risk of greater severity, while
female drivers have an increased risk of greater severity. The authors claimed that the
observed differences suggest that behavioral and physiological factors impact injury
severity, and reported that lack of seat-belt restraint and alcohol use lead to an increased
probability of higher injury-severity for both genders. Lastly, findings did not suggest
driver age as statistically significant in each model; however, in the models where driver
age was significant, the risk of injury severity increased for drivers who were at most 25-
years-old and for drivers at least 65-years-old.

Khorashadi et al. (2005)

Khorashadi et al. (2005) developed a multinomial model to explore factors that
significantly impact crash injury severity for passenger-vehicle and large-truck drivers.
The authors combined records from the California Department of Transportation and the
California Highway Patrol to obtain weather conditions, geometric data, road conditions,

roadway terrain, pavement surface data, driver-related data, and speed limit data in order
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to estimate the severity of injury (categorized as no injury, complaint of pain, visible
injury, and severe/fatal injury). Variables reported to have a significant increase on
injury severity for urban but not rural crashes were driver age between 15 and 22, beyond
left shoulder collision, broadside collision, and a vehicle model year older than 1981.
The authors concluded that these differences suggest interactions between driver behavior
and environmental conditions play an integral role in injury severity.

Islam and Mannering (2006)

Islam and Mannering (2006) explored the effect of driver aging on male and
female single-vehicle crash injury severity to evaluate the effectiveness of safety
countermeasures using 1999 data from Indiana’s Accident Information System. The
authors developed six models: young female drivers (aged 16 to 24), young male drivers
(aged 16 to 24), middle-aged female drivers (aged 25 to 64), middle-aged male drivers
(aged 25 to 64), older female drivers (aged 65 and older), and older male drivers (aged 65
and older). Likelihood ratio tests indicated that the hypothesis that the female and male
injury severity models would produce equal coefficient estimates could be rejected, and
significant statistical evidence suggested differences of injury severity by age for both
genders. Notable results signified that rollovers increased the probability of fatality by
220% for older males, but only 116% for middle-aged males. When at least one
passenger was present, probability of fatality was 114% and 70% for young males and
middle-aged males respectively, but no significant effect for older males. When no seat
belt was used, the risk of injury for young females increased by 119%, for middle-aged
females increased by 164%, and for older females increased by 187%. Crashes in rural

areas increased risk of fatality by 208% for young females, but had no significant impact
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on older female age categories. For middle-aged men, falling asleep at the wheel and
speeding increased the risk of fatality (not found significant in female middle-aged
drivers). Finally, for middle-aged females, illness and alcohol increased the likelihood of
fatality; yet, neither was identified as a statistically significant factor for middle-aged
men.

Kim et al. (2007)

Kim et al. (2007) developed a multinomial model to examine bicyclist injury
severity resulting from a motor vehicle crash. Model results indicated that bicyclists who
were at least 55 years old have a higher probability of a fatality than younger age groups,
and helmet use decreases the risk of fatality and possible injury. Additionally, findings
indicated bicyclist intoxication increases the risk of a fatal injury resulting from a crash
with a vehicle; and, when the vehicle driver is intoxicated, the risk of fatality and
incapacitating injury increase by a large margin. Results also suggested that as vehicle
speed increases, the likelihood of a fatal and incapacitating injury for the bicyclist
increase. Additional findings suggested collisions involving pickup trucks involve higher
risk of all injury types, and head-on collisions, curved roads, and collisions in inclement
weather increase the likelihood of a bicyclist fatality. The authors concluded that that
behavior modification (such as helmet use), engineering, and policy can aid in the
reduction of bicyclist injury severity resulting from a collision with a motor vehicle.
Malyshkina and Mannering (2008)

In response to the increased interstate speed limit in Indiana, Malyshkina and
Mannering (2008) assessed the relationship between speed limit and observed crash

injury severity. The authors conducted a cross-sectional data comparison of the different
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speed limits for specific roadways for a single year (2004 or 2006). This approach
indicated that the estimates for injury severity on interstates with a 65 mph speed limit in
2004 that increased to 70 mph in 2006 did not significantly change. The authors
concluded that the higher speed limits on Indiana Interstates did not significantly affect
crash injury severity.

Savolainen and Ghosh (2008)

Savolainen and Ghosh (2008) examined the risk of vehicle, environmental and
driver characteristics on driver injury severity resulting from deer-vehicle crashes
(DVCs). The authors estimated the underreporting rate for DVC at approximately 50%,
and therefore chose a multinomial logit since this methodology does not create the same
biased and inconsistent model coefficient estimates that an ordered probability model
could create. Results suggested that, given a deer-related crash occurs, younger drivers
and female drivers have a higher risk of injury compared to older drivers and male
drivers respectively. The use of a safety belt decreased the risk of moderate or severe
injury, and air bag usage decreased the risk of property damage only and
incapacitating/fatal injury. Additionally, findings suggested passenger presence, crashes
during day light hours, run-off-the-road crashes, spring and summer season, and high
speed to increase the likelihood of injury occurring.

Schneider et al. (2009)

Schneider et al. (2009) assessed driver injury severity to improve safety on rural
Texas highways. The authors reported that driver injury had a higher likelihood of
occurring in the medium curve radius group, and injuries were most severe when the

crash vehicle ran off the road. Horizontal and vertical curvature in combination increased
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the risk of fatal crashes when the curvature was of medium radius by 560%. Findings
suggested that as driver age increase, so does the risk of incapacitating or fatal injury;
and, female drivers have a 23 to 31% higher probability of being injured than male
drivers. Additionally, results indicated that driver fatigue, speeding, drug or alcohol use,
and passenger presence increase the likelihood of a crash resulting in an injury. Finally,
model outcomes indicated that motorcyclists have a higher risk of being seriously injury
or killed, and belt use increases the probability that no injury will occur.

Malyshkina and Mannering (2010)

Malyshkina and Mannering (2010) compared thirteen design exceptions on
roadway segments and 35 design exceptions at bridges with 26 roadways and 69 bridges
without design exceptions in order to assess the impact of design exceptions on crash
frequency and injury severity. The authors developed multinomial logit models and
mixed multinomial logit models to assess the likelihood of severity, and multinomial
negative binomial models to assess the likelihood of crash frequency. Estimation results
indicated that vehicle age increases the risk of fatality, and snow and slush reduces the
risk of fatality and injury. Findings suggested that crashes that did not occur at an
intersection and those that did occur in an urban area have a lower risk of injury. Results
also suggested that female drivers, higher posted speed limits, and driver-related causes
increase the likelihood injury. Additionally, when assessing crash frequency, findings
indicated that asphalt surface, the presence of interior shoulders, and a higher degree of
curvature have a lower crash risk; and, urban roads, longer road-segments, and an

increased number of ramps have an increased crash risk. The authors concluded that the
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current process of design expectations has sufficiently avoided adverse safety
implications.
Rifaatt and Tay (2011)

Rifaatt and Tay (2011) developed a multinomial logit model to identify the effect
of various street patterns - grid-iron, warped parallel, mixed and loops and lollipops - on
the risk of injury severity for pedestrians and bicyclist involved in a crash. Findings
implied that, when compared to other designs, the loops and lollipops pattern have a
higher probability that an injury will be no-fatal, and older drivers and drivers under the
influence have a higher risk fatality, given a crash occurs. Additional findings indicated
that the risk of a fatality increases when the pedestrian or bicyclist is involved in a crash
on a divided road with a barrier, and the risk of injury increases during the winter season
and darkness hours.

Ye and Lord (2011)

Ye and Lord (2011) investigated the effect of underreporting of crash data when
assessing crash severity on multinomial logit, ordered probit and mixed logit models by
evaluating how each model performed for different unreported rates. The authors used a
Monte-Carlo approach to verify the underreporting effects on the models, and evaluated
the bias through comparison of estimation results to observed crash data from the Texas
Department of Public Safety and the Texas Department of Transportation. The authors
proposed using the Weighted Exogenous Sample Maximum Likelihood Estimator
(WESMLE) to account for underreporting conditions. Findings suggested that the root-
mean-square-error (RMSE) increased when using the maximum likelihood estimator for

all three models. When ordering outcomes, the lowest severity has the largest
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underreported rate; and, the WESMLE performed well regardless of the size of the
unreported rate for each model. The authors concluded that to minimize bias, fatal
crashes should be set as the baseline severity for the mixed logit and multinomial logit
models, while the ordered probit model should rank crash severity in descending order.
Schneider and Salovainen (2011)

Schneider and Salovainen (2011) developed multinomial logit models to examine
motorcycle crash data to assess the effects of rider characteristics, crash characteristics,
roadway geometry and environmental factors on crash injury severity. The estimation
results indicated that helmet use is the most effective means of risk reduction for a fatal
or severe injury, which reinforces previous findings. Additionally, the authors concluded
that alcohol, female gender, motorcycle speed and age increase the risk of incapacitating
or fatal injuries.

Eluru (2013)

Eluru (2013) explored the appropriate model choice for injury severity analysis
through the comparison of ordered response methodologies (ordered logit model and
generalized ordered logit model) with unordered response methodologies (multinomial
logit models). The author developed simulation models with three independent variables
and four alternate ordered dependent variables to compare the performance of the
frameworks. Parameters were selected so that the models would generate consistent
shares for the parameter set. To assess the model fit, the author compared the generalized
ordered logit and the ordered logit models to the unordered models using the likelihood
ratio test. The Bayesian Information Criterion was employed to measure the comparison

for the generalized ordered logit and the multinomial logit models. Model estimation
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comparison results indicated that, when compared to the multinomial model, the
generalized ordered logit model performed satisfactorily. The authors concluded that the
results provide credibility to the generalized ordered logit model.

Yasmin and Eluru (2013)

Expanding upon Eluru (2013), Yasmin and Eluru (2013) explored methodological
approaches used to assess driver injury severity in traffic crashes by comparing ordered
response methodologies (order logit, generalized ordered logit, mixed generalized order
logit) with unordered response methodologies (multinomial logit, nested logit, ordered
generalized extreme value logit, and mixed multinomial logit). The authors selected data
in which a private passenger vehicle collided with either another passenger vehicle or
fixed object, and used a final dataset of approximately 30,371 records (12,170 records for
estimation and 18,201 records for validation). They categorized injury outcomes as no
injury (65.9%), possible injury (15.1%), non-incapacitating injury (12.1%), and
incapacitating/fatal injury (6.96%). (Due to the small sample of fatal occurrences, 0.7%,
fatalities were combined with incapacitating injuries.) The authors categorized
explanatory variables as driver characteristics (gender, age, restraint use, alcohol and
drug use); vehicle characteristics (type and age); roadway design and operational
attributes (class, seed limit, interaction type and traffic control device); crash
characteristics (driver ejection, roll over, air bag deployment, collision location, manner
of collision); and, environmental factors (time and road surface condition). Estimation
results suggested that drivers under the age of 25 have a lower risk that an injury will be
severe. Model results found that the effect of driver age of at least 65 was only

significant in the mixed multinomial logit model, and this population has a greater risk of
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incapacitating/fatal injury. Mixed generalized order logit results suggested a higher risk
for injury during the morning peak and off-peak periods; yet, the mixed multinomial logit
model results indicated that night-time has a higher likelihood of non-incapacitating and
incapacitating/fatal injuries. Findings suggested that seatbelt use significantly decreases
the risk of injury, and alcohol impairment increases the risk of injury. Additionally,
findings indicated that passenger car type and older vehicles have a higher risk of injury,
and as speed limits increase the risk for injury increases. The authors used a two-step
approach to compare the unordered to the ordered models: step 1) the likelihood ratio
established the superior model within each framework; step 2) the non-nested measure
application compared the superior model from each framework. The authors concluded
that the variable effect across the mixed generalized ordered logit and mixed multinomial
logit were similar. When comparing the two models for underreporting and validation,
results suggested that the frameworks performed extremely similarly. Results did not
suggest either the unordered or ordered frameworks to outperform the other at either the
aggregate or disaggregate levels. The authors concluded that the approaches offer
comparable prediction for the risk of crash injury severity.

Amarasingha and Dissanayake (2013)

Amarasingha and Dissanayake (2013) developed a multinomial model to examine
the impact of contributory factors on crash severity for young drivers involved in crashes
in Kansas to improve safety. The authors categorized driver ages as teen (15 to 19 years
old), young adult (20 to 24 years old) and experienced (25 to 64 years old) and sub-
partitioned based on gender to examine fatal and severe injury, injury, possible injury and

not injured. Findings suggested that teen drivers have a higher risk of injury severity
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when involved in crashes over other age categories, yet young males decrease the
likelihood of a more severe injury. Additionally, seatbelts reduce the probability of
severe injuries for young drivers, while air bags increase the risk for greater severity for
young drivers.

Ye and Lord (2014)

Ye and Lord (2014) built upon Ye and Lord (2011) by comparing the sample size
requirements for multinomial logit, ordered probit and mixed logit models. The research
investigated the probability of crash injury severity given a single-vehicle collision
occurred with a fixed object on a rural two-way highway. Using crash injury severity
data from 1998 to 2001 provided by the Texas Department of Transportation and the
Texas Department of Public Safety, the authors explored 25,175 outcomes with 27
explanatory variables categorized as geometric variables, driver characteristics,
environmental conditions, etc. The authors reported the mixed logit model to be more
“interpretive” than the multinomial logit model, since the parameter effects can vary
across crashes in the mixed logit model.  Additionally, they reported that the ordered
probit model did not have the same interpretive power as the other methodologies, since
the effects of the explanatory variables are restricted to ordered probabilities using
identical coefficients. The authors combined simulation data with the four-year crash
records to compare sample size effects on the three models. Findings included that the
ordered probit model required the smallest samples and the mixed logit model required
the largest samples as explained by the number of parameters being estimated. Overall
results indicated that all three models improved in accuracy when sample size increase,

the mixed logit and multinomial logit are more sensitive to smaller sample sizes, and the
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minimum sample size for the ordered probit, multinomial logit and mixed logit are 2,000
5,000, and 10,000 observations respectively.
2.2.3 Ordered Probit and Ordered Logit

Crash injury severity outcomes can be perceived as being inherently ordered, and
as a result, ordered categorical models are very commonly used in injury severity
research. Savelonien et al. (2011) identified thirty-five studies and Mannering and Bhat
(2014) reported eight studies (however seven studies were reclassified), and this review
discovered one additional recent study in which ordered probit or ordered logit
methodologies analyzed crash injury severity. Apart from Donnell and Mason (2004), Lu
et al. (2006), Jung et al. (2010), Quddus et al. (2010), Abay (2013) and Ariannezhad et al.
(2014), all of the studies presented below applied the ordered probit technique.

From a review of the relevant literature, studies presented the ordered discrete
outcomes categorized on three, four, five, and seven levels:
Three-levels: slight injury, serious injury, and fatal injury (Quddus et al., 2002; Pai and
Saleh, 2007; Gray et al., 2008; Quddus et al., 2010); no injury, slight injury,
killed/serious injury (Pai and Saleh, 2008); property damage only, injury, fatality
(Donnell and Mason, 2004; Lu et al., 2006; Ariannezhad et al., 2014); and, property
damage only, possible injury/non-incapacitating injury, incapacitating/fatal injury (Jung
et al., 2010).
Four-levels: no injury, possible injury, non-incapacitating injury, and incapacitating/fatal
injury (Yasmin and Eluru, 2013; Abdel-Aty, 2003; Wang et al., 2009); no injury/possible,

evident/minor injury, incapacitating injury, fatal injury (Kockelman and Kweon, 2002;
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Shimamura et al., 2005; Garder, 2006; Oh, 2006; Zhu and Srinivasan, 2011; Jiang et al.,
2013a); and, no damage, slight damage, extensive, total wreck (Quddus et al., 2002).
Five-levels: no injury/property damage only, minor/possible injury, moderate/non-
incapacitating injury, severe/incapacitating injury, killed (Khattak et al., 1998; Klop and
Khattak, 1999; Renski et al., 1999; Khattak, 2001; Khattak et al., 2002; Austin and
Faigin, 2003; Zajac and Ivan, 2003; Khattak and Targa, 2004; Abdel-Aty and Keller,
2005; Lee and Abdel-Aty, 2005; Siddiqui et al., 2006; Xie et al., 2009; Amarasingha and
Dissanayake, 2010; Ye and Lord, 2011; Ye and Lord, 2014).

Seven-levels: minor and no injury, moderate, serious, severe, critical, maximum injury
(Khattak and Rocha, 2003).

The literature review uncovered significant findings related to driver
characteristics, contributing circumstances, temporal factors, weather characteristics, and
road characteristics. Excerpts from these findings are presented below, followed by a
more detailed summary of each piece of research.

Age

e Khattak and Rocha (2003) found that young drivers have greater risk of higher injury
severity in single-vehicle crashes, and Lu et al. (2006) indicated that young drivers
have a greater risk of injury severity when traffic volume on roadways is moderately
high. Yet, Haleem and Abdel-Aty (2010) found that young drivers have lesser risk of
severe injury at unsignalized intersections.

e Khattak et al. (2002) reported that advancing age increases the likelihood of more
severe injuries, and a one year increase in drivers’ age beyond 74 years-old decreases

the risk for minor injury and increases the risk of a moderate, severe, or fatal injury.
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For crashes occurring on roadway sections, Abdel-Aty (2003) found that drivers over
the age of 68 have a higher risk for greater injury severity; and, Zhu and Srinivasan
(2011) reported that truck drivers over the age of 45 have a higher likelihood that the
impact of the crash will be more severe.

Conversely, Khattak et al. (1998) found that the impact of the adult driver category on

crash injury severity was not different than that of the young driver category.

Inattention

Zhu and Srinivasan (2011) found that distracted drivers have a higher risk of greater

injury severity given a truck-only crash occurs.

Passenger presence

Renski et al. (1999) and Oh (2006) found that crash injury severity increases as the

number of vehicle passengers’ increase.

Speeding

Findings suggested speeding (Khattak et al., 1998; Khattak and Rocha, 2003) and
higher speed limits (Renski et al., 1999; Khattak et al., 2002; Oh, 2006; Garder, 2006;
Haleem and Abdel-Aty, 2010; Zhu and Srinivasan, 2011) to significantly increase the
risk of severe injury. Khattak and Targa (2004) suggested that crashes occurring in
work zones with higher posted speed limits incur greater harm and risk of injury.

Yet, Zajac and lvan (2003) reported that, given a collision between a car and a
pedestrian, speed limit does not significantly impact pedestrian injury severity as

expected.
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Alcohol

Studies reported alcohol intoxication to significantly increase the risk of severe injury
(Khattak et al., 1998; Renski et al., 1999; Khattak et al., 2002; Kockelman and
Kweon, 2002; Abdel-Aty, 2003; Zajac and lvan, 2003; Donnell and Mason, 2004;
Wang et al., 2009); and, Siddiqui et al. (2006) reported that one of the largest fatal

injury risk factors for pedestrians is being struck by an intoxicated driver.

Temporal

Research showed peak travel time (Khattak et al., 1998) and higher annual daily
traffic (Klop and Khattak, 1999) to decrease the risk of injury severity.

Findings suggested that more severe injuries occur from midnight to 3:59am (Quddus
et al.,, 2002), and nighttime increases the risk for greater injury severity (Khattak,
2001; Abdel-Aty, 2003).

Studies also reported that dark, unlit conditions increase injury severity (Klop and
Khattak, 1999), favorable lighting conditions decrease injury severity at freeway
diverge areas (Wang et al., 2009), crashes occurring at dusk (relative to dark) reduces
the risk of severe injury at unsignalized intersections (Haleem and Abdel-Aty, 2010),
and darkness increases the risk of greater injury severity for older drivers (Khattak et

al., 2002).

Weather

Studies suggested that favorable weather decreases injury severity at freeway diverge
areas (Wang et al., 2009), and adverse weather increases injury severity at signalized

intersections (Abdel-Aty, 2003).
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e Yet, studies also reported that adverse weather significantly decreases the risk of
severe injury for crashes that occur on limited-access roadways (Khattak et al., 1998).

Road

e Abdel-Aty (2003) found that horizontal curves increase the risk of higher severity for
crashes occurring on roadway sections; and, Oh (2006) reported that sharper
horizontal curves and higher crest vertical curves increase injury severity.

o Khattak et al. (1998) and Quddus et al. (2010) reported that wet/slippery road surface
decreases the risk of severe injury; yet, Zhu and Srinivasan (2011) found that dry
surfaces increase the risk of severity for truck-only crashes.

e Lu et al. (2006) claimed that road conditions have the greatest influence on crash
severity; however, Jiang et al. (2013b) concluded that improved road quality does not
essentially reduce injury severity.

Khattak et al. (1998)

Khattak et al. (1998) explored the impact of adverse weather on crash type and

injury severity by examining limited-access roadways in North Carolina. Data from 1990

to 1995 from the Highway Safety Information System database was accessed, and results

of an ordered probit model indicated that adverse weather, slippery road surfaces, and
peak travel time significantly decrease the risk of severe injury; single-vehicle
involvement, speeding, and alcohol/drug intoxication significantly increase the risk of
severe injury; and curves and grade did not significantly impact injury. Model results
revealed that the adult driver category is not different from the young driver category,
and male drivers have a higher risk of being severely injured than females. The study

recognized underreporting as a limitation of the study, especially relevant since crashes
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occurring during adverse weather are often unreported. However, the authors claimed
that the driver non-reporting bias was likely to be small, since the severity considered
was based on injuries only.
Klop and Khattak (1999)

Klop and Khattak (1999) explored the impact of roadway and crash variables on
motor vehicle and bicycle crash injury severity on two-lane roads in North Carolina. The
authors developed two ordered probit models to assess if differences in injury severity
existed between rural cases and all cases, as explained by roadway and environmental
variables; however, comparison between models did not reveal a significant difference.
Results did signify that higher annual daily traffic decrease injury severity; and, foggy
conditions, straight-grades, curved grades, and dark, unlit conditions increase injury
severity. The authors recommended that additional research should examine the effects
of personal characteristics and behaviors on injury severity.

Renski et al. (1999)

Renski et al. (1999) hypothesized that speed limit increases would increase
driving speeds, and therefore increase the risk of crash injury severity. Using 1995 to
1997 interstate roadway data from the Highway Safety Research Center of North
Carolina, the authors developed ordered probit models to estimate the risk of injury
severity. Models used three study segments (speed limits increased from 55 to 60 mph,
55 to 65 mph, or 65 to 70 mph) and two control segments (unchanging speed limits at 55
or 65 mph) to compare road segments before and after the date of the speed limit change.
Results revealed that segments in which speed limits were increased by 10 mph had a

greater impact on crash severity than segments where speeds were increased by 5 mph.
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Findings also suggested that overturned vehicle, alcohol use, trees and poles increase the
level of the most severely injured, and crash severity increases as the number of vehicle
passengers’ increases, with a greater increase from two to three occupants.

Khattak (2001)

Khattak (2001) investigated crash injury severity of lead and following drivers,
where a lead driver (Driver 1) was struck by a following driver (Driver 2) that may be
struck by a third following driver (Driver 3). The authors estimated three ordered probit
models to analyze crash injury severity for the lead and following drivers using a total of
487 three-vehicle crashes and 3,425 two-vehicle crashes. Findings indicated that, given a
three-vehicle crash, Driver 1 and Driver 3 are less likely to be injured, and Driver 2 is
more likely to be injured. Model results ascertained that nighttime increases the risk of
injury severity, snow/ice increases the risk of injury severity for Driver 2, and drivers of
larger vehicle types are less likely to sustain an injury than are drivers of passenger cars.
Khattak et al. (2002)

Khattak et al. (2002) investigated whether driver, environment, vehicle, roadway
and crash factors increase the risk of crash injuries of older drivers, and quantified the
significant factors on varying severity levels for older driver injuries. The model results
signified that advancing age increases the likelihood of more severe injuries, and older
male drivers incur more severe injuries than older female drivers. Results suggested
alcohol intoxication, higher speed limits, farm vehicles, crashes in rural areas, darkness,
overturned vehicles, vehicles colliding with parked vehicles, vehicles striking fixed
objects, and vehicles hitting trains increase injury severity for older drivers, and that for a

one year increase in driver’s age beyond 74 years old, the likelihood of a minor injury
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decreases and the risk of a moderate, severe, and fatal injury increases. The authors
concluded that additional studies should focus on crash causation and injury severity for
older drivers.

Kockelman and Kweon (2002)

Kockelman and Kweon (2002) developed an ordered probit methodology to
examine injury severity, given a two-vehicle or single-vehicle crash occurred. Model
estimations suggested that gender, vehicle type, alcohol use, number of vehicles
involved, and the manner of the collision effect injury severity. Model results revealed
that head-on and rollover collision result in more serious injury levels, light-duty trucks
have a lesser effect on injury severity, pick-ups and SUVs have a greater likelihood to
rollover, and males and younger drivers in newer cars at slower speeds have a risk of
lower injury severity.

Quddus et al. (2002)

Quddus et al. (2002) compared the effect of roadway, rider, and environmental
factors on motorcycle injury severity to vehicle damage severity for motorcycle crashes
occurring in Singapore. The authors developed an ordered probit model to explore the
hypotheses that (1) roads with a higher degree of engineering standards have lower
severity levels and (2) younger drivers have more severe crashes that diminish over time.
A time trend variable for the month in which the crash occurred had a negative effect for
both injury and damage severity, which suggested that an unobserved factor influenced
crash severity. Additional findings suggested that more severe injuries occur from
midnight to 3:59am, and the risk of fatality increases for crashes that result in the

motorcyclists overturning or striking an off-road object. Additionally, results indicated
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that two way streets, crashes occurring on the outermost lane, and wet road surface
increase the likelihood of severe injuries and severe damage to the motorcycle. Finally,
findings inferred that non-Singaporeans have more severe injuries, drivers younger than
30 have more severe motorcycle damage, men have a 100% greater likelihood of a total
wreck, and passenger presence increases the risk of injury, but decreases the risk of
damage.

Abdel-Aty (2003)

Abdel-Aty (2003) developed an ordered probit model to assess driver injury
severity, given a crash in a toll plaza, roadway section, or at a signalized intersection
occurs. The authors obtained crash data from 1996 to 1997 from the Florida traffic crash
database, and 17,647 drivers involved in 7,894 crashes were extracted. Results suggested
that for crashes occurring on roadway sections, female drivers, older drivers (over 68
years-old), alcohol, nighttime, and horizontal curves increase the risk for higher injury
severity, for crashes occurring at signalized intersections, inclement weather and dark-
street lighting increase the risk of higher injury severity and at-fault drivers experience
less severe injuries, and for crashes occurring at toll plazas, electronic toll collection
system equipped vehicles and drivers who stopped in the electronic toll collection lane
increase the risk of higher injury severity.

Austin and Faigin (2003)

Austin and Faigin (2003) explored the vehicle types and crash circumstances that
increase the risk of injury severity for older drives. The authors gathered information
from the 2001 National Household Travel Survey and the 1995 Nationwide Personal

Transportation survey for traffic exposure, from the National Automotive Sampling
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System-General Estimates System to capture crash involvement data, and from the
Fatality Analysis Reporting System to derive fatality and incapacitating injury
information. The study presented an ordered probit model to analyze the effect of age
(grouped as 25-44, 45-64, 65-74, and 75+) on injury severity levels (categorized as fatal,
incapacitating, moderate, minor and property damage only). Results suggested that the
fatality rate for 25-44 year-olds, 65-74 year-olds, and 75+ fell from 1997 to 2001, which
suggested that improvements in safety had a greater impact on older drivers than younger
drivers. However, older driver involvement in fatal crashes was still 30% greater than the
next oldest group. Results also indicated that crash involvement for older drivers is
greater in passenger cars, relative to light truck and utility vehicles; and, for drivers 75+,
side-impact crashes have a higher likelihood of fatality and seriously injured outcomes.
Kweon and Kockelman (2003)

Kweon and Kockelman (2003) investigated the effect passenger vehicle type
(cars, minivans, pickups, motorcycles and SUVs) on the probability of motor vehicle
crash injury severity for rollover and non-rollover cases. Model results indicated that
SUV rollovers are more prevalent, and male drivers are more likely to sustain injury in a
pickup or minivan. Middle-age and older females are more likely than males to rollover
when driving a passenger car, and female drivers of all ages are more apt to rollover
when driving an SUV. Results suggested that car drivers experience non-rollover crashes
and non-severe injury more than other vehicle type drivers, with the exception of young
females where pickups are the highest. All female drivers, young males, and older male
drivers have a higher risk of fatality from a SUV rollover than a passenger car. Findings

also suggested that female drivers of SUVs, pickups and minivans have a higher risk of a
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fatality given a crash (which could be attributed to the increased possibility of SUVs and
pickups rollover), and young and middle aged male drivers of cars have a greater risk of a
fatality given a crash. The authors concluded that the differences between genders are
small; however, the difference across age groups is severe and additional research in this
area is necessary.

Zajac and Ivan (2003)

Zajac and Ivan (2003) explored the roadway and area features that may impact
driving speeds, which in turn may influence pedestrian injury severity. The authors
examined crashes in which pedestrians were struck while crossing the road at locations
where mainline traffic was not controlled by signals or stop signs using data from the
Connecticut Department of Transportation. The study presented ordered probit models to
explore the impact of area type (downtown, compact residential, village, downtown
fringe, medium-density commercial, low-density commercial, and low-density
residential), pedestrian age, vehicle type, alcohol involvement, light condition, road
surface condition, and weather conditions on injury severity (fatal; disabling injury; not
disabling injury, but visible; probability injury, but not visible; no injury). Results
indicated that speed limit, on-street parking, and roadway width does not significantly
impact pedestrian injury severity as expected. Additionally, findings inferred that
downtown and compact residential areas have a lower risk of severe injury than low-
density residential areas, and low-density and medium-density commercial areas have a
lower risk of severe injury than village and downtown fringe. Finally, model results
suggested that pedestrians who are at least 65-years-old, vehicle type, and driver and

pedestrian alcohol involvement increase the risk of pedestrian injury severity.
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Khattak and Rocha (2003)

Khattak and Rocha (2003) explored the impact of SUV rollovers on crash injury
severity, and found that, when a rollover was the single indicator variable, rollovers
increase injury severity. Findings indicated that SUV drivers have a lower risk of severe
injury by nearly 24%, and that wearing seatbelts and the presence of airbags decrease
severe injury. Additionally, results reveled that driving off the road, losing control,
speeding, female drivers, young drivers, and vehicle ejection significantly increase injury
severity for single-vehicle crashes.

Donnell and Mason (2004)

Donnell and Mason (2004) developed regression models to predict injury severity
of median-related crashes in Pennsylvania. The authors obtained cross-median collisions
(CMC) and 4,416 median barrier crash observations from the Pennsylvania Department
of Transportation. The study presented an ordinal logistic regression model from a
measurement model in which the latent variable was linked to an observed variable, and
Fisher scoring algorithms were used to fit the model. Model results suggested that an
ordinal regression model adequately fit the CMC data, and results from the CMC model
suggested that drug use and a curvilinear alignment increase the probability that, given a
crash occurred, the outcome would be fatal. The interstate median barrier crash model
violated the proportional odds assumption (which could be a result of the small number
of fatal crashes in this category); and therefore, was re-estimated using a nominal logistic
regression. The model results indicated that wet surface, traffic volumes, drug or alcohol

use, the presence of an interchange entrance ramp, and the interaction between the
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presences of an interchange entrance ramp and drug or alcohol use impact crash injury
severity.
Khattak and Targa (2004)

Khattak and Targa (2004) explored the impact of work zone characteristics on
injury severity and total harm for truck-involved collisions. The authors explored the
total harm of the crash by assigning an economic value to each injury level and summing
the costs for each injury (i.e. the total harm variable included medical emergency service
costs, employer costs, traffic delay costs, victim work loss costs and property damage
costs). The study presented cost estimations for crashes in North Carolina, including
quality of life, as $2,925,100 for fatal injury, $144,796 for severe/incapacitating injury,
$37,486 for moderate/non-incapacitating injury, $17,916 for minor/possible injury, and
$3,904 for property damage only. Ordered probit and ordinary least squares (OLS)
regression (three ordered probit and three OLS log-transformed models) respectively
using 572 multi-vehicle truck-involved crash records estimated injury severity and total
harm. Model results indicated that when a crash occurs in a work zone located on two-
way undivided roadways the risk of harm and injury increases. Additionally, findings
suggested that closing the roadway and detouring traffic to the opposite side of the road
has a significantly higher risk of injury and total harm, and a crash occurring in this
manner was suggested to have a 38.5% increased chance of injury and cost of $43,584.
Finally, results indicated that crashes occurring adjacent to the work area, in work zones
with higher posted speed limits, and when stop/yield/warning flashing signs are present

incur greater harm and risk of injury.

50
Copyright, Jill M. Bernard, 2015



Abdel-Aty and Keller (2005)

Abdel-Aty and Keller (2005) hypothesized that crash injury levels were affected
by crash- and intersection-specific characteristics. Expanding upon Abel-Aty (2003), the
authors developed ordered probit models to assess 33,592 crashes that occurred in 832
intersections from 2000 and 2001. Findings for the severity models for intersection
characteristics suggested that division on the minor road, right turn channelization on the
major road, and an increase in the number of lanes and speed limit on the minor road
decrease the expected level of injury. Additionally, the authors estimated a hierarchical
tree-based regression model to estimate the expected crash frequency for each crash
injury severity level. Results indicated that the most significant factors for no-injury
crashes, possible injury, non-incapacitating injury and incapacitating injures are traffic
volume of the major road, the number of lanes on the minor road, the number of
exclusive right turn lanes, and the average daily traffic on the minor road, respectively.
The authors concluded that models should be developed for each level of severity as
opposed to a single model for predicting the overall severity level, and the tree-based
regression improves the understanding of the importance of specific factors on individual
levels of severity.

Lee and Abdel-Aty (2005)

Expanding upon Abdel-Aty and Keller (2005), Lee and Abdel-Aty (2005)
analyzed vehicle pedestrian crashes at intersections in Florida by examining the
relationship between pedestrian, driver, traffic and environmental characteristics and
frequency/injury severity of pedestrian crashes. Using data from the Florida Traffic

Crash Records from 1999 to 2002, the authors developed two log-linear models to
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examine crashes resulting from driver fault and pedestrian fault. Results suggested that
pedestrian collisions occur less frequently at rural signalized intersections, and it was
proposed that drivers are more careful when approaching traffic signals than stop/yield
signs in rural areas. Also, model results revealed that middle age men are more likely to
be involved in a pedestrian collision as both pedestrians and as drivers, children younger
than 14 have a high risk of being involved in a pedestrian-fault crash, and the risk of
crash frequency at the fault of the pedestrian increases at signalized intersections.
Findings also suggested that the interaction of nighttime and alcohol intoxication
increases the risk of a pedestrian-caused crash more than crashes resulting from the fault
of the driver. The authors then estimated ordered probit models to examine injury
severity. Results suggested that older pedestrians (65+ years-old), female pedestrians,
pedestrians under the influence of drugs/alcohol, higher vehicle speed, and rural areas
increase the risk of sustaining higher injury levels. Overall model results indicated that
pedestrians’ age and alcohol/drug use, speed of the vehicle at time of crash, location of
the crash, presence of traffic control, weather, lighting, and vehicle type are closely
related to pedestrian injury severity. To examine the underlying behavioral factors that
lead to pedestrian crashes, the authors collected walking trip data from a household travel
survey. From this analysis, findings inferred that the relationship between the number of
pedestrian crashes to the total duration of walking was underestimated for the older
pedestrian population. The authors recommended enhanced driver education and traffic
regulation with these modifications targeted towards middle-aged male drivers, that the
dangers of drinking and walking be made clearer to the public, and an increased number

of traffic signals and street lights be installed in rural areas.
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Shimamura et al. (2005)

Shimamura et al. (2005) assessed the effect of rear-seat passengers’ use of
seatbelts on the injury severity of front-seat occupants. The authors examined five
analyses: 1) the influence of belted and unbelted rear-seat passenger on driver injury
severity, 2) the influence of belted and unbelted rear-seat passenger on front-seat
passenger injury severity, 3) the effectiveness of seatbelt use by rear-seat passengers, 4)
the effectiveness of seatbelt use by driver with no passengers, and 5) the effectiveness of
seatbelt use by front-seat passengers with no rear-seat passengers. Results indicated that
the number of vehicles with seriously injured or killed drivers is expected to decrease by
25% if unbelted rear-seat passengers initiate seatbelt use, and decrease by 28% if
unbelted front-seat passengers initiate seatbelt use.

Garder (2006)

Garder (2006) analyzed data from the Maine Department of Transportation for
head-on crashes that occurred between 2000 and 2002. The authors developed ordered
probit models to assess the influence of road surface conditions, light conditions,
temporal conditions, heavy-vehicle involvement, shoulder width, and speed limit on
crash injury severity (fatal, incapacitating, evident, and possible). Findings indicated that
head-on crashes were primarily caused by speeding or driving too fast for conditions and
driver inattention/distraction. Results also suggested that increased speed limits lead to
an increase in crashes that result in a fatality or incapacitating injury, and wider shoulder
width and higher-speed roads lead to a greater risk of injury severity. Consequently, the
authors recommended widening of two-lane roads, extra travel lanes, and speed reduction

to reduce crash injury severity of head-on collisions.
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Lu et al. (2006)

Lu et al. (2006) analyzed the magnitude and predictability of median crossover
crashes on crash injury severity. The models included 12 explanatory variables for
estimation of crash severity: crash date, geometry, light condition, liquor involvement,
weather condition, road cause, road condition, weekday, driver age, total average drive
time, median width, and reaction time. Model results found crash date, weather
condition, road condition, road cause, and reaction time to have the greatest influence on
crash severity. Results also indicated that younger drivers have a greater risk of injury
severity when traffic volume on roadways is moderately high; and, seasonal factors of ice
and snow increase the risk of severity of a median crossover crash.

Oh (2006)

Oh (2006) developed ordered probit regression models to assess the statistical
relationship between crash injury severity and traffic maneuvers, roadway geometrics,
and weather at urban four-legged signalized intersections. Findings suggested that, for
models for all crash records, sharper horizontal curves, more vehicle occupants, higher
speed limits, and higher crest vertical curves increase injury severity. While, wider
medians, more driveways and higher annual average daily traffic on major roads,
protected left turn lane, and lighted conditions decrease injury severity. Findings for
models where two-vehicle crashes occurred suggested sharper horizontal curves, more
vehicle occupants, and higher speed limits increase injury severity; though, higher traffic
flows on major roads, manner of collision, and less commercial driveways decrease
injury severity levels. When three or more-vehicle crashes occurred, model results

suggested that longer sight distance, right turn lane presence, and higher annual average
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drive time on the minor road decrease injury severity. The authors concluded that while
uncovering explanatory variables may describe some association with injury severity, it
does not necessary imply the causation of injury severity; therefore, additional research in
this area is necessary.
Siddiqui et al. (2006)

Siddiqui et al. (2006) examined the impact of light conditions and crossing
locations on pedestrian injury severity, given a collision with a motor vehicle. Results
indicated that the largest fatal injury risk factors for pedestrians are age of at least 65
years old, struck by an intoxicated driver, involved in a crash on a US road, foggy
conditions, pedestrian intoxication, struck by a driver with physical disability, and struck
by a large vehicle. Model results revealed that, when considering the effects of light
condition and location, dark without lighting and midblock locations with any light
condition has the greatest risk for pedestrian fatality.

Pai and Saleh (2007)

Pai and Saleh (2007) hypothesized that motorcyclists are more susceptible to
severe injuries in approach-turn collisions (when one vehicle approaching straight
collides with an approaching vehicle turning right) at T-junctions. The authors estimated
three ordered probit models to examine injury severity: 1) injury severity occurring from
a crash where stop or give-way signs controlled the junction; 2) injury severity occurring
from a crash at an uncontrolled junction; and 3) injury severity occurring from a crash at
a signalized junction. Results from model 1 implied that male or elderly riders, riding in
the early morning, riding in a spring or summer month, street lights unlit, riding on a non-

built-up road, riding under fine weather, greater engine size, collisions with bus or heavy
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good vehicle, and a collision between a motorcycle and a vehicle traveling in the same
direction have the greatest association with the risk of increased injury level. Results
from model 2 implied that greater engine size, elderly rider, riding in early morning,
riding under fine weather, riding on the weekend, street lights unlit, collision with a bus
or heavy good vehicle, riding on a non-built-up road, and a head-on collision or
approach-turn collision between a motorcycle and vehicle have the greatest association
with the risk of increased injury level. Finally, model 3 suggested that male riders,
heavier engine size, riding during fine weather, riding on a non-built-up road, collisions
with bus or heavy good vehicle, collisions between a vehicle/motorcycle approaching
straight and an oncoming motorcycle/vehicle that turns right into the path of the first
vehicle/motorcycle, and head-on collisions between a motorcycle a vehicle have the
greatest association with the risk of increased injury level. The study concluded that the
separate analysis enables insights to lessen motorcyclists’ injury severity levels for
collisions at three-legged junctions in the UK.

Gray et al. (2008)

Gray et al. (2008) examined characteristics that effect crash injury severity for
young male drivers in order to enhance road safety measures. The authors obtained
National Road Accident data from 1991 to 2003 for Great Britain, and estimated ordered
probit models to assess the risk that, given a crash involving a young male driver occurs,
the outcome will be fatal, serious or slight injury. Findings indicated that greater injury
severity occurs early in the morning, on Thursdays, Fridays, Saturdays and Sundays,
during darkness, on wet roads, if a volatile movement ensues, if an object is hit off the

carriageway, and if a hazard is located in the carriageway. The authors concluded by
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calling for research with similar modeling for young female drivers with a comparison of
results to young male drivers.
Pai and Saleh (2008)

Expanding upon Pai and Saleh (2007), Pai and Saleh (2008) explored
motorcyclist crash injury severity in approach-turn collisions at T-junctions in the UK by
focusing on the impact of junction control measures and driver’s failure to yield. The
authors estimated two ordered models to assess 1) a motorcycle approaching straight
collides with a vehicle traveling from the opposite direction and turning right, and 2) a
vehicle approaching straight collides with a motorcycle traveling from the opposite
direction and turning right. Results indicated that junctions controlled by give-way, stop
signs, or marking result in more severe injury for a motorcyclist. Additionally, findings
suggested motorcyclists to be 16 times more likely to be involved in an approach-turn
head-on collision with a vehicle, and more likely to result in a higher risk of greater
injury severity.

Wang et al. (2009)

Wang et al. (2009) examined data from the Florida Department of Transportation
to identify factors that impact crash injury severity at freeway diverge areas. The authors
developed and compared the results of an ordered probit model and a partial proportional
odds (PPO) model, and examined data for four ramp types: Type |, parallel from a
tangent single-lane exit ramp; Type 11, single-lane exit ramp without a taper; Type IlI,
two-lane exit ramp with an optional lane; and Type 1V, two-lane exit ramp without an
optional lane. Results from the ordered probit model suggested that crashes occurring at

a diverge area with downgrades or upgrades or curved alignment, alcohol or drug use,
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off-peak hours, and collision with a barrier result in more severe injuries; while,
favorable weather and lighting, longer deceleration lane on diverge area, and diverge
areas in business zones decrease the risk of severe injuries. The PPO model results
implied that shorter ramp length, off-peak period, alcohol or drug-use increase the risk of
injury severity; and, favorable weather conditions, crashes occurring in business zones,
heavy-vehicle involvement, and sideswiping crashes decrease the level of injury severity.
Additionally, findings inferred that the exit ramp type has no significant effect on crash
injury severity when a crash occurs at a freeway diverge area. The study concluded that
when comparing the two models, the PPO model was better at fitting the observations
than the ordered probit model (PPO pseudo-R? = .0406; ordered probit pseudo-R? =
.0273).
Xie et al. (2009)

Xie et al. (2009) estimated ordered probit models and Bayesian ordered probit
(BOP) models to assess crash injury severity. To compare the two models, the authors
obtained data from the 2003 NASSGES, and extracted a total of 76,994 records. Findings
revealed that when the sample size was large, model fitting results for both models were
closely related. However, when the sample size was reduced to 100 records, results
indicated that the BOP model produced better predictions.

Amarasingha and Dissanayake (2010)

Amarasingha and Dissanayake (2010) developed ordered probit models to
examine the contributing factors for injury severity of older drivers for crashes occurring
in rural and urban areas in Kansas. Categories of injury severity were no injury, possible
injury, non-incapacitating injury, incapacitating injury, and fatal outcome; categories of

explanatory variables were driver related, crash related, environmental related, and
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roadway related; and, the data was sub-partitioned based on age. Findings suggested that
most of the driver-related variables (i.e. age, gender, passengers, seat belt use, and
alcohol) were significant in affecting injury severity for older drivers; only cars (as
opposed to other vehicle types) have a significant effect on injury severity given an urban
crash, speed increases injury severity, and head-on, rear-end and angle crashes increase
the likelihood of more severe injuries in both rural and urban areas.

Haleem and Abdel-Aty (2010)

Haleem and Abdel-Aty (2010) compared ordered probit, binary, and nested logit
methodologies to aid in the selection of the best modeling technique for injury severity
analysis for crashes occurring at unsignalized intersections. The authors used geometric,
traffic and driver-related data from six counties in Florida to explore the effect of traffic
and roadway covariates on crash injury-severity.  The Florida Department of
Transportation provided data for 10,722 crashes occurring over four years at unsignalized
intersections. The study used two separate models to analyze the relationship between
severe injuries and non-severe injuries, and explanatory characteristics at three and four
legged intersections. Findings indicated that lack of stop lines, one left turn lane, larger
right shoulder width, and smaller intersections increase the probability of severe injury;
and, lower speed limits, young drivers, crashes occurring at dusk (relative to dark), and
highly-urbanized areas reduce probability of severe injury. When comparing the binary
probit and the ordinal probit frameworks, results suggested that the aggregated binary
probit model had a lower AIC and higher likelihood of convergence, indicating that the

binary probit model better fit the data. The authors claimed that this finding indicates
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that the aggregate model performs better when analyzing injury severity, given a crash at
an unsignalized intersection.
Jung et al. (2010)

Jung et al. (2010) applied rain-related crash data and real-time information to
assess weather conditions and aid in the prediction of crash severity outcomes. The
authors compiled four databases to obtain 33 explanatory variables categorized as driver
demographics, roadway geometrics, collision types, pavement conditions, vehicle types,
and temporal and weather conditions, and ordinal logistic and sequential logistic
regression models were developed. Results revealed that a backward implementation of
the sequential logistic regression model outperformed others in the prediction of crash
injury severity. Statistically significant factors that affect crash injury severity in rainy
weather were identified as rainfall intensity, roadway terrain, wind speed, drivers’
gender, and safety belt use.

Quddus et al. (2010)

Quddus et al. (2010) investigated the relationship between the level of traffic
congestion and individual crash injury severity by employing an ordered logit model, a
heterogeneous choice model (HCM), and a partially constrained generalized ordered logit
(PC-GOLOGIT) model. Diagnostic tests suggested that the ordered logit model was not
appropriate for the data, both the HCM and the PC-GOLOGIT model fit the data equally
well, and the results between the HCM and the PC-GOLOGIT were consistent.
Estimation results indicated that the level of traffic congestion did not affect crash injury

severity; increases in traffic flow, darkness, wet road surface, and decreases in road
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curvature resulted in decrease severity; and, three-lane stretches, weekdays, and single-
vehicle crashes increase severity.
Ye and Lord (2011)

Ye and Lord (2011) investigated the effect of underreporting of crash data on
injury severity estimations using multinomial logit, ordered probit and mixed logit
models, and evaluated how each model performed for different unreported rates. The
authors proposed using the Weighted Exogenous Sample Maximum Likelihood
Estimator (WESMLE) to account for underreporting conditions. Results determined that
the root-mean-square-error (RMSE) increased when using the maximum likelihood
estimator for all three models; the lowest ordered severity level had the largest
underreported rate; and, the WESMLE performed well regardless of the magnitude of the
unreported rate for each model. The authors concluded that to minimize bias, fatal
crashes should be set as the baseline severity for the mixed logit and multinomial logit
models, while the ordered probit model should rank crash severity in descending order
(from fatal to property-damage-only).

Zhu and Srinivasan (2011)

Zhu and Srinivasan (2011) assessed injury severity for large-truck crashes using
data from the 2001 to 2003 Large Truck Crash Causation Study, which contained
approximately 1,000 crashes from 24 sites in 17 states. The authors developed ordered
probit models to assess injury severity as explained by crash type, fire, crash location
roadway design characteristics, road-surface conditions, and temporal characteristics.
Results suggested that for truck-only crashes, collisions with fixed objects, on non-

interstate highways, on multi-lane highways, at a higher speed, on the weekend, on dry
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surface, with heavy cargo (>20,000kg) and during dark but lighted conditions had a
greater risk of severe injury. In addition, older truck drivers (>45 years old), African-
American drivers, taller drivers, drivers with less experience, and distracted drivers were
involved in more severe crashes. For collisions between trucks and cars, findings
suggested emotional factors (such as depression) and fatigue to result in more severe
crashes. Interestingly, results indicated that seatbelt use was insignificant in both the
truck-only crashes and truck-car crashes.

Abay (2013)

Abay (2013) explored pedestrian injury severity relative to road user
characteristics using alternative disaggregated models. The study presented four models:
standard fixed-parameter ordered logit (OL), random parameters ordered logit (RPOL),
standard fixed-parameter multinomial logit (MNL), and mixed logit (MXL). Findings
suggested that substantial differences in the marginal effect of the variables in the OL
with the RPOL and MXL exist, and the underestimation can lead to misinformed safety
planners. For example, the OL model underestimated the effect of an older-aged
pedestrian and the effect of being struck by a driver proceeding straight-ahead, which
could misguide guide policy intended to help vulnerable road users. Consequently, the
researchers called for more “encompassing, flexible and alternative model specification
when analyzing injury severity data” (p. 132).

Jiang et al. (2013a)
Jiang et al. (2013a) examined the effect of curbs on single-vehicle crash injury
severity by use of a zero inflated ordered probit (ZIOP) model to compensate for the

potential bias imposed by the traditional ordered probit model in situations of highly
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unbalanced occurrences of a specific category of the dependent variable. The ZIOP
model assumes that injury severity is the result of injury propensity and injury severity.
Using 2003 to 2007 data from the Illinois Highway Safety Information Database, the
authors discovered that single-vehicle crashes that occur on curbed roadways are more
likely to be injury prone, and the existence of a curb decreases the risk of severe injury
when the crash is in the injury prone category. Moreover, findings suggested that the
presence of curbs have a higher risk of non-injury and minor injury and a lower risk of
incapacitating injury and fatality.

Jiang et al. (2013b)

Jiang et al. (2013b) linked together data from the Tennessee Roadway
Information Management System and the Tennessee Department of Transportation’s
Pavement Management System to obtain crash information and pavement management
status for the state route highways from 2004 to 2008. The authors examined injury
severity for three types of two-vehicle crashes: rear-end collisions, sideswipe collisions,
and angle collisions. The study presented and compared an ordered probit and a
Bayesian ordered probit model based on the parameter estimates. As expected due to the
large sample size, results from both models for each type of crash were very close.
Results from the Bayesian ordered probit model suggested that annual average daily
traffic, speed limit, peaking hour, rural/urban location, and light condition were
consistently significant across a crash types; and, pavement distress index, rut depth and
rut depth difference were not statistically significant. Results suggested that two-vehicle

sideswipe, rear-end and angle crashes that occur on rougher roads are less likely to incur
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a severe injury. The authors concluded that improved road quality does not essentially
reduce injury severity, given a two-vehicle crash occurs.
Eluru (2013)

Eluru (2013) explored the appropriate model choice for injury severity analysis
through the comparison of ordered response methodologies (an ordered logit model and a
generalized ordered logit model) with unordered response methodologies (a multinomial
logit model). The authors created simulations with three independent variables and four
alternatives ordered dependent variables to compare the performance of the frameworks.
The authors selected parameters so that the models would generate consistent sample
shares for the parameter set. To assess model fit, the study compared generalized ordered
logit and the ordered logit models using the likelihood ratio test, and used the Bayesian
Information Criterion to compare the generalized ordered logit and the multinomial logit
models. Model estimation results indicated that, when compared to the multinomial
model, the generalized ordered logit model performed satisfactory. The authors
concluded that the results provide credibility to the generalized ordered logit model.
Yasmin and Eluru (2013)

Expanding upon Eluru (2013), Yasmin and Eluru (2013) explored methodological
approaches used to assess driver injury severity in traffic crashes by comparing ordered
response methodologies (order logit, generalized ordered logit, and mixed generalized
order logit) with unordered response methodologies (multinomial logit, nested logit,
ordered generalized extreme value logit, and mixed multinomial logit). The authors
selected data in which a private passenger vehicle collided with either another passenger

vehicle or a fixed object from the 2010 General Estimates System, and a final dataset of
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30,371 records were used. To measure the comparison of the overall fit of the models,
the study employed the likelihood ratio test to compare the ordered models to one
another, and to compare the unordered models to one another. The study presented a
two-step approach to compare the unordered to the ordered models: 1) use the likelihood
ratio test to establish the superior model within each framework and 2) compare the
superior model from each framework using a non-nested measure application.
Estimation results suggested that drivers under the age of 25 and occupants wearing
seatbelts have a lower risk of severe injury. Additionally, findings indicated that drivers
who are under the influence of alcohol and those driving older vehicles have a higher risk
of injury, and as speed limit increases the risk for injury increases. The authors
determined that neither the unordered or ordered frameworks outperform the other at
either the aggregate or disaggregate level, and concluded that the findings signify that the
different approaches offer comparable prediction for the risk of crash injury severity.

Ye and Lord (2014)

Ye and Lord (2014) built upon Ye and Lord (2011) by comparing the sample size
requirements for estimating multinomial logit, ordered probit and mixed logit models.
The research investigated the probability of crash injury severity given a single-vehicle
collision occurred with a fixed object on a rural two-way highway. Using crash injury
severity data from 1998 to 2001 provided by the Texas Department of Transportation and
the Texas Department of Public Safety, the authors explored 25,175 outcomes with 27
explanatory variables categorized as geometric variables, driver characteristics,
environmental conditions, etc. The study reported that the ordered probit model does not

have the same interpretive power as the other methodologies, since the effects of the
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explanatory variables are restricted to ordered probabilities using identical coefficients.
Additionally, the ordered probit model has threshold values that are fixed across
observations, which can lead to inconsistent model estimation. The authors combined
simulation data with the four-year crash records to compare scale size effects on the three
models. Findings included that confidently estimating an ordered probit model required
the smallest samples and fitting the mixed logit model required the largest sample.
Overall results indicated that all three models improved in accuracy when sample size
increased, the mixed logit and multinomial logit were more sensitive to smaller sample
sizes, and an approximate reasonable minimum sample size for the ordered probit,
multinomial logit and mixed logit models are 2,000 5,000, and 10,000 respectively.
Ariannezhad et al. (2014)

Ariannezhad et al. (2014) examined the impact of conditional, environmental,
rider, crash and roadway characteristics on motorcycle crash severity in the suburban
areas of Iran. The authors developed an ordered logit model to analyze crash injury
severity, and results suggested that greater injury severity occurs on weekends, during the
fall and winter months, during night hours, during foggy weather, when road
imperfections are present, and on curved and level roads. Additionally, findings
suggested that drivers aged younger than 25 and older than 60, not having driving
experience/permit, not wearing a helmet, speeding, losing control of the motorcycle,
overtaking, colliding with large vehicles, disobeying driving rules, and who are

inattentive, fatigued and hasty are associated with crashes with greater injury severity.
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2.2.4 Decision Tree Models

Savolainen et al. (2011) categorized one study as ‘classification and regression
tree.” This literature review discovered eight additional studies in which decision tree
models were estimated to analyze crash injury severity. Even though this review found
that relatively little research has employed such an approach, Savolainen et al. (2011)
remarked that decision tree models are an effective data mining technique, Abdel-Aty
and Keller (2005) claimed that tree-based regression improves the understanding of the
importance of specific factors on individual levels of severity, Oh (2006) concluded that
variables associated with injury severity levels may not be the cause of injury severity
and additional research in this area is necessary, and Abay (2013) called for a more
encompassing and alternative model specification for injury severity data analysis.

A review of the literature wherein tree model techniques were used to uncover
complex crash patterns is presented below. Below, specific findings related to driver
characteristics, contributing circumstances, temporal factors, and road characteristics are
identified, followed by a more detailed review of each piece of research.

e Kuhnert et al. (2000) concluded that the most important factor for predicting crash
injury severity is age; and, Yan and Radwan (2006) found that drivers under the age
of 21 and over 75 have the greatest risk of rear-end collisions.

e Findings suggested that the interaction of higher speed limits and alcohol increases
the risk of crash injury severity (Yan and Radwan, 2006; Eustace et al., 2014).

e Eustace et al. (2014) found that females in circumstances of higher posted speed
limits have higher risk of injury, and males with drug involvement in higher posted

speed limit circumstances have a higher risk of injury.
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e Model results for rear-end collisions indicated that alcohol is the most significant
factor impacting a drivers’ striking another vehicle (Yan and Radwan, 2006); and,
Eustace et al. (2014) found that alcohol and drug use increase the probability of run-
off-road injury severity levels.

e Yan and Radwan (2006) found that the risk for a rear-end collision is higher for
daytime condition than nighttime condition.

e Wet or slippery road surfaces were found to increase the risk of incapacitating injury
for rear-end collisions (Yan and Radwan, 2006); and, male drivers in crashes on wet
road surfaces were found to have a higher risk of injury severity (Eustace et al.,
2014).

e Chang and Wang (2006) reported that contributing circumstances and driver actions
are critical in determining crash injury severity.

Stewart (1996)

Stewart (1996) presented a classification tree model and regression tree model in
roadway safety studies. The model included injury severity, locality, number of lanes,
speed limit, highway class, roadway feature, vehicle type, and model year group as the
analysis variables. The study illustrated three example models: 1) the classification tree
model using binary variables to estimate the likelihood of a severe or fatal injury; 2) the
regression tree model using continuous variables to estimated average injury severity
costs; and 3) classification and regression tree (CART) to identify interactions to be
included in a Poisson crash model. From the comparison of the performance of the
example models, the author concluded that CART models are a useful tool in each of

these roles.
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Kuhnert et al. (2000)

Kuhnert et al. (2000) combined multivariate adaptive regression spline (MARS)
and classification and regression tree (CART) models with logistic regression to illustrate
the improved information provided for crash injury severity. The authors collected data
via case interviews of hospitalized patients following motor vehicle crashes in Brishane,
Australia from 1997 to 1998. Information gathered included driving experience, driver
aggression, general safety precautions, and demographic variables; and, a follow-up
questionnaire was used to obtain additional information of driver attitude, behavior and
experience. Using the data obtained, the authors estimated CART, MARS, and logistic
regression models. The CART model produced an overall accuracy of 79.4%, and
yielded results that suggested older drivers who do not wear a seatbelt and older female
drivers who do not wear seatbelts are high risk groups. Findings inferred that the most
important factor was age. The MARS model had an overall accuracy of 83.2% and
results suggested that respondents with little experience, respondents between the age of
30 and 45 with many years of experience, and respondents between the ages of 40 and 80
with little experience were the three major areas of risk. The logistic regression model
produced an overall accuracy of 75.9%, and suggested seatbelt use as the only significant
variable. As deemed important from the MARS model results, the authors incorporated
age and experience results into the logistic regression model, and found the interaction
between age and experience statistically significant. The authors encouraged the use of
MARS and CART as exploratory tools for a more detailed analysis when using

conventional and well-known methods.
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Sohn and Shin (2001)

Sohn and Shin (2001) developed decision tree, neural network, and logistic
regression models to assess the factors that affect traffic crash injury severity in Korea.
The classification tree identified the six factors used in the neural network and logistic
regression models (accident mode, road width, car shape, speed before accident, violent
driving, and protective device). Model results revealed protective device (i.e. safety belt
use or helmet improperly worn) as the most influential variable for classification of crash
severity. The model identified decision tree rules as: if no protective device is used and
car to pedestrian collision occurs, then fatality or injury is likely to occur; if no protective
device is used and a car-to-car frontal collision or car-to-car when turning collision and
violent driving occurs, then fatality or injury is likely to occur; and if no protective device
is used and a car collision against a wall or barricade with the car shape bonnet occurs,
then property damage is likely to occur. The study then trained a neural network for
crash severity using the same dataset, and did not find the classification accuracy to be
significantly different from the decision tree. Finally, the authors fit a logistic regression
using the same six aforementioned variables. The estimation suggested accident type and
speed before the crash to be the only statistically significant factors; and, if car to car
frontal collision, car to car collision when passing, car to car collision when parking and
car to car collision when turning occur, injury and death has a higher likelihood of
occurring. Overall, the authors concluded that variable reduction was effective, and the

three models were not significantly different in performance.
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Bayam et al. (2005)

Bayam et al. (2005) provided a meta-analysis of prior literature on older drivers
and illustrated the use of data mining techniques for injury severity analysis. The study
reported that for older drivers the risk of fatality increases, left-turn crashes are more
common, the tendency to strike fixed objects increases, the risk of fatality substantially
increases at speeds exceeding 69 mph, driving distance decreases, more time is taken to
turn, visual abilities decline, slower speeds are driven, and crashes occurring at
intersections have a higher risk of fatality. Upon completion of the literature review, the
authors reported that little data mining had been used for examination of older drivers and
crashes to identify hidden patterns and relationships. Using survey results, the study
presented a CART models to predict the occurrence of a crash or non-crash, given driver,
roadway, vehicle, and other variables. The tree depth was five layers, and the age
variable represented the root node split. The model accuracy for the trained model and
the test model was 81.1% and 68.78% respectively. The authors suggested the small
sample size to be the cause of the poor predictive power in the test data; and, as a result,
findings were not robust enough to be generalizable. However, the authors claimed that a
larger data set “could be quite useful for this type of application” (p. 623). Additionally,
the authors identified over-fitting as a limitation of the decision tree approach, and an
approach that either stops the tree from growing or prunes the tree after it has been fit
may be used to correct the issue. The authors concluded that data mining should be used

to discover unknown relationships for crashes for senior and teenage drivers.
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Abdel-Aty and Keller (2005)

Abdel-Aty and Keller (2005) hypothesized that crash injury levels were affected
by crash and intersection specific characteristics. Expanding upon Abel-Aty (2003), the
authors developed ordered probit models to assess 33,592 crashes that occurred in 832
intersections from 2000 and 2001. The study presented three ordered probit models (1)
independent variables equaled crash types, 2) independent variables equaled intersection
characteristics, and 3) independent variables equaled a combination of crash types and
intersection characteristics) to determine the factors that impact crash severity, and to
determine if a difference existed when the models were based on completeness of the
data. Findings suggested that division on the minor road, right turn channelization on the
major road, and an increase in the number of lanes and speed limit on the minor road
decrease the expected level of injury. For the third severity model using both crash types
and intersection characteristics as independent variables, collisions involving bicyclists or
pedestrians had the highest likelihood of severe injury; angle, head-on and left-turn
collisions had the highest likelihood of a higher injury severity level; and, median
presence and higher speed limit on the minor road lowered the likelihood of a severe
injury. The study also presented a hierarchical tree-based regression model to estimate
the expected crash frequency for each crash injury severity level. Results indicated that
the most significant factors for no-injury crashes, possible injury, non-incapacitating
injury and incapacitating injures are traffic volume of the major road, the number of lanes
on the minor road, the number of exclusive right turn lanes, and the average daily traffic
on the minor road, respectively. The authors concluded that the models should be

developed for each level of severity as opposed to predicting the overall severity level,
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and the tree-based regression improves the understanding of the importance of specific
factors on individual levels of severity.
Yan and Radwan (2006)

Yan and Radwan (2006) used the classification tree approach to investigate
factors of rear-end crashes that occur at signalized intersections. The Florida crash data
used was restricted to two-vehicle, rear-end collisions, and the striking driver was
considered to be the at-fault party. The authors developed a classification tree based on
the entropy algorithm, i;= —p;log (p;) — (1 — py) log (1 — py), to split the data until each
subset reached the appropriate level: Model 1, two-vehicle crashes at a signaled
intersection categorized as rear-end crashes and non-rear-end crashes; Model 2, only rear-
end crashes categorized as striking and struck. Model 1 results suggested the most
important variables to split the data are speed limit, alcohol use, and crash injury severity,
a higher probability for rear-end crash to occur at an intersection if the speed limit was
45-55 mph, and an increased likelihood of no injury or possible injury for crashes
occurring at these higher speeds. Findings also inferred that alcohol combined with
either lower or higher speed limits increase the likelihood of a rear-end crash occurring,
the risk for a rear-end collision is higher for daytime conditions than nighttime
conditions, and wet or slippery road surfaces increase the risk of rear-end collisions and
incapacitating injury. Model 2 results indicated that alcohol was the most significant
factor impacting a drivers’ striking another vehicle. Model results suggested that drivers
under the age of 21 and over 75 have the greatest risk of rear-end collisions. As a result,
the authors recommended speed limit reduction to 40 mph at signalized intersections,

enforcement for reducing alcohol intoxicated drivers, and additional education for drivers
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under the age of 21 years-old for reducing rear-end crashes at signalized intersections,
and concluded that the classification trees are an appropriate approach in investigating
crash propensity.

Chang and Wang (2006)

Chang and Wang (2006) developed a CART model to examine the impact of
gender, age, sobriety condition, crash location, vehicle type, contributing circumstance
and collision type on crash injury severity. Model results illustrated an initial split based
on vehicle type; and, suggested that bicyclist, motorcyclists and pedestrians have the
highest risk, and contributing circumstance, collision type, and driver action are
important in determining crash injury severity. The authors concluded by calling for
future work in comparing CART model results with traditional models such as ordered
probit and logistic regression models.

Abellan et al. (2013)

Abellan et al. (2013) developed decision trees to analyze traffic crash severity for
motorcyclists in Granda, Spain. The authors extracted single-vehicle crash observations
that occurred on two-lane rural highways from 2003 to 2009 for a total of 1,801
observations, and identified the following rules as having a high risk of a severe injury
outcome for motorcyclists: when only one occupant was involved in a single vehicle
crash; when at-fault motorcyclists were involved in a run-off-road crash in favorable
weather conditions; when male motorcyclists were involved in a run-off-road crash as the
result of driver characteristics; and when male motorcyclists were involved in a run-off-
road crash in favorable weather. Findings inferred additional rules to be a high risk of

killed/seriously injured crashes on two-lane rural highways when no safety barriers are in
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place: motorcyclists with no-restrained site distance; crashes in the evening in good
weather conditions with no lighting; and crashes with pedestrians during favorable
weather when the driver is male. The authors concluded that the method allowed for a
high number of rules to be identified, and the method could be extrapolated for studies on
other datasets.

Eustace et al. (2014)

Eustace et al. (2014) employed classification tree models in conjunction with
generalized ordered logit models to examine factors that contribute to injury severity for
run-off-road crashes in Ohio. Results indicated that the most important predictor
variables as run-off-road crash types, road condition, vehicle type, posted speed limit,
gender, road contour, alcohol- and drug-related factors. The study then presented an
ordered logit regression using maximum likelihood and results confirmed the significant
factors that increase the probability of run-off-road injury severity levels to be curves and
grades, alcohol and drug use, female victims, wet-roadway surfaces, overturn/rollover
crashes, and speed limits of at least 40 mph. Important interactions identified by the
decision tree model included: females on higher posted speed limits have higher risk of
injury; males with drug involvement and a higher posted speed limit have a higher risk of
injury; alcohol use on a road with speed limits over 40 mph have higher risk of injury;
and, male drivers in crashes on wet road surfaces have higher risk of injury. The authors
concluded that not only does the decision tree model analysis identify significant factors

of injury severity, it also allows for the detection of multi-level interactions.
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2.2.5 Artificial Neural Networks

Abdelwahab and Abdel-Aty (2001) argued that the learning capabilities and
adaptive nature of ANN models make this methodology possibly superior to traditional
techniques, and called for future investigation of the use of ANN models in transportation
safety applications. Additionally, Savolainen et al. (2011) stated that ANN models
“provide a robust function for prediction and classification problems” (p. 1673). Yet,
Chimba and Sando (2009) claimed that while many studies have applied a form of the
ANNSs technique to predict crash counts, few have applied the methodology to injury
severity modeling. Savolainen et al. (2011) categorized only two studies as ‘artificial
neural networks’, Mannering and Bhat (2014) identified a single study, and three
additional studies were discovered in which ANN models were developed to analyze
crash injury severity.

A review of literature of neural network techniques that examined crash injury
severity is presented below. Below, specific findings related to driver characteristics,
contributing circumstances, temporal factors, and road characteristics are identified,
followed by a more detailed review of each piece of research.

e Prior results suggested age as a significant factor in influencing injury severity, and
older drivers have a greater risk of injury (Abdelwahab and Abdel-Aty, 2001;
Abdelwahab and Abdel-Aty, 2002).

e Delen et al. (2006) found that alcohol/drug intoxication is a significant factor in
influencing injury severity.

e As the ratio of the estimated speed at the time of the crash to the posted speed limit

(referred to as the speed ratio) increase, findings suggested that the level of injury
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severity increases (Abdelwahab and Abdel-Aty, 2001; Abdelwahab and Abdel-Aty,
2002).

e Abdelwahab and Abdel-Aty (2002) discovered that rural areas are more dangerous
than urban areas, given a crash occurs.

e Delen et al. (2006) reported that weather conditions and time of crash are not
influential in crash injury severity.

e Mussone et al. (1999) found no significant correlation between accident index (the
ratio of the number of crashes for a given intersection and the number of crashes at
the most dangerous intersection) and meteorological conditions or road surface
conditions.

Mussone et al. (1999)

Mussone et al. (1999) developed ANN models to assess the accident index (the
ratio of the number of crashes for a given intersection and the number of crashes at the
most dangerous intersection) for crashes occurring at intersections. A feed-forward
neural network used back-propagation learning, and the optimal network structure
consisted of ten neurons for eight variables - day/night, flow, virtual conflicts, real
conflicts, intersection, accident type, road surface, and weather — four hidden nodes, and
one output node — accident index. The authors reported the following significant
findings: night-time collision for any crash type at a signalized intersection has the
highest degree of danger; any crashes with a pedestrian at non-signalized intersection at
night time has the highest degree of danger; no significant correlation between accident
index and meteorological conditions or road surface conditions exists; accident index is

greater at a unsignalized intersection with average complexity over an unsignalized
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intersection with the same complexity; accident index is greater for small signalized
intersection over small unsignalized intersection; virtual conflict is less important than
real conflict points (not dependent on traffic light); and, the accident index at an
intersection does not depend on crash type.

Abdelwahab and Abdel-Aty (2001)

Abdelwahab and Abdel-Aty (2001) developed ANN models to predict injury
severity for crashes occurring at signalized intersections. The authors used crash data
from 1997 from Central Florida, and obtained 2,336 cases (split into a training set (2,000)
and a testing set (336)). The study presented multilayer perception (MLP) neural
networks, fuzzy adaptive resonance theory (ART) neural networks, and ordered logit for
comparison, and suggested that the MLP had better generalizable performance. The
authors conducated a simulation experiment with all combinations of input variables to
develop the MLP neural network, so as to assign an output severity level for each input
pattern to allow for an understanding of the specific factors that lead to severe injuries.
Results suggested that the level of injury severity increases as the speed ratio (the ratio of
the estimated speed at the time of the crash to the posted speed limit) increases, and older
drivers and female drivers have a greater risk of injury. Findings also indicated that at-
fault drivers are less likely to be injured than not-at-fault drivers, and seatbelt use
decreases the risk of severe injury. The authors claimed that the learning capabilities and
adaptive nature of ANN models are important features that make this model superior to
traditional techniques; and, that “MLP in particular, and ANNs in general, have
promising potential in modeling injury severity” (p.12-13). The authors end by calling

for future investigation of the use of ANN models in transportation safety application.
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Abdelwahab and Abdel-Aty (2002)

Expanding upon Abdelwahab and Abdel-Aty (2001), Abdelwahab and Abdel-Aty
(2002) developed statistical models and ANNSs to assess traffic safety at toll plazas. The
authors obtained crash reports for 1999 and 2000 from the Central Florida expressway
system consisting of ten main-line toll plazas and 42 on/off ramp toll plazas with an
annual average daily traffic (AADT) of 420,000 vehicles. They developed a logit model
and Radial Basis Function (RBF) model, a type of ANN, to assess frequency and injury
severity, given a crash occurs before a toll plaza, at a toll plaza, or after a toll plaza.
Findings suggested a two-level nested logit model to be the best model to describe the
probabilities of crash location. Model results indicated that he significant variables
effecting the likelihood of a crash occurring are E-pass use, plaza type, vehicle type, and
peak period. The RBF model was identified as the best model for assessing crash injury
severity; and, results suggested that older drivers, female drivers, and E-pass users have a
greater risk for injury, and seatbelt use was found to decrease the risk of severe injury.
The authors concluded by recommending improvements in lane markings to be
undertaken, lane width should be wide enough to accommodate large trucks, and signage
should be appropriately represented before and at the plaza location.
Abdel-Aty and Abdelwahab (2004a)

Abdel-Aty and Abdelwahab (2004a) expanded upon Abdelwahab and Abdel-Aty
(2001 and 2002) by comparing the viability and benefits of MLP and ART neural
networks in predicting traffic crash injury severity. The authors developed and compared
MLP, fuzzy ARTMAP (a type of ART) neural networks and ordered probit, and found

the MLP model to perform better than the other two models. Results indicated that as the

79
Copyright, Jill M. Bernard, 2015



ratio of the estimated speed at the time of the crash to the posted speed limit (i.e. speed
ratio) increases, injury severity also increases; older drivers have a greater risk of injury;
female drivers have a greater risk of severe injury; and rural areas are more dangerous
than urban areas.

Bayam et al. (2005)

Bayam et al. (2005) provided a meta-analysis of prior literature on older drivers
involved in crash incidents and illustrated the use of data mining techniques for injury
severity analysis. The meta-analysis of the literature suggested that for older drivers: the
risk of fatality increases, left-turn crashes are more common, the tendency to strike fixed
objects increases, the risk of fatality substantially increases at speeds exceeding 69 mph,
driving distance decreases, more time is taken to turn, visual abilities decline, slower
speeds are driven, and crashes occurring at intersections have a higher risk of fatality.
Upon completion of the literature review, findings inferred that little data mining had
been used for examination of older drivers and crashes to identify hidden patterns and
relationships. The authors conducted a survey to explore key characteristics (e.g.
temporal information, passenger presence, number of crashes, etc.) of older drivers
residing in Montgomery County, Maryland. Using survey data, the final neural network
included 22 input layer nodes, two first hidden layer nodes and three second hidden layer
nodes, and reached an accuracy of 87.5%. Results suggested strong relationships
between the comfort level in certain driving situations and crash injury severity. From
this, the authors concluded that if elderly drivers feel comfortable to change direction, the

risk of crash involvement decreases.
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Delen et al. (2006)

Delen et al. (2006) developed a series of ANNs to model non-linear relationships
between crash injury severity and crash-related factors, given a multi-vehicle collision
crash, single vehicle fixed-object crash, or single vehicle rollover crash occur. The
authors accessed data from the National Automotive Sampling System General Estimates
System and obtained 30,358 records from 1995 to 2000. The study presented eight
binary MLP neural network models with different levels of crash injury severity as the
output layer. Significant factors identified as influencing injury severity are seat belt use,
alcohol/drug intoxication, age and gender, and vehicle role. Results suggested that
weather conditions and time of crash are not influential. The authors concluded that no
single factor appeared to be a key determinate of injury severity; yet, a factor could act as
an enabler or obstacle when combined with other factors.

Chimba and Sando (2009)

Chimba and Sando (2009) compared ANN models and ordered probit (OP)
models in the prediction power of highway traffic crash injury severity. The authors
claimed that while many studies have applied a form of the ANNSs technique to predict
crash counts, few have applied the methodology to injury severity modeling. However,
computer technology advancements make the ANN technique feasible for crash severity
prediction. The study’s objective was to present an approach for optimizing the number
of hidden neurons, and then to compare the back-propagation ANN performance with the
OP method. The authors accessed data for crashes occurring in 2003 on arterial segments
of the Florida state highway system and obtained 1,271 records. The model presented

various ANN outputs based on differing amounts of hidden neurons, epochs and learning
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rates, and results were compared to a trained network performance. When comparing
the prediction accuracy of the ANN and OP models, results suggested that the ANN
resulted in an approximate prediction accuracy of 83.3%, while the OP had a prediction
accuracy of 65.5%. This suggests that a well-structured ANN can produce higher
prediction performance relative to the OP approach. The authors concluded by
suggesting future research consider multiple injury severity levels as the network outputs,
as well additional input variables to determine injury severity.

Chapter 3 - Research Purpose

3.1 Research Purpose

As the literature review makes clear, researchers have employed a wide array of
methodological techniques when examining crash data; and, each approach encompassed
varying advantages and limitations with the potential to lead to complementary,
conflicting and/or inaccurate results. Yet, few studies have directly compared the varying
benefits and results of different modeling techniques (Ye and Lord, 2014).

Abdel-Aty (2003) compared ordered probit, multinomial logit and nested logit
methods to model injury severity. Compared to the ordered probit, the multinomial logit
methodology produced poorer results in all tested applications, which was evident from
lower likelihood ratio indexes. Also compared to the ordered probit model, the best
nested model of six developed multinomial logit models resulted in only a slight
improvement in the goodness-of-fit measure and had a negligible effect on the
classification accuracy. Due to the difficulty of determining the best nested model given

the vast number of different possible nesting structures, the authors recommend the
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ordered probit as an easy to estimate and well performing model for assessing crash
injury severity.

Haleem and Abdel-Aty (2010) compared ordered probit, binary probit and nested
logit methodologies to aid in the selection of the best modeling technique for injury
severity analysis for crashes occurring at unsignalized intersections. The authors
developed two separate models to analyze the relationship between severe injuries
(incapacitating injury and fatal injury), non-severe injuries (property damage only,
possible injury, and non-incapacitating injury), and explanatory characteristics at three
and four legged unsignaled intersections. Comparing the binary probit and the ordinal
probit frameworks, they found that the aggregated binary probit model had a lower
Akaike Information Criterion (AIC) and higher likelihood of convergence, indicating that
the binary probit model better fit the data. The authors claimed that this finding
suggested that the aggregate model performs better when analyzing injury severity, given
a crash at an unsignalized intersection.

More recent efforts compared injury severity model structures (Abay, 2013a;
Yasmin and Eluru, 2013; Ye and Lord, 2014). Abay (2013) investigated the choice of
‘state of the art’ injury severity models by examining the sensitivity of the model results
to empirical inferences. The author estimated four models: standard fixed-parameter
ordered logit (OL), random parameters ordered logit (RPOL), standard fixed-parameter
multinomial logit (MNL), and mixed logit (MXL). Findings suggested that substantial
differences in the marginal effect of the variables in the OL model compared with the
RPOL and MXL models existed, and underestimation of the effects of important driver

behaviors can lead to misinformed safety planners. For example, when compared to the
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RPOL and MXL estimations, the OL model underestimated the effect of an older-aged
pedestrian being struck by a driver proceeding straight-ahead, which could misguide
policy intended to help vulnerable pedestrians.

Yasmin and Eluru (2013) explored methodological approaches used to assess
driver injury severity in traffic crashes by comparing ordered response methodologies
(ordered logit, generalized ordered logit, mixed generalized ordered logit) with
methodologies that either neglect the natural ordering of the response outcome or require
artificial constructs to consider ordering (multinomial logit, nested logit, ordered
generalized extreme value logit, and mixed multinomial logit). The authors used a two-
step approach to compare the unordered to the ordered models: step 1) established the
superior model within each methodological framework using the likelihood ratio test;
step 2) compared the superior models from each framework using a non-nested measure.
The authors determined that neither the unordered or ordered frameworks outperformed
the other at either the aggregate or disaggregate level. The authors concluded that their
findings signified that the different approaches offer comparable prediction for the risk of
crash injury severity.

Ye and Lord (2014) compared the sample size requirements for estimating
multinomial logit, ordered probit and mixed logit models. The authors reported the
mixed logit model to be more interpretive than the multinomial logit model, since the
parameter effects can vary across crashes in the mixed logit model. Additionally, results
indicated that the ordered probit model did not have the same interpretive power as the
other methodologies, as the effects of the explanatory variables are restricted to

impacting ordered probabilities using identical coefficients across the ordered outcomes.
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The authors combined simulation data with the four-year crash records to compare
sample size effects on the three models. Results suggested that the ordered probit model
required the smallest samples and the mixed logit model required the largest samples.
Overall results indicated that all three models improved in accuracy as sample size
increased, the mixed logit and multinomial logit were more sensitive to smaller sample
sizes, and the minimum sample size for the ordered probit, multinomial logit and mixed
logit are approximately 2,000, 5,000, and 10,000 observations respectively.

While prior research has made substantial progress in crash injury severity
modeling, “major methodological and data challenges have yet to be fully resolved”
(Savolainen et al., 2011, p. 1674). Accordingly, addressing these challenges “must be a
priority in future crash-injury research” (Savolainen et al., 2011, p.1674), and “not
expanding the methodological frontier, and continuing to use methodological approaches
with known deficiencies, has the potential to lead to erroneous and ineffective safety
policies that may result in unnecessary injuries and loss of life” (Mannering and Bhat,
2014, p. 16).

To expand the methodological frontier and advance the future of crash injury
research, this study will build upon the current body of literature by comparing four
methodological techniques used in crash injury severity models and by creating model
ensembles that combine popular, longstanding crash injury severity models with
contemporary data analytic techniques to examine the accuracy and validity of
simultaneously employing multiple methodologies. This research will estimate, compare,
and ensemble (1) multinomial logit, (2) ordinal probit, (3) artificial neural networks and

(4) decision tree models to attempt to gain greater insight into relationships in Missouri
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crash data and to examine how crash injury severity differs with numerous possible
explanatory variables. By doing so, the combination of modeling techniques are
expected to uncover more intricate relationships amongst explanatory variables, and
provide better information for transportation planning, education and policy that will
enhance transportation safety efforts.
3.2 Research Objectives
(1) Build four differing model types (multinomial logit, ordinal probit, artificial
neural network and decision tree models), and assess the performance of each
individual model by examining the relative accuracy of the model on a training
subset and a testing subset of the data.
(2) Combine multinomial logit, ordinal probit, artificial neural network and
decision tree models to build a model ensemble to test if the combination of the
multiple methodologies enhances the classification accuracy of crash injury
severity on a training subset and a testing subset of the data.
(3) Examine and compare the predictive importance of variables generated by
each individual model and the model ensemble to determine the factors that have
the greatest effect on crash injury severity outcomes.
(4) Gain greater insight into relationships in the crash data by examining how
crash injury severity is affected by a wide range of possible explanatory variables.
(5) Evaluate findings relative to current Missouri driving policy and law to
provide information for transportation planning, education and policy to enhance

transportation safety efforts.
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3.2.1 Research Questions
Q1: What insights do the multinomial logit, ordinal probit, artificial neural network,
decision tree and model ensemble each reveal from the data?
Q2: What is the relative accuracy and discriminatory power of each model in comparison
with the accuracy of the model ensemble?
Qs: When adjacent severity outcomes are grouped, what is the relative discriminatory
power of each model compared to the discriminatory power of the model ensemble?
Qs What findings are derived from the model with the greatest accuracy and/or
discriminatory power, and do these findings support prior research?
Qs: Do the findings support current Missouri public policy or point to needed
revision?
Chapter 4 — Data and Methodology
4.1 Data

The Missouri State Highway Patrol (MoHWP) Traffic Division collects and
preserves crash report data, and codes and classifies the reports for entry into the
Statewide Traffic Accident Records System (STARS) database. The intent of the
STARS program is to provide timely and accurate traffic crash information to support
operation and management of traffic safety (Missouri Traffic Records Committee, 2002).
MoHWP provided traffic, personal, and vehicle crash data files from 2002-2012 from the
STARS database, which contained 3,902,742 individual records.

The MoHWP is responsible for training police officers on the proper collection,
processing and completion of the STARS crash report through the use of the Missouri

Uniform Crash Report form and field reporting procedures, and obligations for STARS

87
Copyright, Jill M. Bernard, 2015



reporting are specified in Missouri statue 43.250 (Missouri Traffic Records Committee,
2002). Law enforcement officers who investigate a vehicle crash must file crash reports
to the Superintendent of the MoHWP within ten days of the investigation when a vehicle
crash results in injury to or death of a person or when total property damage appears to be
five hundred dollars or more to one vehicle (Missouri Traffic Records Committee, 2002).
The Superintendent of the MoHWP appoints a standing committee to provide direction
and coordination for improvement to STARS and the Missouri Uniform Crash Report.
The following agencies have representation on the committee: AAA - Automobile Club
of Missouri, Bridgeton Police Department, Cass County Sheriff's Office, Columbia
Police Department, Federal Highway Administration, Federal Motor Carrier Safety
Administration, Kansas City Police Department, Missouri Department of Health,
Missouri Department of Revenue, Missouri Department of Transportation, Missouri
Safety Center, Missouri Safety Council, Missouri State Highway Patrol, National
Highway Traffic Safety Administration, Platte County Sheriff's Department, Poplar Bluff
Police Department, Regional Justice Information System, St. Charles County Sheriff's
Department, St. Joseph Police Department, St. Louis County Highway Department, St.
Louis Metropolitan Police Department, Springfield Police Department, and Town and
Country Police Department (Missouri Traffic Records Committee, 2002).
4.1.2 Data Description

This study uses three relevant datasets from the STARS database: accident level
data, vehicle level data and personal level data. Each dataset, which is categorized in the
Missouri State Highway Patrol Record Specification form, contains an array of

information that is linked together using the accident number and person number.
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MoHWP provided 151 variables grouped as crash time and date, notification and report
time and date, agency and highway patrol information, crash severity, number injured
and killed, number and type of vehicle, crash location, highway information, speed limit,
driver characteristics, driver contributing circumstances, temporal factors, weather
conditions, road characteristics, crash type, licensing state, license type, vehicle damage,
vehicle action, restraint and helmet use, airbag deployment, pedestrian characteristics,
and pedestrian contributing circumstances. The years 2002-2012 are combined from the
three datasets into a single dataset containing 3,902,742 observations.

Drawing upon the reviewed literature, as illustrated in Table 4.1, the variables
suggested to affect crash injury severity include: age, gender, number of occupants, speed
limit, light conditions, weather conditions, road conditions and characteristics, and

contributing circumstances.
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Table 4.1: Variables Suggested by Reviewed Literature to Affect Crash Injury Severity

Variables

Age

Gender

Number of Occupants

Speed Limit

Light Conditions

Weather Conditions
Road Conditions &
Characteristics
Contributing Circumstances

Reviewed Liturature
Kuhnert et al. (2000); Abdelwahab and Abdel-Aty (2001); Bédard et al.
(2002); Khattak et al. (2002); Abdel-Aty (2003); Khattak and Rocha
(2003); Abdelwahab and Abdel-Aty (2004); Delen et al. (2006); Lu et al.
(2006); Schneider et al. (2009); Haleem and Abdel-Aty (2010); Rifatt et al.
(2011); Yasmin and Eluru (2013)
Kuhnert et al. (2000); Abdelwahab and Abdel-Aty (2001); Abdel-Aty
and Abdelwahab (2003); Abdel-Aty and Abdelwahab (2004); Ulfarsson
and Mannering (2004); Delen et al. (2006); Islamand Mannering (2006);
Savolainen and Ghosh (2008); Schneider et al. (2009); Malyshkina and
Mannering (2010b); Schneider and Salovainen (2011); Eustace et al.
(2014)
Renski et al. (1999); Oh (2006)
Renski et al. (1999); Khattak et al. (2002); Oh (2006); Garder (2006);
Malyshkina and Mannering (2010); Savolainen and Ghosh (2008);
Haleemand Abdel-Aty (2010); Zhu and Srinivasan (2011); Yasmin and
Eluru (2013)
Klop and Khattak (1999); Rifatt and Tay (2009); Haleem and Abdel-Aty
(2010); Wang et al. (2009); Haleem and Abdel-Aty (2010); Khattak et al.
(2002)
Khattak et al. (1998); Abdel-Aty (2003); Wang et al. (2009)
Khattak et al. (1998); Krull et al. (2000); Lu et al. (2006); Rifatt and Tay
(2009); Quddus et al. (2010); Zhu and Srinivasan (2011)
Chang and Wang (2006)

As a result, the following variables have been included in the analysis:

Crash Injury Severity

The Missouri Traffic Records Committee (2001) measures the injury severity of a crash

as follows

1. Fatality — when one or more person dies as the result of the crash within 30 days of

the incident.

2. Injury - any crash in which a (1) disabling injury, (2) evident but not disabling injury,

or (3) probable but not apparent injury is received by one or more people as a result

of the incident.
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3. Property Damage - any crash in which property was damaged, but no person was
killed or injured as a result of the incident. A report for the STARS database is not
required for property damage of less than $500.00.

Driver Characteristics

Age

Gender: Male, Female, Unknown

Total Number of People Involved

Contributing Circumstances

After a crash occurs, the crash investigator identifies at least one of the following

contributing circumstances at the driver level : Vehicle Defects, Improperly Stopped,

Speed - Exceed Limits, Too Fast for Conditions, Improper Passing, Violation Stop

Sign/Signal, Wrong Side - Not Passing, Following Too Close, Improper Signal, Improper

Backing, Improper Turn, Improper Lane Usage/Change, Wrong Way (One-Way),

Improper Start from Park, Improperly Parked, Failed to Yield, Alcohol, Drugs, Physical

Impairment, Distracted/Inattentive, Vision Obstructed, Driver Fatigue/Asleep”, Failed to

Dim Lights’, Failed to Use Lights’, Improper Towing/Pushing”, Overcorrected,

Improper Riding/Clinging to Vehicle Exterior’, Failed to Secure Load/Improper

Loading”, Animal(s) in Roadway, Object/Obstruction in Roadway ", Other, and Unknown.

Temporal Factors

Day of Week: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

Light Conditions: Daylight, Dark - Streetlights On, Dark - Streetlights Off, Dark - No

Streetlights, Indeterminate, Unknown

“Contributing circumstance included in data collection in 2012.
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Weather Conditions
Conditions: Clear, Cloudy, Rain, Snow, Sleet, Freezing, Fog/Mist, Indeterminate
Road Characteristics
Road Conditions: Other/Unknown, Dry, Wet, Snow, Ice, Mud, Slush, Standing Water,
Moving Water, Dry
Road Alignment: Unknown, Curve, Straight
Road Profile: Unknown, Hill/Grade, Crest, Level
Road Surface: Unknown, Asphalt, Brick, Gravel, Dirt/Sand, Multi-Surface, Concrete
Speed Limit: 15mph, 20mph, 25mph, 30mph, 35mph, 40mph, 45mph, 50mph, 55mph,
60mph, 65mph, 70mph, Unknown
Crash Type
Type: Animal, Bicyclist/Pedalcyclist, Fixed Object, Other Object, Pedestrian, Train,
Motor Vehicle in Transport, Motor Vehicle on Other Roadway, Parked Motor Vehicle,
Non-Collision Overturn, Non-Collision, Other, Animal Drawn Vehicle/Animal Ridden
Trans, Working Motor Vehicle, Fire / Explosion, Immersion, Jackknife, Fell/Jumped
from MV, Cargo/Equipment Loss/Shift
Location
Crash Location: On Roadway, Off Roadway
4.1.2.1 Variable Frequencies

Initial data exploration uses cross tabulations to examine the frequency of injury
severity, given a crash occurs, conditional on the values of individual explanatory
variables. To be included in this analysis, observations must meet the following criteria:

e Crash occurs among the years 2002 to 2012.
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e Crash occurs in the state of Missouri.
e The person involved in the crash is the driver of a motor vehicle or other
transport device.

e Thedriver is found to have contributed to the crash.

e The driver’s licensing state is Missouri.
When employing these criteria, the unit of analysis is a Missouri licensed motor vehicle
driver who contributed to a reported crash in Missouri in 2002 through 2012. By
selecting this sub-population, the analysis focuses on the circumstances effecting crash
severity for drivers who contribute to the crash occurrence, while eliminating those
drivers who were merely victims in the sense that they did not contribute to the crash.
Additionally, evaluation of drivers licensed by the state of Missouri who are involved in a
reported crash in the state of Missouri provides a commonality for comparison that
allows for potential prescriptive training and policy recommendations.

When considering motor vehicle drivers with a Missouri issued driver’s license
who contributed to a reported crash, cross tabulation results identify 1,282,919
observations in the dataset with the crash severity distributed as 0.6% fatal, 28.1% injury
and 71.3% property damage only. The frequencies of crash severity partitioned by each
categorical explanatory variable are presented in Tables 4.2 through 4.13 below.

The MoHWP groups drivers ages into categories termed: Young Driver, a driver
under the age of 21; Middle Driver, a driver between the ages of 21 and 54; Mature
Driver, a driver 55 years of age or older. The sum of the number of Missouri licensed

drivers for the years 2002 to 2012 by age group and by gender are presented in Tables 4.2

93
Copyright, Jill M. Bernard, 2015



and 4.3 respectively. The numbers in parentheses in Tables 4.2 and 4.3 are the number of

incidents per drivers’ licenses year.

As illustrated in Table 4.2, the total number of crashes per driver licensed year

decreases as the age group increases, as does the number of crashes per driver licensed

year of each crash severity level.

Additionally, as illustrated in Table 4.3, the total

number of crashes per driver licensed year for male drivers is greater than for female

drivers, which is also the case for each level of crash severity.

Table 4.2: Frequency of Crash Severity by Age Group

_ _ Property D_rlvers’
Driver Age Group Fatal Injury D Total Licensed
amage Years'
Young (< 21 years-old) 1,477 | 85,040 | 206,732 293,249 | 3,101,902
(0.0005) | (0.0274) | (0.0666) (0.0945)
Middle (>21 and <55 years-old 4,875 | 212,662 | 534,448 751,985 | 26,968,574
(0.0002) | (0.0079) | (0.0198) (0.0279)
Mature (>55 years-old) 1,750 | 60,999 | 164,450 227,199 | 13,377,387
(0.0001) | (0.0046) | (0.0123) (0.0170)
Unknown 1 1,897 8,588 10,486 0
Total 8,103 | 360,598 | 914,218 | 1,282,919 | 43,447,863

! Data obtained from US Department of Transportation, Federal Highway Administration (2015)

Table 4.3: Frequency of Crash Severity by Gender

Driver . Property D_rlvers’
Gender Fatal Injury Damage Total Licensed
1
Years
Male 5,969 203,373 519,901 729,243 | 22,435,329
(0.0003) (0.0091) (0.0232) (0.0325)
Female 2,133 157,130 389,201 548,464 | 23,172,730
(0.0001) (0.0068) (0.0168) (0.0237)
Unknown 0 39 4,936 4,975 0
Missing 1 56 180 237 0
Total 8,103 360,598 914,218 1,282,919 | 45,608,059

! Data obtained from US Department of Transportation, Federal Highway Administration (2015)
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Table 4.4: Frequency of Crash Severity by Contributing Circumstances

Contributing Circumstance Fatal Injury Property Total
Damage

Vehicle Defects 132 9,124 26,079 35,335
Improperly Stopped on Roadway 33 1,750 4,929 6,712
Speed Exceed Limit 1,457 15,015 14,806 31,278
Too Fast for Conditions 2,253 74,516 138,927 215,696
Improper Passing 232 4,348 14,694 19,274
Violation of Stop Sign/Signal 420 23,589 33,184 57,193
Wrong Side - Not Passing 1,229 11,630 13,387 26,246
Following Too Close 167 53,943 166,735 220,845
Improper Signal 7 713 2,356 3,076
Improper Backing 15 1,772 39,412 41,199
Improper Turn 99 10,390 36,398 46,887
Improper Lane Usage/Change 1,517 31,257 84,691 117,465
Wrong Way (One-Way) 91 749 1,126 1,966
Improper Start from Park 4 667 3,181 3,852
Improperly Parked 2 226 1,215 1,443
Failed to Yield 983 75,623 170,798 247,404
Alcohol 2,107 30,180 35,372 67,659
Drugs 337 4,552 5,250 10,139
Physical Impairment 422 13,507 13,238 27,167
Inattention 1,734 | 107,057 290,602 399,393
Vision Obstructed 626 32,534 88,554 121,714
Driver Fatigue/Asleep 7 656 921 1,584
Failed To Dim Lights 0 2 11 13
Failed To Use Lights 1 40 49 90
Improper Towing/Pushing 0 11 55 66
Overcorrected 60 1,044 1,222 2,326
Improper Riding/Clinging to Vehicle 0 21 9 30
Exterior

Failed To Secure Load/Improper Loading 0 25 402 427
Animal(s) in Roadway 11 765 3,002 3,778
Object/Obstruction in Roadway 2 153 654 809
Other 14 961 2,772 3,747
Total * 13,962 | 506,820 | 1,194,031 | 1,714,813

" The sum of the frequency of contributing circumstance can exceed the number of cases, since multiple
citations of contributing circumstance may be present in a given crash.
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Table 4.5: Frequency of Crash Severity by Day of Week

I\D/\"’;geclf Fatal Injury FI)Dr;r?\Zgg Total
Sunday 1,175 38,591 78,527 118,293
Monday 1,009 50,335 132,289 183,633
Tuesday 977 52,131 138,591 191,699
Wednesday 1,037 52,871 141,930 195,838
Thursday 1,072 53,540 143,463 198,075
Friday 1,318 62,633 165,442 229,393
Saturday 1,502 50,421 113,767 165,690
Unknown 13 76 209 298
Total 8,103 360,598 914,218 1,282,919

Table 4.6: Frequency of Crash Severity by Light Condition

Light Condition Fatal Injury Fl;roperty Total
amage
Indeterminate 56 3,944 12,465 16,465
Dark - Streetlights On 895 51,042 130,773 182,710
Dark - Streetlights Off 235 4,860 11,060 16,155
Dark - No Streetlights 2,401 39,362 57,931 99,694
Daylight 4,515 261,341 701,812 967,668
Missing 1 49 177 227
Total 8,103 360,598 914,218 1,282,919
Table 4.7: Frequency of Crash Severity by Weather Condition
Weather Condition Fatal Injury PDroperty Total
amage
Cloudy 2,368 95,787 231,930 330,085
Rain 395 24,747 67,902 93,044
Snow 113 7,036 24,846 31,995
Sleet 16 1,160 3,360 4,536
Freezing 44 2,015 5,409 7,468
Fog/Mist 91 2,426 4,883 7,400
Indeterminate 27 1,403 10,303 11,733
Clear 5,045 225,786 564,684 795,515
Missing 4 238 901 1,143
Total 8,103 360,598 914,218 1,282,919
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Table 4.8: Frequency of Crash Severity by Road Surface

Road Surface Fatal Injury FI;roperty Total
amage
Unknown 14 2,618 15,186 17,818
Asphalt 6,620 283,922 695,042 985,584
Brick 1 167 916 1,084
Gravel 325 9,674 15,914 25,913
Dirt or Sand 16 448 842 1,306
Multi Surface 152 5,713 15,297 21,162
Concrete 975 58,055 171,010 230,040
Missing 0 1 11 12
Total 8,103 360,598 914,218 1,282,919
Table 4.9: Frequency of Crash Severity by Road Conditions
Road Conditions Fatal Injury Iz)roperty Total
amage
Other/Unknown 53 2,936 9,318 12,307
Wet 1,047 61,424 163,216 225,687
Show 133 8,005 29,687 37,825
Ice 78 4,622 13,340 18,040
Dry 6,792 283,569 698,589 988,950
Missing 0 42 68 110
Total 8,103 360,598 914,218 1,282,919
Table 4.10: Frequency of Crash Severity by Road Alignment
Road Alignment Fatal Injury Igroperty Total
amage
Unknown 10 1,873 13,835 15,718
Curve 2,941 68,059 129,811 200,811
Straight 5,152 290,666 770,572 1,066,390
Total 8,103 360,598 914,218 | 1,282,919
Table 4.11: Frequency of Crash Severity by Road Profile
Road Profile Fatal Injury Property Total
Damage
Unknown 24 3,696 19,815 23,535
Hill/Grade 4271 114,574 240,829 359,674
Crest 287 10,148 21,055 31,490
Level 3,520 231,985 631,679 867,184
Missing 1 195 840 1,036
Total 8,103 360,598 914,218 1,282,919
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Table 4.12: Frequency and Percentage of Crash Severity by Crash Type

. Property

Crash Type Fatal Injury Damage Total
Animal 10 490 2,531 3,031
(0.3%) (16.2%) (83.5%) (100%)
Bicyclist/Pedalcyclist 18 1,867 337 2,222
(0.8%) (84.0%) (15.2%) (100%)
Fixed Object 3,368 86,792 140,431 230,591
(1.5%) (37.6%) (60.9%) (100%)
Other Object 42 1,124 3,930 5,096
(0.8%) (22.1%) (77.1%) (100%)
Pedestrian 205 4,124 4,660
(4.4%) (88.5%) | 331 (7.1%) (100%)
Train 69 133 147 349
(19.8%) (38.1%) (42.1%) (100%)
Motor Vehicle in Transport 3,312 240,416 694,141 937,869
(0.4%) (25.6%) (74.0%) (100%)
Motor Vehicle on Other Roadway 82 541 1,374 1,997
(4.1%) (27.1%) (68.8%) (100%)
Parked Motor Vehicle 85 6,344 56,050 62,479
(0.1%) (10.2%) (89.7%) (100%)
Non-Collision Overturn 843 16,718 9,606 27,167
(3.1%) (61.5%) (35.4%) (100%)
Non-Collision Other 66 1,888 4,918 6,872
(1.0%) (27.5%) (71.6%) (100%)
Other 3 161 422 586
(0.5%) (27.5%) (72.0%) (100%)
Total 8,103 360,598 914,218 | 1,282,919
(0.6%) (28.1%) (71.3%) (100%)

Table 4.13: Frequency of Crash Severity by Crash Location
Crash Location Fatal Injury Property Total
Damage

Crash On Roadway 4,090 255,949 709,414 969,453

Crash Off Roadway 4,013 104,649 204,804 313,466

Total 8,103 360,598 914,218 1,282,919

The study presents chi-square tests to determine if significant differences exist

between the frequencies of crash outcomes across the different categories of the

individual variables. Interesting observations from the chi-square tests and other relevant

remarks regarding the data are as follows:
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A statistically significant difference among age groups and their relationship with
crash injury severity exists at the 0.05 significance level (xz = 428.641; p =
0.000), with fatal outcomes more prevalent for middle-aged drivers and mature
drivers, injury outcomes more prevalent for young drivers and middle-aged
drivers, and property damage outcomes more prevalent for mature drivers.

The most often cited contributory factor is inattention (33.5%).

The top three cited circumstances that contribute to a fatality are driving too fast
for conditions (27.8%), alcohol (26.0%), and inattention (21.4%).

For younger drivers, the contributing circumstances of following too close (y* =
890.454; p = 0.000), inattention (x> = 39.385; p = 0.000), driving too fast for
conditions (y* = 7,315.776; p = 0.000), speeding (y* = 3,705.197; p = 0.000),
driving on the wrong side of the road (y° = 217.586; p = 0.000), overcorrecting (x>
= 91.432; p = 0.000), and vision obstructed (3° = 483.381; p = 0.000) are more
prevalent than for older drivers (21+ years-old) at a 0.05 significance level.

For mature drivers, the contributing circumstances of failing to yield (x> =
12,154.163; p = 0.000), improper backing (x> = 1,692.303; p = 0.000), improper
lane usage (y° = 219.905; p = 0.000), improper signal (y°> = 43.305; p = 0.000),
improper start (3* = 13.036; p = 0.000), improper turn (y* = 1,42.693; p = 0.000),
improperly parked (y° = 10.823; p = 0.001), improperly stopped (x* = 57.518; p =
0.000), physical impairment (y* = 2,584.381; p = 0.000), violation of stop-
sign/signal (XZ = 577.468; p = 0.000), driving the wrong way on a one-way street

(% = 17.955; p = 0.000), improper towing (XZ = 3.991; p = 0.000), and striking an
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object in the roadway (3° = 17.991; p = 0.000) are more prevalent than for
younger drivers (<55 years-old) at a 0.05 significance level.

A statistically significant difference between genders with respect to crash injury
severity exists at the 0.05 significance level (y° = 2828.094; p = 0.000), with fatal
outcomes and property damage outcomes more prevalent for male drivers and
injury outcomes more prevalent for female drivers.

The contributing circumstances of overcorrected (x> = 5.598; p = 0.018),
inattention (y? = 34.496; p = 0.000), improper turn (3° = 6.306; p = 0.012), and
failed to yield (x* = 67.332; p = 0.000) are more prevalent for female drivers.

The contributing circumstances of speeding (3° = 1332.012; p = 0.000), driving
too fast for conditions ()(2 =5.900; p = 0.015) improper passing (XZ =20.698; p =
0.000), improper lane usage (Xz = 4.942; 0.026), alcohol intoxication ()(2 =
198.025; 0.000) and drug use (x> = 6.061; p = 0.014) are more prevalent for male

drivers.

4.2 Methodology

The study employs IBM SPSS 22.0 and IBM SPSS Modeler 15.0 to develop and

ensemble multinomial logit, ordinal probit, artificial neural network, and decision tree

models to predict the effect of certain factors on crash injury severity. Descriptions of the

abovementioned models are as follows.

4.2.1 Multinomial Logit Model

The multinomial logit model is an unordered methodological approach used to

predict the probability of three or more categorical dependent outcomes, given a set of

independent variables. This approach assumes independence of irrelevant alternatives
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(IHA) in which the presence or absence of alternative dependent outcomes does not
impact the relative probability of modeled dependent outcomes. Many research studies
have chosen the multinomial logit approach to account for underreporting when assessing
crash injury severity (since not all crashes are reported, the ability to accurately assess
data is limited and can lead to a biased estimates when using crash prediction models)
(Ye and Lord, 2011). Multinomial logit models do not consider the natural ordering of
outcomes (if present) and might be considered less parsimonious than ordered models.
However, they offer greater explanatory power relative to ordered models due to the
additional exogenous effects that may be explored (Eluru, 2013); for example, the effect
of changing environmental conditions on the likelihood of an outcome, while all other
variables are held constant.
The multinomial logit model is presented below (Savolainen et al. 2011).

EXP[B{ * Xin]
X EXP[B] ¢ Xin]

Pn(i) =

where

Bi = a vector of estimable parameters

Xin = a vector of observable characteristics that may impact the probability of
crash severity outcome i for observation n

Pn(i) = the probability of the crash severity outcome i for observation n

The estimation is completed using maximum likelihood methods, and uses the
likelihood ratio test to assess if a statistically significant difference exists between the
estimated model and a model in which all of the parameter coefficients are zero.
Additionally, the number and percentage of correct predictions may be used to evaluate

prediction accuracy. Finally, model effectiveness is evaluated using the proportional by
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chance accuracy criteria, which is calculated by summing the squared proportion that
each group represents of the sample (White, 2013) and comparing this “by chance”
accuracy to model forecast accuracy.
4.2.2 Ordered Logit and Probit Models

When alternative categorical outcomes are ordinal in nature and share common
trend and unobservable effects, unordered response models can produce inconsistent
estimates (Abay, 2013). Therefore, when the value of the response category has a
meaningful sequential order (e.g. level of injury severity), ordered probit and ordered
logit models may be used to account for the ordinal nature of the dependent variable.
Estimation is usually accomplished using maximum likelihood methods, and the
estimated relationship can be tested by using probability scores as the predicted values of
the ordinal categorical outcomes. The ordered logit and probit models produce similar
results; however, differences do occur since estimations are derived from assumed
differing error distributions (logit — cumulative standard logistic distribution and probit —
cumulative standard normal distribution). The ordered probit model has been chosen for
this analysis, since it is the more popular of the two approaches used in prior literature.

Drawing upon Abdel-Aty (2003) the ordered probit model has the following

form:
Pn(l) = q’(“l - ﬁan)
Pa() = o(a; = BiXn) = @(@j-1 = Bj-aXn).j = 2,...) — 1
Jj-1
PO =1-) RO)
j=1
where
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¢ = the cumulative standard normal distribution

a; = the alternative specific constant

B;= a vector of estimable coefficients

Xn = a vector of measurable characteristics

Pn(j) = the probability that subject n belongs to category j

The predicted outcome is the j-value with the largest probability.

The ordered probit model assumes that the vector of estimable coefficients in the
model do not vary for each categorical outcome, and the Brant test of parallel lines is
used to test whether this assumption (i.e. the proportional odds assumption or,
alternatively, the parallel lines assumption) holds true. A significant test statistic
indicates that the parallel lines assumption has been violated.

4.2.3 Decision Tree Model

Decision tree models may be used for classification of occurrences into pre-
specified groups, for prediction of values of a dependent variable based on values of
independent variables, and for data exploration in model building. The tree is built by
applying decision rules sequentially that split a larger heterogeneous population into
smaller more homogeneous subsets (termed nodes) based on the single, most predictive
input factor (Eustace et al., 2014). Subset purity is measured and evaluated using the
Gini coefficient as the measure of purity to determine the best split for the subset
(Mingers, 1989a), and factors deemed statistically homogenous, with respect to the target
outcome, are combined (Trnka, 2010). Splitting continues for each node until no more
splits are possible or until pre-defined stopping parameters (e.g. maximum tree depth or

minimum number of records in branch) are reached.
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Figure 4.1: Structure of a Decision Tree (Bayam et al., 2005)
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Decision trees have several advantages over other models, which include
nonlinear relationships between variables do not affect performance, the data partitioning
yields insights into input / output relationships, each path of the decision tree contains an
estimated risk factor, missing values are accommodated automatically, and the output is
simple to understand and interpret. However, overfitting of the model can occur if the
learning algorithm fits data that is irrelevant (i.e. noise), which results in a model that
may not be generalizable (Bayam et al., 2005). Fortunately, to avoid overfitting and
improve generalization, pruning may be used to remove lower-level splits that do not
significantly contribute the generalized accuracy of the model (Mingers, 1989b).

Various decision tree algorithms, including Classification and Regression Tree
(CART) and Chi-square Automatic Interaction Dedication (CHAID), build and prune
decision trees in differing ways. CART creates binary trees by splitting records at each
node, and builds larger trees that are then pruned back to mitigate overfitting. CHAID
creates wider, non-binary trees (often with many terminal nodes connected to a single
branch) and automatically prunes the decision tree to avoid overfitting of the model
(Bayam et al., 2005). Model fit is evaluated by testing the hypotheses that a difference
between the classification accuracy (i.e. percentage of correct classifications) of the
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testing set and the training set is present. If a significant difference exists, then
overfitting is suggested.
4.2.4 Artificial Neural Network

In large data sets, artificial neural networks (ANN) are useful in exploring
complex nonlinear relationships. The model may be estimated without hypothesizing
relationships between the dependent and independent variables a priori (Abdelwahab and
Abdel-Aty, 2001), uses minimal assumptions, and acquires relationship understanding
through learning or training processes that rely upon information from previous
observations to predict new observations (Savolinen et al., 2011). ANN consists of three
layers: an input layer that represents the input variables, hidden layer(s) that uncover
patterns between the input and output variables, and an output layer that contains the
outcome variables (Bayam et al., 2005).

Figure 4.2: Structure of a Multilayer Perception Neural Network (Bayam et al.,
2005)

Hidden
Layers

ME

The multilayer perception (MLP) network, a type of ANN, has been found to be
“a robust function approximator for prediction and classification problem[s]” (Delen et
al., 2006, p. 437). The MLP involves a general mapping procedure and is comprised of

many simple processors each with a small amount of local memory. The three layers, as
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illustrated in Figure 4.2, include input layers with K nodes and a bias node, hidden layers
with J nodes and a bias node, and output layers with | nodes and no bias node
(Abdelwahab and Abdel-Aty, 2001).

The MLP network estimation is completed in two phases: a training phase that
uses a collection of patterns for learning in order to train the network, and a testing phase
that compares the output from the trained network to the desired output in order to test for
classification accuracy (Abdelwahab and Abdel-Aty, 2002). The MLP is trained using a
back-propagation algorithm, and allows only feed-forward connections (Abdelwahab and
Abdel-Aty, 2001) that use directed arrows as coefficients (i.e. weights) (Delen et al.,
2006).

ANN models, including MLP networks, are advantageous in capturing the
relationship between factors and outcomes by possessing the following characteristics
(Abdelwahab and Abdel-Aty, 2001):

e Nonlinear input-output mapping: ANNs learn nonlinear mapping directly from
training data.

e Generalization: ANNSs fit the desired function that allows for generalization.

e Adaptability: ANNSs can adjust connection weights and network structure to optimize
behaviors.

e Fault tolerance: The large numbers of connections produced by ANNs allow for
redundancy and each node relies on local information.
Unfortunately, too many hidden layers can result in overfitting and too few can result

in high statistical bias (Bayam et al., 2005). Additionally, this approach does not provide
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a straightforward translation of the weights of the links, and it does have greater
computational burden over the aforementioned methodologies (Bayam et al., 2005).
4.2.5 Model Ensemble

Advances in data mining techniques utilize ensemble learning to (1) reduce the
impact of inaccurate model selection, (2) properly represent data distributions, and (3)
enhance predictive performance (Dietterich, 2000; Polikar, 2006). As illustrated in
Figure 4.3, ensemble-based systems draw upon multiple experts by creating and
combining the outputs of individual models, with the intent to produce a combination of
models that has greater performance (e.g. prediction) over any single model (Polikar,

2006).

Figure 4.3: Model Ensemble Illustration
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learning must be present (Hansen and Salamon, 1990); and, can be created by combining
different modeling types (Polikar, 2006). As a result, it is instinctual that if proper
diversity is attained and each model produces different errors, then a strategic

combination of the models will reduce the total error (Polikar, 2006). Diversity may be
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achieved by using differing modeling types and/or using different subsets of data
(Polikar, 2006).
The basic procedure to ensemble models employs the following logic:
Step I: Create multiple models of differing types and evaluate each model.
Step 1I: Construct and evaluate an ensemble of these models.
A. When the constituent model results concur, use the unanimous prediction.
B. When the constituent model results conflict, use a scoring method to combine
predictions.
a. Choose one of several scoring strategies (Kittler et al., 1998; Polikar,
2006).
i. Algebraic combiners: minimum rule, maximum rule, sum rule,
product rule, median rule, and mean rule
ii. Voting based methods: majority voting and weighted majority
voting
iii.  Probability voting: highest probability and highest mean
probability
iv. Other: Softmax smoothing, Borda count, behavior knowledge
space, and Dempster-Schafer rule.
b. If voting is tied, select value using either random selection or highest
confidence.
The dataset is randomly partitioned into a training set and a holdout subset, i.e. a
testing set, to test for model accuracy. The accuracy of the final model ensemble is

compared with the accuracy of the constituent models used in the ensemble by examining
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the confusion matrices (i.e. confidence matrices). Additionally, the diversity of opinion
amongst the models used in the ensemble will be measured to assess the extent that
predictions vary across the base models. Finally, the area under the ROC curve (AUC) is
used to assess the models’ ability to distinguish between the outcome groups (i.e. levels
of injury severity) to examine the quality of each model relative to randomly choosing an
outcome (i.e. not using a model at all and assigning outcomes at random).
Chapter 5 — Analysis
5.1 Examination of Individual Models

Multinomial logit, ordinal probit, decision tree and artificial neural network
models are estimated to predict the effect of certain factors on crash injury severity, and
then the performance the individual models is assessed by examining the relative
discriminatory power of each model on a training subset and a testing subset of the data.
5.1.1 Multinomial Logit

A multinomial logit regression model is estimated to analyze the factors that
affect crash injury severity. Using the unit of analysis defined in Chapter 4, observations
in the data set include crashes in which the person involved was the driver of a motor
vehicle who contributed to a reported crash in Missouri in the years 2002 through 2012,
and held a valid driver’s license issued by the state of Missouri at the time of the crash.
A main-effects model that includes the covariate and factor direct effects, but does not
include interaction effects between variables, is estimated. The base category is set to
property damage only, and maximum-likelihood is used to estimate the parameters of the

model.
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Initial model runs suggested that a perfect prediction (quasi-separation) existed
for the three categorical severity outcomes with respect to the variables of (1)
contributing circumstances, (2) road conditions, (3) road surface, (4) weather conditions,
(5) light conditions, (6) crash type, and (7) day of the week. The quasi-separation is
resolved by combining certain variables and categories with similar magnitudes and by
removing certain categories and variables. For the variables classified as Contributing
Circumstances, Improper Signal, Improper Start from Park, Improperly Parked, Driver
Fatigue/Asleep, Failed to Dim Lights, Failed to Use Lights, Improper Towing/Pushing,
Improper Riding/Clinging to the Vehicle Exterior, Failed to Secure Load/Improper
Loading, Object/Obstruction in the Roadway are combined with the Other variable, and
the variable Unknown is removed. For the variable Road Conditions, the categories of
Ice/Frost, Mud, Slush, Standing Water, and Moving Water are combined with the
category of Other/Unknown. For the variable Road Surface, the categories of Brick,
Dirt/Sand, and Multi-Surface are combined into one category. For the variable Speed
Limit, the categories of 15mph and 20mph are combined, 25mph and 30mph are
combined, 35mph and 40mph are combined, 45mph and 50mph are combined, 55mph
and 60mph are combined, and 65mph and 70mph are combined. For the variable Light
Conditions, the categories of Indeterminate and Unknown are combined. For the
variables Age and Gender, the category of Unknown is excluded. The variables of Day
of the Week and Crash Type are removed from the analysis. Finally, 2,195 cases with
missing values are removed. Using this criterion, the final multinomial model is
estimated using the variables identified in Table 5.1; and, the number of observations and

distribution across injury severities for the sample are shown in Table 5.2.
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Table 5.1: Variables Included in Multinomial Model

Driver Characteristics
Age
Gender

Vehicle Occupants
Total Number of Occupants

Contributing Circumstances
Alcohol

Animal(s) in Roadway
Distracted/Inattentive
Drugs

Failed to Yield

Following Too Close
Improper Backing
Improper Lane Usage/Change
Improper Passing
Improper Turn

Improperly Stopped

Other

Overcorrected

Physical Impairment
Speed - Exceeds Limit

Too Fast for Conditions
Vehicle Defects

Violation Stop Sign/Signal
Vision Obstructed

Wrong Side - Not Passing
Wrong Way (One Way)

Location
Crash Location

Road Characteristics
Road Conditions
Road Alignment
Road Profile

Road Surface

Speed Limit

Environmental Factors
Weather Conditions
Light Conditions

Dependent Variable
Injury Severity

Young (<21 years-old); Middle (>21 and <55 years-old); Mature (> 55 years-old); Unknown
Male; Female; Unknown

1to 149

Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0
Present = 1; Not Present =0

On Roadway; Off Roadway

Other/Unknown; Wet; Snow; Ice: Dry

Unknown; Curve; Straight

Unknown; Hill/Grade; Crest; Level

Unknown; Asphalt; Gravel; Brick/Dirt/Sand/Multi-Surface, Concrete

15 or 20mph; 25 or 30mph; 35 or 40mph; 45 or 50mph; 55 or 60mph; 65 or 70mph; Unknown

Cloudy; Rain; Snow; Sleet; Freezing Rain; Fog/Mist; Indeterminate; Clear
Indeterminate; Dark-Streetlights On; Dark-Streetlights Off; Dark-No Streetlights; Daylight

Fatal; Injury; Property Damage Only
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Table 5.2: Frequency of Crash Severity for Selected Dataset

Injury Severity Frequency

Fatal 8,096
Injury 358,162
Property Damage 899,205
Total 1,265,463

The dataset is randomly partitioned into a training set (75%; n=948,679) to
estimate the model, and a testing set (25%; n=316,784) to assess model accuracy,
generalizability, and overfitting. The data partitioning was completed prior to estimating
all models, so that identical observations are used for training of the each of the four
categories of models (multinomial logit, ordered probit, decision tree, and artificial neural
network). If an estimated model performs similarly on the training set and the testing set,
it is inferred that the estimated model is not overfit to the dataset.

For the multinomial model estimated on the training set, the overall goodness of
fit test, presented in Table 5.3, with 948,679 observations yields a y* = 130,650.385 with
112 degrees of freedom and a p-value of 0.000. Table 5.4 presents the pseudo R-Square
values for the training set; Table 5.5 presents the standard errors and p-values for each
independent variable for the training set; Table 5.6 presents the parameter estimates and
equation specific significance tests for the training set of the model with the baseline
category of “property damage only”; and, Tables 5.7 and 5.8 present the model
coincidence matrices (also referred to as the classification table) for the training and

testing sets.
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Table 5.3: Multinomial Model Fitting Information

Model Fitting Information

Model Fitting
Criteria Likelihood Ratio Tests
-2 Log
Model Likelihood Chi-Square df Sig.
Intercept Only 769,957.259
Final 639,530.874| 130,650.385 112 .000

Table 5.4: Multinomial Model Pseudo R-Square

Pseudo R-Square

Cox and Snell
Nagelkerke
McFadden

.098
137
.082
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Table 5.5: Multinomial Model Likelihood Ratio Test

Likelihood Ratio Tests

Model Fitting
Criteria Likelihood Ratio Tests
-2 Log Likelihood
of Reduced

Effect Model Chi-Square df Sig.
Intercept 639530.874 .000 0

Alcohol 644336.640| 4839.766 2 .000
Drugs 640063.587 536.713 2 .000
Failed to Yield 643534.816 [ 4007.942 2 .000
Following Too Close 640332.406 805.532 2 .000
Improper Backing 647124.804| 7597.930 2 .000
Improper Lane Usage 639881.061 354.186 2 .000
Improper Passing 639724.796 197.922 2 .000
Improper Turn 639724.538 197.664 2 .000
Improperly Stopped 639549.721 22.847 2 .000
Distracted/Inattentive 640077.383 550.508 2 .000
Physical Impairment 645118.004 | 5591.130 2 .000
Speed — Exceeds Limit 646673.615| 7146.740 2 .000
Too Fast for Conditions 643412.597| 3885.723 2 .000
Vehicle Defects 639587.934 61.060 2 .000
Violation Stop Sign/Signal 646156.218| 6629.344 2 .000
Wrong Side — Not Passing 641663.543| 2136.669 2 .000
Wrong Way (One Way) 639800.023 273.149 2 .000
Overcorrected 639676.792 149.918 2 .000
Total Number of Occupants 667721.349 | 28194.475 2 .000
Animal(s) in Roadway 639712.871 185.997 2 .000
Other 639557.920 31.046 2 .000
Vision Obstructed 639623.763 96.889 2 .000
Crash Location On/Off Roadway 641906.921| 2380.047 2 .000
Road Conditions 641744.538 | 2229.664 8 .000
Road Alignment 639698.527 175.653 4 .000
Road Profile 640752.994 | 1234.120 6 .000
Weather Conditions 639666.371 163.497 14 .000
Light Conditions 640124.753 609.879 8 .000
Speed Limit 658125.198 | 18618.323 12 .000
Age Groups 640135.580 612.706 4 .000
Gender 640283.150 756.276 .000
Road Surface 640527.963| 1013.089 8 .000

Copyright, Jill M. Bernard, 2015

114



Table 5.6: Multinomial Model Parameter Estimates

Copyright, Jill M. Bernard, 2015

Std.

Crash Severity B Error Wald Sig. | Exp(B)

Fatal Intercept -7.321 A65( 1979.362( .000
Alcohol 1.095 032 1172.772| .000 2.990
Drugs .969 .062 241.740| .000 2.635
Failed to Yield 313 .041 59.297( .000 1.368
Following Too Close -1.795 .081 489.339 | .000 .166
Improper Backing -2.161 .261 68.479 | .000 115
Improper Lane Usage 261 .031 69.245| .000 1.299
Improper Passing 156 .072 4,756 .029 1.169
Improper Turn -.730 103 50.493| .000 482
Improperly Stopped -.008 178 .002] .965 992
Distracted/Inattentive -.082 .031 7.146| .008 921
Physical Impairment 947 .056 288.868 | .000 2577
Speed — Exceeds Limit 2.337 .035| 4472594 .000] 10.355
Too Fast for Conditions 518 .032 264.997| .000| 1.679
Vehicle Defects -.641 .091 49.857 ( .000 527
Violation of Stop Sign/Signal .960 .054 320.788 | .000 2.612
Wrong Side — Not Passing 1.477 .036| 1650.889| .000| 4.380
Wrong Way (One Way) 1.881| .122| 239.254| .000| 6.561
Overcorrected .830 141 34.430| .000 2.293
Total Number of Occupants 252 .004| 5030.091| .000 1.287
Animal(s) in Roadway -1.677 .306 29.975( .000 .187
Other - 770 .168 21.088 | .000 463
Vision Obstruction 146 .045 10.456 | .001 1.158
Crash Location = On Roadway -.307 .029 110.307 | .000 736
Crash Location = Off Roadway 0
Road Conditions =
Other/Unknown -465| .148 9.864 | .002 628
Road Conditions = Wet -.650 .047 193.334| .000 522
Road Conditions = Snow -1.337 115 134.333| .000 .263
Road Conditions = Ice -1.197 126 89.510| .000 .302
Road Conditions = Dry 0
Road Alignment = Unknown -.558 344 2.641] .104 572
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Road Alignment = Curve

Road Alignment = Straight
Road Profile = Unknown

Road Profile = Hill/Grade
Road Profile = Crest

Road Profile = Level

Weather Conditions = Cloudy
Weather Conditions = Rain
Weather Conditions = Snow
Weather Conditions = Sleet
Weather Conditions = Freezing
Rain

Weather Conditions = Fog/Mist

Weather Conditions=
Indeterminate

Weather Conditions = Clear

Light Conditions =
Indeterminate

Light Conditions = Dark —
Streetlights On

Light Conditions = Dark —
Streetlights Off

Light Conditions = Dark — No
Streetlights

Light Conditions = Daylight
Speed Limit =15 or 20 mph
Speed Limit = 25 or 30 mph
Speed Limit = 35 or 40 mph
Speed Limit = 45 or 50 mph
Speed Limit = 55 or 60 mph
Speed Limit = 65 or 70 mph
Speed Limit = Unknown
Age Group = Young Driver
(<21)

Age Group = Middle Drivers
(>22 and <55)

253

-.527
.607
456

.104
-.019
-.232
-.539

-.001

.326

.560

.036

.156

.345

549

-.273

370
1.101
1.718
2.500
2.578

-.923

-.614

027

.220
.024
.065

.028
.069
125
.262

161

114

.208

138

.040

073

.030

214
161
.158
159
157
159

.038

.030

90.032

5.714
615.832
48.903

13.840
.075
3.435
4.222

.000

8.263

7.280

.068

15.044

22.456

329.547

1.635
5.267
48.489
116.366
254.312
263.028

587.074

414.859

.000

.017
.000
.000

.000
.784
.064
.040

.995

.004

.007

795

.000

.000

.000

.201
.022
.000
.000
.000
.000

.000

.000
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1.288

.590
1.834
1.578

1.110
.981
793
.584

.999

1.386

1.751

1.037

1.169

1.413

1.731

761
1.447
3.007
5.574

12.177
13.175

397

541
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Age Group = Mature Driver( >
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55 and < 98) 0

Gender = Male .348 .026 174.405( .000 1.416
Gender = Female 0

Road Surface = Unknown -715 276 6.721| .010 489
Road Surface = Asphalt .285 .036 62.852( .000| 1.330
Road Surface = Gravel .033 .069 .225( .635| 1.033
Road Surface = Brick, Dirt,

Sand, Multi-Surface .008| .086 .009| .923| 1.008
Road Surface = Concrete 0

Injury Intercept -1.944 .017 | 13769.026 | .000

Alcohol .623| .009| 4345.180| .000( 1.864
Drugs 454 .022 429.469 | .000 1.574
Failed to Yield 425| .007| 4038.495| .000( 1.530
Following Too Close -.023 .007 11.114] .001 977
Improper Backing -1.749 026 4687.989| .000 174
Improper Lane Usage -124 .008 251.958| .000 .883
Improper Passing -.248 .019 178.316 | .000 .780
Improper Turn -.144 012 141771 .000 .866
Improperly Stopped 142 .029 23.163] .000| 1.152
Distracted/Inattentive 128 .006 530.220( .000| 1.136
Physical Impairment 1.027 014 5644.775| .000| 2.792
Speed — Exceeds Limit .892 .013| 4901.107( .000| 2.439
Too Fast for Conditions 448 .007| 3836.542| .000( 1.566
Vehicle Defects -.021 .013 2.511] .113 979
Violation of Stop Sign/Signal .805 .010| 6755.705( .000| 2.237
Wrong Side — Not Passing 479 .014( 1174.046| .000| 1.614
Wrong Way (One Way) .634 .051 157.153| .000| 1.885
Overcorrected 529 .045 139.322] .000| 1.698
Total Number of Occupants 210 .001| 24688.622| .000| 1.233
Animal(s) in Roadway -.501 .043 134.734  .000 .606
Other -048( .021 5.288| .021 .953
Vision Obstruction 071 .007 91.165| .000| 1.074
Crash Location = On Roadway -.296 .006| 2363.152] .000 744
Crash Location = Off Roadway 0
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Road Conditions =
Other/Unknown

Road Conditions = Wet

Road Conditions = Snow

Road Conditions = Ice

Road Conditions = Dry

Road Alignment = Unknown
Road Alignment = Curve

Road Alignment = Straight
Road Profile = Unknown

Road Profile = Hill/Grade
Road Profile = Crest

Road Profile = Level

Weather Conditions = Cloudy
Weather Conditions = Rain
Weather Conditions = Snow
Weather Conditions = Sleet
Weather Conditions = Freezing
Rain

Weather Conditions = Fog/Mist

Weather Conditions=
Indeterminate

Weather Conditions = Clear

Light Conditions =
Indeterminate

Light Conditions = Dark —
Streetlights On

Light Conditions = Dark —
Streetlights Off

Light Conditions = Dark — No
Streetlights

Light Conditions = Daylight
Speed Limit =15 or 20 mph

Speed Limit = 25 or 30 mph
Speed Limit = 35 or 40 mph
Speed Limit = 45 or 50 mph

-172

-.207
-.669
-.488

-.243
.039

-.166
.109
157

011
-.053
-.133
-.147

-.031

.039

-.169

.005

.020

-.067

147

-.241
77
541
.596

.024

.008
.018
.020

.035
.006

.023
.005
.013

.005
011
.019
.037

.029

027

.035

.020

.006

.019

.008

.020
014
014
015

52.223

671.580
1404.447
582.832

49.354
43.793

52.079
534.030
143.084

3.923
23.047
49.425
15.641

1.183

2.076

23.447

.059

10.167

12.480

334.397

152.506
157.898
1540.020
1652.840

.000

.000
.000
.000

.000
.000

.000
.000
.000

.048
.000
.000
.000

277

.150

.000

.808

.001

.000

.000

.000
.000
.000
.000
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842

813
512
.614

.785
1.040

.847
1.115
1.170

1.011
.948
876
.863

.969

1.040

844

1.005

1.020

.935

1.158

.786
1.193
1.718
1.815
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Speed Limit = 55 or 60 mph 874 .014( 3819.589| .000| 2.396

Speed Limit = 65 or 70 mph 581 .016| 1349.088( .000| 1.788
Speed Limit = Unknown 0
Age Group = Young Driver

-.019 .007 8.198 | .004 .981
(<21)
Age Group = Drivers (> 22 and

-.001 .006 .018] .894 .999
<55)
Age Group = Mature Driver( > 0
55 and < 98)
Gender = Male -.097 .004 524.506 | .000 .908
Gender = Female 0
Road Surface = Unknown -.006 .026 .055( .814 .994
Road Surface = Asphalt 142 .006 646.160 | .000 1.152
Road Surface = Gravel .085 .015 31.675| .000 1.089

Road Surface = Brick, Dirt,
Sand, Multi-Surface

-.135 .016 68.398 | .000 874

Road Surface = Concrete 0

a. The reference category is: Property Damage Only

As illustrated in Table 5.5, the likelihood ratio tests indicate that all variables are
significant in the model at the 0.000 significance level. The Fatality equation in Table
5.6 suggests that the likelihood that a crash results in a fatality increase as the total
number of occupants increases, speed limits increase, and the contributory circumstances
of speed exceeding the limit, driving the wrong way on a one-way, driving on the wrong
side of the road when not passing, alcohol use, drug use, violating a stop sign or signal,
and driving while physically impaired are noted. Furthermore, the results suggest that the
likelihood that a crash results in a fatality is lower when the driver is young (less than 21
years old), and the contributory circumstances of improper backing, following too close,
striking an animal/animal obstruction, snow, and ice are noted.

Additionally, the Injury equation in Table 5.6 suggests that injuries are more

likely for crashes when the number of occupants increases, and the contributory
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circumstances of alcohol, physical impairment, driving the wrong way on a one-way

street, speed exceeding the limit, violation of a stop sign or signal, and increased speed

limits are noted. The results also indicate that injuries are less likely for crashes where

the contributory circumstances of improper backing, animal obstruction, and snow are

noted.

The coincidence matrices for the training and testing sets, presented in Tables 5.7

and 5.8, illustrate how well the model correctly classifies cases. The matrices indicate

that the multinomial model has an overall classification accuracy rate of 72.0% for both

the training set and the testing set, which suggests that the model is not overfit to the

training dataset.

Table 5.7: Multinomial Model Coincidence Matrix for the Training Set

Classification

Predicted
Property
Observed Fatal Injury Damage Percent Correct
Fatal 21 2,486 3,516 0.3%
Injury 48 38,754 229,663 14.4%
Property Damage 15 29,912 644,264 95.6%
Overall Percentage 0.0% 7.5% 92.5% 72.0%

Table 5.8: Multinomial Model Coincidence Matrix for the Testing Set

Classification

Predicted
Property
Observed Fatal Injury Damage Percent Correct
Fatal 12 855 1,206 0.6%
Injury 11 12,755 76,931 14.2%
Property Damage 5 9,698 215,311 95.7%
Overall Percentage 0.0% 7.4% 92.6% 72.0%
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The factors with the greatest predictor importance for crash injury severity (i.e.
the relative importance of each predictor in estimating the model) are calculated from the
testing partition. The model determines predictor importance by computing the reduction
in variance of the target attributable to each predictor via a sensitivity analysis. For
details of the sensitivity analyses employed, see Chapter 29 of the IBM SPSS Modeler 15
Algorithms Guide (2012), Saltelli et al. (2004) and Saltelli (2002).

The predictor importance chart shows the top predictive factors and their relative
importance values, which are normalized to sum to unity. Figure 5.1 presents the top ten
factors suggested to have greatest importance in estimating the multinomial model.

Figure 5.1: Multinomial Model Predictor Importance
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Lift curves are often used to illustrate the improvement that a model provides over
a “random” guess of the dependent variable, to compare the accuracy of predictions
among multiple models, and to help identify which model most accurately forecasts
outcomes for subsets of cases (Vuk and Curk, 2006). The points on a lift curve are
computed by determining the ratio between the number of correct results of a particular

outcome predicted by the model and the expected number of correct results of that
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outcome using no model for segments of the population (Fawcett, 2006). To create a lift
curve, the cases are assorted in descending order of the estimated probability of an
outcome, and the chart is constructed with the cumulative proportion of the total number
of cases on the x-axis and the ratio of the cumulative number of true positives to the
cumulative random number of true positives on the y-axis (Shmueli et al., 2011). The
chart illustrates the observations from a selected outcome (e.g. fatality, injury, or property
damage only) that are classified correctly, referred to as the true positives (Shmueli et al.,
2011). A good classifier will have a high lift when only a small number of cases are
selected, and will decrease to unity as the number of cases selected increases (Shmueli et
al., 2011).

Figures 5.2, 5.3, and 5.4 present lift charts for the multinomial model for fatal,
injury and property damage only outcomes respectively. The red lines represent the ratio
of the expected number of positive fatal outcomes (Figure 5.2), the expected number of
positive injury outcomes (Figure 5.3), and the expected number of property damage only
outcomes (Figure 5.4) to their sample proportions that would be predicted if the outcomes
were simply selected at random (unity). Tables 5.9, 5.10, and 5.11 provide the lift values
for the fatal, injury, and property damage only lift charts for the training and testing sets
and the number of expected, observed, cumulative expected and cumulative observed
cases for the testing sets for each decile.

Inspection of the figures and tables indicates that the multinomial logit model
provides significant and similar lifts for each severity outcome for both the training and

testing data partitions. Further inspection reveals greater lift for fatal outcomes than for
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injury outcomes with injury outcomes also providing greater lift than property damage
only outcomes across both the training and testing data partitions.

Figure 5.2: Multinomial Logit Lift Chart for Fatal Outcomes
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Table 5.9: Lift Values, Expected and Observed Counts per Decile for Fatal
Outcomes

Lift Lift Expected Observed Cumulative Cumulative

Decile Training Set Testing Set Out_comes Out_comes Exp_ected Obs_erved
Testing Set  Testing Set  Testing Set Testing Set

1 6.3625 6.1651 1,223.50 1,278 1,223.50 1,278
2 4.0561 3.9894 320.77 376 1,544.27 1,654
3 2.9797 2.9571 173.01 185 1,717.28 1,839
4 2.3390 2.3251 105.56 89 1,822.84 1,928
5 1.9299 1.9141 69.87 56 1,892.71 1,984
6 1.6324 1.6305 48.35 44 1,941.06 2,028
7 1.4139 1.4134 33.62 23 1,974.68 2,051
8 1.2448 1.2446 22.10 13 1,996.78 2,064
9 1.1109 1.1079 12.43 3 2,009.21 2,067
10 1.0 1.0 4.70 6 2,013.91 2,073
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Figure 5.3: Multinomial Logit Lift Curve for Injury Outcomes
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Table 5.10: Lift Values, Expected and Observed Counts per Decile for Injury
Outcomes

Expected Observed Cumulative Cumulative

Decile Trairl;il::tg Set TestI} r']fgt Set Out_comes Out_comes Expected Obs:erved

Testing Set Testing Set Testing Set Testing Set
1 1.8761 1.8786 17,445.63 16,850 17,445.63 16,850
2 1.71 1.7197 13,131.65 13,998  30,577.28 30,848
3 1.5896 1.5947 11,200.40 12,064  41,777.68 42,912
4 1.4847 1.4921 9,757.94 10,623 51,535.62 53,535
5 1.3877 1.3955 8,754.91 9,053 60,290.53 62,588
6 1.3019 1.3067 7,799.85 7,737 68,090.38 70,325
7 1.2199 1.2246 6,951.64 6,564 75,042.02 76,889
8 1.1466 1.1482 6,205.71 5,508 81,247.73 82,397
9 1.0775 1.0784 5,256.24 4,660 86,503.97 87,057
10 1.0 1.0 3,062.78 2,640 89,566.75 89,697
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Figure 5.4: Multinomial Logit Lift Curve for Property Damage Only Outcomes
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Table 5.11: Lift Values, Expected and Observed Counts per Decile for Property
Damage Only Outcome

Cumulative Cumulative

Expected Observed

. Lift Lift
OeeNe Training Set Testing Set L0 onting Set Teoing Set Testing St
1 1.286 1.2899 28,601.61 29,024 28,601.61 29,024
2 1.2417 1.2446 26,391.23 26,990 54,992.84 56,014
3 1.2123 1.217 25,430.22 26,139 80,423.06 82,153
4 1.1882 1.1912 24,669.59 25,064  105,092.65 107,217
5 1.1621 1.1653 23,794.97 23,882 128,887.62 131,099
6 1.1356 1.1379 22,818.29 22,525 151,705.91 153,624
7 1.1074 1.1083 21,772.02 20,939 173,477.93 174,563
8 1.0763 1.0769 20,264.89 19,287 193,742.82 193,850
9 1.043 1.0432 1,819.68 17,418 195,562.50 211,268
10 1 1 13,263.86 13,746  208,826.36 225,014

According to Fawcett (2006), when an outcome is rare (the distribution of outcomes

is highly skewed) and the proportion of outcomes can change, model evaluation based

solely on the true positive rate (lift charts) may not reveal the true discriminatory power

of a model in a sample since the lift depends on the ratio of positives to negatives in the

sampl

e. Receiver Operating Characteristic (ROC) curves are an alternative construct

employed to assess a model’s capability to discriminate amongst outcomes at various
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thresholds (Provost and Fawcett, 1997; Fawcett, 2006). ROC curves are constructed by
plotting the true positive rate (the sensitivity) against a false positive rate (1-the
specificity) for subsets of the observations, and are calculated as follows (Fawcett, 2006).

. positives correctly classified
True Positive Rate =

total positives

negatives incorrectly classified

False Postive Rate = .
total negatives

Following Fawcett (2006), ROC curves are constructed to assess the multinomial
model’s capability to (1) predict a fatal outcome relative to property damage and injury
only outcomes and to (2) predict a property damage only outcome relative to fatal and
injury outcomes. These curves help evaluate the model’s prediction of the outcome with
the greatest severity, a fatality outcome, against the two non-fatal outcomes, as well as to
evaluate the model’s prediction capability of the least severe outcome, a property damage
only outcome, versus the two more severe outcomes, fatality and injury outcomes.
Figures 5.5 and 5.6 present the ROC curves and illustrate that the multinomial model
better predicts fatal versus non-fatal outcomes and non-injury versus injury outcomes
than if no model is used and the outcomes are randomly assigned.

By calculating the area under the ROC curve (AUC), this study quantifies the
significance of the findings of the ROC curve. The AUC is a widely recognized measure
of discriminatory power (Worster et al., 2006) and quality of probabilistic classifiers
(Vuk and Curk, 2006). The AUC measures the classifiers’ performance across the entire
range of potential outcome distributions (Vuk and Curk, 2006), and is equal to the
likelihood of assigning a higher probability that injury or death will occur for randomly

selected cases where injury or death does occur than for cases where injury or death does
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not occur (Fawcett, 2006). A maximal AUC value of 1.0 suggests a perfectly
discriminating model and an AUC value of 0.5 suggests no discriminative value (Worster
et. al 2006); and, no accurate classifier should have an AUC of less than 0.5 (Fawcett,
2006). The AUC for the multinomial model’s performance are 0.883 for the predicted
probability of a fatal outcome relative to a nonfatal outcome (presented in Tables 5.12)
and 0.695 for a non-injury outcome relative to an injury outcome (presented in Tables
5.13), both of which are different from 0.5 at asymptotically significant levels of 0.000

suggesting that the multinomial model has good discriminatory power.
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Figure 5.5: Multinomial Logit ROC Curve Fatal Outcome using the Testing Set
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Table 5.12: AUC for Multinomial Logit Prediction of Fatal Outcome using the
Testing Set

Area Under the Curve

Test ResultVariable{s): Multinomial Propensity Fatal

Asymptotic Asymptotic 95% Confidence
Sig.b Interval
Area Std. Error® Lower Bound pper Bound
883 003 000 876 885

The test result variable(s): Multinomial Propensity Fatal has at least one tie
hetween the positive actual state group and the negative actual state group.
Statistics may be biased.

a. Underthe nonparametric assumption
. Mull hypothesis: true area=0.5
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Figure 5.6: Multinomial Logit ROC Curve Property Damage Only Outcome using
the Testing Set
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Table 5.13: AUC for Multinomial Logit Prediction of Property Damage Only
Outcome using the Testing Set

Area Under the Curve

Test ResultWariahle(s): Multinomial Propensity PD

Asymptotic Asymptotic 95% Confidence
Sig.b Interval
Area Std. Error® Lower Bound pper Bound
695 00 000 683 GET

The test result variableds): Multinomial Propensity PD has at least one tie

hetween the positive actual state group and the negative actual state group.
Statistics may be hiased.

a. Underthe nonparametric assumption
. Mull hypothesis: frue area=0.5
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Important findings for the Multinomial Logit Model include:
e Classification accuracy rate equals 72.0% for both the training set and the testing
set.
e AUC for a fatal outcome equals 0.883 for the testing set.
e AUC for a property damage only outcome equals 0.695 for the testing set.
e The AUC scores are both significantly greater than 0.5, indicating significant

discriminatory power.

The three most important predictors of crash severity are speed — exceeds limit,
total number of occupants involved, and improper backing.
5.1.2 Ordered Probit

To utilize the information in the natural ordering of the crash injury severity
outcomes, an ordered probit regression model is developed with the outcome thresholds
(property damage only, injury and fatality) assumed to be a natural ascending order. The
development of the ordered probit model uses the case selection criteria and factors
employed in the final multinomial logit model, and the model is estimated using the
maximum likelihood method. The proportional odds assumption (also referred to as the
parallel regressions assumption or the parallel lines assumption) is tested, since this
single equation model invokes this assumption. The null hypothesis for this test is that
the values of the coefficients of the independent variables are the same across response
categories (Long, 1997; Williams, 2008). The Brant test of parallel lines for the
estimated ordered probit model produces a chi-square of 6,544.677 with 59 degrees of
freedom which is significant at a level of less than 0.000, as illustrated in Table 5.14.

Therefore, the null hypothesis is rejected. Rejecting the null hypothesis can lead to
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inconsistent model estimation (Eluru et al. 2008); and therefore, this approach is not
carried forward.

Table 5.14: Test of Parallel Lines

Test of Parallel Lines®

-2 Log
Madel Likelihood Chi-Square df Sig.
Mull Hypothesis G33158.558
General f26613.881° G544 GT7° 54 .oon

The null hypothesis states thatthe location parameters (slope
coefficients) are the same across response categories.

a. Link function: Prokit.

. The log-likelihood value cannot be further increased after maximum
number of step-halving.

¢. The Chi-Square statistic is computed based on the log-likelihood
value ofthe lastiteration ofthe general model. Walidity of the test is
uncertain.

5.1.3 Decision Tree

Decision tree models can yield additional insights into the relationships between
the explanatory variables and crash injury severity. As described in Chapter 4, decision
tree algorithms, including CART and CHAID techniques, build and prune decision trees
in differing methods to mitigate against possible overfitting. CART builds larger trees
that are then pruned back to mitigate overfitting, while CHAID automatically prunes the
decision tree to avoid overfitting of the model (Bayam et al., 2005). Both CART and
CHAID trees are estimated, the discriminatory performance of each algorithm is
evaluated, and the model with the greatest discriminatory power is identified and carried
forward as a constituent ensemble model. The models’ performances are compared by
calculating and evaluating the classification accuracy and the AUC values for each

model.
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The CART algorithm nodal splitting criteria are set to a minimum absolute value
of 100 records in a parent branch and a minimum of 50 records in a child branch as the
stopping criteria; the Gini coefficient is used as the impurity measure for the categorical
targets; the maximum tree depth is set to 15 branches; and, the tree is pruned by merging
leaves on the same branch using a value of one as the maximum difference in risk in
standard errors. The estimation of the CART model considers the explanatory variables
included in the final multinomial logit regression model, identified in Table 5.1, to
analyze crash injury severity on three levels: property damage only, injury and fatality,
and uses the predetermined partitioned dataset to test the classification accuracy of the
model and to examine for overfitting The final CART decision tree model finds 23
variables significant (indicated in Table 5.15), includes 948,679 observations in the
training set and 316,784 in the testing set, and results in an analysis accuracy of 72.32%
and 72.30% for the training set and the testing set respectively (presented in Tables 5.16
and 5.17).

Table 5.15: Explanatory Variables used in Estimation of CART model

Speed — Exceed Limits Alcohol Road Alignment
Too Fast for Conditions Physical Impairment Road Conditions
Violation Stop Sign/Signal Overcorrected Road Profile
Wrong Side — Not Passing Animal Weather Conditions
Improper Backing Other Light Conditions
Improper Turn Total Number of Occupants | On/Of Roadway
Improper Lane Usage Speed Limit Vision Obstructed
Failed to Yield Road Surface

132
Copyright, Jill M. Bernard, 2015



Table 5.16: CART Coincidence Matrix for the Training Set

Classification

Predicted
Property
Observed Fatal Injury Damage Percent Correct
Fatal 0 1,760 4,263 0.0%
Injury 0 33,743 234,722 12.6%
Property Damage 0 21,837 652,654 96.8%
Overall Percentage 0.0% 6.0% 94.0% 72.32%

Table 5.17: CART Coincidence Matrix for the Testing Set

Classification

Predicted
Property
Observed Fatal Injury Damage Percent Correct
Fatal 0 606 1,4676 0.0%
Injury 0 11,170 78,527 12.5%
Property Damage 0 7,140 217,874 96.8%
Overall Percentage 0.0% 6.0% 94.0% 72.30%

The CHAID algorithm nodal splitting criteria is set to a minimum absolute value
of 100 records in a parent branch and a minimum of 50 records in a child branch, and the
maximum tree depth is set to 15 branches. The Pearson measure is used as the chi-square
measure for categorical targets, and the significance level for both splitting and merging
is set to 0.05. The estimation of the CHAID model considers the explanatory variables
identified in Table 5.1, and uses the predetermined partitioned dataset to test the
classification accuracy of the model and to examine for overfitting. The final CHAID
decision tree model suggests 30 variables are significant (indicated in Table 5.18),
includes 948,679 observations in the training set and 316,784 in the testing set, and

results in an analysis accuracy of 73.06% and 73.0% for the training set and the testing

set respectively (presented in Tables 5.19 and 5.20).
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Table 5.18: Explanatory Variables used in Estimation of CHAID Model

Alcohol Improperly Stopped Wrong Way (One-Way) Road Alignment
Drugs Distracted/Inattentive Total Number of Occupants | Road Profile

Failed to Yield Physical Impairment Improper Turn Weather Conditions
Following Too Close Speed — Exceed Limits Other Light Conditions
Improper Backing Too Fast for Conditions Vision Obstructed Speed Limit
Improper Lane Usage Vehicle Defects On Off Roadway Crash Age Groups
Improper Passing Violation Stop Sign/Signal | Road Conditions Gender

Wrong Side — Not Passing

Road Surface

Table 5.19: CHAID Coincidence Matrix for the Training Set

Classification

Predicted
Property
Observed Fatal Injury Damage Percent Correct
Fatal 0 3,175 2,848 0.0%
Injury 0 63,279 205,186 23.6%
Property Damage 0 44,398 62,793 93.4%
Overall Percentage 0.0% 11.7% 88.3% 73.06%

Table 5.20: CHAID Coincidence Matrix for the Testing Set

Classification

Predicted
Property
Observed Fatal Injury Damage Percent Correct
Fatal 0 1,084 989 0.0%
Injury 0 21,011 68,686 23.4%
Property Damage 0 14,758 210,256 93.4%
Overall Percentage 0.0% 11.6% 88.4% 73.0%

As described in section 5.1.1, the AUC measures a classifiers’ performance across

the entire range of outcome distributions (Vuk and Curk, 2006), and is equal to the

probability that a classifier will rate a randomly chosen positive outcome higher than a

randomly chosen negative outcome (Fawcett, 2006). The AUC results for the CART and

CHAID’s capabilities to predict a fatal outcome relative to non-fatal outcomes are 0.761

and 0.898 for the testing set, respectively. The AUC results for the CART and CHAID’s

capabilities to predict a property damage only outcome relative to injury outcomes are

0.667 and 0.717 for the testing set, respectively. As a result of its lesser classification
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accuracy and AUC values, as illustrated in Table 5.21, the CHAID algorithm is carried
forward, so as to consider the best decision tree approach for the ultimate model

ensemble.

Table 5.21: Accuracy Comparison of CHAID and CART Models

Decision | Classification | Classification | AUC Value | AUC Value | AUC Value | AUC Value
Tree Accuracy Accuracy Fatal vs. Fatal vs. Non-injury Non-injury
Approach | Training Set Testing Set Nonfatal Nonfatal vs. Injury vs. Injury
Training Set | Training Set | Training Set | Training Set
CHAID 73.06% 73.00% 0.899 0.898 0.717 0.717
CART 72.32% 72.30% 0.759 0.761 0.667 0.667

The factors with the greatest predictor importance for crash injury severity for the
CHAID decision tree are calculated. The predictor importance chart shows the top
predictive factors and their relative values, which are normalized to sum to unity. Figure
5.7 presents the top ten factors suggested to have greatest importance in estimating the
CHAID model. The CHAID model findings suggest the variable total number of
occupants to be the most important variable for predicting crash injury severity, which
splits the tree into three initial branches: <1 occupant, >1 and <3 occupant(s), and >3
occupants. Appendices 1, 2, and 3 present partial branches for each of these splits.

Figure 5.7: CHAID Model Predictor Importance
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Figures 5.8, 5.9, and 5.10 present lift charts for the CHAID decision tree for fatal,
injury, and property damage only outcomes for the training and testing partitions. The red
lines represent the ratio of the expected number of positive fatal outcomes (Figure 5.8),
the expected number of positive injury outcomes (Figure 5.9), and the expected number
of property damage only outcomes (Figure 5.10) to their sample proportions that would
be predicted if the outcomes were simply selected at random (unity). Tables 5.22, 5.23,
and 5.24 provide the lift values for the fatal, injury, and property damage only lift charts
for the training and testing sets and the number o