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The use of machine learning (ML) in smart building applications is reviewed in this paper. We split existing
solutions into two main classes, occupant-centric vs. energy/devices centric. The first class groups solutions
that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2)
activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that
use ML to estimate aspects related either to energy or devices. They are divided into three categories, (1)
energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on
sensors. Solutions in each category are presented, discussed and compared, as well as open perspectives and
research trends. Compared to related state-of-the-art survey papers, the contribution herein is to provide a
comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects
of existing building management systems. This is by considering all types of ML tools, buildings, and several
categories of applications, and by structuring the taxonomy accordingly. The paper ends with a summary
discussion of the presented works, with focus on lessons learned, challenges, open and future directions of
research in this field.
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1 INTRODUCTION
Recent advances in mobile computing, wireless sensing and communication technologies, consumer
electronics have modernized our cities and living environments. Buildings, roads, and vehicles are
now empowered with a variety of smart sensors and objects that are interconnected via machine-to-
machine communication protocols, accessible via Internet, to form what is known as the Internet
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of things (IoT). This makes our cities and premises smarter, with augmented capacities through
cyber-physical systems where machines and humans interact and act on the environment. The
term "smart environments" covers a variety of domains such as smart transportation, infrastructure
and resource management, precision agriculture, smart buildings, etc. In this paper, we focus on
smart buildings. IoT solutions have revolutionized the energy management systems in buildings
and endowed them with the capability to dynamically adapt automation and energy supply, which
contributes to reduce the wasteful power drain due to suboptimal management and irresponsible
human behaviors. A variety of IoT-based automation systems are already in the market [Hossain
et al. 2017], e.g., Smartthings, Twine, Vera, openHAB, Ninjablocks, Microsoft Lab of Things, etc.
[Perera et al. 2015].

While the most appealing benefit of smart building technologies is this revolution in the building
management systems (BMS), they are also significantly influencing other sectors such as retailing
(smart shopping centres), health care (in smart hospitals and homes), security and safety (intru-
sion/anomaly detection systems), etc. The term smart buildings in this paper should be interpreted
holistically, as potential applications to all categories of buildings are considered, including com-
mercial (e.g., offices, retailing), residential (smart homes), and public buildings (hospitals, schools,
etc.). Earlier researches on the use of the information and communication technologies (ICT), and
particularly IoT solutions, for smart buildings (mostly for energy management) have been concen-
trated on solutions for monitoring, dynamic automation and real-time actuation, e.g., [Caicedo and
Pandharipande 2015], [Reppa et al. 2015], etc. Technical and scientific challenges that have been
dealt with include presence-adaptive and daylight harvesting when using dimmable luminaries
[Caicedo and Pandharipande 2015], sensor node deployment for occupancy detection and optimal
sensing coverage [Ouadjaout et al. 2016], [Fanti et al. 2018], for optimal communication in indoor
environments [Bagaa et al. 2017], indoor localization [Xiao et al. 2016], time synchronization
[Djenouri and Bagaa 2016], etc. In most of these solutions, traditional optimization models have
been used such as linear/convex programming, dynamic programming, meta-heuristics, game
theory, stochastic models. However, studies show that solutions limited to dynamic automation
are insufficient [Molnar et al. 2015]. For example, a survey has been carried out over 11 United
Kingdom householders for one year time period [Hargreavesn et al. 2013], and the results reveal
that beyond a certain level of energy consumption by the householders (up to couple of kilowatts),
the latter quickly adopt the reported consumption as normal and often find no motivation to use the
monitoring systems that might compromise their comfort. Considering users’ comfort is thus vital
to motivate for the use of these technologies and to get the consumer in the energy saving loop.
The current trend in smart building applications is to explore approaches derived from machine
learning for inferring the users’ preferences, behavior, comfort, etc., and then accordingly pursue
the targeted optimization in accordance with the users’ perspectives (e.g., their preferences and
comfort).

Machine learning (ML) is training computers to learn from data collected through past experience.
Learning is the most appropriate alternative in cases where it is not possible to directly write
programs to solve problems, i.e., when the solution is not a priori known, but can only be developed
using data or experience. This is typical in problems where human expertise does not exist, or when
it is difficult to express it. Traditional domains where ML has largely been used include speech/face
recognizing, language processing, spam filtering, etc. In the context of buildings, fundamental
problems such as predicting occupants behavior and preferences, forecasting energy demand and
peak periods, etc., are difficult to be solved with traditional programming but potential solutions
can only be learned from data. The use of ML tools for emerging domains such as smart buildings
is amongst the research trends that has recently been attracting the research communities in
several disciplines, including computer science and electrical engineering, power engineering, civil
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engineering and architecture. This paper provides a comprehensive and holistic review on works
related to smart buildings from the perspective of ML methods that are used and the fundamental
problems dealt with.

Figure 1 presents a general framework that is conceptually shared by most solutions presented
throughout the paper. It is composed of four steps: (1) Data collection, where data is harvested from
different sources, including environmental sources such as sensors, archive sources such as events
log databases, or other data sources. The data collected from heterogeneous sources are stored in a
single database. (2) Preprocessing of data stored in the previous step before processing using ML
techniques. This step includes i) data enrichment, e.g., adding statistical data such as the mean
value of the samples, standard deviation, etc. ii) Data cleaning, e.g., of textual data. NLP (Natural
Language Processing) techniques [Yi et al. 2003] is typical example of cleaning methods that could
be used in this stage. iii) Selection of the appropriate features from all the data, which depends on
the task used in the learning step. PCA (Principal Component Analysis) [Hyvarinen 1999] is one of
the most used methods for feature selection and dimensionality reduction. iv) Normalization of
the data, which is needed for some ML operators such as similarity computation for clustering, or
propagation in the neural network (these ML concepts will be explained in Sec. 1.2). At the end of
this step, input data is created for ML approaches. (3) Learning step where the ML techniques are
used to learn functions and models. (4) Interpretation of the learning from the previous step, which
largely depends upon the application used.

A list of acronyms used in the remaining of the paper is given in table 1.

Fig. 1. General framework of ML solutions

1.1 Previous Review Papers
This section summarizes the relevant literature in comparison with the current paper. It clarifies
the differences and positions the contribution. ML concepts referred to in this part are presented in
Sec. 1.2. Many review papers dealt with the use of ICT for smart cities and environments. [Khatoun
and Zeadally 2016] discussed concepts related to architectural issues and challenges of ICT in smart
city applications. [Perera et al. 2017] reviewed the use of fog computing technologies in smart city
applications. ICT solutions for energy management in smart buildings have largely been reviewed.
[Kazmi et al. 2014] reported on solutions based on wireless sensor networks for BMS. [Labeodan
et al. 2015] concentrated on occupancy measurement in offices. [Lazarova Molnar et al. 2017]
considered Fault Detection and Diagnosis (FDD) in BMS and introduced the use of crowdsourcing
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Table 1. Acronyms most used in the paper

ABC: artificial bee colony ANN: Artificial Neural Networks ARIMA: Auto Regressive Integrated Moving
Average

AUC: Area Under the Curve BN: Bayesian Network CPLC: Convex Piecewise Linear Classifier
DAG: Directed Acyclic Graph DL:Deep Learning DNN: deep neural networks
DT: Decision Tree ELN: elastic net FP, FN : False Positive, False Negative
FSD: fast state decoding GA: Genetic Algorithm GBM: Gradient Boosting Machines
GMM: Gaussian Mixture Models GNB: Gaussian Naive Bayes HMM: hidden Markov model
HVAC: Heating Ventilation Air Conditioning K-NN: K-Nearest Neighbor LLC: Locality-constrained Linear Coding
LR: Logistic Regression LDA: Linear Discriminant Analysis MAE: Mean Absolute Error
MAPE: Mean Absolute Percentage Error MaxAE: Max Absolute Error MIQP: Mixed Integer Quadratic Program
MLC: Multi-Label Classification MLR: Multiple Linear Regression MMPP: Markov Modulated Poisson Process
MPC: Model Predictive Control PCA: Principle Component Analysis PMV: Predicted Mean Vote
QDA: quadratic discriminant analysis R: Correlation Coefficient RBF: Radial Basis Function
RBM: Restricted Boltzmann Machine RF: Random Forests RT: Regression Tree
RMSE: Root Mean Square Error SD: Standard Deviation SOA: Service Oriented Architecture
SRC: Sparse Representation Classification SVM: Support Vector Machine SVR: Support Vector Regression
WPCA:Weighted Principle Component Anal-
ysis

XGB: Extreme Gradient Boosting trees

for FDD in buildings, with an implementation of the concept in a mobile application. The authors
highlighted the potentiality of using the data collected through crowdsourcing by ML algorithms.
The use of ML tools for smart environments has also been considered in some recent surveys. [Ota
et al. 2017] provided a comprehensive survey on the use of DL in the mobile multimedia domain. The
authors presented existing software frameworks that enable the implementation of deep network
architectures without coding from scratch, as well as hardware acceleration technologies that
allow to overcome the computation complexity of the DL algorithms. Motivated by the fact that
the learning components in mobile applications should be trained on an external hardware, the
authors focused on the inference models for DNNs and approaches reducing the computation
complexity. They summarized the use of DNNs in, (1) health care applications, e.g., estimating the
amount of calories from food through smart phone pictures and contextual information, human
activity monitoring to prevent chronic diseases, estimating the level of stress by voice analysis, etc.,
(2) security, e.g., detection of malware on mobile devices, biometry, (3) ambient intelligence, e.g.,
recognizing places of interest and localizing garbage, (4) translation and speech recognition.
The most related review papers on ML and smart buildings are [Millera et al. 2017], [B.Yildiz.

et al. 2017], [Karvigha et al. 2017], [De Paola et al. 2014]. However, they are all specific to a
category of applications and/or ML tools. [Millera et al. 2017] reviewed works that consider
the application of unsupervised ML approaches to non-residential buildings for smart-metering,
portfolio analysis 1, anomaly detection, operation and control optimization. The authors also
analyzed the reviewed literature from the perspective of publication venues and authors’ domains
and disciplines, and they noticed high multi-disciplinarity. [B.Yildiz. et al. 2017] reviewed works
that use regression models for electricity load forecasting in commercial buildings and discussed
the relevant applications. They provided empirical comparison between some models using dataset
from real buildings. The authors concludes that the regression models performed fairly well in
comparison to other more advanced ML models. [Karvigha et al. 2017] considered user preferences
for BMS and discussed how preferences for level of automation vary by contexts, individuals’
personalities and demographic characteristics. The contexts investigated in this study includes

1of a large group of buildings that share the geographical area, managed or owned by the same entity
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rescheduling an energy consumption activity, activity-based appliance state control, and light
control. Collected data from 250 respondents have been analyzed using a logistic regression-based
approach.

[De Paola et al. 2014] provided a structured presentation of the existing literature on intelligent
BMS while supporting a vision that transcends the well-established smart home domain into what
is called, the "ambient Intelligence paradigm". The authors discussed the main energy saving ap-
proaches in buildings, the requirements of a BMS, and some proposed architectures. Methodologies
for occupancy detection are also presented, as well as those for learning the user’s preferences. This
paper has some limited overlapping with our survey in discussing occupancy detection, activity
recognition and user preferences, but it focuses on technological and architectural aspects rather
than ML aspects. Further, it was narrower in the sense of being limited to the energy management
aspects, and wider in describing all the aspects related to energy management (basically technolog-
ical and architectural aspects). Although application of ML tools was not amongst the motivations,
some solutions using basic ML tools have been shallowly described, and the authors have reported
some futuristic vision on the integration of such tools in BMS. Posterior to [De Paola et al. 2014],
many ML-based solutions have been proposed in that direction for intelligent BMS, but also for
other building related applications as well. Our work is motivated by the lack of a comprehensive
review on these solutions in the current literature.
Table 2 summarizes some features of the survey papers discussed in this section. Compared to

those reviewing ML aspects in related domains, the current paper is the first that does it holistically,
while all the other works are limited to only some categories of ML (LR, DL, unsupervised learning,
etc.), or even to some category of buildings (commercial, non-residential). Compared to those
dealing with smart buildings, it differs by focusing on categories of applications targeted by ML
tools (occupancy, behavior, preferences, energy profiling, etc.) rather than the architectural and
technological aspects of BMS. The only survey dealing with smart buildings (in a holistic way)
and ML as well is [Karvigha et al. 2017], but it is limited to analyzing solutions dealing with user
preferences and using LR.

Table 2. Related review papers.

Reference Reviewing ML Topic Purpose

[Khatoun and Zeadally 2016] no smart city ICT architectural issues
[Kazmi et al. 2014] no smart buildings WSN for BMS
[Lazarova Molnar et al. 2017] no smart buildings crowdsourcing for fault detection
[Labeodan et al. 2015] no smart buildings occupancy
[De Paola et al. 2014] no smart buildings ICT architectures for BMS
[Ota et al. 2017] DL mobile multimedia soft/hard frameworks+applications
[Millera et al. 2017] unsupervised learning non-residential buildings energy analysis and optimization
[B.Yildiz. et al. 2017] regression models commercial buildings electrical load forecasting
[Karvigha et al. 2017] logistic regression smart buildings user preferences
current paper holistic smart buildings several categories of applications and ML tools

1.2 Background and Basic ML Concepts
In general, MLmay be used either (1) for data analytic and deriving knowledge from past experiences,
(2) for predictive modeling and applying the knowledge to predict new instances, or (3) for decision
making. Two major categories of ML algorithms may be distinguished, supervised learning vs.
unsupervised learning. In supervised learning, the task is to learn the mapping from a set of features
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as input to their appropriate output through labeled dataset, i.e., the output’s correct value for
each datum is known and provided by a supervisor. However, in unsupervised learning there is no
supervision but only "unlabeled" input data. Unsupervised learning searches for possible regularities
(or for a structure) in the input space that causes certain patterns more frequently occurring than
others. There is also a category that falls between the supervised and unsupervised learning, called
semi-supervised learning, where generally a small amount of labeled data is used jointly with a
large amount of unlabelled data. Active learning is a typical example of semi-supervised learning,
where the user is interactively queried to obtain the desired outputs at new data points.

Classification is a typical example of supervised learning problems. Given a finite set of known
categories (classes), the problem is to find a solution that allows to identify (predict) to which
category (categories) a new observation belongs to. Instances with know category (labeled data)
are used as a training set input. Classification is not limited to assigning a single label to every
observation, but multiple labels may be assigned to observations. This is known as multi-label
classification as a generalization of multiclass classification. Regression is another example of
supervised learning that is related to prediction, i.e., predicting a numerical value from a continuous
set by learning a numeric function that relates the output to the inputs. Linear regression is the
simplest and most used form of regression. The most common supervised learning tools are ANN,
SVM, LR, DT, RF, (we refer to Table 1 for these acronyms, and to the appendex for their definitions).

Clustering is a typical example of unsupervised learning, where the aim is to group observations
such that observations in the same group are more similar to one another than to those in other
clusters. Data instances are clustered by maximizing intraclass similarity and minimizing the simi-
larity between different classes. Contrary to classification, the set of clusters are not known a priori
but are driven by the training data. The goal is to assign labels according to the features of objects.
There are three main categories of clustering algorithms: (1) centroid-based, (2) density-based, and
(3) hierarchal. Some references group the first two categories in the same class called partitional
[Jain et al. 1999]. In centroid-based clustering models, the similarity is measured according to the
closeness of a data point to the centroid of the clusters and the number of clusters is introduced as
an input, which makes the prior knowledge of the dataset important. These models process iterative
searching for local optima. One of the canonical algorithms that is used in many solutions presented
in this paper is K-means. In density-based clustering, dense regions of data points separated by
low-density regions are grouped as clusters. A region is considered dense if it gathers a certain
number of data points within a defined radius. The knowledge of the number of clusters is not
needed in density-based clustering and the resulted clusters can be of any shape. DBSCAN is a
typical density-based clustering algorithm [Loh and Park 2014]. Finally, hierarchal clustering aims
to build a hierarchy of clusters. There are two main types for hierarchical clustering, (1) divisive
(the "top down" approach) where all observations start in one cluster and the hierarchy is built
by recursive splitting, (2) agglomerative (the "bottom up" approach) where every element in the
dataset is a cluster and pairs of clusters are merged (or agglomerated).
Association Rules Mining (ARM) is another category of unsupervised learning. It is a method

that investigates relations between variables in the dataset based on some measures of interest.
Association rules are mainly evaluated using two metrics. (1) Support that measures the absolute
frequency, (2) and confidence that measures the correlative frequency.

Reinforcement Learning (RL) represents another category of ML that is based on learning by trial-
and-error. RL inspires from the human learning process, i.e., by perception from the environment.
It uses agents that try in each action to maximize the cumulative reward. Rewards or punishments
are perceived in the environment. RL focuses on the goal and learns (over several steps) a complex
objective. It differs from both supervised and unsupervised learning in the interpretation of inputs.
RL does not deal with labeling data but on deciding the next action based on short and long-term
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rewards that the input provides. RL is usually combined with DL in decision making, e.g, this
combination allows to achieve human-level performance in multiple games[et al. 2015].
In some cases, some features may not be informative or repeat a redundant information from

other features. Dimensionality reduction is important to reduce inputs’ patterns and thus reducing
the model’s complexity and faster the training. This is done using Features selection and extraction
techniques. Features selection, or variable/attribute selection, consists of automatic selection of
the relevant attributes in a dataset. On the other hand, feature extraction combines attributes to
create new informative ones. Principal component analysis (PCA) is a common feature extraction
technique. In cases where datasets are not available for a particular problem, transfer learning
(inductive transfer) is used. This is a method of using knowledge gained while solving a problem as
a starting point to learn about a different related problem. Detailed explanations of the techniques
mentioned in this section can be found in [Alpaydin 2014; Mitchell 1997; Trevor Hastie 2013], while
brief definitions are given in the appendix.

1.3 Taxonomy and Paper Organization
Fig. 2 summarizes the general taxonomy of the different works presented in this paper, which are
basically divided into two classes, occupant-centric vs. energy/devices centric. The former groups
solutions that use ML for services focused on the occupant, including (1) occupancy estimation
and identification, (2) activity recognition, (3) estimating preferences and behavior. The second
class includes solutions where the ML approaches are used to estimate aspects related either to
energy or devices (including appliances and sensors). They are divided into, (1) energy profiling
and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors.

Following this taxonomy, the remainder of this paper is organized as follows. Solutions that use
ML for aspects related to occupant-centric are presented in Sec. 2, followed by those related to
energy/devices in Sec. 3. Sec. 2.1 presents works related to occupancy detection/estimation. Sec. 2.2
presents works on recognition of occupants’ activity, while Sec. 2.3 presents those for recognition
of preferences and comfort. Works dealing with the use of ML for energy profiling and demand
estimation are studied in Sec. 3.1, those for appliance profiling and fault detection in 3.2, and those
using ML to infer information on sensors are presented in Sec. 3.3. Sec. 4 provides a summary
discussion on the presented works, with focus on challenges and future directions. And finally,
Sec. 5 concludes the paper.

Occupant Centric

Occupancy Activity 

Recognition

Preferences 

& Behavior

Energy/Device Centric

Energy Pro�ling &

Demand Estimation
Appliance Pro�ling

& Fault Detection

Text

ML in Smart Buildings

Inference 

on Sensors(Estimation,Identi�cation

etc.)

 

(Per function, appliance etc. )

Fig. 2. Global taxonomy

2 OCCUPANT-CENTRIC SOLUTIONS
2.1 Occupancy

2.1.1 Overview and Problem Statement. Solutions dealing with occupancy of premises in build-
ings will be presented in this part. This ranges from binary inference on the presence of occupants,
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to providing advanced estimation (the number, gender, etc.). Earlier works on occupancy monitor-
ing have been focusing on the use of wireless sensing technologies to detect/track occupants in
real time. More advanced solutions are not limited to realtime detection but consider the use of
information coming from sensors to estimate future occupancy and/or features related to occupancy
using ML tools. Those solutions are presented in this section. Contrary to some contexts in smart
cities and environments that involve open/public spaces (roads, streets, etc.), privacy preservation
is generally required in many spaces in buildings (offices, meeting rooms, residential spaces, etc.).
Therefore, none-invasive sensing technologies (PIR, ultra-sonic, etc.) are more appropriate than the
use of cameras or microphones. Only solutions based on such technologies are considered herein.

2.1.2 State-of-the-art. [Khan et al. 2014] developed the bespoke platform that integrates several
types of sensors including PIR, acoustic noise (audio level recording without sound sequence),
humidity and light, which have been organized in an ad hoc mesh network. Sensor fusion techniques
have been applied to combine environmental data (harvested from the sensors) with contextual
data (information about meetings schedule and computer activities). A hierarchical analysis method
with different levels of granularity have been used, based on standard statistical classifiers that can
integrate potential uncertain contextual information. Three granularities of occupancy estimation
have been considered, (1) binary occupancy, (2) categorical, and (3) exact number, where each
granularity corresponds to a level in the analysis. The result at each level is used to improve the
occupancy estimates at the next levels. Classification is performed at every level, and then the
corresponding posterior probabilities are computed for every occupancy density prediction and
employed as additional feature sets in the next level. The sets of features are calculated at each
level using the recurrent formula: ®f h

z = Ph−1( ®f h−1 = z), where ®f h
z is the new feature added in the

level, h, of each object in the class, z, at the previous level h − 1. Ph−1( ®f h−1 = z) is the posterior
probability that the set of features, ®f h−1, takes the class, z, in the level h − 1. The hierarchical
classification problem has been dealt with using KNN (setting K to 3), SVM, and a standard grid
search procedure. For illustration, let us consider the first level (a binary classification), where
the KNN classifier is used to predict whether the current state of the building is considered as
occupant or not. Historical data is represented by the set of relevant features of the previous states
and its corresponding class (occupant or not occupant), and the current state is described by the
current features. The similarity between the current state and each previous state is computed,
then the three closest states are extracted, and the most frequent class in these states is selected
and assigned to the current state of the building. The proposed solution has been evaluated in
real-world deployment using a large commercial building with offices, meeting rooms, bathrooms,
stairs, hallways, etc., while considering both high-traffic area (large open spaces) and low-traffic
area (meeting rooms). The authors used data records of 14 days, and camera pictures taken every 5
minutes to get ground truth on the exact number of occupants. The proposed hierarchical classifier
has been compared with non-hierarchical estimation, and the results motivate the use of the former.
They showed that the performance of the hierarchical classifier reaches 99% of accuracy, which
was higher than the non-hierarchical classifier that does not exceed 86%.

[Sangogboye et al. 2016] considered binary occupancy estimation in rooms with MLC, SVM,
and using data from motion sensors that reported the collected data through the KNX protocol
[Hersent et al. 2012]. The day has been partitioned into subintervals of equal lengths (10min has
been used in the implementation), and then each label (slot) took a binary value. Dataset from three
sets of offices has been used, which comprises 77 days of the motion sensor sampled every 30sec .
The prediction algorithm proposed in the paper has been compared with Preheat [Scott et al. 2011],
where the KNN algorithm with Hamming distance is used to predict occupancy. The formulation
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with MLC enabled the use of its performance metrics, in particular the micro-averaged F-measure.
The results revealed that the proposed approach outperforms Preheat in terms of F-measure.

[Ardakanian et al. 2016] considered approximate occupancy estimation to dynamically optimize
HVAC management. They dealt with the occupancy estimation from coarse-grained measurements
of sensors that are commonly available through the BMS. They investigated the application of
non-intrusive techniques, i.e., techniques that do not require installation of additional sensors at
specific locations. They used an existing HVAC system with single-pneumatic control sensors,
air flow sensors, and reheat sensors, which are supposed to be largely available in building with
state-of-the-art HVAC systems. Schedules at the zone scale might be derived using this occupancy
approximation, which improves effectiveness of existing HVAC systems. The authors modelled
the problem as a clustering problem and used agglomerative hierarchical clustering with complete-
linkage clustering. This clustering defines the inter-cluster distance (separating two clusters) as
the maximum distance that separates their members. Time series have been used to obtain an
estimate on individual-zone occupancy by adapting the Canny detection algorithm [Cannny 1986].
In this adaptation, the occupancy data represented by time series is first mapped to the Gaussian
distribution and then convolved with the first derivative Gaussian kernel. This allows to build
local minimum and local maximum at each upward and downward edge points, which are used to
identify the beginning and the end of the occupancy period. A binary vector is finally produced for
the inferred occupancy (occupied vs. unoccupied) at each zone..
[Shih et al. 2016] considered occupancy monitoring in two operation modes: (1) detection of

presence vs. (2) estimation of the number of occupants. They used a form of active physical
sensing known as ultrasonic response estimation sensor, which is based on the processing of
the superposition of the microphone-recorded reflections from a transmitted ultrasonic-signal.
Both classification and regression problems have been solved. In the former, binary information
on the room occupancy (occupied vs. unoccupied) has been inferred, while in the latter, the
number of occupants in each room has been estimated. Within the ML component of the proposed
platform called "AURES", the authors proposed an occupancy inferring algorithm based onmultilevel
classification that operates in two steps. In the first, Doppler shift based classifiers [Trevor Hastie
2013] have been used for a binary classification. In the second step, two generic regression trees
classifiers have been used in a semi-supervised way to estimate the number of occupants. The
Weighted PCA (WPCA) has been used as preprocessing step for feature extraction. This reduces
the training data that is required for the estimation of the number of occupants (trained regression
model). The results showed no negligible error, notably for large rooms that reach as much as 10%.
Further, the system requires the deployment of the sensing platform (AURES) in every room, as
well as the labeling of training data.

[Soltanaghaei and Whitehouse 2016] proposed WalkSense, a solution that uses walkway-sensors
to classify states of home occupancy. The occupancy detection in this solution relies on the fact that
in wlakways, motion sensors are more reliable (as compared to occupancy zones). Therefore, motion
sensors have been used and deployed by defining placement rules to optimally cover walkways
and avoiding overlapping. Solutions for zone-occupancy state estimation have been proposed
where the zones have been partitioned into active sensing zone (where the occupant performs his
daily activities), outside walkway zones, and sleep walkway zone (the walkways for exiting home
and entering the bedroom, respectively). Consequently, occupancy states are divided into "active",
"away", and "sleep". Two strategies have then been proposed for occupancy states estimation. The
first is the Offline WalkSense that uses historical data and defines a sleep (resp. away) interval to
be the duration between a pair of two consecutive detections by the sensor at the sleep walkway
(resp. the outside walkway). The second strategy is the Online WalkSense which identifies the
different states in real time. The module starts in the active state, then if an event is detected by
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the sleep sensor, it switches to "conditional sleep". A classifier is then used to label the transitions.
The module remains in the "conditional sleep" state until the classifier labels transition as sleep.
The classification is repeated until a decision is made by the classifier or an event is detected by a
sensor. DTs have been used for the classification. This has been justified by their inherent capability
for handling combinations of mix types of data. The used features vary from temporal features,
transition features, and mobility features. The same process is performed for detecting active and
away states. WalkSense has been evaluated using sensorial data retrieved from six houses observed
for a period of 350 days. The results revealed that WalkSense approach outperforms the baseline
method (HMM-based), where it reaches 96% of accuracy in offline mode and 95% in online mode.
[Bales et al. 2016] dealt with a more advanced problem. They have not been limited to the

detection of the occupants or counting them but were interested in determining their gender
(gender classification). This has many potential applications, e.g, security in public buildings, retail
sales and advertisement in commercial buildings. They used accelerometer sensors that have been
mounted under-floor (the walking surface) for physical sensing. Supervised ML tools have been
explored for classification including DT, boosted DT, SVM, and ANN. The authors reported high
precision in detections, notably when using SVM that provided less error than ANN, e.g., 88%
accuracy for gender classification with SVM vs. only 55%when using ANN. However, the technique
used is highly intrusive and requires mounting a high number of sensors underfloor in the walking
surface, which complicates installation in existing buildings.

[Khalil et al. 2016] went beyond gender classification and targeted identifying people by sensing
their body shape and movement with ultra-sonic sensors. The principle of the proposed solution is
to use the variation of the body when moving (in height and width) for feature extraction. From the
signals detected upon walking events, the authors were able to extract seven features including the
height and the width (maximum and average values), girth, hand-waist distance, and bounce. They
used two feature-selection methods: (1) evaluate each feature alone then combine them in pairs and
evaluate them, (2) a Recursive Feature Elimination (RFE) [Doak 1992] algorithm combined to PCA,
which provides new high level features. Although the width and height are not unique features that
identify people, the authors showed that by extracting features from their variations, identification
becomes possible. The authors presented their solution as non-intrusive compared to those using
cameras, microphones, or badges. However, they used ultrasonic sensors for measurement through
a doorway. This might requires additional installation compared to solutions such as [Ardakanian
et al. 2016]. In their solution, the selected features are fed to the DBSCAN ([Ester et al. 1996])
clustering algorithm. Occupant identification has numerous applications including customized
services related to user comfort and preferences such as analysis of customer behavior in commercial
settings, security and intrusion detection, health-care and elderly assistance, etc. However, training
is needed for every individual, which might be constrained in applications involving high number
of occupants.

2.1.3 Discussion. Different granularities of occupancy estimation have been considered by
solutions presented in this section. Binary occupancy is the most elementary, which consists in
predicting whether premise are occupied or not. It might be sufficient in some applications such as
light control. Binary classification is the relevant ML category for this problem. A more advanced
granularity is to estimate the exact number of occupants, generally using advanced regression
techniques. This is very useful in applications such as personalized room allocation, but it is
challenging and not easy to achieve. Category estimation comes as an intermediate granularity,
where the aim is to generalize the binary estimation and define a finite set of categories, and
then estimate to which category an observation belongs. This is practical and sufficient for many
applications, e.g., HVAC control. Other solutions go beyond estimating occupancy or counting
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occupants, towards identifying occupants. While challenging, identifying occupants is required in
many applications, e.g., gender classification is very useful in commercial buildings and has many
applications such as customized advertisement in shopping centers. Some solutions even consider
identifying the detected occupants through non-invasive sensor signals, which has applications
in security, safety, and advanced health care systems. Most solutions in this category use SVM
and DTs as the baseline ML tool in their models. F-measure and different percentages of accuracy
in estimation represent the most used metrics for evaluation. Depending the problem dealt with,
the latter include percentage of correct reports (or symmetrically of errors) in presence detection,
or that of accuracy in estimating the number of occupants, gender or person recognition. Some
solutions also evaluated the energy saving when using their solution for occupancy estimation.
Presence (motion) sensorial data is the most used in this category, mostly through PIR sensors.
Contextual data has been used by solutions targeting the number of occupants estimation, e.g.,
meetings schedule and computer activity, while accelerometers and ultrasonic sensorial data has
been used by those dealing with gender estimation and identification. Finally, note that DL methods
have not been used in the solutions presented in this category. It might be interesting to explore
such a tools for advanced estimations, i.e., identification. Table 4 (Appendix) compares the different
solutions presented in this section.

2.2 Activity Recognition
2.2.1 Overview and Problem Statement. Solutions of this category do not deal with the estimation

of occupancy in premises but with the current activity of the occupant (upon occupancy detection),
which is vital for many applications such health care and elderly assistance. Several approaches
are presented in the following through some canonical solutions. While most solutions target
recognition of daily activities (tasks) such as cooking, eating, sleeping, watching TV, working on
computer, etc., some other solutions use more fine-grained definitions, such as differentiating the
types of meals eaten, or associating timestamping of the tasks and considering each tuple (task,
timestamp) as a separate activity for recognition. Some works target less activities, e.g., receiving
regular visits vs. irregular visits.

2.2.2 State-of-the-art. [Hossain et al. 2017] Proposed to use active learning and dynamic K-
means for activity recognition in residential buildings. The use of active learning has been motivated
by the variety of human activities in buildings and the underpinning uncertainty in sensing. This
requires the provision of vast amount of labeled data for passive and supervised learning approaches
to be effective, which is not always possible. The author proposed to first use a dynamic K-means to
cluster the set of unlabelled data. The clusters have been incorporated with unseen activities, and
the use of K-means has been adapted accordingly. In the proposed solution, the instances related
to the unseen classes (activities) are considered as outliers. These outliers makes the clustering
algorithm highly sensitive to the number of clusters (k). This has been dealt with by applying
an incremental version of K-means in which k is increased at every iteration and the overall
clustering error is recorded using an error function (J ) on the set of clusters {C1,C2, ...,Ck }, which is

defined for the set of centers, {д1,д2...дk }, and, n objects, {x1,x2, ...,xn}, as: J =
k∑
j=1

∑
xi ∈Cj

| |xi −дj | |2.

The clusters are then used to fetch the most informative data instances for query. An objective
function has been formulated for this purpose, which is based on entropy, similarity coefficient
measurement, and it is proportional to the distance between the clusters’ points and the centers
of the surrounding clusters. It is given by, fc (x) = arдmaxx {eθ (x )S (x )c }, where eθ (x ) is the entropy
measurement that indicates the gain by putting x in its cluster (compared to the other clusters),
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and S (x )c is the silhouette coefficient that represents the degree of importance of x in the cluster C .
It is the difference between two ratios, (1) the ratio between the correlation of x and all elements in
the clusterC , and (2) the ratio between the correlation of x and all elements in all the other clusters
(excepts C).

The authors also proposed an annotator selection Bayesian model in presence of multiple-labelers
with varying expertise. This is to deal with the challenging problem of assessing and validating the
labels provided by annotators in absence of the ground-truth information. The proposed solutions
have been tested in a single bedroom apartment with a kitchen and a living room. Data has
been collected from 10 participants (each providing 24 hours of data collection), but with single
participant at a time (i.e., no simultaneous presence of participants in the apartment). PIR sensors
have been used to collect data, as well as object sensors (compasses and accelerometers) to provide
data related to the usage and orientation of some objects (broom, laundry basket, phone, dustpan).
Seven activities have been considered, including cooking, brooming, washing, cleaning, eating,
sleeping and talking on the phone. The first four activities have been used for passive learning,
while the activities have been left for the active learner to discover. The results showed that this
approach with the proposed ground truth information model can detect unseen activities. Results
also showed diverse performance in the accuracy of recognizing activities. Some activities have
been recognized with an accuracy exceeding 80% (e.g., talking to the phone and brooming), while
the accuracy was below 60% for other activities (e.g., eating and cooking).

[Chiang et al. 2017] explored the reuse of learned knowledge about occupants’ activity recognition
from an existing environment into another one (transfer learning). To reduce the complexity of
knowledge transfer across different domains, the authors focused on the differences caused by the
ambient sensors and the target domain. Only single-resident scenarios are considered, with similar
activities of interest in the source and the target environments. They dealt with this as a classification
problem and proposed a framework for knowledge transfer that uses standard SVM and RBF. Their
contribution was to transfer the results of classification from a source building to a target building,
which requires the matching of the different features of the two environments. Depending on the
availability of labeled datasets, two scenarios have been considered: (1) when labeled datasets from
both source and target environments are available, (2) when they are only available from the source
environment and the information from the target environment is limited to background knowledge
(sensor deployment information). In the former scenario, the aim is to take advantage of the data
from the source environment to improve model learning in the target environment. In the second
scenario, the aim is to help learn the activity models for the target environment from the source,
and to use sensor readings of the target environment only for test. The first step is preprocessing,
where data samples are created using the "start" time and "end" time of sensor events with a 30sec
time interval. The second step is feature set reformulation. For the first scenario, a general approach
with linear transformation using Shannon entropy and PCA [Hyvarinen 1999] has been proposed.
The authors showed that this information-theory formulation guaranties no loss of information,
and that each reformulated feature provides independent information (no redundancy). For the
second scenario, the authors proposed a reformulation using profiles and defined four types of
properties (object, location, sensor type, event), and then a set of values for each one (e.g., object
has three possible values, microwave, TV, and door). In total, concatenating all possible values
for the four properties results in a nine-tuple that defines the profile tuple. After reformulation,
feature divergence evaluation is performed using Jensen-Shannon divergence (JSD). A graph
matching algorithm has been used for feature set mapping. The authors proposed to reformulate
the feature mapping into a graph matching problem, where a complete bipartite graph is defined
and a weight value is assigned as the distance between features. Stable marriage algorithm [Gale
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and Shapley 1962] has been used to map every feature from the source to exactly one feature from
the target (one-to-one mapping), with a divergence measure for every mapping. LIBSVM library
[Chang and Lin 2011] has been used to train and test the SVM-based activity models. Ambient
sensing dataset including a large variety of physical sensor information has been used to evaluate
the proposed solution. The results confirm the proposed solution improves accuracy, but under
the above mentioned assumptions. Recognizing fine-grained activities have been targeted in the
experiment. For example, cooking has been split into different activities (preparing lunch, preparing
breakfast, preparing dinner, etc.). 25 separate activities have been enumerated in total, but this is
using as much as 70 sensors. The results showed accuracy of more than 70% (in most cases) when
using knowledge transfer. A notable drawback of this solution is the fact that the proposed model
completely ignores temporal dependence between activities; no feature with temporal information
has been extracted.

[Nait Aicha et al. 2017] Considered the problem of modeling regular activity patterns in residence
buildings to infer the presence of visitors, which is important in elderly assistance applications
(e.g., where it is crucial to know whether the patient is alone or not). The authors modeled this as
an unsupervised classification problem and proposed a method based on MMPP, which has been
extended to enable incorporating multiple-feature streams. The proposed solution has been tested
using a nine month dataset of sensor data including pressure (on the bed), toilet flush, motion,
opening/closing of doors/cabinets. This dataset has been collected from two different apartments.
In the first, the resident received daily visits from a caregiver, weekly visits from a cleaner, and
occasional (non-regular) visits from his children. In the second, the resident got two visits per
month from the cleaner and rarely other irregular visits. The results confirmed that the modified
MMPP improves the performance over the standard MMPP in identifying irregular visits.
[Carolis et al. 2015] used a completely different approach to learn daily activities. They used

process mining to learn (from annotated sensor data) the daily routines of the user that have
been modeled as a classification problem. First-order logic learning has been explored, which the
authors considered as a tool that incrementally adapts to the model and allows to express and learn
complex conditions. The daily routines are considered as processes (sequence of events associated
with actions) and their modeling is casted as process-mining. The authors used the "WoMan"
process-mining system [Ferilli 2014] where tasks are modeled with a workflow that specifies how
they can be composed to yield a "valid processes". This is based on the concept of "case" which is
defined as a specific execution of actions in the workflow following an ordered set of steps. WoMan
is incremental and gradually uses new cases (derived from log files of activity events) to update the
workflow model. It allows to predict upcoming events upon detecting events that are consistent
with the model. Both artificial and real dataset have been used to evaluate the solution, including
high level data (tuples on labeled activities). The authors defined activities as the execution of a
task in time, i.e timestamps are used in labeling data. That is, executing the same task at a different
time is considered as a different activity, which gives a high number of activities (more than 6000
activities in the dataset of the simulation). The dataset was split into 10 folds, including 22 cases
each. The normal 10-fold cross-validation procedure (using each time, nine folds for learning and
one for testing) reached more than 99% average accuracy on predicting activities. However, the
selected dataset was very simple, involving an elderly person who has occasionally been visited by
her children (focused on a single person with routine activities).
[Alhamoud et al. 2015] proposed an approach to collect ground truth on everyday activities.

They used a system that includes Plugwise sensors to measure power of individual appliances, and
Pikkerton sensors to measure brightness, temperature, and motion, a Raspberry Pi as a gateway,
a control server where ML model is implemented, and a smart phone with a customized GUI to
allow the user report his/her current activity and thus provide ground truth information. The ML
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model is a form of K-means clustering that matches the reported activities with the sensor readings,
where the reported data is dynamically clustered while setting the number of clusters as a tunable
parameter. The latter would ideally match the number of reported activities. K-means has been
adapted to the problem using the "validity based approach", which is based upon the validity metric
defined as the ratio of the average intra-distance of all clusters (the average distance between points
and their respective centroids) to the minimum inter-distance (the minimum distance between
centroids.). The number of clusters that produces the smallest validity (after the occurrence of
the first local maximum) is considered as the optimal number. Nine activities occurring in two
apartments (deployments) have been considered in the experiment (for up to 82 days, and 62
days, respectively). The optimal number of clusters, i.e., corresponding to the number of activities
specified by the user, has been found when testing with a dataset of three weeks for the first
deployment, and of four weeks for the second. The results showed that by changing the size of the
dataset, the optimal number of clusters varies. The authors justify this by the fact that similarities in
the activities, e.g., "sleeping" and "not at home" feature very similar readings. This solution is then
highly sensitive to the size of the dataset to be used for training, which is problematic. Rather than
using K-means, it would be interesting for this problem to investigate other clustering algorithms
that are not sensitive to the number of clusters.

[Zhu et al. 2015] did not rely on the deployment of physical sensors but only virtual sensing from
smartphones (3D gyroscope and accelerometer data). This eliminates the need of deploying sensors
but requires the occupant to permanently carry smart phones to perform activity recognition.
The authors considered feature selection before feeding the data to ML algorithms. The proposed
solution starts with feature extraction by segmenting the raw data (obtained with a 20Hz sampling
frequency) using a 5sec sliding window interval, with 50% overlap. This results in a 100 samples
per segment, from which a set of time and frequency domain features are extracted. These are
typical statistical features used in pattern recognition (including mean, min, max values, etc.). All
the features are then clustered using k-means as a dictionary to derive a codebook for LLC that is
used as a feature selector. The use of LLC is motivated by the fact that it is highly probable that
samples from the same class are neighbors in the feature space. Dictionary learning method is used
to represent the features in a way that allows distinctiveness. In the proposed LLC approach, the
features are factorized by solving an optimization problem with Fisher Linear Discriminant analysis
(Fisher LDA), which has a complexity of the order O(M2) (whereM is the targeted dimension of
the selected features). The authors also proposed a simplified approximated LLC that has a lower
computation complexity. It is based on the use of S nearest neighbors (S ≪ M) to approximate the
regularization terms, and it has a complexity at the order of O(M + S2). After feature selection,
standard classifiers are applied using SVM, KNN, Kernel-Extreme Learning Machine, and SRC. Five
activities have been considered, sitting down, getting up, being static, walking, and running. The
results showed that the accuracy of the different classifiers varies from 70% to 95%, and the use of
LLC with any classifier gives more accuracy (compared to the use of the classifier without feature
selector) and provides about 5% of improvement.

2.2.3 Discussion. Different solutions and approaches for recognizing activities of occupants
have been presented in this section. Some solutions use active learning and request the participator
for labeling. This has the advantage of enabling the recognition of the variant human activities
but requires the provision of vast amount of labeled data. Some solutions use knowledge transfer
and apply knowledge acquired from a source environment to another target environment. This is
useful to enrich the target environment with labeled data and improve the derived model. However,
to enable accurate transfer, the two environments (source and destination) must be similar. Further,
most activities are temporary dependent. Temporal dependence among features represented by data
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instances should thus be considered when applying transfer learning. Models that consider temporal
dependence such as dynamic BN, as well as time-based models such as ARIMA might be explored
for this purpose. The ML problem dealt with by the solutions presented in this category is either
clustering or classification (depending on the considered activities), while SVM, KNN, and different
variants of K-means represent the most used tools. The most common metrics that have been used
include the percentage of accuracy in identifying activities, F-measure, and different distances on
the obtained clusters when running the clustering algorithm (intra-cluster, inter-cluster, average,
min and max values, etc.). Table 5 (appendix) summarizes the solution presented in this category.

2.3 User Preferences and Behavior
2.3.1 Overview and Problem Statement. Solutions presented in this section deal with estimating

user preference in different ways. Most solutions focus on the thermal comfort, while some solutions
also consider visual comfort. PMV has been used in earlier smart building automation systems
to reach consensus on thermal preferences in public spaces. This approach is complex and fails
to infer personalized comfort factors that vary from a person to another, and even for the same
individual over time due to environmental and human related factors. Studies presented in this
section explored data-driven approaches from an ML perspective and yielded solutions that capture
the preferences either by receiving reports from users, i.e., data labeling, or by monitoring the past
behavior of occupants to infer (in a transparent way) their preferences or settings that meet their
comfort. Different forms of reporting interfaces have been used, where smartphone interfaces are
the most convenient.

2.3.2 State-of-the-art. [Ghahramani et al. 2015] used BN to model and quantify personalized
thermal comfort with an online-learning. They fitted comfort feeling ("warm and cool") dataset
with probability distributions that they combined in a BN to define the global individual comfort.
Four random variables have been considered, (1) UWC: Uncomfortable Warm Condition, (2) CC:
Comfortable Condition, (3) UCC: Uncomfortable Cool Condition, and, (4) OC: Overall Comfort.
The probability condition between OC and the three other variables is given by,

P(OC) = P(CC)
ω1P(UWC) + ω2P(CC) + ω3P(UCC)

,where ω1, ω2, ω3 ∈ [0, 1] (1)

The Bayes optimal classifier aims at finding the temperature that maximizes P(OC). The authors
modeledUWC andUCC with half normal distribution while a complete normal distribution was
considered for CC . The method of maximum-likelihood was used to estimate the distribution of
these parameters. To reduce the need of estimating ω1, ω2, and ω3, which requires a high number
of samples, the authors considered them all equal. They also defined a hyper-parameter that
represents the comfort threshold, and which is estimated using the training dataset. A "Bayesian
optimal classifier" has been trained through online-learning to determine comfortable conditions.
Kolmogorov Smirnov test has been used to determine comfort variations over time.

The authors compared the proposed solutions with some standard classification techniques (e.g.,
SVM, KNN, DT, LR) by applying them to thermal comfort data from an office. A user interface
[Jazizadeh et al. 2013] has been used to collect thermal votes from occupants, and physical sensors
for ambient conditions (humidity and temperature). The collected data are transferred to a database,
and A "survey-based participatory sensing approach" [Jazizadeh et al. 2013] has been used to obtain
comfort levels of individuals. Results showed superiority of the proposed classifier which reached
an accuracy of about 70% in the tested scenarios. One advantage of the approach is that it enables
the transformation of the comfort objectives, which prevents the "pareto optimality problems".

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: December 2018.



:16 Djenouri, D. et al.

[Zhou et al. 2015] dealt with thermal comfort modeling and attempted to bridge the gap between
control and comfort learning. They considered augmenting the MPC framework with "data-driven
comfort requirement" while adopting a "learning for application" scheme. Instead of user’s comfort
points, comfort zones are described with a CPLC that is used by the MPC for optimization. CPLC is
a set of linear inequalities that makes classification by searching optimal configuration of multiple
hyperplanes. It is a binary classification where elements inside the convex set represent the comfort
zone. The intuition behind this is to improve the performance of box constrained approaches (usually
used in HVAC systems), while generalizing and avoiding overfitting of nonlinear approaches. The
authors considered that the cost of assigning an uncomfortable configuration as comfortable
(false positive) is higher than the opposite assignment (false negative). For this, they proposed a
cost sensitive large margin formulation where they weight false positive rates and false negative
rates differently. These weights are introduced as hyper-parameters in the loss function of the
classifier. The authors used "online stochastic gradient descent" with MIQP initialization to enable
an incremental learning. The authors assume online voting to obtain user feedbacks. Numerical
analysis using public dataset of thermal comfort preference has been performed to asses the
proposed solutions in comparison with existing learning methods in an HVAC system. The used
dataset includes data about air velocity, humidity radiant and air temperatures, as well as contextual
information including physiological conditions such as metabolic-rate, clothing, and the expressed
comfort sensations that have been obtained from online survey tools for comfort voting. The
solution has been compared to similar methods from the literature including (1) 2v-SVM that uses
Gaussian RBF and linear kernel, (2) one class SVM, (3) DNN, (4) AdaBoost, and 5) Lasso Logistic
Regression. They used the testing error as a metric while varying the false positive weight (one of the
hyper-parameters) from 1 to 9 and maintaining the false negative to 1. The solution outperformed
the other solutions for weights above 4. The authors also carried out experiments on HVAC MPC
and compared their solution to a box constrained approach in two weather configurations (cold
dry and hot humid).
[Sarkar et al. 2016] used the intuition that "a particular person can feel comfortable beyond the

pre-defined set-points". They investigated on larger-range individual preferences for the sake of
providing flexible, energy-saving, and dynamic operation of the controllers while ensuring the
comfort of occupants. A smartphone application has been developed to enable users make reports
and register data on-demand, which allows to learn thermal and visual (luminance) individual
preferences. The standard of seven-point scale of ASHRAE2 has been used (both for light and
temperature). After studying data from multiple users, a thermal comfort has been represented
with a Gaussian function, and the light preference with a Beta function. These functions use two
hyper-parameters whose values differ from a user to another, (1) α for the Gaussian function, and
(2) β for the Beta function. In this work, they have been derived based on the comfort indicators
(collected using smartphone application) and using the least square curve fitting. This allows to
generate the comfort functions from a set of limited points. Using an existing energy model for
HVACs, the authors measured by simulation the yearly consumption of a building and showed
that lower energy consumption may be achieved with set points based on individual comfort
preferences, as compared to "fixed set points". This is while satisfying the individual preferences.
[Barbato et al. 2010] deployed a wireless sensor network to control home appliances following

users’ habits, and to automate the set up of operation parameters with a system that uses the
past observed behavior to predict user preferences. The MobiWSN architecture [Laurucci et al.
2009] has been implemented and used in this work, where sensors provide information about light,
temperature and presence. The authors studied user presence profiling (temperature and light)

2the American Society of Heating, Refrigerating and Air-Conditioning Engineers
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using a simple data analysis clustering algorithm based on cross-correlation. The sensor network
collected data for 24 hours over the monitoring period (up to a month), which was aggregated and
processed to create the three types of profiles that represent users habits. The authors implemented
their framework as a demo with a graphical Java application that emulates some visualized devices
including lighting systems, air conditioners, WiFi access-points, TV. Further, the authors tested the
solution by simulation on a five-room house for a 300-day period of pseudo-sequences of profiles
for temperature, light, and daily presence. Three behavioral exceptions have been simulated to
asses the proposed prediction algorithm: (1) "exceptions spike" (with 20 isolated exceptions), (2)
exceptions burst (4 contiguous sequences) and; (3) behavior variation where the behavior changes
twice a year. The results showed correct prediction of more than 85% for the first case, and more
than 90% for the others. This allowed (for example) the home temperature manager to reduce up to
28% the working time of the cooling system, while keeping the user comfort (activating the cooling
at the right moment prior to user’s arrival). Lack of real experiment or simulation with realistic
dataset represents the major drawback in this work. The authors justified this by the need of a long
period of time, which was not possible to ensure.
[Antunes et al. 2013] considered learning thermal preferences of inhabitants from inferring

behavior rules. They proposed "APOLLO", a platform that infers behavior rules through data
collected with physical sensors, by using SOA, alongwith statistical andML techniques. The authors’
aim was to develop a platform that enables the addition/removal of any type of sensor/actuator
without the need of manual reconfiguration. The use of SOA enables several independent services
that are based on message passing communications. The platform has been initiated in a home
automation scenario where it receives data related to energy consumption, temperature, and it
defines the air conditioning system’s temperature. The most frequent behavior of users has been
used to make inferences and learn the inhabitants’ preferences on temperature, which has been set
through a remote controller while optimizing the energy consumption. A regression model using
SVM has been trained to predict energy consumption based on the temperature and time period.
The output of SVM model is used by a Genetic Algorithm (GA) [Banzhaf et al. 1998] that tries to
optimize the energy consumption while achieving the preferred temperature. The GA’s fitness
function includes temperature, period and energy fitness. An anthology dataset that expresses
tendency between variables has been used in the experiments.

[Shoji et al. 2014] adapted a BN to a home energy management system for the purpose of learning
the preference of the resident based on his/her behavior vs. electricity pricing and consumption
changes, as well as performing appropriate operations of controllable appliances following the
electricity price dynamics. The network allows to control energy appliances, e.g., battery energy
storage systems (BESS), heat pump water heaters (HPWH), air conditioners (AC) etc., while consid-
ering the occupants’ comfort. The authors assumed that the BN uses a DAG, and that its topology
gives "an intuitive grasp of the relationships among variables". The authors considered the fact
that the state of an appliance depends on the environmental variables that affect the comfort and
convenience. For example, the authors illustrated their BN with the description of the AC behavior
for a "virtual resident". The state of the AC was probabilistically determined, jointly with respect to
the temperature and the PMV as the two environmental variables that affect the AC’s state. From
the graph perspective, the state of the AC is a child node of PMV and temperature setting. To select
the adequate probabilistic causal relationship between parent and child nodes, the authors used the
"Bayesian Information Criterion", which yields short forms of data description. The authors did
not rely on deployment of dedicated sensors but only used power consumption data from a smart
meter. They used demographic datasets of 23 months of a continuous reading from a Japanese
household databases. The duration of the training set was 14 months, and that of the test set was 9
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months. The results showed very high accuracy for controlling many appliances such as AC and
BESS, but they were prone to important variation in seasons with a high fluctuation in summer.

2.3.3 Discussion. Two approaches for collecting information about users comfort have been
used; (1) the survey based approach where feedbacks about the degree of satisfaction are received
from occupants, and (2) the behavior monitoring approach where the desired settings are deduced
from past users configurations. Survey based approaches require interaction with occupants, which
might be invasive and disturbing. Some solutions use regression ML tools, e.g., curve fitting, to
complete the missing data and reduce the interactions with building’s occupants. Other solutions
correlate comfort levels with environmental variables, such as indoor air temperatures, light level,
relative humidity, etc. This is by mapping the satisfaction levels received from occupants into ranges
of environmental values, and then retrieving the range that maximizes the satisfaction. Ranges of
values are considered instead of a single set point based on the perception that the occupants usually
feel comfortable within continuous intervals. This also gives the possibility to satisfy multiple
users that share the same space by finding intersections of their comfort zones. It also increases
the potential of energy management, small adjustments (e.g., reducing temperature by 1◦C) might
contribute in reducing the overall energy consumption. Classification methods such as CPLC and
BN have been used. Some works also considered the variations in comfort levels communicated by
users over time, which requires the use of online learning approaches to make the system adaptable
to the changes. Solutions based on behavior monitoring used past users’ interaction with the
system to deduce the optimal setting for appliances, and through both supervised and unsupervised
learning. Clustering, SVM and BN are the tools used in these solutions. Those solutions based on
behavior monitoring are more adapted to individual houses where the occupants have more control
on their appliances and can feed the system with their inputs, while those based on surveys are
more appropriate for commercial buildings where the setting is generally executed by centralized
controller. It is worth mentioning that the behavior monitoring approach is currently used in
some commercial solutions, e.g. Nest learning thermostat, to define optimal thermal setting. To
evaluate their solutions, some works used prediction estimation metrics, e.g., accuracy, specificity,
and testing error to measure the efficiency of their prediction, while other focused on the energy
saving potential as a performance metric. Solutions for user preferences and behavior are sketched
in Table6 (Appendix), while Fig.3 presents a taxonomy for all the occupant-centric solutions.

3 ENERGY/DEVICE CENTRIC SOLUTIONS
3.1 Energy Profiling and Demand Estimation
3.1.1 Overview and Problem Statement. This class does not include all solutions that deal with

energy optimization through ML (many solutions classified in other categories do so), but only
those where the use of ML is related to energy profiling and estimation. We consider that the
solution of [Barbato et al. 2010] presented previously also belongs to this category (in addition to
the "user preferences and behavior" category) as it jointly deals with comfort and energy profiling.
Profiles in solutions presented in this section include heating and cooling loads, electricity demand,
energy profiles of individual appliances, etc. Including ML methods in energy profiling and demand
prediction has several applications such as reducing energy cost in price-based control, fault
detection and diagnosis, control optimization, etc.

3.1.2 State-of-the-art. [Zhang et al. 2016] divided the major home appliances loads into three
classes: fixed, regulatable, deferrable. Based on this classification, they proposed a "decoupled
demand response mechanism" to optimize energy management. For regulatable loads, the authors
proposed a "learning-based demand response" strategy, in which they focused on HVACs. The
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Fig. 3. Occupant-centric ML solutions

authors considered the optimization problem of minimizing the electricity cost function during

a day (noted C) such as, C =
24∑
i=1

PiQi , where i stands for a one-hour timeslot during which Pi

and Qi represent the electricity price and the energy consumed by the HVAC, respectively. The
function, Qi , is learned through the training data by using ANN or regression with a 3rd order
polynomial function. For instance, if we consider the function, Qi , learned by, qnn , and defined
by, Qi = qnn(T l

i+1,T
l
i ,T

O
i , ®w), then the learning is performed through a neural network that needs

multiple-iterations to reach a stop criterion. The input data consists of temperature information
including, (1) of the room at hour i , sayT l

i , (2) that in hour i+1,T
l
i+1, and (3) the outside temperature,

TO
i . The output of the network is the energy consumption, Qi . The learning function, qnn , aims to
adjust the weights vector, ®w , in a way that optimizes the energy consumption,Qi . A "co-simulation
system" has been developed to evaluate the proposed solutions. This system includes a simulator
for house energy consumption, as well as a mechanism that allows for the simulation of a decoupled
and learning-based demand response strategy. The building simulation software "eQUEST" has been
used as a virtual testbed to simulate the energy consumption and the house behavior 3. Standard
commercial building materials are used by the simulator (in its software library), as well as real-life
dataset including information on solar conditions and weather 4. A house featuring a "generic floor
plan for a two story 2500 square foot" was used. The authors compared the proposed learning based
solution with conventional demand response policies, and the results confirmed the improvement
by the proposed solution in terms of energy consumption. The authors considered a single occupant

3http://doe2.com/download/equest/eQ-v3-63_Introductory-Tutorial.pdf
4http://doe2.com/index_wth.html
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room for five consecutive days as the elementary cost and showed that the consumption cost is
reduced from $4.50 to $3.64 when using the learning based solution .
In [Sonmez et al. 2015], the heating load (HL) and cooling load (CL) have been considered, and

hybrid ML algorithms have been studied and compared by simulation. The methods are variants of
KNN and ANN that combine GA and ABC heuristics. The weight of the inputs for KNN and the
function to be activated for ANN are considered as hyper-parameters. For KNN, the heuristics (GA
and ABC) have been used to assign different weights to the inputs, and for ANN to find the optimal
activation function for each node among linear, sign, logistic, sin, tanh, and RBF functions. The
authors used existing building architectural information (BAI) without any sensorial data. Eight
parameters have been used as input to estimate HL and CL (the output parameters), including
"relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and
glazing area distribution". MAE and SD of estimation errors have been used for comparison of
the results obtained from the algorithms. 768 data samples have been used from the considered
residential buildings, 576 for training and 192 for test and verification. Results confirmed that the
proposed hybrid solutions provided better performance compared to the traditional methods (KNN,
ANN). The authors justified this achievement by finding the impact of the input parameters on the
target parameters (HL and CL), which was used in the estimation process.

[Fan et al. 2017] investigated the use of DL for predicting 24h ahead building cooling load profiles.
They exploited the potential of DL in both supervised and unsupervised scenarios. As for the
unsupervised learning, feature extraction has been carried out to extract meaningful features as
model inputs, where four types of methods have been used. Three of the methods (engineering
method, statistical method, structural feature extraction method) have been used for comparison
with the DNN method proposed by the authors. This method has a symmetric architecture where
the input and output layers have the same number of neurons. It tries to reconstruct the input
while minimizing the error. It includes 5 layers with 48 neurons in the input and the output layers.
This number of neurons represents the size of time series of 24h, which has been collected at
intervals of 30min that represents the building cooling load, the outdoor temperature, and the
relative humidity. The number of neurons decreases between the input and the middle layer (2nd
hidden layer), where it reaches 4, which is the number of the extracted features. The activation
of the middle layer is related to the extracted features. The authors used tanh as the activation
function in this DNN. They use a sliding window approach, where values from the past 24h are
used for feature extraction, and the extracted features are then used to predict the load for one hour.
This prediction is done by another DNN that is composed of two layers and using ReLu as activation
function. The one-hour predicted value is used with its previous 23h values to present the new
input for the feature extraction for the next hour. This process is repeated until 24h cooling load is
forecasted. MLR, ELN, RF, GBM, SVR, and XGB have been used for comparison with the proposed
prediction approach using different feature sets that have been generated with the proposed feature
extraction approach and three others. The authors used data from an educational building that
consists of offices, classrooms and a computer data center, which has been collected during one
year. The results showed that DL can enhance the performance of building cooling load prediction,
especially when used in an unsupervised way.
[Mocanu et al. 2016] considered estimation of electricity demand in individual households and

investigated two stochastic time-series DLmodels to predict energy consumption, (1) the conditional
RBM and, (2) the factored conditional RBM (FCRBM). The motivation behind this choice is that the
energy consumption might be represented as a "time series". They adapted the architecture of these
DL models by merging labels of the features and the style. The new configuration has been used to
revisit the equations and the derivatives of the rules. They evaluated the proposed solution using a
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household benchmark dataset5 that contains more than 2million measurements gathered during
a 47 months period. The period from the first to the third years was used for training, while the
remaining period was used for the test. Information from smart meters have been used to get such
data (without any additional sensors or intrusive plugs). Both "Aggregated active power" (global
consumption) and energy sub metering were used. The authors compared the proposed solutions
with traditional ML tools such as ANNs, SVMs, etc. The results showed that FCRBM outperforms
all the other solutions for the energy prediction problem solved in this work.
[Chou and Ngo 2016] considered predicting real-time energy consumption of a building con-

nected to smart grid and provided end users with forecast information that enables energy efficient
measures during peak times. They developed an optimization-based ML system using a metaheuris-
tic based time-series sliding window. It includes a variant of ARIMA models [Tan et al. 2010]; the
seasonable ARIMA model (SARIMA), and the "metaheuristic firefly algorithm-based least squares
SVR (MetaFA-LSSVR)" model. The proposed model (SARIMA) was fitted to linear components,
while the nonlinear data components were captured with the MetaFA-LSSVR model. MetaFA is a
metaheuristic used for the selection of parameters ("Hyperparameter") that are plugged into the
LSSVR (a variant of SVR) for the training process where a least-squares cost function was used (in a
dual space) to derive a linear set of equations. The aim of using MetaFA was to overcome the major
drawback of the original LSSVR, whose accuracy highly depends on its Hyperparameter. The latter
have then been optimized in the proposed solution through the use of MetaFA. To evaluate the
proposed system, the authors used a "building experimental smart grid", from which they extracted
realtime data. A family of five members occupied the building to provide learning dataset that
has been collected during a four week-period, as well as the test dataset of up to 454 weeks after
learning. The smart grid provided physically sensed data information including realtime power
consumption data of appliances and electrical devices, temperature and humidity, as well as contex-
tual information, e.g., appliance information, and alternatives of electricity saving, etc. The authors
compared the proposed solution (integration of SARIMA and MetaFA-LSSVR) with the separate
use of the different approaches integrated in the solution (SARIMA, LSSVR, and MetaFA-LSSVR).
The results showed that the proposed solution provides improvement in the accuracy rate.

[Iyengar et al. 2016] analyzed building energy consumption dataset from a utility company.
14, 836 smart meters at a small city scale have been used. The consumption profiles have been
clustered with K-means. The authors demonstrated how such analysis of smart meters at a large
scale can help to extract very useful information, e.g., "the impact of weather on energy usage, the
correlation between the size and age of a building and its energy usage, the impact of increasing levels of
renewable penetration" etc. They showed that energy usage might be increased in "extreme weather"
conditions, up to 36% in hot summer days, and to 11.5% in cold winter days. They diagnosed 700
residential buildings as "highly energy inefficient" due to their high energy demand variability.
They also showed that solar penetration rates at a degree beyond 20% of demand increases the
risks of generating useless extra energy, which affects the utility operations.

[Lange and Bergés 2016] considered disaggregation of appliances’ energy consumption in build-
ings. They proposed a system that learns the constituent current waveforms from sequences of
high frequency current cycles in an unsupervised way and looks up for the combinations of the
appliances’ subcomponents. An ANN was used to build the aggregate waveforms with a limited
number of additive building blocks. These blocks are assumed to constitute "sub-appliance" wave-
forms. To minimize its training error, the ANN activates a subset of re-occurring patterns for every
aggregate waveform. Online binary matrix factorization has been also performed to infer from
the current signal, "additive sub-components". A DNN with binary activations has been used to

5URL: http://archive.ics.uci.edu/ml.
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solve the unsupervised waveform classification problem. One of the solution’s feature is the use
of a general purpose hardware for data processing. Once the model is trained, realtime inference
is performed off-the-shelf on the hardware that avoids transmitting large amounts of data (to a
remote central repository). A public dataset has been used to evaluate the proposed method. A
cross-validation technique has been used for the DNN hyper-parameters tuning and evaluation,
which consists in splitting the dataset (1) randomly into equal training and testing sets, or (2) into
non-overlapping sets. The hyper parameters considered in this study are the number of layers and
the number of units. The results confirmed that the power consumption of individual appliances
can be estimated with the proposed solution, but with different accuracies.

[Jain et al. 2016] explored "data-driven methods" to build "control-oriented" models that reduce
power in buildings. They proposed a "Data Predictive Control with RT (DPCRT)" algorithm that uses
data-driven models based on RT to implement "finite receding horizon control". The method used in
the construction of the predictive model replies on optimization (at the node level) of the "variable
selection and splitting". The authors evaluated the method using a virtual testbed called "DoE
commercial reference". They generated dataset with information on the weather, schedules, building
(including different temperatures and light levels, power consumption). The results demonstrated
that when using DPCRT, the solution enables 90% accuracy on learning predictive models, and for
48.6% reduction in costs.

[Chandan et al. 2015] explored the use of a pre-cooling method that makes use of data to reduce
the operation energy cost and proposed a model for building thermal dynamics. The model targets
minimum data requirements from a BMS. In particular, they proposed what is called the "gray box"
approach that models thermal dynamics of the building. They illustrated the use of the model for
the evaluation of pre-cooling policies in a commercial building. Standard linear regression has been
used to solve the regression problem, and sensorial data from the existing BMS (without additional
deployment). Results shows that a 30 minutes of pre-cooling from the "default start time" with a
setting of the temperature to 26◦C enables to reduce peak demand by 9.5%.

3.1.3 Discussion. Solutions presented in this section dealt with energy profiling either for (1)
predicting load per appliance, or (2) predicting load per function such as heating, cooling, and
lighting, or (3) predicting the global energy consumption at scales ranging from a single room
to a set of buildings in a city. Regression is the ML problem considered in most solutions, where
different tools have been used including ANN, LR, DL combined with time series, SVR, RT, etc.
RMSE, correlation coefficient, p-value, and F-measure are metrics used for performance evaluation
in most works, while some works measured energy cost and the reduced energy. A couple of
solutions apply to any isolated building, while other solutions are tailored to buildings enabled with
HVAC and/or connected to smart grids and rely on advanced options to acquire information (e.g.,
available information from the grid, available sensors in the HVAC). Most of the works focused
on predicting peak hours, which has a high potential of applications in demand response systems,
notably for heating and cooling. Prediction granularity in the presented works varied from minutes
to days and weeks, while 24h ahead prediction is the most used. Online learning has been used
to enable adaptability to long term changes. Besides regression, clustering has been used with
analyzing tools to describe large city scale data and answer questions such as, the effect of weather
and time on the energy consumption, the correlation between building characteristics and its
energy use, the impact of sun penetration, etc. Solutions presented in this section are summarized
in table 7 (Appendix).

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: December 2018.



Machine Learning for Smart Building Applications: Review and Taxonomy :23

3.2 Appliance Profiling and Fault Detection
3.2.1 Overview and Problem Statement. Solutions that use ML tools to identify/track appliances,

detect anomalies/failures in the different components of the energy management system (airflow,
air handling unit, etc.) are presented in this section. Electronic appliances represent a major source
for hazardous situations and energy waste. For instance, a study in [Wang et al. 2014] show that 70%
of computers and related equipments are left on all the time. Therefore, the automatic identification
of appliances, their states, and/or anomalies has several purposes in smart buildings such as better
understanding of the energy consumption, appliance maintenance, and indirect observation of
human activities.

3.2.2 State-of-the-art. [Katarina et al. 2017] dealt with identifying abnormal consumption be-
havior in buildings and proposed an anomaly classifier. The latter is based on patterns and uses
"collective contextual anomaly detection sliding window (CCAD-SW)", and the "ensemble anomaly
detection (EAD) framework. CCAD [Capretz and Bitsuamlak 2016] is able to detect anomalies but
only with a latency that is proportional to the sliding window, which is unsuitable for services
that are delay intolerant such gas-leak detection. CCA-SW addresses this shortcoming by using
adaptive overlapping sliding windows to accommodate, (1) fast identification of urgent anomalies,
(2) analysis/profiling of building energy consumption in long terms. Some contextual features
have been added to the training set, e.g., day, month, season, etc, while ignoring other contextual
information such as occupancy and weather. To enrich the training set, statistical values have been
derived and used in the learning process such as the "inter-quartile range value", the mean and
standard deviation of the data (in every window), etc. A total of 25 heterogeneous features have
been selected and used in the overall learning process. These features have different scales, and the
large values are more influencing. The training set has been normalized by re-scaling the features
to fit in the interval [0 · · · 1], which equally balances the weights of the features. Different anomaly
detection classifiers have been combined (using majority-voting) in a generic framework (EAD),
in which k heterogeneous kernels that ensure diversification in the output are launched to learn
anomalies from the training data. SVR and random forest classifiers were used for every kernel.
The majority voting process has been used from the k kernels to generate the global classifier. The
EAD framework has been evaluated using real-world datasets from a company. Results showed
that EAD enables 3.6% improvement in the CCAD-SW sensitivity, and a reduction of 2.7% in the
false-alarms rate.
Automatic identification of appliances through the analysis of their electricity consumption

(signatures) has been considered in [Ridi et al. 2015]. The authors developed a collection of signatures
database (ACS-F database) that they made available for the scientific community. ACS-F contains
different brands and/or models of appliances with 450 signatures. This database is suitable when
using highly-intrusive power load monitoring where smart meters are dedicated to individual
appliances with no signal aggregation. This requires high number of smart meters, but the authors
justify this choice by the advances in IoT that is providing low cost smart plug meters of improved
precision. Despite the constant reduction of smart meters’ cost through IoT technologies, the cost
of this approach remains an issue for large scale deployments. The authors proposed two protocols
for the appliance identification task, where data collection cycles are divided into two sessions. In
the first protocol (called intersection protocol), all the signatures contained in the first session are
used for training, while the rest of signatures compose the test set. In the second one (called unseen
appliance protocol), all instances of both sessions are taken to perform a k-fold cross-validation. The
whole duration of the signals (1 hour) is used in both protocols, which is too long and impractical for
building applications and services requiring timely actuation. The authors proposed an approach
to adjust dynamically the window length and thus dynamic versions of both protocols. For the
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appliance identification, three ML algorithms have been applied on ACS-F: KNN, GMM, HMM. The
results showed that most performance accuracy can be gained using up to 30 minutes of analysis
window, that the intersection protocol allows to reach better accuracy, and that HMM and GMM
provides better performance than KNN (they allow to reach more than 90% for the intersection
protocol).
[Wang et al. 2014] considered tracking the states of electrical appliances (ON/OFF) with a

minimum number of smart meters, i.e., using less meters than appliances. This is by considering
the time correlation of the activation of appliances, where the switching events are sparse in short
periods of observation. An entropy-based approach has been used to study the required number
of smart meters and derive a lower-bound, which has been used to develop "a meter deployment
optimization algorithm (MDOP)". The authors also proposed what they called the FSD ("Fast Sequence
Decoding") algorithm to track every appliance and the sequence of states it follows. FSD is based on
HMM and uses a "monometer tree forest" to model independent meters, i.e., a tree forest where the
nodes in every tree are monometers. States decoding in monometer trees are performed in parallel.
A monometer tree with N appliances has 2N possible states, and thus requires O(2N ) comparisons
to find the most likely feasible state. The authors proposed "offline state sorting" to speed up the
online searching, where they sort (offline) the 2N states according to their energy values and
prepare an ordered vector representing the states for online binary search. An HMM-based online
state decoding algorithm was then proposed to run in every monometer tree for the search of the
best reward path connecting the states. The model needs only limited offline knowledge to initialize
the states of HMMs for training. The authors gave an example for initiating the states at midnight
as it is known a priori (offline) that all appliances are in an off state. The authors showed that
contrary to existing HMM approaches that have a time-complexity of O(t22N ) to decode online
sequences (where N is the number of appliances), FSD reduces this complexity to a polynomial
order, i.e.,O(nUt+1), whereUt represents an upper-bound (in a single sampling-slot) on the number
of switching events that occurs simultaneously, and n < N . MDOP and FSD have been evaluated
extensively using both artificial data and a real dataset (PowerNet) [Kazandjieva et al. 2009a]. The
results showed more than 80% reduction in the cost of deployment with more than 90% accuracy in
state tracking.
[Ferdoash et al. 2015] considered the use of large scale BMS to identify excessive airflow in

the HVACs, as well as the calculation of the optimal pre-cooling start-time to reach the desired
temperature. The authors deployed temperature sensors to collect data from two buildings. They
combined the collected data with weather data from a weather station and used linear regression
and SVM to derive simple models. They demonstrated the effectiveness of such models to identify
potentials on energy saving for HVAC. The authors evaluated how the models enable efficient
dynamic selection of energy policy for HVAC. Additional flow beyond the minimum flow setting at
each "Variable Air Volume (VAV)" has been analyzed, starting from the time when set temperature
is reached. The flows in a zone from all the VAV systems have been combined to calculate the
extra flow at the "Air Handling Units (AHU)" level. Energy saving possibilities at the AHU level has
been calculated by using the obtained "power-flow relationship". The results showed that aggregate
savings through appropriate operation of the VAVs enable an elimination of about 5% of the extra
flow per month at the facility scale.
[Li et al. 2017] presented a feature selection method (IGFF) for building fault detection and

diagnosis (FDD). IGFF selects the subset of features (sensor variables) that maximizes "mutual
information between candidate variables and the fault labels". That is, the subset of features of
maximum dependence with the fault labels (the targeted random variable). The selected features
may help improving the FDD accuracy and guide the operators in the deployment of sensors.
They may also (especially in case of limited resources of measurement) serve as reference for
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sensor configuration. The authors argued that different types of building working conditions
can be accommodated by IGFF, independently from the FDD algorithms. They proofed that IGFF
guarantees a near-optimal solution in maximizing mutual information and allows to derive upper-
bounds. Based on realistic dataset, a case study on the AHU has been performed. Multi-classification
techniques have been considered, notably QDA, LR, ANNs, and multiple SVM. The chosen features
have been fused together and plugged into these classification techniques. The numerical results
showed that the IGFF improves (in comparison to some baselines and state-of-the-art solutions)
conventional classification methods in terms of FDD performances. Solutions cited in this section
are summarized in table 8 (Appendix).

3.2.3 Discussion. Different solutions for appliance tracking/profiling and anomaly/fault detec-
tion have been presented in this section. Classification is the ML problem considered in most of the
solutions. Customized classifiers have been applied to electrical signatures that are obtained from
continuous power load monitoring either with (1) power sensors and IoT smart plugs integrated
to wall sockets, or (2) through global smart meters. The former approach is highly intrusive and
costlier than the latter, but more precise in terms of signature analysis. Advances in IoT technolo-
gies might pave the way for large deployment of low-cost power control plugs in the future. The
second approach has the advantage of easy installation, low cost and privacy protection. A practical
solution is to use smart plugs in a limited locations along with disaggregation algorithms on the
obtained signals to deduce individual appliance consumption/state. However, this yields a trade-off
in sensor deployment between reducing the cost vs. accurate tracking. Signal analysis through data
disaggregation is more difficult when multiple equipments are used simultaneously. Information on
single sources of consumption can be partially retrieved through the application of disaggregation
algorithms (similarly to the solution presented in [Lange and Bergés 2016]), but the performance
depends upon the type and the number of appliances that are used simultaneously. Anomalies
might be detected by analyzing the power consumption of appliances and/or behavior of some com-
ponents of the BMS (e.g., temperature variation of airflow). Sensitivity to the detection delay varies
from an application to another and might be critical for applications such as gas leak detection.
Fast detection might be achieved with some adaptive techniques on the classifiers but with the cost
of an increased false positives, which yields a trade-off. To evaluate their solutions, some works
used metrics related to classification, e.g., accuracy rate, precision and recall, while others used
some specified metrics related to outlier detection such as metering noise, AUC (Area Under the
Curve) and cost saving ratio. The baseline methods used in this category include statistical-based
and neighborhood-based outlier detection approaches. While these approaches have been used as
baseline, advanced outlier detection algorithms such as such LOF (Local Outlier Factor) [Breunig
et al. 2000] have not been considered. It is interesting to explore such algorithms for fault detection.
Solutions cited in this section are summarized in table 8 (Appendix).

3.3 Inference on Sensors
3.3.1 Overview and Problem Statement. This section presents ML approaches that have been

used to infer information on sensors, such as their types, their positions and orientations. Meta-data
related to sensors are trained to learn models for sensor’s placement and orientation, sensor’s type
identification. The difficulty of such task lies on the effective use of the meta-data coming from
several sensors in the learning process, i.e., how to deal with data heterogeneity problem.

3.3.2 State-of-the-art. [Gonzalez et al. 2016] dealt with localization of building-installed spatial
sensors (inference of the relative positions and orientations) that are used for object tracking. The
proposed approach was tuned to sensors that detect objects without identification. The positions of
sensor nodes have been mined from their data using association rules mining (ARM) independently
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from the underlying technologies and infrastructure. Walking trajectories within building spaces
have been explored by objects’ tracking and the creation of link rules between sensors, which
enabled to infer relative sensor arrangement. The approach consists in three main steps:
(1) Transition event extraction: This step aims to built the set of transactions from the sensors’
data. Each track, tr, in a sensor node, s , is defined by the set, {(r1,p1, t1), (r2,p2, t2),∆t}, where r1
(resp. r2) represents the regions of an object that is detected when it enters (resp. exits) the sensor’s
coverage area, p1 (resp. p2) represents the positions, t1 and t2 their respective times. The lifetime
of the track, tr, of the sensor, s, is defined as the difference between these times, i.e., ∆t = t2 − t1.
The transition event is defined by the tracks of the sensor s, and t, where ∆t does not exceed a
given threshold,OW , called observation window. The transaction is defined by the set of transition
events that are related to the same objects.
(2) Link rule estimation: This step aims to apply ARM from the set of transactions created in the
previous step to define relationships between tracks of sensors and determine the most relevant
sensors. At the end of this step, a set of link rules are extracted. A link rule is a rule that links two
tracks of two different sensors. For example, the link rule (s1, r1 ⇒ s2, r2) with the confidence of µ
means that if the given object is captured by the region, r1, and the sensor, s1, then there is µ of
chance that entries to the region, r2, are captured by the sensor, s2.
(3) Sensor matrix arrangement: The placement of the sensors are determined in this step based on
the set of link rules extracted in the previous step. The rules are first sorted in descending order on
the confidence values. The link rules are then selected, and the sensors are placed according to the
tracks of the selected rules. This process is repeated until all the sensors are deployed.
The proposed solution is general and applies to any type of spatial sensors. For the evaluation,

the authors used "thermopile array sensors". Four building-scenarios have been considered with
different arrangements in sensor deployment (in position and numbers): (1) corridor, (2) T-crossing,
(3) meeting room, (4) foyer. Real dataset has been collected over several weeks in each scenario. The
results showed high accuracy in inferring positions for the T-crossing scenario (approaching 100%),
which is the most dynamic scenario in terms of occupants’ movements. The average accuracy for the
other scenario ranged from 50% to 70%. This fluctuation in accuracy represents the major drawback,
which makes the solution strongly dependent upon the activity of the monitored area. However,
the solution is useful as a tool for the maintenance of "heterogeneous spatial sensor networks", which
is assured independently from the communication protocol.
[Hong et al. 2015] considered automatic inference of the type of sensors in a building (without

manual labeling). Techniques from transfer learning have been used to learn, from meta data of
a labeled building, statistic classifiers. The latter have been adapted for use in another unlabeled
building. The proposed techniques allow for mapping independantly from the structure of the meta
data. Starting from a building where all the dataset is labeled, the solutions uses time-series to train
"multiple statistical classifiers", which predict the types of sensors through the raw data and the
patterns of the readings, e.g., "readings from air temperature sensors are different and change more
slowly than those generated by light or CO2 sensors". ML methods including RF, LR, and SVM with
RBF kernels have been used to design the classifiers, which have been derived from the labeled
building to label the points in the target building. Weights of the classifiers are determined according
to the consistency of the prediction of the instances in the target building. For the evaluation, the
authors used a dataset collected during seven days from 2500 sensors in three commercial buildings.
Several types of sensors have been used including temperature (of different types, e.g., ambient
temperature, water temperature, etc.), CO2, and humidity. In the three buildings, true sensor types
have been created manually. The proposed techniques have then been applied on every building
to "automatically infer" the sensor types for the other remaining buildings. Experimental results
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showed more than 85% accuracy in labeling about 36% of the points, and up to 96% accuracy for
labeling 81% of the points in some cases.
[Gao et al. 2015] considered inferring the sensor type and presented a solution to automat

the association between sensor measurements and descriptive tags (from a "standard set"). This
method has been used in a semi-automatic meta-data inference framework that enables to learn
from measurement data of a building automation system. The labeling problem has been casted
as a supervised-learning problem, and the authors trained some classification algorithms for the
matching of the measurements’ features with a "standard form of tagging" (Haystack tags). The
classification algorithms used are, RF, K-NN, DT, GNB , SVM with RBF kernels, LR, AdaBoost and
LDA. The framework has been evaluated on two buildings with sensors of several types including
temperature, PIR, CO2, power. For each classifier, 20% of the dataset has been used for training and
the remaining 80% for tests. The results showed that the approaches providing the best performance
are RF, k-NN, DT. The results also indicated an average accuracy of 95% when performing the
training and the test in the same facility.

3.3.3 Discussion. Different solutions for inference on sensors have been presented in this
section. Association rule mining (ARM) and classification are the ML problems considered in most
of the solutions. ARM aims to derive different dependencies between meta-data sensors. These
dependencies are used to determine sensor placement. Classification aims to learn from meta-data
to predict the type of the sensor’s measurement. To evaluate their solutions, some works used
metrics related to measuring efficiency of the classification, e.g., accuracy rate, precision and recall,
while other works used some ARM related metrics such as support, confidence, and the number
of the discovered frequent patterns. The baseline methods used in this category are approaches
related to classification such as KNN, SVM , DT., as well as other approaches related to ARM such
Apriori[Agrawal et al. 1993]. Table9 (Appendix) compares the solutions presented in this subsection,
and Fig. 4 is gives a taxonomy of all the energy/device centric solutions.
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4 GENERAL REMARKS AND FUTURE DIRECTIONS
Earlier works in the literature on smart buildings focused on energy performance and proposed
solutions based on realtime monitoring and actuation. While being vital, energy represents only
one facet of the overall building performance [Molnar et al. 2015]. Further, recent studies indicate
that the use of simple energy monitors and automation systems does not spur energy saving actions
by the consumers who quickly adopt the reported consumption as normal and often see no reason
to reduce it further. This makes most of the current building automation systems either rejected
by the users or used in non-optimal ways [Hargreavesn et al. 2013]. Therefore, even from the
economic and energy saving perspectives, users’ preferences/comfort have to be considered in next
generation’s buildings. Energy saving solutions should be developed jointly with the stimulation of
the occupants involvement. They should improve the comfort of the occupants or at least guarantee
there will have no negative impacts on their preferences. Prediction models are needed to accurately
estimate occupants’ presence, their preferences and behavior, energy consumption and profiles,
etc. ML has largely been used for this purpose in the last few years and many solutions have been
proposed as presented in this paper. In addition to energy management systems, these solutions are
also significantly influencing other sectors such as retailing (smart shopping centres), health-care
(smart hospitals and homes), security and safety (intrusion/anomaly detection systems), etc. This
requires the development of newmetrics in the future that thoroughly combine energy performance
and business/comfort performance measures. Separating user comfort and energy saving may lead
to wrong decisions. The impact of such wrong decisions in traditional BMS has been investigated
in [Lazarova-Molnar et al. 2015; Seppanen et al. 2004; Wyon 2004]. These studies show that an
uncomfortable environment may significantly reduce employees’ productivity and may engender
losses for a business that are higher than the gain in energy saving.

One of the key scientific challenges that should be dealt with to develop user-centric, personal-
ized services and applications is to exploit the heterogeneous nature of the data stemming from
different sources such as sensors, smart phones, existing databases, etc., and through different data
transmission schemes such as Internet, cellular networks, wireless personal area networks. This
heterogeneity results in a variety level of trustworthiness, frequency, resolution, reliability, and
it imposes various types of uncertainties for ML tools such as biased readings, failed sensors, etc.
Many ML approaches in different application categories have been analyzed in this paper. For
occupancy, most solutions of the literature range from binary classification to estimating the exact
number of occupants. Few works have been devoted to more advanced occupancy monitoring
services such as gender classification and person identification, which have many applications,
e.g customized advertisement in malls and shopping centers, security, safety, advanced health
care systems. Some preliminary solutions have been proposed as presented in this paper, but
generalizing these solutions and achieving high accuracy with reasonable cost remains challenging.
For activity recognition, one of the challenges is the diversity (from an individual to another) of
the same activity. For example, "the differences in speed of walking, gestures, sleep habits, etc., are
ambiguous to a general passive learning model" [Hossain et al. 2017]. It is then important to build
adaptive models that can be personalized for individual users. Semi-supervised approaches such as
active learning might be useful to find out the data points that are most informative and actively
request labels on demand. This will enable the detection of unseen activities, contrary to passive and
supervised learning. Ground truth collection is also a difficult task, given the variety and dynamic
of human activities [Hossain et al. 2017]. Further, activity monitoring in multi-occupied spaces is
challenging, where it is difficult to distinguish individuals activity with the overlapping readings
from different sensors. Nevertheless, multi-occupant settings may represent potentials for active
learning where the occupants might be asked to label data from each other [Hossain et al. 2017].
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Exploring this to overcome lack of data labels and to infer individual activities in such a setting
is an open research trend. Transfer learning has been used for activity recognition and to infer
information on sensors. Similar approaches can be applied for energy profiling, which will permit
to take advantage from existing datasets of similar buildings. Tracking ON/OFF states of appliances
is a challenging problem. Current solutions are facing a difficult choice between reducing the meter
deployment cost and targeting accurate tracking. Dense smart meters deployment provides high
accuracy but has high costs (of deployed meters, maintenance, etc.) while deploying small numbers
of meters generally suffers from low accuracy.

The hyper-parameters used in the solutions presented in this paper may be categorized according
to two key aspects, (1) ML tool-related hyper-parameters and (2) problem-related hyper-parameters.
The first category groups the hyper-parameters defined by the ML model such as the learning
rate in LR, the number of hidden units in ANN, etc. The problem-related hyper-parameters are
those proposed while solving the appropriate problem, e.g., the threshold used by [Ghahramani
et al. 2015] to separate comfort and discomfort votes, the weights of false positive rates and false
negative rates used by [Zhou et al. 2015] to penalize false positive classifications. From tuning
perspective, hyper-parameters may also be grouped into two categories. (1) empirically tuned
hyper-parameters (2) theoretically crafted hyper-parameters. In the first category, the authors use
a trial and error process to define the optimal values for hyper-parameters after multiple tests.
This category includes also works using cross validation for tuning e.g. [Lange and Bergés 2016].
Examples of the second category include [Sonmez et al. 2015], which used GA and ABC heuristics
to define the optimal activation function for each node of an ANN, and [Sarkar et al. 2016], which
applied curve fitting to estimate the parameters of a Gaussian and Beta functions.

To evaluate the performance of their solutions, the authors relied either on, (1) their own collected
datasets, or (2) on some publicly available datasets, or (3) on generating artificial data by simulation.
Table 3 provides details about publicly available datasets used by the works presented in this paper,
where each dataset is linked to its citing paper. Besides these datasets, other building datasets
can be found in CASAS6 and UC Irvine Machine Learning [Dheeru and Karra Taniskidou 2017]
repositories.
Two types of approaches have been used in works that relied on data collection to construct

power consumption dataset: (1) the use of sensors or individual-meters at every part of the electrical
network, vs. (2) the use of global smart meters with power disaggregation techniques. The first is
intrusive and costly, but it has the advantage of providing high granularity in monitoring and more
precision in terms of signature analysis. The use of global meters with desegregation techniques
has the advantage of easy installation, low cost and preserving privacy. However, signal analysis is
more difficult when multiple equipments are used simultaneously. Advances in IoT technologies
might pave the way for large deployment of low-cost power control plugs in the future. Another
option that has recently been explored is the use of non-intrusive techniques such as the existing
sensors (of HVACs), which is useful to eliminate or reduce the need of deploying dedicated sensors.
Privacy is one of the key issues that refrain the implication of potential participants in crowd-

sourcing for data gathering in smart building applications (through smart phone applications, online
reports, etc.). Few works have been conducted for privacy guarantee in this context [Hamm et al.
2015]. Privacy guarantee when sensing is another critical issue. One of the elementary measures
is the use of none-invasive sensing technologies to collect data (e.g., PIR, ultrasonic sensors, etc.)
instead of cameras and microphones (except in public areas where it is permitted to install cameras
such as corridors, waiting rooms, halls, etc.). This reduces the applicability of existing advanced
image processing technologies. When using cameras in public areas, the exploration of video

6http://casas.wsu.edu/datasets/
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Table 3. Publicly available datasets.

Section Solution Dataset Features Period # participants # Buildings

2.1 / 2.2 [Carolis et al. 2015;
Soltanaghaei and
Whitehouse 2016]

Aruba [Cook 2012] motion, temp, and
door closure sensors,
sensors layout in
the home. annotated
activities

26 weeks 1 + 2 visiting 1 (8rooms)

2.2 [Chiang et al. 2017] MIT MAS622J [Tapia
et al. 2004]

Binary sensors (PIR,
switch) installed in ev-
eryday objects, activ-
ity labels, time

2 weeks 2 2

[Carolis et al. 2015;
Nait Aicha et al. 2017]

[van Kasteren et al.
2008]

binary sensors 28 days 2 2

2.3 [Zhou et al. 2015] RP-884 [De Dear and
Brager 1998]

temp, humidity, air ve-
locity, clothing, meta-
bolic rate. PMV

NA 21000 160 worldwide

3.1 [Zhang et al. 2016] DOE-2 based soft-
ware weather data
[Wea 2018]

weather data NA / wide area

[Mocanu et al. 2016] Individual household
electric power con-
sumption [Dheeru
and Karra Taniskidou
2017]

9 power consumption
attributes

47 months NA 1

[Lange and Bergés
2016]

Blued [Anderson et al.
2012]

voltage, current mea-
surements for 42 ap-
pliances

1 week 1 family 1

3.2 [Katarina et al. 2017] Powersmiths [Pow
2018]

HVAC power 2 years NA school

[Wang et al. 2014] PowerNet [Kazand-
jieva et al. 2009b]

power of 134 appli-
ances

+700 days NA large office-building

streams to infer comfort information (e.g., thermal) is one of the current trends [Jazizadeh and
Pradeep 2016]. We showed that ML are also used for failure detection in buildings. In this context,
fast detection is required in some applications (e.g., gas leakage), which might be achieved with
some adaptive techniques on the classifiers but with the cost of increased false positives. Since
such applications need real time detection with high accuracy, investigating the impact of a wrong
decision by the ML model is worth studying. The need for fast detection inevitably raises a trade-off
that has not been addressed. Combining advanced ML (such as hierarchal methods and DL) with
game-theory approaches might be explored for this purpose. DL has already been explored in smart
buildings to analyze heterogeneous data at a larger scale and generate general models. However,
DL models might be fooled by misleading examples in the training process, which might have
dramatic impacts on the performance [Ota et al. 2017]. Feature selection and data filtering are
important steps to reduce such impacts.
The use of ML in commercialized smart building solutions starts to attract investors’ attention.

The most common way of deploying such ML based applications is by hosting services in the
cloud and enabling home smart devices to connect to it via WiFi or Ethernet. These devices aim at
detecting and learning usage patterns to anticipate house control based on historical manipulations
from users. Viaroom Home7 is an example of these applications. Their algorithm analyzes 48h
habits to control lighting, heating and appliances. Viaroom is compatible with state-of-the-art
home automation devices such as Philips Hue8 and Fibraro lighting9, Qubino shutters10, Aeotec

7http://viaroom.com/
8https://www2.meethue.com/en-us
9https://www.fibaro.com/en/
10http://qubino.com/products/flush-shutter-dc/
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smart plugs11, Yale door locks12 and Foscam security cameras13. Nest Labs14 (Google’s subsidiary)
also uses ML in their products. Their learning thermostat monitors the users thermal settings
to preserve energy and provide comfort, while their security cameras use face recognition to
detect intrusions. Wireless speakers, such as Amazon Echo and Google home assistant, use speech
recognition to analyze different requirements from users. These speakers also combine many smart
devices products to provide centralized control. Electronics companies such as LG and Samsung
also joined the race to endow smartness in home appliances. LG DeepThinQ is an AI platform that
add intelligence to the object depending on its task, e.g. a vacuum robot is able to detect objects
while a fridge recognizes missing items. Samsung’s Bixby allows voice control of this brand’s
appliances. The common point between these products is hosting services in the cloud. This raises
two problems that are slowing down the large adoption of smart home devices: the privacy of
sensitive information communicated to third parties, and the need of efficient communication
protocols. The efficiency in communication comes with the cost in high energy usage. This explains
why most of available products needs constant source of energy. Researchers and developers are
optimistic about the support of Tenserflow by Raspberry pi platform15 as it opens the opportunity
for embedded systems to run DL architectures. Such possibility may allow to avoid (or reduce) the
dependency upon cloud support.
We also point out that in real applications, ML services, requirements and challenges may also

depend upon the type of buildings. For example, gender classification might be useful in commercial
buildings. Offline training is more appropriate for residential buildings, while online training is
more appropriate for non-residential buildings. Commercial buildings are potentially sources of
collecting important, large amount of data, but some incentives should be provided to attract
participation of occupants. This attractiveness is not an issue in residential buildings, but in this
category of buildings, the collected data might be limited in time. In addition to the type of buildings,
applicability of the solutions presented in this paper also depends of the size of buildings. Some
solutions apply to any isolated building, while other solutions have been designed to those enabled
with HVAC and/or connected to smart grids.

One of the hot research topic is what is know as "software defined buildings" [Dawson-Haggerty
et al. 2012] that inspires from the domain of software-defined networks for application in buildings.
This is promising to enable decoupling between applications and the hosting physical building,
which will considerably reduce efforts needed to add new functions, applications, and services.
It will also extend communication capabilities between buildings and with third parties (e.g., the
electrical grid) and will pave the way for the design of autonomous solutions and customized
services at a high level of abstraction. Finally, note that the literature related to the use of ML in
smart building applications involves different communities and different disciplines. This implies
the use of different terminology, different ways of measuring performance, different angles of
looking at the problems, etc. [Millera et al. 2017] provided a good analysis on these issues. The good
point here is the multi-disciplinarity of this domain. Several cross-disciplinary venues are already
established (e.g., ACM BuildSys conference, ACM E-energy conference, related tracks in many
other ACM and IEEE conferences, etc.). These networking opportunities will certainly promote
synergy between communities to work on multi-disciplinary projects and achieve goals at large
scales.

11https://aeotec.com/z-wave-plug-in-switch
12https://www.yalelock.com/en/yale/com/
13https://www.foscam.com
14https://nest.com/
15https://www.tensorflow.org/install/install_raspbian
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5 CONCLUSION
Model-based solutions with deterministic control algorithms have largely been used in building
automation systems for a long time. They have been sophisticated with the introduction of wireless
sensing/communication capabilities for realtime optimized actuation. However, such solutions
reached their limits due to the increased complexity of buildings and users’ demands, and they
failed to motivate consumers to spur energy saving actions or even to appropriately use/configure
the control system. Learning is the most appropriate alternative in this case, where the optimal
policies are not a priori known but can only be developed using data or experience. The current
trend in smart building applications is thus to explore approaches derived from machine learning
(ML) for inferring knowledge about the occupants, devices and energy profiles. This enables to
smoothly take control actions and to provide advanced services that will not only promote users’
comfort but attract them to join the loop for the energy saving policy. We have provided throughout
this paper a comprehensive survey and taxonomy of ML solutions in smart building applications.
The solutions presented have been split into two main classes. The first groups occupant-centric
solutions where the ML approaches have been used to deal with features related to occupants. This
has been further divided into three sub-categories, (1) occupancy estimation and identification,
including different levels of occupancy estimation, from binary information (occupied vs. vacant
space) to assessing the exact number of occupants and identification of the gender of occupants or
the persons, (2) activity recognition of the occupants, (3) estimating their preferences and behavior.
The second main category includes energy/device centric solutions, where ML is used to estimate
aspects related either to energy or devices (appliances and sensors). They have been divided into
the three sub-categories (1) energy profiling and demand estimation, (2) appliances profiling and
fault detection, 3) inference on sensors. Different solutions have been presented in every category,
compared, and discussed from the ML perspective, as well as the technical and application aspects
of their implementations and/or experimentations. The paper ends in Sec. 4 with a summery of
the most relevant lessons we concluded from this survey and the future directions of research
trends in this arena. While application of ML has gained high maturity in its traditional domains
such as image/speech processing, human languages, spam filtering, etc., the use of ML in smart
buildings is in its embryonic age. We have seen only the tip of the iceberg, while much exploration
is needed and deep progress is required in all directions to reach mature solutions for large scale
deployments.
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APPENDIX
A COMPARATIVE TABLES

Table 4. Summary of the occupancy solution.

Solution Occupancy Sensors Sensor Data Problem ML tool Eval Metric
Type

[Khan et al. 2014] binary, phys, motion, acoustic class KNN, SVM accuracy
categories, contex noise, light, humidity,
exact number meetings schedule,

computer activity
[Sangogboye et al.
2016]

binary phys motion class SVM F-measure

[Ardakanian et al.
2016]

approximate phys single-pneumatic con-
trol, air flow, reheat

clus agglomerative hierar-
chical

occupancy related
metrics, energy
saving

[Shih et al. 2016] binary, phys ultrasonic response class, reg generic classifiers,
exact number RT mean error, FP, FN

[Soltanaghaei and
Whitehouse 2016]

zone phys motion class DT accuracy, energy sav-
ing, comfort

[Bales et al. 2016] gender phys accelerometers class boosted DT, SVM,
ANN

error (%)

[Khalil et al. 2016] occupant ID phys ultrasonic clust DBSCAN correct & error (%)

Table 5. Summary of the activity recognition solutions.

Solution Activity Recognition Sensors Sensor Data Problem ML Tool Eval Metric

[Hossain et al. 2017] 7 daily act phys motion, compass clust, K-means accuracy (%),
accelerometers class F-measure, correct

class, distances on
clusters

[Chiang et al. 2017] 25 daily act phys +70 of different types class SVM, trans learn accuracy
[Nait Aicha et al.
2017]

regular/irregular phys states of cabinets and
doors, motion

class MMPP F-measure

[Carolis et al. 2015] tasks in time (+600) phys high number, time class First-order min, max, avg error
in

logic learning activities identifying
[Alhamoud et al.
2015]

9 daily act phys temp, light, motion clust K-means distances on clusters

[Zhu et al. 2015] 5 daily act virt gyroscope, clust, LLC+K-means, accuracy
accelerometer class SVM, KNN

KELM
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Table 6. Summary of the preferences and behavior solutions.

Solution Comfort Preference Sensors Sensors Data Datasets Problem ML Tool Eval Metric
Type Collection Type

[Ghahramani
et al. 2015]

ther voting phys temp, humid-
ity

real class BN accuracy,
specificity

[Zhou et al.
2015]

ther voting phys, context humidity,
temp, air
velocity, phys-
iological
conditions

real class CPLC testing error

[Sarkar et al.
2016]

ther, vis voting phys temp, light artificial reg curve fitting estimation
error (lux),
saved energy

[Barbato et al.
2010]

ther, vis behav monitor phys temp, light,
motion

artificial clust proposed correct profile
prediction (%)

[Antunes et al.
2013]

ther behav monitor phys temp, power real reg SVM system
through-
put, detection
of relevant
patterns

[Shoji et al.
2014]

ther behav monitor phys power real class BN accuracy,
electricity
consumption

Table 7. Summary of solutions for energy profiling and demand estimation.

Solution Energy Profiling Sensors Type Sensors Data Dataset Problem ML tool Eval Metric

[Zhang et al.
2016]

appliances load phys, context HVAC load,
weather, electric-
ity price

real reg ANN, LR error(%), energy,
cost ($)

[Sonmez et al.
2015]

heating/cooling no BAI real reg KNN, ANN MAE, SD

[Fan et al. 2017] cooling phys ambient and cool-
ing water temp,
humidity

real reg DL MAE, RMSE, CV-
RMSE

[Mocanu et al.
2016]

Building power phys power real reg RBM RMSE, R, p-value

[Chou and Ngo
2016]

smart grids con-
nected buildings

phys, context humidity, temp,
power, appliance
power, elec-
tricity saving
alternatives

real reg ARIMA, SVR R, RMSE, MAE,
MAPE, MaxEA,
TER, CPU time

[Iyengar et al.
2016]

city scale energy
usage

phys power real clus K-means /

[Lange and
Bergés 2016]

appliances load phys current wave
form

real class DL F-measure, CPU
time

[Jain et al. 2016] building power phys, contex temp, light,
power, weather,
schedules, build-
ing data

real reg RT NRMSE, Power
consumption,
peak reduction
(%)

[Chandan et al.
2015]

cooling phys temp, humidity,
CO2

real reg LR average error,
zone temperature

[Barbato et al.
2010]

heating light phys light, temp, PIR artificial clust proposed correct profile
prediction (%)
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Table 8. Summary of appliances profiling solutions.

Solution Considered Sensors Sensors Data Datasets Problem ML tool Eval Metric
problem Type

[Ridi et al. 2015] appliances phys IoT-based smart real class KNN, GMM, Accuracy
identification plugs for every de-

vice
real class HMM

[Wang et al. 2014] appliances’ state
(on/off)

phys smart meters art, real class HMM metering noise

[Katarina et al.
2017]

anomaly detection
in energy consump-
tion

phys power consump-
tion

real class ANN, SVR, RF AUC

[Ferdoash et al.
2015]

excessive airflow in
HVAC

phys, virt temp, weather real reg SVM, LR Accuracy

[Li et al. 2017] failure detection phys depend upon real class QDA, LR, Accuracy
of air handling unit features ANNs, MSVM

Table 9. Summary of solution for inferences on sensors

Solution Sensor Sensors Sensors Data Datasets Problem ML tool Eval Metric
Inference Type

[Hong et al.
2015]

type phys ambient and wa-
ter temp, CO2 ,
humidity

real class trans learn, RF,
LR, SVM with
RBF kernels

Accuracy, F-
measure

[Gonzalez et al.
2016]

position, orientation phys thermopile
array sensors

real rule mining association
rules

Accuracy, sup-
port, confidence

[Gao et al. 2015] type phys temp, motion,
CO2 , power

real class RF, KNN, DT,
SVM, LR, LDA,
AdaBoost

Accuracy, re

B LIST OF DEFINITIONS
Linear Regression (LR). It consists in expressing, with a linear function, the relationship between
a scalar dependent variable and one or more independent variable. The regression function is
found by solving an optimization problem with the normal equations method while minimizing
the empirical error. The latter is defined on the labeled data as the average distances between the
estimated and empirical values. Mean square of differences or of absolute values of differences are
the most used methods [Alpaydin 2014].
Logistic Regression. It aims at predicting a dependent variable value from a set of independent

variables. The dependent variable in this case is binary, i.e., two classes, which makes it adapted to
resolve binary classifications problems by estimating the probability of the event using the Sigmoid
function. Softmax regression (or multinomial logistic regression) is a generalization for multi-class
classification. The Softmax function (also known as the normalized exponential) receives as inputs
scores (Logits) that are calculated in a similar way to linear regression and it returns probabilities
for each target class. The high probability target class will be the predicted target class [Alpaydin
2014]. Logistic regression may be seen as one layer of ANN.

Artificial Neural Networks (ANN). An ANN is composed of a collection of interconnected nodes
(neurons) that interact with each other. On each connection, a neuron can process a signal and
transmit it downstream. Neurons states are represented by real numbers, generally between 0 and
1. The output at each neuron is called its activation value [Mitchell 1997]. Common activation
functions, that maps neurons’ inputs to activation outputs, are Sigmoid, Softmax, RElU (rectified
linear unit), and tanh. The neurons are organized in layers, with an input, an output, and hidden
layers.

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: December 2018.



:40 Djenouri, D. et al.

There are two categories of topologies in ANN: (1) Feedforward ANN where the information flow
is unidirectional throughout the layers with no feedback loops, which formes a directed acyclic
graph. This category of ANN is used in pattern generation/recognition/classification. (2) FeedBack
(recurrent) ANN, including feedback loops forming directed cycles in the topology graph. They are
used in content addressable memories, (i.e., use internal memory to process arbitrary sequences of
inputs).

Extreme Learning Machine. is a feedforward ANN where input weights and hidden nodes biases
are randomly assigned and never updated. Only output weights (between the hidden nodes and the
output layer) are learned in a single step. This method makes learning much faster and provides
better performance compared to traditional feedforward ANN where all the parameters need to be
learned[Sun et al. 2014].
Restricted Boltzmann Machine (RBZ). is a generative stochastic ANN that may be used either in

supervised or unsupervised way. In RBZ, the neuron’s binary activations are probabilistic. RBZ
includes two layers, (1) the visible (input) layer, and (2) the hidden layer that performs a binary
analysis. To facilitate the learning in RBZ , connection between the layers form a bipartite graph,
i.e. no intra-layer connection[Trevor Hastie 2013].

Deep learning (DL). DL models use a cascade of nonlinear processing units that are organized into
layers, where the output from every layer is plugged as an input into the next one. The problem
dealt with steers the layering composition of the nonlinear processing units used in DL algorithms.
Most of DL applications may be also viewed as a general form of ANNs, or in particular, the
application to learning tasks of ANNs with several hidden layers. The learning may be supervised,
partially supervised or even unsupervised (contrary to traditional ANNs).

Decision Trees (DT). They build classification or regression models in the form of a tree-like graph
or a flowchart-like structure, where "tests" on attributes are represented by nodes, class labels
(numerical data) by leaves, and the outcome of the test by branches. Carefully crafted questions on
attributes of the test record are used in a series to feed the tree. The C4.5 algorithm is the most used
in DTs. It adopts a top-down divide-and-conquer recursive approach. In every node, the algorithm
chooses the best split among the features and possible split points. The split maximizing the
normalized information gain is selected. This procedure is repeated for every node until reaching
a "stop condition", which may be the minimum number of leaves in a node, the tree height, etc.
[Alpaydin 2014]. The composition of multiple trees leads to more efficient algorithms such as
Random Forest or Gradient Tree Boosting.
Random Forests. They are collections of independently trained DTs outputting the mode class

of the classes in case of classification, or the mean of the individual trees predictions in case of
regression. DTs are unstable as they tend to overfit the training data, i.e., small changes in the data
lead to largely different trees. This model provide more robust prediction compared to the use of
single trees. The forest is called random because a random sample of the complete dataset is used
to train each tree, which is known as "bootstrap aggregating or bagging". [Alpaydin 2014].
Support Vector Machine (SVM) and its Variants. It is a supervised ML model mostly used for

classification, and sometimes for regression. Binary linear classification is performed by searching
the hyper-plane that optimally differentiates two classes, i.e., that maximizes the distance to the
nearest data point on each of its sides. Two parallel hyperplanes (that separate the two classes of
data with maximum distance) can be selected if the training data are linearly separable. Non-linear
classification can be assured by SVM and kernel trick with non-linear kernel functions. SVM may
be generalized to multi-class SVM by reducing the single multi-class problem into multiple binary
classification problems[Alpaydin 2014]. The are many variants of SVM, such as SVC (support vector
clustering) that is used in unsupervised learning clustering problems, and SVR (support vector
regression) that is used for regression[Trevor Hastie 2013].

ACM Computing Surveys, Vol. 1, No. 1, Article . Publication date: December 2018.



Machine Learning for Smart Building Applications: Review and Taxonomy :41

AdaBoost and Gradient Boosting. These are boosting techniques that attempt to generate a strong
classifier based on existing weak classifiers. This is done by building a model from the training
data, then sequentially creating a new model that attempts to correct the previous errors. This
process is repeated until the training set is predicted perfectly or a maximum number of models are
added. AdaBoost (Adaptive Boosting) is a boosting algorithm developed for binary classification
[Alpaydin 2014].

Stochastic gradient boostingmachines aremodern boostingmethods built onAdaBoost. In Gradient
boosting, each added model is trained to minimize the error by searching in the negative "gradient"
direction. Gradient boosting tree incrementally builds sequences of simple trees by training each
new instance.

Gradient Decent Algorithm. It is used to minimize a function defined by a set of parameters. An
initial set of values of the parameters used and then the algorithm iteratively moves toward a set
of values that minimizes the function. Steps in the negative direction of the gradient function are
taken in the iterations. Gradient descent is commonly used to find parameters that minimize linear
regression error [Alpaydin 2014].

K-Nearest-Neighbor (KNN) Algorithm. It is a method that does not require a training phase. The
classification or the numerical value prediction for a new instance is made by searching through the
entire dataset for the K closest instances using similarity measures (e.g., Euclidean distance). The
output is summarized in these K nearest instances. For regression, the value of the new instance is
the average on its K nearest neighbors. In classification, it is assigned to the class to which belong
most of its K nearest neighbors (the mode class)[Alpaydin 2014].

Sparse Representation Classification (SRC). It is motivated by the fact that even though and object
is in high-dimensional space, it can be reduced in a lower-dimensional subspace as long as it is
presented as a sparse. A sparse is a vector or a matrix in which most of the elements are zeros.
By having few components that are different from zero, the object is decomposed as a linear
combination of only few vectors, called atoms. The general framework of SRC is to use the linear
combination of atoms to represent the object and calculate the representation coefficients of the
linear representation system, and next use it to calculate the reconstruction residuals of each class.
SRC is widely used for objects recognition in images[Wright et al. 2009]

K-means. It is an algorithm that divides a dataset intoK clusters where each observation belongs to
the cluster with the nearest center. K is an important input hyper-parameter on K-means[Alpaydin
2014].
Single-Link Clustering or Single-Linkage Clustering. It is a type of hierarchical agglomerative

clustering where two clusters separated by the shortest distance are combined, and the distance
between two clusters is defined as the one separating their two most similar members [Alpaydin
2014].

Bayesian Networks (BNs), Belief Networks, or Probabilistic Directed Acyclic Graphical (DAG) Model.
BNs are defined as a DAG whose vertices represent random variables, which may be parameters or
hypotheses, observable quantities, etc., and edges represent probabilistic conditional dependencies.
Statistical and computational methods are usually used to estimate conditional dependencies. A
probability function is associated to vertices that has as input for every vertex a set of values related
to its parent variables, and it gives as output the probability of the variable the node represents.
BNs combine principles from graph theory, algorithmic, statistics. They are used as underplaying
model for many ML algorithms [Alpaydin 2014].

Hidden Markov Model (HMM). It is a probabilistic sequence model that associates a sequence of
observations to a sequence of labels. it computes, for a given sequence, a probability distribution
over possible sequences of labels for the purpose of select the best one. HMM is a Markov process
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with unobserved (i.e., hidden) states. Only the token output (that dependents on the state) is visible.
HMM generates a sequence of tokens to inform about the sequence of states[Alpaydin 2014].

Time series. It consists in adding an explicit time-based order dependence between observations
in a sapce of data. The Addition of the time dimension allows to, (1) identify the temporal nature of
the phenomenon, and (2) predict values in future time slots. Generally, time series forecast two
classes of components, i.e., trend and seasonality. The former is the appearance of a phenomenon
that does not repeat, at the contrary of seasonality where an observation repeats in systematic
intervals over time. Two types of time-based models may be distinguished, (1) ordinary regression
models that use time values as x-variables, and (2) ARIMA models that relate past experience
(values and prediction errors) to the present value of a series[Robert H. Shumway 2017].

Autoregressive Integrated Moving Average (ARIMA) Models. Autoregressive models are models that
use the relationship between a variable in one period and a number of previous periods. Moving
Average models measure the relationship between an observation and residual errors from previous
periods. The term "Integrated" is to make the time series stationary (mean and variance stable over
time). Both approaches (autoregressive and moving) are combined in ARIMA[Robert H. Shumway
2017].

Gaussian Mixture Models (GMM). It is a probability distribution of multiple normally distributed
subpopulations within a larger population. Its density function is the weighted sum of subpopula-
tions’ densities. Generally, Expectation-Maximization (EM) algorithm is used to estimate GMM
parameters in iterative ways. GMM are used to perform unsupervised clustering or feature extrac-
tion [Trevor Hastie 2013].

Genetic Algorithm (GA). It is a metaheuristic that belongs to Evolutionary Algorithms (EA) class.
GA presents candidates solutions as genes while trying to maximize a fitness (or objective) function.
It uses bio-inspired operators to chose members of the new generation, mutation and crossover to
create new generations. This process of creation of new generations and selection is repeated until
a stopping condition is reached, e.g., a certain number of iterations [Banzhaf et al. 1998].

hyper-parameters. They represent the prior known parameters that are distinguishable from the
parameters learned by the algorithm during the training.

F-measure. is the harmonic mean of precision and recall:

F1 =
2

1
recall +

1
precision

(2)

Precision is the fraction of correctly predicted values among the retrieved ones.Recall is the fraction
of relevant predicted values over the total number of relevant values.

Accuracy. It is calculated by,
Number of correct predictions
Total number for predictions

(3)

Specificity and sensitivity. They are metrics used for binary classification, specificity is the true
negative rate and sensitivity is the true positive rate.

Area Under the Curve (AUC). It is computed by,

AUC =meano∈OA,i ∈IA


1 i f Score(o) > Score(i)
0.5 i f Score(o) = Score(i)
0 Score(o) < Score(i)

(4)

where, O is the set of all outliers, OA is the set of outliers returned by the scenario A, and IA is the
set of inliers returned by the scenario A.
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