259 research outputs found

    Pattern matching in compilers

    Get PDF
    In this thesis we develop tools for effective and flexible pattern matching. We introduce a new pattern matching system called amethyst. Amethyst is not only a generator of parsers of programming languages, but can also serve as an alternative to tools for matching regular expressions. Our framework also produces dynamic parsers. Its intended use is in the context of IDE (accurate syntax highlighting and error detection on the fly). Amethyst offers pattern matching of general data structures. This makes it a useful tool for implementing compiler optimizations such as constant folding, instruction scheduling, and dataflow analysis in general. The parsers produced are essentially top-down parsers. Linear time complexity is obtained by introducing the novel notion of structured grammars and regularized regular expressions. Amethyst uses techniques known from compiler optimizations to produce effective parsers.Comment: master thesi

    Synthesizing Short-Circuiting Validation of Data Structure Invariants

    Full text link
    This paper presents incremental verification-validation, a novel approach for checking rich data structure invariants expressed as separation logic assertions. Incremental verification-validation combines static verification of separation properties with efficient, short-circuiting dynamic validation of arbitrarily rich data constraints. A data structure invariant checker is an inductive predicate in separation logic with an executable interpretation; a short-circuiting checker is an invariant checker that stops checking whenever it detects at run time that an assertion for some sub-structure has been fully proven statically. At a high level, our approach does two things: it statically proves the separation properties of data structure invariants using a static shape analysis in a standard way but then leverages this proof in a novel manner to synthesize short-circuiting dynamic validation of the data properties. As a consequence, we enable dynamic validation to make up for imprecision in sound static analysis while simultaneously leveraging the static verification to make the remaining dynamic validation efficient. We show empirically that short-circuiting can yield asymptotic improvements in dynamic validation, with low overhead over no validation, even in cases where static verification is incomplete

    Verification of high-level transformations with inductive refinement types

    Get PDF
    International audienceHigh-level transformation languages like Rascal include expressive features for manipulating large abstract syntax trees: first-class traversals, expressive pattern matching, backtrack-ing and generalized iterators. We present the design and implementation of an abstract interpretation tool, Rabit, for verifying inductive type and shape properties for transformations written in such languages. We describe how to perform abstract interpretation based on operational semantics, specifically focusing on the challenges arising when analyzing the expressive traversals and pattern matching. Finally, we evaluate Rabit on a series of transformations (normaliza-tion, desugaring, refactoring, code generators, type inference, etc.) showing that we can effectively verify stated properties. CCS Concepts • Software and its engineering → General programming languages; • Social and professional topics → History of programming languages

    Formal foundations for hybrid effect analysis

    Get PDF
    Type-and-effect systems are a powerful tool for program construction and verification. Type-and-effect systems are useful because it can help reduce bugs in computer programs, enable compiler optimizations and also provide sort of program documentation. As software systems increasingly embrace dynamic features and complex modes of compilation, static effect systems have to reconcile over competing goals such as precision, soundness, modularity, and programmer productivity. In this thesis, we propose the idea of combining static and dynamic analysis for effect systems to improve precision and flexibility. We describe intensional effect polymorphism, a new foundation for effect systems that integrates static and dynamic effect checking. Our system allows the effect of polymorphic code to be intensionally inspected. It supports a highly precise notion of effect polymorphism through a lightweight notion of dynamic typing. When coupled with parametric polymorphism, the powerful system utilizes runtime information to enable precise effect reasoning, while at the same time retains strong type safety guarantees. The technical innovations of our design include a relational notion of effect checking, the use of bounded existential types to capture the subtle interactions between static typing and dynamic typing, and a differential alignment strategy to achieve efficiency in dynamic typing. We introduce the idea of first-class effects, where the computational effect of an expression can be programmatically reflected, passed around as values, and analyzed at run time. A broad range of designs “hard-coded in existing effect-guided analyses can be supported through intuitive programming abstractions. The core technical development is a type system with a couple of features. Our type system provides static guarantees to application-specific effect management properties through refinement types, promoting “correct-by-design effect-guided programming. Also, our type system computes not only the over-approximation of effects, but also their under-approximation. The duality unifies the common theme of permission vs. obligation in effect reasoning. Finally, we show the potential benefit of intensional effects by applying it to an event-driven system to obtain safe concurrency. The technical innovations of our system include a novel effect system to soundly approximate the dynamism introduced by runtime handlers registration, a static analysis to precompute the effects and a dynamic analysis that uses the precomputed effects to improve concurrency. Our design simplifies modular concurrency reasoning and avoids concurrency hazards

    Verification of Program Transformations with Inductive Refinement Types

    Get PDF
    International audienceHigh-level transformation languages like Rascal include expressive features for manipulating large abstract syntax trees: first-class traversals, expressive pattern matching, backtracking, and generalized iterators. We present the design and implementation of an abstract interpretation tool, Rabit, for verifying inductive type and shape properties for transformations written in such languages. We describe how to perform abstract interpretation based on operational semantics, specifically focusing on the challenges arising when analyzing the expressive traversals and pattern matching. Finally, we evaluate Rabit on a series of transformations (normalization, desugaring, refactoring, code generators, type inference, etc.) showing that we can effectively verify stated properties

    Parsing for agile modeling

    Get PDF
    Agile modeling refers to a set of methods that allow for a quick initial development of an importer and its further refinement. These requirements are not met simultaneously by the current parsing technology. Problems with parsing became a bottleneck in our research of agile modeling. In this thesis we introduce a novel approach to specify and build parsers. Our approach allows for expressive, tolerant and composable parsers without sacrificing performance. The approach is based on a context-sensitive extension of parsing expression grammars that allows a grammar engineer to specify complex language restrictions. To insure high parsing performance we automatically analyze a grammar definition and choose different parsing strategies for different parts of the grammar. We show that context-sensitive parsing expression grammars allow for highly composable, tolerant and variable-grained parsers that can be easily refined. Different parsing strategies significantly insure high-performance of parsers without sacrificing expressiveness of the underlying grammars

    Robust Grammatical Analysis for Spoken Dialogue Systems

    Full text link
    We argue that grammatical analysis is a viable alternative to concept spotting for processing spoken input in a practical spoken dialogue system. We discuss the structure of the grammar, and a model for robust parsing which combines linguistic sources of information and statistical sources of information. We discuss test results suggesting that grammatical processing allows fast and accurate processing of spoken input.Comment: Accepted for JNL

    Expert System and a Rule Set Development Method for Urban Behaviour Planning

    Get PDF
    Today, autonomous vehicles have the capacity to achieve fully autonomous driving in predefined environments. This ability can be in part attributed to advancements in motion planning, which plans the vehicle’ behaviours and navigation through complex environments. This thesis introduces a novel hierarchical expert system architecture along with a rule set development method for expanding an operational design domain. In the method, the knowledge engineering is tool-assisted and supports semi-automatic rule creation based on test cases. Additionally, the method incorporates a qualitative analyzer that probes the maintainability and the run time efficiency of the rule set. Moreover, the proposed architecture and method are successfully applied to implement a behavioural planner for an actual autonomous vehicle. The thesis also describes additional strategies to address noisy perception, avoid jittery behaviour, and improve the overall run time efficiency, which were necessary to achieve satisfactory performance of the planner on the road. This system was tested and proven effective in an open road test, which involved over 110 kilometres of autonomous driving in populated urban environments. During the open road test, 58 interventions were required due to perception noise or limitations arising by the small range of the lidar sensor. Finally, the strengths and weaknesses of the proposed methodology and architecture, along with an outlook on the role rule-based planning in autonomous driving, are discussed
    • …
    corecore