155 research outputs found

    Domain decomposition preconditioners of Neumann-Neumann type for hp‐approximations on boundary layer meshes in three dimensions

    Get PDF
    We develop and analyse Neumann-Neumann methods for hp finite‐element approximations of scalar elliptic problems on geometrically refined boundary layer meshes in three dimensions. These are meshes that are highly anisotropic where the aspect ratio typically grows exponentially with the polynomial degree. The condition number of our preconditioners is shown to be independent of the aspect ratio of the mesh and of potentially large jumps of the coefficients. In addition, it only grows polylogarithmically with the polynomial degree, as in the case of p approximations on shape‐regular meshes. This work generalizes our previous one on two‐dimensional problems in Toselli & Vasseur (2003a, submitted to Numerische Mathematik, 2003c to appear in Comput. Methods Appl. Mech. Engng.) and the estimates derived here can be employed to prove condition number bounds for certain types of FETI method

    Space Decompositions and Solvers for Discontinuous Galerkin Methods

    Full text link
    We present a brief overview of the different domain and space decomposition techniques that enter in developing and analyzing solvers for discontinuous Galerkin methods. Emphasis is given to the novel and distinct features that arise when considering DG discretizations over conforming methods. Connections and differences with the conforming approaches are emphasized.Comment: 2 pages 2 figures no table

    Linear and nonlinear substructured Restricted Additive Schwarz iterations and preconditioning

    Get PDF
    Iterative substructuring Domain Decomposition (DD) methods have been extensively studied, and they are usually associated with nonoverlapping decompositions. It is less known that classical overlapping DD methods can also be formulated in substructured form, i.e., as iterative methods acting on variables defined exclusively on the interfaces of the overlapping domain decomposition. We call such formulations substructured domain decomposition methods. We introduce here a substructured version of Restricted Additive Schwarz (RAS) which we call SRAS. We show that RAS and SRAS are equivalent when used as iterative solvers, as they produce the same iterates, while they are substantially different when used as preconditioners for GMRES. We link the volume and substructured Krylov spaces and show that the iterates are different by deriving the least squares problems solved at each GMRES iteration. When used as iterative solvers, SRAS presents computational advantages over RAS, as it avoids computations with matrices and vectors at the volume level. When used as preconditioners, SRAS has the further advantage of allowing GMRES to store smaller vectors and perform orthogonalization in a lower dimensional space. We then consider nonlinear problems, and we introduce SRASPEN (Substructured Restricted Additive Schwarz Preconditioned Exact Newton), where SRAS is used as a preconditioner for Newton’s method. In contrast to the linear case, we prove that Newton’s method applied to the preconditioned volume and substructured formulation produces the same iterates in the nonlinear case. Next, we introduce two-level versions of nonlinear SRAS and SRASPEN. Finally, we validate our theoretical results with numerical experiments

    A class of alternate strip-based domain decomposition methods for elliptic partial differential Equations

    Get PDF
    The domain decomposition strategies proposed in this thesis are efficient preconditioning techniques with good parallelism properties for the discrete systems which arise from the finite element approximation of symmetric elliptic boundary value problems in two and three-dimensional Euclidean spaces. For two-dimensional problems, two new domain decomposition preconditioners are introduced, such that the condition number of the preconditioned system is bounded independently of the size of the subdomains and the finite element mesh size. First, the alternate strip-based (ASB2) preconditioner is based on the partitioning of the domain into a finite number of nonoverlapping strips without interior vertices. This preconditioner is obtained from direct solvers inside the strips and a direct fast Poisson solver on the edges between strips, and contains two stages. At each stage the strips change such that the edges between strips at one stage are perpendicular on the edges between strips at the other stage. Next, the alternate strip-based substructuring (ASBS2) preconditioner is a Schur complement solver for the case of a decomposition with multiple nonoverlapping subdomains and interior vertices. The subdomains are assembled into nonoverlapping strips such that the vertices of the strips are on the boundary of the given domain, the edges between strips align with the edges of the subdomains and their union contains all of the interior vertices of the initial decomposition. This preconditioner is produced from direct fast Poisson solvers on the edges between strips and the edges between subdo- mains inside strips, and also contains two stages such that the edges between strips at one stage are perpendicular on the edges between strips at the other stage. The extension to three-dimensional problems is via solvers on slices of the domain

    Robust exact and inexact FETI-DP methods with applications to elasticity

    Get PDF
    Gebietszerlegungsverfahren sind parallele, iterative Lösungsverfahren fĂŒr grosse Gleichungssysteme, die bei der Diskretisierung von partiellen Differentialgleichungen, etwa aus der Strukturmechanik, entstehen. In dieser Arbeit werden duale, iterative Substrukturierungsverfahren vom FETI-DP-Typ (Finite Element Tearing and Interconnecting Dual-Primal) entwickelt und auf elliptische partielle Differentialgleichungen zweiter Ordnung angewandt. Insbesondere wird versucht, robuste Verfahren fĂŒr homogene und heterogene Elastizitaetsprobleme zu entwickeln. Ebenso werden neue, inexakte FETI-DP-Verfahren vorgestellt, die eine inexakte Lösung des Grobgitterproblems und/oder der Teilgebietsprobleme erlauben. Es wird gezeigt, dass die neuen Algorithmen unter bestimmten Voraussetzungen AbschĂ€tzungen der gleichen asymptotischen GĂŒte wie das klassische, exakte FETI-DP-Verfahren erfĂŒllen. Parallele Resultate unter Verwendung von algebraischen Mehrgitter fĂŒr das Grobgitterproblem zeigen die verbesserte Skalierbarkeit der neuen Algorithmen.Domain decomposition methods are fast parallel solvers for large equation systems arising from the discretisation of partial differential equations, e.g. from structural mechanics. In this work, dual iterative substructuring methods of the FETI-DP (Finite Element Tearing and Interconnecting Dual-Primal) type are developed and applied to second order elliptic problems with emphasis on elasticity. An attempt is made to develop robust methods for homogeneous and heterogeneous problems. New inexact FETI-DP methods are also introduced that allow for inexact coarse problem solvers and/or inexact subdomain solvers. It is shown that under certain conditions the new algorithms fulfill the same asymptotic condition number estimate as the traditional, exact FETI-DP methods. Parallel results using algebraic multigrid for the FETI-DP coarse problem show the improved scalability of the new algorithms

    On the scalability of inexact balancing domain decomposition by constraints with overlapped coarse/fine corrections

    Get PDF
    In this work, we analyze the scalability of inexact two-level balancing domain decomposition by constraints (BDDC) preconditioners for Krylov subspace iterative solvers, when using a highly scalable asynchronous parallel implementation where fine and coarse correction computations are overlapped in time. This way, the coarse-grid problem can be fully overlapped by fine-grid computations (which are embarrassingly parallel) in a wide range of cases. Further, we consider inexact solvers to reduce the computational cost/complexity and memory consumption of coarse and local problems and boost the scalability of the solver. Out of our numerical experimentation, we conclude that the BDDC preconditioner is quite insensitive to inexact solvers. In particular, one cycle of algebraic multigrid (AMG) is enough to attain algorithmic scalability. Further, the clear reduction of computing time and memory requirements of inexact solvers compared to sparse direct ones makes possible to scale far beyond state-of-the-art BDDC implementations. Excellent weak scalability results have been obtained with the proposed inexact/overlapped implementation of the two-level BDDC preconditioner, up to 93,312 cores and 20 billion unknowns on JUQUEEN. Further, we have also applied the proposed setting to unstructured meshes and partitions for the pressure Poisson solver in the backward-facing step benchmark domain

    Software concepts and algorithms for an efficient and scalable parallel finite element method

    Get PDF
    Software packages for the numerical solution of partial differential equations (PDEs) using the finite element method are important in different fields of research. The basic data structures and algorithms change in time, as the user\'s requirements are growing and the software must efficiently use the newest highly parallel computing systems. This is the central point of this work. To make efficiently use of parallel computing systems with growing number of independent basic computing units, i.e.~CPUs, we have to combine data structures and algorithms from different areas of mathematics and computer science. Two crucial parts are a distributed mesh and parallel solver for linear systems of equations. For both there exists multiple independent approaches. In this work we argue that it is necessary to combine both of them to allow for an efficient and scalable implementation of the finite element method. First, we present concepts, data structures and algorithms for distributed meshes, which allow for local refinement. The central point of our presentation is to provide arbitrary geometrical information of the mesh and its distribution to the linear solver. A large part of the overall computing time of the finite element method is spend by the linear solver. Thus, its parallelization is of major importance. Based on the presented concept for distributed meshes, we preset several different linear solver methods. Hereby we concentrate on general purpose linear solver, which makes only little assumptions about the systems to be solver. For this, a new FETI-DP (Finite Element Tearing and Interconnect - Dual Primal) method is proposed. Those the standard FETI-DP method is quasi optimal from a mathematical point of view, its not possible to implement it efficiently for a large number of processors (> 10,000). The main reason is a relatively small but globally distributed coarse mesh problem. To circumvent this problem, we propose a new multilevel FETI-DP method which hierarchically decompose the coarse grid problem. This leads to a more local communication pattern for solver the coarse grid problem and makes it possible to scale for a large number of processors. Besides the parallelization of the finite element method, we discuss an approach to speed up serial computations of existing finite element packages. In many computations the PDE to be solved consists of more than one variable. This is especially the case in multi-physics modeling. Observation show that in many of these computation the solution structure of the variables is different. But in the standard finite element method, only one mesh is used for the discretization of all variables. We present a multi-mesh finite element method, which allows to discretize a system of PDEs with two independently refined meshes.Softwarepakete zur numerischen Lösung partieller Differentialgleichungen mit Hilfe der Finiten-Element-Methode sind in vielen Forschungsbereichen ein wichtiges Werkzeug. Die dahinter stehenden Datenstrukturen und Algorithmen unterliegen einer stĂ€ndigen Neuentwicklung um den immer weiter steigenden Anforderungen der Nutzergemeinde gerecht zu werden und um neue, hochgradig parallel Rechnerarchitekturen effizient nutzen zu können. Dies ist auch der Kernpunkt dieser Arbeit. Um parallel Rechnerarchitekturen mit einer immer höher werdenden Anzahl an von einander unabhĂ€ngigen Recheneinheiten, z.B.~Prozessoren, effizient Nutzen zu können, mĂŒssen Datenstrukturen und Algorithmen aus verschiedenen Teilgebieten der Mathematik und Informatik entwickelt und miteinander kombiniert werden. Im Kern sind dies zwei Bereiche: verteilte Gitter und parallele Löser fĂŒr lineare Gleichungssysteme. FĂŒr jedes der beiden Teilgebiete existieren unabhĂ€ngig voneinander zahlreiche AnsĂ€tze. In dieser Arbeit wird argumentiert, dass fĂŒr hochskalierbare Anwendungen der Finiten-Elemente-Methode nur eine Kombination beider Teilgebiete und die VerknĂŒpfung der darunter liegenden Datenstrukturen eine effiziente und skalierbare Implementierung ermöglicht. Zuerst stellen wir Konzepte vor, die parallele verteile Gitter mit entsprechenden Adaptionstrategien ermöglichen. Zentraler Punkt ist hier die Informationsaufbereitung fĂŒr beliebige Löser linearer Gleichungssysteme. Beim Lösen partieller Differentialgleichung mit der Finiten Elemente Methode wird ein großer Teil der Rechenzeit fĂŒr das Lösen der dabei anfallenden linearen Gleichungssysteme aufgebracht. Daher ist deren Parallelisierung von zentraler Bedeutung. Basierend auf dem vorgestelltem Konzept fĂŒr verteilten Gitter, welches beliebige geometrische Informationen fĂŒr die linearen Löser aufbereiten kann, prĂ€sentieren wir mehrere unterschiedliche Lösermethoden. Besonders Gewicht wird dabei auf allgemeine Löser gelegt, die möglichst wenig Annahmen ĂŒber das zu lösende System machen. HierfĂŒr wird die FETI-DP (Finite Element Tearing and Interconnect - Dual Primal) Methode weiterentwickelt. Obwohl die FETI-DP Methode vom mathematischen Standpunkt her als quasi-optimal bezĂŒglich der parallelen Skalierbarkeit gilt, kann sie fĂŒr große Anzahl an Prozessoren (> 10.000) nicht mehr effizient implementiert werden. Dies liegt hauptsĂ€chlich an einem verhĂ€ltnismĂ€ĂŸig kleinem aber global verteilten Grobgitterproblem. Wir stellen eine Multilevel FETI-DP Methode vor, die dieses Problem durch eine hierarchische Komposition des Grobgitterproblems löst. Dadurch wird die Kommunikation entlang des Grobgitterproblems lokalisiert und die Skalierbarkeit der FETI-DP Methode auch fĂŒr große Anzahl an Prozessoren sichergestellt. Neben der Parallelisierung der Finiten-Elemente-Methode beschĂ€ftigen wir uns in dieser Arbeit mit der Ausnutzung von bestimmten Voraussetzung um auch die sequentielle Effizienz bestehender Implementierung der Finiten-Elemente-Methode zu steigern. In vielen FĂ€llen mĂŒssen partielle Differentialgleichungen mit mehreren Variablen gelöst werden. Sehr hĂ€ufig ist dabei zu beobachten, insbesondere bei der Modellierung mehrere miteinander gekoppelter physikalischer PhĂ€nomene, dass die Lösungsstruktur der unterschiedlichen Variablen entweder schwach oder vollstĂ€ndig voneinander entkoppelt ist. In den meisten Implementierungen wird dabei nur ein Gitter zur Diskretisierung aller Variablen des Systems genutzt. Wir stellen eine Finite-Elemente-Methode vor, bei der zwei unabhĂ€ngig voneinander verfeinerte Gitter genutzt werden können um ein System partieller Differentialgleichungen zu lösen

    Substructured formulations of nonlinear structure problems - influence of the interface condition

    Get PDF
    We investigate the use of non-overlapping domain decomposition (DD) methods for nonlinear structure problems. The classic techniques would combine a global Newton solver with a linear DD solver for the tangent systems. We propose a framework where we can swap Newton and DD, so that we solve independent nonlinear problems for each substructure and linear condensed interface problems. The objective is to decrease the number of communications between subdomains and to improve parallelism. Depending on the interface condition, we derive several formulations which are not equivalent, contrarily to the linear case. Primal, dual and mixed variants are described and assessed on a simple plasticity problem.Comment: in International Journal for Numerical Methods in Engineering, Wiley, 201
    • 

    corecore