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We develop and analyse Neumann—Neumann methoddfofinite-element approxi-
mations of scalar elliptic problems on geometrically refined boundary layer meshes in
three dimensions. These are meshes that are highly anisotropic where the aspect ratio
typically grows exponentially with the polynomial degree. The condition number of
our preconditioners is shown to be independent of the aspect ratio of the mesh and of
potentially large jumps of the coefficients. In addition, it only grows polylogarithmically
with the polynomial degree, as in the casepadipproximations on shape-regular meshes.
This work generalizes our previous one on two-dimensional problems in Toselli & Vasseur
(2003a, submitted thlumerische MathematiR003c to appear i€omput. Methods Appl.
Mech. Engngd.and the estimates derived here can be employed to prove condition number
bounds for certain types of FETI methods.

Keywords domain decomposition; preconditionirigp finite elements; spectral elements;
anisotropic meshes.

1. Introduction

Solutions of elliptic boundary value problems in polyhedral domains have corner and
edge singularities and, in addition, boundary layers may also arise in laminar, viscous,
incompressible flows with moderate Reynolds numbers at faces, edges and corners.
Suitably graded meshes, geometrically refined towards corners, edges and/or faces, can
be employed in order to achieve an exponential rate of convergertte fofite-element
approximations (see e.g. Anderssdial, 1995; Babgka & Guo, 1996; Melenk & Schwab,
1998; Schwab & Suri, 1996; Schwabal., 1998).

Neumann—Neumann (NN) and FETI algorithms are particular iterative substructuring
methods and are among the most popular and heavily tested domain decomposition (DD)
methods (see e.g. Le Tallec, 1994; Farhat & Roux, 1994; Mandel & Brezina, 1996;
Bhardwajet al., 2000). Unfortunately, the performance of iterative substructuring methods
might be severely compromised if very thin elements and/or subdomains or general non-
quasiuniform meshes are employed.

Some work has been done on domain decomposition preconditioners for higher-order
approximations of three-dimensional problems. It is well-known that on shape-regular
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meshes special care must be taken in the choice of the basis functions in order to produce
preconditioners that are robust with respect to the polynomial degree (e.g. Mandel, 1989,
1990a,b; Pavarino, 1994; Bica, 1997; Sherwin & Casarin, 2001 )pR@proximations that
employ nodal basis functions on Gauss—Lobatto nodes (spectral element approximations),
many iterative substructuring methods can be successfully employed and studied (see
Pavarino & Widlund, 1996, 1997; Pavarino, 1997; Pavarino & Warburton, 2000 and
the references therein). Some of these ideas can be and have been generdiiped to
approximations (e.g. Ainsworth, 1996a,b; Odsal., 1997; Guo & Cao, 1997; Le Tallec &

Patra, 1997; Ainsworth & Sherwin, 1999; Korneetal, 2002 and the references therein

and, in particular, Guo & Cao, 1998 for three-dimensional problems). In all the above-
mentioned works, however, the finite-element mesh is assumed to be shape-regular and
robustness with respect to the aspect ratio is not in general ensured and often unlikely to
hold in practice.

In Toselli & Vasseur (2003a,c), we showed that NN and FETI methods can be
successfully devised for the particular geometrically refined boundary layer meshes
commonly used forhp finite-element approximations of two-dimensional problems.
Indeed, these meshes are highly anisotropic, but of a particular type:

1. they are obtained by refining an initethape-regulamesh (macromesh);
2. refinement is only carriegwardsthe boundary of the computational domain.

These properties, also shared by three-dimensional meshes, allowed us to obtain
condition number bounds for the corresponding preconditioned operators that only grow
polylogarithmically with the polynomial degree, as is the casepoépproximations
on shape-regular meshes. Our understanding and analysis was confirmed by numerical
experiments. In particular, we choose the macromesh as a decomposition into substructures
in such a way that subdomains are shape-regular. Roughly speaking, the reason why
such favourable condition numbers are retained lies in the fact that upper bounds come
from stable decompositions of finite-element functions into components associated with
geometrical objects (typically vertices and edges of the subdomains in two dimensions).
Because of our particular meshes, only components associatehtegithal vertices need
to be considered, i.e. relative to vertices in a neighbourhood of which the mesh is shape-
regular.

Three-dimensional boundary layer meshes also share the two characteristics mentioned
above. However, stable decompositions now involve face and wirebasket components,
where the wirebasket is the union of the subdomain edges and vertices that do not lie
on the external boundary of the computational domain. By considering, for instance, an
edgeE of a macroelement that shares a face wilisee the face patch in Fig. 1, left, or
Fig. 2), decoupling of face and wirebasket components is now also performed cia@e to
and thus where the mesh is not shape-regular. In this work, we are however able to provide
condition number bounds that only grow polylogarithmically with the polynomial degree,
as in the two-dimensional case, and are independent of arbitrarily large aspect ratios of the
mesh.

The core of this work lies in the careful modification and derivation of certain Sobolev-
type inequalities that are independent of the aspect ratio of the mesh for wirebasket and
face components of finite-element functions; see Section 7. Provided such inequalities are
awailable, the definition of the algorithms and their analysis are fairly standard procedures
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in DD methods and proceed as in the two-dimensional case in Toselli & Vasseur (2003a).
Here, we will only consider théalancing methodwhich belongs to the family of
Neumann—Neumann methods, but note that the estimates derived can be employed for
the analysis of other Neumann—Neumann methods and one-level FETI methods in a
straightforward way (see Pavarino, 1997; Klawonn & Widlund, 2001; Toselli & Vasseur,
2003a).

Welimit our analysis to the case of nodal basis functions built on Gauss—Lobatto nodes.
In addition, we only consider the model problem (2.1), which does not have boundary
layers but only corner and edge singularities. However, our tensor-product meshes can also
be employed when only singularities are present and do not require the use of hanging
nodes. We recall that numerical results in Toselli & Vasseur (2003c) for two-dimensional
problems showed that better performance is obtained for certain singularly perturbed
problems which exhibit boundary layers. In addition, a linear dependenkefan the
condition number was observed for problems with geometric refinement towards interfaces
that lie in the interior of the computational domain.

The remainder of this paper is organized as follows: in Sections 2 and 3, we introduce
our continuous and discrete problems, respectively. Geometric boundary layer meshes are
introduced in Section 4. A particular choice of basis functions is given in Section 5 and our
Neumann—Neumann preconditioners are defined in Section 6. Section 7 is the core of this
work and is devoted to the proof of some discrete Sobolev-type inequalities. Comparison
results for certain discrete harmonic extensions are given in Section 8. Condition number
bounds are then proven in Section 9. Section 10 contains some numerical results, while
some concluding remarks and perspectives are presented in Section 11.

2. Problem setting

We consider a linear, elliptic problem on a bounded polyhedral donfeain R? of unit
diameter, formulated variationally as:
Findu € Hg(£2), such that

aw,w:z/mpOOVu-VvdX='HvL v e HI(9). (2.1)
(0}

As usual,H1(2) is the space of square summable functions with square summable first
derivatives, and—lol(Q) its subspace of functions that vanish @2. The functionalf (-)
belongs to the dual spa¢¢—1(£2). Herex = (x, y, z) denotes the position vector.

The coefficienfo(x) > 0 can be discontinuous, with very different values for different
subregions, but we allow it to vary only moderately within each subregion. We will in fact
assume that the region is the union of elements (also called subdomains, substructures,
or macroelements)(? }. Without decreasing the generality of our results, we will only
consider the piecewise constant case:

p(X) = pi, XE€ 4.

In the case of a region of diametdr, such as the substructufg, we use a norm with
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different relative weights obtained by a simple dilation argument:
2 0 = U g + 5 Ul 2.2
Il g = 1uif g + 5 lul3 g 2.2)
|

Here, || - llo. and| - |1, denote the norm irL2(£) and the seminorm iH1((2),
respectively. In the following we also employ the spatt&> (1) of bounded functions
with bounded derivatives (see e.g.dds, 1967).

3. hp finite-element approximations

We now specify a particular choice of finite-element spaces. Given an affine quadrilateral
mesh7 of {2 and a polynomial degrele > 1, we consider the following finite-element
spaces:

X=X T) :={ue H}(D)| uy € Qu(K), K € T}. (3.1)

HereQy(K) is the space of polynomials of maximum degkei@ each variable oK. In
the following, we may drop the referenceltof?, and/or7 whenever there is no confusion.

In this paper, we always assume that the meshegegrdar, i.e. the intersection
between neighbouring elements is either a vertex, or an edge, or a face that is common
to thetwo elements.

A finite-element approximation of (2.1) consists of finding X, such that

a(u,v) = f(v), velX (3.2)

4. Geometric boundary layer meshes

In order to resolve boundary layers and/or singularities, geometrically graded meshes can
be employed. They are determined by a mesh grading factor(0, 1) and a refinement
leveln > 0. The number of layers s+ 1 and the thinnest layer has a width proportional

to o". Robust exponential convergence hgf finite-element approximations is achieved

if n is suitably chosen. For singularity resolutionjs required to be proportional to the
polynomial degreé (see Anderssont al, 1995; Bab8ka & Guo, 1996). For boundary
layers, the width of the thinnest layer needs to be comparable to that of the boundary layer
(see Melenk & Schwab, 1998; Schwab & Suri, 1996; Schetzdd., 1998).

A geometric boundary layer me§h= Tb’f'” is, roughly speaking, the tensor product
of meshes that are geometrically refined towards the faces. Figure 1 shows the construction
of a geometric boundary layer me@ﬁ*".

The mesthrl"" is built by first considering an initial shape-regular macro-triangulation
Tm, possibly consisting of just one element, which is successively refined. This process
is illustrated in Fig. 1. Every macroelement can be refined isotropically (not shown) or
anisotropically in order to obtain so-called face, edge or corner patches (Fig. 1, level 2).
Here and in the following, we only consider patches obtained by triangulating the reference
cubeQ := 13, with | := (-1, 1). A patch for an elemeri, € 7, is obtained by using
an affine mappind-k,, : Q — K. The stability properties proven for patches on the
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FIG. 1. Hierarchic structure of a boundary layer mesh, with- 0-5 andn = 3.

reference cube are equally valid for an arbitrary shape-regular eldéfert 7, with a
constant that is independent of the diameteK gf
A face patchs given by an anisotropic triangulation of the form

T ={Ky x| x| KyxeZx}, (4.2)

where7y is a mesh ofl, geometrically refined towards, say,= 1, with grading factor
o € (0,1) andn levels of refinement; see Fig. 1 (level 2, left). We note that the mesh
Tx x {1} of S:= 12is a two-dimensional edge patch.

An edge patchs given by a triangulation

Te=T2 = (Ky x Ky x | | KyeTx, Kye Ty} ={Kuyx | | KyyeTxy), (4.2)

where7y and7y are meshes of, geometrically refined towards, say,= 1 andy = 1,
respectively, with grading facter € (0, 1) and total number of layens, see Fig. 1 (level
2, centre). The mesfyy of Sis a two-dimensional corner patch.

In a similar way, we can definearner patchZ:

Te=T" = Ky x Ky x K| Ky eTx, Ky eTy, KseTy),

where’y, 7y, and7; are meshes of, geometrically refined towards, say= 1,y = 1,
andz = 1, respectively; see Fig. 1 (level 2, right).

We note that every element of 77, 7e, andZc on the reference cube is of the form
(0, hy) x (0, hy) x (0, hy) (after a possible translation and rotation) and is thus obtained
from the reference element by an affine mappi}g: Q — K of the form

x vy 2" =[x/ +D (y/2F+1) (h/22+ DI (4.3)

The aspect ratio oK is the maximum of all possible ratios bf, hy andh,. Since the
macromesh consists of affinely mapped elemé&nptsevery elemenK of the global mesh
T = 7])?'” is obtained from the reference element by combining two affine mappings

K = Fk(Q) = Fky(Fg (Q)., K C Km € T (4.9)
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SinceTy, is shape-regular, the aspect ratio is determined onli pyct. (4.3). Finally, we
note that the aspect ratio of the mesh is determinesl Bgdn, and is proportional te-—".

As in Toselli & Vasseur (2003a), our analysis will be made for a prototype mesh,
obtained from a shape-regular (not necessarily quasi-uniform) macromesh, by refining
elements that only touch{?, either as corner, edge, or face patches. Such meshes only
consist of four types of patches: unrefined, face, edge, and corner patches. We also recall
that in practical applications is bounded away from one and zero.

5. Basis functions on Gauss—Lobatto nodes

For the spaceXX(2; T), we choose nodal basis functions on the Gauss—Lobatto nodes.
We denote byG L L(k) the set of Gauss—Lobatto poirts; 0 <i < k}jonl = (-1,1)

in increasing order and bjw; > 0} the corresponding weights (see Bernardi & Maday,
1997, Section 4). We recall that the quadrature formula bas&illdn(k) has order R — 1

and, in addition,

k

Iullg, <Y u@E)?wi <3ullf,. ueQ): (5.1)
i=0

(see Bernardi & Maday, 1997, Remark 13.3).

For the reference cub® = (-1, 1)% we setGLL(K)® = {&j = (§,£j,&); 0 <
i, j,I < k}. In the following, we use the same notation for the mapped Gauss—Lobatto
nodes and corresponding weights for an affinely mapped elekhent .

Given the node$G LL(k)3, our basis functions or@k((j) are the tensor product of
kth-order Lagrange interpolating polynomials @i L (k), defined by

li &) = 8ij. (5.2)

On the reference element we can write

k k
ux.y. 2= % > uG.§.6 ioph@. ue@. (63

k
i=0 j=01=0

For ageneral element iff, basis functions are obtained by mapping those on the reference
elementlinterior local basis functions correspond to GLL nodes ingiiigall local indices
differ from 0 andk).

Equation (5.3) defines an interpolation operdtoon the reference element

k Kk
uxy.2) =3 %> uE. &.6) iofh@.

k
i=0j=01=0

The pointsGLL(k)3 define a triangulatior?y = 7Zx(Q) of O in a natural way,
consisting ok parallelepipeds. Let" = YN(Q) = X1(O; 7x) be the space of piecewise
trilinear functions on this mesh. We also den¥te= YK(Q) = Q«(Q). The aspect ratio
of 7 is of the order ok (see Casarin, 1996, p. 27 for details). In a similar way we can
consider a Gauss—Lobatto mesh on an affinely mapped eldtmbptsimply mapping the
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GLL mesh onQ. In the following, we will use the notatiofix = 7x(K), YN = YP(K)
andYk = YK(K) to denote the GLL mesh, the piecewise trilinear finite-element space and
Qx, respectively, for a mapped element. If the aspect ratié &f e.g.hy/ hy (cf. (4.3) and
(4.4)), then that of the correspondifgis (hx/ hy)k.

There is a one-to-one correspondence betwéeandYX given by

tkoyh vk ph.yk o yh

where I " is the nodal interpolation operator off'. We use the notatiom, € Y" and
uk € YKin order to denote two corresponding functions.

LEMMA 5.1 LetK = (0, hy) x (0, hy) x (0, hy). Then there exist positive constarts
andC, such that, fou, € YN(K),

clunllgg < Mukllg ¢ < Cliunllg g
el Unllg ¢ < I13xUllg g < CllaxUnllg -

with, in particular,c andC independent ofiy, hy, hz, andk. Smilar bounds hold for the
andz derivatives. IfK € 7 is given by (4.4), then, foup € Y"(K),

Cllunllo.k < llukllo,k < Cllunllok,
Clunl1,k < [Uklrk < Clunl1k
where the constants are independent of the diameter and the aspect Katianafk.

The proof of the above result can be found in Canuto (1994, Section & fer Q.
For an dfinely mapped element a scaling argument can be used. We note that thanks to
Lemma 5.1 we can equivalently work with functions¥f or Y.

The following result can be found in Casarin (1996, Lemma 3.3.3).

LEMMA 5.2 LetK = (0, hy) x (0, hy) x (0, h,) andup € YN(K). Giveng € W (K),
with

10k <C. VOl g <C/r,
then
h 2 2
112 ¢ < Cllunl2 .

h 2 2 -2 2
s < 5 + 5
31" @unl o < Cunl2 o +r72[unl? ).

whereC is independent diy, hy, h;, andk. Similar bounds hold for thg andz derivatives.
If K € T is given by (4.4), then, fon, € YN(K),

h 2 2
I (euh)”QK < C||Uh||o,K,

2 2 — 2
117 @un)12 ¢ < CunlZ ¢ + 1 2unllf ).

whereC is independent of the diameter and the aspect ratk,afndk.
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Given an elemenK = (0, hy) x (O, hy) x (0, hz) and a coordinate direction, say
leta, b, c andd be the vertices of a face ¢ perpendicular to this direction, and k&t b/,
¢’ andd’ be the corresponding points on the parallel face. The following lemma relies on
trivial properties of trilinear functions (cf. Casarin, 1996, Lemma 3.3.1).

LEMMA 5.3 LetK = (0, hy) x (O, hy) x (0, hy) anda, b, ¢ andd be the vertices of a
face ofK perpendicular to the direction. Then there are constants independeht, pffiy
andh,, such that, ifu is trilinear onK,

cllul?; <hghyhz 3 U +ux)® < Cllul ..

x=a,b,c,d
claxul? , < (hxhyhz/h2) 3 () —ux))? < Cllaxull? .
oK x=a,b,c,d 0K
2 -2 _ 1\ 2 2
cllaxull?, o < hx X:a’Zb’c,d(U(X) u(xn” < Cliaxull?_ -

Similar bounds hold for thg andz derivatives.

6. Neumann—-Neumann methods

Iterative substructuring methods rely on a non-overlapping partition into substructures.
We mention Smithet al. (1996, Chapter 4) as a general reference to this section. In our
algorithms the substructures are chosen as the macroelem@ps=n{2 | 1 <i < N}

We recall that the macroelements are shape-regular. This appears to be essential for the
analysis and good performance.

We define the boundarie§ = a2 \ a2 and the interfacé’ as their union. We remark
that " is the union of the interior subdomdiaces regarded as open sets, which are shared
by two subregions, and subdomadgesandvertices which are shared by more than two
subregions. Vertices can only be endpoints of edges. In the following, we tacitly assume
that points ord {2 are excluded from the geometrical objects that we consider, or, in other
words, we will only deal with geometrical objects (faces, edges, verticeythat belong
to I". We denote the faces o} by F'l, its edges byE'l, its vertices byV'l, and its
wirebasketdefined as the union of its edges and verticesyy Occasionally, we will
also use faces, edges and vertices with one or no superscript. If a vertex (edge)pliés on
we will regard it as part of the internal edge (resp., face) that shares ivWith

When restricted to the subdomaih, the global triangulatiory” determines a local
mesh7;. This mesh can be of four types: face, edge, corner or consisting of just one
element. We define the local spacés = XK($2;; ), of local finite-element functions
that vanish ord 2 N 9 .(2

In our analysis, we will also employ the GLL me3k((2) on {2, generated by the local
GLL meshes/k(K) for K € 7;. The corresponding space of piecewise trilinear functions
on7k(£2) that vanish ord 2 N 82 is denoted byr"(12). We sety®(2)) = XK(2; 7).

We next define the local bilinear forms

ai(u,v):f piVu-Vudx, u,veX;.

We note that iff} is afloatingsubdomain (i.e. its boundary does not todch), a; (-, -) is
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only positive semi-definite and far e X; we have
gj(u,u) =0 iff uconstantinf.

The sets of nodal points ofi, I, Fil, E'l andW' are denoted by n, Ih, /', E}
and Wﬂv respectively. We will identify these sets with the corresponding sets of degrees
of freedom. As for the corresponding regions, we will also use notation with one or no
superscript.

Weintroduce some spaces defined on the interfddets the space of restrictions 16
of functions inXK(£2; 77) andU of restrictions tol” of functions inXK(£2; 7). We note
that functions inU; andU are uniquely determined by the nodal valuedim and I,
respectively. In the following we will identify these spaces with those of the corresponding
harmonic extensions; see in particular Lemma 6.1 below. For every substriktihere
is a natural interpolation operator

RT:U — U

that extends a function ofi to a global function o™ with vanishing degrees of freedom
in I'h\ i n. Its transpose with respect to the Euclidean scalar prdguct — U; extracts
the degrees of freedom ifj p.

Once a vectou € XX(02;7) is expanded using the basis functions introduced in
Section 5, problem (3.2) can be written as a linear system

Au= f.

We recall that the condition number d is expected to grow at least &3/(hmin)2 ~
k3¢ 2" ~ k3¢ ~% (see Melenk, 2002 for a result in two dimensions) and may thus be
extremely large for large values &f

The contributions to the stiffness matrix and the right-hand side can be formed one
subdomain at a time. The stiffness matrix is then obtainedutnpassemblgf these parts.
We will order the nodal points interior to the subdomains first, followed by those on the
interfacel”. Similarly, for the stiffness matrix relative to a substructt4e we have

_ O\
AV = < A('i') AJi)F ) (6.1)
Ari Arr

In a first step of many iterative substructuring algorithms, the unknowns in the interior
of the subdomains are eliminated by block Gaussian elimination. In this step, the Schur
complements, with respect to the variables associated with the boundaries of the individual
substructures, are calculated. The resulting linear system can be written as

Sur =0gr. (6.2)

Given the local Schur complements

. o
S =A0. - AL AV TAY U — U,
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we have

S=

N
RISR:U — U

i=1

and an analogous formula can be founddpr(see Smitret al,, 1996, Chapter 4).
A functionu® defined onf is said to be discrete harmonic @h if

(@, @ ,,0) _
A”uI +A|Fup =0.

In this case, it is easy to see tl‘iai(u(li)) := u® is completely defined by its value dh.
The space of piecewise discrete harmonic functior®nsists of functions irX that are
discrete harmonic on each substructure. In this aase,H(ur) is completely defined by
its value on/".

Our preconditioners will be defined with respect to the inner product

s(u, v) = uTSv, u,velU.

It follows immediately from the definition o6 thats(-, -) is symmetric and coercive.
The following lemma results from elementary variational arguments.

LEMMA 6.1 Letug) be the restriction of a finite-element functionffa Then the discrete

harmonic extension) = H; (ugl)) of ugl) into (2 satisfies

u® gy — ; @ Dy — O g, O

au® uy = (i)mln ma.(v Dy =ul) sYu.
v |8.Qi:u['

Analogously, ifur is the restriction of a finite-element functionk the piecewise discrete

harmonic extension = H(ur) of ur into the interior of the subdomains satisfies

a(u,u)= min a(v, v) = s(u,u) = u-Sur.
vlp=ur

This lemma ensures that instead of working with functions defined on the intefface
we can equivalently work with the corresponding discrete harmonic extensions. For this
reason, in the following we will identify spaces of traces on the interfddeandU, with
spaces of discrete harmonic extensions. We point out, however, that due to the particular
meshes considered, we cannot equivalently work with norms of local discrete harmonic
extensions and traces on the subdomain boundaries since our local meshes are not in
general quasi-uniform or shape-regular, and stable discrete harmonic extensions cannot
be found in general; see Section 8.

Neumann—-Neumann methods provide preconditioners for the Schur complement
system: instead of solving (6.2) using, e.g. the conjugate gradient method, they employ
an equivalent system involving a preconditioned operator of the form

N
Sts=Pun=Po+(l - Po)<Z P.)(l — Py).

i=1
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We refer to Dryja & Widlund (1995), Mandel & Brezina (1996), Pavarino (1997) and
Klawonn & Widlund (2001) for some NN methods for the and p finite-element
approximations. We are unaware on any such methold feapproximations.

The operatord? are projection-like operators associated to a family of subsgaces
and determined by a set of local bilinear forms defined on them:

§u,v), uvel.
Given the interpolation operatoET : Ui - U, we have
P=R'PA, R:U—U, (6.3)
with
§(Pu,vi) =su,RTv), vieU. (6.4)

While Py is associated with a low-dimensional global problem, the others are associated
with the single substructures. The remainder of this section is devoted to the definition of
the various components &\ .

An important role is played by a family of weighted counting functiénswhich are
associated with and defined on the individ@ialcf. Dryja et al,, 1996; Dryja & Widlund,
1995; Mandel & Brezina, 1996; Sarkis, 1994; Pavarino, 1997) and are defined ¢or
[1/2, 00). Given §} andx € [, & (X) is determined by a sum of contributions frafh
and its relevant next neighbours,

5 =Y pl )/l ), xelin (6.5)
jeNx

Here Ny, X € I, is the set of indiceg of the subregions such thate I'j . These
nodal values ol ;, are then interpolated in order to obtain a functiorsiofe Uj. The
pseudoinverse(gr € U; are defined, fok € I n, by

500 =871, xe . (6.6)

We note that these functions provide a partition of unity:

N
Y RTsT0 =1 (6.7)
i=1
In particular, foru € U we can use the formula
N
u= Z RTui, withu =%, ((SiTu). (6.8)
i=1

Here and from now on, we will tacitly assume that whenever we Wjteuv) or H(uv)
we first form | K(uv), i.e. map the product of the two functionsandv into thehp finite-
element space by interpolation, and then extend the result as a discrete harmonic function.
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If there is no confusion, we will sometimes use the notatiorin order to denoté X (uv)
or ‘H; (uv).
A coarse spacdg of minimal dimension is defined as

Up = spar{RiTSiT} c U,

where the span is taken over the floating subdomains. We notddlainsists of piecewise
discrete harmonic functions arftj,r is the natural injectiotdy C U. We consider an exact
solver onUg

So(u, v) := a(Hu, Hv) = a(u, v).
For each substructurg;, the local bilinear form is
§,v) ;=g (Hiuw), Hi@iv)), Uu,vel;.

For afloating subdomair® is defined only for those € U for whichs(u, v) = 0 for all

v = RTvj such that; (8 vi ) is constant orf . This condition is satisfied #(u, RiTSiT) =

0; we note thaR' SiT is a basis function fado. For such subdomains, we make the solution
P u of (6.4) unique by imposing the constraint

f Hi (8 Puydx = 0, (6.9)
2

which just means that we select the solution orthogonal to the null space of the Neumann
operator. Thus, RangB ) has codimension 1 with respect to the spdgce

We can equally well use matrix notations. LB be the diagonal matrix with the
eIementsSiT(x) corresponding to the pointe I . Then

§(u,v) =u' DD .
Wealso have
P =R DiSDRS
WhereSJr is a pseudoinverse & . Analogously for the coarse projection,
Po = R} S 'RoS,

whereS = RySR] the restriction ofSto Ug

The main result of this paper is a bound for the condition numb@&gg§. Such bound
can be found using the abstract Schwarz theory (see e.g. 8maith1996, Chapter. 6). We
refer to Mandel & Brezina (1996), Dryja & Widlund (1995), Pavarino (1997) and Klawonn
& Widlund (2001) for similar proofs.

A uniform bound for the smallest eigenvalue can be found using the decomposition
(6.8) and the fact tha® is an orthogonal projection.

LEMMA 6.2 We have

s(PnnU, U) > s(u,u), ueU.
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In order to find a bound for the largest eigenvalue, we need a stability property for the
local bilinear forms (see e.g. Smigh al,, 1996).

ASSUMPTIONG6.1 We have

s(RTui, RTuj) < w§(ui,up), Ui € Range(P), i=1,...,N,

k 2

andC independent ok, n, o, v, the coefficientg; and the diametersl;.

with

The proof of Assumption 6.1 is given in Section 9. Assumption 6.1 and a colouring
argument provide a bound for the largest eigenvalue (see e.g. Pavarino, 1997, Section 8).

LEMMA 6.3 Let Assumption 6.1 be satisfied. Then
s(Pnnu, U) < Cows(u,u), ueU.

Consequently, the condition numberRyjn satisfies
k 2
kK(PuN) SCo=C(1—0)"° (1+ log <1—)) )
— 0

7. Decomposition results

A key ingredient for the proof of Assumption 6.1 and for the analysis of many iterative
substructuring methods in three dimensions is a decomposition result for local functions in
U; into face and wirebasket components:

U= Upij+Uy. UueU. (7.1)
j

The face componentgij vanishes ord (4 \ Fil and is discrete harmonic. It is uniquely
determined by the nodal values Ff#. The wirebasket componenmty; is also discrete
harmonic and vanishes at all pointsiof, except at those irWr'].

We can further decompose a local function by also defining edge and vertex
components:

UZZUFij+ZUEij+ZUVij, ue U, (7.2)
J J J

whereugi; is discrete harmonic and vanishesaf \ El, anduyij vanishes at all nodes

in [} 1 except at the verte¥/! . We recall that we exclude geometrical objectsa and

that therefore the sums in (7.1) and (7.2) are taken over faces, edges and vertices that do
not belong ta (2. Discrete harmonic functions of typg:ij, Ugij, Uyij anduy, are called

face, edge, vertex and wirebasket functions, respectively.
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FIG. 2. Face patch: partition of an eddethat touche$ (2 into E1_, andE, (left) and two-dimensional mesh
T (z) for a section corresponding to a constaftight).

Here and in the following section, we only carry out proofs for the reference cube
Q: since elements in the macromeSk are shape-regular and affinely mapped, the
corresponding bounds for a generic substructyre 7, of diameterH; can be obtained
by a standard scaling argument and involve the scaled norm (2.2). We recall that we only
need to consider four types of patches: face, edge, corner and unrefined ones, together with
the corresponding triangulatioff§, 7e, 7. andQ, respectively; cf. Fig. 1. We recall that a
generic patch is denoted by and its triangulation by .

7.1 Wirebasket components

Given an edgé& = E'l ¢ W, wedefine a discrete? norm onE. If E does not touch the
boundaryd {2, we simply set

[ulln.E = llullo,E-

Let now E be an edge that touché$?; see Fig. 2, left, for an example of a face patch.
After a possible translation and rotatida,can always be written as

E={1,12]|zel}

Then, the local mesf gives rise to a one-dimensional triangulation®yi/g, which is not
quasiuniform and is geometrically refined towards one end pointzsayl. In addition,
E can be partitioned as

E =Ei_, UE,, Eiy = (=1, -14+2(1-0)), E,=(-14+21-0),1).

We note thatE;_, consists of exactly one element of lengtfl2- o) in 7g, while the
elements orkE, are geometrically refined towards= 1. We now consider the GLL mesh
Tk(£2) and observe that all the elements that touch the éfipave the same diameters
hj x andh; y, aong the two directions perpendicular Eg cf. Fig. 2. Indeedhj x andh;,

are of ordeik—2 for a face patch, of ordde2(1 — o) for a corner patch and of ord&r
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andk—2(1— o), respectively, for an edge patch. Moreover, thanks to our particular meshes
and to the fact that local spaces of the same delgr@e employed on each element, we
have the following property.

PROPERTY 7.1 LetE be an edge parallel to e.g.that is shared by two substructur@s
and{?j. Then, the mesh sizég x andhj x, andh; y andhj y are comparable. In particular,
there exist constants, depending only on the aspect rati@s arfid (2, such that

cl—o)hjx < hj,x <Cl- U)ilhi,x-
Similar bounds hold foh; y andhj y.

We define
2 . 2 2 2 Ch 2
lullf g = llullg g + lulf g, = lull§ e + hixhiyllozul§ e, -

We note that in this case the discrete norm is obtained by adding th3herm onE
a weightedL? norm of 3,u over a part of E where7g is not quasiuniform. A discrete
wirebasket norm is obtained by summing the contributions over all the edges:

2 . 2
IUllf wi = Iullh, g
h,wW ,

EcWi

LEMMA 7.1 Letuy € Uj be discrete harmonic and vanish at all nodal poifs except
at those o'W'. Then there is a constant independencegf, Hi, o andn, such that
Juwil? g < CA—0)2fluwi 12 -

Proof. The result follows by estimating the energy norm of the zero extension of the
boundary values and by noting that the harmonic extension has a smaller energy (cf.
Lemma 6.1). More precisely, lety be the function that vanishes at all nodal points in
2 h U I n except at those oW, andu = u, = INuk the corresponding piecewise
trilinear function defined on the GLL mesh(£2). We will estimate the energy af, on
each elemenK e 7x(f2) that touch an edg& c W'. Without loss of generality, we
assume thakE is parallel to thez axis. We only consider the worst possible case, i.e. that
of a face patch and refer to Fig. 2.

Let us first suppose th& does not toucld 2. For a face patchK has dimensionhy,
hy andh; of order

k?xk?1-0)xk™?,
or

k2xk?21-0)xk™,
and thus

c(l—o)hy < hy < Chy,

hxy < Chy; (7.3)
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see Fig. 2. Ifa andb are the vertices oK that lie onE, Lemma 5.3 yields

b
laxulld x < Clhyhz/hy) (u@? + ub)? < C f u?dz,

a

where for the last inequality we have used (7.3) and standard properties of linear functions.
In a similar way, we find

b b
layull x < C(1—a)—1/ udz, 13.ulld « < C/ udz.
a

a

Let now E be an edge that touché®? andK e 7x(f2) be an element that shares an edge
with E;1_,. For a face patchkK has dimensions of the order

k2 xk?xk?1-o0),
or

k2xk?2xki1l-o0),
and thus

chy < hy < Chy,

he < C(1— o)~hy; (7.4)

see Fig. 2, left. As before, Lemma 5.3 yields

b b b
il < [ vz iy < [ udz i < C-o)? [ wde
a a a

We are now left with the case of an elemdfite 7x((2) that shares an edge with, . We
note that the first of (7.4) remains valid in this case. We then have

b b
laxull3 < C/ u’dz,  [layulldk < C/ u?dz.
a a

For d,u, we trivially have
b
13,12 « < C(hehy/hy)(U(@) — u(b))? < Chyhy f (d,u)2dz.
a

The proof is concluded by summing over the elemétts 7y (f2) and using Lemma 5.1.
]
We now have a bound for the wirebasket component.

COROLLARY 7.2 Letu € U; anduy, be its wirebasket component. Then there is a
constant independent af H;, o andn such that

2 -2 2
luwi 2 g, < CA—0) Ul -
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A complementary result is given by the trace estimates in Lemma 7.3. We first
introduce some additional notation. L& be an edge of a substructurg. Without
loss of generality, we assume th&t coincides with the reference cub@ and that
E={112lzel} The intersection between the plane corresponding to a constant
z € | andQ is the unit squar§ = (=1, 12, and the local mesHj gives rise to a two-
dimensional mesH (z) on Swhich is either a two-dimensional edge or corner patch, or it
consists of a single eleme8t see Fig. 2, right. LeV = (1, 1) be the intersection between
E and the closure o8. If Ky € 7 (2) is the two-dimensional element that contaihswe
note that, sinc&e does not belong t6 2, Ky has dimensions ifi2, 2(1 — o)}, and thus
is independent of the level of refinementFor a fixed(x, y) € Ky, wefinally define the
edgeE(x,y) ={(X,y,2)| z€ | }.

LEMMA 7.3 Letux € X; andE and edge of?. Then there is a constant independent of
Uk, Hi, o andn such that

ludl§e < C@—0)"2Q+logk) [luklif g, .
luklfe < C@—0)"2(1+loghk) luklf -

Proof. As before, it is enough to find bounds for= 1"uy. Without loss of generality,
we assumeé&e = {(1,1,2)| z € |}. We consider the two-dimensional megh(z) on the
intersection between the plane corresponding to a corstantt the substructure; cf. Fig. 2,
right. Since geometric refinement @n(z) takes place far from the vertes, 1), we can
apply the two-dimensional result in Toselli & Vasseur (2003a, Lemma 7.6) and write

UL 1,2> < C1—-0)"?1+logk) JuC,- 2)|? ze (-1,1),

1,8

with a constant that is independentrgfo andz. Integrating over then gives
lullfe < C@—0)"?(L+1loghk) [ulf .

which proves the first inequality and the second one for edges that do nota@uch

We now bound|u|h, g, for an edge that touches the boundaty. We consider the
one-dimensional GLL meshes for each one of the elemerifs iand estimate the single
contributions from the elements of these meshesellet one of these elements of length
h; and end pointa andb. The edgee belongs to a parallelepipee € 7k (£2). We note
that Ke has dimensionby = h;j x, hy = hj y, andh;. Sinceu is linear one and trilinear
on Kg, we have

hyh
hhy / ldz < C (@) — ud)? < Claul g,
e Z

where, for the last inequality, we have used Lemma 5.3. Summing over theetgks
yields

2 2
lulZ e, < Clldzul o

which, combined with the first inequality, proves the second bound. O
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The next lemma can be proved using the two-dimensional bound in Toselli & Vasseur
(2003a, Lemma 7.6) and similar arguments as before. We note that it is only valid for
edgesE(x, y) that are not too far fronie and thus not too close to the part 6f where
anisotropic refinement takes place.

LEMMA 7.4 Let E be an edge of a substructurg which is parallel, say, t@ and
intersects the plane corresponding to a constamiv . Let in additionKy be the element
in the two-dimensional mesfi (z) that containsV. Then, for every(x,y) € Ky and
Uk € X,

Iukl§ gy < C L —0)"2 (L +logk) uklf g . (7.5)

whereC is independent ofix, o, n, Kk, and(x, y), but depends only on the aspect ratio of
(.

Proof. The proof can be carried out as in the previous lemma by using the two-dimensional
result in Toselli & Vasseur (2003a, Lemma 7.6). Indeed, since the pojiy) belongs to
Kv and is thus far from the region where anisotropic refinement takes place, we have

ux.y, 212 <CL-0)" 2L+ logk) luC. -, D3 5 z€ (=11

Integration along concludes the proof. O

We end this section with a stability result for vertex and edge components. It is a direct
consequence of (5.1) and of the fact that for a vertex function the modified [poiime
coincides with|| - |lo.E.

LEMMA 7.5 LetE be an edge of a substructuf® andV one of its end points. Then, for
eweryu € X,

2 2 2 2
luv 2 i < CIUIZ i TUElZ i < ClUlZ . (7.6)

whereC is independent afi, o, n, k.

7.2 Face components

We next consider the face contributions of the decomposition (7.1). Bounds for face
contributions on the unrefined patch follow from standard results for spectral elements.
For face, edge and corner patches, we employ cut-off functign$or each face and
Lemma 5.2. We note that we need to consider one possible case for faces of the corner
patch, and two for the edge and face patches; cf. Fig. 1. In this section we only consider
the case of an edge patch in full detail, with the edggl, y, —1), y € I, and the two
adjacent faces in common with?; see Fig. 3. The other patches can be dealt with in a
similar way.

As shown in Fig. 3 for the reference cube, the edges that do not li&care denoted
by E',| =1,...,5, with E® the edge that does not touch the bounda®y An edge patch
is further partitioned into three regions. The first step of geometric refinement partitions
Q into four parallelepipeds with dimensions{i® 2(1 — o), 20}. Let K, be the one that
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FiG. 3. Edge patch on the reference cubel, 1)3 employed in the proofs of Lemmas 7.6 and 7.7.

contains the boundary edge aigh; the one that does not touéli? and contains the inner
edgeE®. The two remaining parallelepipeds are denotedidy and K 3* and they touch
the edgesE! andE2, andE® and E#, respectively. The regioKeqgeis the union ofk 12
andK 3% cf. Fig. 3.

The proof of the following lemma is a maodification of those of Casarin (1996,
Lemma 3.3.6) and Toselli & Vasseur (2003a, Lemma 7.7).

LEMMA 7.6 Givenh a facEFj of (2 that does not lie o (2, there exists a continuous
function 6, defined onf2, that is equal to one at the nodal pointsl%# and zero on

Iin\ F, such that

YO0 =1 xe(@nUTlin\W,

Fich

0<Orist, (7.7)
IVOgi| < C/r, in 4\ Kg

IVOgi| < C/Hi, in Kg,

wherer = r (x) is the distance to the closest edge/bfthat does not lie 04 (2.

Proof. We only need to construct four functions and we will do that by constructing them
in the three region&int, Kedge andKy, separately.

We start with the inner regioiK;,; and employ a similar construction as in Casarin
(1996, Lemma 3.3.6). We further partitiofd into eight parallelepipeds by bisecting
{Kint, K12, K34 K} with the planey = 0; see Fig. 3, left. Let the centt@ be the
common vertex to these parallelepipeds 48d, j = 1,..., 6} be their vertices that
belong to the six faces ab ; see Fig. 3, right. By connecting the cenGavith the centres
C! and with the eight vertices a®;, and, for each face, by connecting the pdtwith
the four vertices of this face, we can partitiéh into 24 tetrahedra; see Fig. 3, right.
By intersecting them wittK;,;, we obtain a partition ofKjn; into eight tetrahedra. We
first define a functiordj associated with the fade!, defined to be 14 & the centreC
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andvgj chH = 8ji at the centres of the faces. On the segm@t, these functions are
obtained by linear interpolation of the valuesGiandC'; see Fig. 3, right. The values
inside each subtetrahedron formed by the segi@@itand one edge of' are defined to
be constant on the intersection of any plane through that edge, and are given by the value
on the segmer€ C' . We note that this procedure determings; at all points inf except
on the wirebaskeiV'.

We next consider the GLL triangulatidf ({2 ) and interpolate)r; at the GLL nodes
in King \ W':

Ori () = (1"9e)0, X € Kint \ W'

The functiordg; is set to zero on the nodes\'MfT The function®; are non-negative and
bounded by one: this proves the second of (7.7) for points;in. By construction, also
the first of (7.7) holds for every node iint \ W'. The third of (7.7) can be proven by
proceeding in the same way as for Casarin (1996, Lemma 3.3.6).

We next construct the functiortg; in Kegge We start withK 12 \Wetake the values on

the common fac& 12N K, and we extend them as constants ikt along the segments
parallel toE® andE?; see Fig. 3, left. The inequalities in (7.7) remain valid. We note that
the function obtained is independentofn K12, A similar construction is carried out in
K34,

Finally, we constructg; in K. We note thatK o, is divided into two parallelepipeds
and that on their internal faces the functiép; has already been defined. In addition,
Ogi is bilinear on these faces. It is then enough to assign the valieithe end points
and mid-point of the boundary edge and interpolate these valu€g iim order to obtain
a pecewise trilinear function. The first, second and fourth of (7.7) follow from standard
properties of trilinear functions. O

By examining the proof of the previous lemma, we see that, for an Edbat touches
a2, the value of the functiong; is independent of the coordinate along the direction of
E in all the elements of the GLL meshes that tol€}y cf. Fig. 3, left.

PROPERTY 7.2 LetF be aface of andE be an edge, parallel to saythat touche$ (2.
In any elemenKg € 7x(f2) that shares an edge witfy, the functiondg is independent
of z.

We are now able to bound the face components in the decomposition (7.1).

LEMMA 7.7 Letdg; be the functions in Lemma 7.6, wheffé is a face of the substructure
{2. Then, for every € {2 n U I, that is not on the wirebasket of,

D IKOrwe =Y 1NOR W0 =uX),  ueX;
j j
and

k 2
||‘<(9Fju)|iQi <Cl-o0)* <1+Iog (E)) Il -
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Proof. We only consider the case of an edge pafhn full detail; see Fig. 3. The proofis
similar to that in Toselli & Vasseur (2003a, Lemma 7.8) and Casarin (1996, Lemma 3.3.7)
but particular care is required close to the edges that téughindeed, thanks to Lemma
5.1, itis enough to find a bound for the piecewise trilinear functi%)Fj u).

The first equality follows directly from the first of (7.7). For the second inequality,
we consider an elemeft, of dimensionshy, hy, andhg, in the GLL meshZy(%). We
consider three cases (as opposed to Casarin, 1996, Lemma 3.3.7 where only two cases
are consideredKX may belong to the regioK (, containing the boundary edge, touch the
wirebasket, or may not touch it; see Fig. 3.

Casel. We start with an element that touches an eBgand does not belong t§,. We
can proceed as in Casarin (1996, Lemma 3.3.B does not touchh 2 (E = E®) or, in
case it doesE = E!,| = 1,...,4), if K does not touctE,. We only consider the case
of E = E2in full detail; cf. Fig. 3, left. The nodal values af‘(GFju) onK areQ0, O,
0, u(a), u(b), 6gj(c)u(c) andog;j(d)u(d), with a andb vertices on a face andandd
vertices inside? . It isimmediate to see that

c(l—o)hx <hy <C@L—0) thy,
(7.8)
hx < C(l — O’)ilhz.
Using Lemma 5.3 and (7.8), we can easily find

M@ < Cl—0)72h; (u@?2+ ub)?+ u©)? + u(d)?

b d
< Cl-0)2 (/ u2d2-|-/ u2dz>,
a C

where we have also used the fact that has values between zero and one. Summing over
the elemenK and using in Lemma 7.4 for segments that are parall& tgives

> IM@riwIi g <C@A—0)"* (@ +logk) ulf g .
K

where the sum is taken over the elementgif2 ) that touch an edgk, such thate does
not touchd {2 or, if it does,K does not touclt,, .

We next consider the case whekkeshares an edge with,,. The terms involving the
x andy derivatives can be bounded as before: indeed, the first of (7.8) still holds in this
case. However, the second of (7.8), needed to bound dlegivative, does not hold. Using
Lemma 5.3 we find

1921 "G WIE k< Clhxhy/hz) (U@ — uB)? + G (©u(d) — O (A)u(d)?)
Property 7.1 ensures th@g; (c) = 6¢; (d) and thus
1921 "B W13, < CllozOFi WG « -
Summing over the elemenks that touchE, gives

D 190" Oriw Gk < CUI0riWIG g
K
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and thus

> 1MGrwiEk <C@-0) (L +logk) [ullf g . (7.9)
KNWi 4
Case2. We now consider an elemehkt € 7x(f2) that does not touch the wirebasket

and does not belong th ;. The proof for this case is similar to that of Casarin (1996,
Lemma 3.3.7). Using Lemma 5.2 and the second of (7.7), we have

h 2 2 -2 2
D MOrwE g <CY (ulf ¢ +rPlullg )
KCQi.\KQ K

Knw! =¢

wherer is the distance of the baricentre kffrom the wirebasket. We have

—2,,2
Zr lul2, <C / r—2udx

K.muK12uK34

< /r5 u2dx+CZ / _2 2dx-|—C2: / _2 uadx,

Kint K12UK|m K34UK|nt

wherer j denotes the distance of a point from the efideand the region consisting of the
elements in the GLL mesk ({2 ) that touch the wirebasket is assumed to be excluded from
the domains of integration; cf. Fig. 3, left. Each of the integrals on the right, associated with
an edgeE = EJ, can be estimated using cylindrical coordinates with:tteis coinciding

with EJ and the radial direction; normal toE!. We only considerE® in detail; cf. Fig. 3.

The other integrals can be estimated in the same way. If the poistthe intersection
betweenE® and the section corresponding to a fixgdand Ky is the element of the
two-dimensional mesfi (¢) that containg/, we can write

/rgzuzdx < / 2dxdy/ zdg

Kint Ky
< Cl-o0)2(L+logk)fulf f rg 2 dxdy,
Ky

where we have used Lemma 7.4 for the last inequality; cf. Fig. 2, right. The last integral
can be estimated by

2 2 k

Ky

Considering similar contributions for the other edges, we then find

> 1"@ewiik <Cluf g +CA-0)? (Hlog(l—a)) luli.a-
KCO2\K g
Knwi =g

(7.10)
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FIG. 4. The cross sections of an edge and a face patch, or a corner and an edge patch, with a common face

Case3. We are now left with the cadé C K. Since, in this casdVég| is bounded by
aconstant, Lemma 5.2 ensures

h 2 2
D 1MOriwE ¢ < Cllulf -
KcKp

The proof is concluded by combining this inequality with (7.9) and (7.10), and applying
Lemma5.1. g

8. Comparison results

In the analysis of many iterative substructuring methods, it is necessary to compare certain
norms of discrete harmonic functions on different substructures that have the same trace
on a common face, edge or vertex.

As already pointed out in Toselli & Vasseur (2003a), if the local meshes are shape-
regular and quasi-uniform, the comparison for functions on adjacent substructures that
have the same value on a common face can be made using a trace theorem (which is valid
for general functions it 1) and a stable extension from the face. However, the existence of
stable extensions for meshes that are not quasi-uniform or shape-regular is far from trivial.
For this reason, here we will adopt the same strategy as in Toselli & Vasseur (2003a), since
the meshes considered are highly anisotropic but of a particular type.

We note that we only need to consider three cases: that of a face shared by an unrefined
and a face patch, by a face and an edge patch, and by an edge and a corner patch. We
only consider the last two cases in full detail, since the former can be treated in exactly the
same way. We consider the two substructusaind 2; in Fig. 4, which share the face
F. Since we proceed in exactly the same way as in Toselli & Vasseur (2003a, Section 7.3),
we do not present any proof here. We first consi@eand suppose that it coincides with
the reference cub®. The faceF corresponds ta = 1. Let 2 be the layer of points in
(% within a distance 21 — o) from F.

The following lemma can be proven in the same way as Toselli & Vasseur (2003a,
Lemma 7.9).

LEMMA 8.1 Letug € U;j be a face function o2, i.e. a discrete harmonic function that
vanishes o (2} \ F, andlr € X, such that
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1. Gf is equal toug on F and vanishes 08¢ \ F;
2. G is discrete harmonic if2g;
3. Uf vanishes inf \ 2.

Then
2 ~ 2 2 2
|UF|1)_Qi < |UF|1,Qi < ||V9<T,F||oo |UF|1’Qi,

whereb, g € WL°(() is any function that is equal to one & vanishes in; \ 2k,
and has values itD, 1) in the rest off} . In particular, we can find a function such that

IV6s.Fllo < C(L—0)7".

The comparison result for face functions can be then found by noting that we can map
2 and its mesh inta2r and the corresponding local mesh, by a simple dilation in the
horizontal direction.

COROLLARY 8.2 LetF be aface thatis common 19 andf?j andur € U be a piecewise
discrete harmonic function that is identically zero at all nodal point&,iN Fn . Then,

2 2 -1 2
cl-0)Urlf g < IUFlf o SCA—0) UElf -
For vertex and edge functions the following lemma is sufficient for our analysis.

LEMMA 8.3 Let (2 and £2; be two substructures and e X. If V. = V! = Viisa
common vertex, then the vertex components ehtisfy

2 -1 112
1y 12wy < CA =) Huyi 2 -

If E = E' = EJ is a common edge, then the edge componentssattisfy
lugilIf i < C(L— o) llugi I -

Proof. For the first inequality, we note that the modified norins|j,, i and|l - [, wi
coincide with theL? norms, since a vertex function vanishes at all nodal pointghin
except at that vertex and we only consider internal vertices. It is enough to compare a
contribution from an edg&’ of £2; with that of an edgeE' of (2. The worst possible
case occurs whek! does not toucld 2 but E' does; cf. Fig. 4. Le (2) be the function

in Qk(1) that vanishes at all the GLL nodes inexcept at—1 where it is equal ta(V).

Using the change of variables= (1 —o0)(z+ 1) — 1 and the fact that,;i vanishes irEi,,

we have

1 —-1+2(1-0)
/_uvj(i)zdi = / #(2)%d2 = (1—0)*1/ #(2)%dz
E! -1 -1

= (1—0)—1/_ uyi (2)%dz = (1—0)—1[ Uyi (2)%dz.
I EI

El—(r

For the second inequality, it is enough to use the definition of the modified nprifsyyi
and|| - |ln.wi and Property 7.1 ]
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9. Proof of Assumption 6.1

We are now ready to give an upper bound f@in Assumption 6.1. Our proof is similar
to that in Pavarino (1998, Lemma 9.1). We note that ife U;, its extensioru = RiTui
vanishes o'}, except at the nodal points ifi n and its support is thus contained in the
union of £ and its neighbouring substructures. In order to estimatee thus have to
estimate the energy af in these substructures in terms of the energofs; uj) in 2
alone.

We first note that, by simple calculation, we have

i8] 0% = pj8i 02 < minfpi. pj}. X e€Tlin, | ek (9.1)

“Letu; € RangéP)). We start with a substructur@; that only has a verteX = V' =
V! in common withf2 . We note that, according to the decomposition (7.2has only a
wirebasket component,; = u on {2j, which vanishes at all nodes ifij » except atV.
Using Lemma 7.1, we find

2 -2 2
aj(u,u) = pjluyily o < Cpj X —o) " lluyillh wi
-2 —
=Cpj 8y (L—0) 2 18iuyillZ -

wheres; v = i (V). We next note that, thanks to Lemma 8.3, the ngfmij,, \yi associated
with £2j can be bounded by - ||, wi. In addition, we can apply Lemmas 7.5 and 7.3 and
find

pillSiuyilIE i < CA—0) Lol Giunvillh i < CL—0) o I (Siu) 2
< C—0)3(L+logk) pillHiSiunlif g
= C(L—0)3(1+logk) (a (Hi(§iui), Hi (§iu)) + pi H 21 Hi (S un13 )

The L2 component in the last term can be bounded by the local bilinear &tm.),
thanks to a Poincainequality for floating subdomains (cf. (6.9)), or thanks to a Friedrichs
inequality for substructures that tougl?. Combining these two estimates and using (9.1),
we find

aj(u, u) = aj(Uyj, Uy;) < C(L—0)>(L+logk) a (M (Siup), Hi(Giu)).  (9.2)

We next consider a substructufg that only has an edgé = E' = EJ in common
with 2, with verticesVil = Vi1 andVi2 = V2 We note that, according to the
decompositions (7.1) and (7.2) has only a wirebasket component &,

U= Uyj = Uyj1 + Uyj2 + Ugj,
which vanishes at all nodes Iy n except at those on the closuBs . We then have
aj(u, u) < 3aj(Uyj1, Uyj1) + 3aj (Uyj2, Uyj2) + 38 (Ugj, Ugj).

For the two vertex components, we can proceed as before and find similar bounds to (9.2).
For the edge component, we use Lemma 7.1, the definitidn ¢f, gj and the fact tha;
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is constant at all the nodal points ity. We find
-2
Pj 8 g
(1-0)?
wheredj g is the constant value @ on E. Thanks to Lemma 8.3, the norin- ||, g
associated witlf?j can be bounded by- ||y, gi . In addition, we can apply Lemmas 7.5 and
7.3 and find

pillsiugi I g < CA—o) 2 llGiueld e < CA—0) 2 lHi G1u)IE g
< C—o0)"*(L+logk) pillHiSiunl g
= C(L—o) *(1+logk) (a (Hi(§iu), Hi (8iu)) + pi H2IH; (Siunli3 )

e ue: 12 Pj 12 g2
aj (Ugi, Ugi) = pjlUgily o < Cm Iugilly gi <C I8iUgilly gi-

As before, thelL2 component in the last term can be bounded by the local bilinear form
a (-, -), thanks to a Poincara a Friedrichs inequality. Combining these two estimates and
using (9.1), we find

aj(Ugj, Ug)) < C(L—0) 8L+ logk) a (M (iui), Hi (iui)). (9.3)

We next consider a substructurg that shares a facé and thus also the edges and
vertices that lie o@ F. We note that onf2j, u can be decomposed as

UZUWj+UF.
We have
aj(u,u) = pjlul o < 2pj(Juwils o + IUElZ o)
j U W= 0jlUly o S 40jUlwil o Fl1,0)-

The wirebasket component can be bounded as before; cf. (9.2) and (9.3). For the face
component we first note that the functignis equal to a constant valdgr at all nodal
points insideF. Using (9.1), we can then write

PiluElf o = pidE IHjGiURE o < AilHGIURIE g -
Using Corollary 8.2 and Lemma 7.7 yields
Hj@Giup)lf o, < CL—0) YHiGiup)If g

_ kK \)\°
<Cl-o0) 5<1+|09<E)) ||U||i(zi-

Combining the last two estimates and using a Poimcaa Friedrichs inequality, we find

2
aj(UF, UF) <C(L—0)~° <1+I09<%)) a (HiGiu), HiGiw).  (9.4)

Wefinally need to consider the energywin (2, a (u, u). We note that we can decompose
u on (% according to (7.1). The wirebasket and the face components can be bounded as
before. Summing ovearand the neighbouring subdomains, we then find

C K \)°
a(u, u) < m<1+ log (E)) (Z 1+ 1+ Zl) ai (Hi (8iu), Hi (8 u)).

Vii Eil Fii
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TABLE 1 Balancing Neumann—Neumann algorithm

1. Initialize
up = R} S Rogr + @, w € Rangel — Po)
Go=0dr—-Suw

2. lteratej = 1, 2, ... until convergence

Project: wj_1=(I — PJ)Qj—l
N
Precondition: zj_1= Y RTD; STDi Riwj_1
i=1

Project: yj_1=(l —Pp)zj_1
Bj = {¥Yj-1. wj—1)/{Yj—2. wj—2) [B1=0]
Pj =Yj-1+BjpPj-1 [P1= Yol
aj = (Yj—1, wj-1)/(Pj, S B)
Uj = Uj—1+aj pj
4j =dj-1—jSp

Since the partitior?y, is shape-regular, the number of subdomains to which an edge or a
vertex may belong is bounded. We finally obtain

k 2
w<C@l-0)"" <1+Iog (E)) .

Since in practice is bounded away from one, we obtain the same bound as for Neumann—
Neumann methods fqp finite-element approximations on shape-regular meshes

K (PnN) < C (1 + logk)?;

(see e.g. Pavarino, 1997). We stress the fact that the constants in the last two estimates are
independent of the coefficients and the refinement level (and thus of the aspect ratio
of the mestHz;").

10. Numerical results

The purpose of this section is to present two numerical experiments in order to validate
our analysis on some medium-size problems. A more detailed and thorough study will be
presented in Toselli & Vasseur (2003b).

The balancing Neumann—-Neumann method of Section 6 can be implemented as a
projected preconditioned conjugate gradient algorithm and is shown in Table 1 (see Toselli
& Vasseur, 2003c for more details). In this taple) denotes the Euclidean inner product.

It is easy to show thab; = qj thanks to the choice of the initial guess, and the first
projection step can therefore be omitted. In addition, the application of the pseudoinverses
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S1T can be carried out by applying the pseudoinverses of the original ma#icesf. (6.1),

which amounts to solving local Neumann problems on the substructures (seeeBalith
1996, Section 4.2.1 for details). The total amount of work for each step consists of the
solution of one coarse problem (applicationsg‘fl), one Neumann problem (application

of ST) and two Dirichlet problems (application &for Py and for the calculation of the
new search direction) on each subdomain. The most expensive parts of the methods are the

factorizations of the local matrices®) and A", and of the globaky. The matricesA®

and Af'l) have roughly the same size.

Weremark that the amount of work per step of the unpreconditioned conjugate gradient
algorithm for the Schur complement system (6.2) amounts to solving one Dirichlet problem
on each substructure (one applicatiorSdbr the calculation of the new search direction).
The rate of convergence however deteriorates very fast with the problem size. A more
detailed numerical study on the performance and cost of our algorithm will be performed
in Toselli & Vasseur (2003b).

Our first numerical experiment targets the efficiency of the Neumann—Neumann
preconditioner for a Laplace problem defined on a boundary layer mesh (corner
refinement), whereas the second one is a standard domain decomposition test case defined
on a uniform mesh. In both experiments, the conjugate gradient iteration is stopped after a
reduction of the Euclidean norm of the initial residual of #Hand homogeneous Dirichlet
boundary conditions have been used.

10.1 Laplace problem on a boundary layer mesh

We consider approximations on the unit cuBe= (0, 1)3. We choosep = 1 and the
right-hand sidef = 1. The macromesfi,, consists ofN x N x N cubic substructures.
Geometric refinement is performed towards the three edge®, y = 0, andz = 0, with
o = 0-5; see Fig. 5, left. Given a polynomial degieeve choosen = k as is required for
robust exponential convergence (see e.g. Anderssah 1995; Babgka & Guo, 1996).

We note that even for moderate valueskadind N, extremely large linear systems are
obtained; cf. Tables 2 and 3. Huge local blocks need to be inverted, both for the application
of S (solution of local Dirichlet problems) and the preconditioner (solution of local
Neumann problems). Due to memory limitations in our Matlab implementation, direct
solvers could not always be employed and thus we have employed approximate solvers
for local Dirichlet and Neumann problems. We refer to Smaitlal. (1996, Section 4.4) for
details on the implementation. In particular, we have used a conjugate gradient iteration
with an incomplete Cholesky factorization with drop tolerance1f@r all local problems.

The iteration is stopped after a reduction of the initial residual of a facto? d®after 20
iteration steps. In the sequel, we denote by NN (inexact) the resulting balancing Neumann—
Neumann method with this strategy for the approximate solvers. An exact variant denoted
by NN (exact) is derived, when solving all the local subproblems now up to machine
precision with the same iterative solver as in the inexact case. Our numerical results show
that the theoretical bounds for the case of exact solvers in Lemma 6.2 remain valid in this
case; cf. Tables 2 and 3.

For a fixed partition into substructures witN = 3, Table 2 shows the size of the
original problem, the iteration count, the estimated maximum and minimum eigenvalues,
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Estimated condition number and quadratic log fit (BNN)

O Condition number
— Quadratic log fit

Condition number
e
L

1 1 1 1 1
2 3 4 5 6 7 8
Spectral degree

FIG.5. Geometric refinement towards one cornbr £ 3,0 = 0-5, andn = 6), left, and estimated condition
numbers (circles) from Table 2 (inexact variant) and least-square second-order logarithmic polynomial fit (solid
line) versus, right.

TABLE 2 Conjugate gradient method for the global system with Neumann—Neumann
preconditioner with inexact and exact solvers: iteration counts, maximum and minimum
eigenvalues, and condition numbers, versus the polynomial degree, for the case of a fixed
partition. The size of the original problem is also reported. Fixed number of subdomains

(N=3)
NN (inexact) NN (exact)

k Size It Amax Amin K It Amax Amin K

2 1331 15 18379 1 18379 13 16255 100002 16255
3 6859 20 28165 099997 28166 18 28165 100001 28161
4 24389 25 0507 099947 39528 21 30506 100002 39498
5 68921 29 51507 099799 51611 25 51507 100002 51493
6 166375 34 @675 099801 63803 28 63675 100002 63658
7 357911 38 /082 099395 75540 32 75067 100002 75065
8 704969 40 &298 099574 85663 34 8064 100002 85062

and the condition number for different valueskofor both inexact and exact variants. We
note that the minimum eigenvalue is close to one when using inexact solvers; see Lemma
6.2. In addition, a moderate growth of the maximum eigenvalue is observedygtich
growth is consistent with the quadratic bound in Lemma 6.3; see Fig. 5, right. Using inexact
solvers for the local subproblems induces a moderate increase of number of iterations.
Nevertheless, quite satisfactory condition numbers are still obtained, see Table 2.

We next consider the same problem, and fix the polynomial delgree 4. Table 3
shows the results for different values bf. In both variants, the iteration counts, and
the smallest and largest eigenvalues appear to be bounded independently of the number
of subdomains. We note that when the number of subdomains increases, the number
of iterations to reach the convergence criterion for both variants is nearly identical.
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TABLE 3 Conjugate gradient method for the global system with Neumann—Neumann
preconditioner with inexact and exact solvers: iteration counts, maximum and minimum
eigenvalues, and condition numbers, versus the number of substructures, for the case of
a fixed polynomial degree and partitions into NN x N substructures. The size of the
original problem is also reported. Fixed spectral degree it

NN (inexact) NN (exact)

N Size It )Lmax )\.mm K It )\max )\mln K

2 15625 18 26417 099929 26436 15 26412 10003 26406
3 24389 25 507 099947 39528 21 PV506 10002 39498
4 35937 28 41084 099934 41111 25 41082 10002 41074
5 50653 29 41378 099940 41402 26 41375 10002 41369
6 68921 30 41492 099945 41515 28 35746 10002 35741
7 91125 30 41555 099952 41575 28 36133 10001 36128
8 117649 30 41593 099955 41612 29 36289 10001 36284
9 148877 30 41618 099962 41634 29 36475 10001 36470
10 185193 30 4636 099970 41648 29 36582 10001 36577

Nevertheless, the difference on the condition number estimates is more pronounced than
in Table 2.

10.2 Laplace problem with jump coefficients

The theoretical bound for the condition number in Lemma 6.3 is independent of arbitrary
jumps on the coefficients between the substructures. The purpose of this numerical
experiment is to check this property. In consequence, the coeffipigrtssibly changes
between the substructures by orders of magnitudes. The right-hand dide s Given a
partition of 2 = (0, 1)3into N x N x N cubic substructuresI{ = 7m = N x N x N),

a checkerboard distribution on this partition is considereddavhich is equal to either

01 Or p2 as in Mandel & Brezina (1996). Inexact solvers for the Dirichlet and Neumann
problems have been considered.

For afixed partition into substructures with = 3 and for fixed jumps between the
substructures witlh; = 1072 andp, = 10°, we have investigated the behaviour of the
condition number of the preconditioned operator versus the polynomial dkgrgds
behaviour is shown in Fig. 6 and is consistent with the quadratic bound in Lemma 6.3.

For afixed partition into substructures witd = 3 and for a fixed polynomial degree
k = 4, we have investigated the influence of the jupapp1 on the convergence behaviour
of the balancing Neumann—Neumann methads fixed to 1, whereagy is varying from 1
to 1CP. A checkerboard distribution has also been used. The results are presented in Table 4.
The number of preconditioned CG iterations in order to satisfy the stopping criterion is
bounded independently of the ratio/p1, in agreement with the bound for the case of
exact solvers in Lemma 6.3.
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Estimated condition number and quadratic log fit (BNN)
T T

T T T T T
O Condition number o
— Quadratic log fit

3r R

32

281

26

Condition number
N
N
T

14F

12 I I I I I I I
2 3 4 5 6 7 8 9 10

Spectral degree

FiG. 6. Laplace problem with jump coefficients. Caseaf= 103 andpp = 103. Fixed partition 3x 3 x 3.
Estimated condition numbers (circles) and least-square second order logarithmic polynomial (solid line) versus
the spectral degree for the balancing Neumann—Neumann method (inexact variant).

TABLE 4 Laplace problem with jump coefficients.
Case of k = 4 and p; = 1. Conjugate
gradient method for the global system with balanc-
ing Neumann—Neumann method (inexact solvers):
iteration counts, maximum and minimum eigen-
values, and condition numbers versps. Fixed
number of subdomains (& 3)

NN (inexact)

02 It Amax Amin K

1 15 21153 1 21153
10 15 21185 099999 21186
107 15 20370 1 20370
103 14 20262 1 20262

104 14 20251 099991 20253
10° 17 20275 096406 21031
106 16 20266 098234 20630

11. Concluding remarks

As for the analysis in Toselli & Vasseur (2003a), some important issues still need to be
addressed. We refer to our previous work for a full discussion of these issues.

Our analysis is restricted to approximations that employ nodal basis functions on
the Gauss-Lobatto nodes. Indeed, for three-dimensional shape-regular meshes good
performance of iterative substructuring methods is in general ensured only if these
basis functions are employed and for more gengrabr hp version finite-element
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approximations many important issues remain to be solved even for shape-regular meshes
(see e.g. Sherwin & Casarin, 2001 and the references therein).

The Dirichlet and Neumann problems that we need to sofge and S{r) can
be potentially very large. Approximate local solvers can be employed for iterative
substructuring methods (see e.g. Sneitlal, 1996; Klawonn & Widlund, 2000) and some
have been proposed in Korneev al. (2002) for hp-approximations. In our numerical
experiments, we have employed a conjugate gradient iteration with an incomplete Choleski
preconditioner. However, we believe that the tensor product structure of corner, edge and
face patches can be exploited. This is left to a future work.

We believe that the analysis and/or the development of iterative substructuring methods
for general meshes with hanging nodes still need to be fully addressed. These meshes are
widely used in practice. There is no straightforward way of defining Neumann—Neumann
or FETI algorithms when hanging nodes lie on the interfacésee Toselli & Vasseur,
2003a, Remark 6.1 for more details).

Finally, our analysis has been carried out for the model problem (2.1), which indeed
does not exhibit boundary layers. As for the two-dimensional problems in Toselli &
Vasseur (2003a,c), numerical results show that our algorithms are robust when applied
to certain singularly perturbed problems. Extensive numerical results will be presented in
Toselli & Vasseur (2003b).
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