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We develop and analyse Neumann–Neumann methods forhp finite-element approxi-
mations of scalar elliptic problems on geometrically refined boundary layer meshes in
three dimensions. These are meshes that are highly anisotropic where the aspect ratio
typically grows exponentially with the polynomial degree. The condition number of
our preconditioners is shown to be independent of the aspect ratio of the mesh and of
potentially large jumps of the coefficients. In addition, it only grows polylogarithmically
with the polynomial degree, as in the case ofp approximations on shape-regular meshes.
This work generalizes our previous one on two-dimensional problems in Toselli & Vasseur
(2003a, submitted toNumerische Mathematik, 2003c to appear inComput. Methods Appl.
Mech. Engng.) and the estimates derived here can be employed to prove condition number
bounds for certain types of FETI methods.

Keywords: domain decomposition; preconditioning;hp finite elements; spectral elements;
anisotropic meshes.

1. Introduction

Solutions of elliptic boundary value problems in polyhedral domains have corner and
edge singularities and, in addition, boundary layers may also arise in laminar, viscous,
incompressible flows with moderate Reynolds numbers at faces, edges and corners.
Suitably graded meshes, geometrically refined towards corners, edges and/or faces, can
be employed in order to achieve an exponential rate of convergence ofhp finite-element
approximations (see e.g. Anderssonet al., 1995; Babǔska & Guo, 1996; Melenk & Schwab,
1998; Schwab & Suri, 1996; Schwabet al., 1998).

Neumann–Neumann (NN) and FETI algorithms are particular iterative substructuring
methods and are among the most popular and heavily tested domain decomposition (DD)
methods (see e.g. Le Tallec, 1994; Farhat & Roux, 1994; Mandel & Brezina, 1996;
Bhardwajet al., 2000). Unfortunately, the performance of iterative substructuring methods
might be severely compromised if very thin elements and/or subdomains or general non-
quasiuniform meshes are employed.

Some work has been done on domain decomposition preconditioners for higher-order
approximations of three-dimensional problems. It is well-known that on shape-regular
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meshes special care must be taken in the choice of the basis functions in order to produce
preconditioners that are robust with respect to the polynomial degree (e.g. Mandel, 1989,
1990a,b; Pavarino, 1994; Bica, 1997; Sherwin & Casarin, 2001). Forp approximations that
employ nodal basis functions on Gauss–Lobatto nodes (spectral element approximations),
many iterative substructuring methods can be successfully employed and studied (see
Pavarino & Widlund, 1996, 1997; Pavarino, 1997; Pavarino & Warburton, 2000 and
the references therein). Some of these ideas can be and have been generalized tohp
approximations (e.g. Ainsworth, 1996a,b; Odenet al., 1997; Guo & Cao, 1997; Le Tallec &
Patra, 1997; Ainsworth & Sherwin, 1999; Korneevet al., 2002 and the references therein
and, in particular, Guo & Cao, 1998 for three-dimensional problems). In all the above-
mentioned works, however, the finite-element mesh is assumed to be shape-regular and
robustness with respect to the aspect ratio is not in general ensured and often unlikely to
hold in practice.

In Toselli & Vasseur (2003a,c), we showed that NN and FETI methods can be
successfully devised for the particular geometrically refined boundary layer meshes
commonly used forhp finite-element approximations of two-dimensional problems.
Indeed, these meshes are highly anisotropic, but of a particular type:

1. they are obtained by refining an initialshape-regularmesh (macromesh);
2. refinement is only carriedtowardsthe boundary of the computational domain.

These properties, also shared by three-dimensional meshes, allowed us to obtain
condition number bounds for the corresponding preconditioned operators that only grow
polylogarithmically with the polynomial degree, as is the case ofp approximations
on shape-regular meshes. Our understanding and analysis was confirmed by numerical
experiments. In particular, we choose the macromesh as a decomposition into substructures
in such a way that subdomains are shape-regular. Roughly speaking, the reason why
such favourable condition numbers are retained lies in the fact that upper bounds come
from stable decompositions of finite-element functions into components associated with
geometrical objects (typically vertices and edges of the subdomains in two dimensions).
Because of our particular meshes, only components associated withinternal vertices need
to be considered, i.e. relative to vertices in a neighbourhood of which the mesh is shape-
regular.

Three-dimensional boundary layer meshes also share the two characteristics mentioned
above. However, stable decompositions now involve face and wirebasket components,
where the wirebasket is the union of the subdomain edges and vertices that do not lie
on the external boundary of the computational domain. By considering, for instance, an
edgeE of a macroelement that shares a face withΩ (see the face patch in Fig. 1, left, or
Fig. 2), decoupling of face and wirebasket components is now also performed close to∂Ω ,
and thus where the mesh is not shape-regular. In this work, we are however able to provide
condition number bounds that only grow polylogarithmically with the polynomial degree,
as in the two-dimensional case, and are independent of arbitrarily large aspect ratios of the
mesh.

The core of this work lies in the careful modification and derivation of certain Sobolev-
type inequalities that are independent of the aspect ratio of the mesh for wirebasket and
face components of finite-element functions; see Section 7. Provided such inequalities are
available, the definition of the algorithms and their analysis are fairly standard procedures
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in DD methods and proceed as in the two-dimensional case in Toselli & Vasseur (2003a).
Here, we will only consider thebalancing method, which belongs to the family of
Neumann–Neumann methods, but note that the estimates derived can be employed for
the analysis of other Neumann–Neumann methods and one-level FETI methods in a
straightforward way (see Pavarino, 1997; Klawonn & Widlund, 2001; Toselli & Vasseur,
2003a).

Welimit our analysis to the case of nodal basis functions built on Gauss–Lobatto nodes.
In addition, we only consider the model problem (2.1), which does not have boundary
layers but only corner and edge singularities. However, our tensor-product meshes can also
be employed when only singularities are present and do not require the use of hanging
nodes. We recall that numerical results in Toselli & Vasseur (2003c) for two-dimensional
problems showed that better performance is obtained for certain singularly perturbed
problems which exhibit boundary layers. In addition, a linear dependence ink for the
condition number was observed for problems with geometric refinement towards interfaces
that lie in the interior of the computational domain.

The remainder of this paper is organized as follows: in Sections 2 and 3, we introduce
our continuous and discrete problems, respectively. Geometric boundary layer meshes are
introduced in Section 4. A particular choice of basis functions is given in Section 5 and our
Neumann–Neumann preconditioners are defined in Section 6. Section 7 is the core of this
work and is devoted to the proof of some discrete Sobolev-type inequalities. Comparison
results for certain discrete harmonic extensions are given in Section 8. Condition number
bounds are then proven in Section 9. Section 10 contains some numerical results, while
some concluding remarks and perspectives are presented in Section 11.

2. Problem setting

We consider a linear, elliptic problem on a bounded polyhedral domainΩ ⊂ R3 of unit
diameter, formulated variationally as:
Findu ∈ H1

0 (Ω), such that

a(u, v) =
∫
Ω

ρ(x)∇u · ∇v dx = f (v), v ∈ H1
0 (Ω). (2.1)

As usual,H1(Ω) is the space of square summable functions with square summable first
derivatives, andH1

0 (Ω) its subspace of functions that vanish on∂Ω . The functional f (·)
belongs to the dual spaceH−1(Ω). Herex = (x, y, z) denotes the position vector.

The coefficientρ(x) > 0 can be discontinuous, with very different values for different
subregions, but we allow it to vary only moderately within each subregion. We will in fact
assume that the region is the union of elements (also called subdomains, substructures,
or macroelements){Ωi }. Without decreasing the generality of our results, we will only
consider the piecewise constant case:

ρ(x) = ρi , x ∈ Ωi .

In the case of a region of diameterHi , such as the substructureΩi , we use a norm with
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different relative weights obtained by a simple dilation argument:

‖u‖2
1,Ωi

= |u|21,Ωi
+ 1

H2
i

‖u‖2
0,Ωi

. (2.2)

Here, ‖ · ‖0,Ωi and | · |1,Ωi denote the norm inL2(Ωi ) and the seminorm inH1(Ωi ),
respectively. In the following we also employ the spaceW1,∞(Ωi ) of bounded functions
with bounded derivatives (see e.g. Nečas, 1967).

3. hp finite-element approximations

We now specify a particular choice of finite-element spaces. Given an affine quadrilateral
meshT of Ω and a polynomial degreek � 1, we consider the following finite-element
spaces:

X = Xk(Ω; T ) := {u ∈ H1
0 (Ω) | u|K ∈ Qk(K ), K ∈ T }. (3.1)

HereQk(K ) is the space of polynomials of maximum degreek in each variable onK . In
the following, we may drop the reference tok, Ω , and/orT whenever there is no confusion.

In this paper, we always assume that the meshes areregular, i.e. the intersection
between neighbouring elements is either a vertex, or an edge, or a face that is common
to thetwoelements.

A finite-element approximation of (2.1) consists of findingu ∈ X, such that

a(u, v) = f (v), v ∈ X. (3.2)

4. Geometric boundary layer meshes

In order to resolve boundary layers and/or singularities, geometrically graded meshes can
be employed. They are determined by a mesh grading factorσ ∈ (0, 1) and a refinement
level n � 0. The number of layers isn + 1 and the thinnest layer has a width proportional
to σ n. Robust exponential convergence ofhp finite-element approximations is achieved
if n is suitably chosen. For singularity resolution,n is required to be proportional to the
polynomial degreek (see Anderssonet al., 1995; Babǔska & Guo, 1996). For boundary
layers, the width of the thinnest layer needs to be comparable to that of the boundary layer
(see Melenk & Schwab, 1998; Schwab & Suri, 1996; Schwabet al., 1998).

A geometric boundary layer meshT = T n,σ
bl is, roughly speaking, the tensor product

of meshes that are geometrically refined towards the faces. Figure 1 shows the construction
of a geometric boundary layer meshT n,σ

bl .
The meshT n,σ

bl is built by first considering an initial shape-regular macro-triangulation
Tm, possibly consisting of just one element, which is successively refined. This process
is illustrated in Fig. 1. Every macroelement can be refined isotropically (not shown) or
anisotropically in order to obtain so-called face, edge or corner patches (Fig. 1, level 2).
Here and in the following, we only consider patches obtained by triangulating the reference
cubeQ̂ := I 3, with I := (−1, 1). A patch for an elementKm ∈ Tm is obtained by using
an affine mappingFKm : Q̂ → Km. The stability properties proven for patches on the
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Level 2

Level 1

2(1−σ) σ

FIG. 1. Hierarchic structure of a boundary layer mesh, withσ = 0·5 andn = 3.

reference cube are equally valid for an arbitrary shape-regular elementKm ∈ Tm, with a
constant that is independent of the diameter ofKm.

A face patchis given by an anisotropic triangulation of the form

T f := {Kx × I × I | Kx ∈ Tx}, (4.1)

whereTx is a mesh ofI , geometrically refined towards, say,x = 1, with grading factor
σ ∈ (0, 1) andn levels of refinement; see Fig. 1 (level 2, left). We note that the mesh
Tx × {I } of Ŝ := I 2 is a two-dimensional edge patch.

An edge patchis given by a triangulation

Te = T bl
e := {Kx × Ky × I | Kx ∈ Tx, Ky ∈ Ty} = {Kxy × I | Kxy ∈ Txy}, (4.2)

whereTx andTy are meshes ofI , geometrically refined towards, say,x = 1 and y = 1,
respectively, with grading factorσ ∈ (0, 1) and total number of layersn; see Fig. 1 (level
2, centre). The meshTxy of Ŝ is a two-dimensional corner patch.

In a similar way, we can define acorner patchTc:

Tc = T bl
c := {Kx × Ky × Kz | Kx ∈ Tx, Ky ∈ Ty, Kz ∈ Tz},

whereTx, Ty, andTz are meshes ofI , geometrically refined towards, say,x = 1, y = 1,
andz = 1, respectively; see Fig. 1 (level 2, right).

We note that every element̂K of T f , Te, andTc on the reference cube is of the form
(0, hx) × (0, hy) × (0, hz) (after a possible translation and rotation) and is thus obtained
from the reference element by an affine mappingFK̂ : Q̂ → K̂ of the form

[x y z]T = [(hx/2)(x̂ + 1) (hy/2)(ŷ + 1) (hz/2)(ẑ + 1)]T . (4.3)

The aspect ratio of̂K is the maximum of all possible ratios ofhx, hy andhz. Since the
macromesh consists of affinely mapped elementsKm, every elementK of the global mesh
T = T n,σ

bl is obtained from the reference element by combining two affine mappings

K = FK (Q̂) = FKm(FK̂ (Q̂)), K ⊂ Km ∈ Tm. (4.4)
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SinceTm is shape-regular, the aspect ratio is determined only byFK̂ ; cf. (4.3). Finally, we
note that the aspect ratio of the mesh is determined byσ andn, and is proportional toσ−n.

As in Toselli & Vasseur (2003a), our analysis will be made for a prototype mesh,
obtained from a shape-regular (not necessarily quasi-uniform) macromesh, by refining
elements that only touch∂Ω , either as corner, edge, or face patches. Such meshes only
consist of four types of patches: unrefined, face, edge, and corner patches. We also recall
that in practical applicationsσ is bounded away from one and zero.

5. Basis functions on Gauss–Lobatto nodes

For the spaceXk(Ω; T ), we choose nodal basis functions on the Gauss–Lobatto nodes.
We denote byGLL(k) the set of Gauss–Lobatto points{ξi ; 0 � i � k} on I = (−1, 1)

in increasing order and by{wi > 0} the corresponding weights (see Bernardi & Maday,
1997, Section 4). We recall that the quadrature formula based onGLL(k) has order 2k −1
and, in addition,

‖u‖2
0,I �

k∑
i =0

u(ξi )
2 wi � 3‖u‖2

0,I , u ∈ Qk(I ); (5.1)

(see Bernardi & Maday, 1997, Remark 13.3).
For the reference cubêQ = (−1, 1)3 we setGLL(k)3 = {ξi j l = (ξi , ξ j , ξl ); 0 �

i, j, l � k}. In the following, we use the same notation for the mapped Gauss–Lobatto
nodes and corresponding weights for an affinely mapped elementK ∈ T .

Given the nodesGLL(k)3, our basis functions onQk(Q̂) are the tensor product of
kth-order Lagrange interpolating polynomials onGLL(k), defined by

l̂ i (ξ j ) = δi j . (5.2)

On the reference element we can write

u(x, y, z) =
k∑

i =0

k∑
j =0

k∑
l=0

u(ξi , ξ j , ξl ) l̂ i (x)l̂ j (y)l̂ l (z), u ∈ Qk(Q̂). (5.3)

For ageneral element inT , basis functions are obtained by mapping those on the reference
element.Interior local basis functions correspond to GLL nodes insideQ̂ (all local indices
differ from 0 andk).

Equation (5.3) defines an interpolation operatorI k on the reference element

I ku(x, y, z) :=
k∑

i =0

k∑
j =0

k∑
l=0

u(ξi , ξ j , ξl ) l̂ i (x)l̂ j (y)l̂ l (z).

The pointsGLL(k)3 define a triangulationTk = Tk(Q̂) of Q̂ in a natural way,
consisting ofk3 parallelepipeds. LetYh = Yh(Q̂) = X1(Q̂; Tk) be the space of piecewise
trilinear functions on this mesh. We also denoteYk = Yk(Q̂) = Qk(Q̂). The aspect ratio
of Tk is of the order ofk (see Casarin, 1996, p. 27 for details). In a similar way we can
consider a Gauss–Lobatto mesh on an affinely mapped elementK by simply mapping the
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GLL mesh onQ̂. In the following, we will use the notationTk = Tk(K ), Yh = Yh(K )

andYk = Yk(K ) to denote the GLL mesh, the piecewise trilinear finite-element space and
Qk, respectively, for a mapped element. If the aspect ratio ofK is e.g.hx/hy (cf. (4.3) and
(4.4)), then that of the correspondingTk is (hx/hy)k.

There is a one-to-one correspondence betweenYh andYk given by

I k : Yh → Yk, I h : Yk → Yh,

where I h is the nodal interpolation operator onYh. We use the notationuh ∈ Yh and
uk ∈ Yk in order to denote two corresponding functions.

LEMMA 5.1 Let K̂ = (0, hx) × (0, hy) × (0, hz). Then there exist positive constantsc
andC, such that, foruh ∈ Yh(K̂ ),

c‖uh‖0,K̂ � ‖uk‖0,K̂ � C‖uh‖0,K̂ ,

c‖∂x(uh)‖0,K̂ � ‖∂x(uk)‖0,K̂ � C‖∂x(uh)‖0,K̂ ,

with, in particular,c andC independent ofhx, hy, hz, andk. Similar bounds hold for they
andz derivatives. IfK ∈ T is given by (4.4), then, foruh ∈ Yh(K ),

c‖uh‖0,K � ‖uk‖0,K � C‖uh‖0,K ,

c|uh|1,K � |uk|1,K � C|uh|1,K

where the constants are independent of the diameter and the aspect ratio ofK , andk.

The proof of the above result can be found in Canuto (1994, Section 2) forK = Q̂.
For an affinely mapped element a scaling argument can be used. We note that thanks to
Lemma 5.1 we can equivalently work with functions inYk or Yh.

The following result can be found in Casarin (1996, Lemma 3.3.3).

LEMMA 5.2 Let K̂ = (0, hx) × (0, hy) × (0, hz) anduh ∈ Yh(K̂ ). Givenθ ∈ W1,∞(K̂ ),
with

‖θ‖∞,K̂ � C, ‖∇θ‖∞,K̂ � C/r,

then

‖I h(θuh)‖2
0,K̂

� C‖uh‖2
0,K̂

,

‖∂x I h(θuh)‖2
0,K̂

� C(|uh|2
1,K̂

+ r −2‖uh‖2
0,K̂

),

whereC is independent ofhx, hy, hz, andk. Similar bounds hold for they andzderivatives.
If K ∈ T is given by (4.4), then, foruh ∈ Yh(K ),

‖I h(θuh)‖2
0,K � C‖uh‖2

0,K ,

|I h(θuh)|21,K � C(|uh|21,K + r −2‖uh‖2
0,K ),

whereC is independent of the diameter and the aspect ratio ofK , andk.
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Given an element̂K = (0, hx) × (0, hy) × (0, hz) and a coordinate direction, sayx,
let a, b, c andd be the vertices of a face of̂K perpendicular to this direction, and leta′, b′,
c′ andd′ be the corresponding points on the parallel face. The following lemma relies on
trivial properties of trilinear functions (cf. Casarin, 1996, Lemma 3.3.1).

LEMMA 5.3 Let K̂ = (0, hx) × (0, hy) × (0, hz) anda, b, c andd be the vertices of a
face ofK̂ perpendicular to thex direction. Then there are constants independent ofhx, hy

andhz, such that, ifu is trilinear onK̂ ,

c‖u‖2
0,K̂

� hxhyhz
∑

x=a,b,c,d
(u(x)2 + u(x′)2) � C‖u‖2

0,K̂
,

c‖∂xu‖2
0,K̂

� (hxhyhz/h2
x)

∑
x=a,b,c,d

(u(x) − u(x′))2 � C‖∂xu‖2
0,K̂

,

c‖∂xu‖2
∞,K̂

� h−2
x

∑
x=a,b,c,d

(u(x) − u(x′))2 � C‖∂xu‖2
∞,K̂

.

Similar bounds hold for they andz derivatives.

6. Neumann–Neumann methods

Iterative substructuring methods rely on a non-overlapping partition into substructures.
We mention Smithet al. (1996, Chapter 4) as a general reference to this section. In our
algorithms the substructures are chosen as the macroelements inTm = {Ωi | 1 � i � N}.
We recall that the macroelements are shape-regular. This appears to be essential for the
analysis and good performance.

Wedefine the boundariesΓi = ∂Ωi \∂Ω and the interfaceΓ as their union. We remark
thatΓ is the union of the interior subdomainfaces, regarded as open sets, which are shared
by two subregions, and subdomainedgesandvertices, which are shared by more than two
subregions. Vertices can only be endpoints of edges. In the following, we tacitly assume
that points on∂Ω are excluded from the geometrical objects that we consider, or, in other
words, we will only deal with geometrical objects (faces, edges, vertices,. . . ) that belong
to Γ . We denote the faces ofΩi by Fi j , its edges byEi j , its vertices byVi j , and its
wirebasket, defined as the union of its edges and vertices, byWi . Occasionally, we will
also use faces, edges and vertices with one or no superscript. If a vertex (edge) lies on∂Ω
we will regard it as part of the internal edge (resp., face) that shares it with∂Ω .

When restricted to the subdomainΩi , the global triangulationT determines a local
meshTi . This mesh can be of four types: face, edge, corner or consisting of just one
element. We define the local spacesXi = Xk(Ωi ; Ti ), of local finite-element functions
that vanish on∂Ω ∩ ∂Ωi

In our analysis, we will also employ the GLL meshTk(Ωi ) onΩi , generated by the local
GLL meshesTk(K ) for K ∈ Ti . The corresponding space of piecewise trilinear functions
onTk(Ωi ) that vanish on∂Ω ∩ ∂Ωi is denoted byYh(Ωi ). We setYk(Ωi ) = Xk(Ωi ; Ti ).

Wenext define the local bilinear forms

ai (u, v) =
∫
Ωi

ρi ∇u · ∇v dx, u, v ∈ Xi .

We note that ifΩi is afloatingsubdomain (i.e. its boundary does not touch∂Ω ), ai (·, ·) is
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only positive semi-definite and foru ∈ Xi we have

ai (u, u) = 0 iff u constant inΩi .

The sets of nodal points onΓi , Γ , Fi j , Ei j andWi are denoted byΓi,h, Γh, Fi j
h , Ei j

h
andWi

h, respectively. We will identify these sets with the corresponding sets of degrees
of freedom. As for the corresponding regions, we will also use notation with one or no
superscript.

Weintroduce some spaces defined on the interfaces:Ui is the space of restrictions toΓi

of functions inXk(Ωi ; Ti ) andU of restrictions toΓ of functions inXk(Ω; T ). We note
that functions inUi andU are uniquely determined by the nodal values inΓi,h andΓh,
respectively. In the following we will identify these spaces with those of the corresponding
harmonic extensions; see in particular Lemma 6.1 below. For every substructureΩi , there
is a natural interpolation operator

RT
i : Ui −→ U

that extends a function onΓi to a global function onΓ with vanishing degrees of freedom
in Γh\Γi,h. Its transpose with respect to the Euclidean scalar productRi : U → Ui extracts
the degrees of freedom inΓi,h.

Once a vectoru ∈ Xk(Ω; T ) is expanded using the basis functions introduced in
Section 5, problem (3.2) can be written as a linear system

Au = f .

We recall that the condition number ofA is expected to grow at least ask3/(hmin)
2 ∼

k3σ−2n ∼ k3σ−2k (see Melenk, 2002 for a result in two dimensions) and may thus be
extremely large for large values ofk.

The contributions to the stiffness matrix and the right-hand side can be formed one
subdomain at a time. The stiffness matrix is then obtained bysubassemblyof these parts.
We will order the nodal points interior to the subdomains first, followed by those on the
interfaceΓ . Similarly, for the stiffness matrix relative to a substructureΩi , we have

A(i ) =
(

A(i )
I I A(i )

I Γ
A(i )

Γ I A(i )
ΓΓ

)
. (6.1)

In a first step of many iterative substructuring algorithms, the unknowns in the interior
of the subdomains are eliminated by block Gaussian elimination. In this step, the Schur
complements, with respect to the variables associated with the boundaries of the individual
substructures, are calculated. The resulting linear system can be written as

SuΓ = gΓ . (6.2)

Given the local Schur complements

Si = A(i )
ΓΓ − A(i )T

I Γ A(i )−1

I I A(i )
I Γ : Ui −→ Ui ,
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we have

S =
N∑

i =1

RT
i Si Ri : U −→ U

and an analogous formula can be found forgΓ (see Smithet al., 1996, Chapter 4).
A functionu(i ) defined onΩi is said to be discrete harmonic onΩi if

A(i )
I I u(i )

I + A(i )
I Γ u(i )

Γ = 0.

In this case, it is easy to see thatHi (u
(i )
Γ ) := u(i ) is completely defined by its value onΓi .

The space of piecewise discrete harmonic functionsu consists of functions inX that are
discrete harmonic on each substructure. In this case,u =: H(uΓ ) is completely defined by
its value onΓ .

Our preconditioners will be defined with respect to the inner product

s(u, v) = uT Sv, u, v ∈ U .

It follows immediately from the definition ofS thats(·, ·) is symmetric and coercive.
The following lemma results from elementary variational arguments.

LEMMA 6.1 Letu(i )
Γ be the restriction of a finite-element function toΓi . Then the discrete

harmonic extensionu(i ) = Hi (u
(i )
Γ ) of u(i )

Γ into Ωi satisfies

ai (u
(i ), u(i )) = min

v(i )|∂Ωi =u(i )
Γ

ai (v
(i ), v(i )) = u(i )

Γ

T
S(i )u(i )

Γ .

Analogously, ifuΓ is the restriction of a finite-element function toΓ , the piecewise discrete
harmonic extensionu = H(uΓ ) of uΓ into the interior of the subdomains satisfies

a(u, u) = min
v|Γ=uΓ

a(v, v) = s(u, u) = uT
Γ SuΓ .

This lemma ensures that instead of working with functions defined on the interfaceΓ ,
we can equivalently work with the corresponding discrete harmonic extensions. For this
reason, in the following we will identify spaces of traces on the interfaces,Ui andU , with
spaces of discrete harmonic extensions. We point out, however, that due to the particular
meshes considered, we cannot equivalently work with norms of local discrete harmonic
extensions and traces on the subdomain boundaries since our local meshes are not in
general quasi-uniform or shape-regular, and stable discrete harmonic extensions cannot
be found in general; see Section 8.

Neumann–Neumann methods provide preconditioners for the Schur complement
system: instead of solving (6.2) using, e.g. the conjugate gradient method, they employ
an equivalent system involving a preconditioned operator of the form

Ŝ−1S = PN N = P0 + (I − P0)

( N∑
i =1

Pi

)
(I − P0).
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We refer to Dryja & Widlund (1995), Mandel & Brezina (1996), Pavarino (1997) and
Klawonn & Widlund (2001) for some NN methods for theh and p finite-element
approximations. We are unaware on any such method forhp-approximations.

The operatorsPi are projection-like operators associated to a family of subspacesUi

and determined by a set of local bilinear forms defined on them:

s̃i (u, v), u, v ∈ Ui .

Given the interpolation operatorsRT
i : Ui → U , we have

Pi = RT
i P̃i , P̃i : U −→ Ui , (6.3)

with

s̃i (P̃i u, vi ) = s(u, RT
i vi ), vi ∈ Ui . (6.4)

While P0 is associated with a low-dimensional global problem, the others are associated
with the single substructures. The remainder of this section is devoted to the definition of
the various components ofPN N.

An important role is played by a family of weighted counting functionsδi , which are
associated with and defined on the individualΓi (cf. Dryja et al., 1996; Dryja & Widlund,
1995; Mandel & Brezina, 1996; Sarkis, 1994; Pavarino, 1997) and are defined forγ ∈
[1/2, ∞). GivenΩi andx ∈ Γi,h, δi (x) is determined by a sum of contributions fromΩi

and its relevant next neighbours,

δi (x) =
∑
j ∈Nx

ρ
γ

j (x)/ρ
γ

i (x), x ∈ Γi,h. (6.5)

HereNx, x ∈ Γh, is the set of indicesj of the subregions such thatx ∈ Γ j,h. These
nodal values onΓi,h are then interpolated in order to obtain a function ofδi ∈ Ui . The
pseudoinversesδ†

i ∈ Ui are defined, forx ∈ Γi,h, by

δ
†
i (x) = δ−1

i (x), x ∈ Γi,h. (6.6)

Wenote that these functions provide a partition of unity:

N∑
i =1

RT
i δi

†(x) ≡ 1. (6.7)

In particular, foru ∈ U we can use the formula

u =
N∑

i =1

RT
i ui , with ui = Hi (δ

†
i u). (6.8)

Here and from now on, we will tacitly assume that whenever we writeHi (uv) or H(uv)

we first form I k(uv), i.e. map the product of the two functionsu andv into thehp finite-
element space by interpolation, and then extend the result as a discrete harmonic function.
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If there is no confusion, we will sometimes use the notationuv in order to denoteI k(uv)

orHi (uv).
A coarse spaceU0 of minimal dimension is defined as

U0 = span{RT
i δ

†
i } ⊂ U,

where the span is taken over the floating subdomains. We note thatU0 consists of piecewise
discrete harmonic functions andRT

0 is the natural injectionU0 ⊂ U . Weconsider an exact
solver onU0

s̃0(u, v) := a(Hu,Hv) = a(u, v).

For each substructureΩi , the local bilinear form is

s̃i (u, v) := ai (Hi (δi u),Hi (δi v)), u, v ∈ Ui .

For a floating subdomainP̃i is defined only for thoseu ∈ U for which s(u, v) = 0 for all
v = RT

i vi such thatHi (δi vi ) is constant onΩi . This condition is satisfied ifa(u, RT
i δ

†
i ) =

0; we note thatRT
i δ

†
i is a basis function forU0. For such subdomains, we make the solution

P̃i u of (6.4) unique by imposing the constraint∫
Ωi

Hi (δi P̃i u)dx = 0, (6.9)

which just means that we select the solution orthogonal to the null space of the Neumann
operator. Thus, Range(P̃i ) has codimension 1 with respect to the spaceUi .

We can equally well use matrix notations. LetDi be the diagonal matrix with the
elementsδ†

i (x) corresponding to the pointx ∈ Γi,h. Then

s̃i (u, v) = uT D−1
i Si D−1

i v.

Wealso have

Pi = RT
i Di S

†
i Di Ri S,

whereS†
i is a pseudoinverse ofSi . Analogously for the coarse projection,

P0 = RT
0 S−1

0 R0S,

whereS0 = R0SRT
0 the restriction ofS to U0

The main result of this paper is a bound for the condition number ofPN N. Such bound
can be found using the abstract Schwarz theory (see e.g. Smithet al., 1996, Chapter. 6). We
refer to Mandel & Brezina (1996), Dryja & Widlund (1995), Pavarino (1997) and Klawonn
& Widlund (2001) for similar proofs.

A uniform bound for the smallest eigenvalue can be found using the decomposition
(6.8) and the fact thatP0 is an orthogonal projection.

LEMMA 6.2 We have

s(PN Nu, u) � s(u, u), u ∈ U .
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In order to find a bound for the largest eigenvalue, we need a stability property for the
local bilinear forms (see e.g. Smithet al., 1996).

ASSUMPTION6.1 We have

s(RT
i ui , RT

i ui ) � ω s̃i (ui , ui ), ui ∈ Range(P̃i ), i = 1, . . . , N,

with

ω = C (1 − σ)−6
(

1 + log

(
k

1 − σ

))2

andC independent ofk, n, σ , γ , the coefficientsρi and the diametersHi .

The proof of Assumption 6.1 is given in Section 9. Assumption 6.1 and a colouring
argument provide a bound for the largest eigenvalue (see e.g. Pavarino, 1997, Section 8).

LEMMA 6.3 Let Assumption 6.1 be satisfied. Then

s(PN Nu, u) � Cωs(u, u), u ∈ U .

Consequently, the condition number ofPN N satisfies

κ(PN N) � Cω = C (1 − σ)−6
(

1 + log

(
k

1 − σ

))2

.

7. Decomposition results

A key ingredient for the proof of Assumption 6.1 and for the analysis of many iterative
substructuring methods in three dimensions is a decomposition result for local functions in
Ui into face and wirebasket components:

u =
∑

j

uFi j + uWi , u ∈ Ui . (7.1)

The face componentuFi j vanishes on∂Ωi \ Fi j and is discrete harmonic. It is uniquely
determined by the nodal values inFi j

h . The wirebasket componentuWi is also discrete
harmonic and vanishes at all points ofΓi,h except at those inWi

h.
We can further decompose a local function by also defining edge and vertex

components:

u =
∑

j

uFi j +
∑

j

uEi j +
∑

j

uVi j , u ∈ Ui , (7.2)

whereuEi j is discrete harmonic and vanishes on∂Ωi \ Ei j , anduVi j vanishes at all nodes
in Γi,h except at the vertexVi j . We recall that we exclude geometrical objects on∂Ω and
that therefore the sums in (7.1) and (7.2) are taken over faces, edges and vertices that do
not belong to∂Ω . Discrete harmonic functions of typeuFi j , uEi j , uVi j anduWi are called
face, edge, vertex and wirebasket functions, respectively.
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FIG. 2. Face patch: partition of an edgeE that touches∂Ω into E1−σ andEσ (left) and two-dimensional mesh
T (z) for a section corresponding to a constantz (right).

Here and in the following section, we only carry out proofs for the reference cube
Q̂: since elements in the macromeshTm are shape-regular and affinely mapped, the
corresponding bounds for a generic substructureΩi ∈ Tm, of diameterHi can be obtained
by a standard scaling argument and involve the scaled norm (2.2). We recall that we only
need to consider four types of patches: face, edge, corner and unrefined ones, together with
the corresponding triangulationsT f , Te, Tc andQ̂, respectively; cf. Fig. 1. We recall that a
generic patch is denoted byΩi and its triangulation byTi .

7.1 Wirebasket components

Given an edgeE = Ei j ⊂ Wi , wedefine a discreteL2 norm onE. If E does not touch the
boundary∂Ω , wesimply set

‖u‖h,E := ‖u‖0,E.

Let now E be an edge that touches∂Ω ; see Fig. 2, left, for an example of a face patch.
After a possible translation and rotation,E can always be written as

E = {(1, 1, z) | z ∈ I }.
Then, the local meshTi gives rise to a one-dimensional triangulation onE, TE, which is not
quasiuniform and is geometrically refined towards one end point, sayz = 1. In addition,
E can be partitioned as

E = E1−σ ∪ Eσ , E1−σ = (−1, −1 + 2(1 − σ)), Eσ = (−1 + 2(1 − σ), 1).

We note thatE1−σ consists of exactly one element of length 2(1 − σ) in TE, while the
elements onEσ are geometrically refined towardsz = 1. We now consider the GLL mesh
Tk(Ωi ) and observe that all the elements that touch the edgeE have the same diameters
hi,x andhi,y, along the two directions perpendicular toE; cf. Fig. 2. Indeed,hi,x andhi,y

are of orderk−2 for a face patch, of orderk−2(1 − σ) for a corner patch and of orderk−2
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andk−2(1−σ), respectively, for an edge patch. Moreover, thanks to our particular meshes
and to the fact that local spaces of the same degreek are employed on each element, we
have the following property.

PROPERTY 7.1 LetE be an edge parallel to e.g.z, that is shared by two substructuresΩi

andΩ j . Then, the mesh sizeshi,x andh j,x, andhi,y andh j,y are comparable. In particular,
there exist constants, depending only on the aspect ratios ofΩi andΩ j , such that

c(1 − σ)hi,x � h j,x � C(1 − σ)−1hi,x.

Similar bounds hold forhi,y andh j,y.

Wedefine

‖u‖2
h,E := ‖u‖2

0,E + ‖u‖2
h,Eσ

= ‖u‖2
0,E + hi,xhi,y‖∂zu‖2

0,Eσ
.

We note that in this case the discrete norm is obtained by adding to theL2 norm onE
a weightedL2 norm of ∂zu over a part of E whereTE is not quasiuniform. A discrete
wirebasket norm is obtained by summing the contributions over all the edges:

‖u‖2
h,Wi :=

∑
E⊂Wi

‖u‖2
h,E.

LEMMA 7.1 LetuWi ∈ Ui be discrete harmonic and vanish at all nodal pointsΓi,h except
at those onWi . Then there is a constant independence ofuWi , Hi , σ andn, such that

|uWi |21,Ωi
� C(1 − σ)−2‖uWi ‖2

h,Wi .

Proof. The result follows by estimating the energy norm of the zero extension of the
boundary values and by noting that the harmonic extension has a smaller energy (cf.
Lemma 6.1). More precisely, letuk be the function that vanishes at all nodal points in
Ωi,h ∪ Γi,h except at those onWi , and u = uh = I huk the corresponding piecewise
trilinear function defined on the GLL meshTk(Ωi ). We will estimate the energy ofuh on
each elementK ∈ Tk(Ωi ) that touch an edgeE ⊂ Wi . Without loss of generality, we
assume thatE is parallel to thez axis. We only consider the worst possible case, i.e. that
of a face patch and refer to Fig. 2.

Let us first suppose thatE does not touch∂Ω . For a face patch,K has dimensionshx,
hy andhz of order

k−2 × k−2(1 − σ) × k−2,

or

k−2 × k−2(1 − σ) × k−1,

and thus

c(1 − σ)hx � hy � Chx,

hx � Chz; (7.3)
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see Fig. 2. Ifa andb are the vertices ofK that lie onE, Lemma 5.3 yields

‖∂xu‖2
0,K � C(hyhz/hx) (u(a)2 + u(b)2) � C

∫ b

a
u2dz,

where for the last inequality we have used (7.3) and standard properties of linear functions.
In a similar way, we find

‖∂yu‖2
0,K � C(1 − σ)−1

∫ b

a
u2dz, ‖∂zu‖2

0,K � C
∫ b

a
u2dz.

Let now E be an edge that touches∂Ω andK ∈ Tk(Ωi ) be an element that shares an edge
with E1−σ . For a face patch,K has dimensions of the order

k−2 × k−2 × k−2(1 − σ),

or

k−2 × k−2 × k−1(1 − σ),

and thus

chx � hy � Chx,

hx � C(1 − σ)−1hz; (7.4)

see Fig. 2, left. As before, Lemma 5.3 yields

‖∂xu‖2
0,K � C

∫ b

a
u2dz, ‖∂yu‖2

0,K � C
∫ b

a
u2dz, ‖∂zu‖2

0,K � C(1 − σ)−2
∫ b

a
u2dz.

We are now left with the case of an elementK ∈ Tk(Ωi ) that shares an edge withEσ . We
note that the first of (7.4) remains valid in this case. We then have

‖∂xu‖2
0,K � C

∫ b

a
u2dz, ‖∂yu‖2

0,K � C
∫ b

a
u2dz.

For ∂zu, we trivially have

‖∂zu‖2
0,K � C(hxhy/hz)(u(a) − u(b))2 � Chxhy

∫ b

a
(∂zu)2dz.

The proof is concluded by summing over the elementsK ∈ Tk(Ωi ) and using Lemma 5.1.
�

Wenow have a bound for the wirebasket component.

COROLLARY 7.2 Let u ∈ Ui and uWi be its wirebasket component. Then there is a
constant independent ofu, Hi , σ andn such that

|uWi |21,Ωi
� C(1 − σ)−2‖u‖2

h,Wi .
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A complementary result is given by the trace estimates in Lemma 7.3. We first
introduce some additional notation. LetE be an edge of a substructureΩi . Without
loss of generality, we assume thatΩi coincides with the reference cubêQ and that
E = {(1, 1, z) | z ∈ I }. The intersection between the plane corresponding to a constant
z ∈ I and Q̂ is the unit squarêS = (−1, 1)2, and the local meshTi gives rise to a two-
dimensional meshT (z) on Ŝwhich is either a two-dimensional edge or corner patch, or it
consists of a single elementŜ; see Fig. 2, right. LetV = (1, 1) be the intersection between
E and the closure of̂S. If KV ∈ T (z) is the two-dimensional element that containsV , we
note that, sinceE does not belong to∂Ω , KV has dimensions in{2, 2(1 − σ)}, and thus
is independent of the level of refinementn. For a fixed(x, y) ∈ K V , we finally define the
edgeE(x, y) = {(x, y, z) | z ∈ I }.
LEMMA 7.3 Letuk ∈ Xi andE and edge ofΩi . Then there is a constant independent of
uk, Hi , σ andn such that

‖uk‖2
0,E � C (1 − σ)−2 (1 + logk) ‖uk‖2

1,Ωi
,

‖uk‖2
h,E � C (1 − σ)−2 (1 + logk) ‖uk‖2

1,Ωi
.

Proof. As before, it is enough to find bounds foru = I huk. Without loss of generality,
we assumeE = {(1, 1, z) | z ∈ I }. We consider the two-dimensional meshT (z) on the
intersection between the plane corresponding to a constantzand the substructure; cf. Fig. 2,
right. Since geometric refinement onT (z) takes place far from the vertex(1, 1), we can
apply the two-dimensional result in Toselli & Vasseur (2003a, Lemma 7.6) and write

|u(1, 1, z)|2 � C (1 − σ)−2 (1 + logk) ‖u(·, ·, z)‖2
1,Ŝ

, z ∈ (−1, 1),

with a constant that is independent ofn, σ andz. Integrating overz then gives

‖u‖2
0,E � C (1 − σ)−2 (1 + logk) ‖u‖2

1,Ωi
,

which proves the first inequality and the second one for edges that do not touch∂Ω .
We now bound‖u‖h,Eσ for an edge that touches the boundary∂Ω . We consider the

one-dimensional GLL meshes for each one of the elements inTE and estimate the single
contributions from the elements of these meshes. Lete be one of these elements of length
hz and end pointsa andb. The edgee belongs to a parallelepipedKe ∈ Tk(Ωi ). We note
that Ke has dimensionshx = hi,x, hy = hi,y, andhz. Sinceu is linear one and trilinear
on Ke, we have

hxhy

∫
e
∂zu

2dz � C
hxhy

hz
(u(a) − u(b))2 � C‖∂zu‖2

0,Ke
,

where, for the last inequality, we have used Lemma 5.3. Summing over the edgese in Eσ

yields

‖u‖2
h,Eσ

� C‖∂zu‖2
0,Ωi

,

which, combined with the first inequality, proves the second bound. �
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The next lemma can be proved using the two-dimensional bound in Toselli & Vasseur
(2003a, Lemma 7.6) and similar arguments as before. We note that it is only valid for
edgesE(x, y) that are not too far fromE and thus not too close to the part ofΩi where
anisotropic refinement takes place.

LEMMA 7.4 Let E be an edge of a substructureΩi which is parallel, say, toz and
intersects the plane corresponding to a constantz in V . Let in additionKV be the element
in the two-dimensional meshT (z) that containsV . Then, for every(x, y) ∈ K V and
uk ∈ Xi ,

‖uk‖2
0,E(x,y) � C (1 − σ)−2 (1 + logk) ‖uk‖2

1,Ωi
, (7.5)

whereC is independent ofuk, σ , n, k, and(x, y), but depends only on the aspect ratio of
Ωi .

Proof. The proof can be carried out as in the previous lemma by using the two-dimensional
result in Toselli & Vasseur (2003a, Lemma 7.6). Indeed, since the point(x, y) belongs to
K V and is thus far from the region where anisotropic refinement takes place, we have

|u(x, y, z)|2 � C (1 − σ)−2 (1 + logk) ‖u(·, ·, z)‖2
1,Ŝ

, z ∈ (−1, 1).

Integration alongz concludes the proof. �

Weend this section with a stability result for vertex and edge components. It is a direct
consequence of (5.1) and of the fact that for a vertex function the modified norm‖ · ‖h,E

coincides with‖ · ‖0,E.

LEMMA 7.5 LetE be an edge of a substructureΩi andV one of its end points. Then, for
everyu ∈ Xi ,

‖uV‖2
h,Wi � C‖u‖2

h,Wi , ‖uE‖2
h,Wi � C‖u‖2

h,Wi , (7.6)

whereC is independent ofu, σ , n, k.

7.2 Face components

We next consider the face contributions of the decomposition (7.1). Bounds for face
contributions on the unrefined patch follow from standard results for spectral elements.
For face, edge and corner patches, we employ cut-off functionsθF for each face and
Lemma 5.2. We note that we need to consider one possible case for faces of the corner
patch, and two for the edge and face patches; cf. Fig. 1. In this section we only consider
the case of an edge patchΩi in full detail, with the edge(1, y, −1), y ∈ I , and the two
adjacent faces in common with∂Ω ; see Fig. 3. The other patches can be dealt with in a
similar way.

As shown in Fig. 3 for the reference cube, the edges that do not lie on∂Ω are denoted
by El , l = 1, . . . , 5, with E5 the edge that does not touch the boundary∂Ω . An edge patch
is further partitioned into three regions. The first step of geometric refinement partitions
Q̂ into four parallelepipeds with dimensions in{2, 2(1 − σ), 2σ }. Let KΩ be the one that
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FIG. 3. Edge patch on the reference cube(−1, 1)3 employed in the proofs of Lemmas 7.6 and 7.7.

contains the boundary edge andKint the one that does not touch∂Ω and contains the inner
edgeE5. The two remaining parallelepipeds are denoted byK 12 andK 34 and they touch
the edgesE1 andE2, andE3 andE4, respectively. The regionKedge is the union ofK 12

andK 34; cf. Fig. 3.
The proof of the following lemma is a modification of those of Casarin (1996,

Lemma 3.3.6) and Toselli & Vasseur (2003a, Lemma 7.7).

LEMMA 7.6 Given a face F j of Ωi that does not lie on∂Ω , there exists a continuous
function θF j , defined onΩi , that is equal to one at the nodal points ofF j

h and zero on

Γi,h \ F j
h , such that ∑

F j ⊂Γi

θF j (x) = 1, x ∈ (Ωi,h ∪ Γi,h) \ Wi
h,

0 � θF j � 1,

|∇θF j | � C/r, in Ωi \ KΩ

|∇θF j | � C/Hi , in KΩ ,

(7.7)

wherer = r (x) is the distance to the closest edge ofΩi that does not lie on∂Ω .

Proof. We only need to construct four functions and we will do that by constructing them
in the three regionsKint , Kedge, andKΩ separately.

We start with the inner regionKint and employ a similar construction as in Casarin
(1996, Lemma 3.3.6). We further partitionΩi into eight parallelepipeds by bisecting
{Kint , K 12, K 34, KΩ } with the planey = 0; see Fig. 3, left. Let the centreC be the
common vertex to these parallelepipeds and{C j , j = 1, . . . , 6} be their vertices that
belong to the six faces ofΩi ; see Fig. 3, right. By connecting the centreC with the centres
C j and with the eight vertices ofΩi , and, for each face, by connecting the pointC j with
the four vertices of this face, we can partitionΩi into 24 tetrahedra; see Fig. 3, right.
By intersecting them withKint , we obtain a partition ofKint into eight tetrahedra. We
first define a functionϑF j associated with the faceF j , defined to be 1/4 at the centreC
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andϑF j (Cl ) = δ j l at the centres of the faces. On the segmentsCCl , these functions are
obtained by linear interpolation of the values atC andCl ; see Fig. 3, right. The values
inside each subtetrahedron formed by the segmentCCl and one edge ofFl are defined to
be constant on the intersection of any plane through that edge, and are given by the value
on the segmentCCl . Wenote that this procedure determinesϑF j at all points inΩi except
on the wirebasketWi .

We next consider the GLL triangulationTk(Ωi ) and interpolateϑF j at the GLL nodes
in K int \ Wi :

θF j (x) = (I hϑF j )(x), x ∈ K int \ Wi .

The functionθF j is set to zero on the nodes inWi
h. The functionsθF j are non-negative and

bounded by one: this proves the second of (7.7) for points inKint . By construction, also
the first of (7.7) holds for every node inK int \ Wi . The third of (7.7) can be proven by
proceeding in the same way as for Casarin (1996, Lemma 3.3.6).

Wenext construct the functionsθF j in Kedge. Westart withK 12. Wetake the values on

the common faceK 12∩ K int and we extend them as constants intoK 12 along the segments
parallel toE1 andE2; see Fig. 3, left. The inequalities in (7.7) remain valid. We note that
the function obtained is independent ofx in K 12. A similar construction is carried out in
K 34.

Finally, we constructθF j in KΩ . We note thatKΩ is divided into two parallelepipeds
and that on their internal faces the functionθF j has already been defined. In addition,
θF j is bilinear on these faces. It is then enough to assign the value 1/4 at the end points
and mid-point of the boundary edge and interpolate these values inKΩ in order to obtain
a piecewise trilinear function. The first, second and fourth of (7.7) follow from standard
properties of trilinear functions. �

By examining the proof of the previous lemma, we see that, for an edgeE that touches
∂Ω , the value of the functionsθF j is independent of the coordinate along the direction of
E in all the elements of the GLL meshes that touchEσ ; cf. Fig. 3, left.

PROPERTY 7.2 LetF be a face ofΩi andE be an edge, parallel to sayz, that touches∂Ω .
In any elementKE ∈ Tk(Ωi ) that shares an edge withEσ the functionθF is independent
of z.

Weare now able to bound the face components in the decomposition (7.1).

LEMMA 7.7 LetθF j be the functions in Lemma 7.6, whereF j is a face of the substructure
Ωi . Then, for everyx ∈ Ωi,h ∪ Γi,h that is not on the wirebasket ofΩi ,∑

j

I k(θF j u)(x) =
∑

j

I h(θF j u)(x) = u(x), u ∈ Xi

and

|I k(θF j u)|21,Ωi
� C (1 − σ)−4

(
1 + log

(
k

1 − σ

))2

||u||21,Ωi
.
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Proof. Weonly consider the case of an edge patchΩi in full detail; see Fig. 3. The proof is
similar to that in Toselli & Vasseur (2003a, Lemma 7.8) and Casarin (1996, Lemma 3.3.7)
but particular care is required close to the edges that touch∂Ω . Indeed, thanks to Lemma
5.1, it is enough to find a bound for the piecewise trilinear functionI h(θF j u).

The first equality follows directly from the first of (7.7). For the second inequality,
we consider an elementK , of dimensionshx, hy, andhz, in the GLL meshTk(Ωi ). We
consider three cases (as opposed to Casarin, 1996, Lemma 3.3.7 where only two cases
are considered):K may belong to the regionKΩ containing the boundary edge, touch the
wirebasket, or may not touch it; see Fig. 3.

Case1. We start with an element that touches an edgeE and does not belong toKΩ . We
can proceed as in Casarin (1996, Lemma 3.3.7) ifE does not touch∂Ω (E = E5) or, in
case it does (E = El , l = 1, . . . , 4), if K does not touchEσ . We only consider the case
of E = E3 in full detail; cf. Fig. 3, left. The nodal values ofI h(θF j u) on K are 0, 0, 0,
0, u(a), u(b), θF j (c)u(c) andθF j (d)u(d), with a andb vertices on a face andc andd
vertices insideΩi . It is immediate to see that

c(1 − σ)hx � hy � C(1 − σ)−1hx,

hx � C(1 − σ)−1hz.
(7.8)

Using Lemma 5.3 and (7.8), we can easily find

|I h(θF j u|21,K � C(1 − σ)−2hz (u(a)2 + u(b)2 + u(c)2 + u(d)2)

� C(1 − σ)−2
(∫ b

a
u2dz +

∫ d

c
u2dz

)
,

where we have also used the fact thatθF j has values between zero and one. Summing over
the elementK and using in Lemma 7.4 for segments that are parallel toE gives∑

K

|I h(θF j u)|21,K � C (1 − σ)−4 (1 + logk) ‖u‖2
1,Ωi

,

where the sum is taken over the elements inTk(Ωi ) that touch an edgeE, such thatE does
not touch∂Ω or, if it does,K does not touchEσ .

We next consider the case whereK shares an edge withEσ . The terms involving the
x and y derivatives can be bounded as before: indeed, the first of (7.8) still holds in this
case. However, the second of (7.8), needed to bound thez derivative, does not hold. Using
Lemma 5.3 we find

‖∂zI h(θF j u)‖2
0,K � C(hxhy/hz)

(
(u(a) − u(b))2 + (θF j (c)u(d) − θF j (d)u(d))2

)
.

Property 7.1 ensures thatθF j (c) = θF j (d) and thus

‖∂zI h(θF j u)‖2
0,K � C‖∂z(θF j u)‖2

0,K .

Summing over the elementsK that touchEσ gives∑
K

‖∂z(I h(θF j u)‖2
0,K � C ‖∂z(θF j u)‖2

0,Ωi
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and thus ∑
K∩Wi 
=∅

|I h(θF j u)|21,K � C (1 − σ)−4 (1 + logk) ‖u‖2
1,Ωi

. (7.9)

Case2. We now consider an elementK ∈ Tk(Ωi ) that does not touch the wirebasket
and does not belong toKΩ . The proof for this case is similar to that of Casarin (1996,
Lemma 3.3.7). Using Lemma 5.2 and the second of (7.7), we have∑

K⊂Ωi \KΩ
K∩Wi =∅

|I h(θF j u)|21,K � C
∑

K

(|u|21,K + r −2
K ‖u‖2

0,K ),

wherer K is the distance of the baricentre ofK from the wirebasket. We have∑
K

r −2
K ‖u‖2

0,K � C
∫

Kint∪K 12∪K 34

r −2u2dx

� C
∫

Kint

r −2
5 u2dx + C

2∑
j =1

∫
K 12∪Kint

r −2
j u2dx + C

4∑
j =3

∫
K 34∪Kint

r −2
j u2dx,

wherer j denotes the distance of a point from the edgeE j , and the region consisting of the
elements in the GLL meshTk(Ωi ) that touch the wirebasket is assumed to be excluded from
the domains of integration; cf. Fig. 3, left. Each of the integrals on the right, associated with
an edgeE = E j , can be estimated using cylindrical coordinates with theζ axis coinciding
with E j and the radial directionr j normal toE j . Weonly considerE5 in detail; cf. Fig. 3.
The other integrals can be estimated in the same way. If the pointV is the intersection
betweenE5 and the section corresponding to a fixedζ , and KV is the element of the
two-dimensional meshT (ζ ) that containsV , wecan write

∫
Kint

r −2
5 u2dx � C

∫
KV

r −2
5 dxdy

1∫
−1

u2dζ

� C(1 − σ)−2(1 + logk)‖u‖2
1,Ωi

∫
KV

r −2
5 dxdy,

where we have used Lemma 7.4 for the last inequality; cf. Fig. 2, right. The last integral
can be estimated by∫

KV

r −2
5 dxdy � C

∫ 2

k−2(1−σ)

r −1
5 dr5

∫ 2π

0
dφ � C

(
1 + log

(
k

1 − σ

))
.

Considering similar contributions for the other edges, we then find

∑
K⊂Ωi \KΩ
K∩Wi =∅

|I h(θF j u)|21,K � C|u|21,Ωi
+ C(1 − σ)−2

(
1 + log

(
k

1 − σ

))2

‖u‖2
1,Ωi

.

(7.10)
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2(1−σ)

Ω                                 Ω
Ω

i                                                     j

F

F

FIG. 4. The cross sections of an edge and a face patch, or a corner and an edge patch, with a common faceF .

Case3. We are now left with the caseK ⊂ KΩ . Since, in this case,|∇θF j | is bounded by
aconstant, Lemma 5.2 ensures∑

K⊂KΩ

|I h(θF j u)|21,K � C ‖u‖2
1,Ωi

.

The proof is concluded by combining this inequality with (7.9) and (7.10), and applying
Lemma 5.1. �

8. Comparison results

In the analysis of many iterative substructuring methods, it is necessary to compare certain
norms of discrete harmonic functions on different substructures that have the same trace
on a common face, edge or vertex.

As already pointed out in Toselli & Vasseur (2003a), if the local meshes are shape-
regular and quasi-uniform, the comparison for functions on adjacent substructures that
have the same value on a common face can be made using a trace theorem (which is valid
for general functions inH1) and a stable extension from the face. However, the existence of
stable extensions for meshes that are not quasi-uniform or shape-regular is far from trivial.
For this reason, here we will adopt the same strategy as in Toselli & Vasseur (2003a), since
the meshes considered are highly anisotropic but of a particular type.

Wenote that we only need to consider three cases: that of a face shared by an unrefined
and a face patch, by a face and an edge patch, and by an edge and a corner patch. We
only consider the last two cases in full detail, since the former can be treated in exactly the
same way. We consider the two substructuresΩi andΩ j in Fig. 4, which share the face
F . Since we proceed in exactly the same way as in Toselli & Vasseur (2003a, Section 7.3),
we do not present any proof here. We first considerΩi and suppose that it coincides with
the reference cubêQ. The faceF corresponds tox = 1. LetΩF be the layer of points in
Ωi within a distance 2(1 − σ) from F .

The following lemma can be proven in the same way as Toselli & Vasseur (2003a,
Lemma 7.9).

LEMMA 8.1 LetuF ∈ Ui be a face function onΩi , i.e. a discrete harmonic function that
vanishes on∂Ωi \ F , andũF ∈ Xi , such that
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1. ũF is equal touF on F and vanishes on∂ΩF \ F ;
2. ũF is discrete harmonic inΩF ;
3. ũF vanishes inΩi \ ΩF .

Then

|uF |21,Ωi
� |ũF |21,Ωi

� ‖∇θσ,F‖2∞ |uF |21,Ωi
,

whereθσ,F ∈ W1,∞(Ωi ) is any function that is equal to one onF , vanishes inΩi \ ΩF ,
and has values in(0, 1) in the rest ofΩi . In particular, we can find a function such that

‖∇θσ,F‖∞ � C(1 − σ)−1.

The comparison result for face functions can be then found by noting that we can map
Ω j and its mesh intoΩF and the corresponding local mesh, by a simple dilation in the
horizontal direction.

COROLLARY 8.2 LetF be a face that is common toΩi andΩ j anduF ∈ U be a piecewise
discrete harmonic function that is identically zero at all nodal points inΓh \ Fh . Then,

c (1 − σ) |uF |21,Ωi
� |uF |21,Ω j

� C(1 − σ)−1 |uF |21,Ωi
.

For vertex and edge functions the following lemma is sufficient for our analysis.

LEMMA 8.3 Let Ωi andΩ j be two substructures andu ∈ X. If V = Vi = V j is a
common vertex, then the vertex components ofu satisfy

‖uV j ‖2
h,W j � C(1 − σ)−1‖uVi ‖2

h,Wi .

If E = Ei = E j is a common edge, then the edge components ofu satisfy

‖uE j ‖2
h,W j � C(1 − σ)−2‖uEi ‖2

h,Wi .

Proof. For the first inequality, we note that the modified norms‖ · ‖h,Wi and‖ · ‖h,W j

coincide with theL2 norms, since a vertex function vanishes at all nodal points inΓh

except at that vertex and we only consider internal vertices. It is enough to compare a
contribution from an edgeE j of Ω j with that of an edgeEi of Ωi . The worst possible
case occurs whenE j does not touch∂Ω but Ei does; cf. Fig. 4. Letφ(ẑ) be the function
in Qk(I ) that vanishes at all the GLL nodes inI , except at−1 where it is equal tou(V).
Using the change of variablesz = (1− σ)(ẑ+ 1)− 1 and the fact thatuVi vanishes inEi

σ ,
we have∫

E j
uV j (ẑ)2dẑ =

∫ 1

−1
φ(ẑ)2dẑ = (1 − σ)−1

∫ −1+2(1−σ)

−1
φ(z)2dz

= (1 − σ)−1
∫

Ei
1−σ

uVi (z)2dz = (1 − σ)−1
∫

Ei
uVi (z)2dz.

For the second inequality, it is enough to use the definition of the modified norms‖ · ‖h,Wi

and‖ · ‖h,W j and Property 7.1 �



PRECONDITIONERS FOR ANISOTROPIC MESHES 147

9. Proof of Assumption 6.1

We are now ready to give an upper bound forω in Assumption 6.1. Our proof is similar
to that in Pavarino (1998, Lemma 9.1). We note that ifui ∈ Ui , its extensionu = RT

i ui

vanishes onΓh except at the nodal points inΓi,h and its support is thus contained in the
union of Ωi and its neighbouring substructures. In order to estimateω we thus have to
estimate the energy ofu in these substructures in terms of the energy ofHi (δi ui ) in Ωi

alone.
Wefirst note that, by simple calculation, we have

ρ j (δ
†
i (x))2 = ρ j δi (x)−2 � min{ρi , ρ j }, x ∈ Γi,h, j ∈ Nx. (9.1)

Let ui ∈ Range(P̃i ). We start with a substructureΩ j that only has a vertexV = Vi =
V j in common withΩi . We note that, according to the decomposition (7.2),u has only a
wirebasket componentuV j = u on Ω j , which vanishes at all nodes inΓ j,h except atV .
Using Lemma 7.1, we find

aj (u, u) = ρ j |uV j |21,Ω j
� C ρ j (1 − σ)−2 ‖uV j ‖2

h,W j

= C ρ j δ−2
i,V (1 − σ)−2 ‖δi uV j ‖2

h,W j ,

whereδi,V = δi (V). We next note that, thanks to Lemma 8.3, the norm‖·‖h,W j associated
with Ω j can be bounded by‖ · ‖h,Wi . In addition, we can apply Lemmas 7.5 and 7.3 and
find

ρi ‖δi uV j ‖2
h,W j � C(1 − σ)−1ρi ‖(δi ui )Vi ‖2

h,Wi � C(1 − σ)−1ρi ‖Hi (δi ui )‖2
h,Wi

� C(1 − σ)−3(1 + logk) ρi ‖Hi (δi ui )‖2
1,Ωi

= C(1 − σ)−3(1 + logk) (ai (Hi (δi ui ),Hi (δi ui )) + ρi H−2
i ‖Hi (δi ui )‖2

0,Ωi
).

The L2 component in the last term can be bounded by the local bilinear formai (·, ·),
thanks to a Poincaré inequality for floating subdomains (cf. (6.9)), or thanks to a Friedrichs
inequality for substructures that touch∂Ω . Combining these two estimates and using (9.1),
we find

aj (u, u) = aj (uV j , uV j ) � C(1 − σ)−5(1 + logk) ai (Hi (δi ui ),Hi (δi ui )). (9.2)

We next consider a substructureΩ j that only has an edgeE = Ei = E j in common
with Ωi , with verticesV j 1 = Vi 1 and V j 2 = Vi 2. We note that, according to the
decompositions (7.1) and (7.2),u has only a wirebasket component onΩ j ,

u = uW j = uV j 1 + uV j 2 + uE j ,

which vanishes at all nodes inΓ j,h except at those on the closureE j . We then have

aj (u, u) � 3aj (uV j 1, uV j 1) + 3aj (uV j 2, uV j 2) + 3aj (uE j , uE j ).

For the two vertex components, we can proceed as before and find similar bounds to (9.2).
For the edge component, we use Lemma 7.1, the definition of‖ · ‖h,E j and the fact thatδi
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is constant at all the nodal points inEh. We find

aj (uE j , uE j ) = ρ j |uE j |21,Ω j
� C

ρ j

(1 − σ)2
‖uE j ‖2

h,E j � C
ρ j δ−2

i,E

(1 − σ)2
‖δi uE j ‖2

h,E j ,

whereδi,E is the constant value ofδi on E. Thanks to Lemma 8.3, the norm‖ · ‖h,E j

associated withΩ j can be bounded by‖ · ‖h,Ei . In addition, we can apply Lemmas 7.5 and
7.3 and find

ρi ‖δi uE j ‖2
h,E j � C(1 − σ)−2ρi ‖(δi ui )Ei ‖2

h,Ei � C(1 − σ)−2ρi ‖Hi (δi ui )‖2
h,Ei

� C(1 − σ)−4(1 + logk) ρi ‖Hi (δi ui )‖2
1,Ωi

= C(1 − σ)−4(1 + logk) (ai (Hi (δi ui ),Hi (δi ui )) + ρi H−2
i ‖Hi (δi ui )‖2

0,Ωi
).

As before, theL2 component in the last term can be bounded by the local bilinear form
ai (·, ·), thanks to a Poincaré or aFriedrichs inequality. Combining these two estimates and
using (9.1), we find

aj (uE j , uE j ) � C(1 − σ)−6(1 + logk) ai (Hi (δi ui ),Hi (δi ui )). (9.3)

We next consider a substructureΩ j that shares a faceF and thus also the edges and
vertices that lie on∂F . Wenote that onΩ j , u can be decomposed as

u = uW j + uF .

We have

aj (u, u) = ρ j |u|21,Ω j
� 2ρ j (|uW j |21,Ω j

+ |uF |21,Ω j
).

The wirebasket component can be bounded as before; cf. (9.2) and (9.3). For the face
component we first note that the functionδi is equal to a constant valueδi,F at all nodal
points insideF . Using (9.1), we can then write

ρ j |uF |21,Ω j
= ρ j δ

−2
i,F |H j (δi uF )|21,Ω j

� ρi |H j (δi uF )|21,Ω j
.

Using Corollary 8.2 and Lemma 7.7 yields

|H j (δi uF )|21,Ω j
� C(1 − σ)−1|Hi (δi uF )|21,Ωi

� C(1 − σ)−5
(

1 + log

(
k

1 − σ

))2

||u||21,Ωi
.

Combining the last two estimates and using a Poincaré or aFriedrichs inequality, we find

aj (uF , uF ) � C (1 − σ)−5
(

1 + log

(
k

1 − σ

))2

ai (Hi (δi u),Hi (δi u)). (9.4)

Wefinally need to consider the energy ofu in Ωi , ai (u, u). Wenote that we can decompose
u on Ωi according to (7.1). The wirebasket and the face components can be bounded as
before. Summing overi and the neighbouring subdomains, we then find

a(u, u) � C

(1 − σ)6

(
1 + log

(
k

1 − σ

))2
(∑

Vi j

1 +
∑
Ei j

1 +
∑
Fi j

1

)
ai (Hi (δi u),Hi (δi u)).
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TABLE 1 Balancing Neumann–Neumann algorithm

1. Initialize
u0 = RT

0 S−1
0 R0gΓ + w̃, w̃ ∈ Range(I − P0)

q0 = gΓ − S u0

2. Iteratej = 1, 2, . . . until convergence

Project: w j −1 = (I − PT
0 )qj −1

Precondition: zj −1 =
N∑

i =1
RT

i Di S†
i Di Ri w j −1

Project: yj −1 = (I − P0)zj −1

β j = 〈yj −1, w j −1〉/〈yj −2, w j −2〉 [β1 = 0]
pj = yj −1 + β j pj −1 [p1 = y0]
α j = 〈yj −1, w j −1〉/〈pj , S pj 〉
u j = u j −1 + α j pj

qj = qj −1 − α j S pj

Since the partitionTm is shape-regular, the number of subdomains to which an edge or a
vertex may belong is bounded. We finally obtain

ω � C (1 − σ)−6
(

1 + log

(
k

1 − σ

))2

.

Since in practiceσ is bounded away from one, we obtain the same bound as for Neumann–
Neumann methods forp finite-element approximations on shape-regular meshes

κ(PN N) � C (1 + logk)2;
(see e.g. Pavarino, 1997). We stress the fact that the constants in the last two estimates are
independent of the coefficientsρi and the refinement leveln (and thus of the aspect ratio
of the meshT n,σ

bl ).

10. Numerical results

The purpose of this section is to present two numerical experiments in order to validate
our analysis on some medium-size problems. A more detailed and thorough study will be
presented in Toselli & Vasseur (2003b).

The balancing Neumann–Neumann method of Section 6 can be implemented as a
projected preconditioned conjugate gradient algorithm and is shown in Table 1 (see Toselli
& Vasseur, 2003c for more details). In this table〈·, ·〉 denotes the Euclidean inner product.

It is easy to show thatw j = qj thanks to the choice of the initial guess, and the first
projection step can therefore be omitted. In addition, the application of the pseudoinverses
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S†
i can be carried out by applying the pseudoinverses of the original matricesA(i ), cf. (6.1),

which amounts to solving local Neumann problems on the substructures (see Smithet al.,
1996, Section 4.2.1 for details). The total amount of work for each step consists of the
solution of one coarse problem (application ofS−1

0 ), one Neumann problem (application

of S†
i ) and two Dirichlet problems (application ofS for P0 and for the calculation of the

new search direction) on each subdomain. The most expensive parts of the methods are the
factorizations of the local matricesA(i ) and A(i )

I I , and of the globalS0. The matricesA(i )

andA(i )
I I have roughly the same size.

Weremark that the amount of work per step of the unpreconditioned conjugate gradient
algorithm for the Schur complement system (6.2) amounts to solving one Dirichlet problem
on each substructure (one application ofS for the calculation of the new search direction).
The rate of convergence however deteriorates very fast with the problem size. A more
detailed numerical study on the performance and cost of our algorithm will be performed
in Toselli & Vasseur (2003b).

Our first numerical experiment targets the efficiency of the Neumann–Neumann
preconditioner for a Laplace problem defined on a boundary layer mesh (corner
refinement), whereas the second one is a standard domain decomposition test case defined
on a uniform mesh. In both experiments, the conjugate gradient iteration is stopped after a
reduction of the Euclidean norm of the initial residual of 10−14 and homogeneous Dirichlet
boundary conditions have been used.

10.1 Laplace problem on a boundary layer mesh

We consider approximations on the unit cubeΩ = (0, 1)3. We chooseρ ≡ 1 and the
right-hand sidef ≡ 1. The macromeshTm consists ofN × N × N cubic substructures.
Geometric refinement is performed towards the three edgesx = 0, y = 0, andz = 0, with
σ = 0·5; see Fig. 5, left. Given a polynomial degreek, we choosen = k as is required for
robust exponential convergence (see e.g. Anderssonet al., 1995; Babǔska & Guo, 1996).

We note that even for moderate values ofk andN, extremely large linear systems are
obtained; cf. Tables 2 and 3. Huge local blocks need to be inverted, both for the application
of S (solution of local Dirichlet problems) and the preconditioner (solution of local
Neumann problems). Due to memory limitations in our Matlab implementation, direct
solvers could not always be employed and thus we have employed approximate solvers
for local Dirichlet and Neumann problems. We refer to Smithet al.(1996, Section 4.4) for
details on the implementation. In particular, we have used a conjugate gradient iteration
with an incomplete Cholesky factorization with drop tolerance 10−3 for all local problems.
The iteration is stopped after a reduction of the initial residual of a factor 10−3 or after 20
iteration steps. In the sequel, we denote by NN (inexact) the resulting balancing Neumann–
Neumann method with this strategy for the approximate solvers. An exact variant denoted
by NN (exact) is derived, when solving all the local subproblems now up to machine
precision with the same iterative solver as in the inexact case. Our numerical results show
that the theoretical bounds for the case of exact solvers in Lemma 6.2 remain valid in this
case; cf. Tables 2 and 3.

For a fixed partition into substructures withN = 3, Table 2 shows the size of the
original problem, the iteration count, the estimated maximum and minimum eigenvalues,
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FIG. 5. Geometric refinement towards one corner (N = 3, σ = 0·5, andn = 6), left, and estimated condition
numbers (circles) from Table 2 (inexact variant) and least-square second-order logarithmic polynomial fit (solid
line) versusk, right.

TABLE 2 Conjugate gradient method for the global system with Neumann–Neumann
preconditioner with inexact and exact solvers: iteration counts, maximum and minimum
eigenvalues, and condition numbers, versus the polynomial degree, for the case of a fixed
partition. The size of the original problem is also reported. Fixed number of subdomains
(N = 3)

NN (inexact) NN (exact)

k Size It λmax λmin κ It λmax λmin κ

2 1331 15 1·8379 1 1·8379 13 1·6255 1·00002 1·6255
3 6859 20 2·8165 0·99997 2·8166 18 2·8165 1·00001 2·8161
4 24389 25 3·9507 0·99947 3·9528 21 3·9506 1·00002 3·9498
5 68921 29 5·1507 0·99799 5·1611 25 5·1507 1·00002 5·1493
6 166375 34 6·3675 0·99801 6·3803 28 6·3675 1·00002 6·3658
7 357911 38 7·5082 0·99395 7·5540 32 7·5067 1·00002 7·5065
8 704969 40 8·5298 0·99574 8·5663 34 8·5064 1·00002 8·5062

and the condition number for different values ofk for both inexact and exact variants. We
note that the minimum eigenvalue is close to one when using inexact solvers; see Lemma
6.2. In addition, a moderate growth of the maximum eigenvalue is observed withk; such
growth is consistent with the quadratic bound in Lemma 6.3; see Fig. 5, right. Using inexact
solvers for the local subproblems induces a moderate increase of number of iterations.
Nevertheless, quite satisfactory condition numbers are still obtained, see Table 2.

We next consider the same problem, and fix the polynomial degreek = 4. Table 3
shows the results for different values ofN. In both variants, the iteration counts, and
the smallest and largest eigenvalues appear to be bounded independently of the number
of subdomains. We note that when the number of subdomains increases, the number
of iterations to reach the convergence criterion for both variants is nearly identical.
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TABLE 3 Conjugate gradient method for the global system with Neumann–Neumann
preconditioner with inexact and exact solvers: iteration counts, maximum and minimum
eigenvalues, and condition numbers, versus the number of substructures, for the case of
a fixed polynomial degree and partitions into N× N × N substructures. The size of the
original problem is also reported. Fixed spectral degree k= 4

NN (inexact) NN (exact)

N Size It λmax λmin κ It λmax λmin κ

2 15625 18 2·6417 0·99929 2·6436 15 2·6412 1·0003 2·6406
3 24389 25 3·9507 0·99947 3·9528 21 3·9506 1·0002 3·9498
4 35937 28 4·1084 0·99934 4·1111 25 4·1082 1·0002 4·1074
5 50653 29 4·1378 0·99940 4·1402 26 4·1375 1·0002 4·1369
6 68921 30 4·1492 0·99945 4·1515 28 3·5746 1·0002 3·5741
7 91125 30 4·1555 0·99952 4·1575 28 3·6133 1·0001 3·6128
8 117649 30 4·1593 0·99955 4·1612 29 3·6289 1·0001 3·6284
9 148877 30 4·1618 0·99962 4·1634 29 3·6475 1·0001 3·6470
10 185193 30 4·1636 0·99970 4·1648 29 3·6582 1·0001 3·6577

Nevertheless, the difference on the condition number estimates is more pronounced than
in Table 2.

10.2 Laplace problem with jump coefficients

The theoretical bound for the condition number in Lemma 6.3 is independent of arbitrary
jumps on the coefficients between the substructures. The purpose of this numerical
experiment is to check this property. In consequence, the coefficientρ possibly changes
between the substructures by orders of magnitudes. The right-hand side isf ≡ 1. Given a
partition ofΩ = (0, 1)3 into N × N × N cubic substructures (T = Tm = N × N × N),
a checkerboard distribution on this partition is considered forρ which is equal to either
ρ1 or ρ2 as in Mandel & Brezina (1996). Inexact solvers for the Dirichlet and Neumann
problems have been considered.

For a fixed partition into substructures withN = 3 and for fixed jumps between the
substructures withρ1 = 10−3 andρ2 = 103, we have investigated the behaviour of the
condition number of the preconditioned operator versus the polynomial degreek. This
behaviour is shown in Fig. 6 and is consistent with the quadratic bound in Lemma 6.3.

For a fixed partition into substructures withN = 3 and for a fixed polynomial degree
k = 4, we have investigated the influence of the jumpρ2/ρ1 on the convergence behaviour
of the balancing Neumann–Neumann method.ρ1 is fixed to 1, whereasρ2 is varying from 1
to 106. A checkerboard distribution has also been used. The results are presented in Table 4.
The number of preconditioned CG iterations in order to satisfy the stopping criterion is
bounded independently of the ratioρ2/ρ1, in agreement with the bound for the case of
exact solvers in Lemma 6.3.
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FIG. 6. Laplace problem with jump coefficients. Case ofρ1 = 10−3 andρ2 = 103. Fixed partition 3× 3 × 3.
Estimated condition numbers (circles) and least-square second order logarithmic polynomial (solid line) versus
the spectral degree for the balancing Neumann–Neumann method (inexact variant).

TABLE 4 Laplace problem with jump coefficients.
Case of k = 4 and ρ1 = 1. Conjugate
gradient method for the global system with balanc-
ing Neumann–Neumann method (inexact solvers):
iteration counts, maximum and minimum eigen-
values, and condition numbers versusρ2. Fixed
number of subdomains (N= 3)

NN (inexact)

ρ2 It λmax λmin κ

1 15 2·1153 1 2·1153
10 15 2·1185 0·99999 2·1186
102 15 2·0370 1 2·0370
103 14 2·0262 1 2·0262
104 14 2·0251 0·99991 2·0253
105 17 2·0275 0·96406 2·1031
106 16 2·0266 0·98234 2·0630

11. Concluding remarks

As for the analysis in Toselli & Vasseur (2003a), some important issues still need to be
addressed. We refer to our previous work for a full discussion of these issues.

Our analysis is restricted to approximations that employ nodal basis functions on
the Gauss–Lobatto nodes. Indeed, for three-dimensional shape-regular meshes good
performance of iterative substructuring methods is in general ensured only if these
basis functions are employed and for more generalp or hp version finite-element
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approximations many important issues remain to be solved even for shape-regular meshes
(see e.g. Sherwin & Casarin, 2001 and the references therein).

The Dirichlet and Neumann problems that we need to solve (Si and S†
i ) can

be potentially very large. Approximate local solvers can be employed for iterative
substructuring methods (see e.g. Smithet al., 1996; Klawonn & Widlund, 2000) and some
have been proposed in Korneevet al. (2002) for hp-approximations. In our numerical
experiments, we have employed a conjugate gradient iteration with an incomplete Choleski
preconditioner. However, we believe that the tensor product structure of corner, edge and
face patches can be exploited. This is left to a future work.

Webelieve that the analysis and/or the development of iterative substructuring methods
for general meshes with hanging nodes still need to be fully addressed. These meshes are
widely used in practice. There is no straightforward way of defining Neumann–Neumann
or FETI algorithms when hanging nodes lie on the interfaceΓ (see Toselli & Vasseur,
2003a, Remark 6.1 for more details).

Finally, our analysis has been carried out for the model problem (2.1), which indeed
does not exhibit boundary layers. As for the two-dimensional problems in Toselli &
Vasseur (2003a,c), numerical results show that our algorithms are robust when applied
to certain singularly perturbed problems. Extensive numerical results will be presented in
Toselli & Vasseur (2003b).
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