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Chapter 1

Introduction

Many complex problems in physics and engineering are described by Partial
Differential Equations (PDEs). In general, it is impossible to find exact so-
lutions to these equations, and instead a discrete problem is defined, which
represents an approximation of the original problem. Such a discrete prob-
lem can be defined, e.g., by using the finite element method (FEM). The
discretization then results in large linear equation systems, which today can
be of the order of 105 to 109 unknowns. These linear systems are often too
large to be solved exactly. Domain decomposition methods are iterative algo-
rithms to find approximate solutions for the large systems obtained from the
discretization of Partial Differential Equations. They make use of underlying
properties of the PDEs to achieve fast convergence by applying a hierarchical
approach. In domain decomposition methods, the domain associated with
the partial differential equation is decomposed into a, possibly large, number
of subdomains. In these subdomains, local problems are defined, which are
solved in each iteration step in order to define an approximate inverse of the
system matrix. In order to obtain a numerical scalable algorithm, also a
small coarse problem has to be introduced and solved in each iteration step.
The divide-and-conquer approach taken in domain decomposition methods
makes them particularly suitable for parallel computing.

In this work, we consider nonoverlapping domain decomposition methods
belonging to the Dual-Primal Finite Element Tearing and Interconnecting
(FETI-DP) methods, originally introduced by Farhat [40]. We will also con-
sider its primal counterpart, the Balancing Domain Decomposition (BDDC)
method due to Dohrmann [29], although our presentation will be biased to-
wards the FETI-DP method.

We will present FETI-DP algorithms, along with parallel implementa-
tions, for compressible homogeneous and heterogeneous 3D linear elasticity,
as well as scalar elliptic problems, for almost incompressible elasticity and
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10 CHAPTER 1. INTRODUCTION

for higher order methods, i.e. spectral and hp finite elements.
Today’s distributed memory supercomputers can have up to 105 proces-

sors. The design of algorithms that can make efficient use of such machines
is a challenging task. The standard FETI-DP method is limited in parallel
scalability almost exclusively by the exact solution of its coarse problem, see
discussion below. We propose a new algorithmic variant, together with a
family of inexact FETI-DP methods, which allows for an inexact solution of
the FETI-DP coarse problem, and thus remove this limitation of the standard
FETI-DP method.

The FETI-DP method was originally introduced in Farhat et al. [40] using
vertex constraints and extended to 3D in Farhat, Lesoinne, and Pierson [41]
using additional, optional average constraints. In Mandel and Tezaur [100], a
convergence bound for 2D was provided. Then, in Klawonn and Widlund [84],
Klawonn, Widlund, and Dryja [86, 87], and Klawonn and Rheinbach [76] a
family of FETI-DP algorithms for 3D together with convergence bounds was
introduced.

The family of FETI-DP algorithms descended from the earlier one-level
and two-level FETI algorithms, see Farhat and Roux [45, 46], Farhat, Man-
del, and Roux [43], Farhat and Mandel [42], Farhat, Pierson, and Lesoinne [44].
Already the FETI method has been used in large scale parallel simulations,
e.g. [13]. The Dirichlet preconditioner without scaling was first introduced
in Farhat, Mandel, and Roux [43]. For early references to the scaled version,
see, e.g., Rixen and Farhat [111] and Klawonn and Widlund [83]. Let us note
that appropriate scaling is important to obtain convergence results which are
independent of jumps in the coefficients of the partial differential equation
[83, 86, 84]. But also for homogeneous problems, scaling can be important
to improve convergence and also in order to obtain an improved condition
number bound, see Mandel and Tezaur [99] and Klawonn and Widlund [83].

FETI methods belong to the larger family domain decomposition meth-
ods without overlap, also referred to as iterative substructuring methods;
for an introduction, see Smith, Bjørstad, and Gropp [127] and Toselli and
Widlund [136].

In FETI-DP methods the continuity of the solution across the subdomain
boundaries is enforced by Lagrange multipliers. This results in a mixed lin-
ear system with primal variables and Lagrange multipliers as unknowns. The
basic idea of FETI-DP domain decomposition methods is to form a Schur
complement by eliminating the primal variables and then iterate on the La-
grange multiplier variables, usually in combination with a preconditioner.
Special attention has to be given to the elimination process of the primal
variables since the associated local matrices are usually only semidefinite
even though the overall mixed linear system is uniquely solvable. This is
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due to local stiffness matrices belonging to subdomains lacking sufficient es-
sential boundary conditions. In FETI-DP methods, a sufficient number of
constraints, e.g. continuity constraints across the interface at selected nodes
on the subdomain boundaries, is chosen such that the local stiffness matrices
become invertible. We note that nodal constraints work well only in two
dimensions, more elaborate choices, e.g. averages over edges or faces, are
used in three dimensions in order to obtain a good convergence estimate, see
Chapters 2 and 3. These additional primal constraints introduce a certain
coupling between the otherwise completely decoupled local subdomain prob-
lems. This coupling also builds the coarse problem needed for scalability of
the algorithm.

FETI-DP methods obtain their numerical and parallel scalability from the
fact that the coarse problem is very small compared to the overall problem.
This coarse problem is traditionally solved exactly by the use of a direct
solver. Nevertheless, if a very large number of subdomains is used or if the
problem requires the use of a larger coarse space, the cost of solving the
coarse problem directly may become high. In standard FETI-DP methods,
an inexact solution of the coarse problem is not straightforward since the
coarse problem is, by means of the elimination process, built into the FETI-
DP system matrix. Thus, an inexact solution in the elimination process of
the primal variables would lead to a different linear system to be solved and
thus to a perturbed solution, different to that of the original problem.

Another class of nonoverlapping domain decomposition methods, which
is closely related to the FETI-DP algorithms, are the Balancing Domain
Decomposition methods by Constraints (BDDC); see Cros [26], Dohrmann
[29], Mandel and Dohrmann [97], Mandel, Dohrmann, and Tezaur [98], or Li
and Widlund [92].

We note that there are also FETI methods using two sets Lagrange mul-
tipliers; see, e.g., Magoulès, Roux, and Salmon [95], Magoulès, Roux, and
Series [96], or Series, Feyel, and Roux [121]; there are also other domain de-
composition methods using Robin boundary conditions at the interface; see,
e.g., Flauraud and Nataf [47] and the references given therein.

In Chapter 1 we have collected background material that may be helpful
for the reader. In Chapter 2 we introduce the FETI-DP and BDDC method
and also sketch the theory for the 2D scalar case to motivate our work on
3D linear elasticity in Chapter 3. There, we describe a FETI-DP algorithm
for 3D linear elasticity along with an efficient parallel implementation, for
which the theory was provided in Klawonn and Widlund [84]. We show the
numerical and parallel scalability of the algorithm for academic benchmark
problems as well as for more general situations with unstructured meshes
from engineering problems where the theory does not apply. In Chapter 4
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we introduce new, inexact FETI-DP algorithms. Here, different subproblems
within the FETI-DP method can be solved approximately. Of particular
interest is a version denoted irFETI-DP which allows for an inexact solution
of the FETI-DP coarse problem. Using this approach the parallel scalability
of FETI-DP algorithms can be extended further. We provide sequential and
parallel experiments to demonstrate the high potential of the method and
its applicability to problems with more than 104 subdomains. In Chapter 5
we describe a FETI-DP algorithm for elasticity with jumps in the material
coefficient, also motivated by the theory in [84]. We investigate the effect
of different material distributions guided by the theory and try to develop
rules for more general cases than covered by the theory. In Chapter 6 we
treat the case of two dimensional almost incompressible elasticity, and in
Chapter 7 we apply our FETI-DP methods to spectral and hp finite element
discretizations. We also show numerical and parallel scalability for the FETI-
DP and irFETI-DP methods applied to spectral element discretizations.

The present chapter contains background material which is frequently
needed in the presentation and analysis of the FETI method in subsequent
chapters.

1.1 Spaces

Let Ω ⊂ Rd, d = 2, 3 be a bounded Lipschitz domain. We will be particularly
interested in polygonal and polyhedral domains. Throughout this work we
will refer to the diameter of a subdomain by H.

Define L2(Ω) as the usual space of square integrable functions with the
norm

‖u‖2
L2(Ω) =

∫

Ω

u2 dx.

We have the standard Sobolev space H1(Ω) as the space of functions
which are square integrable as well as their first derivatives in the sense of
distributions. Furthermore, we have the H1(Ω)-seminorm as

|u|2H1(Ω) =

∫

Ω

〈∇u,∇u〉 dx.

We obtain a weighted norm suitable for our purposes by

‖u‖2
H1(Ω) = |u|2H1(Ω) + H−2‖u‖2

L2(Ω),

where we introduce the weight factor to avoid undesirable scaling effects.
We mention only briefly that the norms come from the corresponding inner
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products.

We want to set essential boundary conditions on elements of H1(Ω). We
denote C∞

0 (Ω) the infinitely differentiable functions with support in Ω. As
the closure of C∞

0 (Ω) in ‖ · ‖H1(Ω) we obtain the space H1
0 (Ω).

We recall that Sobolev spaces on manifolds can be introduced using suffi-
ciently smooth maps and a partition of unity. Most notably, we will need the
trace of H1(Ω) on the domain boundary. The intrinsic H1/2(Γ)-seminorm for
Γ ⊂ ∂Ω is given by

|u|2H1/2(Γ) =

∫

Γ

∫

Γ

|u(x)− u(y)|2
|x− y|d dΓ(x)dΓ(y)

and the properly weighted norm on Γ by

‖u‖2
H1/2(Γ) = H−1‖u‖2

L2(Γ) + |u|2H1/2(Γ).

Then, H1/2(∂Ω) is the trace space of H1(Ω) on the domain boundary.
Note that an equivalent seminorm is given by

|u|2H1/2(Γ) = min
v|Γ=u

|v|2H1(Ω) (1.1)

as a result of the following theorems.

Theorem 1.1.1 (Trace Theorem) If Ω is a bounded Lipschitz domain,
then the trace operator γ : u → γu, which represents the restriction of u
to the boundary of Ω, is a continuous mapping from H1(Ω) onto H1/2(∂Ω).
This implies

‖γu‖2
H1/2(∂Ω) ≤ C(Ω)‖u‖2

H1(Ω).

For a reference, see, e.g., [58, Theorem 1.5.1.3, p. 38]. This inequality remains
valid if we substitute the norm by the seminorm.

Note that, due to the chosen scaling, we obtain

‖γu‖2
L2(∂Ω) ≤ C(Ω)

(
H−1‖u‖2

L2(Ω) + H|u|2H1(Ω)

)
.

We also have a family of extension theorems.

Theorem 1.1.2 (Extension Theorem) There is a continuous extension
operator from H1/2(∂Ω) to H1(Ω), u 7→ û, therefore

‖û‖H1(Ω) ≤ C(Ω)‖u‖H1/2(∂Ω).
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The harmonic extension, see Section 1.6, defines a continuous mapping
in this sense. Sometimes we will identify functions from H1/2(∂Ω) with their
harmonic extension to the interior.

The following well known inequalities, which establish the equivalence of
norms in subspaces of H1(Ω), are essential to us, see [102].

Theorem 1.1.3 (Friedrichs’ Inequality) There exists a constant
C(Ω) > 0 such that

‖u‖2
H1(Ω) ≤ C(Ω)|u|2H1(Ω)

for all u ∈ H1(Ω, Γ) = {u ∈ H1(Ω) : u = 0 on Γ}, where Γ ⊂ ∂Ω is a surface
with positive measure.

Theorem 1.1.4 (Poincaré Inequality) There exists a constant
C(Ω) > 0 such that

‖u‖2
H1(Ω) ≤ C(Ω)

(
|u|2H1(Ω) +

1

H2+d

(∫

Ω

u dx

)2
)

for all u ∈ H1(Ω). There are also Poincaré inequalities in H1/2(Ω).

An additional space is relevant to this work since we want to consider
isolated faces or edges of polyhedral domains.

Let Γ be an open subset of ∂Ω and u ∈ H1/2(Γ). Then the extension of
u by zero from Γ to ∂Ω does not define a continuous operator from H1/2(Γ)
to H1/2(∂Ω), see [58, pp. 18f, Lemma 1.3.2.6].

Therefore, we consider the space H
1/2
00 (Γ), defined as the set of all func-

tions u ∈ H1/2(Γ) for which the continuation of u from Γ to ∂Ω with zero,
denoted by ũ, remains bounded in ‖ · ‖H1/2(∂Ω). Thus, we have

H
1/2
00 (Γ) = {u ∈ L2(Γ)|ũ ∈ H1/2(∂Ω)}.

The space H
1/2
00 (Γ) is a subspace of H

1/2
0 (Γ) and complete with the norm

inherited from H1/2(∂Ω) [58, pp. 18f, Lemma 1.3.2.6]. For our finite ele-
ment functions, which are continuous by construction, this subtle difference
disappears and we can either write ‖u‖2

H
1/2
00 (Γ)

or ‖u‖2
H1/2(∂Ω)

.

Another equivalent norm for H
1/2
00 (Γ) is given by

‖u‖2

H
1/2
00 (Γ)

= ‖u‖2
H1/2(Γ) +

∫

Γ

u2 d(x; Γ)−1 dx,

where d(x; Γ) denotes the distance from x to the boundary of Γ, see
[58, pp. 18f].
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1.2 Scalar Partial Differential Equations (PDEs)

1.2.1 Weak Formulation and Ellipticity

We obtain the weak formulation of a scalar partial differential equation of
the type ∑

i,j

∂i(aij(x)∂ju) = f in Ω, (1.2)

u = 0 on ∂ΩD ⊂ ∂Ω, (1.3)

and ∑
i,j

aij(x)∂juνi = g on ΓN = ∂Ω \ ∂ΩD, (1.4)

where ν is the outward normal to ∂Ω, by means of a Green’s formula. We
get ∫

Ω

∑
i,j

aij(x)∂iv∂ju dx =

∫

Ω

fv dx +

∫

∂ΩN

gv ds, (1.5)

for all v ∈ H1
0 (Ω, ∂ΩD) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}. The differentiation

∂ is to be understood in the variational sense.

We introduce the symmetric bilinear form a(u, v), the linear form f(v),
and the Hilbert space

V := H1
0 (Ω, ∂ΩD)

to write (1.5) in the compact form

a(u, v) = f(v) ∀v ∈ V. (1.6)

The Lemma of Lax-Milgram guarantees that the problem (1.6) has a
unique solution if a(·, ·) is continuous,

|a(u, v)| ≤ C‖u‖‖v‖ ∀u, v ∈ V,

elliptic

∃α > 0 : a(u, u) ≥ α‖u‖2 ∀u ∈ V,

and f(·) is continuous,

|f(v)| ≤ C‖v‖ ∀v ∈ V.
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Figure 1.1
Linear basis functions and a linear combination in one dimension (left). Spar-
sity pattern of a stiffness matrix for a 3D problem (right).

1.2.2 Finite Element Method (FEM)

Consider the weak formulation of a homogeneous second order elliptic prob-
lem, e.g. the scalar equation

∫

Ω

∑
i,j

aij(x)∂iu∂jv dx =

∫

Ω

fv dx ∀v ∈ V, (1.7)

or in compact notation

a(u, v) = (f, v) ∀v ∈ V. (1.8)

In the finite element method we replace the infinite dimensional function
space V by a finite dimensional subspace V h, e.g. the space of piecewise linear
continuous functions. This yields

a(uh, vh) = (f, vh) ∀vh ∈ V h. (1.9)

The basis representation uh =
∑

i uiφi leads to the linear equation system

Ku = b,

where K =
(

a(φi, φj)
)

and bi =
(
(f, φi)

)
.

The matrix is symmetric positive definite if the bilinear form a(·, ·) is
symmetric and V -elliptic, and it is sparse since the basis functions only have
a local support. The number of nonzero entries is generally O(n) if the size
of K is n× n.
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1.3 Direct Solvers

The simplest algorithm to solve a system of linear equations

Ax = b,

where A ∈ Rm×m, is the well known Gaussian elimination,

for i=1..m
for j=i+1..m

for k=i+1..m
a(j,k)=a(j,k)-a(i,k)*a(j,i)/a(i,i)

end
end

end,

which requires O(m3) operations. Here, we have given the Gaussian elimi-
nation in its simplest, so called right-looking, form. Finite element stiffness
matrices are typically sparse since the basis functions of the finite element
space are local. Hence, it is more efficient to store only nonzeros entries in
the matrix. The Gaussian elimination then takes the form

for i=1=1..n
for j=nextnonzeroindex(j)

for k=nextnonzeroindex(k)
a(j,k)=a(j,k)-a(i,k)*a(j,i)/a(i,i)

end
end

end.

Here, the computational cost has been significantly reduced but during
the elimination process some entries in A which were previously zero become
nonzero. These new entries are referred to as fill-in. The amount of fill-in in
the elimination process depends on the ordering of the matrix and increases
the computational cost.

Let us assume that we can order our matrix in a way that it has the
following block structure




K
(1)
II K̃

(1)
IΓ

. . .
...

K
(N)
II K̃

(N)
IΓ

K̃
(1)
ΓI · · · K̃

(N)
ΓI K̃ΓΓ


 =

[
KII K̃IΓ

K̃ΓI K̃ΓΓ

]
.

We have chosen this notation because we can think of the matrices K
(i)
II as

subdomain interior matrices and of K̃ΓΓ as the global interface matrix. All
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the matrices K
(i)
II can be factored independently (possibly also in parallel),

and no fill-in will appear in the off-diagonal blocks of




K
(1)
II

. . .

K
(N)
II


 .

Then, finally, the Schur complement S = K̃ΓΓ−K̃ΓIK
−1
II K̃IΓ has to be formed

and the Schur complement system has to be solved. The matrix S contains
many dense blocks and we could perform this last step even by using dense
Gaussian elimination, see above. Moreover, we can apply this approach
recursively to K

(i)
II until our subdomains become single matrix entries.

For this approach to be efficient, the matrix K̃ΓΓ should be small. Un-
fortunately, the problem to find the optimal interface, also called separator,
is NP complete. Therefore, different strategies have been developed to find
good orderings of K, e.g. nested dissection (ND) [50] and minimum degree
(MD/AMD) [51, 27] orderings and many variants thereof. In finding good
separators, direct solvers have also benefitted, as have iterative substructur-
ing methods, from advances in graph partitioning software.

Applying optimal orderings, the complexity of directly solving linear sys-
tems resulting from finite element discretizations can be reduced to O(m3/2)
in 2D and O(m2) in 3D.

The design and the implementation of efficient direct solvers is a chal-
lenging task, and significant progress has been made in recent years. To-
day several efficient direct solver packages are available. Among them are
MUMPS [5] and UMFPACK [27], which both use the multifrontal approach
[33]. The package UMFPACK is a sequential code whereas MUMPS is
also targeted at distributed memory parallel computers. We have also used
Spooles [7] and SuperLU Dist [93]. The latter is the distributed memory
version of the supernodal direct solver package SuperLU. Other (sequential
and parallel) direct solvers, not available in source code, are WSMP [64] and
PARDISO [115].

1.4 Krylov Subspace Methods

Domain decomposition methods are commonly used as preconditioners for
the use with Krylov subspace methods. We will briefly describe the two
methods which are of most relevance to this work. For further details, refer
to Saad [113], Greenbaum [57], and many others. It is well known that
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for well conditioned problems the performance of different Krylov subspace
methods is very similar.

1.4.1 Preconditioned Conjugate Gradient Method (PCG)

Let us consider a symmetric positive definite linear system

Ax = b. (1.10)

The Preconditioned Conjugate Gradient (PCG) method is an iterative method
to solve (1.10) by minimizing

1

2
xT M−1/2AM−1/2x− xT M−1/2b,

over a certain Krylov subspace; see, e.g. [113, 57, 123]. Here, the symmetric
operator M−1 is the preconditioner for A.

The convergence of the PCG method is governed by the eigenvalues of
M−1A, i.e.

‖x(k) − x∗‖A

‖x(0) − x∗‖A

≤ 2

(√
κ(M−1A)− 1√
κ(M−1A) + 1

)k

,

where κ(M−1A) = λmax(M−1A)
λmin(M−1A)

is the condition number of M−1A.

Both, the system matrix A as well as the preconditioning matrix M−1,
are only needed in matrix vector multiplications. Therefore, M−1x as well
as Ax must be easy to compute, and the condition number κ(M−1A) should
be small.

If elliptic partial differential equations of second order are discretized
with the finite element method, the system matrix is generally not well con-
ditioned, i.e. the condition number of A is proportional to 1/h2, where h is
a measure of the element diameter. In higher order methods the system ma-
trices can be even more ill conditioned, and the condition number depends
on the polynomial degree. However, for an efficient algorithm the condition
number of M−1A should be scalable with respect to the mesh size and, possi-
bly, also with respect to the spectral degree of the discretization. This is the
case for the iterative substructuring methods discussed in this work and also
for other domain decomposition methods and subspace correction schemes.

In this work, whenever conjugate gradients are mentioned, we actually
refer to the Preconditioned Conjugate Gradient method.
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1.4.2 Generalized Minimal Residual Method (GMRES)

The Generalized Minimal Residual (GMRES) method [114] is an iterative
method to solve an unsymmetric linear system

Ax = b

by minimizing the residual over a certain Krylov subspace. If a precondi-
tioner M−1 is available, either left of right preconditioning can be used with
GMRES. As opposed to conjugate gradients, where a three term recurrence
is used, the work and storage grows linearly with the number of iterations. A
full basis for the Krylov subspace has to be computed and stored. Therefore,
often a truncated version (restarted GMRES) is applied.

Unlike in CG, the convergence behavior of GMRES cannot be described
by the eigenvalues alone. If the field of values

F (A) :=

{
yT M−1Ay

yT y
: y ∈ Rn

}

is contained in a disk in the complex plane of diameter s which is centered
at c then, see [57],

‖rk‖
‖r0‖ ≤ 2

(
s

|c|
)k

.

For symmetric preconditioners M−1 in [128] an estimate similar to a classical
bound by Elman [34] has been given,

‖rk‖
‖r0‖ ≤

(
1− F

(
M−1A

)
F

(
(M−1A)−1

))k/2

.

For block triangular preconditioners in [80] a field of value analysis has been
given, using equivalent norms.

1.5 Scalability

We are interested in solving linear equation systems obtained from the dis-
cretization of partial differential equations. We consider an algorithm scalable
if the computational work to find a solution of a prescribed accuracy, e.g. an
accuracy of 10−7, grows linearly with the size of the linear system, i.e. the
number of degrees of freedom (d.o.f.).

In domain decomposition methods accelerated by a Krylov subspace meth-
ods like CG or GMRES, if we neglect the computational work for the small
coarse problem, we have scalability in this sense if the number of iterations
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is independent of the problem size. For CG this is the case if the condition
number is bounded independently of the number of subdomains.

Additionally, we require for our domain decomposition methods that the
number of iterations only depends weakly, i.e. polylogarithmically, on the
diameter of the subdomains. This gives us some freedom to choose the sub-
domain sizes. If a domain decomposition method fulfills these two conditions,
we call it numerically scalable.

We also consider two types of parallel scalability. In the first, we consider
a problem of fixed size and increase the number of processors used to solve the
problem. An algorithm is parallel scalable if, ideally, twice as many processors
will solve the problem in half the time. In the second type of scalability,
which is sometimes called weak scalability, we double the problem size and
the number of processors at the same time. We then require that, in a parallel
scalable algorithm, the solution time is independent of the problem size.

The first type of scalability is generally more difficult to achieve in real
world applications. The second type of scalability has become important with
the advent of massively parallel computers. It explains why supercomputers
with thousands of processors can still be used efficiently.

1.6 Discrete Harmonic Functions

Let us recall that in the same way as the harmonic functions in H1(Ω) are
identified through the orthogonality to H1

0 (Ω),

(∇u,∇v) = 0 ∀v ∈ H1
0 (Ω), (1.11)

the discrete harmonic functions are identified through

(∇uh,∇vh) = 0 ∀vh ∈ V h
0 (Ω), (1.12)

or explicitly KIIuI + KIΓuΓ = 0. This expresses the orthogonality of the
functions associated with the the boundary values and the interior functions
in the norm defined by the symmetric positive definite stiffness matrix

K =

(
KII KIΓ

KΓI KΓΓ

)
.

The subscript Γ refers to boundary variables and the subscript I to interior
variables.

It follows from the orthogonality that harmonic and discrete harmonic
functions are the extensions of their boundary values with minimal energy in
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their respective spaces. For the harmonic function u and discrete harmonic
function uh, we have

|u|H1(Ω) = inf
v−u∈H1

0 (Ω)
|v|H1(Ω) (1.13)

and
|uh|H1(Ω) = inf

vh−uh∈V h
0 (Ω)

|vh|H1(Ω), (1.14)

since for u− v ∈ H1
0 (Ω)

(∇v,∇v) = (∇(v − u + u),∇(v − u + u)) ≥ (∇u,∇u) (1.15)

is true as well as the analogous result for uh.
We denote the discrete harmonic extension of a function u ∈ H1/2(∂Ω)

to the interior by Hu ∈ H1(Ω).

1.7 Equivalence of Schur Complement Norm

and H1/2(∂Ω)-Norm

Assuming that Ω is a Lipschitz domain, the seminorm defined by the Schur
complement is equivalent to the properly scaled H1/2(∂Ω)-seminorm. See
[16], the extension in [143], and see also [136].

Considering the bilinear form

∫

Ω

ρ 〈∇u,∇v〉 dx,

related to the Poisson equation with a constant coefficient ρ, we obtain

1

C
ρ|uh|2H1/2(∂Ω) ≤ |uh|2S ≤ Cρ|uh|2H1/2(∂Ω). (1.16)

1.8 Graphs

A graph or undirected graph G is an ordered pair G = (V,E), where V ⊂ N
is the set of nodes, and E is a set of unordered pairs {v1, v2}, where v1, v2 ∈ V
are nodes. The elements of e = {v1, v2} of E are called edges.

We say that nodes v1 ∈ V and v2 ∈ V are connected through the edge e
if e = {v1, v2} ∈ E.

A path from v1 ∈ V to v2 ∈ V is a list of nodes, starting with v1 and
ending with v2, where all pairs of consecutive nodes are connected through
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edges. If a path from v1 ∈ V to v2 ∈ V exists, we say that v1 and v2

are connected in G. Connectivity is an equivalence relation over V and the
equivalence classes are called connectivity components of G.

Efficient (sequential) algorithms exist to compute connectivity compo-
nents of graphs, i.e. depth first search or breadth first search, see any intro-
duction into efficient algorithms, e.g., [120], and also [2].

A simple path in G is a path in G, where no node v ∈ V is repeated. A
cycle in G is a simple path, where start and end node coincide. We call a
graph without cycles a forest and a connected forest a tree.

A subgraph G̃ = (Ṽ , Ẽ) of G = (V, E) is a graph where Ṽ ⊂ V and

Ẽ ⊂ E. We say the subgraph G̃ spans G if Ṽ = V . A spanning tree of
G = (V, E) is a subgraph of G = (V,E) which spans G and is a tree.

A minimal spanning tree is a spanning tree with the smallest possible
number of edges. Sometimes a cost function can be associated with edges,
in this case the spanning tree minimizes the sum of the edge costs. Efficient
algorithms are known to calculate minimal spanning trees.

A graph is planar if it can be drawn in a plane with no crossing edges.
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Chapter 2

Two Iterative Substructuring
Methods

In this chapter, we describe the two well known iterative substructuring
methods relevant for this work. For simplicity, we will introduce the algo-
rithms in the context of 2D scalar elliptic problems, and we will also sketch
the convergence theory in this context based on publications of several other
authors [100, 84]. This will serve as motivation for our main work on 3D
elasticity problems in Chapter 3 and 5.

Dual-primal FETI (FETI-DP) methods are the most recent members of
the family of Finite Element Tearing and Interconnecting (FETI) domain de-
composition methods. The FETI methods, introduced by Farhat and Roux
[45], are dual iterative substructuring methods for partial differential equa-
tions. In these methods the original domain, on which the given partial
differential equation has to be solved, is decomposed into nonoverlapping
subdomains. The intersubdomain continuity is then enforced by Lagrange
multipliers across the interface defined by the subdomain boundaries. For
further results and references, see, e.g., [46, 38, 13, 99, 83, 136].

In dual-primal FETI methods, some continuity constraints on the primal
displacement variables are forced to hold throughout iterations, as in primal
substructuring algorithms, while the other constraints are enforced by the
use of Lagrange multipliers, as in FETI. The primal constraints have to be
chosen such that the local subproblems become invertible and such that a
parallel scalable method is obtained. The primal constraints provide a coarse
problem for these domain decomposition methods.

Dual-primal FETI (FETI-DP) algorithms were introduced by Farhat et
al. in [40] for linear elasticity problems in the plane and then extended by
Farhat, Lesoinne, and Pierson [41] to three dimensional elasticity problems;
see also Pierson [107]. The first theoretical analysis for two dimensional,

25
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scalar elliptic partial differential equations of second and fourth order with
only small coefficient jumps across the subdomain boundaries was given by
Mandel and Tezaur [100]. It was shown that the condition number is bounded
polylogarithmically as a function of the dimension of the individual subregion
problems. The family of algorithms for scalar, second order elliptic prob-
lems in three dimensions was extended by Klawonn, Widlund, and Dryja
[82, 86, 87]; see also [136]. There, constraints on averages over subdomain
edges and faces are used to obtain algorithms with an improved scalability
for three dimensional problems. In [41, 107] similar constraints on averages
are used for linear elasticity problems, although the definition of subdomain
edges is different from the one used in [82, 86, 87], see also the discussion in
Section 3.3.3. We also note that an important feature of the algorithms pre-
sented in [82, 86, 87] was to develop variants of FETI-DP with smaller coarse
problems while still maintaining scalability and a good convergence bound.
In fact, in [86, 87] a theory was provided which shows that the condition
number in three dimensions can again be bounded polylogarithmically as a
function of the dimension of the individual subdomain problems and that the
bounds can otherwise be made independent of the number of subdomains,
the mesh size, and the jumps in the coefficients.

More recently, new variants of FETI-DP for three dimensional, linear
elasticity problems were provided by Klawonn and Widlund [84, 85] together
with a theoretical analysis proving a polylogarithmic condition number es-
timate as in the scalar case which is also robust with respect to discontinu-
ities in the material coefficients. For benign elasticity problems, it is shown
that selecting an appropriate set of edge averages as primal constraints is
sufficient to obtain good polylogarithmic bounds. For arbitrary coefficient
distributions, certain first order moments on selected edges have to be added
as primal constraints as well as constraints at some of the vertices in order
to obtain robust, polylogarithmic bounds.

Strongly related to FETI-DP methods are the more recently developed
Neumann-Neumann methods with constraints, also known as the Balancing
Domain Decomposition methods by Constraints (BDDC); cf. [29, 97, 98].
Neumann-Neumann methods with primal vertex constraints were also devel-
oped independently by Cros [26]. It was first proved in Mandel, Dohrmann,
and Tezaur [98] that the eigenvalues of BDDC and FETI-DP, which are not
one or zero, are the same; see also Li and Widlund [92] and Brenner and
Sung [20] for other approaches.

Recently, new results for inexact FETI-DP and BDDC algorithm have
been obtained for the inexact solution of the subdomain or coarse problems.
For inexact BDDC methods, see Tu [138, 139, 140], Dohrmann [31], and Li
and Widlund [91], and for inexact FETI-DP algorithms, see Chapter 4.
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Figure 2.1
MCR supercomputer at Lawrence Livermore National Laboratory (Image:
Lawrence Livermore National Laboratory, California, USA).
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2.1 A First Model Problem

We will first use a simple model problem in order to define the setting for our
presentation of the FETI-DP method and the Neumann-Neumann method
with constraints, also known as the BDDC method. Later we will consider
the equations of linear elasticity. By using a change of basis, if necessary, the
presentation of the algorithms at the level of linear algebra can be the same
for all second order elliptic PDEs, but the theory is significantly easier to
present for scalar equations. Note that the choice of the primal constraints
depends in the spatial dimension and the problem type.

Our presentation will be biased towards the FETI-DP method. Since
Mandel and Dohrmann [98] have shown that FETI-DP and BDDC share
all but possibly two of their eigenvalues, this is not a limitation. See also
Li and Widlund for a proof which is closer to our notation. Already in
Klawonn and Widlund [83] a common theory for methods of the older FETI
and Neumann-Neumann type has been given.

We consider the following second order scalar elliptic problem in a two
dimensional region Ω ⊂ R2: Find u ∈ H1

0 (Ω, ∂ΩD) such that
∫

Ω

ρ(x)∇u · ∇v dx =

∫

Ω

fv ∀v ∈ H1
0 (Ω, ∂ΩD).

We decompose Ω into N nonoverlapping subdomains Ωi, i = 1, . . . , N , i.e.

Ω =
N⋃

i=1

Ωi , Ωi ∩ Ωj = ∅ if i 6= j .

Each subdomain is the union of shape-regular finite elements with matching
finite element nodes across the interface,

Γ :=
⋃

i 6=j

∂Ωi ∩ ∂Ωj,

where ∂Ωi, ∂Ωj are the boundaries of Ωi, Ωj, respectively. These subdomains
are also often referred to as substructures. The coefficient ρ(x) > 0 can
be discontinuous but should have large coefficient jumps only across the
interface. In the standard theory it is assumed that ρ(x) is constant on
each subdomain. Later, we will see in our numerical simulations that this
assumption is in fact too strong, and in many cases large coefficient jumps
within subdomains can be allowed without affecting the convergence of the
method at all.

We assume that subdomains are shape regular and have a typical diameter
of H whereas the finite elements are of typical diameter h. We will use low



2.1. A FIRST MODEL PROBLEM 29

order conforming finite elements, i.e. linear or bilinear finite elements. In
Chapter 7 we will also consider higher order, hp or spectral, elements.

We define the bilinear form

a(u, v) :=

∫

Ω

ρ(x)∇u · ∇v dx

and the functional

f(v) :=

∫

Ω

fv dx.

We denote by W h
g := W h

g (Ω) the conforming finite element space of finite
element functions. The associated discrete problem is then

a(uh, vh) = f(v) ∀vh ∈ W h
g . (2.1)

When there is no risk of confusion, we will drop the subscript h. Moreover,
we will often identify the finite element function uh and the corresponding
vector u = (u1, . . . , un)T ∈ Rn, where uh =

∑N
i=1 uiφi, and where φ1, . . . , φN

is the finite element basis we choose to work in.
For each subdomain Ωi we will denote the finite element space by Wi. In

iterative substructuring algorithms the interior variables in each subdomain
are eliminated using a direct solver. It is therefore helpful to partition Wi

into the interior part W
(i)
I and the finite element trace space W

(i)
Γ , i.e. we

have
Wi = W

(i)
I ⊕W

(i)
Γ .

Note that we consider variables on the Neumann boundary ∂ΩN as interior to
a subdomain. Also, subdomains not intersecting ∂ΩD lack essential boundary
conditions and will have singular stiffness matrices. We introduce the product
spaces

W :=
N∏

i=1

Wi

and

WΓ :=
N∏

i=1

W
(i)
Γ .

The members of W and WΓ are in general not continuous across the inter-
face. However, we expect our global solution to be continuous. We therefore
consider the subspace formed by the continuous functions in W , which we
denote by Ŵ , i.e. we have

Ŵ := {w ∈ W : w is continuous across Γ} .



30 CHAPTER 2. TWO ITERATIVE SUBSTRUCTURING METHODS

We also define ŴΓ as the subspace formed by the continuous members of
WΓ, i.e.

ŴΓ := {wΓ ∈ WΓ : wΓ is continuous across Γ} .

In our iterative substructuring methods, we will iterate in the space W while
requiring certain constraints to hold throughout the iteration. In FETI-DP
methods these constraints are continuity constraints, also called primal con-
straints, that have to be chosen such that each subdomain problem becomes
invertible and that also a good convergence bound can be obtained. We de-
note the space of finite element functions which fulfill these constraints by
W̃ . We have

Ŵ ⊂ W̃ ⊂ W,

and likewise
ŴΓ ⊂ W̃Γ ⊂ WΓ.

The continuity constraints posed on W̃ only affect a subset of the variables,
these variables are denoted as primal. We can decompose WΓ into the primal
space WΠ =

∏N
i=1 W

(i)
Π and the dual space W∆ =

∏N
i=1 W

(i)
∆ , i.e.

WΓ = WΠ ⊕W∆.

Using this notation, we can now decompose W̃Γ into the subspace ŴΠ

which has continuous members only and the subspace W∆ which also contains
finite element functions which are not continuous, i.e. we have

W̃Γ = ŴΠ ⊕W∆.

Likewise, we can now write

Ŵ = ŴΠ ⊕ Ŵ∆ ⊕WI .

Here, Ŵ∆ is the subspace formed by the continuous finite element functions
in W∆. For convenience, we also introduce the nonprimal space

WB = W∆ ⊕WI

and
ŴB = Ŵ∆ ⊕WI .

2.2 FETI-DP and BDDC with Matrices and

Vectors

We will now introduce a matrix formulation of the FETI-DP and the BDDC
method.
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As we consider a domain Ω ⊂ R2, the interface Γ is the union of edges
and vertices. In the continuous setting, we regard edges in 2D as open sets
that are shared by two subdomains, and vertices as endpoints of edges, see,
e.g. Toselli and Widlund [136, Chapter 4.2]. In Chapter 3 we give a detailed
definition of vertices, edges, and faces in 3D which is also suitable for irregular
domain decompositions.

For each subdomain Ωi, i = 1, . . . , N , we assemble the local stiffness ma-
trices K(i) and load vectors f (i). We denote the unknowns on each subdomain
by u(i).

We then partition the unknowns u(i) into interface variables u
(i)
Γ , i.e. un-

knowns which are associated with the interface Γ, and interior unknowns u
(i)
I ,

which are interior to the subdomain Ωi. Note that any variable on ∂ΩN \ Γ
is considered to be interior to a subdomain. Unknowns on ∂ΩD are usually
eliminated upfront and do not need to be considered.

We then partition the interface variables into primal variables u
(i)
Π and

dual variables u
(i)
∆ . In two dimensional problems the primal variables u

(i)
Π will

be associated with vertex unknowns. Vertex unknowns are also often referred
to as corner variables. In a structured decomposition of a unit square into
smaller squares, the vertex unknowns are all degrees of freedom (d.o.f.) which
are associated with nodes shared by four subdomains. Together, interior and
dual unknowns form the nonprimal variables u

(i)
B .

In the FETI-DP algorithms we will enforce the continuity of the solution
in the primal unknowns u

(i)
Π by global subassembly of the subdomain stiffness

matrices K(i). For all other interface variables u
(i)
∆ we will introduce Lagrange

multipliers to enforce continuity.
We also partition the stiffness matrices according to the different sets of

unknowns,

K(i) =

[
K

(i)
BB K

(i)T
ΠB

K
(i)
ΠB K

(i)
ΠΠ

]
, f (i) =

[
f

(i)
B

f
(i)
Π

]
,

and

K
(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, f

(i)
B =

[
f

(i)
I

f
(i)
∆

]
.

We will refer to the completely assembled global stiffness matrix as Kg.

2.2.1 FETI-DP Method

We define the block matrices

KBB := diagN
i=1(K

(i)
BB),
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KΠB := diagN
i=1(K

(i)
ΠB),

KΠΠ := diagN
i=1(K

(i)
ΠΠ),

and the right hand sides

fT
B := [f

(1)T
B , . . . , f

(N)T
B ],

fT
Π := [f

(1)T
Π , . . . , f

(N)T
Π ].

By assembly of the local subdomain matrices in the primal variables using
the operator RT

Π = [R
(1)T
Π , . . . , R

(N)T
Π ] with entries 0 or 1, we have the partially

assembled global stiffness matrix

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
=

[
IB 0
0 RT

Π

] [
KBB KT

ΠB

KΠB KΠΠ

] [
IB 0
0 RΠ

]

and right hand side

f̃ =

[
fB

f̃Π

]
=

[
IB 0
0 RT

Π

] [
fB

fΠ

]
.

Choosing a sufficient number of primal variables u
(i)
Π to constrain our solution,

for example all vertex unknowns, results in a symmetric positive definite
matrix K̃. We note that the upper left block of

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]

is block diagonal and coupling is introduced only through the primal vari-
ables.

To enforce continuity on the remaining interface variables u
(i)
∆ we intro-

duce a jump operator BB with entries 0,−1 or 1 and Lagrange multipliers λ.
We can now formulate the FETI-DP saddle-point problem




KBB K̃T
ΠB BT

B

K̃ΠB K̃ΠΠ 0
BB 0 0







uB

ũΠ

λ


 =




fB

f̃Π

0


 . (2.2)

By eliminating uB and uΠ from the system (2.2) we obtain the linear system

Fλ = d,
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where

F :=
[

BB 0
]
[

KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

]−1 [
BT

B

0

]
,

d :=
[

BB 0
]
[

KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

]−1 [
fB

f̃Π

]
.

From

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]−1

=

[
IB −K−1

BBK̃T
ΠB

0 IΠ

] [
K−1

BB 0

0 S̃−1
ΠΠ

] [
IB 0

−K̃ΠBK−1
BB IΠ

]

we conclude that

F = BBK−1
BBBT

B + BBK−1
BBK̃BΠS̃−1

ΠΠK̃ΠBK−1
BBBT

B,

d = BBK−1
BBfB + BBK−1

BBK̃T
ΠBS̃−1

ΠΠ(f̃Π − K̃ΠBK−1
BBfB).

In the standard, exact FETI-DP methods two different preconditioners
for F are commonly used, the theoretically almost optimal Dirichlet precon-
ditioner MFETID and the lumped preconditioner MFETIL .

We define additional block matrices

KII := diagN
i=1(K

(i)
II ),

K∆I := diagN
i=1(K

(i)
∆I),

K∆∆ := diagN
i=1(K

(i)
∆∆).

(2.3)

The Dirichlet preconditioner MFETID is then defined by

M−1
FETID

:= BB,D(RB
∆)T (K∆∆ −K∆IK

−1
II KT

∆I)R
B
∆BT

B,D (2.4)

and the lumped preconditioner MFETIL by

M−1
FETIL

= BB,D(RB
∆)T K∆∆RB

∆BT
B,D, (2.5)

where
RB

∆ = diagN
i=1(R

B (i)
∆ ).

The matrices R
B (i)
∆ are restriction matrices with entries 0 or 1 which restrict

the nonprimal degrees of freedom u
(i)
B of a subdomain to the dual part u

(i)
∆ .

The matrices BB,D are scaled variants of the jump operator BB where the
contribution from and to each interface node is scaled by the inverse of the
multiplicity of the node. The multiplicity of a node is defined as the number
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of subdomains it belongs to. The scaling is chosen such that the linear
mapping PB,D = BT

B,DBB becomes a projection. It is well known that for
heterogeneous problems a more elaborate scaling is necessary, see Section 2.3.

The original or standard, exact FETI-DP method is the method of con-
jugate gradients applied to the symmetric positive definite system

Fλ = d

with the preconditioners M−1
FETID

or M−1
FETIL

. Only the Dirichlet precondi-
tioner has almost optimal theoretical properties, i.e. we have a polylogarith-
mic condition number bound, see Sections 2.4 and 3.3.5.

The symmetric positive definite Schur complement S̃ΠΠ represents the
FETI-DP coarse problem; it introduces the global coupling across the sub-
domains. It is essential for the numerical scalability of FETI-DP and we will
see later that this matrix also represents the coarse problem of the BDDC
method.

The inverse matrices that appear in the matrix description of the FETI-
DP method are never calculated as they are only needed in terms of matrix
vector multiplications in the Krylov subspace method. Instead, direct solvers,
i.e. Cholesky or LU decompositions, are used.

The FETI-DP method is very well suited for parallel computing. A very
large share of the work, i.e. the factorization of the block matrix KBB as well
as the corresponding forward backward substitutions, can be carried out
independently for each subdomain and thus are completely parallel. Only a
very small part of the work, i.e. the assembly and factorization of the coarse
matrix S̃ΠΠ, is global and more challenging to parallelize. Additionally, we
have communication only at the surface of subdomains, i.e. whenever the
operators B, BT are applied to a vector, and once, when we compute S̃ΠΠ.
We will describe the parallel algorithm in Section 3.4.

2.2.2 BDDC Method

Let us define the block matrices

KΠΠ = diagN
i=1(K

(i)
ΠΠ), KΠI = diagN

i=1(K
(i)
ΠI), KΠ∆ = diagN

i=1(K
(i)
Π∆),

and the right hand side vectors

fT
I = [f

(1)T
I , . . . , f

(N)T
I ], fT

∆ = [f
(1)T
∆ , . . . , f

(N)T
∆ ], fT

Π = [f
(1)T
Π , . . . , f

(N)T
Π ].

We refer to the matrices KII , K∆∆, K∆I and RB
∆ as defined as in (2.3)

and (2.4).
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Figure 2.2
The FETI-DP and BDDC methods are Schur complement methods.
Unknowns in the interior of subdomains are eliminated upfront (left part of
the picture) then the remaining interface problem is solved iteratively by a
preconditioned Krylov subspace method.
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We first gather all subdomain stiffness matrices in one global blockmatrix



KII KT
∆I KT

ΠI

K∆I K∆∆ KT
Π∆

KΠI KΠ∆ KΠΠ


 .

We then eliminate all subdomain interior variables to form the Schur com-
plement

[ S∆∆ ST
Π∆

SΠ∆ SΠΠ

]
=

[
K∆∆ KT

Π∆

KΠ∆ KΠΠ

]
−

[
K∆I

KΠI

]
K−1

II

[
KT

∆IK
T
ΠI

]

and corresponding right hand side
[

g∆

gΠ

]
=

[
f∆ −K∆IK

−1
II fI

fΠ −KΠIK
−1
II fI

]
,

where we still have no coupling between the subdomains.
We define the partially assembled Schur complement

S̃ =

[
S∆∆ S̃T

Π∆

S̃Π∆ S̃ΠΠ

]
=

[
I∆ 0
0 RT

Π

] [ S∆∆ ST
Π∆

SΠ∆ SΠΠ

] [
I∆ 0
0 RΠ

]

and the fully assembled Schur complement

S =

[
RT

∆ 0
0 IΠ

] [
S∆∆ S̃T

Π∆

S̃Π∆ S̃ΠΠ

] [
R∆ 0
0 IΠ

]
.

The BDDC preconditioner then is

M−1
BDDC =

[
RT

∆,DRB
∆ 0

0 IΠ

] [
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]−1 [
(RB

∆)T R∆,D 0
0 IΠ

]
,

where R∆,D are scaled variants of the assembly operator R∆. As in the
FETI-DP jump operator B∆,D, each entry is scaled by the inverse of its
multiplicity.

If we introduce the notation

uΓ =

[
u∆

uΠ

]
, gΓ =

[
RT

∆(f∆ −K∆IK
−1
II fI)

f̃Π − K̃ΠIK
−1
II fI

]

we can define the BDDC algorithm as the CG method to solve

SuΓ = gΓ
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with the preconditioner M−1
BDDC .

We only note that a BDDC method can be defined which has the same
eigenvalues as the FETI-DP method with the lumped preconditioner, see
also Li and Widlund [91], by

M−1
BDDCL

=




II 0 0
0 RT

∆,D 0
0 0 IΠ







KII KT
∆I K̃T

IΠ

K∆I K∆∆ K̃T
Π∆

K̃ΠI K̃Π∆ K̃ΠΠ




−1 


II 0 0
0 R∆,D 0
0 0 IΠ


 ,

assuming an ordering of Kg where we have interior variables first and primal
variables last.

2.3 Scaling for Heterogeneous Problems

We will discuss the 2D case when we do not make all vertices primal; this
discussion is also relevant for edges and vertices in 3D. Generally it would
be sufficient to enforce n − 1 pairs of equality constraints for a node which
belongs to n subdomains. Instead, n× (n− 1)/2 constraints will be used as
indicated in Figure 2.3. This, of course, means that neither the B(i) nor B
have full rank.

A small modification of PB,D allows the treatment of coefficient jumps
across subdomain boundaries. It is helpful to introduce some notation. For
indices i, j of uB we write i ∼ j if a Lagrange multiplier is associated with
this pair.

Let the vector ρ store the local coefficients of every component of uB. Let
i ∼ j, by a Lagrange multiplier λk; if ui belongs to the subdomain Ωm then
the entry d

(m)
kk of D(m) is

d
(m)
kk =

ρj∑
l∼i ρl

.

The scaled jump operator BB,D is now

BB,D :=
(
D(1)B

(1)
B,D, . . . , D(N)B

(N)
B,D

)
,

where the diagonal matrices D(i) contain the scaling factors. If all ρi = 1
then ρ-scaling reduces to the multiplicity scaling. In the same way we define
the scaled BDDC assembly operator

R∆,D :=
(
D(1)R

(1)
∆ , . . . , D(N)R

(N)
∆

)
.
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Figure 2.3: Redundant Lagrange multipliers.
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Figure 2.4: Scaling the contributions from different subdomains.

2.4 Convergence Estimate for FETI-DP and

BDDC

We will first show that FETI-DP and BDDC essentially have the same spec-
tra. The line of argument follows Li and Widlund [92]. Eliminating all
interior variables from the FETI-DP system we obtain the system matrix



S∆∆ S̃T

Π∆ BT
∆

S̃Π∆ S̃ΠΠ 0
B∆ 0 0


 .
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Therefore, we can write the FETI-DP system matrix as

F =
[

B∆ 0
]
[
S∆∆ S̃T

Π∆

S̃Π∆ S̃ΠΠ

]−1 [
BT

∆

0

]
,

and the preconditioner as

M−1
FETID

= B∆,DS∆∆BT
∆,D

=
[

B∆ 0
]
[
S∆∆ S̃T

Π∆

S̃Π∆ S̃ΠΠ

] [
BT

∆

0

]
.

Using the compact notation

S̃ :=

[
S∆∆ S̃T

Π∆

S̃Π∆ S̃ΠΠ

]
,

BΓ :=
[

B∆ 0
]
, BΓ,D :=

[
B∆,D 0

]
,

PD := BT
Γ,DBΓ,

we can write the preconditioned FETI-DP operator as

M−1F = BD,ΓS̃BT
D,ΓBΓS̃−1BT

Γ . (2.6)

The operator M−1F then has the same eigenvalues as

P T
D S̃PDS̃−1. (2.7)

It is an important property of the projection PD that it preserves the jump
in the sense that

BΓPDũΓ = BΓũΓ ∀ũΓ ∈ W̃Γ. (2.8)

This can easily be seen by the following considerations. We recall the
equivalence relation ∼ over component indices of uΓ = [uT

∆, ũT
Π]T , having

i ∼ j if ui and uj share a Lagrange multiplier. Clearly,

PD ũΓ = BT
Γ,DBΓũΓ =




B
(1)T
Γ D(1)

...

B
(n)T
Γ D(n)







ui1 − uj1
...

uiν − ujν




=




∑
k1∼1 dk1 (u1 − uk1)

...∑
kn∼n dkn (un − ukn)

0




=

[
BT

∆,DB∆u∆

0

]
.
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Here, we have associated the scaling factors with the degree of freedom ukl
,

i.e. we define
dkl

:=
ρkl∑

m∼kl
ρm

.

This is the same scaling as above but this numbering is more convenient
for the componentwise notation in the following. It is not helpful in the
implementation. We now consider the ith component of the dual part, it
holds that

(
BT

D,∆B∆ u∆

)
i

=
∑

ki∼i

dki
(ui − uki

) (2.9)

= ui −
∑

ki∼i

dki
uki

(2.10)

= ui − (RT
∆R∆,Du∆)i (2.11)

since
∑

ki∼i dki
= 1 ∀i.

We see that we substract from all dual variables the D-weighted average
(RT

∆R∆,Du∆)i, which is a continuous function. The operator PD therefore
preserves jumps, and we also have PDPDũΓ = PDũΓ.

By using the notation

RΓ :=

[
R∆ 0
0 IΠ

]
, RΓ,D :=

[
R∆,D 0

0 IΠ

]
,

we can define a second projection

ED := (I − PD) (2.12)

= RΓRT
Γ,D, (2.13)

which then immediately gives

ED + PD = I, PDED = EDPD = 0.

The central part of the theory is given by the following theorem, cf. [84].

Theorem 2.4.1 For all ũΓ ∈ W̃ , we have a bound

|PDũΓ|2eS ≤ C(1 + log(H/h))2|ũΓ|2eS, (2.14)

where C is independent of H, h, and the value of ρi.
Proof:
We will denote the local Schur complement obtained by eliminating all inte-
rior variables of a subdomain Ωi by

S(i) :=

[
S(i)

∆∆ S(i)T
Π∆

S(i)
Π∆ S(i)

ΠΠ

]
=

[
K

(i)
∆∆ K

(i)T
Π∆

K
(i)
Π∆ K

(i)
ΠΠ

]
−

[
K

(i)
∆I

K
(i)
ΠI

]
K

(i)
II

−1
[

K
(i)T
∆I K

(i)T
ΠI

]
.
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For convenience we also define the global, unassembled Schur complement
matrix

S := diagN
i=1(S

(i)).

We also keep in mind that the finite element function ũΓ ∈ W̃ corresponds to
a vector [uT

∆, ũT
Π]T . We introduce an operator R∂Ωi

which restricts the finite

element function ũΓ ∈ W̃Γ to the subdomain boundary ∂Ωi. The matrix
representation is defined by

[
u

(i)
∆

u
(i)
Π

]
= R∂Ωi

[
u∆

ũΠ

]
.

For all ũΓ ∈ W̃Γ, i.e. functions which satisfy the primal constraints, it holds

|ũΓ|2eS =
N∑

i=1

|R∂Ωi
ũΓ|2S(i) ,

where R∂Ωi
ũΓ is the restriction of ũΓ to ∂Ωi.

Thus, (2.14) becomes

N∑
i=1

|R∂Ωi
PDũΓ|2S(i) ≤ C1

N∑
i=1

|R∂Ωi
ũΓ|2S(i) .

We can establish the global estimate on PD by bounds that can be calculated
locally.

Our finite element functions u ∈ H1(Ωi) are continuous whereas we do not
have a Sobolev inequality in 2D for functions in H1(Ωi). But for finite element
functions we have a discrete Sobolev inequality, see Toselli and Widlund [136,
Lemma 4.15], Brenner and Scott [19, Theorem 4.9.1], or similarly Bramble,
Pasciak, and Schatz [18, Lemma 3.5],

‖u‖2
L∞(Ωi)

≤ C(1 + log(H/h))‖u‖2
H1(Ωi)

; (2.15)

the L2-term on the right hand side can be removed by subtracting from u
any convex combination of u. The original proof of the condition number
bound by Mandel and Tezaur [100] used the formulation of Bramble, Pasciak
and Schatz [18].

We will now show a condition number estimate, which follows the pre-
sentation for three dimensional problems in Klawonn, Widlund, and Dryja
[86] and Klawonn and Widlund [84].

Let ΘEij and ΘVik be the characteristic finite element functions associated
with an edge E ij and a vertex V ik. These functions take the value one at the
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nodes of the edge or at the vertex and zero elsewhere. The functions form a
partition-of-unity associated with the decomposition of the interface Γ into
edges and vertices. If Ih denotes the finite element interpolation operator,
we obtain

v(i) =
∑

Eij

Ih(ΘEijv(i)) +
∑

Vik

Ih(ΘVikv(i)) (2.16)

for a finite element function v(i) local to a subdomain boundary ∂Ωi. We
will use this decomposition for v(i) = R∂Ωi

PDuΓ and find bounds for the
contributions from the edges

ρi‖Ih(ΘEijv(i))‖2
H1/2(∂Ωi)

(2.17)

and the vertices
ρi‖Ih(ΘVijv(i))‖2

H1/2(∂Ωi)
. (2.18)

These bounds will be in terms of |R∂Ωi
ũΓ|2S(i) . By using the triangle inequality

we are able to establish the global bound. Every contribution only appears a
bounded number of times in the global sum if every subdomain has a bounded
number of faces. In the contributions (2.17), (2.18) we use full norms; we
can remove the L2-terms later by using the continuity at the primal vertices.

For the edge contributions we use

|Ih(ΘEiju)|2
H1/2(∂Ω)

≤ C
(
|u|2

H1/2(∂Ω)
+ (1 + log(H/h))‖u‖2

L∞(∂Ω)

)
,

(2.19)
see, e.g., Brenner and Scott [19, Theorem 7.5.30].

Since our finite element functions are continuous, we have

‖u‖2
L∞(∂Ωi)

≤ ‖Hu‖2
L∞(Ωi)

= ‖Hu‖2
L∞(Ωi)

.

Hence, for a finite element function u on the edge E ij we have from (2.19)
and (2.15)

‖Ih(ΘEiju)‖2
H1/2(∂Ω)

≤ C(1 + log(H/h))2‖Hu‖2
H1(Ω)

= C(1 + log(H/h))2‖u‖2
H1/2(Ω)

.
(2.20)

We can remove the L2-term on the right hand side if u has edge average zero,
i.e. uEij = 0, by using a Poincaré inequality.

If all vertices are primal, the vertex contributions vanish since PD re-
stricted to the primal variables is the zero mapping. We therefore only need
to estimate the edge contributions. We will also need the property of the
scaling

ρid
2
j = ρi

ρ2
j

(ρi + ρj)2
≤ min{ρi, ρj}.
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Using (2.9), the edge contribution is

ρi‖Ih(ΘEijd(i)(w(i) − w(j)))‖2
H1/2(∂Ωi)

= ρi‖Ih(ΘEijd(i)(w(i) − wi,Eij)− (w(j) − wj,Eij) + (wi,Eij − wj,Eij)))‖2
H1/2(∂Ωi)

= 2 min{ρi, ρj}‖Ih(ΘEij((w(i) − wi,Eij)− (w(j) − wj,Eij)))‖2
H1/2(∂Ωi)

+ 2 min{ρi, ρj}‖ΘEij(wi,Eij − wj,Eij)‖2
H1/2(∂Ωi)

We have added and subtracted the edge averages so that we can estimate
the first term using (2.20) and a Poincaré inequality,

‖Ih(ΘEij

(
(w(i) − wi,Eij)− (w(j) − wj,Eij)

) ‖2
H1/2(∂Ωi)

≤ ‖Ih(ΘEij(w(i) − wi,Eij))‖2
H1/2(∂Ωi)

+ ‖Ih(ΘEij(w(j) − wj,Eij))‖2
H1/2(∂Ωi)

≤ C(1 + log(H/h))2
(
|w(i)|2H1/2(∂Ωi)

+ |w(j)|2H1/2(∂Ωj)

)
.

It remains to estimate the term

‖ΘEij(wi,Eij − wj,Eij)‖2
H1/2(∂Ωi)

= (wi,Eij − wj,Eij)2‖ΘEij‖2
H1/2(∂Ωi)

.

From (2.19) with u = 1 we obtain an estimate for the energy of the charac-
teristic function of the edge,

‖ΘEij‖2
H1/2(∂Ωi)

≤ C(1 + log(H/h)).

Adding and subtracting the value

wi,Vij = wj,Vij (2.21)

at a primal vertex V ij ∈ ∂E ij, we get

(wi,Eij − wj,Eij)2 ≤ 2(wi,Eij − wi,Vij)2 + 2(wj,Eij − wj,Vij)2.

Note that the expressions on the right hand side, e.g.

(wi,Eij − wi,Vij)2,

are shift invariant, i.e. they do not change their value if we add or substract
a constant to w(i) or w(j).

Therefore, we can assume that wi,Eij = wj,Eij = 0, and it remains to
estimate (wi,Vij)2 and (wj,Vij)2. From (2.15), we obtain

|wi,Vij |2 ≤ ‖w(i)‖2
L∞(∂Ωi)

≤ ‖Hw(i)‖2
L∞(Ωi)

≤ C(1 + log(H/h))‖Hw(i)‖2
H1(Ω)

= C(1 + log(H/h))‖w(i)‖2
H1/2(∂Ωi)

≤ C(1 + log(H/h))|w(i)|2
H1/2(∂Ωi)

.

(2.22)



44 CHAPTER 2. TWO ITERATIVE SUBSTRUCTURING METHODS

In the last inequality we have removed the L2-term by a Poincaré inequality
on ∂Ωi, again using wi,Eij = 0. If we have chosen all vertices as primal then
the proof is completed.

If a vertex V ij is not primal, we have to estimate the contributions from
this vertex, see (2.16) and (2.18). For simplicity, let us assume that every
pair of neighboring subdomains share an edge, i.e. the multiplicity of all
vertices is less than four. Interestingly, irregular partitions of meshes rarely
have vertices with a multiplicity of four or higher. We have

ρi‖ΘVijv(i)(V ij)‖2
H1/2(∂Ω)

≤ C
∑

l∈neighb(i,Vij) ρidl‖ΘVij‖2
H1/2(∂Ωi)

(wi,Vij − wl,Vij)2 (2.23)

From a simple computation, see also [19, Theorem 7.5.31] and [136, Lemma B.5],
we have

‖ΘVij‖2
H1/2(∂Ωi)

≤ C

with a constant independent of h and H. To estimate (wi,Vij − wl,Vij)2 we
assume that the other vertex V ik adjacent to the relevant edge is primal, i.e.

wi,Vik = wl,Vik .

Adding and subtracting the value at the primal vertex, we obtain

(wi,Vij − wl,Vij)2

≤ 2(wi,Vij − wi,Vik)2 + 2(wl,Vij − wl,Vik)2.
(2.24)

By inserting the (discontinuous) edge averages we get

(wi,Vij − wl,Vij)2

≤ 4(wi,Vij − wi,Eij)2 + 4(wi,Vik − wi,Eij)2

+ 4(wl,Vij − wl,Eij)2 + 4(wl,Vik − wl,Eij)2.

(2.25)

Here, each expression is again shift invariant and we can assume that wi,Eij =
wl,Eij = 0. We can continue as in (2.22) to get

2(wi,Vij)2 + 2(wl,Vij))2

≤ C(1 + log(H/h))
(|w(i)|2

H1/2(∂Ωi)
+ |w(j)|2

H1/2(∂Ωi)

)
.

(2.26)

We have removed the L2-term by a Poincaré inequality. This concludes the
bound under the assumption made above.

If we further reduce the number of primal vertices, we may have the
situation that for an edge E ij there is no adjacent primal vertex. In that
case (2.21) does not hold. Also, we may want to consider vertices with a
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multiplicity of four or higher. Under certain conditions, we can still derive a
bound. For simplicity, let us assume a homogeneous material with no jumps
in the coefficients. We define two subdomains as connected in a graph GV
if they share a primal vertex. In order to establish the desired bound for an
edge or a vertex contribution we need to demand that every subdomain is
connected in GV to all its neighbors, possibly passing through several other
subdomains. In that case we add and subtract all primal vertices along the
path and have to estimate each term in the same way as in (2.24). For the
vertex contributions this gives us a bound of the form

(1 + log(H/h))

(
|w(i)|2H1/2(∂Ωi)

+ |w(l)|2H1/2(∂Ωl)
+

∑

k∈path

|w(k)|H1/2(∂Ωk)

)
.

For the edge contributions we get the same bound with two powers of the
logarithmic factor. Here, whenever a path passes through a subdomain its
contribution is added to the estimate and the condition number of the result-
ing algorithm will grow. Still, asymptotically, we get a good bound of the
desired polylogarithmic form if the length of the path is uniformly bounded
by a constant.

This argument can be extended to the case of discontinuous coefficients,
using the concept of an acceptable path; see [84] and [86].

2

Using this theorem, we can prove Theorem 2.4.2 as given in Klawonn and
Widlund [84].

Theorem 2.4.2 The condition number of the preconditioned FETI-DP op-
erator satisfies the bound

κ(M−1F ) ≤ C(1 + log(H/h))2.

where C1 = C(1 + log(H/h))2.

Proof: We will show the following bounds given in the energy norm defined
by F ,

〈λ, λ〉F ≤
〈
M−1Fλ, λ

〉
F
≤ C(1 + log(H/h))2 〈λ, λ〉F .

This will give us a lower bound of one on the lowest eigenvalue and the
desired bound on the condition number. We can establish the lower bound
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using (2.8). We have for all λ,

〈λ, λ〉F =
〈
BΓS̃−1BT

Γ λ , λ
〉

=
〈
BΓS̃−1P T

DBT
Γ λ , λ

〉

=
〈
BΓS̃−1BT

Γ BD,ΓS̃1/2S̃−1/2BT
Γ λ , λ

〉

=
〈
S̃−1/2BT

Γ λ , S̃1/2BT
D,ΓBΓS̃−1BT

Γ λ
〉

≤
〈
S̃−1/2BT

Γ λ , S̃−1/2BT
Γ λ

〉 〈
S̃1/2BT

D,ΓBΓS̃−1BT
Γ λ , S̃1/2BT

D,ΓBΓS̃−1BT
Γ λ

〉

= 〈λ, λ〉F
〈
M−1Fλ, λ

〉
F

.

The upper bound can be established by using Theorem 2.4.1,
〈
M−1Fλ, λ

〉
F

=
〈
M−1Fλ , Fλ

〉

=
〈
BT

D,ΓFλ ,BT
D,ΓFλ

〉
eS

=
〈
PDS̃−1BT

Γ λ , PDS̃−1BT
Γ λ

〉
eS

≤ C(1 + log(H/h))2
〈
S̃−1BT

Γ λ , S̃−1BT
Γ λ

〉
eS

≤ C(1 + log(H/h))2
〈
BΓS̃−1BT

Γ , λ
〉

≤ C(1 + log(H/h))2 〈λ, λ〉F
2

We can write the BDDC system matrix as

S =

[
RT

∆S∆∆R∆ RT
∆S̃T

Π∆

S̃Π∆R∆ S̃ΠΠ

]

and the BDDC preconditioner in the form

M−1
BDDC

=

[
RT

D,∆ 0
0 IΠ

] [
S∆∆ S̃T

Π∆

S̃Π∆ S̃ΠΠ

]−1 [
RD,∆ 0

0 IΠ

]

=

[
I −RT

D,∆S−1
∆∆S̃T

Π∆

0 I

] [
RT

D,∆S−1
∆∆RD,∆ 0

0 S̃−1
ΠΠ

] [
I 0

−S̃Π∆S−1
∆∆RD,∆ I

]
.

Here, it becomes obvious that the global coupling in the BDDC method is
also given by the Schur complement matrix S̃ΠΠ, which also represents the
FETI-DP coarse problem.
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Using the operators RΓ and RΓ,D, the product M−1
BDDCS becomes

RT
Γ,DS̃−1RΓ,DRT

Γ S̃RΓ, (2.27)

which has the same eigenvalues as

EDS̃−1ET
DS̃. (2.28)

Together with Formulas (2.6) and (2.12) this can be used to construct
an elegant and short proof that the eigenvalues of FETI-DP and BDDC
algorithms are basically the same.

Theorem 2.4.3 The FETI-DP and the BDDC method share all eigenvalues
except, possibly, for eigenvalues equal to zero and one.

Proof: Considering the eigenvalues of (2.7) and (2.28) and using (2.12) it can
be shown by linear algebra only that the spectra of FETI-DP and BDDC are
essentially the same; see Li and Widlund [92, Section 5] for further details.

2

This theorem ensures that the bounds established for the FETI-DP algo-
rithm also apply to the BDDC method. The first proof of this fact was given
by Mandel, Dohrmann and Tezaur [98].
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Chapter 3

FETI-DP for Linear Elasticity

3.1 Equations of Linear Elasticity

The equations of linear elasticity model the displacement of an elastic ma-
terial under the action of external and internal forces. The elastic body
occupies a domain Ω ⊂ IRd, d = 2, 3. We denote its boundary by ∂Ω and
assume that one part of it, ∂ΩD, is clamped, e.g. with homogeneous Dirichlet
boundary conditions, and that the rest, ∂ΩN := ∂Ω \ ∂ΩD, is subject to a
surface force g, i.e. a natural boundary condition. We can also introduce a
body force f , e.g. gravity.

We measure the deformation of the body Ω by the (linearized) strain
tensor

εij =
1

2
(∂jui + ∂iuj) ,

where u ∈ Rd is the displacement vector. The deformation results in stresses
σ(ε) within the body. We call a body linear elastic if the stress is a linear
function of the strain, i.e.

σ = Cε.

The elasticity tensor C models the material and depends on the local prop-
erties of the body.

49
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The equilibrium of forces is then given by the coupled system

d∑
j=1

∂jσij(u) = fi in Ω,

σij(u) =
d∑

k,l=1

cijkl εkl(u),

εij =
1

2
(∂jui + ∂iuj) ,

u = 0 on ∂ΩD,
d∑

j=1

σij(u)νj = gi on ∂ΩN ,

which can also be written

divσ = f in Ω, σ = Cε(u), ε =
1

2
(∇u + (∇u)T ),

u = 0 on ∂ΩD, 〈σ, ν〉 = g on ∂ΩN .

By multiplying with vi ∈ H1
0 (Ω, ∂ΩN), assuming symmetry of σij, and using

a Green’s formula,

∫

Ω

∂jσij vi dx = −
∫

Ω

σij ∂jvi dx +

∫

∂ΩN

σij vi νj ds,

we can derive the weak formulation

a(u, v) = f(v) ∀v ∈ V,

where

a(u, v) =

∫

Ω

d∑
i,j=1

σij(u)εij(v) dx =:

∫

Ω

σ(u) : ε(v) dx, (3.1)

f(v) =

∫

Ω

d∑
i=1

fivi dx +

∫

∂ΩN

d∑
i=1

givi ds =

∫

Ω

〈f, v〉 dx +

∫

∂ΩN

〈g, v〉 ds,

in the appropriate Sobolov space

V = H1
0(Ω, ∂ΩD) := (H1

0 (Ω, ∂ΩD))d.
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Under the assumption that the material is isotropic, i.e. the response to a
force is independent of the orientation, we have that

σ = 2µε + λtrace (ε)I,

or written componentwise

σij = 2µεij(u) + λδij

d∑

k=1

εkk(u), (3.2)

where δij is the Kronecker symbol. The constants λ ≥ 0 and µ > 0 are
referred to as the Lamé parameters.

Inserting (3.2) into (3.1), we derive a simplified weak formulation,

2µ

∫

Ω

d∑
i,j=1

εijεij dx + λ

∫

Ω

(
d∑

i=1

∂ivi)(
d∑

i=1

∂ivi) =

∫

Ω

d∑
i=1

fivi +

∫

∂ΩN

d∑
i=1

givi,

which we can also write

2µ

∫

Ω

ε(u) : ε(v) dx + λ

∫

Ω

div(u)div(v) dx =

∫

Ω

〈f, v〉 dx +

∫

∂ΩN

〈g, v〉 ds.

Instead of the Lamé parameters, one can also derive formulations using the
Young’s modulus E and Poisson’s ratio ν. We have the relations

E =
µ(2µ + 3λ)

µ + λ
, ν =

λ

2(µ + λ)

or

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

For convenience, we define

〈F, v〉 =

(∫

Ω

〈f, v〉 dx +

∫

∂ΩN

〈g, v〉 ds

)
.

In the following, we choose the notation

∫

Ω

G(x) ε(u) : ε(v) dx +

∫

Ω

G(x) β(x) div(u)div(v) dx = 〈F, v〉 , (3.3)

where G(x) = 2µ and β(x) = λ/(2µ).
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In order to show unique solvability in the space H1
0(Ω, ∂ΩD), the ellipticity

and continuity of

a(u, v) =

∫

Ω

G(x)ε(u) : ε(v) dx +

∫

Ω

G(x)β(x)div(u)div(v) dx

= (Gε(u), ε(v))L2(Ω) + (Gβ divu, divv)L2(Ω)

as well as the continuity of 〈F, v〉 has to be established.
Continuity follows from elementary considerations whereas ellipticity is

nontrivial and follows from Korn’s second inequality,

C(Ω)‖u‖2
H1(Ω) ≤ (ε(u) : ε(u))L2(Ω) + ‖u‖2

L2(Ω);

see, e.g., [25, 19].
Here, C(Ω) > 0 depends on the domain Ω. As a consequence of this

inequality we have Korn’s first inequality

c‖u‖2
H1(Ω) ≤ (ε, ε)L2(Ω) ≤ C‖u‖2

H1(Ω)

for all u with essential boundary conditions, i.e. for u ∈ H1
0(Ω, ∂ΩD) and

(
∫

∂ΩD
1 ds)2 > 0.

The null space ker (ε) of ε is the space of the rigid body motions. In two
dimensions it is spanned by two translations,

r1 =

[
1
0

]
, r2 =

[
0
1

]
, (3.4)

and one rotation (or the linear approximation to the rotation),

r3 =

[ −(x1 − x̂1)
x2 − x̂2

]
. (3.5)

Here, we have shifted the origin of the rotation to the point x̂ ∈ Ω.
In three space dimensions the null space is spanned by three translations,

r1 :=




1
0
0


 , r2 :=




0
1
0


 , r3 :=




0
0
1


 , (3.6)

and three rotations,

r4 :=




x2 − x̂2

−(x1 − x̂1)
0


, r5 :=



−(x3 − x̂3)

0
x1 − x̂1


, r6 :=




0
x3 − x̂3

−(x2 − x̂2)


. (3.7)

We have shifted the origin of the rotation to the point x̂ ∈ Ω. From the
Korn inequalities, we see that we can control the null space of the operator
if we set essential boundary conditions or if we require the solution to be
orthogonal to all rigid body modes.
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Figure 3.1
Condition number of the FETI-DP operator for 2D linear elasticity using
vertex constraints plotted versus H/h. Left: Plot of κ versus H/h. Right:
Semilogarithmic plot of

√
κ versus H/h.

3.2 Need for an Appropriate Coarse Space

We can apply our formulation of the FETI-DP (and BDDC) algorithm, given
for scalar equations in Chapter 2, without changes also to systems of PDEs.
We only have to specify how to choose the primal variables, i.e. we have to
state how to define the coarse space. In elasticity, the dimension of the null
space of the operator is three in 2D and six in 3D. In scalar equations one
primal constraint per subdomain was sufficient to ensure invertibility of K̃.
Moreover, to establish a condition number bound of the form

κ(M−1F ) ≤ C(1 + log(H/h))2,

e.g. one vertex per edge is sufficient, see Chapter 2.
Both these results do not hold for the case of elasticity anymore. An

obvious choice is still to choose vertex unknowns as the primal variables.
If we have a sufficient number of vertices per subdomain, we can control
the rigid body motions of each subdomain. We have invertibility of K̃ if
the closure of every subdomain in 2D includes at least two vertices, since
constraints at two point control the rigid body motions. In 3D we need at
least three vertices with linearly independent coordinates to constrain our
subdomain. Thus, three vertex constraints control the rigid body motions.

We will refer to FETI-DP algorithms in 2D and 3D using vertex con-
straints as the Algorithm A, cf. Klawonn, Widlund, and Dryja [86], where
this notation was introduced.
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We remark that in order to ensure a sufficient number of vertices in all
cases of boundary conditions, e.g. in a structured decomposition of the unit
cube into square/cubic subdomains, we may want to introduce vertices where
Γ intersects ∂ΩN . This is in addition to all crosspoints, i.e. the points where
the boundaries of four subdomains intersect in 2D or where eight subdomains
intersect in 3D.

In fact, this strategy turns out to be successful for 2D linear elasticity, and
we again get a (1+ log(H/h))2 condition number bound. This can be proven
using similar techniques as in Chapter 2, see also Klawonn and Widlund [84],
where the proofs are given for three dimensions.

In Figure 3.1 (p. 53) and Table 3.1 (p. 55), results of numerical experi-
ments are shown. We can see that in the 2D case the condition number grows
only slowly with increasing H/h. If we plot

√
κ using a logarithmic scale for

H/h we obtain an almost straight line. This is a strong indication from the
numerical computations that we indeed have a (1 + log(H/h))2 bound and
that it is sharp. This also means that in 2D our FETI-DP algorithm using
vertex constraints is scalable with respect to the subdomain size, i.e. we are
free to choose our subdomain size without any large effect on the convergence
of our algorithm.
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Figure 3.2
Condition number of the FETI-DP operator for linear elasticity using vertex
constraints plotted versus H/h. Lower curve: 2D. Upper: 3D.
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2D (Alg. A) 3D (Alg. A)
H/h It. λmax λmin It. λmax λmin

4 18 9.70 1.02 31 10.51 1.02
6 19 11.15 1.03 43 20.36 1.02
8 20 12.24 1.04 53 32.01 1.02
10 21 13.11 1.03 61 44.92 1.02
12 21 13.84 1.03 70 58.81 1.02
14 22 14.47 1.02 78 73.47 1.02
16 22 15.02 1.02 86 88.80 1.02
18 22 15.52 1.02 93 104.71 1.02
20 23 15.97 1.02 99 121.10 1.02
22 23 16.38 1.02 104 137.94 1.02
24 23 16.75 1.02 109 155.19 1.02

Table 3.1
Eigenvalues and iteration counts for FETI-DP using vertex constraints (Algo-
rithm A) for linear elasticity in 2D and 3D, 64 subdomains, relative residual
reduction of 10−10.

However, as can be seen in Figure 3.2 and Table 3.1 for 3D linear elasticity,
this is not the case in three space dimensions. Here, the condition number and
iterations counts grow quickly with H/h. This is due to the bad properties
of point constraints in three dimensions. Hence, new coarse spaces have to
be constructed.

The poor performance of FETI-DP using vertex constraints has been
known for some time and was first reported in Pierson [107] and Farhat,
Lesoinne, and Pierson [41] where also an extension of FETI-DP to three
dimensional elasticity was introduced. We will follow a somewhat different
approach than the one in [41].

3.3 FETI-DP in 3D

We have to decide how to choose the primal displacement variables in 3D
elasticity other than using vertex constraints. Our presentation is based on
Klawonn and Rheinbach [76]. We have already discussed the choice of vertex
constraints in Section 3.2. See also Farhat et al. [40], where this approach
was first considered. Different approaches have been taken to construct more
powerful coarse spaces. Our approach is taken from Klawonn and Wid-
lund [84] and is motivated from the theory given therein. We will show that
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an algorithm using several main ideas from Klawonn and Widlund is practi-
cable, competitive, and robust for solving large, structured and unstructured
3D linear elasticity problems sequentially or in parallel. To our knowledge,
the first parallel results for this approach were published in Klawonn and
Rheinbach [76]. Note that some of the ideas, e.g. the transformation of basis
for FETI-DP, have been presented already in Klawonn, Widlund and Dryja
[86] and [82].

The algorithm has several desirable features and is justified from the
theory. But we will also show that the algorithm is applicable when the
model assumptions made for the theory do not apply. This is already the
case when graph partitioners are used for the domain decomposition or when
material jumps do not align with subdomain boundaries.

3.3.1 Change of Basis

In the FETI-DP methods using vertex constraints, e.g. for the 2D problems
in Chapter 2, the coarse problem is built by assembling the local stiffness
matrices in the primal vertices. In our 3D methods we would like to constrain
certain averages to be the same across the subdomain boundaries in addition
to or instead of the vertex constraints. An approach which arises naturally
from the theory is to treat the average constraints in the same way as the
vertex constraints after a change of basis has been carried out. Hence, we
will introduce certain averages explicitly into our equation systems, and we
then use subassembly to constrain these averages to be continuous across the
subdomain interfaces. In Figure 3.3 a usual nodal basis in 1D and a basis
including an average is shown.

Figure 3.3
Upper: Usual nodal basis consisting of five nodal basis functions. Lower:
Basis consisting of an average and four nodal basis functions.

Let us denote the transformation matrix which performs the change from
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the new basis to the standard nodal basis by

T = diag(T (i)).

Let K(i) be the local subdomain stiffness matrices. The matrix

K = diag(K(i))

becomes

K = T T KT = diag(T (i)T K(i)T (i))

after transformation. We also have a new right hand side

T T f = [(T T f (1))T , . . . , (T T f (N))T ]T .

Here, we can see that the change of basis is an operation local to each sub-
domain.

Now, the primal variables are chosen, e.g., as averages and, possibly,
as vertex unknowns. As usual, we order the primal variables last in each
subdomain,

K
(i)

=

[
K

(i)

BB K
(i)T

ΠB

K
(i)

ΠB K
(i)

ΠΠ

]
,

arrange the local matrices in a large block matrix

[
KBB K

T

ΠB

KΠB KΠΠ

]
,

KBB = diag(K
(i)

BB), KΠB = diag(K
(i)

ΠB), KΠΠ = diag(K
(i)

ΠΠ),

and then assemble in the primal variables,

K̃ =

[
KBB K̃

T

ΠB

K̃ΠB K̃ΠΠ

]
=

[
IB 0
0 RT

Π

] [
KBB K

T

ΠB

KΠB KΠΠ

][
IB 0
0 RΠ

]

f̃ =

[
fB

f̃Π

]
=

[
IB 0
0 RT

Π

] [
fB

fΠ

]
.

We now continue with the FETI-DP algorithm as described in Chapter 2. In

the preconditioner we also use the transformed local stiffness matrices K
(i)

.



58 CHAPTER 3. FETI-DP FOR LINEAR ELASTICITY

3.3.2 Local Lagrange Multipliers

The transformation of basis affects the sparsity of the local stiffness matrices.
For our favorite coarse problem that we will describe later this will be a minor
issue. But for other choices of constraints this can be a drawback particu-
larly due to the additional effort necessary when computing the factorizations

of K
(i)

BB. This can be improved by a strategy of solving local saddle prob-
lems [84]. A similar technique has been used in [54] for Neumann-Neumann
preconditioners to enforce zero average pressure in almost incompressible
elasticity. The original formulation of BDDC [29] also solves local saddle
point systems but without using global assembly of the subdomain primal
variables.

We carry out our transformation of basis as described in the last section.
But whenever a system

K
(i)

BBu
(i)
B = f

(i)

B

has to be solved, we solve instead a constrained linear system

[
K(i) C(i)T

C(i) 0

] [
u(i)

µ

]
=


 T (i)−T

[
f

(i)

B

0

]

0


 .

We then have
u

(i)
B =

[
IB 0

]
T (i)−T u(i).

Here, instead of calculating the factorizations of our transformed local matri-
ces we now solve local saddle point systems. In the factorization we keep the
original stiffness matrix but constrain our averages to be zero by a Lagrange
multiplier µ. The system can be solved, e.g, by LU factorization with piv-
oting. Using a standard technique, it can also be solved by factorizing two
symmetric positive definite systems per saddle point system. Note that often
it is easy to give the inverse of T (i) explicitly, i.e. with no computational cost.
Also, the coarse matrix S̃ΠΠ, which represents the FETI-DP coarse problem,
always remains symmetric positive definite as in the case when only vertex
constraints are used.

In the computations in this thesis we have used the change of basis as
described in Section 3.3.1. We will now describe our favorite coarse problem.

3.3.3 Edges

As we are interested only in 3D problems, we have a domain Ω ⊂ IR3 and
decompose it into nonoverlapping subdomains Ωi, i = 1, . . . , N . As usual,
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each subdomain is the union of finite elements with matching finite element
nodes on the boundaries of neighboring subdomains across the interface Γ.

The interface Γ then is the union of three different groups of open sets,
namely, subdomain faces, edges, and vertices, cf. Figure 3.4. The face and

Figure 3.4
The four faces (upper left), six edges (upper right), and four vertices (lower)
of a tetrahedron.

edge averages as well as the vertex degrees of freedom are potential primal
variables for FETI-DP algorithms in 3D.

We need to define faces, edges, and vertices also in the case of an irregular
domain decomposition as provided by a mesh partitioner, see Section 3.4.2.

Let us denote the sets of nodes of the triangulations of Ω by Ωh and
that of Ωi, by Ωi,h. Likewise we write Γh for the discrete interface, i.e. the
triangulation nodes on the interface Γ. We denote faces, edges, and vertices
in the sense of Figure 3.4 by the letters F , E , and V , respectively.

We then consider the nodal graph

Gτh
= (V, E)

associated with a triangulation τh. It is defined as follows: Nodes of τh are
nodes v ∈ V in Gτh

. Two nodes v ∈ V are connected by an edge e ∈ E if
they share a finite element, and they are direct neighbors within this element.

In tetrahedral linear finite elements all nodes of an element are direct
neighbors. This is not true for a hexahedral finite element, see Figure 3.5, or
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for any other 3D finite element. Nevertheless, it is still simple and computa-
tionally inexpensive to build Gτh

from any finite element mesh τh.

Figure 3.5: Direct neighbors of a node in a hexahedral finite element.

For any nodal point x ∈ Ωh, we also define the index set

Nx :=
{
i ∈ {1, . . . , N} : x ∈ Ωi,h

}
,

i.e. Nx is the set of indices of all subdomains having x in the closure of the
subdomain. For a node x we define the multiplicity of the node as |Nx|.

Sometimes it is helpful to regard nodes on the Neumann boundary ∂ΩN

as belonging to ΩC := R3 \ Ω, in addition to the subdomains in the sense of
Nx. This increases the multiplicity of nodes on ∂ΩN by one. We then have

NC
x :=

{
i ∈ {1, . . . , N} ∪ {NC} : x ∈ (Ωi,h \ ∂ΩD,h)

}
,

where NC is the index associated with ΩC .

We now partition all nodes of Gτh
into connectivity components with the

same index set Nx.

Definition 3.3.1 We consider

• connectivity components with |Nx| = 1 as the interiors of subdomains,

• connectivity components with |Nx| = 2 as faces,

• connectivity components with |Nx| ≥ 3 as edges if they contain more
than one node,

• otherwise we call this node a vertex.
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Vertices Edges (Alg. DE) Faces

NC
x (n + 1)3 − 12(n− 2)− 8 3n(n− 1)2 + 12n(n− 1) 3(n− 1)n2

Nx (n− 1)3 3n(n− 1)2 3(n− 1)n2

Table 3.2
Number of vertices, edges, and faces for a cubic Ω decomposed into N = n3

cubic subdomains as given by Definition 3.3.1 (p. 60).

For flat structures and some thin geometries it is better to use NC
x instead

of Nx in order to define a sufficient number of edges.

In the case of a decomposition into regular substructures, e.g. cubes or
tetrahedra, our definition of faces, edges, and vertices coincides with our basic
geometric intuition, see Figures 3.4 (p. 59) and 3.7 (p. 63). On the other
hand, for decompositions generated by a graph partitioner, the situation can
be more complex. We can, e.g., have several edges with the same index set
Nx or also an edge and a vertex with the same Nx. In an implementation,
the faces, edges, and vertices can be computed by usual graph traversing
algorithms, e.g. depth first search. In practice, we can also have situations
when there are not enough edges and potential edge constraints for some
subdomains. In these cases we can switch to using NC

x , which also can be
done locally, i.e. for a single pair of subdomains. We will also increase the
number of edges in the irregular case by splitting edges into several edges
whenever needed. It is our experience that in decompositions coming from
automatic graph partitioners almost all edges (> 99%) have a multiplicity of
three.

Let us note that sometimes the term edge is used differently in the lit-
erature; cf., e.g., [41, 107]. Also, instead of vertices, the term corners is
often used although usually with a different meaning than vertices in our
terminology; cf. [41, 107, 88]. A simple choice is to define corners in three
dimensions as nodes which either belong to more than three subdomains, see
Pierson [107, p.24], or to more than four subdomains, see Lesoinne [88]. A
more elaborate algorithmic choice, which can reduce the number of corners,
is given in [88]. For completeness, we also give the definition of edges in
three dimensions as used in [41, 107]; see Pierson [108]. There, an “edge” be-
tween two subdomains is the set of interface nodes, excluding corners, which
is common to the boundaries of both subdomains. As pairs of subdomains
are considered, one such edge is defined for each two subdomains that share
nodes. To illustrate the subtle difference between this and our definition, we
consider a structured decomposition of the unit cube into cubic subdomains.
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For two different situations of interior neighboring subdomains, we illustrate
the different definitions in Figure 3.6 (p. 62) and Figure 3.7 (p. 63). An
“edge” in Figure 3.6 can be, e.g., either an edge as in Definition 3.3.1 or the
union of, in our terminology, a face with the edges belonging to its closure;
cf. also Figure 3.7. It is worth to point out that this definition generates
as many “edges” as the sum of edges and faces of our Definition 3.3.1. In
our algorithm the coarse degrees of freedom on the edge are shared by four
subdomains. This will reduce the size of our coarse problem.

Let us note that for the algorithms in this chapter, we solely focus on the
use of constraints over edges. For homogeneous problems no vertices or faces
are needed.

Figure 3.6
Illustration of the definition of edges as given in [41, 108, 107]. When the
nodes, denoted by stars, are selected as the corners, the set of edge nodes is
given by those nodes denoted by circles.

3.3.4 Change of Basis for Edge Constraints

We now describe in detail our approach using an explicit change of basis for
edge constraints. We use the transformation of basis to change between the
standard finite element nodal basis and a basis where we have introduced edge
averages explicitly into the system. We will then choose the edge averages
over the three components as the primal variables.

The transformation matrix TE performs the desired change of basis from
the new basis to the original nodal basis since we would like to iterate in the
new finite element space. Denoting the edge unknowns in the new basis by
uE, we have

uE = TEuE.

Such a transformation matrix TE can be constructed separately for each
edge with three primal edge constraints. Ordering the three edge averages
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Figure 3.7
Illustration of Definition 3.3.1 of vertices, edges, and faces. Vertices are
denoted by stars, edge nodes by squares, and face nodes by small circles.
Left: The intersection of the closure of the two subdomains consists of one
face, four edges, and four vertices. Right: The intersection of the closure of
the two subdomains consists of one edge and two vertices.

last, a possible choice of TE is

TE =




I3 0 I3

. . .
...

0 I3 I3

−I3 · · · −I3 I3


 , (3.8)

where I3 is the 3×3 identity matrix. We denote the resulting transformation
which operates on all relevant edges of ∂Ωi by T

(i)
E . The transformation for

all variables of one subdomain Ωi is then of the form

T (i) =




II 0 0
0 IΓ 0

0 0 T
(i)
E


 .

Here, II and IΓ are identity matrices, and we assume that the variables are
ordered interior variables first (I), then interface variables not related to the
primal edges (Γ), and then the variables on the primal edges (E). A typical
vector of nodal unknowns is of the form

[u
(i)T
I , u

(i)T

Γ
, u

(i)T
E ]T .

The subdomain transformation T
(i)
E is the direct sum of the relevant trans-

formation matrices associated with the primal edges of that subdomain; T
(i)
E

is a block-diagonal matrix, where each block represents the transformation
of a component of a primal edge.
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Decomposing the subdomain stiffness matrices K(i) in the same manner,
we obtain

K(i) =




K
(i)
II K

(i)

IΓ
K

(i)
IE

K
(i)

ΓI
K

(i)

ΓΓ
K

(i)

ΓE

K
(i)
EI K

(i)

EΓ
K

(i)
EE


 .

Using the transformation u(i) = T (i)u(i), we get

T (i)T K(i)T (i) =




K
(i)
II K

(i)

IΓ
K

(i)
IET

(i)
E

K
(i)

ΓI
K

(i)

ΓΓ
K

(i)

ΓE
T

(i)
E

T
(i)T
E K

(i)
EI T

(i)T
E K

(i)

EΓ
T

(i)T
E K

(i)
EET

(i)
E


 , (3.9)

where the upper left 2× 2 block matrix is not affected by the basis transfor-
mation. The primal variables in the new basis now consist of averages. We
order them last to get,

T (i)T K(i)T (i) =




K
(i)
II K

(i)T

∆I K
(i)T

ΠI

K
(i)

∆I K
(i)

∆∆ K
(i)T

Π∆

K
(i)

ΠI K
(i)

Π∆ K
(i)

ΠΠ


 .

Using the assembly operators R
(i)T
Π , R

(i)
Π to assemble the primal variables and

ordering them last in the partially assembled matrix, we obtain

K̃ :=




K
(1)
II K

(1)

I∆ K̃
(1)T
ΠI

K
(1)

∆I K
(1)

∆∆ K̃
(1)T
Π∆

. . .
...

K
(N)
II K

(N)

I∆ K̃
(N)T
ΠI

K
(N)

∆I K
(N)

∆∆ K̃
(N)T
Π∆

K̃
(1)
ΠI K̃

(1)
Π∆ · · · K̃

(N)
ΠI K̃

(N)
Π∆ K̃ΠΠ




=:

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
.

As we have pointed out earlier, the transformation of basis changes the spar-
sity pattern of the transformed matrices T (i)T K(i)T (i) compared to that of
the original local stiffness matrices K(i). Only the matrix blocks related to
the edge degrees of freedom, and those coupling with them, are affected; cf.
(3.9). We note that the set of edge degrees of freedom is only a small subset
of the overall set of degrees of freedom. Thus, the transformation of basis
only has a minor effect on the sparsity pattern.
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To illustrate the change of sparsity of our local, transformed matrices
T (i)T K(i)T (i) using the transformation (3.8), we investigated the increase of
nonzero entries in T (i)T K(i)T (i) compared to K(i) for the problems in Sec-
tion 3.5 (Tables 3.5 and 3.6). We found an increase between 4 and 12 percent
of nonzero entries compared to the original local matrices K(i).

In our FETI-DP algorithm we always assume that we have performed an
appropriate change of basis. If there is no danger of confusion we will drop
the overline notation which indicates the dual displacement variables in the
transformed basis.

Using the transformation of basis, we again obtain




KBB K̃T
ΠB BT

K̃ΠB K̃ΠΠ 0
B 0 0







uB

ũΠ

λ


 =




fB

f̃Π

0


 .

We note that, after the change of basis has been carried out, we can always use
the same implementation as when using vertex constraints; the algorithmic
description in Section 2.2 does not depend on a specific choice of primal and
dual variables. Note that the local problems as well as the Schur complement
S̃ΠΠ remain symmetric positive definite.

3.3.5 Choice of Coarse Problem

From an algebraic point of view, we need to choose sufficiently many con-
straints to make K̃ invertible. For this, we use our edge constraints on primal
faces. If we have six linearly independant edge constraints for a face we call
this a fully primal face [84]. If a face is fully primal, all six rigid body motions
are controlled on this face and the two subdomains sharing this face can only
move as a union. We have seen that using vertices (alone) will not lead to a
good condition number bound, see Section 3.2 and Figure 3.2 (p. 54). This
is the reason why we drop vertices completely from our coarse space, except
for some exotic configurations in heterogeneous elasticity, see Chapter 5.

Hence, let us define the primal face graph GF . An example can be seen
in Figure 3.8.

Definition 3.3.2 (Primal Face Graph) We regard the subdomains as the
nodes v ∈ V in the primal face graph GF = (V, E), and two such nodes are
connected by an edge e ∈ E if the corresponding subdomains have a fully
primal face in common.

Note that by making a face fully primal, as we use edge constraints, neigh-
boring faces are affected as well. This way additional fully primal faces can
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Figure 3.8
Primal face graph G2

F for a cubic domain decomposed into N = 23 cubic
subdomains if all faces are primal.

arise “automatically” from certain configurations of fully primal faces. This
is due to the fact that we assemble every coarse degree of freedom from the
edge averages of at least three subdomains. For the following considerations
we will neglect these fully primal faces that automatically arise.

We then have invertibility of K̃ as soon as GF is a connected graph. The
minimal number of fully primal faces is given for a connected subgraph of GF
with the minimal number of edges e ∈ E. This is the case for any spanning
tree of GF . As we have costs of one on each edge, any spanning tree is a
minimal spanning tree, and all spanning trees have a cost of N − 1.

However, to ensure a good bound on the condition number, we need to
fulfill additional conditions.

Definition 3.3.3 For a subdomain Ωi we call a subdomain Ωj a geometric
neighbor if Ωi∩Ωj 6= ∅. We define the length of the longest path in GF from
a subdomain to a geometric neighbor as path(GF), i.e.

path(GF) := max
Ωi∩Ω6=∅

(lij),

where lij is the length of the shortest path from Ωi to the geometric neigh-
bor Ωj.

In the case of homogeneous linear elasticity the following condition assures
a good bound on the condition number.

Condition 3.3.1 (Path) For all neighbors Ωj of a subdomain Ωi we have a
path of uniformly bounded length L from Ωi to Ωj, i.e.

path(GF) ≤ L.
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In this case we have what Klawonn and Widlund call an acceptable set of
primal constraints [84, Definition 6].

Then, the following condition number estimate for FETI-DP algorithms
using edge averages on selected edges as primal constraints can be deduced
from Klawonn and Widlund [84, Theorem 1].

Theorem 3.3.1 The condition number satisfies

κ(M−1F ) ≤ C (1 + log(H/h))2,

where H denotes the subdomain diameter and h the finite element mesh size.
The positive constant C is independent of h and H.

For homogeneous materials or problems with discontinuities of the mate-
rial coefficients which are not very large, it follows that primal vertices are
not needed to obtain a good condition number bound.

We can easily construct a (minimal) spanning tree where the length of the
path in the sense of Condition (3.3.1) is O(N). To see this, let us consider the
case of a structured decomposition of a cube into N = n3 cubic subdomains.
It is easy to create a path of length n3 − 1 from Ω1 to Ωn3 . For path(GF)
we need to consider paths between geometrically neighboring subdomains,
only. Hence, we consider (n + 1)3 subdomains. From a subdomain Ωi on
the surface of our cubic domain, i.e. Ωi ∩ ∂Ω 6= ∅, we can construct a path
entering an n3 subcube, traversing this, and then returning to a geometric
neighbor of Ωi. We then take care of all remaining subdomains to create a
spanning tree.

Note that we slightly misuse the Laundau notation since two of the sym-
bols to make correct use of the Laundau notation, i.e. Ω and Θ, are already
in use.

1
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4

5
6
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8

Figure 3.9: A (minimal) spanning tree for the graph in Figure 3.8.

Can we construct spanning trees with better bounds on the path length?
Let us assume that we have a spanning tree of GF which satisfies Condi-
tion 3.3.1. As we have a tree, by removing any edge it is separated into two
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connected components. We can find an edge that separates the tree into two
components of similar size O(n3). Let us denote this edge by e, the subdo-
mains which it connects by Ω1 and Ω2, and the components by S1 and S2,
where Ω1 ∈ S1, Ω2 ∈ S2. The best bounds on the size of good separators
for planar graphs [94] give us that components S1 and S2 have an interface
of O(n) subdomain faces. Note that the bound in [94] is an optimal bound.
Also note that for graphs with bounded degree we can construct partitions
with small edge cuts from small separators and vice versa by considering
the nodes adjacent to the edges. For graphs from 3D finite element meshes
we can indeed expect O(n2) subdomain faces, see [101]. If the number of
faces of a subdomain is bounded, we can also find O(n) pairs (Ω1,i , Ω2,i),
where Ω1,i ∈ S1, Ω2,i ∈ S2, and Ω1,i, Ω2,i are geometric neighbors. All paths
connecting such pairs have to use the edge e and are, from our assumption,
bounded in length by a constant L. This means that all such pairs must re-
side near Ω1 and Ω2, i.e. they must reside in a sphere of radius O(L) around
Ω1 and Ω2. We can use, e.g., the Manhattan distance to define this sphere.
If we assume quasi-uniformity of the subdomains then there is not enough
room to fit O(n) subdomains into this sphere.

In fact, assuming the more pessimistic bound of O(n2) pairs, we can
deduce a lower bound from comparing the number of subdomains with the
volume of the sphere which is O(n2/3) = O(N2/9) for the length of the path.
This means that we cannot fulfill Condition 3.3.1 without introducing cycles
into GF . In fact, for any such decomposition of GF into two equilibrated
subgraphs, we must require that O(n2) edges are cut if we want to guarantee
a constant path length. Here we have assumed the more pessimistic bound
for 3D graphs.

From these considerations, we are can now use local heuristics that may
induce cycles, e.g., one can calculate small spanning trees in neighborhoods
with a fixed diameter. This can be implemented as a linear time algorithm,
and a maximum path length can be guaranteed. Note that for a given graph
we can verify Condition 3.3.1 by an all pair shortest path (apsp) algorithm.

We have seen that the choice of N − 1 fully primal faces is not sufficient.
On the other hand, our Condition 3.3.1 is clearly satisfied if all faces are
made primal, i.e. if L = 1. In the structured case, see Table 3.2 (p. 61), this
corresponds to 3N fully primal faces.

In our experience, the condition number can deteriorate substantially
with the length of the path, even if it is bounded by a constant. From the
proof in Chapter 2 for scalar problems, it becomes clear that increasing the
path will increase the condition number bound accordingly. Let us assume
that all subdomains contribute the same value to the estimate and that the
bound is 2C for a path length of one. Then increasing the path length by
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Figure 3.10: Algorithm DE only uses edge averages.

Figure 3.11
Edge nodes (small cubes) are shown for a decomposition of the unit cube
decomposed into cubic subdomains, cf. Figure 3.10. Nodes with the same
color belong to the same edge. The subdomains are invisible, ∂Ω is seen in
the background from the interior.

one will change the bound from 2C to 3C. For our computations we will
therefore prefer the coarse space where all faces are fully primal, i.e. the path
length L is one. The situation can be different in the heterogeneous setting
as we see in the experiments in Section 5.3.
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Figure 3.12
Algorithm DE: Initial solution before the start of the conjugate gradient
iterations. We have continuity of edge averages at all edges given by Defini-
tion 3.3.1 using Nx. The number of edges corresponds to the left image in
Figure 3.16 (p. 80).

3.3.6 Algorithm DE

In order to define all faces as fully primal we can use the edge averages on all
edges defined by Definition 3.3.1. In some special cases it may be necessary to
introduce additional constraints by splitting an edge into two or several edges.
We thus introduce a new notation and denote the FETI-DP algorithm using
edge averages on all edges, and using these as the only primal constraints,
by Algorithm DE. We note again that, algorithmically, the edge average
(Algorithm DE) constraints can be treated, by using the transformation of
basis, in the same way as the vertex constraints (Algorithm A).

We note that in Chapter 5 a variant of Algorithm DE is considered where
additionally first order moments on selected edges and possibly selected pri-
mal vertices are used, see also Klawonn and Rheinbach [77]. In this case, a
condition number estimate is shown which is also independent of discontinu-
ities of the material coefficients across the interface [84].

In Section 3.2, we discussed the need for a coarse space appropriate for
3D problems. In Table 3.3 (p. 72) and Figure 3.13 (p. 71) we now compare
the condition number for Algorithm DE with the values given in Table 3.1
(p. 55) for Algorithm A. Clearly, Algorithm DE shows the desired asymptotic
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Figure 3.13
Graphs from Figure 3.2 (p. 54), now including Algorithm DE. Condition
number of the FETI-DP operator for linear elasticity plotted versus H/h.
Left: 3D using vertex constraints (upper curve), 2D using vertex constraints
(middle curve), 3D using edge averages, i.e. Algorithm DE (lower curve).
Right: Semilogarithmic plot of

√
κ versus H/h for 2D using vertex constraints

(upper) and for 3D using edge averages, i.e. Algorithm DE (lower).

behavior and the condition number even stays below the values obtained for
Algorithm A in 2D.

3.3.7 Algorithm DF

Although this case is not addressed in the theory in [76] the rigid body modes
of a face can also be controlled by introducing three average constraints and
three first order moment constraints on each face. In this case no vertex con-
straints and no edge constraints are introduced. This algorithm also shows
scalability with respect to the number of subdomains, see Table 3.4 (p. 72)
but the coarse problem is larger, see Table 3.2 (p. 61). We enforce three
average constraints per edge in Algorithm DE but we have six constraints
per face in Algorithm DF . A similar condition number bound as in The-
orem 2.4.2 can be proven for Algorithm DF by analogous techniques as in
[84]; see also Kim [71] for a theoretical treatment of a similar algorithm in
the case of mortar element discretizations.

3.3.8 Optional Lagrange Multipliers

There is a different and earlier approach to implement average constraints
which has proven very successful in computational practice. It uses optional
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2D (Alg. A) 3D (Alg. A) 3D (Alg. DE)
H/h It. λmax λmin It. λmax λmin It. λmax λmin

4 18 9.70 1.02 31 10.51 1.02 21 4.99 1.02
6 19 11.15 1.03 43 20.36 1.02 24 6.48 1.01
8 20 12.24 1.04 53 32.01 1.02 27 7.79 1.01
10 21 13.11 1.03 61 44.92 1.02 29 8.97 1.01
12 21 13.84 1.03 70 58.81 1.02 30 10.01 1.01
14 22 14.47 1.02 78 73.47 1.02 32 11.02 1.01
16 22 15.02 1.02 86 88.80 1.02 33 11.83 1.01
18 22 15.52 1.02 93 104.71 1.02 35 12.77 1.01
20 23 15.97 1.02 99 121.10 1.02 36 13.55 1.01
22 23 16.38 1.02 104 137.94 1.02 37 14.28 1.01
24 23 16.75 1.02 109 155.19 1.02 38 14.96 1.01

Table 3.3
Numbers from Table 3.1, p. 3.1, now including Algorithm DE. Eigenvalues
and iteration counts for FETI-DP using vertex constraints (Algorithm A)
for linear elasticity in 2D and 3D, and using edge constraints in 3D (Al-
gorithm DE), 64 subdomains. The stopping criterion is a relative residual
reduction of 10−10.

Algorithm DF

N 8 27 64 125 216 343 512 729 1000
It. 16 19 20 21 21 21 21 21 21
κ 3.52 3.76 3.88 3.93 3.96 3.97 3.98 3.99 3.99

Table 3.4
Condition number for Algorithm DF , 3D linear elasticity, H/h = 5.

Lagrange multipliers which form a part of the global coarse problem, cf.
Farhat, Lesoinne and Pierson [41].

In [41], additional, optional constraints of the form

QBuB = 0

and Lagrange multipliers µ were introduced to enforce continuity of certain
averages of FETI-DP iterates. The FETI-DP master system then takes the
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form 


KBB K̃T
ΠB QT

B BT
B

K̃T
ΠB K̃ΠΠ 0 0

QB 0 0 0
BB 0 0 0







uB

ũΠ

µ
λ


 =




fB

f̃Π

0
0


 . (3.10)

This system is solved iteratively after eliminating uB and [ũT
Π, µT ]T . The

FETI-DP system then is
Fλ = d,

where

F := −BBK−1
BBBT

B +

[
−K̃ΠBK−1

BBBT
B

−QT
BK−1

BBBT
B

]T

(S̃∗ΠΠ)−1

[
−K̃ΠBK−1

BBBT
B

−QT
BK−1

BBBT
B

]
, (3.11)

S̃∗ΠΠ :=

[
S̃ΠΠ −K̃ΠBK−1

BBQT
B

−QBK−1
BBK̃T

ΠB −QBK−1
BBQT

B

]
.

The Lagrange multipliers are optional in the sense that they are a linear
combination of the continuity constraints BBuB = 0, i.e. the condition

QBuB = qT BBuB = 0

is enforced in every iteration. Nevertheless, the invertibility of K̃ still has to
be guaranteed by using vertex constraints. They are necessary because the
elimination of [uT

B, ũT
Π]T is done in a first step even though, in principle, the

upper 3× 3 block may be invertible.
This approach, using average constraints different from the ones used in

this work, see Section 3.3.3, has been used very successfully in 3D structural
mechanics simulations [41] and for large scale parallel computations [14]. It
is routinely in use, e.g., in an implicit structural dynamics code [110], see
Pierson et al. [109].

Here, the matrix S̃∗ΠΠ is not symmetric positive definite anymore. The
coarse problem can still be solved in two steps using Cholesky decomposi-
tions.

In an earlier FETI-DP implementation [78] we have also used this ap-
proach to implement optional edge constraints, where edges are meant in the
sense of Section 3.3.3, Definition 3.3.1. In this case, the edges are in addition
to vertex constraints, which are still needed here, and without a transforma-
tion of basis. Moreover, for the edges we have to use several (multiplicity of
the edge minus one) optional Lagrange multipliers where we have only one
coarse degree of freedom in the transformation of basis approach.
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A problem that we have observed, when using optional Lagrange multi-
pliers, is instability when solutions of high accuracy have to be computed.
This occurred in some cases of ill conditioned problems even if they were well
conditioned after preconditioning.

In Figure 3.14 we depict the convergence history of a two dimensional
almost incompressible elasticity problem, cf. Section 6, where we chose the
Poisson ratio ν = 0.4999. The FETI-DP algorithm using only vertex con-
straints (Alg. A) reaches higher accuracy. It converges slowly but remains
stable until stagnation. In a next step, we introduce optional Lagrange mul-
tipliers, in addition to our vertex constraints, to speed up the algorithm. We
observe faster convergence in the beginning but as a higher accuracy is ap-
proached, the convergence of the CG method becomes unstable. The reason
for this is a very small artificial eigenvalue of the order of 10−12, which spoils
the condition number and the convergence of the CG method. Note that
we have used the same FETI-DP implementation, except for the optional
Lagrange multipliers, and thus also the same implementation of conjugate
gradients. The small artifical eigenvalue can be explained as follows.

Let us define Q := [QB; 0]. In the algorithm, we can formally split the
elimination of uB and µ into two steps. The Schur complement

[
−QK̃−1QT −QK̃−1BT

−BK̃−1QT −BK̃−1BT

]
= −

[
qT

I

]
BK̃−1BT

[
q I

]
, (3.12)

has a large null space since we have incorporated redundant constraints. The
upper left block QK̃−1QT is regular. From roundoff error in the elimination
of the upper left block, very small nonzero eigenvalues can appear. This
corresponds to (3.10) becoming inadmissible.

When using a transformation of basis we have not observed this kind of
instability, see Chapter 6 and Figure 3.22.

Since vertex constraints are still needed when the FETI-DP coarse space
is augmented using optional Lagrange multipliers, there is an interest to
reduce the number of the vertices. An algorithm for the choice of vertices
was introduced in Lesoinne [88]. The idea is to choose a comparably small

number of vertices to guarantee invertibility of K̃ and otherwise enhance the
coarse problem by averages using optional Lagrange multipliers.

3.4 Parallel Implementation

In scientific computing, the performance penalty of object oriented languages
is still an issue when implementing low level functions. In these cases Fortran



3.4. PARALLEL IMPLEMENTATION 75

0 10 20 30 40 50 60 70 80 90
−12

−10

−8

−6

−4

−2

0

Figure 3.14
Convergence history of the relative true dual residuals. The algorithm using
only vertex constraints stagnates at a lower level and remains stable although
converging slower. The method using optional Lagrange multipliers in addi-
tion to the vertex constraints converges faster at first but then it becomes
unstable. We use the same implementation of CG in both cases.

(lapack and blas) or even assembly language (libgoto by Kazushige Goto) are
still preferred. Yet, the classic blas and lapack libraries are prime examples
for successful abstract interfaces. Today, object oriented languages are rou-
tinely in use at the abstract level of algorithm formulation.

We have implemented a parallel FETI-DP algorithm in C/C++ using edge
constraints as described in Section 3.3.3 and a transformation of basis as de-
scribed in Section 3.3.1 and 3.3.4. We have made heavy use of external
libraries to provide underlying functionality. We always used optimized li-
braries for our specific hardware whenever available, see below.

3.4.1 Distributed Computing and Message Passing

The primary target architecture for domain decomposition methods and even
more so for Schur complement methods are parallel distributed memory ma-
chines. Distributed memory computers consist of more or less independent
computers (nodes) which are connected by one or several fast networks. On
each node a program is executed which performs calculations on local data
and exchanges information with other nodes over the network. Despite the
use of high speed networks the communication is slower by orders of magni-
tude in bandwidth as well as in latency compared to the access to the local
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memory of the node.
Although domain decomposition algorithms also perform well on serial

machines or computing cluster of modest size they belong to the class of al-
gorithms that particularly excel on massively parallel machines. The amount
of communication in domain decomposition algorithms often grows only as
fast as the surface of the subdomains, except for the communication re-
lated to the small coarse problem, and most of the communications is of the
nearest-neighbor type as opposed to all-to-all communication. Moreover, the
cost of investing considerable effort in subdomain local solves, e.g. by the
use of a direct sparse solvers in Schur complement methods, is amortized if
communication is reduced.

Today’s standard for interprocessor communication on distributed mem-
ory machines is the Message Passing Interface (MPI), see, e.g., [63]; a popular
implementation, which we also use on our own Opteron computing cluster,
is MPICH [59, 62, 60] by the Argonne National Laboratory. Often vendors
supply their own optimized implementation of MPI with their machine. MPI
performs equally well on shared memory computers making MPI applications
portable to a wide variety of architectures. Our FETI-DP implementation
uses MPI for parallelization but can also efficiently be used on a single pro-
cessor system.

3.4.2 Graph Partitioning

Domain decomposition methods rely on graph partitioners to create the de-
composition of the computational domain into subdomains. Generally, the
dual graph is partitioned, i.e. the graph defined by the face-to-face connec-
tions of finite elements. This is opposed to direct methods, which rely on
the sparsity pattern of the sparse matrix. The latter case corresponds to the
partitioning of the primal graph.

Unfortunately, graph partitioning is an NP complete problem. Until re-
cently, no polynomial time approximation algorithm was known even for the
Minimum Bisection Problem, i.e. the task to partition a graph into two equi-
librated parts while cutting the minimal number of edges. However, many
heuristics have been developed, implemented, and successfully applied to
a large variety of problems. Examples for graph partitioning software are
Metis [69], ParMetis [70], and Chaco [65]. Graph partitioning can be based
on very different approaches, e.g. ParMetis uses multilevel k-way partition-
ing with Kernighan-Lin refinement. It is based on the observation that a
good partitioning for a fine graph can be found by calculating a good par-
titioning for a coarser graph. On the other hand, Chaco provides spectral
partitioning schemes, which are based on a connection of good partitionings
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with the low eigenvalues of a certain matrix related to the graph. Chaco also
provides a multilevel method where only the smallest graph is partitioned by
the spectral method.

Note that the objective functions minimized in graph partitioning are
not completely congruent with the goals in domain decomposition. We are
interested in equilibrating the computational work among the processors as
well as equilibrating the communication, and we are interested in a mini-
mal total interface in order to minimize the total communication. However,
depending on the computational domain and the discretization, the compu-
tational work may not always directly correspond to the number of nodes.
But even more importantly, for iterative methods we are interested in shape
regularity of the subdomains since subdomains with bad aspect ratios will
lead to higher condition numbers and thus more iterations. This objective is
not explicitly addressed when using standard graph partitioning. Still, the
computational practice shows that graph partitioners generally provide good
domain decompositions also in respect to subdomain aspect ratios.

For our computations, we have used both, Chaco as well as ParMetis.
However, for all examples in this work we used ParMetis to compute the
domain decomposition.

3.4.3 PETSc

The PETSc (Portable Extensible Toolkit for Scientific Computing) package
[9, 8, 10] is a library of data types and routines, accessible through abstract
interfaces, meant to provide the building blocks for portable, parallel applica-
tions in scientific computing. It is written in C but has language bindings to
all major languages. The library PETSc provides efficient implementations
of sequential, as well as parallel, matrix and vector data structures and also
solver objects like Krylov subspace methods. PETSc is our main tool in im-
plementing the parallel FETI-DP algorithm and is developed at the Argonne
National Laboratory. The parallel computations in this work were carried
out using PETSc on top of MPI.

3.4.4 Parallel FETI-DP

The primal sources of concurrency in the FETI-DP method are the parallel
factorizations of the subdomain matrices K

(i)
BB and K

(i)
II in the setup phase

and the corresponding parallel forward-backward substitutions in the itera-
tion phase.

These factorizations are completely independent and do not require any
communication among processors. After the factorizations have been per-
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formed, the coarse matrix S̃ΠΠ = K̃ΠΠ − K̃ΠBK−1
BBK̃T

ΠB must be computed
and assembled. This is done by summing the contributions from all proces-
sors,

S̃ΠΠ = RΠ

(
diagN

i=1

(
K

(i)
ΠΠ −K

(i)
ΠB(K

(i)
BB)−1K

(i)T
ΠB

))
RT

Π,

into a distributed matrix. Depending on the size of the coarse problem, we
can either copy the matrix to all processors as soon as it is assembled and then
factor it on each, or we can use a parallel direct solver on it. In all FETI-DP
experiments in this chapter we have chosen to broadcast the coarse matrix
to all processors and factor it there. This means that the coarse problem is
solved sequentially. This is an efficient choice for coarse problems of small or
medium size. For large coarse problems a parallel exact or inexact solution
of the coarse problem is necessary, see Chapter 4. In the standard FETI-
DP formulation we cannot use an inexact solver. In Chapter 4 we therefore
propose a new, modified algorithm. In the present chapter, for standard
FETI-DP, we can use a sequential or parallel iterative coarse solver, but we
must iterate until machine precision.

We have organized the FETI-DP solver around a FETI-DP matrix class
which stores the distributed system matrix. Similarly, we have a distributed
FETI-DP preconditioner class. Both are derived from abstract matrix and
preconditioner classes and can be used with PETSc’s Krylov subspace meth-
ods, see Figure 3.15. The FETI-DP matrix object can hold several subdo-
mains per processor but subdomains cannot be shared by processors.

Most of the communication takes place in the iteration phase as in every
iteration we require two updates from every subdomain (one for the system
matrix and one for the preconditioner) and one from the coarse problem.
After we have reached the desired accuracy we calculate our solutions u(i)

from the Lagrange multiplier λ.
On the Opteron 64 bit hardware we choose UMFPACK 4.3 [27] as sub-

domain direct solver for the Dirichlet problems as well as for the Neumann
problems and the coarse problem. We also use the AMD Math Core Library
(ACML), which is specifically tuned for the AMD64 architecture. On In-
tel processors, wherever the Intel Fortran 90 compiler is available, we use
MUMPS. On these processors we also use the Intel Math Kernel Library
(MKL).

3.5 Numerical Results

We apply our implementation of FETI-DP using a change of basis to dif-
ferent problems. First, we consider the standard benchmark problem of an
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elastic cube divided into smaller regular cubes as subdomains. As a second
example we consider three different mechanical parts from an industrial ap-
plication, and finally, we apply our algorithm to a cancellous bone geometry,
see Sections 3.5.1, 3.5.2, and 3.5.3. The domains considered in the second
and third subsections are decomposed in irregularly shaped substructures by
using ParMetis [70]. In all problems, we use linear tetrahedral finite elements
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Preconditioner
+Apply()

FETI-DP Preconditioner
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*
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Figure 3.15: The design of the solver.
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Figure 3.16
Edges as used in the implementation (Definition 3.3.1). Decomposition of the
unit cube (446 631 d.o.f.). Structured (left) versus irregular (right, domain
decomposition by ParMetis).

and, for simplicity, a Young’s modulus of E = 210 and a Poisson’s ratio of
ν = 0.29 throughout. In all of our experiments we use Algorithm DE, i.e. our
choice of primal constraints is given by edge averages on all edges, without
any primal vertices. Here, we always constrain all three averages on a primal
edge. In all of our computations, we make all edges primal that we obtain
from Definition 3.3.1; additionally, in Sections 3.5.2 and 3.5.3, we add some
edges obtained by Definition 3.3.1 using NC

x .

All computations of Sections 3.5.1 and 3.5.2 were carried out on Jazz,
a 350 node computing cluster operated by the Mathematics and Computer
Science Division at Argonne National Laboratory, USA. The cluster consists
of 2.4 GHz Intel Xeon processors with 1 or 2 GB of memory each and uses a
Myrinet connection. The numerical results given in Table 3.17, Figure 3.22
and in Section 3.5.3 have been carried out on a 16 processor Linux computing
cluster in Essen with eight dual 2.2 GHz AMD Opteron nodes and 4 GB of
memory for each processor. This cluster uses a Gigabit Ethernet connection.

3.5.1 Model Problem

In this section, as a benchmark model problem, we consider a homogeneous,
isotropic, linearly elastic cube, which is clamped at one side, while all other
parts of the boundary have homogeneous natural boundary conditions. A
volume force is applied, which defines the right hand side.

In order to analyze the numerical and parallel scalability of our FETI-DP
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algorithm we report on two different series of experiments. In our first set
of runs we keep the dimension of the local problems, and H/h, fixed and
increase the number N of subdomains and thus the overall problem size;
see Tables 3.5 and 3.6. In a second series of experiments we keep a fixed
number N of subdomains and increase the size of the local problems, and
H/h, resulting in a smaller h and thus a larger overall problem size. The
results of these experiments are given in Table 3.7 and Figure 3.17. In all
sets of experiments we use as a stopping criterion the relative reduction of
the preconditioned dual residual by 10−7.

In the numerical results obtained for a fixed subdomain size, reported in
Tables 3.5 and 3.6, the cube is partitioned into smaller cubes with H/h = 14,
which results in 8 232 degrees of freedom for each subdomain. In Tables 3.5
and 3.6 we denote the degrees of freedom of the original, assembled problem
by “D.o.f.” and those of the coarse problem by “Coarse”. We first present
results using the sparse direct solver built into PETSc [9, 8, 10] for solving
the coarse problem and the local problems; see Table 3.5.

Proc. N 1/h D.o.f. Coarse λmin λmax It. Time

1 8 27 59 049 18 1.03 12.94 18 137s

8 64 53 446 631 324 1.03 10.45 23 171s

27 216 79 1 479 117 1 350 1.04 10.32 23 188s

64 512 105 3 472 875 3 528 1.04 10.31 23 192s

125 1 000 131 6 744 273 7 290 1.04 10.30 23 226s

Table 3.5
Results for a cube divided into smaller cubes with a fixed subdomain size of
8 232 d.o.f. using PETSc as the subdomain and coarse sparse direct solver.

Next, we present a set of experiments using the sparse direct solver pack-
age MUMPS 4.3.2 [5] together with the optimized BLAS libraries for the
Xeon architecture to solve the coarse problem and the local problems; see
Table 3.6. Both set of experiments show that our FETI-DP algorithm using
only edge averages as the primal constraints yields a numerical and parallel
scalable domain decomposition method. As a further result of this compari-
son, we see that using MUMPS as a direct solver accelerates our method by
almost a factor of three in terms of CPU time.

The numerical results for a fixed number of subdomains with increasing
size are obtained for the unit cube divided into N = 4 × 4 × 4 = 64 subdo-
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Figure 3.17
Growth of number of iterations (left) and λmax (right) of Algorithm DE for
the unit cube with variable H/h and 4× 4× 4 subdomains.
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Proc. N 1/h D.o.f. Coarse λmin λmax It. Time

4 64 53 446 631 324 1.03 10.45 23 60.3s

32 512 105 3 472 875 3 528 1.04 10.31 23 69.2s

108 1 728 157 11 609 679 13 068 1.04 10.30 23 78.8s

Table 3.6
Results for a cube divided into smaller cubes with a fixed subdomain size of
8 232 d.o.f. using MUMPS as the subdomain and coarse sparse direct solver.

D.o.f. H/h It. λmin λmax

6 591 4 14 1.03 4.11
27 783 6 17 1.03 5.70
73 167 8 18 1.03 7.10

273 375 12 22 1.03 9.45
680 943 16 24 1.03 11.36

1 369 599 20 25 1.04 12.97
2 413 071 24 26 1.04 14.35

Table 3.7
Results for 4 × 4 × 4 subdomains of increasing size. The iteration count is
given for a relative reduction of the preconditioned dual residual by 10−7.

mains. We keep H = 1/4 fixed and vary H/h between 4 and 24. Algorithm

DE has a coarse problem size of dim(S̃ΠΠ) = 324. The growth of the num-
ber of iterations and of the largest eigenvalue of Algorithms DE is shown in
Figure 3.17.

All of the numerical results in this subsection confirm the theoretical
condition number estimate given in Theorem 3.3.1 and show the good per-
formance of Algorithm DE.

3.5.2 Industrial Applications

In this section, we apply our FETI-DP algorithm to three different industrial
finite element problems, denoted by mechanical parts A, B, and C. Here, we
have to use irregular decompositions using a graph partitioner. We therefore
have irregular edges, see Figure 3.16 (p. 80).

The direct subdomain factorizations as well as the coarse problem fac-
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Proc. 2 4 8 16

FETI-DP DE/MUMPS 62s 33s 20s 11s
MUMPS 47s 27s 26s 19s

Table 3.8
Parallel scalability results for mechanical part A: CPU times for FETI-DP
using MUMPS as the local and coarse sparse direct solver and for MUMPS
applied to the undecomposed problem.

torization are performed, again, by using the sparse direct solver MUMPS
and the optimized BLAS libraries for the Xeon architecture. To compare
the parallel performance of our dual-primal FETI domain decomposition
method Algorithm DE to that of the parallel sparse direct solver provided by
MUMPS, we also provide CPU timings for MUMPS applied to the assembled
and undecomposed problem on the same machine.

The first problem, mechanical part A, cf. Figure 3.18, has been discretized
by 208 536 linear tetrahedral finite elements yielding a global number of
187 539 d.o.f. In the reported experiments the mechanical part A is par-
titioned into N = 16 subdomains using ParMetis. The FETI-DP algorithm
using only edge averages as primal constraints needed 29 iterations for a
relative reduction of the preconditioned dual residual by 10−7. The size of
the coarse problem is 393 d.o.f. The smallest and largest eigenvalues are
λmin = 1.02 and λmax = 19.63, respectively. The parallel scalability results
on 2 to 16 processors are given in Table 3.8.

The second problem in this subsection, mechanical part B, cf. Figure 3.19,
is discretized by 581 394 linear tetrahedral finite elements resulting in a global
number of 380 709 d.o.f. It is partitioned into N = 64 subdomains using
ParMetis. In all of the experiments reported in Table 3.9 our FETI-DP
algorithm using only edge averages as primal constraints needed 29 iterations
for a relative reduction of the preconditioned dual residual by 10−7. The size
of the coarse problem is 1 020 d.o.f. The smallest and largest eigenvalues are
λmin = 1.03 and λmax = 33.85, respectively. The parallel scalability results
on 4 to 64 processors are given in Table 3.9.

The third problem in this subsection, mechanical part C, cf. Figure 3.20,
is discretized by 1 291 933 linear tetrahedral finite elements yielding a global
number of 841 836 d.o.f. It is partitioned into N = 64 subdomains using
ParMetis. In all of the experiments reported in Table 3.10 the number of
iterations is 32 for a relative reduction of the preconditioned dual residual by



3.5. NUMERICAL RESULTS 85

Figure 3.18
Mechanical part A; courtesy of GETRAG FORD Transmissions GmbH,
Cologne, Germany.
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Proc. 4 8 16 32 64

FETI-DP DE/MUMPS 60s 33s 18s 11s 6s
MUMPS 113s 156s 103s 86s 90s

Table 3.9
Parallel scalability results for mechanical part B: CPU times for FETI-DP
using MUMPS as the local and coarse sparse direct solver and for MUMPS
applied to the undecomposed problem.

10−7. The size of the coarse problem is 957 d.o.f. The smallest and largest
eigenvalues are λmin = 1.03 and λmax = 27.77, respectively. The parallel
scalability results on 16 to 64 processors are given in Table 3.10.

Proc. 16 32 64

FETI-DP DE/MUMPS 49s 26s 17s
MUMPS failed 1177s 889s

Table 3.10
Parallel scalability results for mechanical part C: CPU times for FETI-DP
with 64 subdomains using MUMPS as the local and coarse sparse direct
solver and for MUMPS applied to the undecomposed problem.

Figure 3.19
Mechanical part B; courtesy of GETRAG FORD Transmissions GmbH,
Cologne, Germany.
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In Table 3.11 we also report results for mechanical part C decomposed into
512 subdomains. In these experiments, the largest eigenvalue is λmax = 21.36
and the smallest eigenvalue λmin = 1.03. The coarse problem size was chosen
as 7 500 d.o.f. The number of iterations is 32 for a relative reduction of the
preconditioned dual residual of 10−7.

Proc. 8 16 32 64

Time 58s 29s 15.4s 9.3s

Table 3.11
Parallel scalability results for mechanical part C: CPU times for FETI-DP
with 512 subdomains using MUMPS as the local and coarse sparse direct
solver.

From our numerical experiments we see that the FETI-DP algorithm us-
ing only edge averages as primal constraints yields a parallel scalable domain
decomposition method also for problems from industrial applications using
irregularly shaped substructures. The FETI-DP algorithm is, in terms of
CPU time, always faster than the sparse direct solver applied to the unde-
composed problem, except for the smallest problem, mechanical part A, and
there only for 2 and 4 processors.

Figure 3.20
Mechanical part C; courtesy of GETRAG FORD Transmissions GmbH,
Cologne, Germany.
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3.5.3 Cancellous Bone

In this subsection, we present results of our FETI-DP algorithm applied to a
linearly elastic domain from a cancellous bone geometry. We show that our
method is robust also for complicated geometries with many holes and thin
structures as they usually appear in cancellous/trabecular bone. For simplic-
ity, we only consider isotropic linear elasticity. For a full study of cancellous
bone, we should use linearly elastic orthotropic or even nonlinear material
models; this will be considered in forthcoming work. The bone geometry is
discretized by 907 609 linear tetrahedral finite elements resulting in a global
number of 620 730 d.o.f. The mesh is obtained using a marching cubes algo-
rithm to generate a surface mesh and Netgen [116] to produce a volume mesh
from it. It is partitioned into N = 96 subdomains using ParMetis. In all of
our experiments reported in Table 3.12, the number of iterations is 51 for a
relative reduction of the preconditioned dual residual by 10−10. The size of
the coarse problem is 1 602 d.o.f. The smallest and largest eigenvalues are
λmin = 1.02 and λmax = 43.57, respectively. The parallel scalability results
on 1 to 16 processors are given in Table 3.12. As sparse direct solvers for the
coarse and the local problems, we use UMFPACK 4.3 [27].

In Figure 3.22 we show the convergence history for the cancellous bone
geometry as well as for mechanical part A, mechanical part B, and for the
cube benchmark problem with H/h = 14 and h = 1/105. We compute
the true relative residual ‖Fλn − d‖2/‖Fλ0 − d‖2 explicitly in each step, see
Figure 3.22. Let us note that the true residual is only used in the experiments
for the results shown in Figure 3.22. Here, we use the true residual for the
computation of the results to avoid possible inaccuracies in the recursive
computation used in the conjugate gradient algorithm when the residual is
approaching machine precision. In all cases the algorithm is able to reduce
the true residual by fourteen orders of magnitude.

Proc. 1 2 4 8 16

Time 524s 312s 170s 90s 46s

Table 3.12: Parallel scalability of FETI-DP for cancellous bone geometry.
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Figure 3.21
Cancellous bone. Upper left: Cross section of X-ray Computer Tomogra-
phy. Upper right: Finite element discretization with 907 609 tetrahedra and
620 730 d.o.f. Lower left and right: Different views of a decomposition of the
bone into subdomains by ParMetis.
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Figure 3.22
History of relative residual reductions of the true residual. From left to
right: Cube benchmark problem (1053), mechanical part A, mechanical part
B, cancellous bone geometry.
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Figure 3.23
The design of the problem module (partial view, function parameters given
where considered helpful).
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Chapter 4

Inexact FETI-DP Methods

FETI-DP methods obtain their numerical and parallel scalability from the
use of a coarse problem which is very small compared to the overall problem:
The algorithms defined in Chapter 3 lead to a coarse problem of the order
of one tenth of a percent of the total problem size. The coarse problem is
traditionally solved exactly by the use of a direct solver. Nevertheless, if a
very large number of subdomains is used or if the problem requires the use
of a very large coarse space, solving the coarse problem directly may not be
feasible anymore.

Here, we present a family of methods, based on different versions of the
FETI-DP saddle point formulation, which allow for the use of inexact solvers
for the FETI-DP coarse problem. In one variant, which iterates on the com-
plete saddle point system, it is also possible to solve the local Neumann prob-
lems inexactly; see also Klawonn and Widlund [81] for a related approach for
the classical, onelevel FETI method. We note that in the approach in [81],
the coarse problem has to be solved exactly. The resulting preconditioned
systems in this work are based on appropriate block triangular precondition-
ers and can either be solved by GMRES or by any other Krylov space method
suitable for nonsymmetric linear systems, e.g. BiCGSTAB or QMR. We also
discuss a positive definite reformulation which can be solved by the method
of conjugate gradients. This approach dates back to work on preconditioners
for saddle point problems by Bramble and Pasciak [17]; see also Klawonn [73]
and Dohrmann and Lehoucq [32]. The inexact solution of the local Dirich-
let problems is always possible with FETI methods, e.g. by the use of the
nonoptimal, lumped preconditioner. Let us note that the algorithms pre-
sented here also allow for optimal, inexact Dirichlet subdomain solvers. The
presentation in this chapter is based on Klawonn and Rheinbach [75].

An approach to solve the BDDC coarse problem inexactly has successfully
been suggested and analyzed by Tu [138, 139]. Such an approach is more

93
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straightforward for BDDC methods, since the coarse problem is built into
the preconditioner and not into the system matrix. For very recent work on
approximate subdomain solvers for BDDC methods, see Li and Widlund [91].
In Gosselet [56] an interesting hybrid domain decomposition method is con-
sidered and applied to multifield problems which iterates on a linear system
consisting of primal and dual variables at the same time.

In this chapter, we again consider the system of linear elasticity as a model
problem. We note that other elliptic partial differential equations could be
treated as well using the methods provided here.

4.1 FETI-DP Saddle Point Formulation

Let us consider the FETI-DP master system
[

K̃ BT

B 0

] [
u
λ

]
=

[
f̃
0

]
, u ∈ Rn, λ ∈ Rm, (4.1)

where

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
=




K
(1)
BB K̃

(1)
BΠ

. . .
...

K
(N)
BB K̃

(N)
BΠ

K̃
(1)
ΠB · · · K̃

(N)
ΠB K̃ΠΠ


 ,

and

f̃ =

[
fB

f̃Π

]
=




f
(1)
B
...

f
(N)
B

f̃Π


 ,

see Chapter 2, from which the solution of the original finite element problem
(2.1) can be obtained by joining the solution u in the interface variables u

(i)
∆ .

We introduce the notation

Ax = F ,

where

A :=

[
K̃ BT

B 0

]
, x :=

[
u
λ

]
, F :=

[
f̃
0

]
.

Let us write (4.1) in the form



KBB K̃T
ΠB BT

B

K̃ΠB K̃ΠΠ 0
BB 0 0







uB

ũΠ

λ


 =




fB

f̃Π

0


 . (4.2)



4.2. EXACT AND INEXACT FETI-DP METHODS 95

Eliminating uB by one step of block Gaussian elimination, we obtain the
reduced system
[

S̃ΠΠ −K̃ΠBK−1
BBBT

B

−BBK−1
BBK̃T

ΠB −BBK−1
BBBT

B

][
ũΠ

λ

]
=

[
f̃Π − K̃ΠBK−1

BBfB

−BBK−1
BBfB

]
, (4.3)

where S̃ΠΠ = K̃ΠΠ − K̃ΠBK−1
BBK̃T

ΠB . Here, we will also use the notation

Arxr = Fr,

where

Ar =

[
S̃ΠΠ −K̃ΠBK−1

BBBT
B

−BBK−1
BBK̃T

ΠB −BBK−1
BBBT

B

]
, xr :=

[
ũΠ

λ

]
,

and

Fr :=

[
f̃Π − K̃ΠBK−1

BBfB

−BBK−1
BBfB

]
.

By also eliminating the primal variables ũΠ, we obtain the reduced system

Fλ = d, (4.4)

where

F := BBK−1
BBBT

B + BBK−1
BBK̃T

ΠBS̃−1
ΠΠK̃ΠBK−1

BBBT
B = BK̃−1BT ,

d := BBK−1
BBfB + BBK−1

BBK̃T
ΠBS̃−1

ΠΠ(f̃Π − K̃ΠBK−1
BBfB) = BK̃−1f̃ .

The linear system (4.4) is the standard, exact FETI-DP system, see Chap-
ter 2, which is solved using Preconditioned Conjugate Gradients and an ap-
propriate preconditioner M−1.

As usual, we will use a transformation of basis to enforce edge averages
as primal constraints, in 2D as well as in 3D. In our experiments, in two
dimensions, we will use continuity at all vertices and continuity of all edge
averages in order to create a larger coarse problem. This version will be
denoted Algorithm B, see [86] where an analogous notation was introduced
for three dimensions. In three dimensions, we will use Algorithm DE, see
Chapter 3.

4.2 Exact and Inexact FETI-DP Methods

In the standard, exact FETI-DP methods two different preconditioners are
commonly used, the theoretically almost optimal Dirichlet preconditioner
MFETID and the lumped preconditioner MFETIL , see (2.4) and (2.5).
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The original or standard, exact FETI-DP method, see Chapter 2, is the
method of conjugate gradients applied to the symmetric positive definite
system

Fλ = d

with the preconditioners M−1
FETID

or M−1
FETIL

. We note that only for the
Dirichlet preconditioner do we have the polylogarithmic condition number
bounds mentioned before; see also [100, 86, 84]. Here, the term “exact”

refers to the exact solution of the coarse problem given by S̃ΠΠ and the exact
solution of the local Neumann subdomain problems K

(i)
BB. When the (exact)

Dirichlet preconditioner is used, we also have to solve the local Dirichlet
problems K

(i)
II exactly.

Now, we are going to present new, inexact FETI-DP methods by solv-
ing the saddle point problems (4.1), (4.2) and (4.3) iteratively, using block
triangular preconditioners and a suitable Krylov space method.

For the saddle point problems (4.1), (4.2) and (4.3), we introduce the

block triangular preconditioners B̂L and B̂r,L, respectively, as

B̂−1
L =

[
K̂−1 0

M−1BK̂−1 −M−1

]
, B̂−1

r,L =

[
Ŝ−1

ΠΠ 0

−M−1BBK−1
BBK̃T

ΠBŜ−1
ΠΠ −M−1

]
,

where K̂−1 and Ŝ−1
ΠΠ are assumed to be spectrally equivalent preconditioners

for K̃ and S̃ΠΠ, respectively, with bounds independent of the discretization
parameters h,H. The matrix block M−1 is assumed to be a good precondi-
tioner for the FETI-DP system matrix F and can be chosen as the Dirichlet or
the lumped preconditioners M−1

D and M−1
L , respectively. We will denote the

corresponding right preconditioners by the subscript R, i.e. we have B̂R = B̂T
L

and B̂r,R = B̂T
r,L.

We note that K̂−1 can also be defined using the following exact factor-
ization of K̃−1, i.e.
[

KBB K̃T
ΠB

K̃ΠB K̃ΠΠ

]−1

=

[
I −K−1

BBK̃T
ΠB

0 I

] [
K−1

BB 0

0 S̃−1
ΠΠ

] [
I 0

−K̃ΠBK−1
BB I

]
.

(4.5)

In this case, K̃ΠBK−1
BB =: KΠB is built explicitly in a preprocessing step

since we need it to form S̃ΠΠ. To obtain a preconditioner K̂−1, we can now
replace K−1

BB and S̃−1
ΠΠ by good preconditioners K̂−1

BB and Ŝ−1
ΠΠ. This yields

the preconditioner

K̂−1 =

[
I −K

T

ΠB

0 I

] [
K̂−1

BB 0

0 Ŝ−1
ΠΠ

][
I 0

−KΠB I

]
. (4.6)
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We note that the application of K̂−1 to a vector only involves one application
of K̂−1

BB and Ŝ−1
ΠΠ each. Such a factorization was also the basis for iterative sub-

structuring methods with inexact Dirichlet solvers, see, e.g., Smith, Bjørstad,
and Gropp [126, Chapter 4.4] or Toselli and Widlund [136, Chapter 4.3] and
the references given therein.

It is also possible to use exact local solvers, i.e. K̂−1
BB = K−1

BB, and to
solve only the coarse problem inexactly. This variant is closely related to
preconditioning the reduced system (4.3) by an appropriate block triangular
preconditioner.

Instead of using the factorization (4.6), a preconditioner can also be ap-

plied directly to K̃, see Section 4.8.4. This results in an algorithm where the
subdomain solves as well as the coarse grid solve are inexact.

Our inexact FETI-DP methods are now given by using a Krylov space
method for nonsymmetric systems, e.g. GMRES, to solve the preconditioned
systems

B̂−1
L Ax = B̂−1

L F
and

B̂−1
r,LArxr = B̂−1

L Fr,

respectively.

Let us note that we can also use a positive definite reformulation of the
two preconditioned systems which allows for the use of conjugate gradients.
For this reformulation, a special inner product and a scaling of the precon-
ditioners K̂ and ŜΠΠ have to be used, see Sections 4.3 and 4.4 for further
details.

4.3 Block Triangular Preconditioners for Sym-

metric Saddle Point Problems

In this section, we review some theoretical results for block triangular pre-
conditioners applied to symmetric saddle point problems. This theory will
then be used in the next section to derive convergence estimates for the full
and the reduced preconditioned system. In general, using block triangular
preconditioners leads to nonsymmetric preconditioned systems, even when
the original saddle point problem is symmetric. Thus, Krylov space meth-
ods which are well suited for nonsymmetric linear systems have to be chosen,
e.g. GMRES, BiCGSTAB, QMR or variants of these methods. In some cases,
the preconditioned system is symmetric positive definite in a certain inner
product. Then, a conjugate gradient method can be used, see Bramble and
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Pasciak [17]. Let us note that the theory for deriving a priori GMRES con-
vergence bounds for block triangular preconditioners is not complete and still
an area of research. In contrast to conjugate gradient methods, eigenvalue
bounds are in general not sufficient for convergence estimates of GMRES.
Our presentation in this section is based on Klawonn [73].

We consider a mixed linear system of the form

Ax = F , (4.7)

where we have

A =

[
A BT

B −C

]
, x =

[
u
λ

]
, F =

[
f
g

]
.

We assume that A ∈ IRn×n is a symmetric positive definite matrix, C ∈
IRm×m a symmetric positive semidefinite matrix, and B ∈ IRm×n a matrix
with full rank. Furthermore, we define left and right block triangular pre-
conditioners

B̂L =

[
Â 0

B −Ĉ

]
, B̂R =

[
Â BT

0 −Ĉ

]
.

Here, we assume that there exist constants α0, α1 > 0 such that

α0 uT Âu ≤ uT Au ≤ α1 uT Âu ∀u ∈ IRn (4.8)

and constants γ0, γ1 > 0 such that

γ0 λT Ĉλ ≤ λT SCλ ≤ γ1 λT Ĉλ ∀λ ∈ IRm, (4.9)

where the Schur complement SC is defined as SC := C + BA−1BT .
In our analysis, we only consider the case of inexact preconditioners Â,

i.e. we exclude the case Â = A. In our application on FETI-DP methods, the
exact case relates to the standard, exact FETI-DP method, and therefore,
we do not have to analyze it here. Nevertheless, an exact solver for A can be
applied with GMRES; see Klawonn [73] and Simoncini [125] for numerical
results and eigenvalue bounds.

To the best of our knowledge, the first GMRES convergence analysis for
block triangular preconditioners applied to symmetric saddle point problems
was given in Klawonn [72, 73], where the following assumption was made for
the preconditioner Â,

1 < α0 ≤ a1, (4.10)

which can be always obtained by an appropriate scaling. We will briefly
review those results using our notation. We first introduce the symmetric
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positive definite matrices H and H̃,

H =

[
A− Â 0

0 Ĉ

]
, H̃ =

[
A 0
0 SC

]
.

From a direct calculation, we obtain the symmetric matrix

HB̂−1
L A =

[
AÂ−1A− A (A− Â)Â−1BT

BÂ−1(A− Â) C + BÂ−1BT

]
.

To apply the theory proven in [73], we note that the equality HB̂−1
L A =

AB̂−1
R H holds; see also [73, Remark 2]. The next lemma is proven in [73,

Lemma 3.3].

Lemma 4.3.1 There exist positive constants C̃0, C̃1 such that

C̃0 xT H̃x ≤ xTHB̂−1
L Ax ≤ C̃1 xT H̃x ∀x ∈ IRn+m,

where C̃0 = min{(α0 − 1), 1}/3 and C̃1 = 3 max{(α1 − 1), 1}.
Using (4.8), (4.9), and (4.10), we obviously have the following spectral

equivalence:

min{ α1

α1 − 1
, γ0} xTHx ≤ xT H̃x ≤ max{ α0

α0 − 1
, γ1} xTHx ∀x ∈ IRn+m.

(4.11)

Combining Lemma 4.3.1 and (4.11), we obtain Lemma 4.3.2, see also [73,
Lemma 3.4].

Lemma 4.3.2 We have

C0 xTHx ≤ xTHB̂−1
L Ax ≤ C1 xTHx ∀x ∈ IRn+m

with positive constants C0 =
(

1
3
min{(α0 − 1), 1}min{ α1

α1−1
, γ0}

)
and

C1 =
(
3 max{(α1 − 1), 1}max{ α0

α0−1
, γ1}

)
.

From this lemma immediately follows that the eigenvalues of B̂−1
L A are

real, positive, and contained in the interval [C0, C1]; cf. also [73, Theorem 3.5].
We can now use the bounds given in Lemma 4.3.2 to provide a convergence
bound for GMRES minimizing the residual in an arbitrary norm equivalent
to the H-norm; see [73, Theorem 3.7] where this result is given for right

preconditioning with B̂−1
R and the H−1-inner product. The result is based on
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the fact that the method of conjugate residuals and GMRES both minimize
the same residual in the norm used, and that for symmetric positive definite
matrices, a convergence bound for the method of conjugate residuals can be
given in terms of the condition number of the preconditioned system; see [73,
Theorem 3.7] for further details.

Theorem 4.3.1 Let Ĥ be a symmetric positive definite matrix such that
C̄0H ≤ Ĥ ≤ C̄1H with positive constants C̄0, C̄1. Then, we have

‖r(k)‖ bH
‖r(0)‖ bH

≤ C̄1

C̄0

2

(√
κ− 1√
κ + 1

)k

,

where r(0) and r(k) are the initial and kth residual of GMRES, respectively,
and κ := κ(B̂−1

L A) ≤ C1

C0
is the condition number of B̂−1

L A in the H-inner
product.

Let us note that for the block triangular preconditioner, to the best of
our knowledge, no complete theory exists for a priori GMRES convergence
bounds in the Euclidean norm. Nevertheless, the Euclidean inner product
is usually used to implement this preconditioning approach with GMRES.
Recently, Simoncini [125] has given an eigenvalue analysis of block triangular
preconditioners with right preconditioning without the scaling assumption
(4.10). The bounds given in [125] also depend on α0, α1, γ0, and γ1.

Since B̂−1
L A is symmetric positive definite in the H-inner product, we can

also apply the method of conjugate gradients using this special inner product;
see Bramble and Pasciak [17] or Dohrmann and Lehoucq [32]. Since this is a
nonstandard implementation of the cg-method, we provide a version of this
algorithm to solve B̂−1

L Ax = B̂−1
L F in Figure 4.1. Here, xstart is our initial

guess. We note that due to this special implementation, no application of Ĉ
or Â is needed. This is important since in our applications, we are usually
only able to apply Ĉ−1 and Â−1 to a vector.

It is well-known that a convergence bound for conjugate gradients can
be given in terms of the square root of the spectral condition number of the
preconditioned system. From Lemma 4.3.2 we immediately obtain an upper
bound for the spectral condition number of B̂−1

L A.

4.4 Analysis of the Preconditioners

In this section, we will apply the general theory for block triangular precon-
ditioners presented in Section 4.3 to our inexact FETI-DP methods given
in Section 4.2. We only have to identify the matrix blocks in our inexact
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z = B̂−1
L · (f −A · xstart)

Hz = HB̂−1
L · (f −A · xstart)

p = z

zHz = 〈z, Hz〉
lzl = ‖z‖

Until ‖z‖/lzl < eps

Ap = A · p
HBAp = HB̂−1

L · Ap
α = zHz/ 〈HBAp, p〉
x = x + α · p
z = z− αB̂−1

L · Ap
Hz = Hz− α · HBAp

zHzo = zHz

zHz = 〈z, Hz〉
β = zHz/zHzo

p = z + β · p

Figure 4.1: Conjugate gradient algorithm in the H-inner product.
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FETI-DP methods with those in the general presentation and provide con-
crete estimates for the constants α0, α1 in (4.8) and γ0, γ1 in (4.9) in order
to obtain our convergence estimates.

4.4.1 Preconditioning the Original System (iFETI-DP)

We first consider the original FETI-DP system (4.1). Here, we have

A =

[
K̃ BT

B 0

]
, B̂−1

L =

[
K̂−1 0

M−1BK̂−1 −M−1

]
.

Hence, we also have

A := K̃, Â := K̂, C := 0, Ĉ := M, SC := F,

and B is the same matrix as in the original FETI-DP method.

We assume that K̂ is a good preconditioner for K̃ with optimal spectral
bounds α0 and α1 which are independent of the discretization parameters h
and H. Good examples for such preconditioners are based on geometric and
algebraic multigrid methods. Let us note that in some of our experiments
incomplete Cholesky decompositions are used although the bounds then will
not be optimal.

The spectral bounds γ0 and γ1 in (4.9) are given by the eigenvalue bounds
of the standard, exact FETI-DP method. There exists a constant C > 0,
independent of h and H such that

λT Mλ ≤ λT Fλ ≤ C (1 + log(H/h))2λT Mλ ∀λ ∈ V,

where V is the space of Lagrange multipliers, see Chapters 2 and 3.

Thus, we have

γ0 := 1, γ1 := C (1 + log(H/h))2.

From these estimates, we see that, asymptotically, for our inexact FETI-DP
method operating on the original system (4.1), we obtain convergence bounds
of the same quality as for the standard, exact FETI-DP methods. This holds
for GMRES as well as for conjugate gradients.
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4.4.2 Preconditioning the Reduced System (irFETI-DP)

We now consider the reduced FETI-DP system (4.3). Therefore, we have

Ar =

[
S̃ΠΠ −K̃ΠBK−1

BBBT
B

−BBK−1
BBK̃T

ΠB −BBK−1
BBBT

B

]
,

B̂−1
r,L =

[
Ŝ−1

ΠΠ 0

−M−1BBK−1
BBK̃T

ΠBŜ−1
ΠΠ −M−1

]
,

and we identify A and B̂L from Section 4.3 with Ar and B̂r,L, respectively.
Hence, we also have

A := S̃ΠΠ, Â := ŜΠΠ, C := BBK−1
BBBT

B, Ĉ := M, B := −BBK−1
BBK̃T

ΠB .

As before, we also assume here that ŜΠΠ is a good preconditioner for S̃ΠΠ

with optimal spectral bounds α0 and α1 which are independent of the dis-
cretization parameters h,H.

For the Schur complement SC we have again

SC = C + BA−1BT = BBK−1
BBBT

B + BBK−1
BBK̃T

ΠBS̃−1
ΠΠK̃ΠBK−1

BBBT
B = F.

Since Ĉ = M , we have

γ0 := 1, γ1 := C (1 + log(H/h))2.

From these estimates we see that asymptotically, we again obtain convergence
bounds of the same quality as for the standard, exact FETI-DP methods and
the inexact FETI-DP methods operating on the original system (4.1). As for
the latter method, these bounds hold for GMRES as well as for conjugate
gradients.

4.5 Performance Considerations

We will use GMRES or CG to solve the systems (4.1) and (2.2) iteratively

using the preconditioners B̂−1
L and B̂−1

r,L, respectively. Often, in engineering
problems, CG with full orthogonalization is used for FETI methods. In these
cases using GMRES comes with no extra cost. Note that in this work, in all
experiments using conjugate gradients, we always applied standard CG with
short recurrence.

We restrict our rough cost estimate to the use of GMRES. The method
for the reduced system (2.2) iterates simultaneously on ũΠ and λ. Since the
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dimension of ũΠ is small, the computational cost spent in the inner products
of the Krylov method is comparable to that of the original, exact FETI-DP
method. In fact, the dimension of [ ũT

Π, λT ]T is smaller than or equal to
the number of Lagrange multipliers in the original (one-level) FETI method
[45, 46]; see, e.g., Klawonn and Widlund [83] or Toselli and Widlund [136].
This is a first indication that the communication cost is also comparable to
that of the original FETI method.

A more careful comparison shows that the communication cost when
applying the system matrix Ar to a vector can be implemented such that
it is essentially the same as when applying F in standard FETI-DP. For Ar

we have, each, one gather and one scatter operation for λ and for uΠ, and an
application of a (parallel) operator to uΠ. Also, the significant computational
cost in applying the system matrix Ar to a vector is the same as in applying
F except for the matrix-vector product with S̃−1

ΠΠ, which is now shifted to the

preconditioner and replaced by Ŝ−1
ΠΠ. Although Ŝ−1

ΠΠ appears in two blocks of
the preconditioner, in the implementation, the product with a vector has to
be carried out only once in each iteration. The same is true for the M -block.

We repeat that in the methods, when using exact subdomain solvers or
when using the factorization (4.6), the matrix-matrix product K−1

BBK̃T
ΠB is

built explicitly in a preprocessing step, as is done generally in standard, exact
FETI-DP.

Surprisingly, communication cost for applying the full matrix A to a
vector is also essentially the same as when applying F . However, the com-
putational effort for the methods simultaneously iterating on displacement
variables u and Lagrange multipliers λ, is higher because of the higher com-
putational cost in the inner products of the Krylov subspace method. The
inner products uT

BvB are perfectly parallel and can be calculated by each pro-

cessor separately but the scalar results of u
(i)T
B v

(i)
B have to be communicated

among the processors.

4.6 Some Technical Remarks

The calculations in Tables 4.1–4.9 were carried out on our 16 processor (8 dual
Opteron 248, 2.2 GHz, 8 GB of memory per node) Linux cluster in Essen.
Some of the calculations were carried out in parallel using MPICH [60, 61, 62]
and PETSc, see Balay et al. [9, 8, 10]. The algebraic multigrid solver SAMG
always ran in parallel, using two threads.

In general, we use a sequential direct solver in our FETI-DP implemen-
tations for the factorization of S̃ΠΠ as well as for the factorizations of the
subdomain problems. In the 64 bit FETI-DP application used here, for this,
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the process calls the direct solver UMFPACK 4.3 [27]. As UMFPACK then
is faster, we use it in 32 bit integer and 32 bit pointer mode. So even though
the application processes are not subject to the 32 bit memory limit, every
single direct solver instance cannot traverse the 32 bit (4 GB) address limit.

4.7 Algebraic Multigrid (AMG)

Multigrid (MG) solvers are iterative subspace correction schemes where the
nested subspaces are generally defined by a hierarchy of grids. Multigrid
methods have provable optimal complexity for discretizations of a multitude
of PDE problems. For an introduction to multigrid algorithms, see, e.g., [137]
and many others. A grid hierarchy may readily be available from iterative
refinement. Still, difficulties in providing a grid hierarchy have lead to the
development of Algebraic Multigrid Methods (AMG), e.g. [112]. In algebraic
multigrid methods, the multilevel hierarchy is built based on information of
the matrix only. Sometimes some additional information is being used as in
[67, 142, 21]. Significant effort has been made to develop parallel scalable
Algebraic Multigrid Solvers, e.g. [66, 1].

4.8 Numerical Results

In this section, we present numerical results for the preconditioners analyzed
in the previous sections. We apply the preconditioners to 2D and 3D linear
elasticity problems. In the tables of this section we denote the iterative
substructuring method using the preconditioner B̂−1

L for the system (4.1)
by inexact FETI-DP or iFETI-DP. The method using the preconditioner
B̂−1

r,L for the system (2.2) iterating on the variables [ ũT
Π, λT ]T is denoted as

the inexact reduced FETI-DP or irFETI-DP. We always state the Krylov
subspace method which is used as an accelerator, either GMRES or CG,
and also which part of the preconditioner is solved inexactly and by which
method. We generally use left preconditioning with GMRES so that we can
use the same implementation for the preconditioner as for CG.

4.8.1 Direct Solvers

We use the modified FETI-DP formulations for structured benchmark prob-
lems in 2D and 3D using exact solvers (Cholesky or LU decomposition) for
the coarse grid problem and the local subdomain problems to verify that the
methods perform well in the best case. We use GMRES with left precon-
ditioning and CG to solve the preconditioned problem. In order to fulfill
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assumption (4.10), we scale the results obtained from the direct solver. For

irFETI-DP and CG, we use Ŝ−1
ΠΠ = 0.9999−2 · S̃−1

ΠΠ. For iFETI-DP and CG,

we use the factorization (4.6) and the scaling Ŝ−1
ΠΠ = 0.99999−2 · S̃−1

ΠΠ and

K̂−1
BB = 0.99999−2 ·K−1

BB .
For the 2D compressible elasticity problems in Table 4.1, we have chosen

a larger coarse problem than necessary for scalability. It is well known that
vertex constraints are sufficient for this case to ensure numerical scalability,
see also Chapter 2.

We see from Table 4.1 that the algorithms perform as expected and con-
verge independently of the number of subdomains. The iteration count and
the estimated eigenvalues are almost identical to the numbers which we get
from the original FETI-DP method.

Throughout this work eigenvalue estimates are obtained from the Lanczos
process in the conjugate gradient method. Here, for the comparison of the
different FETI-DP methods we note that the accuracy of these estimates is
much lower than the number of given digits suggests. Nevertheless, we can
see that the considered FETI-DP algorithms lead to very similar Lanczos
eigenvalue estimates.
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Direct Solvers

2D 3D
N 64 256 1 024 4 096 64 512 4 096

1/H 8 16 32 64 4 8 16
H/h 8 8 8 8 4 4 4

dim(S̃ΠΠ) 322 1 410 5 890 24 066 324 3 528 32 400

FETI-DP

CG
It. 10 11 11 10 14 15 15

λmin 1.008 1.011 1.007 1.007 1.029 1.026 1.022
λmax 2.219 2.344 2.348 2.342 4.107 4.064 4.062

iFETI-DP

GMRES
It. 8 8 7 6 14 13 12

CG (sc.)
It. 10 10 9 9 15 14 13

λmin 1.001 1.001 1.004 1.002 1.020 1.025 1.026
λmax 2.219 2.341 2.342 2.341 4.107 4.065 4.063

irFETI-DP

GMRES
It. 8 8 7 6 14 13 12

CG (sc.)
It. 10 10 9 9 14 13 12

λmin 1.001 1.004 1.001 1.001 1.029 1.029 1.030
λmax 2.220 2.341 2.344 2.333 4.107 4.066 4.064

Table 4.1
Exact solvers: Comparison of standard FETI-DP with the inexact vari-
ants, denoted inexact FETI-DP (iFETI-DP) and inexact FETI-DP on
the reduced system (irFETI-DP). Here we use direct solvers for the
local subdomain problems and the coarse grid problem. The GMRES
iteration count is given for left preconditioning. For the CG accelerated
method we use the scaling (irFETI-DP: Ŝ−1

ΠΠ = 0.9999−2 · S̃−1
ΠΠ; iFETI-DP:

Ŝ−1
ΠΠ = 0.99999−2 · S̃−1

ΠΠ, K̂−1
BB = 0.99999−2 ·K−1

BB). The dual Schur comple-
ment F is always preconditioned by the Dirichlet preconditioner M−1

D .
— 2D linear elasticity on the unit square for N = 64 to N = 4 096
subdomains, Q1-elements, E = 1, ν = 0.4, GMRES restart: 50 iterations,
Algorithm B (vertex and edge averages), relative residual reduction of 10−7.
— 3D linear elasticity on the unit cube for N = 64 to N = 4 096 subdo-
mains, P1-elements, E = 210, ν = 0.29, GMRES restart: 50 iterations,
Algorithm DE (only edge averages, no vertices), relative residual reduction
of 10−7.
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4.8.2 Inexact Coarse Problem

We first investigate the effect of an approximate solver for the coarse grid
problem on the iteration count and the estimated eigenvalues of the precon-
ditioned operators.

We need to provide a good preconditioner for S̃ΠΠ since the condition
number of S̃ΠΠ will grow quickly with the number of subdomains. In Chap-
ter 3 we have investigated how the choice of the coarse problem affects the
condition number of the FETI-DP system but we have not yet considered
the condition number of the coarse matrix S̃ΠΠ as we always have used direct
solvers.

From Table 4.2 and Figure 4.2 we see that for Algorithm DE as well as
for Algorithm A the condition number seems to be proportional to 1/H2.
However, from Table 4.3 we see that the condition number of the coarse
problem does change only weakly for different subdomain sizes if the number
of subdomains is kept fixed.

κ(S̃ΠΠ)

1/H 2 3 4 5 6 7 8 9 10
Alg. DE 15.6 76.2 173 313 488 704 955 1 246 1 573
Alg. A 10.7 60.0 127 225 337 477 628 806 996
Alg. DF 90 337 686 1 154 1 733 2 424 3 226 4 139 5 163

Table 4.2
Condition number of S̃ΠΠ for Algorithm DE, Algorithm A, and Algorithm DF

for 3D linear elasticity, H/h = 5.
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Figure 4.2
Circles: Condition number of S̃ΠΠ for Algorithm DE, Algorithm A and Al-
gorithm DF plotted versus 1/H, H/h = 5; 3D linear elasticity. Dashed line:
Fit of a second order polynomial.
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κ(S̃ΠΠ)
H/h 2 4 6 8 10 12 14 16
Alg. DE 170 164 159 156 151 150 148 148
Alg. A 123 119 118 117 116 116 115 115

Table 4.3
The condition number of S̃ΠΠ for a fixed number of subdomains, N = 4 ×
4× 4 = 64.

We use cycles of the parallel algebraic multigrid package SAMG [131,

130, 129, 137] by Stüben and Clees to precondition S̃ΠΠ. SAMG is extremely
memory efficient and the version we applied uses shared memory parallelism.
In the experiments in Table 4.4 we use V-cycles and ILU(0)-smoothing within
SAMG. We see that the method performs remarkably well in 2D and 3D
for the structured benchmark problems. The iteration count is comparable
to that of the original FETI-DP method, cf. Table 4.1, and the estimated
condition number is only slightly higher. By increasing the number of SAMG
cycles we can recover the eigenvalues of the original FETI-DP method.

Whenever scaling is used in the experiments, it is calculated using three
digits of an eigenvalue estimate obtained from a few, typically less than ten,
CG iterations with S̃ΠΠ preconditioned by SAMG. In the tables these cases
are captioned by “sc.”. From the experiments we do not see the necessity of
scaling when using GMRES.

In Table 4.5 we present a larger test problem with 13 824 subdomains,
which we are unable to solve with our current FETI-DP implementation
since the direct factorization of S̃ΠΠ requires too much memory (> 2 GB);
see Section 4.6 for further details.

Next, we consider a larger and unstructured mesh. The mechanical part
shown in Figure 4.3 is discretized using 1 291 933 linear, tetrahedral elements.
The resulting problem has 841 836 degrees of freedom; see Chapter 3. Using
ParMetis [70], we partition the mechanical part into 1 024 and 2 048 very
small subdomains in order to obtain a coarse problem of reasonable size.

Typically, it is more efficient to partition this mechanical part into a
considerably smaller number of subdomains; see [76]. From Table 4.8 we see
that even for this industrial benchmark problem the GMRES iteration count
remains acceptable and compares well with standard FETI-DP using CG.



110 CHAPTER 4. INEXACT FETI-DP METHODS

Inexact solver for the coarse problem

SAMG

2D 3D
N 64 256 1 024 4 096 64 512 4 096

1/H 8 16 32 64 4 8 16
H/h 8 8 8 8 4 4 4

dim(S̃ΠΠ) 322 1 410 5 890 24 066 324 3 528 32 400

iFETI-DP

GMRES
It. 8 8 8 7 14 13 12

irFETI-DP

GMRES
It. 8 8 7 7 14 13 12

GMRES (sc.)
It. 8 8 7 7 14 14 13

CG (sc.)
It. 9 9 9 10 14 15 15

λmin 1.013 1.021 1.035 1.037 1.032 1.029 1.028
λmax 2.258 2.419 2.472 2.545 4.276 4.523 4.864

Table 4.4
Inexact solver for the coarse grid problem: Performance of the inexact
variants of FETI-DP, denoted inexact FETI-DP (iFETI-DP) and inexact
FETI-DP on the reduced system (irFETI-DP). We use direct solvers for the

local problems and SAMG S̃ΠΠ using two V-cycles for each outer Krylov
subspace iteration. The V-cycles use one sweep of ILU(0) as pre- and
post-smoother. For some of the calculations we use scaling (“sc.”).
— 2D linear elasticity on the unit square for N = 64 to N = 4 096
subdomains, Q1-elements, E = 1, ν = 0.4, GMRES restart: 50 iterations,
Algorithm B (vertex and edge averages), relative residual reduction of 10−7.
— 3D linear elasticity on the unit cube for N = 64 to N = 4 096 subdo-
mains, P1-elements, E = 210, ν = 0.29, GMRES restart: 50 iterations,
Algorithm DE (only edge averages, no vertices), relative residual reduction
of 10−7.
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Inexact solver for the coarse problem (3D)

irFETI-DP / SAMG

GMRES GMRES (sc.) CG (sc.)

N 1/H H/h dim(S̃ΠΠ) It. It. It. λmin λmax

13 824 24 4 114 264 12 12 14 1.030 4.731

Table 4.5
A problem with a large number of subdomains: Inexact FETI-DP on
the reduced system (irFETI-DP). Exact solvers for the local problem and
SAMG [131, 130, 129, 137] using two V-cycles per outer Krylov subspace

iteration to precondition S̃ΠΠ. The V-cycles use one sweep of ILU(0) as pre-
and post-smoother; scaling was used for two of the calculations (“sc.”).
— 3D linear elasticity on the unit cube, N = 13 824 (24 × 24 × 24) subdo-
mains, 192 (43× 3) d.o.f. per subdomain, 1 167 051 total d.o.f., P1-elements,
E = 210, ν = 0.29, GMRES restart: 50 iterations, Algorithm DE (edge
averages), relative residual reduction of 10−7.

4.8.3 Inexact Neumann Problems

Here, we only present preliminary results for the inexact solution of the local
Neumann problems using factorization (4.6). For a first set of experiments,
presented in Table 4.6, we use incomplete Cholesky decompositions with a
threshold of 10−4 for a structured 3D elasticity problem. We use a renum-
bering [27] before the incomplete factorization. For these calculations the
incomplete Cholesky factorization (ICC) uses on average about 50 percent of
the memory required for an exact factorization. We only present results for
GMRES. From these results we see that the GMRES iteration count is still
comparable to standard FETI-DP using CG. Here, we do not use any scaling
to satisfy (4.10), and we also note that ICC is not an optimal preconditioner.

In another set of experiments, presented in Table 4.7, we consider a larger
number of smaller subdomains in 2D and use incomplete Cholesky decompo-
sitions for the local Neumann problems with a threshold of 10−2. The local
subdomain sizes remain fixed. In these experiments the incomplete Cholesky
factorizations use less than 65 percent of the memory required for the exact
factorizations. We see that the number of iterations remains bounded as the
number of subdomains increases from 16 to 1 024, as is expected.
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Inexact solvers for the local problems
3D, ICC(1e-4)

N 8 64

1/H 2 4
H/h 14 14

FETI-DP
CG

It. 18 23
λmin 1.03 1.03
λmax 12.94 10.45

iFETI-DP
GMRES

It. 22 22

Table 4.6
Inexact solver for the local Neumann problems: Comparison of standard, ex-
act FETI-DP with inexact FETI-DP (iFETI-DP) using incomplete Cholesky
(ICC) with a threshold of 10−4 for the local Neumann problems and a di-
rect solver for the coarse grid problem. In these experiments the incomplete
Cholesky factorization uses about half of the memory that is required for the
total factorization.
— 3D linear elasticity on the unit cube for N = 8 and N = 64 subdomains,
8 232 (=143 × 3) d.o.f. per subdomain, 59 049 and 446 631 total d.o.f., re-
spectively; P1-elements, E = 210, ν = 0.29, GMRES restart: 50 iterations,
Algorithm DE (edge averages), relative residual reduction of 10−7.
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Inexact solvers for the local problems
2D, ICC(1e-2)

N 16 36 64 100 256 400 768 1 024

iFETI-DP
GMRES

It. 14 14 13 13 12 12 11 11

Table 4.7
Inexact solver for the local Neumann problems: Comparison of standard
FETI-DP with inexact FETI-DP (iFETI-DP) using incomplete Cholesky
(ICC) with a threshold of 10−2 for the local Neumann problems and a direct
solver for the coarse grid problem. In these experiments, the incomplete
Cholesky factorization uses less than two thirds of the memory that is
required for the total factorization.
— 2D linear elasticity on the unit cube for N = 4 to N = 1 024 subdomains,
128 (= 82 × 2) d.o.f. per subdomain, Q1-elements, E = 1, ν = 0.4, GMRES
restart: 50 iterations, Algorithm B (vertices and edge averages), relative
residual reduction of 10−7.

Figure 4.3
Mechanical part C courtesy of GETRAG FORD Transmissions GmbH,
Cologne, Germany.
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Mechanical Part
N 1024 2 048

FETI-DP

CG
It. 41 48

λmin 1.04 1.04
λmax 33.31 44.63

irFETI-DP / SAMG
GMRES

It. 53 64

Table 4.8
Mechanical part, see Figure 4.3, 841 836 d.o.f., partitioned into 1 024 and
2 048 subdomains. The coarse problem has a size of 10 380 and 19 515 d.o.f.,
respectively. We use 4 V-cycles of SAMG [131, 130, 129, 137] in each outer
Krylov subspace iteration. Two Gauss-Seidel sweeps as pre- and two as
post-smoother are used. The Gauss-Seidel sweeps use CF-ordering for pre-
smoothing and the reverse for post-smoothing.
— 3D linear elasticity on the unit cube for N = 1 024 and N = 2 048 sub-
domains, P1-elements, E = 210, ν = 0.29, GMRES restart: 100 iterations,
Algorithm DE (edge averages), relative residual reduction of 10−7.

4.8.4 Inexact Neumann, Dirichlet, and Coarse Prob-
lems

In this section we present some results for iFETI-DP where we apply a pre-
conditioner directly to K̃ without using (4.6). This refers to an algorithm
where the local subdomain Neumann solves are inexact as well as the coarse
problem. In a next step, we also introduce an inexact Dirichlet preconditioner

M̂−1
FETID

:= BB,D(RB
∆)T (K∆∆ −K∆IK̂

−1
II KT

∆I)R
B
∆BT

B,D. (4.12)

For all of these experiments we use the algebraic multigrid code (Boomer-
AMG), cf. Section 4.9. As all eigenvalues of the AMG operator are smaller
than one, the inexact Dirichlet preconditioner is still positive definite. Note
that the (1 + log(H/h))2 bound presumes the use of the exact Dirichlet pre-
conditioner. The discretizations are from spectral elements, see Chapter 7.
The columns are captioned in the following way.
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The caption (e/e/e) refers to exact standard FETI-DP using the exact
Dirichlet preconditioner. Here, also condition numbers are given as CG is
used. The caption (i/e/e) refers to iFETI-DP using the factorization (4.6) to
provide an inexact solver for the subdomain Neumann problems but an exact
solver for the coarse problem and using the exact Dirichlet preconditioner.
The caption (i/i/e) then refers to directly applying the inexact solver to

K̃ without using the factorization (4.6) but applying the exact Dirichlet
preconditioner. Then in a last step, (i/i/i), everything is solved inexactly,
i.e. we also apply the inexact Dirichlet preconditioner.

From the results in Table 4.9 we see that all methods are scalable with
respect to the numbers of subdomains, and the performance of the method
that uses all inexact solvers is still astonishingly competitive with standard
FETI-DP. In fact, the iteration count increases noticeably once the subdo-
main Neumann problems are solved inexactly. But then, the inexact solution
of the coarse problem and the use of the inexact Dirichlet preconditioner do
not change the iteration count anymore. Note that we only have a small
coarse problem here.

For some results of irFETI-DP applied to higher order discretizations, see
Chapter 7.
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p N FETI-DP λmin λmax

32 6 6 3.42 1.0000
16 17 9.48 1.0012
24 25 10.57 1.0012
24 24 10.69 1.0018
24 25 10.75 1.0016

iFETI-DP

p N It. (e/e/e) It. (i/e/e) It. (i/i/e) It. (i/i/i)

32 4 6 13 13 13
16 16 20 21 22
64 24 29 30 30

100 24 30 30 30
144 24 30 29 30

Table 4.9
Spectral elements of fixed polynomial degree (p = 32), fixed subdomain sizes
(H/h = 1), increasing number of subdomains, ρ = 1, random right hand
side, rtol=10−7. Inexact FETI-DP for the block matrices using Boomer-
AMG and GMRES, Neumann problems/coarse problem/Dirichlet problems:
(in)exact/(in)exact/(in)exact.
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4.9 Parallel Results

In this section, we focus on the inexact reduced method irFETI-DP; see for-
mulation (4.3) and Section 4.4.2, respectively. Here, we use exact solvers for
the subdomain problems but are able to use inexact solvers for the global
coarse problem. In order to obtain numerical and parallel scalability for
our distributed memory FETI-DP implementation even for a large number
of subdomains, a good parallel preconditioner for the coarse problem is es-
sential. For our parallel computations in this section, we use BoomerAMG
[66] by Henson and Meier Yang to precondition the FETI-DP coarse prob-
lem. BoomerAMG is a highly scalable distributed memory parallel algebraic
multigrid solver and preconditioner; it is part of the high performance pre-
conditioner library hypre [35, 36, 37].

The purpose of this section is to validate that the parallel performance of
the inexact FETI-DP algorithm is competitive with the standard FETI-DP
method when the number of subdomains is not too large. Furthermore, we
present parallel results for irFETI-DP in the case of a large number of subdo-
mains when a direct solution of the coarse problem is not feasible anymore.

In Tables 4.10 and 4.11, our standard FETI-DP implementation [76, 77]
using CG is compared to the new implementation of the inexact reduced
irFETI-DP method using GMRES. The results were obtained on the MCR
cluster at the Lawrence Livermore National Laboratory, Livermore, CA,
USA. The MCR cluster has 2 304 Intel Xeon 2.4 GHz processors, organized
as dual processor nodes with 4 GB of memory for each node, and it uses a
Quadrics interconnect. The implementation of standard FETI-DP uses the
direct sparse solver MUMPS 4.5.0 [4, 5, 6] to solve the coarse problem. This
direct sparse solver can also be used in parallel mode to solve the coarse
problem, but there are approaches that are more appropriate for this situa-
tion, e.g. an explicitly calculated, distributed inverse as used in [13] or the
approach from [141]. In all of our experiments we have used MUMPS in
sequential mode to solve the coarse problem.

In the implementation of irFETI-DP, we employ one iteration of Boomer-
AMG to precondition the coarse problem. Both implementations use MPI
and PETSc [9, 8, 10], and both use the direct sparse solver [4, 5, 6] as the
local subdomain solver.

In Table 4.10 we present weak scaling results for the algorithms on the
MCR cluster. The model problem is 3D linear elasticity with Young’s mod-
ulus E = 210 and Poisson’s ratio ν = 0.29. We consider the unit cube
decomposed into cubic subdomains. As in [76] and [77], we use edge average
constraints to form the coarse problem. It can be seen that our implemen-
tations of irFETI-DP and standard FETI-DP show nearly the same parallel
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FETI-DP irFETI-DP
N D.o.f. Coarse Proc. It. Time It. Time

64 1 369 599 324 16 25 144s 28 148s
512 10 744 731 3 528 128 27 165s 27 172s

1 728 36 026 967 13 068 432 27 233s 28 194s

Table 4.10
Results for standard FETI-DP and the inexact reduced variant (irFETI-DP)
obtained on LLNL’s MCR cluster, ranked 34th among the worlds fastest
computers (see www.top500.org) at the time of the experiments; 3D linear
elasticity benchmark problem, unit cube.

performance; the timings and the iteration counts differ only slightly. We can
see that the irFETI-DP is scalable up to 1 728 subdomains and 36 million
unknowns. We note that we have not done any extensive testing of parame-
ters for BoomerAMG. In our experiments, irFETI-DP seems to scale slightly
better than standard FETI-DP; cf. Table 4.10.

FETI-DP irFETI-DP
N D.o.f. Coarse Proc. It. Time It. Time

4 096 352 947 32 400 16 14 218s 21 14s
27 000 2 260 713 227 070 120 failed failed 22 38s

Table 4.11
Large number of subdomains. Results for standard FETI-DP and the
inexact reduced variant (irFETI-DP) obtained on LLNL’s MCR cluster; 3D
linear elasticity benchmark problem, unit cube.

In Table 4.11, we provide results for large numbers of smaller subdomains
in order to gain insight into potential scalability to a very large number of
processors. We see that already for the case of 4 096 subdomains the inexact
method is much faster. Furthermore, the inexact method is able to cope with
as many as 27 000 subdomains whereas the exact method is not. We also
expect that the scalability of irFETI-DP will improve once larger subdomain
problems are used. The results give rise to the hope that scalability to more
than tens of thousands of processors might be possible with this method and
this implementation.
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4.10 Conclusions

We have seen that for a large number of subdomains or processors, the
FETI-DP coarse problem can become very large. This may lead to a bottle-
neck when solved with a direct method. For problems of such a size, there is
a need to solve the coarse problem inexactly to maintain parallel scalability.
An inexact solution of the subdomain problems may also be desirable.

In this chapter, we presented a framework for a family of inexact FETI-DP
methods, together with a convergence theory and numerical results. The
framework allows for the construction of different algorithms with approxi-
mative solvers for the coarse problem as well as for the subdomain problems.

In our numerical experiments, we observed that the convergence rates
of the inexact methods are comparable to those of the standard FETI-DP
method if good approximative solvers are used as preconditioning blocks.

Parallel experiments were carried out for the inexact reduced method,
irFETI-DP, where the subdomain problems are still solved exactly, and only
the coarse problem is solved inexactly using an algebraic multigrid precondi-
tioner. The new method inherits the numerical and parallel scalability of the
original FETI-DP method and is also applicable when the coarse problem
size becomes too large to be solved by a direct factorization method. Using
this approach, we hope to maintain parallel scalability up to a very large
number of processors.
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Chapter 5

Heterogeneous Elasticity
Problems

Domain decomposition methods provide a good approach to obtaining ro-
bust and parallel scalable solvers. In the present chapter, we will focus on
heterogeneous elasticity problems with large discontinuities in the material
stiffnesses. It was shown in [84] that selecting certain edge averages and first
order moments and, in some very special cases, certain vertices as primal con-
straints, yields a robust condition number estimate. The central assumption
is that on every face the rigid body modes can be controlled and, addition-
ally, almost uniform bounds on some related functionals are satisfied. We
provide results which confirm the theoretical findings in [84] and show that,
in some cases, first order moments are indeed necessary to obtain a good
convergence rate. In the theory it is assumed that the edges of the subdo-
mains are straight and that large material discontinuities are aligned with the
subdomain boundaries. We relax these assumptions and provide numerical
results for decompositions with curved edges and with material discontinu-
ities which are not aligned with the interface. The following presentation is
based on Klawonn and Rheinbach [77].

We expect that our numerical results also provide insight into the per-
formance of the more recently developed Neumann-Neumann methods with
constraints, known as the BDDC algorithms, cf. [29, 97, 98, 92], since Mandel,
Dohrmann, and Tezaur [98] have shown that, for any given set of constraints,
the BDDC and FETI-DP methods have almost all of their eigenvalues in
common; see also Li and Widlund [92] for an alternative proof, see also Sec-
tion 2.4.

121
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5.1 Additional Constraints

The simplest choice of primal variables for FETI-DP and BDDC is to select
them as certain primal vertices of the subdomains, see Chapter 2. Unfortu-
nately, this choice does not always lead to good convergence results in three
dimensions, see the beginning of Chapter 3. Therefore, we have discussed
average constraints over edges to form the coarse problem, see Chapter 3.
To obtain robust condition number bounds for highly heterogeneous mate-
rials in all cases of material distributions, additional constraints have to be
introduced. In the case of heterogeneous materials, we need to introduce the
notion of edge first order moments, see [84], in addition to the edge averages
that we have used in Chapter 3 for homogeneous elasticity.

The rigid body modes r1, . . . , r6, restricted to a straight edge provide
only five linearly independent vectors, since one rotation is always linearly
dependent on other rigid body modes. For the following definition, we assume
that we have used an appropriate change of coordinates such that the edge
under consideration coincides with the x1-axis, and the special rotation is
then r6. The edge averages and first order moments over this specific edge E
are of the form ∫

E rT
k udx∫

E rT
k rkdx

, k ∈ {1, . . . , 5}, (5.1)

where u = (uT
1 , uT

2 , uT
3 )T ∈ W h

Γ . We note that for edges which are not straight
we can use all six rigid body modes to construct three average and three first
order moment constraints.

From the inner products of uE with the translational and the rotational
rigid body modes, we obtain three averages and either two or three first order
moments, see (5.1). On a straight edge the three averages and three rotations
are linearly dependent, and one of the rotations can be discarded.

Using a transformation of basis, see Chapter 3, the averages and moments
are explicitly introduced as new variables into the basis of our finite element
space. These variables then form a part of the set of primal displacement
variables. In this manner we force our edge averages and first order moments
to be the same across the interface.

If at least one edge average of one displacement component is imposed as
a constraint on an edge, we will denote this edge as primal. At most three
average constraints can be imposed on such an edge. Furthermore, if three
edge averages and additionally two or three edge first order moments are
imposed as primal constraints on an edge we will denoted this edge as fully
primal.

We now describe how the transformation matrix for such a change of
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basis can be constructed. Here, we restrict ourselves to the construction of
the basis transformation for a single, fully primal edge; see Section 3.3 for a
detailed, algorithmic description.

We consider the six rigid body modes ri, i = 1, . . . , 6; cf. Section 3.1.
Next, we orthogonalize the rigid body modes on the edge against each other
using a stable formulation of the Gram-Schmidt process, e.g. modified Gram-
Schmidt. We note that the translational rigid body modes are already or-
thogonal to each other and thus, we only have to start with the rotations
in order to obtain an orthogonal basis of rigid body modes on the edge E .
We denote the orthogonal basis obtained by this process by (r̂j)j=1,...,`, with
` ∈ {5, 6}. When restricted to a straight edge E , one of the rotations is
linearly dependent on the others and should vanish when modified Gram-
Schmidt is used; cf. also the discussion at the end of Section 3.1. Then, we
only have a five dimensional basis.

Let us assume that the vector of nodal unknowns uE has length n. We
then consider the set of vectors {(r̂j)j=1,...,`, (ei)i=1,...,n}, where ei is the unit
vector with one at the ith component and zero otherwise, which is associated
with the ith d.o.f. on the fully primal edge. Starting with the orthogonalized
rigid body modes (r̂j)j=1,...,`, we orthogonalize and normalize the set of n + `
vectors, using modified Gram-Schmidt. We discard the ` linearly dependent
vectors and use the remaining n orthogonal vectors to define the column
vectors of our transformation matrix TE.

The transformation matrix TE performs the desired change of basis from
the new basis to the original nodal basis. From our construction, TE is an
orthogonal matrix. Denoting the edge unknowns in the new basis by uE, we
have

uE = TEuE.

In the case where only averages are used as primal constraints we have ex-
plicitly set up the matrix for the basis transformation; see Chapter 3. For
this case we can also apply the construction used here, i.e. we orthogonalize
only against the translational rigid body modes. Only edge averages are then
introduced as new variables, and the remaining basis functions will have zero
edge average.

In the theory presented in Klawonn and Widlund [84], it is assumed that
the subdomains are polytopes with good aspect ratios and that the edges
are straight. Furthermore, large material discontinuities should be aligned
with the interface. For our FETI-DP algorithm, using a well selected set of
primal constraints of edge averages or edge first order moments and in some
special cases also primal vertices, we have Theorem 5.1.1, cf. [84]; see also
Theorem 3.3.1 (p. 67) for the homogeneous case.
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Theorem 5.1.1 The condition number satisfies

κ(M−1F ) ≤ C (1 + log(H/h))2.

Here, C > 0 is independent of h,H, and the values of the coefficients Gi.

Let us give some assumptions from [84] which are sufficient to obtain
a condition number estimate as in Theorem 5.1.1. In [84, Section 5], the
definition of a fully primal face is introduced as a face which has six edge
constraints, averages or first order moments, on edges which belong to the
boundary of that face, such that the rigid body modes on that face are
controlled. The set of constraints has to control the rigid body modes in the
sense that if all functionals representing the constraints, cf. (5.1), vanish for
a rigid body mode, then the rigid body mode must vanish itself.

A sufficient condition for Theorem 5.1.1, cf. [84, Section 8.2], is to assume
that every face is fully primal, every edge which belongs to more than three
subdomains is fully primal, and every vertex is primal. In fact, not every
such edge and every face has to be fully primal and not every vertex needs
to be primal as long as for every pair of subdomains {Ωi, Ωj} which has a
(non fully primal) face or edge or a (nonprimal) vertex in common there is a
path connecting them. This path has to lead, possibly through several other
subdomains Ωk, only through fully primal faces such that the stiffnesses Gk

associated with Ωk are never smaller than the minimum of the stiffnesses
associated with Ωi and Ωj. Such a path is called an acceptable path. For
more details on refined path concepts see [84, Section 5].

5.2 Necessary and Sufficient Constraints

In this section, we consider different model problems which numerically con-
firm the theoretical findings in Klawonn and Widlund [84].

In order to control the rigid body motions of a subregion, we need at
least six constraints. In [84, Section 5], two model problems are considered
to develop an understanding of the type and number of necessary and suf-
ficient constraints needed in order to obtain a robust and scalable domain
decomposition method.

Let us consider two subdomains with a high Young’s modulus surrounded
by subdomains with a small Young’s modulus. This configuration will have
six low energy modes related to the six rigid body motions of the union
of the two subdomains with high stiffness. In our preconditioner, if we do
not introduce any primal constraints, we will have twelve rigid body motions,
related to the two subdomains moving individually. Thus, the preconditioner
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will be far from spectrally equivalent. Therefore, we need to introduce primal
constraints on the face common to the two subdomains with high Young’s
modulous.

In our model problems, we consider the unit cube in IR3, decomposed into
a set of smaller, cubic subdomains with sidelength H. The unit cube is only
fixed at one face and a volume force is applied. In all of our experiments,
we use four node, tetrahedral finite elements. The Poisson’s ratio in our
linear elasticity problem is always ν = 0.29, and the Young’s modulus will be
given separately for the different problems. All computations in this chapter
were carried out using PETSc [9, 8, 10], on our 16 processor (2.2 GHz dual
Opteron 248; Gigabit Ethernet; 4 GB memory for each processor) computing
cluster in Essen. We use UMFPACK 4.3 [27] as a local subdomain and a
coarse problem direct solver.

We first consider a decomposition of the unit cube into 3 × 3 × 4 sub-
domains of 1 536 d.o.f. each, where we have two interior cubic subdomains
made of the same material having a face in common and being surrounded by
cubic subdomains made of a material with much smaller Young’s modulus;
cf. Figure 5.1.

Here, we check if six constraints for a face are necessary. We start with
making all edges of the decomposition primal, using all three edge aver-
ages on each edge, one average for each displacement component. Then, we
successively reduce the number of constraints at that common face until no
constraints are imposed anymore. Since we always impose three average con-
straints on a primal edge, we first choose 12 = 4 × 3 averages, followed by
9 = 3× 3, 6 = 2× 3, 3 = 1× 3, and 0 averages. From the numerical results
presented in Table 5.1, we see that, for this configuration, six linearly inde-
pendent constraints are necessary to obtain a robust domain decomposition
method. We note that in the two cases of two primal edges considered here,
we always have one linearly dependent constraint.

We next consider a model problem where two subdomains are again sur-
rounded by subdomains with much smaller stiffnesses, i.e. Young’s moduli.
Furthermore, we assume that these two special subdomains share only an
edge; cf. Figure 5.3. This configuration does not often occur in irregular
decompositions where usually more than 99% of the edges only have a mul-
tiplicity of three. In [84] it was shown that a well selected set of primal
constraints, which has five linearly independent primal constraints related
to that special edge shared by the two stiffer subdomains and otherwise six
linearly independent edge constraints for each face, is sufficient to prove a
condition number bound as in Theorem 5.1.1. In [84], the five linearly in-
dependent constraints are chosen as three edge averages and two properly
chosen first order moments; cf. also (5.1). The six linearly independent con-
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Figure 5.1
Two stiff cubic subdomains sharing a face surrounded by softer material.
Left: Unit cube. Right: Unit cube cut open with two stiff subdomains inside.
Lower: Two stiff subdomains shown without surrounding softer material.

Figure 5.2: Edges in a U-shaped, L-shaped, and parallel distribution.

straints for each face can be chosen as edge averages (and moments) over
appropriately chosen edges of the considered face. In a set of experiments,
we have tested different combinations of edge constraints on the specific edge
shared by the two stiffer subdomains; cf. Table 5.2. In the case of three con-
straints only edge averages are used, in the case of five, additionally two
first order moments are applied. On all other edges, an edge average over
each displacement component is used to define the primal constraints. We
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Number of primal edges

E1/E2 4 3 (U) 2 (L) 2 (II) 1 0

1 9.75 10.11 12.77 10.86 13.37 15.67
103 9.24 24.28 1.74× 103 1.11× 103 2.16× 103 4.31× 103

106 9.24 24.64 1.73× 106 1.11× 106 2.14× 106 4.25× 106

Table 5.1
Two stiff subdomains sharing a face F . Condition number estimates for
different numbers of edge average constraints. The notation U, L, and II
denote a U-shaped, an L-shaped, and a parallel distribution of the primal
edges of the face F , cf. Figure 5.2. Young’s modulus: E2 = 210. Stopping
criterion: Relative residual reduction of 10−10. Primal constraints: Edge
averages.

Figure 5.3
Two stiff cubic subdomains sharing an edge surrounded by softer material.
Unit cube Ω cut open in front and on top.

see that using no constraints or only edge average constraints on the specific
edge leads to a large condition number. Applying all five constraints leads to
a good condition number which is bounded independently of the jump in the
Young’s moduli. It is striking that the iteration counts in Table 5.2 for the
case of no constraints or only edge constraints and large coefficient jumps in
the Young’s moduli are not increased accordingly to the very large condition
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numbers. This is due to the effect that the spectrum is still nicely clustered
with the exception of a few outliers; see also the theory developed in Kla-
wonn and Widlund [84]. Let us note that not only the condition number
but also the iteration count increases dramatically when we have many bad
edges instead of only one; see Table 5.3 and Figure 5.6. We have analyzed
the spectrum for a single bad edge in more detail numerically for the case of
edge constraints with and without additional first order moments.

−3 +0 +2

E1/E2 It. λmax λmin It. λmax λmin It. λmax λmin

100 29 9.31 1.0111 28 9.20 1.0115 28 9.19 1.0113
101 31 12.13 1.0105 30 9.14 1.0099 30 9.14 1.0098
102 36 51.15 1.0115 31 10.61 1.0096 30 9.11 1.0094
103 47 4.41× 102 1.0113 37 75.72 1.0081 30 9.11 1.0084
104 48 4.34× 103 1.0191 41 7.27× 102 1.0080 30 9.10 1.0080
105 65 4.33× 104 1.0156 48 7.24× 103 1.0080 30 9.10 1.0080
106 70 4.33× 105 1.0215 47 7.24× 104 1.0116 30 9.10 1.0080

Table 5.2
Straight edge: Unit cube decomposed into 3 × 4 × 4 = 48 brick-shaped
subdomains of 1 536 d.o.f. each, 55 506 total d.o.f., 75 edges, edges use three
edge averages. One special edge: −3, no constraints on this edge; 0, only
averages; +2, averages and, additionally, two first order moments. Stopping
criterion: Relative residual reduction of 10−10.

From the theory in Klawonn and Widlund [84], it is expected that for the
problem with just one bad edge we only have two large eigenvalues which
are outliers in an otherwise nicely clustered spectrum. This also explains the
good iteration counts in Table 5.2. To confirm this numerically, we compute
all eigenvalues for a small model problem. Here, the unit cube is decomposed
into 2× 2× 2 = 8 regular cubic subdomains with 1 029 d.o.f. each, resulting
in 6 591 global d.o.f. We assume again that we have two stiff subdomains
sharing an edge surrounded by softer material; cf. Figure 5.5. The ratio of the
different Young’s moduli is E1/E2 = 106 with E2 = 210. As constraints we
impose three edge averages, one for each displacement component, on each
edge but no primal vertices. In this case, we have a large condition number
due to two outliers in the spectrum, related to the two rotations which are
not controlled due to the missing first order moments; cf. Figure 5.4. If we
remove those two outlying eigenvalues from the diagram, we see that the
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remaining spectrum is still nicely clustered, cf. the diagram on the right
hand side in Figure 5.4. Next, we consider the case when two additional
first order moments are imposed on the bad edge shared by the two stiffer
subdomains. Here, the spectrum is nicely clustered, and the ratio of the two
extreme nonzero eigenvalues is bounded by a small number; cf. Figure 5.5.
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Figure 5.4
Eigenvalues for FETI-DP using only edge averages, no primal vertices. Left:
All eigenvalues. Two eigenvalues are very large (≈ 2× 105). Right: All but
the two largest eigenvalues.
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Figure 5.5
Left: Two stiff cubic subdomains sharing a straight edge surrounded by softer
material. Right: All eigenvalues for FETI-DP using edge averages and two
first order moments on the shared edge, no primal vertices.

Next, we analyze a more involved example with many bad edges, where
we will see that additional first order moments not only improve the condition



130 CHAPTER 5. HETEROGENEOUS ELASTICITY

number but can be absolutely necessary to obtain convergence. We consider
a linear elasticity model problem with a material consisting of different layers
as shown in Figure 5.6, where the homogeneous layer is made of the softer
material. The ratio of the different Young’s moduli is E1/E2 = 106 with
E2 = 210. Here, in addition to three edge averages on each edge, we have
also used two first order moments as primal constraints on all edges. The
results in Table 5.3 clearly show that the additional first order moments help
to improve the convergence significantly; see [84] for theoretical results. In
Table 5.4 the parallel scalability is shown for a cube of eight layers with a
material distribution as in Figure 5.6.

Figure 5.6
Alternating layers of a heterogeneous material distributed in a checkerboard
pattern and a homogeneous, softer material.

Finally, we numerically check if primal vertex constraints are necessary
at all. So far, all of our experiments were carried out without any primal
vertices. In the theoretical analysis given in [84], it is shown that in some
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Edge averages Edge averages + 1st order moments

κ It. Time κ It. Time

2.14× 105 >1 000 > 6 686s 5.19 24 629s

Table 5.3
Heterogeneous linear elasticity, see Figure 5.6 : Comparison of FETI-DP
algorithm using edge averages vs. edge averages and first order moments
carried out in parallel using 16 processors; we have 12×12×12 = 1 728 cubic
subdomains of 5 184 d.o.f. each, resulting in 7 057 911 total d.o.f. Stopping
criterion: Relative residual reduction of 10−10.

Proc. Subdomains/Proc. It. κ Time

1 512 17 5.18 1 828s
2 256 17 5.18 842s
4 128 17 5.18 428s
8 64 17 5.18 215s
16 32 17 5.18 122s

Table 5.4
FETI-DP: Parallel scalability using edge averages and first order moments.
512 subdomains with 5 184 d.o.f. each, yielding 2 114 907 global d.o.f. Stop-
ping criterion: Relative residual reduction of 10−7.

special situations, primal vertices have to be introduced. We now construct
such a model problem, following the theoretical considerations given in [84,
Section 8.4]. We decompose the unit cube into 27 = 3 × 3 × 3 cubic sub-
domains. The subdomains are made of two different materials, distributed
such that subdomains of the same material type are only connected at the
subdomain vertices; cf. Figure 5.7. From the results presented in Table 5.5,
we conclude that there exist very hard cases of material distributions where
we have to introduce primal vertices. This confirms the theoretical findings
given in Klawonn and Widlund [84]. The problem considered in the present
example is of course somewhat artificial. If primal vertices have to be intro-
duced in real, industrial engineering applications in order to obtain a robust
algorithm, still has to be numerically tested with such problems. First re-
sults for a non cubic geometry are given at the end of Section 5.5, where a
hemisphere made of different materials is considered.
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Figure 5.7
Unit cube decomposed into 9 stiff subdomains, sharing only vertices, and
18 soft subdomains. Left: Deformation showing stiff and soft subdomains.
Right: Deformation, showing only stiff subdomains.

Edge averages Only

+ primal vertices edge averages

E1/E2 It. κ It. κ

1 26 7.22 26 7.56
103 23 8.03 49 89.58
106 24 7.98 113 8.38×104

Table 5.5
Comparison of FETI-DP using edge averages and vertices as primal con-
straints vs. a variant using only edge averages as primal constraints. De-
composition into 27 = 3 × 3 × 3 subdomains, cf. Fig. 5.7, with 1 536 d.o.f.
each, resulting in 31 944 global d.o.f. Stopping criterion: Relative residual
reduction of 10−10.

5.3 Acceptable Paths

In the general theory developed in [84], we do not have to make every face
fully primal but it is sufficient to have an acceptable path; cf. the remark
after Theorem 5.1.1 where the definition of an acceptable path is given. To
illustrate numerically the effect of acceptable paths on the convergence be-
havior of our FETI-DP algorithms, we have carried out three different sets
of experiments. In the first set of experiments, we considered the case of
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two subdomains sharing a face, in the second two subdomains sharing an
edge, and in the third two subdomains sharing only a vertex. In contrast to
the model problems considered in the previous section, we now consider the
effect of an acceptable path in the case where the shared face or edge is not
fully primal, or the shared vertex is not primal; cf. Figure 5.8 and Table 5.6.
From the numerical results in Table 5.6, we see that an acceptable path can
help to control the condition number.

Figure 5.8
Cubes seen from the outside (upper images). Cubes cut open to see the
two relevant subdomains and the path (lower images). Two stiff subdomains
sharing a face, which are connected by a C-shaped path through 8 subdo-
mains (left). Two stiff subdomains sharing an edge, which are connected
by an L-shaped path through 5 subdomains (middle). Two stiff subdomains
sharing a vertex, which are connected by a V-shaped path through 6 subdo-
mains (right).

5.4 Curved Edges

In this section, we present numerical results for decompositions with curved
edges. The theory in [84] is only for straight edges. We will see from the
following numerical results that first order moments are still necessary in the
case of large coefficient jumps.

In order to study the effect of slightly bent edges we start from the same
configuration as in Table 5.2, i.e. with two stiff subdomains sharing an edge,
surrounded by softer material with a Young’s modulus E2 = 210. We note
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fully primal face face not fully primal face not fully primal
no path path through 8 subdom.

It. κ It. κ It. κ
23 5.33 61 2.77×104 40 23.04
fully primal edge edge not fully primal edge not fully primal

no path path through 5 subdom.
It. κ It. κ It. κ
24 4.85 48 5.80×103 31 7.98

primal vertex vertex not primal vertex not primal
no path path through 6 subdom.

It. κ It. κ It. κ
26 6.64 36 4.84×102 27 6.89

Table 5.6
If the face, edge or vertex shared by the two stiff subdomains, see Fig. 5.8,
is not made fully primal the condition number jumps dramatically, and the
iteration count grows. If we have an acceptable path connecting the two
stiff subdomains the condition number stays much smaller. The two special
subdomains have E2 = 104 × E1. We assume a stiffness of E3 = 106 × E1

along the path. The iteration count is given for a relative residual reduction
of 10−10.

that in all of our experiments, the Poisson’s ratio is ν = 0.29. We then
consider a slightly bent cross section, cf. Figure 5.9, according to an inner
radius of curvature of 1/

√
2, 1, and

√
2. We thus have a bent critical edge

shared by the two stiff subdomains.

We start with a slightly bent configuration, corresponding to a radius of
curvature of 1/

√
2, as depicted in the leftmost picture of Figure 5.10. In

Table 5.7, the effect is shown as we increase E1, and the two subdomains
become increasingly stiffer. We see that starting from a certain point we
cannot control the condition number anymore by using only two first order
moments on the edge. Nevertheless, if we choose the proper two moments,
denoted as “good choice” in Table 5.7, the condition number is controlled
much longer than in the case where we make the wrong choice, captioned
“bad choice”. If we use all three moments in the constraints for a bent edge
then the condition number stays small independently of the ratio E1/E2.

Again, it is striking that the iteration counts in Table 5.7 do not reflect
the growth of the corresponding condition numbers. We expect this again to
be due to spectra which are nicely clustered except for some outliers which
determine the high condition numbers. Additionally, in the cases where we
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Figure 5.9
Deformed unit cube (radius of curvature = 1) with two deformed stiff sub-
domains sharing a curved edge surrounded by softer material.

+2 (bad choice) +2 (good choice) +3

E1/E2 It. λmax λmin It. λmax λmin It. λmax λmin

100 35 13.03 1.0103 35 13.03 1.0103 35 13.03 1.0103
101 34 12.70 1.0098 34 12.70 1.0098 34 12.70 1.0098
102 35 12.60 1.0091 34 12.57 1.0093 34 12.57 1.0094
103 38 61.55 1.0083 35 12.53 1.0077 35 12.53 1.0078
104 43 5.71× 102 1.0072 34 12.54 1.0082 34 12.52 1.0082
105 49 5.67× 103 1.0064 35 43.67 1.0104 37 12.51 1.0069
106 54 5.67× 104 1.0060 33 4.02× 102 1.0156 39 12.51 1.0061

Table 5.7
Curved edge: Deformed unit cube decomposed into 3 × 4 × 4 = 48 brick-
shaped subdomains of 1 536 d.o.f. each. Radius of curvature 1/

√
2, special

edge is curved. 55 506 total d.o.f., relative tolerance 10−10; 75 edges, edges
use three edge averages. One special edge: +2, averages and, additionally,
two first order moments; +3, averages and, additionally, three first order
moments. Young’s modulus E2 = 210.

have large condition numbers, the residual oscillates strongly. This probably
explains that in some cases with a high condition number the iteration count
is smaller than for those with a small condition number. The same arguments
apply for Table 5.8, see the remark below.
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We then study the effect of different curvatures on the condition number
and on the necessity to add all three moments to the constraints. In Table 5.8
we only consider three values for E1/E2, namely one, 103, and 106. We
include the case E1/E2 = 1, i.e. the case of homogeneous material, to verify
that the deformation of the unit cube only has a minor effect on the condition
number and iteration count. This is the case whether we use two moments
or three as long as we have a homogeneous material.

We also find that for E1/E2 = 103 we do not see any difference between
using two and three constraints even if we bent the edge to a radius of
curvature of 1/

√
2 as depicted in the rightmost picture of Figure 5.10.

Only for E1/E2 = 106 do we see that two constraints are not sufficient
anymore, and we have to introduce the third linearly independent moment as
additional constraint in order to control the condition number and iteration
count.

For the relation of condition numbers and iteration counts in Table 5.8,
the same arguments as for Table 5.7 apply, see the discussion above.

From these numerical results, we conclude that discontinuities in the ma-
terial stiffnesses of the order of 103 can still be treated using three edge
averages and two first order moments. To obtain an unconditionally robust
method, our experiments seem to indicate that, in the case of edges which are
not straight, three edge averages and three first order moments are needed.

We have found that in decompositions coming from graph partitioners
few edges have a multiplicity larger than three. This means that the number
of edges is not very large where, potentially, first order moments have to be
introduced, i.e. the situation in Figure 5.3. Thus we can afford to enforce
moments whenever an edge has a multiplicity of larger than three.

Figure 5.10
Curved configurations seen from bottom, radius of curvature =

√
2, 1, 1/

√
2.
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Radius of +2 +3

E1/E2 curvature It. λmax λmin It. λmax λmin

straight 28 9.19 1.0113
√

2 31 9.99 1.0106 31 9.99 1.0106
100 1 32 10.66 1.0105 32 10.66 1.0105

1/
√

2 35 13.03 1.0103 35 13.03 1.0103

straight 30 9.11 1.0084
√

2 32 9.80 1.0075 31 9.80 1.0082
103 1 33 10.45 1.0074 32 10.45 1.0080

1/
√

2 35 12.53 1.0077 35 12.53 1.0078

straight 30 9.10 1.0080
√

2 28 1.01× 102 1.0153 35 9.79 1.0065
106 1 30 2.00× 102 1.0150 35 10.45 1.0063

1/
√

2 33 4.02× 102 1.0156 39 12.51 1.0061

Table 5.8
Curved edge: Deformed unit cube decomposed into 3 × 4 × 4 = 48 brick-
shaped subdomains of 1 536 d.o.f. each. Radius of curvature 1/

√
2, special

edge is curved. 55 506 total d.o.f., relative tolerance 10−10; 75 edges, edges
use three edge averages. One special edge: +2, averages and, additionally,
two first order moments; +3, averages and, additionally, three first order
moments. Young’s modulus E2 = 210.

5.5 Material Heterogeneities Not Aligned with

the Interface

In the theoretical estimates presented in [84], it is assumed, as it is standard
in theoretical analyses of this type, that the coefficient jumps of the Young’s
moduli are aligned with the interface, i.e. discontinuities can only occur across
the subdomain boundaries. In practice, satisfying such an assumption can
lead to a decomposition with very bad aspect ratios which usually spoil
the convergence rate. In this section, we numerically analyze the effect of
material heterogeneities which are not aligned with the interface. We first
apply our algorithm with edge averages, but without first order moments
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and primal vertices, to four different model problems. We always consider a
unit cube which is fixed at one face. In our experiments we always compare
the case of a homogeneous material to different distributions of materials
with different stiffnesses. We assume that the softer material has a Young’s
modulus of E2 = 210 and a Poisson’s ratio of ν = 0.29. The Young’s modulus
of the stiffer material is denoted by E1 and the ratio of the two is E1/E2 =
106. We use four node tetrahedral elements, a decomposition into 2×2×2 = 8
cubic subdomains with 89 373 d.o.f. each, resulting in 680 943 global d.o.f.
As stopping criterion, we use the relative residual reduction of 10−10. In the
first three experiments, the parts of Ω which consist of the stiffer material
do not intersect any interior edges; cf. Figures 5.11, 5.12, 5.13, and 5.14. We
note that these examples are constructed such that the material cannot be
treated by the standard scaling as described in Section 2.3 since the material
discontinuity is not across the interface. From the results given in Tables 5.9,
5.10, and 5.11, we see that such a jump in the Young’s modulus seems not
to affect severely the condition and iteration number.

Figure 5.11
For 2 × 2 × 2 = 8 subdomains, the 6 edges in the interior of Ω are shown
(two subdomains in front of the cube are not displayed).

Next, we consider an example where a stiff cube is located at the center
of a larger cube made out of a softer material; cf. Figure 5.15. The essential
difference in comparison to the previous examples is that the stiffer subcube
now intersects the interior edges; see also Figure 5.11. From the results given
in the mid-column of Table 5.12, we see that this severely affects the iteration
and condition number. As a remedy, we introduce a weighted edge average
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Figure 5.12
Material heterogeneities not aligned
with the interface. Soft cube
(Young’s modulus E2 = 210) with
a stiff beam (Young’s modulus E1 =
106 × E2), with square cross section
at the upper right edge.

Homogeneous Heterogeneous

It. κ It. κ
31 18.62 42 32.59

Table 5.9
Iteration counts and condition num-
ber estimates for problem given in
Figure 5.12. Homogeneous: E1 =
E2 = 210. Heterogeneous: E2 =
210, E1 = 106 × E2.

Figure 5.13
Material heterogeneities not aligned
with the interface. Soft cube
(Young’s modulus E2 = 210) with
a stiff beam (Young’s modulus E1 =
106 × E2), with square cross section
and a jagged interface at the upper
right edge.

Homogeneous Heterogeneous

It. κ It. κ
31 18.62 43 34.16

Table 5.10
Iteration counts and condition num-
ber estimates for problem given in
Figure 5.13. Homogeneous: E1 =
E2 = 210. Heterogeneous: E2 =
210, E1 = 106 × E2.
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Figure 5.14
Material heterogeneities not aligned
with the interface. Soft cube
(Young’s modulus E2 = 210) with a
stiff rectangular plate (Young’s mod-
ulus E1 = 106 × E2) which reaches
into the cube and is only shared
by the two lower subdomains at the
front.

Homogeneous Heterogeneous

It. κ It. κ
31 18.62 40 22.99

Table 5.11
Iteration counts and condition num-
ber estimates for problem given in
Figure 5.14. Homogeneous: E1 =
E2 = 210. Heterogeneous: E2 =
210, E1 = 106 × E2.

of the form ∑

xi∈Eh

ρ(xi) uj(xi)

∑

xi∈Eh

ρ(xi)
, j = 1, 2, 3, (5.2)

with weights ρ(xi) defined pointwise by the maximum material stiffness at
that point and u = [uT

1 , uT
2 , uT

3 ]T . We note that this weighted edge average is
reduced to the standard edge average in the case of material jumps aligned
with the interface. The results given in the column on the right hand side
of Table 5.12 indicate that this weighted edge average could be helpful in
cases where the material discontinuities do not align with the interface. This
should be further analyzed for more difficult problems coming from real-
world, engineering examples.
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Figure 5.15
Material heterogeneities not aligned with the interface. Soft material
(Young’s modulus E2 = 210) surrounding a stiffer cube (Young’s modu-
lus E1 = 106 × E2), centered at the origin of the cube. The stiffer, interior
cube intersects all interior edges.

Edge average (hom.) Edge average (het.) Weighted average (het.)

It. κ It. κ It. κ

31 18.62 179 4.11×106 37 16.57

Table 5.12
Comparison of standard and weighted edge averages for the problem given
in Figure 5.15. Decomposition into 2 × 2 × 2 = 8 cubic subdomains with
89 373 d.o.f. each, yielding 680 943 global d.o.f. Stopping criterion: Relative
residual reduction of 10−10. Primal constraints: Edge averages.
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Next, we present a small example with a heterogeneous material and
a non cubic geometry constructed using Netgen [116], see Figure 5.16. It

Figure 5.16: Hemisphere with three different material layers.

is a hemisphere consisting of three material layers. The outer and inner
layer have a Young’s modulus of E2 = 210 whereas the interior layer has
a Young’s modulus of E1 = 106 × E2. We impose homogeneous Dirichlet
boundary conditions on the interior layer where it intersects the boundary of
the hemisphere; a volume force is applied. The model has 209 768 tetrahe-
dral elements and 116 055 d.o.f. The grid is partitioned into 20 subdomains
using ParMetis [70] not taking into account the material distribution. The
jumps in the Young’s modulus are therefore not aligned with the subdomain
boundaries. The coarse problem has only 30 d.o.f. We have a condition
number of 75.62 and an iteration count of 53 for a relative residual reduction
of 10−7. The solution time is 27s on 5 processors of our Opteron comput-
ing cluster. This result indicates that our strategies may be useful for real
world heterogeneous models; this of course still remains to be tested for such
problems.
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5.6 Conclusions

We have presented a FETI-DP algorithm for elasticity problems with large
jumps in the material stiffness. This method was introduced and theoreti-
cally analyzed in [84], and the results shown in Section 5.2 for straight edges
confirm the theoretical findings in [84]. We also considered curved edges
in Section 5.4, and the results show that for moderate jumps in the Young’s
modulus and slightly bent edges it is sufficient to use two first order moments.
For arbitrarily large jumps, we advocate the use of all three first order mo-
ments. Another important situation, which usually cannot be covered by
theoretical investigations, is the case when the material discontinuities are
not aligned with the interface. Our numerical results indicate that such a
material distribution seems not to affect the condition number and the it-
eration count if the discontinuity does not appear on an interior edge. If
the discontinuity appears on an interior edge, in the experiment considered
here, a weighted edge average was a remedy. Since this weighted average can
be implemented without additional cost, we suggest it as the default setting.
Further, extensive numerical tests for real-world, industrial engineering prob-
lems should be pursued. First results for a hemisphere consisting of different
material layers are also provided.
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Chapter 6

Almost Incompressible
Elasticity Problems

In finite element approximations for problems in solid mechanics volumetric
locking can appear. This can especially be the case when incompressible ma-
terials are discretized with standard low order finite element discretizations,
which do not ensure uniform convergence in the incompressible limit. Meth-
ods where the strain or stress field is enriched by the addition of carefully
chosen basis functions, see, e.g., [124], are popular and have proven to be
highly effective. In this section, we are interested in pure displacement based
formulations, which are obtained by local static condensation of a mixed
problem satisfying a uniform inf-sup condition.

This section is based on joint work with Wohlmuth and Klawonn and
has been published in a proceedings paper [79]. Here, we work with con-
forming bilinear approximations for the displacement and a discontinuous
pressure space for almost incompressible elasticity. Unfortunately, the stan-
dard Q1-P0 pairing does not satisfy a uniform inf-sup condition. To obtain
a stable scheme, we have to extract from the pressure space the so-called
checkerboard modes. For some earlier references on the construction of uni-
formly bounded domain decomposition and multigrid methods in the incom-
pressible limit, see the work for Goldfeld [54, 55] for Neumann-Neumann
methods and [144] and [117] for multigrid solvers. Let us note that there are
also recent results on FETI-DP and BDDC domain decomposition methods
for mixed finite element discretizations of Stokes’ equations, see [90] and [89],
almost incompressible elasticity, see Dohrmann [30], and on incompressible
elasticity, see Dohrmann and Lehoucq [32]. We propose a dual-primal it-
erative substructuring method for almost incompressible elasticity working
with a pure displacement formulation after having eliminated all pressure
variables. Numerical results illustrate the performance and the scalability of

145
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our method in the incompressible limit. There is a close relationship to the
work done by Dohrmann for BDDC [30].

6.1 Discretization

We recall the weak formulation of linear elasticity

2µ

∫

Ω

ε(u) : ε(v) dx + λ

∫

Ω

div(u)div(v) dx = 〈F , v〉 ∀v ∈ H1
0(Ω, ∂ΩD),

(6.1)
see Section 3.1. The parameters µ and λ are the positive Lamé constants.

Until now, we have only considered compressible linear elasticity but will
now turn to the incompressible limit. It corresponds to λ → ∞. The Lamé
parameters are related to the pair (E, ν), where E is Young’s modulus and
ν is Poisson’s ratio by

E =
µ(2µ + 3λ)

µ + λ
, ν =

λ

2(µ + λ)

or

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

cf. Section 3.1.
The finite element discretization is based on the conforming space Vh of

continuous piecewise bilinear approximations on quadrilaterals. The quasi-
uniform mesh is denoted by Th, and we assume that it has a macro-element
structure, i.e. Th is obtained by uniform refinement from a coarser mesh T m

h .
To start with, we consider the abstract pair (Vh,Mh)

2µ(ε(uh), ε(vh))0 + (divvh, ph)0 = 〈F, vh〉 ∀vh ∈ Vh ,
(divuh, qh)0 − 1

λ
(ph, qh)0 = 0 ∀qh ∈ Mh .

In terms of static condensation, we can eliminate the pressure and obtain a
displacement based formulation

∫

Ω

2µε(u) : ε(v) dx +

∫

Ω

λ ΠMh
divu ΠMh

divv dx = 〈F, v〉 ∀v ∈ Vh, (6.2)

where ΠMh
denotes the L2-projection onto Mh. It is well known that the

choice Mh = Mu
h ,

Mu
h = {q ∈ L2

0(Ω) : q|K ∈ P0(K), K ∈ Th},
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does not yield a uniform inf-sup condition, and checkerboard modes in the
pressure might be observed; see, e.g., [53]. Thus it is necessary to make Mh

a proper subset of Mu
h . There exist different possibilities to overcome this

difficulty. One option is to work with macro-elements and to extract from Mu
h

the checkerboard mode on each macro-element, as in [53]. The restrictions
of functions in Mu

h to a macro-element are spanned by the four functions
depicted in Figure 6.1.

+1 +1

+1+1

+1+1

−1 −1

+1

−1

−1

+1

+1−1

−1+1

Figure 6.1
Restrictions of the basis functions of Mu

h to a macro-element with ±1 indi-
cating the sign inside the elements.

The functions having the signs indicated in Figure 6.1 are the local
checkerboard modes pc. To obtain a stable pairing, we have to work with
Mh = M s

h,

M s
h = {q ∈ Mu

h : (q, pc)0;K = 0, K ∈ T m
h }.

From now on, we call the choice Mh = Mu
h the unstable or the not stabilized

Q1-P0 formulation and the choice Mh = M s
h the stabilized Q1-P0 formu-

lation. The analysis and the implementation will be based on the reduced
problem (6.2). We note that in both cases the L2-projection ΠMh

can be
carried out locally.

6.2 Coarse Problem

We have to decide how to choose the primal displacement variables. The sim-
plest choice is to choose them as certain selected vertices of the subdomains,
i.e. Algorithm A. Unfortunately, Algorithm A does not yield uniform bounds
in the incompressible limit. To obtain better convergence properties, we have
to introduce additional constraints. These constraints are averages over the
edges, which are enforced to have the same values across the interface. This
variant has been introduced in [86] for scalar problems and is denoted by
Algorithm B.

For our FETI-DP Algorithm B, we expect the following condition number
estimate, Theorem 6.2.1.
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Theorem 6.2.1 The condition number for the choice Mh = M s
h satisfies

κ(M−1F ) ≤ C (1 + log(H/h))2.

Here, C > 0 is independent of h,H, and the values of the Poisson ratio ν.

6.3 Numerical Results

We apply Algorithms A and B to (6.2), where Ω = (0, 1)2, and the Young’s
modulus is defined as E = 1. We will present results for different Pois-
son ratios ν. Algorithm A uses all subdomain vertices as primal constraints
and Algorithm B, additionally, introduces edge averages into the primal con-
straints. For the experiments in Table 6.1, we use a structured grid with
240 × 240 macro elements (= 480 × 480 elements). In small portions of the
boundary in all four corners of the unit square homogeneous Dirichlet bound-
ary conditions were applied, see Figure 6.2, and the domain was subjected to
a volume force directed towards (1, 1)T . The domain was decomposed into 64
square subdomains with 7 442 d.o.f. each; this results in an overall problem
with 462 722 d.o.f. The stopping criterion is a relative residual reduction of
10−10. The experiments were carried out on two Opteron 248 (2.2 GHz) 64-
bit processors. The differences in computing time between the unstable and
the stabilized Q1-P0 element, e.g. for ν = 0.4, are due to the different spar-
sity patterns of the stiffness matrices. The stabilized Q1-P0 element leads to
up to 50 percent more nonzero entries in the corresponding stiffness matrix.

For the experiments in Table 6.2, the unit square is decomposed into 4 to
1 024 subdomains with 1 250 d.o.f. each. Homogeneous Dirichlet boundary
conditions are applied on the bottom and the left side. Again, a volume force
directed towards (1, 1)T is applied. The calculations were carried out on a
single AMD Opteron 144 (1.8 GHz) 64-bit processor. We used as a stopping
criterion the relative residual reduction of 10−14. Here, as usual, we mean
the pseudo-residual which is calculated recursively in the conjugate gradient
method.



6.3. NUMERICAL RESULTS 149

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.2
Deformed configuration for the experiments in Table 6.1 (upper) and for the
experiments in Table 6.2 (lower). In the calculations finer grids are used than
the ones depicted here.
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ν It. λmax λmin Time It. λmax λmin Time
Alg. B (stabilized) (not stabilized)

0.4 23 6.98 1.0075 55s 23 6.98 1.0075 47s
0.49 23 6.81 1.0079 55s 23 6.86 1.0086 47s
0.499 24 6.79 1.0078 56s 23 6.79 1.0090 47s
0.4999 24 6.79 1.0078 56s 29 6.48 1.0087 53s
0.49999 24 6.79 1.0080 56s 55 39.98 1.0088 80s
0.499999 25 6.79 1.0076 57s 97 366 1.0086 124s
0.4999999 25 6.79 1.0078 57s 131 3632 1.0096 159s
Alg. A (stabilized) (not stabilized)

0.4 53 42.52 1.012 82s 53 42.52 1.012 81s
0.49 103 316 1.017 139s 67 85.93 1.015 78s
0.499 192 3037 1.018 241s 137 723 1.017 143s
0.4999 270 3.02× 104 1.020 332s 220 7069 1.020 221s
0.49999 368 3.02× 105 1.020 445s 315 7.05× 104 1.021 310s
0.499999 465 3.02× 106 1.022 558s >500 7.05× 105 1.037 >486s
0.4999999 >500 3.02× 107 1.032 >599s >500 7.05× 106 1.159 >484s

Table 6.1: Algorithms B and A, 462 722 d.o.f. and 64 subdomains.

Algorithm B ν = 0.4999999 ν = 0.4
N Mesh d.o.f. It. λmax λmin It. λmax λmin

4 48× 48 4 802 17 2.51 1.0011 13 2.19 1.0015
9 72× 72 10 658 21 3.38 1.0020 19 3.47 1.0024

16 96× 96 18 818 24 4.03 1.0023 22 4.13 1.0025
36 144× 144 42 050 26 4.53 1.0024 24 4.64 1.0025
64 192× 192 74 498 27 4.69 1.0024 25 4.80 1.0026

100 240× 240 116 162 29 4.75 1.0022 26 4.86 1.0025
144 288× 288 167 042 29 4.78 1.0023 27 4.88 1.0026
256 384× 384 296 450 30 4.79 1.0022 30 4.91 1.0024
576 576× 576 665 858 32 4.80 1.0021 32 4.77 1.0024

1 024 768× 768 1 182 722 32 4.80 1.0021 33 4.81 1.0024

Table 6.2: Numerical scalability of Algorithm B, Q1-P0 (stabilized).



Chapter 7

Higher Order Methods

7.1 Spectral Elements

The following section reports on results of joint work with Pavarino and Kla-
wonn [74]. In higher-order finite element methods like spectral elements or
the hp-version finite elements the accuracy of the discrete solution is im-
proved by increasing the polynomial degree of the basis functions as well
as the number of elements. The hp finite elements are usually based on
hierarchical non-nodal basis functions. They have been studied mostly in
the structural mechanics community; see, e.g., Szabó and Babuška [132] and
Schwab [119]. On the other hand, spectral elements are based on tenso-
rial nodal bases associated with Gauss-Lobatto-Legendre (GLL) quadrature
nodes. They have been studied mostly in the fluid dynamics community; see,
e.g., Canuto, Hussaini, Quarteroni, and Zang [23], Bernardi and Maday [12],
Funaro [49], Karniadakis and Sherwin [68], Deville, Fischer, and Mund [28].

Higher-order methods generate linear systems which are much more ill-
conditioned than the ones obtained from standard low-order finite elements.
The condition number of these higher-order discrete systems is still propor-
tional to the square of the element size but can be proportional to the cube
or fourth power of the polynomial degree of the basis functions. There-
fore, it is important to construct efficient preconditioners for these methods.
Particularly open to research are preconditioners for nontensorial spectral
and hp-finite elements, usually on triangular and tetrahedral elements, see
Ainsworth [3], Bica [15], Pavarino and Warburton [105], Sherwin and Casarin
[122], Giraldo and Warburton [52], Pasquetti et al. [103], and Schöberl et al.
[118]. In this section, we will focus on tensorial GLL spectral elements only.

In this section, we consider the FETI-DP method [40, 84, 76], as well
as its primal counterparts, the algorithms known as the Balancing Domain
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Decomposition methods by Constraints (BDDC) method [29, 26, 97, 98, 92],
cf. Chapter 2.

In both methods the condition number only depends weakly on the poly-
nomial degree. We will also consider the inexact versions of the FETI-DP
methods that were introduced in Chapter 4. Inexact BDDC methods have
been considered in [139] and recently in [91] and [31] for low order finite
elements.

7.1.1 Discretization

Let Tref be the reference square (−1, 1)2, and let Qp(Tref) be the set of poly-
nomials on Tref of degree p ≥ 1 in each variable. We assume that the domain
Ω can be decomposed into Ne nonoverlapping finite elements Tk of charac-
teristic diameter h,

Ω =
Ne⋃

k=1

T k,

each of which is an affine image of the reference square or cube, Tk = φk(Tref),
where φk is an affine mapping (more general maps could be considered as
well). Then, we will group these elements into N nonoverlapping subdomains
Ωi of characteristic diameter H, forming themselves a coarse finite element
partition of Ω,

Ω =
N⋃

i=1

Ωi, Ωi =

Ni⋃

k=1

T k.

Hence, the fine element partition {Tk}Ne
k=1 can be considered a refinement of

the coarse subdomain partition {Ωi}N
i=1, with matching finite element nodes

on the boundaries of neighboring subdomains.
We consider linear, selfadjoint, elliptic problems on Ω, with zero Dirichlet

boundary conditions on a part ∂ΩD of the boundary ∂Ω:
Find u ∈ V = {v ∈ H1(Ω) : v = 0 on ∂ΩD} such that

a(u, v) =

∫

Ω

ρ(x)∇u · ∇v dx =

∫

Ω

fv dx ∀ v ∈ V. (7.1)

Here, ρ(x) > 0 can be discontinuous with very different values for different
subdomains but we assume this coefficient to vary only moderately within
each subdomain Ωi. In fact, without decreasing the generality of our results,
we will only consider the piecewise constant case of ρ(x) = ρi, for x ∈ Ωi.

Conforming spectral elements discretizations consists of continuous, piece-
wise polynomials of degree p in each element:

V p = {v ∈ V : v|Ti
◦ φi ∈ Qp(Tref), i = 1, · · · , Ne}.
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A convenient tensor product basis for Vp is constructed using Gauss-Lobatto-
Legendre (GLL) quadrature points; other bases could be considered, such as
those based on integrated Legendre polynomials common in the p-version
finite element literature; see Szabó and Babuška [132]. Let {ξi}p

i=0 denote
the set of GLL points on [−1, 1], and let σi denote the quadrature weight
associated with ξi. Let li(·) be the Lagrange interpolating polynomial which
vanishes at all the GLL nodes except ξi, where it equals one. The basis
functions, e.g. on the reference square, are then defined by a tensor product
as

li(x1)lj(x2), 0 ≤ i, j ≤ p.

This basis is nodal since every element of Qp(Tref) can be written as

u(x1, x2) =

p∑
i=0

p∑
j=0

u(ξi, ξj)li(x1)lj(x2).

Each integral of the continuous model (7.1) is replaced by GLL quadra-
ture. On Tref ,

(u, v)p,Tref
=

p∑
i=0

p∑
j=0

u(ξi, ξj)v(ξi, ξj)σiσj,

and on all of Ω,

(u, v)p,Ω =
Ne∑

k=1

p∑
i,j=0

(u ◦ φk)(ξi, ξj)(v ◦ φk)(ξi, ξj)|Jk|σiσj,

where |Jk| is the determinant of the Jacobian of φk. This inner product is
uniformly equivalent to the standard L2−inner product on Qp(Tref):

‖u‖2
L2(Tref)

≤ (u, u)p,Tref
≤ C‖u‖2

L2(Tref)
∀u ∈ Qp(Tref), (7.2)

see Bernardi and Maday [12]. These bounds imply an analogous uniform
equivalence between the H1(Ω)-seminorm and the discrete seminorm (∇u,∇u)n,Ω

based on GLL quadrature. Applying these quadrature rules, we obtain the
discrete bilinear form

ap(u, v) =
Ne∑

k=1

(ρk∇u,∇u)p,Tk

and the discrete elliptic problem:
Find u ∈ V p such that

ap(u, v) = (f, v)p,Ω ∀v ∈ V p. (7.3)
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Having chosen a basis for V p, the discrete problem (7.3) is then turned
into a linear system of algebraic equations

Kgug = fg, (7.4)

where Kg is the globally assembled, symmetric, positive definite stiffness
matrix. We have denoted with the same symbols ug and fg the vectors
representing the corresponding spectral element functions in the given basis.

7.1.2 Convergence Estimate

As shown in Toselli and Widlund [136] for the two main families of overlap-
ping Schwarz methods (Chapter 7.3) and iterative substructuring methods
of wirebasket and Neumann-Neumann type (Chapter 7.4), the main domain
decomposition results obtained for finite element discretizations of scalar el-
liptic problems can be transferred to the spectral element case using some
results by Canuto [22], Bernardi and Maday [11], and Casarin [24]. The
same tools can be used here, thus extending the main result for BDDC (see
[97], Mandel, [98], [92]) and FETI-DP, see [39], [86], [136, Chapter 6]) from
the finite element case to the spectral element case. Direct proofs have also
been given for some Neumann-Neumann and wirebasket methods, see, e.g.,
[104, 106] and the references therein.

In this section, we employ the FETI-DP and BDDC method as described
in Chapter 2 and the irFETI-DP method as described in Chapter 4.

Theorem 7.1.1 Under the assumptions in this section, the BDDC and FETI-
DP preconditioned operators have the same spectrum, except for the eigen-
value one. The minimum eigenvalue is bounded by one and maximum eigen-
value bounded by

C

(
1 + log

(
p

H

h

))2

,

with C > 0 independent of p, h, H and the values of the coefficients ρi of the
elliptic operator.

We remark that this result depends on the tensorial structure of classi-
cal spectral elements based on GLL nodal bases. For nontensorial spectral
and hp elements on triangles or tetrahedra, the construction and analysis
of efficient preconditioners remains in most cases an open problem. Never-
theless, some results are available in Ainsworth [3], Bica [15], and Schöberl
et al. [118], and numerical studies can be found in Pavarino and Warburton
[105], Sherwin and Casarin [122], and Pasquetti et al. [103].
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7.1.3 Numerical Results for FETI-DP and BDDC

We first investigate the growth of the condition number for an increasing
number of subdomains. Note that we always have the lower bound of one
for the smallest eigenvalue. We expect to see the largest eigenvalue, and
thus also the condition number, approach a constant value, independent of
coefficient jumps but dependent on the polynomial degree. In Tables 7.1 and
7.2 and Figure 7.1, we see the expected behavior for different polynomial
degrees and fixed H/h = 1. In Tables 7.3, 7.4 and Figure 7.3, we see that
this is also the case for H/h = 2.

From these results, we use a number of N ≥ 256 subdomains in our
experiments to study the asymptotic behavior of the condition number. In
Table 7.5 and Figure 7.3, we choose a sufficient number of subdomains and
increase the polynomial degree from 2 to 32. We see that the condition
number grows only slowly and, from Figure 7.3 (lower), we see that we indeed
have the expected C(1 + log(p))2-bound.

In Table 7.6 and Figure 7.4, we then keep the polynomial degree fixed
to p = 4 and p = 8 and increase H/h from 1 to 32. Again, the condition
number behaves as expected and the C(1 + log(H/h))2 bound is confirmed
from Figure 7.4 (lower). Thus, we have confirmed a bound on the condition
number of C(1 + log(pH/h))2.

In Table 7.6, we have also shown the CPU timings and iteration counts
of irFETI-DP, see Chapter 4, additionally to FETI-DP. From the table we
see that also for spectral elements irFETI-DP compares very well with stan-
dard FETI-DP. Here, we again have used BoomerAMG [66] for the coarse
problem, cf. Section 4.9. Only for completeness, do we report on the parallel
scalability for 2 to 16 processors in Table 7.7 for FETI-DP and irFETI-DP.
Both methods show basically the same performance and same scalability also
for spectral elements.
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Unpreconditioned BDDC FETI-DP
Schur Complement

p N It. λmax λmin It. λmax λmin It. λmax λmin
2 4 3 4.89 1.3333 2 1.05 1 2 1.05 1

16 15 5.47 0.3905 6 1.45 1.0006 6 1.45 1.0026
64 33 5.62 0.1015 8 1.61 1.0010 8 1.61 1.0014

256 66 5.66 0.0256 8 1.64 1.0010 8 1.64 1.0028
576 97 5.67 0.0114 8 1.65 1.0012 8 1.66 1.0032

3 4 7 5.44 0.7823 3 1.21 1 3 1.21 1
16 21 5.73 0.2332 8 2.10 1.0010 8 2.10 1.0007
64 26 5.81 0.0608 11 2.32 1.0005 11 2.32 1.0006

256 86 5.83 0.0154 11 2.37 1.0005 11 2.37 1.0006
576 129 5.83 0.0068 11 2.38 1.0004 11 2.38 1.0006

4 4 10 5.60 0.5440 3 1.37 1 3 1.37 1
16 25 5.78 0.1655 9 2.65 1.0011 9 2.65 1.0018
64 51 5.82 0.0433 13 2.95 1.0013 12 2.95 1.0022

256 100 5.84 0.0110 13 3.02 1.0011 13 3.01 1.0020
576 146 5.84 0.0049 13 3.02 1.0010 13 3.03 1.0020

8 4 8 5.80 0.2381 4 1.89 1 4 1.89 1
16 38 5.86 0.0761 12 4.38 1.0008 12 4.38 1.0007
64 75 5.88 0.0202 17 4.88 1.0015 16 4.86 1.0013

256 143 5.88 0.0051 17 5.00 1.0016 17 5.00 1.0014
576 208 5.89 0.0023 17 5.01 1.0017 17 5.01 1.0015

16 4 29 5.95 0.1099 5 2.57 1 5 2.57 1
16 59 5.97 0.0364 14 6.65 1.0009 14 6.65 1.0009
64 110 5.97 0.0097 21 7.42 1.0012 21 7.42 1.0013

256 206 5.97 0.0025 21 7.59 1.0012 21 7.58 1.0017
576 307 5.97 0.0011 21 7.61 1.0012 21 7.62 1.0016

32 4 43 6.09 0.0525 6 3.42 1 6 3.42 1
16 89 6.09 0.0178 16 9.48 1.0010 16 9.48 1.0012
64 161 6.09 0.0048 25 10.58 1.0013 25 10.58 1.0012

256 298 6.09 0.0012 26 10.81 1.0013 25 10.81 1.0017
576 437 6.09 0.0005 26 10.86 1.0015 25 10.86 1.0018

Table 7.1
One element per subdomain (H/h = 1), BDDC and FETI-DP, ρij = 1,
random right hand side, rtol=10−7.
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Unpreconditioned BDDC FETI-DP
Schur Complement

p N It. λmax λmin It. λmax λmin It. λmax λmin
2 4 5 6.41 1.4149 2 1.05 1 2 1.05 1

16 30 20.32 0.3000 7 1.46 1.0006 6 1.46 1.0018
64 250 203.12 0.0278 9 1.61 1.0009 8 1.61 1.0013

256 >1000 2.03×104 0.0034 9 1.64 1.0011 8 1.62 1.0013
576 >1000 2.03×106 0.0845 9 1.62 1.0008 8 1.63 1.0016

3 4 9 7.21 0.8299 3 1.21 1 3 1.21 1
16 42 22.79 0.1781 9 2.10 1.0010 8 2.10 1.0004
64 374 227.91 0.0165 11 2.27 1.0007 11 2.31 1.0006

256 >1000 2.28×104 0.0046 12 2.34 1.0007 12 2.36 1.0004
576 >1000 2.28×106 0.1094 13 2.36 1.0010 13 2.35 1.0006

4 4 13 7.47 0.5784 3 1.37 1 3 1.37 1
16 55 23.63 0.1257 10 2.65 1.0010 10 2.65 1.0008
64 524 236.30 0.0117 13 2.94 1.0022 13 2.94 1.0011

256 >1000 2.36×104 0.0060 14 3.01 1.0004 14 3.00 1.0013
576 >1000 2.36×106 0.1441 15 2.99 1.0005 15 3.00 1.0005

8 4 22 7.88 0.2545 4 1.89 1 4 1.89 1
16 86 24.93 0.0570 13 4.37 1.0008 12 4.37 1.0004
64 917 249.26 0.0053 17 4.86 1.0013 18 4.86 1.0009

256 >1000 2.49×104 0.0074 20 4.93 1.0014 19 4.97 1.0008
576 >1000 2.49×106 0.1978 20 4.96 1.0012 20 4.98 1.0009

16 4 33 8.22 0.1178 5 2.57 1 5 2.57 1
16 150 25.99 0.0270 15 6.63 1.0010 15 6.63 1.0008
64 >1000 259.89 0.0025 21 7.38 1.0012 21 7.38 1.0008

256 >1000 2.60×104 0.0082 26 7.54 1.0006 25 7.53 1.0009
576 >1000 2.60×106 0.2477 26 7.54 1.0010 26 7.55 1.0006

32 4 52 8.46 0.0564 6 3.42 1 6 3.42 1
16 230 26.74 0.0131 17 9.44 1.0008 17 9.44 1.0009
64 >1000 267.39 0.0012 26 10.52 1.0012 25 10.52 1.0009

256 >1000 2.67×104 0.0092 31 10.72 1.0007 31 10.74 1.0008
576 >1000 2.67×106 0.2878 34 10.78 1.0006 33 10.77 1.0005

Table 7.2
One element per subdomain (H/h = 1), BDDC and FETI-DP, ρij = 10(i−j)/4,
random right hand side, rtol=10−7.
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Unpreconditioned BDDC
Schur Complement

p N It. λmax λmin It. λmax λmin
2 4 10 5.36 0.5836 3 1.20 1.0000

16 22 5.49 0.1680 7 2.06 1.0011
64 46 5.51 0.0435 10 2.27 1.0012

256 89 5.53 0.0110 9 2.33 1.0013
3 4 14 5.54 0.3669 3 1.43 1.0000

16 30 5.60 0.1066 9 2.84 1.0005
64 58 5.61 0.0028 11 3.16 1.0019

256 112 5.61 0.0070 12 3.21 1.0011
4 4 17 5.64 0.2660 4 1.62 1.0000

16 35 5.66 0.0780 10 3.51 1.0008
64 67 5.67 0.0020 13 3.91 1.0019

256 130 5.67 0.0051 13 4.00 1.0018
8 4 26 5.80 0.1254 4 2.22 1.0001

16 51 5.81 0.0375 12 5.49 1.0024
64 96 5.81 0.0098 17 6.12 1.0024

256 184 5.81 0.0025 17 6.26 1.0028
16 4 39 5.95 0.0606 5 2.99 1.0001

16 77 5.95 0.0184 13 8.02 1.0015
64 139 5.95 0.0048 20 8.95 1.0019

256 268 5.95 0.0012 21 9.16 1.0018
32 4 58 6.09 0.0297 6 3.91 1.0001

16 111 6.09 0.0091 15 11.12 1.0014
64 201 6.09 0.0024 24 12.41 1.0015

256 384 6.09 0.0006 24 12.69 1.0021

Table 7.3
Four elements per subdomain (H/h = 2), BDDC, ρij = 1, random right hand
side, rtol=10−7.
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Unpreconditioned BDDC
Schur Complement

p N It. λmax λmin It. λmax λmin
2 4 13 7.75 0.6199 3 1.20 1.0000

16 61 31.01 0.1139 8 2.06 1.0013
64 830 496.15 0.0069 10 2.27 1.0016

256 >1000 1.27×105 0.0128 11 2.31 1.0009
3 4 17 8.04 0.3922 3 1.43 1.0000

16 78 32.15 0.0722 9 2.84 1.0006
64 >1000 514.41 0.0044 12 3.15 1.0014

256 >1000 1.32×105 0.0174 13 3.20 1.0007
4 4 22 8.19 0.2856 4 1.62 1.0000

16 95 32.76 0.1655 9 3.50 1.0001
64 >1000 524.16 0.0032 14 3.89 1.0013

256 >1000 1.34×105 0.0187 16 3.94 1.0009
8 4 34 8.54 0.1356 4 2.22 1.0001

16 161 34.14 0.0252 13 5.47 1.0029
64 >1000 546.27 0.0015 17 6.08 1.0022

256 >1000 1.40×105 0.0252 21 6.21 1.0009
16 4 52 8.88 0.0657 5 2.99 1.0001

16 256 35.51 0.0123 14 7.99 1.0015
64 >1000 568.23 0.0008 21 8.89 1.0018

256 >1000 1.45×105 0.0271 27 9.05 1.0011
32 4 78 9.13 0.0323 6 3.91 1.0001

16 371 36.52 0.0061 17 11.07 1.0018
64 >1000 584.37 0.0014 25 12.31 1.0016

256 >1000 1.45×105 0.0321 33 12.50 1.0014

Table 7.4
Four elements per subdomain (H/h = 2), BDDC, ρij = 2i−j, random right
hand side, rtol=10−7.
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FETI-DP irFETI-DP

H/h N p It. λmax λmin Time It. Time D.o.f.
(16 Proc.) (16 Proc.)

1 4096 2 7 1.66 1.0074 2s 7 2s 16 129
3 9 2.39 1.0017 2s 8 2s 36 481
4 10 3.05 1.0217 4s 9 3s 65 025
6 12 4.14 1.0098 4s 11 3s 146 689
8 13 5.03 1.0067 6s 11 4s 261 121

10 14 5.81 1.0157 8s 12 5s 408 321
12 15 6.48 1.0260 11s 13 8s 588 289
14 15 7.09 1.0267 15s 13 11s 801 025
16 16 7.64 1.0121 23s 14 16s 1 046 529
18 16 8.15 1.0107 33s 14 24s 1 324 801
20 17 8.62 1.0114 53s 14 37s 1 635 841
22 17 9.05 1.0123 75s 15 57s 1 979 649
24 18 9.46 1.0138 94s 16 81s 2 356 225
26 18 9.85 1.0160 115s 16 103s 2 765 569
28 18 10.21 1.0183 155s 16 130s 3 207 681
30 18 10.56 1.0206 200s 17 176s 3 682 561
32 19 10.89 1.0227 256s 17 228s 4 190 209

2 1024 2 9 2.35 1.0020 1s 8 1s 16 129
3 11 3.26 1.0167 1s 11 1s 36 481
4 12 4.03 1.0146 2s 11 2s 65 025
6 14 5.29 1.0098 2s 12 2s 146 689
8 15 6.31 1.0232 4s 12 3s 261 121

10 16 7.17 1.0304 6s 14 5s 408 321
12 17 7.93 1.0177 10s 15 7s 588 289
14 18 8.60 1.0118 17s 16 13s 801 025
16 18 9.21 1.0133 23s 17 20s 1 046 529
18 19 9.77 1.0154 30s 17 26s 1 324 801
20 19 10.28 1.0186 43s 17 38s 1 635 841
22 19 10.76 1.0218 60s 18 55s 1 979 649
24 20 11.21 1.0247 83s 18 76s 2 356 225
26 21 11.63 1.0271 106s 18 106s 2 765 569
28 21 12.03 1.0294 164s 18 146s 3 207 681
30 21 12.40 1.0309 219s 18 195s 3 682 561
32 22 12.76 1.0230 276s 18 244s 4 190 209

4 256 2 11 3.18 1.0150 1s 11 1s 16 129
3 13 4.26 1.0095 1s 12 1s 36 481
4 14 5.14 1.0146 1s 14 1s 65 025
6 16 6.56 1.0262 2s 15 2s 146 689
8 18 7.70 1.0230 4s 17 4s 261 121

10 19 8.65 1.0112 6s 17 6s 408 321
12 19 9.49 1.0143 9s 18 9s 588 289
14 19 10.22 1.0184 14s 18 14s 801 025
16 20 10.89 1.0223 21s 20 20s 1 046 529
18 21 11.49 1.0261 30s 20 29s 1 324 801
20 21 12.05 1.0267 45s 20 42s 1 635 841
22 22 12.57 1.0278 62s 21 59s 1 979 649
24 22 13.05 1.0253 86s 21 84s 2 356 225
26 23 13.51 1.0192 125s 21 116s 2 765 569
28 23 13.94 1.0188 170s 22 164s 3 207 681
30 23 14.34 1.0189 221s 22 219s 3 682 561
32 23 14.73 1.0191 328s 21 280s 4 190 209

Table 7.5
Increasing polynomial degree (p = 2, . . . , 32). Fixed subdomain sizes (H/h =
1, 2, 4). FETI-DP and inexact reduced FETI-DP (irFETI-DP, GMRES). In-
exact reduced FETI-DP uses one iteration of the parallel algebraic multigrid
solver BoomerAMG in hypre to precondition the coarse problem. We use
BoomerAMG with parallel Gauss-Seidel smoothing.
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FETI-DP

p N H/h It. λmax λmin Time D.o.f.
(16 Proc.)

4 1024 1 10 3.04 1.0209 1s 16 129
2 12 4.03 1.0146 2s 65 025
4 13 5.17 1.0094 3s 261 121
6 15 5.91 1.0182 5s 588 289
8 15 6.46 1.0265 8s 1 046 529

10 16 6.91 1.0295 13s 1 635 841
12 16 7.29 1.0261 20s 2 356 225
14 16 7.62 1.0183 25s 3 207 681
16 17 7.91 1.0158 32s 4 190 209
18 17 8.18 1.0144 40s 5 303 809
20 18 8.41 1.0108 50s 6 548 481
22 18 8.63 1.0112 63s 7 924 225
24 18 8.83 1.0119 74s 9 431 041
26 18 9.02 1.0126 87s 11 068 929
28 18 9.20 1.0134 105s 12 837 889
30 18 9.36 1.0142 125s 14 737 921
32 19 9.52 1.0150 145s 16 769 025

8 256 1 14 5.00 1.0077 1s 16 129
2 16 6.27 1.0216 2s 65 025
4 18 7.70 1.0238 4s 261 121
6 19 8.60 1.0111 8s 588 289
8 19 9.28 1.0135 13s 1 046 529

10 19 9.82 1.0162 20s 1 635 841
12 19 10.28 1.0188 25s 2 356 225
14 19 10.67 1.0211 35s 3 207 681
16 20 11.02 1.0233 45s 4 190 209
18 21 11.33 1.0251 59s 5 303 809
20 22 11.61 1.0247 80s 6 548 481
22 22 11.87 1.0253 100s 7 924 225
24 22 12.10 1.0026 120s 9 431 041
26 22 12.33 1.0258 140s 11 068 929
28 22 12.53 1.0258 161s 12 837 889
30 22 12.73 1.0251 193s 14 737 921
32 22 12.91 1.0254 232s 16 769 025

Table 7.6
Increasing subdomain sizes (H/h = 1, . . . , 32). Fixed polynomial degree
(p = 4, 8).

FETI-DP irFETI-DP

Proc. It. Time It. Time

2 22 337s 20 309s
4 22 172s 20 156s
8 22 89s 20 82s

16 22 45s 20 42s

Table 7.7: Parallel scalability for p=20, N=256, H/h=4.
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Figure 7.1
When do we reach asymptotic behavior for H/h = 1? Increasing number of
subdomains; λmax for BDDC (blue) and FETI-DP (red circles, barely visible).
Upper: Homogeneous coefficient. Lower: Jumping coefficient ρij = 10(i−j)/4.
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Figure 7.2
When do we reach asymptotic behavior for H/h = 2? Increasing number
of subdomains; λmax for BDDC. Upper: Homogeneous coefficient. Lower:
Jumping coefficient ρij = 2(i−j).
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Increasing the polynomial degree, cf. Table 7.5. Largest eigenvalue λmax ver-
sus the polynomial degree (upper),

√
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H/h = 1, 2, 4; N = 4096, 1024, 256; 16 129 – 4 190 209 d.o.f.; 2s – 280s using
16 processors.
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Increasing H/h for fixed polynomial degree, cf. Table 7.6. Largest eigen-
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√
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N = 1024, 256; 16 129 – 16 769 025 d.o.f.; 2s – 232s using 16 processors.
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7.2 hp Finite Elements

In [134] and [133] Toselli and Vasseur develop, analyze and test Balancing
Neumann-Neumann and the one-level FETI methods for hp finite element
approximations. They focus on scalar elliptic problems on geometrically
refined boundary layer meshes in 2D and later in 3D [135] and show a bound
on the condition number that is polylogarithmic in the spectral degree and
is also reflected in the numerical results presented in [134].

The problems in this section are taken from Toselli and Vasseur [134] who
also provided their hp discretizations, see [134] for details on the meshes and
discretizations.

In Problem IV from [134] a Laplace equation on the 2D unit square on
an anisotropic mesh is considered. Anisotropic meshes can be applied to
singularly perturbed problems although we do not consider them here. We
have 3 × 3 subdomains, and a mesh refinement towards the boundary at
x = 0 and y = 0. The number of layers n and the polynomial degree k
is simultaneously increased. The results in Table 7.8 and 7.9 correspond to
Table 10 (Neumann-Neumann) and Table 11 (one-level FETI) in [134], see
also Figure 7.5. We apply our usual FETI-DP algorithm using vertex con-
straints. We find that the condition number of FETI-DP compares favorable
to those of the Neumann-Neumann and one-level FETI and shows the same
polylogarithmic behavior, see Figure 7.5.

In the second problem, Problem V from [134], the unit square is decom-
posed into 2 × 2 subdomains and the mesh is geometrically refined towards
the interface of the subdomains at x = 1/2, y = 1/2. We also have a co-
efficient jump of 104 in a checkerboard distribution. Again, the number of
layers n corresponds to the polynomial degree k. In contrast to the findings
in [134] where linear growth in k was observed we observe a condition number
of the FETI-DP operator nearly equal to one. However, the performance in
terms of iterations counts is similar to the results obtained for the one-level
FETI and the Neumann-Neumann method. It is well known for low order
discretizations that the FETI-DP method performs exceptionally well for the
special case of the 2D checker board problem.

All timings are given for a serial 2 GHz Intel Pentium IV personal com-
puter using an early version of the FETI-DP implementation described in
Chapter 3.
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Problem IV from [134]:
Laplace problem, boundary layer mesh. 9 subdomains.

FETI-DP Algorithm A. Rtol = 10−14.

k It. λmax λmin κ Time

2 9 1.368 1.000 1.368 0.03s
3 12 1.924 1.001 1.922 0.02s
4 14 2.387 1.000 2.386 0.06s
5 15 2.815 1.000 2.814 0.13s
6 15 3.189 1.001 3.187 0.25s
7 16 3.537 1.001 3.534 0.57s
8 17 3.851 1.000 3.850 1.4s
9 17 4.146 1.000 4.144 2.3s

10 18 4.419 1.000 4.417 4.3s
11 18 4.677 1.001 4.674 7.2s
12 18 4.918 1.001 4.915 13s

Table 7.8
Laplace problem with 9 subdomains. With Dirichlet preconditioner.

Problem IV from [134]:
Laplace problem, boundary layer mesh. 9 subdomains.

FETI-DP Algorithm A. Rtol = 10−14. No precon.

k It. λmax λmin κ Time

2 18 1.870 0.509 3.674 0.04s
3 30 4.421 0.234 18.915 0.05s
4 51 7.263 0.123 59.289 0.16s
5 72 10.523 0.0656 160.478 0.38s
6 107 14.014 0.0350 400.474 0.95s
7 153 17.785 0.0185 962.121 2.2s
8 226 21.743 0.00964 2.254× 103 7.8s
9 296 25.908 0.00524 4.940× 103 16s

10 429 30.228 0.00254 11.892× 104 35s
11 497 34.711 0.00132 26.325× 104 68s
12 500 39.328 6.67032 × 10−4 58.959× 104 95s

Table 7.9
Laplace problem with 9 subdomains. Without preconditioner.
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Problem V from [134]: Interface problem. 4 subdomains.
Checkerboard. ρ1 = 104, ρ2 = 1.

FETI-DP Algorithm A. Rtol = 10−14.

k It. λmax λmin κ Time

2 3 1.000 1.000 1.000 0.01s
3 4 1.001 1.000 1.001 0.02s
4 4 1.001 1.000 1.001 0.06s
5 4 1.001 1.000 1.001 0.16s
6 4 1.002 1.000 1.002 0.47s
7 4 1.002 1.000 1.002 1.11s
8 4 1.003 1.000 1.003 2.40s

Table 7.10
Interface problem with 4 subdomains. With Dirichlet preconditioner.

Problem V from [134]: Interface problem. 4 subdomains.
Checkerboard. ρ1 = 104, ρ2 = 1.

FETI-DP Algorithm A. Rtol = 10−14. No precon.

k It. λmax λmin κ Time

2 10 0.773 0.411 1.883 0.02s
3 18 1.664 0.370 4.500 0.03s
4 25 2.684 0.358 7.491 0.12s
5 31 3.845 0.353 10.899 0.27s
6 39 5.106 0.349 14.615 0.77s
7 43 6.464 0.347 18.630 2.16s
8 49 7.897 0.345 22.883 4.20s

Table 7.11
Interface problem with 4 subdomains. Without preconditioner.
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Upper diagram: Condition number for the boundary layer mesh (Prob-
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