1,718 research outputs found

    Multikernel convolutional neural network for sEMG based hand gesture classification

    Get PDF
    openIl riconoscimento dei gesti della mano è un argomento ampiamente discusso in letteratura, dove vengono analizzate diverse tecniche sia in termini di tipi di segnale in ingresso che di algoritmi. Tra i più utilizzati ci sono i segnali elettromiografici (sEMG), già ampiamente sfruttati nelle applicazioni di interazione uomo-macchina (HMI). Determinare come decodificare le informazioni contenute nei segnali EMG in modo robusto e accurato è un problema chiave per il quale è urgente trovare una soluzione. Recentemente, molti incarichi di riconoscimento dei pattern EMG sono stati affrontati utilizzando metodi di deep learning. Nonostante le elevate prestazioni di questi ultimi, le loro capacità di generalizzazione sono spesso limitate dall'elevata eterogeneità tra i soggetti, l'impedenza cutanea, il posizionamento dei sensori, ecc. Inoltre, poiché questo progetto è focalizzato sull'applicazione in tempo reale di protesi, ci sono maggiori vincoli sui tempi di risposta del sistema che riducono la complessità dei modelli. In questa tesi è stata testata una rete neurale convoluzionale multi-kernel su diversi dataset pubblici per verificare la sua generalizzabilità. Inoltre, è stata analizzata la capacità del modello di superare i limiti inter-soggetto e inter-sessione in giorni diversi, preservando i vincoli legati a un sistema embedded. I risultati confermano le difficoltà incontrate nell'estrazione di informazioni dai segnali emg; tuttavia, dimostrano la possibilità di ottenere buone prestazioni per un uso robusto di mani prostetiche. Inoltre, è possibile ottenere prestazioni migliori personalizzando il modello con tecniche di transfer learning e di adattamento al dominio.Hand gesture recognition is a widely discussed topic in the literature, where different techniques are analyzed in terms of both input signal types and algorithms. Among the most widely used are electromyographic signals (sEMG), which are already widely exploited in human-computer interaction (HMI) applications. Determining how to decode the information contained in EMG signals robustly and accurately is a key problem for which a solution is urgently needed. Recently, many EMG pattern recognition tasks have been addressed using deep learning methods. Despite their high performance, their generalization capabilities are often limited by high heterogeneity among subjects, skin impedance, sensor placement, etc. In addition, because this project is focused on the real-time application of prostheses, there are greater constraints on the system response times that reduce the complexity of the models. In this thesis, a multi-kernel convolutional neural network was tested on several public datasets to verify its generalizability. In addition, the model's ability to overcome inter-subject and inter-session constraints on different days while preserving the constraints associated with an embedded system was analyzed. The results confirm the difficulties encountered in extracting information from emg signals; however, they demonstrate the possibility of achieving good performance for robust use of prosthetic hands. In addition, better performance can be achieved by customizing the model with transfer learning and domain-adaptationtechniques

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Advances in Neural Signal Processing

    Get PDF
    Neural signal processing is a specialized area of signal processing aimed at extracting information or decoding intent from neural signals recorded from the central or peripheral nervous system. This has significant applications in the areas of neuroscience and neural engineering. These applications are famously known in the area of brain–machine interfaces. This book presents recent advances in this flourishing field of neural signal processing with demonstrative applications

    Annotated Bibliography: Anticipation

    Get PDF

    CES-513 Stages for Developing Control Systems using EMG and EEG Signals: A survey

    Get PDF
    Bio-signals such as EMG (Electromyography), EEG (Electroencephalography), EOG (Electrooculogram), ECG (Electrocardiogram) have been deployed recently to develop control systems for improving the quality of life of disabled and elderly people. This technical report aims to review the current deployment of these state of the art control systems and explain some challenge issues. In particular, the stages for developing EMG and EEG based control systems are categorized, namely data acquisition, data segmentation, feature extraction, classification, and controller. Some related Bio-control applications are outlined. Finally a brief conclusion is summarized.

    Algorithms for Neural Prosthetic Applications

    Get PDF
    abstract: In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central or peripheral). Recent studies in non-human primates and humans have shown the possibility of controlling a prosthesis for accomplishing varied tasks such as self-feeding, typing, reaching, grasping, and performing fine dexterous movements. A neural decoding system comprises mainly of three components: (i) sensors to record neural signals, (ii) an algorithm to map neural recordings to upper limb kinematics and (iii) a prosthetic arm actuated by control signals generated by the algorithm. Machine learning algorithms that map input neural activity to the output kinematics (like finger trajectory) form the core of the neural decoding system. The choice of the algorithm is thus, mainly imposed by the neural signal of interest and the output parameter being decoded. The various parts of a neural decoding system are neural data, feature extraction, feature selection, and machine learning algorithm. There have been significant advances in the field of neural prosthetic applications. But there are challenges for translating a neural prosthesis from a laboratory setting to a clinical environment. To achieve a fully functional prosthetic device with maximum user compliance and acceptance, these factors need to be addressed and taken into consideration. Three challenges in developing robust neural decoding systems were addressed by exploring neural variability in the peripheral nervous system for dexterous finger movements, feature selection methods based on clinically relevant metrics and a novel method for decoding dexterous finger movements based on ensemble methods.Dissertation/ThesisDoctoral Dissertation Bioengineering 201

    Electroencephalographic Signal Processing and Classification Techniques for Noninvasive Motor Imagery Based Brain Computer Interface

    Get PDF
    In motor imagery (MI) based brain-computer interface (BCI), success depends on reliable processing of the noisy, non-linear, and non-stationary brain activity signals for extraction of features and effective classification of MI activity as well as translation to the corresponding intended actions. In this study, signal processing and classification techniques are presented for electroencephalogram (EEG) signals for motor imagery based brain-computer interface. EEG signals have been acquired placing the electrodes following the international 10-20 system. The acquired signals have been pre-processed removing artifacts using empirical mode decomposition (EMD) and two extended versions of EMD, ensemble empirical mode decomposition (EEMD), and multivariate empirical mode decomposition (MEMD) leading to better signal to noise ratio (SNR) and reduced mean square error (MSE) compared to independent component analysis (ICA). EEG signals have been decomposed into independent mode function (IMFs) that are further processed to extract features like sample entropy (SampEn) and band power (BP). The extracted features have been used in support vector machines to characterize and identify MI activities. EMD and its variants, EEMD, MEMD have been compared with common spatial pattern (CSP) for different MI activities. SNR values from EMD, EEMD and MEMD (4.3, 7.64, 10.62) are much better than ICA (2.1) but accuracy of MI activity identification is slightly better for ICA than EMD using BP and SampEn. Further work is outlined to include more features with larger database for better classification accuracy

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Fusion of virtual reality and brain-machine interfaces for the assessment and rehabilitation of patients with spinal cord injury

    Get PDF
    La presente tesis está centrada en la utilización de nuevas tecnologías (Interfaces Cerebro-Máquina y Realidad Virtual). En la primera parte de la tesis se describe la definición y la aplicación de un conjunto de métricas para evaluar el estado funcional de los pacientes con lesión medular en el contexto de un sistema de realidad virtual para la rehabilitación de los miembros superiores. El objetivo de este primer estudio es demostrar que la realidad virtual puede utilizarse, en combinación con sensores inerciales para rehabilitar y evaluar simultáneamente. 15 pacientes con lesión medular llevaron a cabo 3 sesiones con el sistema de realidad virtual Toyra y se aplicó el conjunto definido de métricas a las grabaciones obtenidas con los sensores inerciales. Se encontraron correlaciones entre algunas de las métricas definidas y algunas de las escalas clínicas utilizadas con frecuencia en el contexto de la rehabilitación. En la segunda parte de la tesis se ha combinado una retroalimentación virtual con un estimulador eléctrico funcional (en adelante FES, por sus siglas en inglés Functional Electrical Stimulator), ambos controlados por un Interfaz Cerebro-Máquina (BMI por sus siglas en inglés Brain-Machine Interface), para desarrollar un nuevo tipo de enfoque terapéutico para los pacientes. El sistema ha sido utilizado por 4 pacientes con lesión medular que intentaron mover sus manos. Esta intención desencadenó simultáneamente el FES y la retroalimentación virtual, cerrando la mano de los pacientes y mostrándoles una fuente adicional de retroalimentación para complementar la terapia. Este trabajo es, de acuerdo al estado del arte revisado, el primero que integra BMI, FES y realidad virtual como terapia para pacientes con lesión medular. Se han obtenido resultados clínicos prometedores por 4 pacientes con lesión medular después de realizar 5 sesiones de terapia con el sistema, mostrando buenos niveles de precisión en las diferentes sesiones (79,13% en promedio). En la tercera parte de la tesis se ha definido una nueva métrica para estudiar los cambios de conectividad cerebral en los pacientes con lesión medular, que incluye información de las interacciones neuronales entre diferentes áreas. El objetivo de este estudio ha sido extraer información clínicamente relevante de la actividad del EEG cuando se realizan terapias basadas en BMI
    corecore