
Georgia Southern University 

Digital Commons@Georgia Southern 

Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of 

Spring 2017 

Electroencephalographic Signal Processing and 
Classification Techniques for Noninvasive Motor Imagery 
Based Brain Computer Interface 
Md Erfanul Alam 

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd 

 Part of the Acoustics, Dynamics, and Controls Commons, and the Biomechanical 
Engineering Commons 

Recommended Citation 
Alam, Md Erfanul, "Electroencephalographic Signal Processing and Classification 
Techniques for Noninvasive Motor Imagery Based Brain Computer Interface" (2017). 
Electronic Theses and Dissertations. 1591. 
https://digitalcommons.georgiasouthern.edu/etd/1591 

This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack 
N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in 
Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia 
Southern. For more information, please contact digitalcommons@georgiasouthern.edu. 

http://digitalcommons.georgiasouthern.edu/etd
http://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/
https://digitalcommons.georgiasouthern.edu/etd
https://digitalcommons.georgiasouthern.edu/cogs
https://digitalcommons.georgiasouthern.edu/etd?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/296?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/296?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/etd/1591?utm_source=digitalcommons.georgiasouthern.edu%2Fetd%2F1591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu


ELECTROENCEPHALOGRAPHIC SIGNAL PROCESSING AND CLASSIFICATION

TECHNIQUES FOR NONINVASIVE MOTOR IMAGERY BASED BRAIN

COMPUTER INTERFACE

by

MD ERFANUL ALAM

(Under the Direction of Biswanath Samanta)

ABSTRACT

In motor imagery (MI) based brain-computer interface (BCI), success depends on

reliable processing of the noisy, non-linear, and non-stationary brain activity signals for

extraction of features and effective classification of MI activity as well as translation to

the corresponding intended actions. In this study, signal processing and classification

techniques are presented for electroencephalogram (EEG) signals for motor imagery based

brain-computer interface. EEG signals have been acquired placing the electrodes following

the international 10-20 system. The acquired signals have been pre-processed removing

artifacts using empirical mode decomposition (EMD) and two extended versions of EMD,

ensemble empirical mode decomposition (EEMD), and multivariate empirical mode de-

composition (MEMD) leading to better signal to noise ratio (SNR) and reducedmean square

error (MSE) compared to independent component analysis (ICA). EEG signals have been

decomposed into independent mode function (IMFs) that are further processed to extract

features like sample entropy (SampEn) and band power (BP). The extracted features have

been used in support vector machines to characterize and identify MI activities. EMD and

its variants, EEMD, MEMD have been compared with common spatial pattern (CSP) for

different MI activities. SNR values from EMD, EEMD and MEMD (4.3, 7.64, 10.62) are

much better than ICA (2.1) but accuracy of MI activity identification is slightly better for



ICA than EMD using BP and SampEn. Further work is outlined to include more features

with larger database for better classification accuracy.

Index Words: Brain computer interface, Common spatial pattern, Empirical mode

decomposition, Independent component analysis, Support vector machine
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CHAPTER 1

INTRODUCTION

1.1 Motor Imagery Based Brain-Computer Interface

As modern assistive technology has become more sophisticated transitioning from simple

rigid objects intended to only help support the user’s weight to mechatronic devices capable

of complex reactive support and even motion, there is a growing need for enhanced user

control. Now that the hardware is sufficiently advanced, research has shifted focus to tech-

nology that allows human to communicate more easily with the devices to modify or control

the behavior. One of the foremost methods for interacting with these assistive devices is

Brain-Computer Interfacing (BCI). Brain-computer interfaces (BCIs) are a special type of

exocortex used to interact with the environment via neural signals [5]. An exocortex is a

wearable (or implanted) computer used to augment a brain’s biological high-level cognitive

processes and inform a user’s decisions and actions. The messages and commands sent

through a BCI are encoded into the user’s brain activity. Brain computer interfaces (BCIs)

can be broadly classified in two types, invasive: where electrodes are embedded into the

brain surgically and non-invasive: where the measurement sensors are placed outside the

head, on the scalp, for instance. Most noninvasive BCIs are based on electroencephalogra-

phy (EEG) that measures and records the scalp electrical activity generated by brain.

Imagining a movement or performing an action mentally without moving a limb is

known as Motor Imagery (MI). The Motor imagery produces similar effects on the brain

rhythm in the sensory-motor cortex as the real executedmovement [6]. Motor imagery based

BCI (MI-BCI), that is, the imagination of a motor action without any actual movement of

limbs, has clear practical significance, especially in neurological and mobility rehabilitation

[7]. Mobility rehabilitation is a form of physical rehabilitation used with patients who have

mobility issues, to restore their lost functions and regain previous levels of mobility or
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at least help them adapt to their acquired disabilities. In MI based BCI, a movement

could be detected from the EEG signals recorded from the appropriate position on the

cortex [8]. Measured electroencephalography (EEG) signals can be contaminated with

artifacts from other electrophysiological signal sources which are non-cerebral in origin.

This contamination decreases accuracy of neuroengineering applications such as MI-BCI.

Moreover, EEG signals are weak, nonlinear and non-stationary. Suitable signal processing

algorithms are essential to process EEG signals for artifact removal, feature extraction,

identification and classification of MI activities in successful applications of MI-BCI.

1.2 Objectives and Scope of the Present Work

The main hypothesis of this study is: if suitable algorithms are used for artifact removal and

feature extraction frommotor imagery based EEG signals, the signal to noise ratio (SNR) of

pre-processed EEG signals will improve leading to distinct features for better identification

and classification of MI-BCI activities. To test the hypothesis, a fully data-driven time-

frequency analysis technique namely, empirical mode decomposition (EMD) [9] has been

used to process the noisy, weak, nonlinear and non-stationary motor imagery EEG signals.

Two extended versions of EMD, namely ensemble empirical mode decomposition (EEMD)

[10] and multivariate empirical mode decomposition (MEMD) [11] have been used and

compared with common spatial pattern (CSP) of BCI2000 [12]. To test the hypothesis, the

following objectives were set in this work:

• Removal of artifacts from the raw EEG signals acquired for different actual motor

actions and MI activities.

• Comparison of performance of EMD and its variants, EEMD and MEMD with the

CSP based approach for artifact removal.

• Extraction of features (r square coefficient, spectral power, band power and sample
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entropy)from the pre-processed EEG signals for motor task identification.

• Identification and classification of actual motor actions and MI activities using ex-

tracted features.

• Comparison of accuracy of mental task identification for EMD and CSP based ap-

proaches.

To achieve these objectives, experiments were set up with the EEG system in Bio-

Inspired Robotics and Intelligent Systems (B-IRIS) lab. Three voluntary subjects were

used to acquire EEG signals. A programmed instruction was given to them to maintain a

sequence for doing their motor tasks. EEG signals were preprocessed for artifact removal.

Two levels of artifact removal were associated with the EEG signals, namely, power line

noise removal and eye blink artifact removal. Two features, namely band power (BP) and

sample entropy (SampEn) were extracted from the reconstructed EEG signals after removal

of artifacts. Extracted features were used for identification and classification of different

MI activities.

1.3 Organization of the Thesis

The rest of thesis is organized as follows. In Chapter 2 a review of literature relevant to the

area of this research is presented. First the fundamentals of BCI and measurement of brain

activity EEG signals of a subject to operate a BCI system are discussed. The oscillatory

nature of brain signals and corresponding frequency bands are described next. It is followed

with a discussion on the origins of artifacts found in EEG signals and the process of artifact

removal. Finally, different feature extraction techniques are presented along with a brief

discussion on classification techniques.

In Chapter 3 the methodology used in this study is presented. First a description of EEG

system along with the type of electrodes, the brain cap, Synamps RT amplifier and filter
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are discussed. Next the data acquisition system using BCI2000 is presented. The signal

processing algorithms which are used to remove the artifacts from the raw EEG signal are

described next. Finally, feature extraction and classification algorithms that are used in this

study are discussed.

In Chapter 4 the results of this study are presented. The acquired EEG signals for different

motor activities are presented first. Next identification of artifacts in EEG signals and

removal of artifacts are presented using the signal processing techniques of EMD and the

extensions, EEMD and MEMD. It is followed with presentation of performance results

of signal to noise ratio (SNR) and mean square error (MSE) for the signal processing

algorithms based on EMD and CSP. Next results of extraction of features like r square

coefficient, spectral power, band power and sample entropy are discussed. Finally, results

of identification and classification accuracy of the actual and the imagined motor tasks with

support vector machine (SVM) are presented.

In Chapter 5 the main features of the present work are summarized first. The chapter is

concluded with an outline of scope of future extensions of the work.
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CHAPTER 2

LITERATURE REVIEW

Brain computer interfaces (BCIs) are aimed at restoring crucial functions to people who are

severely disabled by a wide variety of neuromuscular disorders, and at enhancing functions

in healthy individuals. Significant advances have been made in the development of BCIs

where intracranial electrophysiological signals are recorded and interpreted to decode the

intent of subjects and control external devices [13, 14]. Noninvasive BCIs have also long

been pursued from scalp recorded noninvasive electroencephalograms (EEGs). Among

such noninvasive BCIs, sensorimotor rhythm (SMR)-based BCIs have been developed

using a motor imagery paradigm [15,16]. The efficacy of noninvasive SMR-based BCIs is

supported by research indicating that the ability to generate SMRs remains present in users

with other neurodegenerative disorders such as muscular dystrophy and spinal muscular

atrophy [17].

2.1 Measurement of Brain Activity Signals

The first step required to operate a BCI involves measuring the subject’s brain activity

signals. Different kinds of brain signals, that are easily observable and controllable, have

been identified as suitable for a BCI [5]. Various techniques for measuring brain activity

signals within a BCI [18] include, Magnetoencephalography (MEG) [19, 20], functional

Magnetic Resonance Imaging (fMRI) [21], Near InfraRed Spectroscopy (NIRS) [22],

and Electrocorticography (ECoG) [23] or implanted electrodes, placed under the skull.

Figure 2.1 shows some of these techniques. However, the widely used technique is

ElectroEncephaloGraphy (EEG) [18] as EEG is non-invasive, relatively less expensive and

provides a good time resolution. Consequently, most current BCI systems are based on

EEG to measure brain activity signals. Thus, in this thesis work, EEG based BCI design

has been considered.
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Oscillatory activity-based BCI techniques make use of both spatial and spectral infor-

mation through changes in power in some specific frequency bands, in some specific brain

areas. As an example, a basic design for a motor-imagery BCI would exploit the spatial

information by extracting features only from EEG channels localized over the motor areas

of the brain, typically channels C3 for right hand movements, Cz for foot movements and C4

for left hand movements. It would exploit the spectral information by focusing on frequency

bands µ (8 to 12 Hz) and β (16 to 24 Hz). More precisely, for a BCI that can recognize

left hand MI versus right hand MI, the basic features extracted would be the average band

power in 8 to 12 Hz and 16 to 24 Hz from both channels C3 and C4. Therefore, the EEG

signals would be described by only 4 features. There are many ways to compute band power

features from EEG signals [24]. However, a simple, popular and efficient one is to first

band-pass filter the EEG signal from a given channel into the frequency band of interest,

then to square the resulting signal to compute the signal power, and finally to average it over

time.

2.2 Invasive and Non- Invasive BCI

Though EEG is the most widely used type of signals in BCI, it should be noted that a large

and rapidly growing part of BCI research is dedicated to the use of implanted electrodes

which measure the activity of groups of neurons [1, 25]. Figure 2.1 shows two basic

kinds of brain computer interfaces and signals that could be recorded from these types.

Implanted electrodes make it possible to obtain signals with a much better quality and

a much better spatial resolution than with non-invasive methods [26]. Some invasive

methods can measure the activity of single neurons while a non-invasive method such as

EEG measures the resulting activity of thousands of neurons. As such, it is suggested

that invasive BCI could obtain better results, in terms of performances than non-invasive

methods, and especially than EEG. However, this statement still needs to be confirmed and
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is still a topic of debate within the BCI community. Indeed, even if EEG-based BCI are

based on much noisier and coarser signals than those of invasive BCI, some studies have

reported that they can reach similar information transfer rates [27]. The main drawback

of invasive BCI is precisely the fact that they are invasive, which requires that the subject

endures a surgery operation in order to use the system. Moreover, implanted electrodes

have a limited lifetime, which makes the subject endure regular surgery operations in order

to replace the electrodes. Then, the use of implanted electrodes might be dangerous for the

health of the subjects. Finally, implanting electrodes in a human brain also raises numerous

ethics problems. These points make non-invasive BCI, and especially EEG-based BCI, the

most widely used and the most popular.

Figure 2.1: Signal acquisition methods for Brain Computer Interface

2.3 Electroencephalography (EEG)

Electroencephalography measures and records the electrical activity generated by the brain

using electrodes placed on the scalp. EEG measures the sum of the post-synaptic potentials

generated by thousands of neurons having the same radial orientation with respect to the
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scalp. The first EEG measurements on a human subject have been conducted in 1924 by

Hans Berger. It is at that time that he worked out the name of electroencephalogram. His

fundamental discovery was published in 1929 [28]. Signals recorded by EEG have a very

weak amplitude, in the order of some microvolts. It is thus necessary to strongly amplify

these signals before digitizing and processing them. Typically, EEG signals measurements

are performed using a number of electrodes which varies from 1 to about 256, these

electrodes being generally attached using an elastic cap. The contact between the electrodes

and the skin is generally enhanced by the use of a conductive gel or paste. This makes the

electrode montage procedure a generally tedious and lengthy operation. It is interesting to

note that BCI researchers have recently proposed and validated dry electrodes for BCI, that

is, electrodes which do not require conductive gels or pastes for use [29]. However, the

performance of the resulting BCI (in terms of maximum information rate) were, on average,

30% lower than the one obtained with a BCI based on electrodes that use conductive gels or

pastes. Electrodes are generally placed and named according to a standard model, namely,

the 10- 20 international system [30].

EEG signals are composed of different oscillations named rhythms [1]. These rhythms

have distinct properties in terms of spatial and spectral localization. There are 6 classical

brain rhythms shown in figure 2.2

• Delta (δ) rhythm: This is a slow rhythm (1-4 Hz), with a relatively large amplitude,

which is mainly found in adults during a deep sleep.

• Theta (θ) rhythm: This a slightly faster rhythm (4-7 Hz), observed mainly during

drowsiness and in young children.

• Alpha (α) rhythm: These are oscillations, located in the 8-12 Hz frequency band,

which appear mainly in the posterior regions of the head (occipital lobe) when the

subject has closed eyes or is in a relaxation state.
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• Mu (µ) rhythm: These are oscillations in the 8-13 Hz frequency band, being located

in the motor and sensorimotor cortex. The amplitude of this rhythm varies when

the subject performs movements. Consequently, this rhythm is also known as the

sensorimotor rhythm.

Figure 2.2: different brain rhythms as measured by EEG [1]

• Beta (β) rhythm: This is a relatively fast rhythm, belonging approximately to the

13-30 Hz frequency band. It is a rhythm which is observed in awaken and conscious

persons. This rhythm is also affected by the performance of movements, in the motor

areas.

• Gamma (γ) rhythm: This rhythm concerns mainly frequencies above 30 Hz. This

rhythm is sometimes defined as having a maximal frequency around 80 Hz to 100

Hz. It is associated to various cognitive and motor functions.
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2.4 Motor Imagery Based BCI

Whenever a muscle in the human body is voluntarily moved, oscillations occur in brain

activity signals in the sensorimotor and motor areas, and the so called the sensorimotor

rhythms (SMR) change. These changes are fairly localized, following the homuncular

organization of this cortical region [31]. The decrease in oscillations is called event re-

lated desynchronization (ERD) and typically appears during movement or preparation of

movement. The increase in oscillations is called event-related synchronization (ERS) and

appears after movement or relaxation. In fact, even imagining such movements produces

very similar ERD/ERS patterns as the actual movements would [32]. The neurophysiolog-

ical basis for motor imagery BCI are µ (8 to 12 Hz) and β (16 to 24 Hz) rhythms in EEG

[33], which have been observed in the central region of the brain when subjects plan and

execute hand or finger movements [34, 35]. According to the homunculus representation

of the body in the primary motor cortex, the motor cortex is divided into various parts

controlling the movements of the body part represented by that section. Each side of the

body is controlled by the contralateral hemisphere of the brain. Placing electrodes on the

location of the representation of the required body part allows recording the brain activities

related to the movement of that part. Motor imagery based BCI works by making the

subject imagine the movement of certain limbs, like grasping with the left- or right hand

or, moving the feet and measuring the ERD/ERS patterns over the respective cortical areas.

Each imagined limb movement is associated with a certain action that gets executed when

imagining the respective limb movement. Although the motor imagery paradigm seems

very natural compared to the attention based BCI and the number of muscles a human can

control promises complex actions that could be performed, the number of different actions

that can actually be performed using motor imagery based BCI strongly depends on the

way the brain signals are measured and not all limbs are suitable for motor imagery based



21

BCI. The corresponding areas in the cortex have to be large enough to produce patterns that

are distinguishable from the background EEG noise, and sufficiently far away from each

other in order to make the ERD/ERS patterns distinguishable from each other. For example,

when measuring brain activity using EEG, the ERD/ERS patterns for imagined left- and

right hand movements are most prominent over electrode location C3 (right hand), and C4

(left hand). The cortical areas for left- and right foot on the other side, are very close and the

corresponding patterns appear both on electrode location Cz. This makes the left- and right

foot movements almost indistinguishable from each other using EEG. The comparatively

low spatial resolution of EEG is the reason why usually only few (e.g. two or three) different

actions can be used with motor imagery based BCI using EEG [36]. However, the risks

associated with brain surgery, make invasive BCIs only suitable for a very small set of

subjects, mostly patients that would need a brain surgery anyway. Compared to attention

based BCI, motor imagery based BCI has a higher error rate and an estimated 15% to 30%

of subjects are not able to obtain control using motor imagery based BCI without proper

training [37]. Another major limitation for healthy subjects is that one cannot really use

motor imagery based BCI while doing something else. As every movement the subject

makes creates ERD/ERS patterns, the subject has to avoid any movement in order to use

motor imagery based BCI properly.

BCI based on oscillatory activity are BCI that use mental states which lead to changes

in the oscillatory components of EEG signals, i.e., that lead to change in the power of

EEG signals in some frequency bands. Increase of EEG signal power in a given frequency

band is called an Event Related Synchronization (ERS), whereas a decrease of EEG signal

power is called an Event Related Desynchronization (ERD) [38]. BCI based on oscillatory

activity notably includes motor imagery-based BCI, Steady State Visual Evoked Potentials

(SSVEP)-based BCI [39] as well as BCI based on various cognitive imagery tasks such

as mental calculation. As an example, imagination of a left hand movement leads to a
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contralateral ERD in the motor cortex (i.e., in the right motor cortex for left handmovement)

in the µ and β bands during movement imagination, and to an ERS in the β band (beta

rebound) just after the movement imagination ends [38].

2.5 Components of an EEG System

In BCI design, EEG signal is used to detect and quantify features of brain signals that

indicate the user’s intentions and to translate these features into device commands that

accomplish the user’s intent. To achieve this, a BCI system consists of three sequential

stages shown in figure 2.3. The process includes pre-processing, feature extraction and

classification.

Figure 2.3: Basic design and operation of any BCI system

2.5.1 Preprocessing

2.5.1.1 EEG Artifacts

EEG artifacts exist in recorded signals and are non cerebral in origin. They may be di-

vided into categories: physiological artifacts and non physiological artifacts. Physiological

artifacts arise from the variety of body activities that are due to either movement of head,
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body and scalp that affect the electrode scalp interface or bioelectric potentials generated

with in the body from moving sources like eyes, tongue or stationary sources such as mus-

cles. Nonphysiological artifacts arise from external electric interference from other power

sources such as power lines or electric equipment.

EEG signal can be contaminated at many points during the recording and transmission

process. EEG signals are known to be very noisy, as they can be easily affected by

the electrical activity of the eyes (EOG: Electroocculogram) or of the muscles (EMG:

Electromyogram). Most of the artifacts are generated by sources external to the brain.

Some common EEG artifacts are as shown in figure 2.4.

• Eye Blink artifact: It is very common in EEG data and produces a high amplitude

signal that can be many times greater than EEG signals of interest. Because of its

high amplitude, an eye blink can corrupt data on all electrodes, even those at the back

of the head. Eye artifacts are often measured more directly in the electrooculargram

(EOG) with pairs of electrodes placed above and around the eyes.

• Eye Movement: These artifacts are caused by the reorientation of the retinocorneal

dipole [40]. The effect of this artifact is stronger than that of the eye blink artifact.

Eye blinks and movements often occur at close intervals.

• Line Noise: Strong signals from A/C power supplies shown in figure 2.4(d) can

corrupt EEG data as it is transferred from the scalp electrodes to the recording device.

This artifact is often filtered by notch filters, but for lower frequency line noise and

harmonics this is often undesirable. If the line noise or harmonics occur in frequency

bands of interest, these interfere with EEG that occurs in the same band [41]. Notch

filtering at these frequencies can remove useful information. Line noise can corrupt

the data from some or all the electrodes depending on the source of the problem.

• Muscle Activity: These artifacts are caused by activity in different muscle groups
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such as neck and facial muscles. These signals have a wide frequency range and

can be distributed across different sets of electrodes depending on the location of the

source muscles.

Figure 2.4: Artifacts associated with EEG signal [2]

Artifacts in EEG are commonly handled by discarding the affected segments of EEG.

The recognition of the eye blink and eye movement artifacts are generally by a voltage

increase in the EOG channel above a threshold, generally 100 µV. Discarding segments of

EEG data with artifacts can greatly decrease the amount of data available for analysis. The

first attempts at removing artifacts focused on eye blinks. Regression using the EOG channel

was attempted in the time and frequency domain [2]. These methods all rely on a clean

measure of the artifact signal to be subtracted out. Since the EOG is contaminated with

EEG signals, the regression of ocular artifacts has the undesired effect of removing EEG

signals from the observations. Regression techniques are the most common type of artifact

removal in use [42]. Comparisons of artifact removal using different transformations can
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be found in [43]. The artificial mixing matrices were chosen to approximate mixing in the

scalp. The common spatial patterns (CSP) technique was used by Koles [44] to remove

abnormal components from an EEG recording. The CSP method requires the use of two

data sets. No quantitative evaluation was done on the removal but it was visually observed

that the artifacts were extracted into a small number of components that would allow their

removal. Components are generally selected for removal by visual inspection, but in online

filtering systems, artifact recognition is important for achieving the automatic removal of

artifact signals. Jung [41] suggests that the spectral structure might be distinct for certain

artifact components (e.g., line noise) and that this would allow for automatic removal of

these artifacts. Kalman filters and extended Kalman filters have also been used for artifact

detection with success depending heavily on the artifact type [45]. This approach was most

successful at recognizing EEG signal containing muscle and eye movement artifacts.

2.5.2 Feature Extraction

Feature extraction aims at representing raw or preprocessed EEG signals by an ideally small

number of relevant values, which describe the task-relevant information contained in the

signals. These features should be selected to minimize the intra-class feature variances

while maximizing inter class variances. In other words, their values should be as different

as possible between different classes. BCI based on oscillatory activity (e.g., BCI based on

ERD/ERS) mostly use spectral and spatial information as features whereas BCI based on

event-related potential (ERP) mostly use the temporal and spatial information.

Feature selection are classical algorithms widely used in machine learning [46] and as

such also very popular in BCI design [47]. This algorithms evaluate the discriminative (or

descriptive) power of each feature individually. The usefulness of each feature is typically

assessed using measures such as Student t-statistics, which measures the feature value

difference between two classes, correlation based measures such as R2, mutual information,
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which measures the dependence between the feature value and the class label. Uni-variate

methods are usually very fast and computationally efficient but they are also sub-optimal.

Indeed, since they only consider the individual feature usefulness, they ignore possible

redundancies or complementarities between features. As such, the best subset of N features

is usually not the N best individual features. As an example, the N best individual features

might be highly redundant and measure almost the same information. As such using them

together would add very little discriminant power. On the other hand, adding a feature

that is individually not very good but which measures a different information from that of

the best individual ones is likely to improve the discriminative power much more. These

algorithms typically use measures of global performance for the subsets of features, such as

measures of classification performances on the training set(typically using cross-validation

or multivariate mutual information measures [48]. This global measure of performance

enables to actually consider the impact of redundancies or complementarities between

features. Some measures also remove the need to manually select the value of N (the

number of features to keep), the best value of N being the number of features in the best

subset identified. However, evaluating the usefulness of subsets of features leads to very

high computational requirements. Indeed, there are many more possible subsets of any size

than individual features. As such there are many more evaluations to perform. In fact, the

number of possible subsets to evaluate is very often far too high to actually perform all

the evaluations in practice. Consequently, multivariate methods usually rely on heuristics

solutions in order to reduce the number of subsets to evaluate. Multivariate methods are also

suboptimal but usually give much better performances than univariate methods in practice.

2.5.2.1 Optimal Feature Extraction

To extract the most relevant information from the EEG signal Pharino [49] introduced r

square correlation coefficient for the best frequency and time parameter. OptimumR-square
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coefficient gives the active frequency band and specific channel that is strongly correlated

with the action performed. In [50], the study had showed that spectral component of brain

activation related to motor imagery task using ERD was found in µ band(10-12 Hz) and

using ERS was found in β band (13 to 30 Hz), but they varied from subject to subject

significantly. To get the optimal features over that frequency band, frequency selection

method like in [51] for subject specific frequency band need to be searched and selected

independently from each subject. In [52], spatial information had been considered. Even

though neurophysiology confirms that the most significant channel location related to motor

imagery are C3, C4 andCz, the EEG signals are spread over the area around these electrodes.

In different experiments with different subjects, the distributions of EEG signals over the

location are different. To adapt BCI system over a wide range of subjects, the spatial-

spectral-temporal parameter of EEG signals need to be searched and tuned before using in

the system. In [53] spatio-spectral and temporal parameter searching algorithm using class

correlation and particle swarm was optimization was proposed. This proposed method

composed of series of parameter searches in order of channels, time and frequency bands

of EEG. This process showed rejection concept of the focus ERD/ surrounded ERS which

can be used in motor imagery tasks. But it showed the promising result and confirmed that

these specific parameters need to be analyzed for real-life BCI applications. In [54], author

proposed using genetic algorithm (GA) for automatic feature extraction in P300 detection.

The variation of coding the information of gene in a chromosome and natural selection ofGA

could be used in search algorithm for optimal features based on the spatio-spectral-temporal

parameters.

2.5.2.2 Common Spatial Pattern

Common Spatial Pattern [12] method was employed as one of the techniques for feature

extraction in the present study. Details of the algorithm are described in section 3.4.2.
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The filtered signal corresponding to the desynchronization of the left-hand motor cortex is

characterized by a strong motor rhythm during imagination of right hand movements, and

by an attenuated motor rhythm during left hand imagination. This criterion is exactly what

the CSP algorithm optimizes: maximizing variance for the class of right hand trials and at

the same time minimizing variance for left hand trials.

2.5.2.3 Empirical Mode Decomposition (EMD) and Its Variants

More recently a technique, termed Hilbert-Huang transform (HHT) [9], for analyzing

nonlinear and non-stationary signals, has been utilized to analyze biomedical signals. Ap-

plication of the HHT algorithm for discrimination of mental tasks is proposed in this

research. As an algorithm of time-frequency analysis, HHT can produce physically mean-

ingful representations of signal both in time and frequency domains. The core of this

algorithm to decompose signal is data dependent and posteriori-defined, and the inner

scales of the decomposed signal are adapted for EEG signal processing. HHT is composed

of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA), which intu-

itively decomposes original signal into a set of symmetric intrinsic mode functions (IMFs)

that are amplitude and frequency modulated [55]. It has been widely used for analyzing

non-stationary signals. Moreover, this technique is a useful tool for quantifying the global

regularity of EEG signal [56, 57] and spectral entropy and spectral energy of IMFs were

used to automatically diagnose seizure. The prediction and detection of seizure were done

with continuous wavelet entropy from EEG signals.

EMD is a nonparametric and self-adaptive method that decomposes any signal to a get

finite number of functions called intrinsicmode functions (IMFs) [9]. EMDdoes not require

any predefined basis function to represent the signal, which is the advantage of EMD over

Fourier and wavelet analysis. This algorithm has advantages in biomedical applications.

In [58] EMD has been combined with chaos analysis to recognize the chaotic properties
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of ECG signals. EMD is also used to extract features from ECG signals during cardiac

auscultation using morphological signal processing [59]. In [10], Wu proposed Ensemble

Empirical Mode Decomposition (EEMD) to improve the accuracy of measurements where

a white noise is added to the targeted data. According to [60] EEMD is a truly noise-assisted

data analysis (NADA) method and represents a substantial improvement over the original

EMD. A combination of EEMD-ICA EEMD-ICA algorithm is successfully applied in [61]

to separate the recorded signals to independent components to remove the artifacts. An

extension of EMD called multivariate empirical mode decomposition (MEMD) is proposed

in [11] which showed the direct multi-channel signal processing using localization of

frequency information. A combination of CSP and EMD method is proposed in [62]

where third order temporal moments, and spectral features including spectral centroid,

coefficient of variation and the spectral skew of the IMFs are used for feature extraction from

EEG signals. Besides the strengths of feature extraction methods related to instantaneous

frequencies (IF), it is important to note that the extraction of IF is more meaningful when

the IMFs extracted from the EEG signals are mono component [63].

2.5.3 Classification

EEG signals are generally represented in high dimensional feature space and it is very

difficult to interpret manually. Machine learning methods are helpful for interpreting high

dimensional feature sets and analyze the characteristics of brain signal patterns. According

to [3] classifiers used in BCI research are generally of 5 types. Linear classifiers, nonlinear

classifiers, neural network, nearest neighbor classifiers and a combination of these.

Linear classifiers are discriminant algorithms that use linear functions to distinguish

classes. These are the most popular algorithms for BCI applications. Neural network is also

a widely used classifier in BCI research. Neural network is an assembly of several artificial

neurons which enable to produce nonlinear decision boundaries. Non linear classifiers pro-
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Figure 2.5: Different types of Classifiers used in BCI

Figure 2.6: SVM finds the optimal hyperplane for generalization [3].

duce nonlinear decision boundaries which enable them to perform more efficient rejection

of uncertain samples than discriminative classifiers. However, these classifiers are not as

widespread as linear classifiers or neural networks in BCI applications[59].
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One of the most used linear classifiers is support vector machine (SVM). SVM gave

the best results in several synchronous experiments, in its linear [64] or nonlinear form

[65], in binary or multiclass BCI. Regularized Fisher’s LDA shares several properties with

SVM such as being a linear and regularized classifier. LDA technique has a very low

computational requirement which makes it suitable for online BCI system. Moreover this

classifier is simple to use and generally provides good results. Consequently, LDA has

been used with success in a great number of BCI systems such as motor imagery based

BCI [38]. Its training algorithm is even very close to the SVM one. Consequently, it also

reached very interesting results in some experiments [66]. The first reason for this success

may be regularization. Actually, BCI features are often noisy and likely to contain outliers.

Regularization may overcome this problem and increase the generalization capabilities of

the classifier. As a consequence, regularized classifiers, and more particularly linear SVM,

have outperformed unregularized ones of the same kind, i.e., LDA, in several BCI studies.

Similarly a nonlinear SVM has outperformed an unregularized nonlinear classifier, namely,

an multi layer perceptron (MLP), in another BCI study [47].
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CHAPTER 3

METHODOLOGY

The details of methodology used in this work are presented in this chapter. First the EEG

system along with its hardware and software components is discussed. Next the details of

data acquisition system are presented. It is followed with presentation of signal processing

algorithms used in this work for artifact removal form acquired EEG signals. Next feature

selection algorithms are discussed along with extraction of features from pre-processed

EEG signals. Finally, classification technique for identification of actual and MI activities

using extracted features is presented.

3.1 EEG System

The EEG system features sixty four electrodes across the central nodes according to figure

3.1 placed against the head using an EEG cap. This placement is based on the 10/20 64

electrode system using a referential montage. A conductive gel is used as a medium between

the electrodes and the scalp to reduce the effects of skin impedance. Electrodes are attached

to the earlobe to provide a reference voltage. Finally, the ends of these leads are plugged

into the SynAmps RT amplifier shown in figure 3.2(d).
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(a) (b)

(c)

Figure 3.1: International 10-20 system for electrode placement [4]

The electrodes are placed according to this system with the inactive or common

electrode at a remote location of the skull (earlobe, nose, or chin). It is denoted as nasion

and inion. Ten percent of the data points are on prefrontal and occipital planes. The rest is

divided in four parts.
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Table 3.1: Cross sectional planes in international 10-20 system

Cross-sectional Planes Notation

Prefrontal Fpz

Frontal Fz

Vertex Cz

Parietal pz

Occipital Oz

3.1.1 Hardware

3.1.1.1 Electrodes

Sintered silver/silver chloride (Ag/AgCl) electrodes are used in brain cap which are made

from very finely powdered high purity silver and silver chloride. These are mixed in a

specific ratio and compacted into the electrode body at very high pressure. The resulting

pellet is relatively thick (0.7mm to 1.0mm) and never needs to be rechloridized because it

is a homogeneous mixture.

3.1.1.2 Skin preparation kits

Most amplifiers are designed to allow recordings from high impedance electrodes, but

with a potentially significant reduction in data quality due to radiated electrical noise.

Conductivity gel makes the impedance value below threshold and the skin preparation gel

makes the scalp ready for use of conductivity gel through the electrodes. This facilitates

parting the hair and preparing the scalp to obtain the lowest possible impedance, without

direct skin abrasion.
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(a) (b)

(c) (d)

Figure 3.2: Data Acquisition accessories (a) Electrode (b) Conductive gel (c) Skin prepa-

ration gel and (d) SynAmps RT Amplifier

3.1.1.3 Amplifier

SynAmps RT is the one of the latest EEG, ERP and EP amplifier from Compumedics

Neuroscan. Using the most current technology, the RT builds on the quality of the past

SynAmps series of amplifiers and extends the specifications beyond anything that has come

before. SynAmps RT sets a new standard in amplifier technology, providing a system
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suitable for recording everything from high sampling rate (20,000 Hz) Auditory Brain Stem

recordings. The technical specification of SynAmps RT amplifier is given as follows:

• A USB 2.0 interface is used to link the SynAmps RT and computer. This single

connection serves up to four headboxes for a total of 256EEGchannels (plus additional

bipolar and HLI channels) via a single system unit. A second system unit can be used

for more channels (depending on the computer’s speed and the AD rate).

• Real-time digital filtering provides a wide range of filter settings from DC to 3.5 kHz.

• Sampling rates up to 20 kHz from 1 to 64 EEG channels on a single headbox.

Sampling rate is independent of the number of headboxes attached to a system.

• It supports 64 monopolar, 4 bipolar, and 2 high-level input channels. A high density

connector on the headbox is provided for quick connection to electrode cap arrays.

• 24-bit AD conversion provides greater resolution and the impedance measurement

1KΩ to 200 KΩ.

3.1.2 Software

3.1.2.1 BCI2000

BCI2000 is a software suite for brain-computer interface research. It is commonly used

for data acquisition, stimulus presentation, and brain monitoring applications. BCI2000

supports a variety of data acquisition systems, brain signals, and study/feedback paradigms.

During operation, BCI2000 stores data in a common format (BCI2000 native orGDF), along

with all relevant event markers and information about system configuration. BCI2000 also

includes several tools for data import/conversion, a routine to load BCI2000 data files

directly into Matlab and export facilities into ASCII.



37

BCI2000 is based on a model that can describe any BCI system and that is similar to

the one described in [67]. This model shown in figure 3.3, consists of four modules that

communicate with each other: Source (Data Acquisition and Storage), Signal Processing,

User Application, and Operator Interface. The modules are separate programs that commu-

nicate through a TCP/IP-based protocol. This protocol can transmit all information needed

for operation. Thus, the protocol does not need to be changed when changes are made in a

module.

Figure 3.3: Four modules of BCI2000

The Sourcemodule acquires brain signals and passes calibrated signal samples on to the

Signal Processing module. The Source module consists of a data acquisition component,

and a data storage component that implements the native BCI2000 file format, as well

as EDF, which is a data format popular in sleep research [68], and GDF, a variant of

EDF designed for BCI applications [69]. The data acquisition component has a number

of implementations. The BCI2000 file format consists of an ASCII header that defines

all parameters used for this particular experimental session, followed by binary signal

sample and event marker values. It supports 16- and 32-bit integer formats as well as

a 32-bit floating point format. The BCI2000 distribution includes Matlab MEX files for

manipulating BCI2000 data files, and for other tasks. MEX files allow the execution of

externally compiled code from within Matlab. BCI2000 MEX allows for convenient access

to BCI2000 data files or functions directly from Matlab.
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3.2 Data Acquisition

EEG signal is collected with BCI2000. During the data acquisition session, the screen will

either be blank, or display an instruction, such as Right Hand, Left Hand, Both Hands,

or Both Feet. The instruction will appear on the screen for 3 seconds; during this time,

the subject should continuously imagine the movement shown in figure 3.4. The hand

movements should be opening and closing the hands, and the foot movement should be

moving the feet back and forth. When the screen is blank, the body should be completely

relaxed.

During a run, each body part movement (actual or imagined) is repeated 20 times.

Ideally, there should be 100 data points, meaning that there should be a total of 5 runs.

With multiple sessions, fewer runs are necessary, since the subject is able to perform the

task better. The experiment data were sampled at 256 Hz.

Figure 3.4: Photographs during the process of acquisition of EEG signal acquisition

Three different subjects are used to record the EEG signal. Two of them are right

handed and another one is left handed. All the subjects are in between 24 to 27 years old.
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Table 3.2: Subject’s description

Subject Gender Age
Preferred

hand

1 M 26 Left

2 M 27 Right

3 M 24 Right

3.3 Signal Processing Algorithms

3.3.1 Independent Component Analysis

Independent component analysis is one of a group of algorithms to solve the problem of

blind source separation.

The observed signal is denoted by x with elements x1 , ...., xn, the source is denoted by

s with elements s1, ...., sn and A is the mixing matrix ai j . With the vector notation, mixing

models can be written as equation 3.1 [70]

x = As (3.1)

Estimating the independent components can be accomplished by finding the right linear

combinations of the mixture variables, with matrix inversion, as

s = A−1x (3.2)

thus, to estimate one of the independent components, we can consider a linear combination

of the xi. Assuming a new vector

y = bT x =
n∑

i=1
bi xi (3.3)

where b is a vector to be determined. by substituting equation 3.1 to equation 3.3 it can

be written y = bT As.Thus, y is a certain linear combination of the si, where bT A is a
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coefficient matrix denoted by q. So obtained in equation 3.4

y = bT x = qT s =
n∑

i=1
qisi (3.4)

if b were one of the rows of the inverse of A, this linear combination bT x would actually be

equal one of the independent components. In that case, the corresponding q would be such

that just one of its elements is 1 and all the others are zero. In practice b and A cannot be

determined directly, but can be found with an estimator that gives a good approximation.

The fundamental idea here is that since a sum of even two independent random variables is

more Gaussian than the original variables, y = qT s is usually more Gaussian than any of the

si and becomes least Gaussian when it in fact equals one of the si. In this case, obviously

only one of the elements qi of q is nonzero. In practice the values of q is unknown, but

qT s = bT x by the definition of q. Such a vector would necessarily correspond to a q = AT b,

which has only one nonzero component. This means that y = bT x = qT s equals one of the

independent components.

3.3.2 Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) is a way of decomposing signals to get a finite

number of functions called intrinsic mode functions (IMFs). It is designed to work well for

signals that are nonstationary and nonlinear. In contrast to other common transforms like

the Fourier transform, the HHT is more like an algorithm (an empirical approach) that can

be applied to a data set, rather than a theoretical tool. The process of EMD is presented

briefly for completeness [71, 72].

For a given signal, x(t), local highest and lowest points are found as a first step of EMD.

A cubic spline curve is used to connect all the local highest and lowest points (extrema)

giving upper envelope xu(t) and low envelope xl(t). Further, to observe the values at every

point of envelopes the mean value curve is calculated. The mean value, m1(t) is defined as
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equation 3.5 for two envelopes

m1(t) =
xu(t) + xl(t)

2
(3.5)

In this way, the value for the first IMF, h1(t) can be calculated using equation 3.6

h1(t) = x(t) − m1(t) (3.6)

The process of obtaining the IMF is generally known as shifting process. This process

is used to cut off the riding waves and to ensure the symmetry of wave-profiles. It is a

recurring process. For this, during the next shifting process h1(t) is considered as original

data and the notation for second IMF is as follows:

h11(t) = h1(t) − m11(t) (3.7)

The shifting process is repeatable for k times. It is continued till h1k(t) is considered as an

IMF.

h1k(t) = h1(k−1)(t) − m1k(t) (3.8)

The relation between first IMF c1(t) and h1k(t) can be defined as follows:

c1(t) = h1k(t) (3.9)

Furthermore, it is mandatory to use some stopping criteria to end the shifting process so

that it can ensure the continuity of sufficient physical sense of both amplitude and frequency

modulations of IMF elements. The size of standard deviation (SD) is the stopping criteria

and can be designated as equation 3.10

SD =
T∑

t=0

| hk−1(t) − hk(t) |2

h2
k−1

(3.10)

The first IMF c1(t) is achieved for the smaller value of SD compared to threshold value.

The value of residue is computed using the following equation 3.11

rn(t) = x(t) −
n∑

i=1
ci(t) (3.11)

The following flow chart shown in figure 3.5 can briefly explain the whole method:
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Figure 3.5: Flow chart of Empirical Mode Decomposition algorithm

EMD Steps involved in the algorithm are:

1. Collection of EEG signals with significant amount of artifacts.

2. Perform Empirical Mode Decomposition over the data to obtain the set of intrinsic

mode functions (IMFs).

3. Calculate the feature value of each of the IMF.

4. Identify the different levels of IMF in which the feature value increases or decreases

rapidly from a small value.

5. Reconstruct the signal by the avoidance of those IMFs to get the corrected signal.
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3.3.3 Ensemble Empirical Mode Decomposition

EMD approach has a drawback called mode mixing that happens when different IMFs have

similar scale. Mode mixing is one of the major weaknesses of EMD. To overcome this

problem Wu and Huang [10] proposed a new algorithm called Ensemble Empirical Mode

Decomposition (EEMD).

The basic steps for EEMD algorithm are as follows:

1. Initialize the number of ensemble I,

2. Generate xi(t) = x(t) + wi(t), (i = 1, ....I) are different realization of Gaussian noise

3. Each xi(t) is fully decomposed by EMD getting their modes IMFi
k(t),

4. Assign IMF as the k-th mode of x(t), obtained as the average of the corresponding

IMFi
k : IMFk(t) = 1

I
∑I

i=1 IMFi
k(t)

x(t) can be reconstructed according the following equation 3.12:

x(t) =
K∑

k=1
IMFk(t) + r̄(t) (3.12)

3.3.4 Multivariate Empirical Mode Decomposition

To ensure the complete removal of the white noise, multivariate empirical mode decompo-

sition is used. The following algorithm proposed in [11] is employed here to decompose

signal x(t) into a set of IMF components.

1. Generate the point-set for sampling on an (n − 1)-sphere

2. Calculate a projection, {pθk (t)}Tt=1 of the input signal {x(t)}Tt=1 along the direction

vector Aθk , for all k (the whole set of direction vectors), giving {pθk (t)}Kk=1 as the set

of projections
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3. Find the time instants {tθki }
K
k=1 corresponding to the maxima of the set of projected

signals {pθk (t)}Kk=1

4. Interpolate [tθki , x(tθ
k

i )], for all values of k, to obtain multivariate envelope curves

{eθk (t)}Kk=1;

5. For a set of K direction vectors, calculate the mean µ(t) of the envelope curves as:

µ(t) =
1
k

K∑
k=1

eθk (t) (3.13)

6. Extract the detail d(t) using d(t) = X(t) − µ(t). If the detail d(t) fulfills the stoppage

criterion for a multivariate IMF, apply the above procedure to X(t) − d(t), otherwise

apply it to d(t).

3.3.5 Performance Evaluation

Differential amplifiers with band-pass filters are used to minimize the effects of high fre-

quency noise and low frequency artifacts. By selecting channels of each segment as pure

EEG, the pure EEG signals were stored in the matrix A (6 X 1600). The EMG artifact was

generated by using random noise band-pass filtered between 20 and 60 Hz in Matlab, and

the muscle artifacts were stored in the matrix B (6 X 1600). The noise-contaminated EEG

signal can be obtained by mixing the matrix A with the matrix B in the following equation

3.14

C(i) = A(i) + λ ∗ B(i), i = 1, 2, ..., n (3.14)

The SNR of signals can be defined (in dB) as following equation 3.15

SNR = 10 ∗ log(

∑n
i=1 x2

i∑n
i=1 y

2
i

) (3.15)

Where xi denote the pure EEG signals, yi represent the artifacts and n is the total number

of samples before the artifact removal. After getting rid of the artifacts, xi denotes the pure
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EEG signal and yi is calculated by subtracting artifact-free EEG signal from the raw EEG

signal.

The MSE indicates the degree of similarity of the two signals. The smaller the value

of MSE is, the higher the degree of similarity between two signals is. The MSE of signals

can be calculated using equation 3.16

MSE =
1
n

n∑
i=1
(xi − yi)

2 (3.16)

where xi denote the pure EEG signals and yi represent the mixed EEG signals. Therefore,

the MSE can be used to depict the degree of EEG information after performing the artifact

removal.

3.4 Feature Selection Algorithm

3.4.1 R square Coefficient Method

The Fourier transform depicts the similarity between a signal and a sinusoidal with a single

complex number. The magnitude of the complex number captures the degree to which

oscillations at a particular frequency contribute to the signal’s energy, while the argument

of the complex number captures phase information. Short-time Fourier transform (STFT) is

a technique applying a chosen time function or window to the input signal and calculate the

Fourier transform. According to [44] the mathematical properties describe by the equation

3.17 . x(t) is the input signal and ω(t) is the window function and X(ω , t) is the transformed

signal as a function of normalized frequency and time .

X(ω, τ) =
∫

x(t)ω(t − τ)e− jωt dt (3.17)

R-square coefficient is a square of Pearson correlation coefficient of two random samples xi

and yi. It is given in equation 3.18. x̄ , ȳ are means of sample x and y, n is total number
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of sample. In this work sample xi and yi are STFT samples from channel C3 and C4 of

the EEG signal. R2
t component related to time component and R2

f component related to

frequency component are found.

R2 =
(
∑

xiyi − nx̄ ȳ)2

(
∑

x2
i − nx̄2)(

∑
y2

i − nȳ2)
(3.18)

To obtain optimal frequency parameter of separation between signals from each class, the

value of frequency as in equation 3.19 is selected.

foptimal = arg f max(R f ) (3.19)

While the optimal temporal parameter is chosen by equation 3.20 and the total ranges

around the optimal value toptimal is selected as in equation 3.21.

toptimal = argtmax(Rt) (3.20)

Toptimal = [toptimal − 0.25toptimal + 0.025] (3.21)

After optimal spectral parameter foptimal and temporal parameter Toptimal have been found,

these are used to select the optimal time-frequency pairs from both channels C3 and C4.

The complete flow chart for feature extraction based on R-square coefficient is shown in

figure 3.6

3.4.2 Common Spatial Pattern

Common Spatial Pattern method was employed for feature extraction in this study. Details

of the algorithm are described in the following with the example of discriminating left hand

vs. right hand imagery (MI). The filtered signal corresponding to the desynchronization of

the left hand motor cortex is characterized by a strong motor rhythm during imagination of

right hand movements, and by an attenuated motor rhythm during left hand imagination.

This criterion is exactly what the CSP algorithm optimizes: maximizing variance for the

class of right hand trials and at the same time minimizing variance for left hand trials.
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Figure 3.6: Optimal feature extraction based on R-square coefficient method

Details of the algorithm are described as follows with the example of classifying

single-trial EEG during right hand and left hand movements [12]. XR and XF denote the

preprocessed EEG matrices under two conditions (hand and foot) with dimensions N × T ,

where N is the number of channels and T is the number of samples per channel. The

normalized spatial covariance of the EEG can be represented as equations 3.22 and 3.23

CR =
XRXT

R

trace(XRXT
R )

(3.22)

CL =
XL XT

L

trace(XL XT
L )

(3.23)

XT is the transpose of X and trace(X) computes the sum of the diagonal elements of X. The

averaged normalized covariance CR and CL are calculated by averaging over all the trials of

each group. The composite spatial covariance can be factorized as equation 3.24

C = Cr + CL = UoΨUT
o (3.24)

Where Uo is the matrix of eigenvectors and Ψ is the diagonal matrix of eigenvalues. The

transformation matrix can be written as equation 3.25

P = Ψ−
1
2 UT

o (3.25)
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The matrix P transforms the covariance matrices as

CR
′ = PCRPT (3.26)

CL
′ = PCLPT (3.27)

C′R and C′L are common eigenvectors and the sum of corresponding eigenvalues for the two

matrices will always be one,

CR
′ = UΨRUT (3.28)

CL
′ = UΨLUT (3.29)

CR
′ + CL

′ = I (3.30)

Here I is the identity matrix. The eigenvector with the largest eigenvalues for C′R have the

smallest eigenvalue forC′L and vice versa. The transformation of EEG onto the eigenvectors

corresponding to the largest eigenvalues are optimal for separating variance in two signal

matrices. The projection matrix W is denoted as equation 3.31

W = UT P (3.31)

With the projection matrix W, the original EEG can be transformed into uncorrelated

components

Z = W X (3.32)

Z can be seen as EEG source component including common and specific components of

different tasks. The original EEG X can be reconstructed using equation 3.33

X = W−1Z (3.33)

3.4.3 Sample Entropy

Sample entropy is explored as a feature in order to discriminatemotor task EEG signals. The

sample entropy of the signal is defined as the negative natural logarithm of the conditional
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probability that two sequences similar for m points remain similar at the next point, where

self matches are not included in calculating the probability. Thus, a lower value of sample

entropy of the signal also indicates more self-similarity in the time series. For computing

the sample entropy of the signal, the embedding dimension (m) and tolerance parameter (r)

must be specified [67].

Considering a signal (EEG signal or IMF) x[n] of length N, this signal can be repre-

sented by the sequence as, x[1]; x[2]; ....., x[N]. m dimension vectors are formed consecu-

tively, starting with the it h point of the signal sequence

Xm(i) = [x(i), x(i + 1), ....., x(i + m − 1)], i = 1, 2, ....N − m + 1 (3.34)

Distance d (Xm(i), Xm( j)) is defined between two vectors Xm(i) and Xm( j) as the absolute

maximum difference between their scalar components according to equation 3.35 :

d(Xm(i), Xm( j)) =Max
k=0,1,...,m−1 (| x(i + k) − x( j + k) |), i , j (3.35)

For a given tolerance parameter r, for every ith value, compute the distance d(Xm(i), Xm( j))

is computed, the number of distances, which are less than or equal to r, are counted and

denoted as Ai. Then the ratio of this number to N-m-1, is computed and denoted as Am
i (r)

in equation 3.36 .

Am
i (r) =

1
N − m − 1

Ai (3.36)

Then

Am(r) =
1

N − m

N−m∑
i=1

Am
i (r) (3.37)

Dimension is increased from m to m +1, and the steps (1) to (4) are repeated, and A(m+1)
i (r)

is computed. Theoretically, sample entropy of signal can be defined as equation 3.38:

SampEn(N,m, r) = −ln[
Am+1(r)
Am(r)

] (3.38)



50

3.4.4 Band Power

In event related BCI, the time course is directly related to the average of power samples

across trials. The band power (BP) is estimated by using the digitally band pass filtered

signals and squaring each signal and averaging over consecutive sample according to the

given window length. According to [31], band power could be calculated following these

steps:

• squaring the amplitude of samples, X f (i, j) , to obtain power samples;

• averaging of power samples across all trials, j = 1, 2, 3, ...., N;

• averaging over time samples to smooth the data and reduce the variability.

Band power can be calculated using the following equation:

p̄i =
1
N

N∑
j=1

x f (i, j)2 (3.39)

where p̄i is the band power for sample i of the data set.

3.5 Classification

3.5.1 Support Vector Machine

SVM is used to construct the optimal hyperplane with largest margin for separating data

between two groups. For two-dimensional data, single hyperplane is enough to separate

the data into two groups such as +1 or -1. Two hyperplanes are needed to separate the data

points for three-dimensional data according to figure 3.7.

SVM constructs hyperplane for separating the sample data based on the target cate-

gories. For two dimensional data, there are number of possible linear separators (hyper-

planes) and it is necessary to find the optimal hyperplane which has maximum margin
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width. The lines H1 and H2 are drawn parallel to optimal hyperplane (solid line) and mark

the distance between the hyperplane and the data points. The distance between the dotted

lines (AC) is called as margin. Some of the sample data points that lie on the hyperplane

H1 and H2, are called as Support Vectors (SVs) refer to figure 3.7. These SVs are essen-

tial for calculating the margin width. According to [73] linearly separable classification

separates the high dimensional data into two groups, yi=+1,-1 without any overlapping or

misclassification. Hyperplanes H1 and H2 are represented as equations 3.40 and 3.41,

w1x1 + w2x2 − b = 1 (3.40)

w1x1 + w2x2 − b = −1 (3.41)

where w1,w2 are positions of the hyperplane H1 and H2 respectively.x1,x2 are data points

and takes value of +1,0,-1 which shows how far hyperplanes are away from the original

line.The maximum margin width is 2
wand the minimum margin width is 1

2w

yi(w1xi1 + w2xi2 − b) > 1, f ori = 1, 2, .....m (3.42)

Lagrangian multiplier can be denoted as equation 3.43

L(w, b, α) = [
1
2
w2 −

n∑
i=1

αi[yiw
′xi + b] − 1] (3.43)

This implies that,

w =

n∑
i=1

αiyi xi (3.44)

Finally, optimal decision function of a classifier is defined as equation 3.45

f (y) = sign(
sv∑

i=1
αiyi(xi xsv) + b) (3.45)
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Figure 3.7: Linearly separable SVM technique
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CHAPTER 4

RESULTS AND DISCUSSION

Results and discussions are presented in this chapter. The acquired EEG signals for different

motor activities are presented first. Next identification of artifacts in EEG signals and

removal of artifacts are presented using the signal processing techniques of EMD and the

extensions, EEMD and MEMD. It is followed with presentation of performance results

of signal to noise ratio (SNR) and mean square error (MSE) for the signal processing

algorithms based on EMD and CSP. Next results of extraction of features like r square

coefficient, spectral power, band power and sample entropy are presented. Finally, results

of identification and classification accuracy of the actual and the imagined motor tasks are

presented.

4.1 Acquired EEG Signals

EEG signals were recorded with BCI2000 for different actual and imagined movements. A

representative group of EEG signals from several channels is shown in figure 4.1. During

the session, the subject was asked to follow the instruction shown in the screen. The

instructions were either blank, or displayed an instruction, such as Right Hand, Left Hand,

Both Hands, or Both Feet. The instruction appeared on the screen for 3s. During a run,

movement (actual or imagined) of each body part was repeated 20 times. There were 100

data sets, for a total of 5 runs for each case. EEG signals were sampled at 256 Hz.

4.2 Artifact Removal

Power spectra of acquired EEG signals were analyzed to look for artifacts. Power spectra of

some representative acquired EEG signals form some of the channels are shown in figure

4.1 for subject 1. From these spectra, it is clear that EEG recordings of some channels such
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Figure 4.1: Acquired EEG signals with different artifacts

as Fp1 and Fp2 were corrupted with noise from eye blinks and most channels such as C3,

C4 and F3, F4 were affected by a power line noise of 60 Hz.

4.2.1 Power Line Noise Removal

Line noise and EEG signals are generated by different sources that are independent of each

other. Power spectra of the channel F4, C3, C4 P3 P4, F7, F8 and T3 are shown in figure

4.2. From this figure the presence of power line noise at 60 Hz is confirmed.

Power interference noise and the electromyographic noise encountered in EEG sig-

nal applications are usually located in the high-frequency band. Hence, high-frequency

denoising by the EMD is in general carried out by partial signal reconstruction, which is

premised on the fact that noise components lies in the first several IMFs. This strategy

works well for those signals whose frequency content is clearly distinguished from that

of noise. This basic idea is to statistically determine the index of the IMF that contains
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(a) (b)

Figure 4.2: Power spectrum of acquired signals (a) channels F4, C3, C4 and P3 (b) channels

P4, F7, F8 and T3

most of the noise components, beginning from fine to coarse scale. Given the index, the

IMFs corresponding to the noise are removed and the reconstruction of the original signal

is obtained by summing up the remaining IMFs.

The channel C3 EEG signal decomposed by the EMD is shown in figure 4.3(a). Signal

from C3 channel was analyzed using EMD and IMFs are shown in time domain. Here C3

electrode corresponds to the right-hand movement. The original acquired signal is shown

in the top followed with IMFs from low to high order. For the left-hand movement, the

channel is C4 which was also decomposed using EMD and IMFs are presented in figure

4.3(b). Though original C3 and C4 signals look similar, the differences are manifested in

the component IMFs.
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(a) (b)

Figure 4.3: EEG signals and IMFs (a) C3 signal (right hand movement) (First graph in the

figure is the original signal and the last one is residue, remaining are IMFs 1 to 12(top to

bottom) (b) C4 signal (left hand movement. (First graph in the figure is the original signal

and the last one is residue, remaining are the IMFs 1 to 12(top to bottom))
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(a) Frequency (Hz) (b)

Figure 4.4: Power spectra of IMFs (a) channel C3 (b) channel C4

The power spectra of IMFs of EEG signals from channels C3 and C4 are shown in

figures 4.4. The 60 Hz power line frequency, present in original signals, is eliminated in

the spectra of IMFs. The differences between C3 (Right hand movement) and C4 (left-

hand movement) are evident in both time domain IMFs and their corresponding frequency

spectra, as shown in figures 4.3 and figures 4.4 respectively. The power spectra of the IMFs

cover physiologically meaningful frequency ranges corresponding to different rhythms. For
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example, the power spectra of IMFs 3-7 (rows 4-8 of figures 4.4) cover the rhythms and

with some overlaps. The time domain IMFs can be processed further to extract features to

distinguish different MI activities.

4.2.2 Eye Blink Artifact Removal

After the removal of power line noise from the EEG signals, the reconstructed signals are

shown in figure 4.5 From this figure it is clear that the signals are still not free from artifacts.

Figure 4.5: Reconstructed EEG signals after power line artifact removal

A close look at the signal from channel Fp1 in figure 4.6 reveals existence of eye blink

artifacts. IMFs from EMD processed EEG signal from channel Fp1 are shown in figure

4.7.
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Figure 4.6: Contaminated EEG from Fp1 channel

Figure 4.7: Empirical Mode Decomposition of Fp1 channel



60

To remove eye blink artifact sample entropy (SampEn) of IMFs were calculated for

channel Fp1 and Fp2. The lower the value of SampEn for a given value of d and r, would

correspond to more self-similarity in a given time series. In this work, the value of d was

chosen as two. From 4.8 sudden increase in SampEn for IMF4 and IMF5 for channel Fp1

and IMF3 for channel Fp2 confirms the presence of eye blink artifacts in those IMFs.

Figure 4.8: Sample entropy of channels Fp1 and Fp2

After the reconstruction of the decomposed signals, the amplitude of the artifact was

reduced. After all the channels were reconstructed from the desired IMFs, deleting the IMFs

corrupted with artifacts, the EEG signals were cleaner, as shown in figure 4.10 Original

EEG signals were also processed in BCI2000 through ICA for removal of artifacts, and

were reconstructed without the artifacts by the inverse transform of ICA. The comparison

of the SNRs and theMSEs between the EMD-basedmethod and the ICA basedmethod after

performing the artifact removal are shown in figure 4.11 and and figure 4.12, respectively.

Compared to the ICA-based method, the EMD-based method gave much lower mean SNR.

The MSE indicates the degree of similarity of the two signals. A smaller value of MSE

indicates higher degree of similarity between two signals with less noise and artifacts.

IMFs of EEG signal from channel C3 decomposed by the EEMDandMEMDare shown
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Figure 4.9: Corrected signal of Fp1 channel

Figure 4.10: Reconstructed EEG signals after removal of artifacts
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(a) (b)

(c)

Figure 4.11: Signal to noise ratio (SNR) of EEG signals for channels C3, Cp1, Cp3, C4,

Cp2, Cp4 for three subjects (a) Subject 1 (b) Subject 2 (c) Subject 3
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(a) (b)

(c)

Figure 4.12: Mean Square Error (MSE) of EEG signals for channels C3, Cp1, Cp3, C4,

Cp2, Cp4 for three subjects (a) Subject 1 (b) Subject 2 (c) Subject 3
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in figure 4.13. EEG signal from channel C3 corresponds to the right-hand movement. The

original signal is shown in the top followed with IMFs from low to high order.

(a) (b)

Figure 4.13: IMFs of EEG signal for channel C3 (a) EEMD, and (b) MEMD

It can be noticed that applying EMD separately on EEG channels resulted in the mode-

mixing and mode-misalignment in the corresponding IMFs figure 4.14, as evidenced by

the overlapping of spectra of different IMFs from multiple input channels. Specifically,

both IMF5 and IMF7 contributed to the mode corresponding to visual stimulus at 10 Hz.

Moreover, spectra of IMF5 and IMF6 from different channels overlap, resulting in further

mode-mixing. The time space was opened up different scales with the addition of white

noise. With the application of MEMD to the same data set resulted in IMFs which were

aligned in frequency, each containing only a single mode in time space. The addition

of white Gaussian noise solves the mode mixing problem by populating the whole time-

frequency space to take advantage of the dyadic filter bank behavior of the EMD. The

reconstructed signal includes residual noise and different realizations of signal plus noise

may produce different number of modes. To compare the effectiveness of three different
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(a) (b)

(c)

Figure 4.14: Spectral power of IMFs obtained by (a) EMD (b) EEMD and (c) MEMD

algorithms, signal to noise ratio was used.

SNRs for EMD-basedmethods after removing EOG and power line artifacts for subject

1 are shown in figure 4.15. Compared to the EMD algorithm, the EEMD andMEMD-based

methods were more successful in removing artifacts. The higher values of SNRs forMEMD

indicate less remaining noise in the pre-processed EEG signal than EMD and EEMD. It is

also to be noted that MEMD had less number of IMFs than EEMD making MEMD most

suitable of the three for artifact removal from the EEG signals.
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Figure 4.15: Signal to noise ratio (SNR) of EEG signals from channels C3, Cp1, Cp3, C4

Cp2, Cp4 for three algorithms : EMD, EEMD, MEMD

4.3 Feature Extraction

4.3.1 Spectral Power

To quantify EEG signal characteristics related to the different motor tasks, a well-established

method of average power spectral analysis was adopted. The performance of each frequency

in the power spectrum was evaluated regarding detection of different events.
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4.3.1.1 Right Hand Movement

Spectral power is shown for EEG signals for several channels as a function of frequency.

Comparisons of spectral power in right hand movement versus rest condition is shown in

figure 4.16. Spectral power was diminished in the electrode contralateral to the actual hand

movement as a result of the differential synchronization-desynchronization of the signals of

the electrodes in response to the unilateral motor task. Spectral power of channels C1 and

C3 decreased more compared to channels Cp1 and Cp3. So these two channels, C1 and C3

could be used for the control of right hand movement.

Figure 4.16: Spectral power density of EEG signals from channels (a)C1 (b)Cp1 (c)Cp3

and (d)C3

4.3.1.2 Left Hand Movement

Similarly comparisons of spectral power in left hand movement versus rest condition is

shown in figure 4.17. It is seen that spectral power was diminished in the electrode
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contralateral to the actual hand movement as a result of the differential synchronization-

desynchronization of the electrodes in response to the unilateral motor task. Spectral power

of channels C2 and C4 decreased more compared to channels Cp2 and Cp4. So these two

channels, C2 and C4, could be used for the control of left hand movement.

Figure 4.17: Spectral power density of EEG signals from channels (a)C2 (b)Cp2 (c)Cp4

and (d)C4

The results obtained for the R-square coefficients corresponding to imagined hands

movements are presented next. Figure 4.18 shows the head topo-frequency range from 8

to 24 Hz of most active R-square coefficients corresponding to imagined movement of right

hand for subject 1 with the color bar representing the value of R-square coefficient. Among

these frequency bands, the most prominent C3 channel (compared to other channels) was at

a frequency of 16 Hz. So at 16 Hz, brain area around channel C3 was most active compared

to area around it for right hand movement for subject 1.

Figure 4.19 shows the head topo-frequency range from 8 to 24 Hz of most active
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R-square coefficient corresponding to imagined movement of left hand for subject 1, with

color bar showing the value of R-square coefficient. Among these frequency bands, the

most prominent C3 channel (compared to other channels) was at a frequency of 14 Hz. So

at 14 Hz, brain area around channel C4 is most active compared to area around it for left

hand movement for subject 1.

Figure 4.18: R square of Right hand movement at different frequencies

Figure 4.18 and 4.19 show even concrete evidence observed in neurophysiology study

that the optimal frequency change with activity, especially in the imagination tasks (MI).

The active frequency band is expected to change from subject to subject and even

from a class to another class of imagination movement. A MI-BCI based on fixed channel

location may result in lower accuracy because of EEG signal is distributed over an area

rather than a fixed position. While multi-channel BCI system could also be affected by the

artifacts from multiple channels.
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Figure 4.19: R square of Left hand movement at different frequencies

(a) (b)

Figure 4.20: R square topography corresponds to (a)right hand movement at 16 Hz (b)left

hand movement at 14 Hz
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4.3.1.3 Both Hands Movement

Change in oscillation in channel C3 and C4 can be observed in figure 4.21. R square

topography of both hands movement at the same time is shown in figure 4.22. R square

topography describes the stimulation of EEG electrode for the movement of both hands.

EEG signals from C3 and C4 electrodes had the highest R square values. Spectral power of

channel C3 and C4 decreased at a frequency of 14 Hz.

Figure 4.21: Spectral power density EEG signals for both hands movement (a)channel C3

and (b)channel C4

4.3.1.4 Both Feet Movement

R square topography for the both feet movement is shown in figure 4.24 which describes

the stimulation of EEG electrode for the movement of feet are in central region of the brain.

Cz and Cpz electrodes had the highest R square values. Spectral power of EEG signals for
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Figure 4.22: R square of Both hands movement at 14 Hz

channels Cz and Cpz decreased at a frequency of 10 Hz. Change in oscillation in channel

C3 and C4 can be observed in figure 4.23
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Figure 4.23: Spectral power density of channel for both feet movement(a)C1 (b) Cz and

(b)Cpz

Figure 4.24: R square of Both feet movement at 10 Hz
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4.3.1.5 Comparison Between Actual Movement and Imagined Movement

A comparison between the spectral power of actual movement and imagined movement for

both hands is shown in figure 4.25 and 4.26. At a frequency of 10 Hz, C1 and C3 showed

the closest spectral power for right hand movement. Channels having the lowest difference

of spectral power between the actual movement and the imagined movement is shown in

these figures, similarly C2 and C4 for left hand and C3 and C4 together for the both hands

movement.

(a) (b)

Figure 4.25: Spectral power density for imagined(a)right hand movement (b) left hand

movement
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Figure 4.26: Spectral power density for imagined both hands movement

4.3.2 EMD Based Feature Selection

A direct nonlinear approach was adopted to extract the more relevant IMFs corresponding

to the different frequency components in the mu and beta bands and to obtain the band

power for using these as features for mental task classification. EMD method was applied

to the EEG data defined previously. The EEG data for each subject were composed of 100

trials corresponding to left hand movement imaginations (C4) and 100 trials corresponding

to right hand movement (C3).

4.3.2.1 Band Power

Figure 4.27 shows the result of EMD decomposition for subject 1. Each channel is

decomposed into different IMFs and one residue.

To analyze the different characteristics of each IMF, power spectrum density (PSD)
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(a)

(b)

Figure 4.27: Intrinsic mode functions of (a) channel C3 (b) channel C4
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method was applied. This method was applied to each IMF to calculate and find the active

frequency bands such as the mu and beta rhythms. Figure 4.28 and 4.29 show the PSD in

each IMF in the two channels C3 and C4. The characteristics of the active frequency bands

corresponding to mu and beta are located only in IMF1, IMF2 of C3 and C4. Concerning

subject 1, the active frequency bands were located only in IMF1, IMF2 and IMF3 of C3

and C4. Therefore, the new signal was reconstructed by keeping only the two first IMFs for

subject 2 and only three first IMFs for subject 1. When the band power of actual movement

and imagined movement matched for these IMFs, the imagined movement was considered

as successful. In the data acquisition stage every motor imagery task was done 20 times

in one session and there was 5 different sessions giving 100 data sets. The accuracy was

found by comparing howmany imagined movement could be identified during the imagined

movement task session.

A feature extraction method based on the Empirical Mode Decomposition (EMD)

and the band power (BP) was proposed to keep only the active frequency band powers

corresponding to mu and beta rhythms in BCI-related mental task EEG signals. The feature

extraction process was done in three-stages: in the first stage EMD was applied on the raw

EEG signals to obtain the Intrinsic Mode Functions (IMF). The second stage reconstructed

the relevant signal by keeping only the IMFs which contained the active frequency bands.

The third stage calculated the BP of the active frequencies in the relevant signal.

4.3.2.2 Sample Entropy

Sample Entropy of different intrinsic mode function was calculated for the selected channel

more correlation with the movement task. Table 4.1 describes the sample entropy of the

IMFs for subject 1. When the sample entropy for imagined movement matched with the

actual movement then it was considered as successful identification.

From figure 4.30 and 4.31 it can be seen that accuracy for the mental task recognition
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(a) (b)

Figure 4.28: PSD (dB/Hz) vs. frequency (Hz) of each IMF for channel C3 (a) actual

movement and (b) imagined movement
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(a) (b)

Figure 4.29: PSD (dB/Hz) vs. frequency (Hz) of each IMF for channel C4 (a) actual

movement and (b) imagined movement
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Figure 4.30: Average accuracy using Band power (BP) as feature for four tasks

Table 4.1: Sample Entropy of Intrinsic mode functions for actual and imagined movements

IMF
C3 (Right hand) Cp3(Right hand) C4(Left hand) Cp4(Left hand) Cz(Feet)

Actual
Imagi-

ned
Actual

Imagi-

ned
Actual

Imagi-

ned
Actual

Imagi-

ned
Actual

Imagi-

ned

IMF1 2.6911 2.632 2.936 2.887 3.975 4.15 3.569 3.447 5.585 5.664

IMF2 2.593 2.601 2.8235 2.808 3.523 3.389 3.032 3.088 5.032 5.078

IMF3 2.3958 2.256 2.568 2.58 3.056 3.075 2.865 2.912 4.56 4.887

IMF4 2.211 2.301 2.321 2.35 2.804 2.789 2.407 2.508 4.026 4.157

IMF5 1.845 1.814 2.012 2.08 2.457 2.501 1.79 1.763 3.51 3.42

IMF6 1.277 1.298 1.532 1.602 2.039 2.042 1.045 1.086 3.182 3.187

IMF7 0.6229 .823 1.023 1.08 1.85 1.887 .7403 .822 2.15 2.309

IMF8 0.1837 .18 .503 .606 1.26 1.204 .236 .295 1.68 1.702

IMF9 0.0497 .05 .178 .205 .95 .884 .084 .094 1.064 1.118

IMF10 0.0108 .009 .0806 .0911 .1256 .133 .022 .0335 .508 .576
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Figure 4.31: Average accuracy using Sample Entropy (SampEn) as feature for four tasks

was higher for the band power feature than sample entropy. Both feet recognition rate had

a significantly higher accuracy rates compared to the other motor imagery based task as the

signal was from the vertex zone (Cz and Cpz electrodes).

Accuracy ofmental task identification is shown in figure 4.32. ThoughEMDalgorithm

was found to be more effective in noise reduction figure 4.11 and 4.12, but for the feature

extraction EMD had lower accuracy than CSP method. The most possible reason for

that may be the mode mixing criteria of empirically decomposed signal. The reasons of

mode mixing mainly include high frequency weak signal in noise or discontinuous signal

interference, resulting in the extreme value point of the signal distribution confusion and

mixed signal’s amplitude and frequency relationship.
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Figure 4.32: Comparison of CSP and EMD feature extraction technique
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CHAPTER 5

CONCLUSION

5.1 Summary of Present Work

In this study a signal processing technique, namely empirical modal decomposition (EMD),

and two its variants, ensemble EMD (EEMD) and multivariate EMD (MEMD), were

proposed for artifact removal and feature extraction from EEG signals in motor imagery

(MI) based BCI applications. With application of these signal processing techniques to pre-

process EEG signals, signal to noise ratio (SNR) improved significantly over the independent

component analysis (ICA) used in BCI2000. In summary, the following objectives were

fulfilled:

• Artifacts were removed from the raw EEG signals acquired for different actual motor

actions and MI activities by using empirical mode decomposition (EMD).

• Extensions of EMD algorithm such as EEMD and MEMD were used to overcome

the mode mixing and mode misalignment problem associated with EMD algorithm.

• A comparative analysis was carried out to remove artifacts from raw EEG signal

based on EMD and its variants, EEMD and MEMD with the CSP based approach.

• Extraction of features (r square coefficient, spectral power, band power and sample

entropy) was performed from the pre-processed EEG signals for motor task identifi-

cation.

• Actual motor actions and MI activities were identified and classified using extracted

features.

• A comparison was made between the accuracy of mental task identification for EMD

and CSP based approaches.
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After observing all the findings from above analysis it can be concluded that the

hypothesis "if suitable algorithms are used for artifact removal and feature extraction from

motor imagery based EEG signals, the signal to noise ratio (SNR) of pre-processed EEG

signals will improve leading to distinct features for better identification and classification

of MI-BCI activities" was successfully tested. Further work is planned for next stage to use

the artifact-free EEG signals for characterization and identification of motor imagery (MI)

in the context of MI based brain-computer interface (BCI) applications.

5.2 Scope For Future Work

This work laid the foundation of MI-BCI research in B-IRIS lab by integrating acquisition

of EEG signals with pre- and post-processing of signals for actual and imagined motor

actions. There are tasks related to this research that need to be improved and can be further

applied to get better identification of motor imagery (MI) tasks. Some on-going and future

directions of extending the research are outlined as follows:

• More features, in addition to band power (BP) and sample entropy (SampEn), can be

extracted from artifact-free pre-processed (through EMD, EEMD and MEMD) EEG

signals.

• Extended group of extracted features can be used in support vector machine (SVM)

to identify and classify MI activities. The performance of EMD, EEMD and MEMD

can be compared on the basis of classification success through the corresponding

extracted features.

• Features extracted fromEMD,EEMD,MEMDapproach could be used in combination

with that obtained from CSP based approach from BCI2000 for identification and

classification of MI activities using support vector machine.
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• Other classifiers can be considered to compare the classification performance with

SVM.

• The classification stage can be extended to next phase, namely, actuation and control

of external devices through motor imagery based BCI.

• The MI-BCI research can be integrated with the cloud computing framework of

B-IRIS lab.
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