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Abstract (EN)

Recognizing hand gestures is a complex topic that involves analyzing various tech-
niques related to input signals and algorithms. Despite the ongoing research, con-
structing robust and reliable classiőers remains challenging due to the high variabil-
ity among subjects and the unpredictability of daily factors. This project proposes
and compare different strategies that utilizes forearm Electromyography (EMG) sig-
nals to address some of these issues.
The proposed classiőer uses a Multi Kernel Convolutional Neural Network (MKCNN)and
is tested on multiple open-access databases with 14 classes selected from the ADL
(Activity of Daily Living). Few basic pre-processing steps are employed to minimize
computational demands. This is particularly critical in small embedded devices,
such as those used in prosthetic control, where excessive computation can lead to
signiőcant delay, energy consumption and heat generation.
Additionally, Triplet Margin Loss and Adversarial training via Reversal Gradient
are exploited to maximize generalization capabilities of the MKCNN. The effective-
ness of the two different algorithms are used to overcome the challenges posed by
daily variables, such as skin impedance, sensor positioning, muscle variations, sweat,
humidity, or interference. Finally, transfer learning is implemented to address the
limitation of inter-subject variability by pre-train the model over multiple subjects
and őne-tuning it on the őnal user.
Overall, this project represents an advancement in the őeld of hand gesture recog-
nition and could pave the way for the development of more reliable and efficient
prosthetic control systems.
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Abstract (IT)

Il riconoscimento dei gesti delle mani costituisce un argomento complesso che richiede
l’analisi di varie tecniche relative ai segnali di ingresso e agli algoritmi. Nonostante
le ricerche in corso, rimane una sőda considerare classiőcatori robusti e affidabili
a causa dell’alta variabilità tra i soggetti e dell’imprevedibilità dei fattori quotid-
iani. Questo progetto propone e confronta diverse strategie che impiegano i seg-
nali dell’elettromiograőa (EMG) dell’avambraccio per affrontare alcune di queste
sőde. Il classiőcatore proposto utilizza una rete neurale convoluzionale multi-kernel
(MKCNN) ed è stato testato su vari database accessibili al pubblico con 14 classi se-
lezionate dalle attività quotidiane. Per ridurre al minimo i requisiti computazionali,
sono state adottate poche fasi di pre-elaborazione, il che è particolarmente cruciale
per dispositivi embedded di piccole dimensioni, come quelli utilizzati per il controllo
delle protesi. Questo evita ritardi signiőcativi, consumo di energia e surriscalda-
mento. Inoltre, sono state implementate tecniche come la perdita di margine della
tripletta e l’addestramento avversario tramite gradiente inverso per massimizzare
la capacità di generalizzazione della MKCNN, affrontando le sőde imposte dalle
variabili quotidiane, come l’impedenza cutanea, il posizionamento del sensore, le
variazioni muscolari, il sudore, l’umidità o le interferenze. Inőne, l’apprendimento
per trasferimento è stato utilizzato per mitigare la variabilità tra i soggetti, preadde-
strando il modello su più soggetti e ottimizzandolo per l’utente őnale. Nel complesso,
questo progetto rappresenta un avanzamento signiőcativo nel campo del riconosci-
mento dei gesti della mano e potrebbe aprire la strada allo sviluppo di sistemi di
controllo protesico più affidabili ed efficienti.
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1 | Introduction

The őeld of Human-Machine Interaction (HMI) has witnessed remarkable growth,
with numerous applications and interfaces emerging to facilitate natural interactions
between humans and computing systems. One pivotal aspect of HMI is Hand Ges-
ture Recognition (HGR), which plays a crucial role in interpreting human commands
and intentions. HGR models have found diverse applications, from enhancing intel-
ligent prostheses to enabling sign language recognition, aiding rehabilitation devices,
and facilitating device control.

To empower these HGR models, various methods for data acquisition have been
explored, including gloves, vision sensors, inertial measurement units (IMUs), and
surface electromyography (EMG) sensors, either individually or in combinations.
While each of these technologies brings unique advantages, they also come with
their own limitations. For instance, gloves can restrict natural hand movements
while vision sensors can face challenges related to occlusion or lighting variations,
for this reason they may not be suitable for amputees. IMUs and surface EMG
sensors, on the other hand, offer a valuable advantage in capturing the intent behind
hand movements. Surface EMG sensors, in particular, have proven effective even in
cases where individuals are physically unable to execute speciőc movements while
retaining the intention to do so [1]. This unique attribute has positioned them as a
forefront technology in the quest for prosthetic control devices.

1.1 Electromyography

Electromyography (EMG) is a method to measure the electrical activity of skele-
tal muscles, which allow us to perform voluntary movements, and their activity is
controlled by alpha motor neurons. When an alpha motor neuron is activated (i.e.,
discharges), signals from the brainstem/spinal cord are transmitted to the neuro-
muscular junction, which causes muscle őbers to contract [2]. This results in a
transient change in the electrical potential, known as motor unit action potentials
(MUAPs). It is possible to detect this signal using electrodes that are placed either
on the skin or inserted into the muscles, as shown in Figure 1.1.
When a muscle contracts, charged particles (ions) ŕow across its őber membrane,
constituting an electrical current (I), which is measured in Amperes (A) or electric
charge per second. These electrical currents affect the electrical potential in the sur-
rounding tissue, creating a voltage difference, measured in Volts (V), between two
points. The voltage recorded at the skin surface reŕects this electrical activity. It’s
inŕuenced by factors like resistance or impedance, quantiőed in Ohms (Ω), which
is the obstacle to electric current ŕow posed by the muscle, subcutaneous tissue,
and skin. The time-varying voltage distribution on the skin surface resulting from
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muscle activity is known as the surface electromyography (sEMG) signal.
Using surface EMG, what is actually registered is the summation, in space and time,
of multiple MUAPs [3], which provide a 2D representation of the electric potential
across the surface of the skin, similar to the ECG on the chest or the EEG on the
scalp. This electrical signal evolves over time and is obtained by sampling its analog
version both spatially and temporally using an electronic sampler.

Figure 1.1: Motor Unit

1.1.1 Motor neuron action potential

A motor unit (MU) consists of an alpha motor neuron and the muscle őbers it con-
trols. When this motor neuron discharges, all the muscle őbers within that unit
activate together, creating a motor unit action potential (MUAP). The sEMG (sur-
face electromyogram) signal recorded is the sum in space and time of these MUAPs.
Depending on the required force and contraction speed, dozens to hundreds of mo-
tor units can be activated [4]. MUAPs typically last between 5 and 15 milliseconds
[5], measured from their initial deviation from baseline and returning to it. These
MUAPs vary in number, size, and shape, providing crucial information on the health
and function of motor units. This information is valuable for diagnosing and moni-
toring neuromuscular disorders.

1.2 Applications

Surface Electromyography, or sEMG, is a powerful tool in the őeld of physiologi-
cal and muscular studies. It provides valuable insights into the intricate interplay
between the nervous system and muscles. By recording the electrical activity gen-
erated during muscle contractions, sEMG offers a window into the inner workings
of the neuromuscular system.

sEMG data can reveal a wealth of information about muscle function, including
muscle recruitment patterns, timing of muscle activation, and coordination of muscle
groups.

Moreover, the versatility of sEMG extends far beyond research alone. Its appli-
cations span a wide range of őelds, from healthcare to human-computer interaction.
The data collected through sEMG can be harnessed to create innovative solutions
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that improve our lives, improve healthcare practices, and open doors to new pos-
sibilities. In particular, in the domain of hand-gesture recognition, sEMG őnds
prominent application in the following contexts:

1. Communication: in some situations, individuals face challenges in using
spoken language for communication due to health conditions such as mute-
ness or certain impairments. To address this need, sign languages emerged
as a forms of communication relying on hand gestures. However, the reach
of sign languages is limited, varying from one country to another, and not
all individuals are proőcient in them. This limitation necessitates the pres-
ence of trained intermediaries for effective communication. In this context,
the development of automated hand gesture recognition systems may have an
high impact. Infact, these systems can interpret and translate dynamic hand
gestures into corresponding words or sentences [6]. Essentially, they serve as
digital translators [7], facilitating communication between individuals who rely
on sign languages and those who do not. This innovation plays a crucial role in
enhancing inclusivity and bridging communication gaps in the communication
contexts.

2. Rehabilitation: the sEMG’s ability to decode muscle symmetry and activa-
tion patterns during different movements is usually exploited by therapists,
enabling them to precisely tailor rehabilitation programs [8]. Furthermore,
sEMG biofeedback enhances patient control by increasing their awareness of
muscle dynamics, which can help reduce spasticity, especially in individuals
with neurological conditions such as stroke or cerebral palsy [9]. Another
signiőcant application involves the utilization of assistive robots, speciőcally
sEMG-controlled exoskeletons [10]. These exoskeletons are frequently em-
ployed in cases of severe impairment, as they enable patients to perform precise
and corrective movements, thereby signiőcantly augmenting their rehabilita-
tion progress [11]. Notably, these exoskeletons őnd extensive use in both upper
and lower limb movements [12].

3. Prosthetics control: thanks to modern technology, it is possible now achieve
remarkable control over prosthetic devices. This is made possible by captur-
ing and interpreting electrical signals generated by the muscles remaining in
the user’s residual limb. Prostheses controlled via surface electromyography
(sEMG) provide users with an unparalleled level of dexterity and control previ-
ously unattainable [13]. This newfound capability empowers individuals with
limb loss to regain a natural and effortless grip on their daily activities. It not
only enhances their quality of life but also redeőnes the potential of prosthetic
hand functionality.

4. Gaming and VR: nowadays, the traditional gaming experience is not enough
to satisfy the hunger of today’s gamers. Hand-gesture recognition adds a layer
of immersion to gaming experiences. Gamers can control characters and ac-
tions with natural hand movements, making gameplay more intuitive and ex-
citing. Furthermore, within a virtual reality (VR) environment, gesture-based
controls enable players to actively interact with games [14]. This interac-
tion fosters a profound sense of presence and realism. Notably, these advan-
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tages have found extensive application in the realm of rehabilitation [15], [16]
through gamiőcation, yielding highly promising outcomes.

1.3 Sensing modalities

Upper-limb EMG detection can be mainly categorized into two types: invasive and
non invasive. Both of those modalities generally come within the form of electrode
arrays or unpaired ones which can be strategically positioned inside (needles elec-
trodes) or above target muscles. Even if the invasive methods has been proved to
provide a more accurate, clean and stable signal [17], they come with the needing of
surgical operations. There are sEMG devices that require conductive gel and others
that use dry electrodes that stick to the skin directly, providing easy and quick im-
plantation. Additionally, there are wireless sEMG systems[18] that improve client
comfort and mobility, enabling them to participate in a variety of activities without
tedious wires. Other sensing modalities for hand-gesture recognition include Force
myography (FMG), Near-Infrared Spectroscopy (NIRS), Radiomyography (RMG),
and Inertial measuring units (IMU).

1.4 Embedded system constrains

In real-time Hand Gesture Recognition (HGR) utilizing EMG signals, the concept of
"controller delay" is of paramount importance. This term refers to the time it takes
for the HGR system to recognize a performed gesture and subsequently respond
to it. The signiőcance of minimizing controller delay lies in providing users with a
seamless and responsive interaction experience.

The ongoing challenge in the development of HGR systems is to strike a balance
between minimizing controller delay and ensuring accurate gesture recognition.

However, in more intricate and őne-tuned tasks, like controlling a robotic hand
or executing precise maneuvers, users can tolerate slightly longer delays, which may
extend up to 300 ms [19]. Beyond this threshold, delays become noticeable and
can signiőcantly impact the user experience, leading to frustration and diminished
usability.

Another signiőcant constraint in the context of prosthetic devices, particularly
for daily use, is power consumption. Prostheses are expected to operate efficiently
on a daily basis, which necessitates the use of models and systems that are either
simplistic or designed for low power consumption.

A promising advancement in this context has arisen from the University of
Bologna. They have spearheaded techniques that involve quantization, which may
result in a minor reduction in accuracy, but signiőcantly enhance energy efficiency
in prosthetic devices [20], [21].
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1.5 Machine learning applications to sEMG

In recent years, deep learning has emerged as a potent tool in various őelds such as
speech recognition, computer vision, and natural language processing. This success
has extended to electromyography (EMG) pattern recognition, where deep learning
techniques have been applied to enhance the accuracy and robustness of EMG-based
gesture recognition systems.

1.5.1 Classical machine learning approaches

Classical machine learning techniques encompass a variety of algorithms that have
played a foundational role in the őeld of sEMG. It’s common the usage of K-NN,
which classiőes data points by the considering the majority class of their nearest
neighbors in the feature space. SVM, or Support Vector Machines, aims to őnd an
optimal hyperplane that best separates data points into different classes. Decision
Trees, a fundamental building block that maps out decision paths based on input
features. Lastly, Random Forest, an ensemble method, takes a large number of
decision trees and combines their outputs to enhance predictive accuracy (e.g. major
voting). All this techniques usually employ hand-crafted feature, that need to be
extracted from the data, thus, involving a signiőcant computational burden int he
case of real-time applications. Nonentless,these classical techniques have paved the
way for more advanced machine learning approaches, offering valuable tools for
tackling a wide range of real-world problems.

1.5.2 Deep learning approcahes

The landscape of sEMG gesture recognition has been signiőcantly shaped by Con-
volutional Neural Networks (CNNs). Early pioneers [22] introduced user-adaptive
CNN models, achieving remarkable classiőcation accuracy improvements compared
to conventional methods. Additionally, Atzori et al. [23] presented a modiőed LeNet
CNN architecture that outperformed traditional techniques, such as Support Vector
Machine, Random forest, Linear Discriminant Analysis and k-Nearest Neighbor.

Recent research efforts have explored innovative techniques in this domain. Wei
et al. [24] delved into a "decomposition-and-fusion" strategy, employing a two-stage
multi-stream CNN approach, proving its supremacy over random forests and basic
CNNs. Moreover, multi-kernel structures [25] have demonstrated their effectiveness
in enhancing classiőcation.

To further boost CNN performance, several studies have meticulously tweaked
various elements, encompassing pre-processing, hyperparameters, and network lay-
outs [26]. Meanwhile, the realm of 3D CNNs has been harnessed to process intricate
őnger movement data, particularly in HDsEMG contexts [27].

Another dimension of deep learning methods has embraced Temporal Convolu-
tional Networks (TCNs). These have gained traction in sEMG-based gesture recog-
nition due to their innate ability to capture temporal dimensions. Their utility
extends to enhancing motion intention prediction, especially during transitions be-
tween classes [28]. Notably, TCNs have exhibited superior performance compared to
classical ML methods [29], making them an optimal choice for resource-constrained
embedded devices.
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Recurrent neural networks (RNNs), especially LSTM variants, have gained sig-
niőcant traction in time series analysis, offering a robust foundation for sEMG data
processing as well. Promisingly, the fusion of CNN and RNN, referred to as hybrid
architectures, presents substantial potential in sEMG applications. One notable
approach integrates LSTM and CNN into a uniőed structure [Karman2022, 30].
Alternatively, other models leverages LSTM to preserve temporal information while
complementing it with CNN for spatial feature extraction [31]. These hybrid models
represent a compelling direction in sEMG-based research, combining the strengths
of both convolutional and recurrent neural networks.

Recent trends in sEMG gesture recognition also encompass the adoption of un-
supervised learning algorithms, requiring minimal to no data labeling. For instance,
Vujaklija et al. [32] leveraged Auto-encoders to transform noisy input data into
a cleaner format. Unsupervised learning is advantageous in eliminating the need
for labor-intensive human data labeling. However, self-learning techniques may in-
troduce classiőcation errors, particularly in scenarios involving shifts in data dis-
tribution [33]. Other CNN-based studies in the sEMG domain are geared toward
enhancing model scalability through domain adaptation [34], or self-recalibrating
classiőcation strategies [35].

1.6 Objectives

In this work, a preliminary and comprehensive analysis of the methodologies used
for the pre-processing of surface electromyography (sEMG) signals is presented, with
the aim of optimizing data quality and relevance. Deep investigations are conducted
to acquire signiőcant insights into the selection of appropriate normalization types
and modes, as well as to address critical factors connected to the selection of the
time window dimension.

Furthermore, the development of a sophisticated model for the classiőcation of
hand gestures based on sEMG data is tested over four publicly available datasets.
This model employs cutting-edge techniques, particularly convolutional neural net-
works (CNNs), equipped with őlters of varying sizes to capture intricate relationships
among different frequency components. A systematic exploration of the inŕuence of
hyperparameters on the model’s performance is shown to ensure optimal results.

One key objective is to address the pressing issue of generalization in the őeld
of sEMG-based hand gesture recognition. To this end, a comprehensive comparison
of the model’s capabilities with three different methodologies is conducted. In par-
ticular, the aim consists of enhancing the adaptability of the model to new subjects
while extracting universal relationships whenever possible. The work aims to pro-
vide valuable insights into the potential of deep learning in the realm of sEMGs and
develop a classiőer capable of real-time applications that surmount the challenges
typical of modern devices. The structure of this work guides the reader through
method explanations, followed by results, and critical discussions.
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2 | Data

In this section, essential details about the datasets employed in the study are pro-
vided. Publicly available databases commonly used for sEMG signal research, par-
ticularly for hand gesture recognition, were selected. These databases were chosen
to enable thorough cross-correlation analyses, assessing the effectiveness of various
algorithms and overall data quality.

2.1 Databases

In this Master’s thesis, four widely recognized public databases were selected, which
are commonly used as benchmarks in the őeld of sEMG signal research, speciőcally
for hand gesture recognition These databases are NinaPro DB1, DB2, DB3, and
DB7 [36], [37]. An overview of databases main feature is visible in Table 2.1.

The choice was made primarily because they feature the same types of exercises,
enabling comprehensive cross-correlated analyses. This approach allows for the eval-
uation of the effectiveness of various algorithms and the assessment of overall data
quality.

Furthermore, it’s worth noting that the last three databases (DB2, DB3, and
DB7) share a common acquisition device. To enhance the volume of data available
for the study, these databases were merged, contributing to a more extensive dataset
for the research

2.1.1 Data acquisitions protocol

For DB2,DB3, and DB7, Muscle activity was monitored using 12 TrignoWireless
electrodes from Delsys, Inc. These electrodes recorded sEMG signals at a sampling
rate of 2 kHz. Among these electrodes, eight were evenly spaced around the forearm

Table 2.1: Description of Nina-Pro Databases

Name Subjects Channels Classes Repetitions Frequency Device

DB1 27 10 52 10 100 Hz MyoBook 13E200

DB2 40 12 41 6 2000 Hz Delsys Trygno

DB3 11 (A) 12 41 6 2000 Hz Delsys Trygno

DB7 20+2 (A) 12 41 6 2000 Hz Delsys Trygno

Note: In the context of this study, the letter A in Subjects designates the number of amputees.
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Figure 2.1: Acquisition set up

at the level of the radio-humeral joint. Two electrodes were strategically placed
on the key activation spots of the ŕexor digitorum superőcialis and the extensor
digitorum superőcialis muscles. The remaining two electrodes were positioned at
the primary activity sites of the biceps brachii and the triceps brachii.
For DB1, instead, 10 Otto Bock MyoBock 13E200 electrodes were used. Same
positions were used except for the last two missing. Electrode placement and an
overview of the methodology adopted are shown in Figure 2.1.
All four databases used the same data acquisition protocol described by M. Atzori
et al. in [36].
It’s important do mention that, during acquisition, each exercise was interspersed
with 3 seconds of rest to alleviate as much muscle fatigue as possible, which would
have compromised the regularity of the signals [38].
Finally, because of the large drop in performance due to the number of gestures to
be classiőed, a subset of 14 gestures was chosen from those available based on the
ADL (activity daily living) visible in Figure 2.2.

Figure 2.2: Selected gestures
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2.2 Pre-processing

Regarding signal processing, the publicly available data undergo three essential
steps:

1. Filtering: to eliminate interference from 50 Hz power-line signals (and har-
monics), a Hampel őlter was employed. This step was necessary because the
Delsys electrodes were not shielded against such interferences.

2. Synchronization: to ensure consistency, the data streams were synchronized
by up-sampling to the highest sampling frequency of 2 kHz using linear inter-
polation.

3. Relabelling: human movements may not always align precisely with the video
stimuli used, due to delay response of the human brain. To address this, any
inaccuracies in the movement labels were corrected using an offline generalized
likelihood ratio algorithm.

These preprocessing steps helped ensure that the sEMG data was in a suitable
and reliable format for subsequent analysis. Data from each database were extracted
and reconstructed in the form of a dataframe-transformed csv őle using Pandas
python library and extracting and remapping only the exercises of interest.

2.2.1 Filtering

The dataframes underwent another őltration process that employed a 5th-order
Butterworth bandpass őlter within the (20 - 500) Hz range, adhering to the standard
practice in sEMG signal processing [39]. In fact, approximately 95% of the spectral
power in EMG signals resides within the 400 - 500 Hz range [40]. Higher frequencies
are usually related to interference while values below 20 Hz are often associated with
motion-related artifacts.

2.2.2 Windowing

Before being passed to the model, the signal underwent a windowing process. This
involved creating a new dataframe with customized indexes based on the chosen
window size.

The selection of window size was primarily inŕuenced by the real-time applica-
tion’s requirements. For datasets sampled at 2000 Hz, window sizes of 200, 300, and
400 points were chosen, equivalent to time intervals of 100, 150, and 200 miliseconds,
respectively, all with 75% overlap.

Additionally, a 20 ms window (comprising 40 points) was chosen, considering the
potential use of a majority voting strategy, as it has been proved a valid option [41]

In contrast, for the 100Hz DB1 database, a single 20-point window (equivalent
to 200 ms) was selected.

This diverse set of window sizes allowed for an assessment of the impact and
signiőcance of this pre-processing step.
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2.2.3 Normalization and Rectification

In the pursuit of enhancing data homogeneity and handle inter-subject variability,
three normalization types were tested: scaling data to the intervals (-1, 1) and (0, 1),
as well as employing the z-score normalization technique. These methods, inherently
subject-dependent, have been evaluated:

• Collective: compute basics parameters, such as maximum, minimum, mean,
and standard deviation, from all channels collectively.

• Channel-level: retrieve the same set of parameters from each channel inde-
pendently.

The choice of normalization methods prioritized simplicity and suitability for
real-time applications. Moreover, the requisite parameters for normalization (max-
imum, minimum, mean, standard deviation) can be stored externally for direct
utilization in the online application, circumventing the need for additional compu-
tations, and they can easily be updated for daily calibration.

Signal rectiőcation was chosen because of its minimal computational cost and as
it is a common practice for sEMG [Xiong2020]. Moreover, a preliminary experi-
ment revealed that although there were negligible differences from a metric perspec-
tive, there was a slight trend towards faster convergence.
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3 | Methods

3.1 Machine learning applications to sEMG

In recent years, deep learning has emerged as a powerful tool in various őelds such as
speech recognition, computer vision, and natural language processing. This success
has extended to electromyography (EMG) pattern recognition, where deep learning
techniques have been applied to enhance the accuracy and robustness of EMG-based
gesture recognition systems.

3.1.1 Classical machine learning approaches

Classical machine learning techniques encompass a variety of algorithms that have
played a foundational role in the őeld of sEMG. It’s common the usage of K-NN,
which classiőes data points by the considering the majority class of their nearest
neighbors in the feature space. SVM, or Support Vector Machines, aims to őnd an
optimal hyperplane that best separates data points into different classes. Another
common approach involves the use of Decision Trees, a fundamental building block
that maps out decision paths based on input features. Lastly, Random Forest, an
ensemble method, takes a large number of decision trees and combines their outputs
to enhance predictive accuracy (e.g. major voting). All these techniques usually em-
ploy hand-crafted features that need to be extracted from the data, thus involving a
signiőcant computational burden in the case of real-time applications. Undoubtedly,
these classical techniques have paved the way for more advanced machine learning
approaches, offering valuable tools for tackling a wide range of real-world problems.

3.1.2 Deep learning approaches

The landscape of sEMG gesture recognition has been signiőcantly shaped by Con-
volutional Neural Networks (CNNs). Early pioneers [22] introduced user-adaptive
CNN models, achieving remarkable classiőcation accuracy improvements compared
to conventional methods. Additionally, Atzori et al. [23] presented a modiőed LeNet
CNN architecture that outperformed traditional techniques, such as Support Vector
Machine, Random Forest, Linear Discriminant Analysis and k-Nearest Neighbor.

Recent research efforts have explored innovative techniques in this domain. Wei
et al. [24] delved into a "decomposition-and-fusion" strategy, employing a two-stage
multi-stream CNN approach, proving its supremacy over random forests and basic
CNNs. Moreover, multi-kernel structures [25] have demonstrated their effectiveness
in enhancing classiőcation.

To further boost CNN performance, several studies have meticulously tweaked
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various elements, encompassing pre-processing, hyperparameters, and network lay-
outs [26]. Meanwhile, the realm of 3D CNNs has been harnessed to process intricate
őnger movement data, particularly in HDsEMG contexts [27].

Another dimension of deep learning methods embrace Temporal Convolutional
Networks (TCNs). These have gained traction in sEMG-based gesture recognition
due to their innate ability to capture temporal dimensions. Their utility extends to
enhancing motion intention prediction, especially during transitions between classes
[28]. Notably, TCNs have exhibited superior performance compared to classical ML
methods [29], making them an optimal choice for resource-constrained embedded
devices.

Recurrent neural networks (RNNs), especially LSTM variants, have gained sig-
niőcant traction in time-series analysis, offering a robust foundation for sEMG data
processing as well. Promisingly, the fusion of CNN and RNN, referred to as hybrid
architectures, presents substantial potential in sEMG applications. One notable
approach integrates LSTM and CNN into a uniőed structure [Karman2022, 30].
Alternatively, other models use LSTM to preserve temporal information while com-
plementing it with CNN for spatial feature extraction [31]. These hybrid models
represent a compelling direction in sEMG-based research, combining the strengths
of both convolutional and recurrent neural networks.

Recent trends in sEMG gesture recognition also encompass the adoption of un-
supervised learning algorithms, requiring minimal to no data labeling. For instance,
Vujaklija et al. [32] leveraged auto-encoders to transform noisy input data into
a cleaner format. Unsupervised learning is advantageous in eliminating the need
for labor-intensive human data labeling. However, self-learning techniques may in-
troduce classiőcation errors, particularly in scenarios involving shifts in data dis-
tribution [33]. Other CNN-based studies in the sEMG domain are geared toward
enhancing model scalability through domain adaptation [34], or self-recalibrating
classiőcation strategies [35].

3.2 Model Structure

The architecture of the proposed Multi-Kernel Convolutional Neural Network (MKCNN)
is visually depicted in Figure 3.1. The MKCNN model consists of four distinct
parts, each serving a unique purpose, elaborated as follows:

Part 1 This section comprises two blocks, as illustrated in Figure 3.2. The objective
of Part 1 is to extract comprehensive features capable of capturing the spatio-
temporal intricacies present within the sEMG signal. Each sample of the
multichannel sEMG signal is interpreted as an image. In Block 1, a set of őve
diverse őlters, of sizes 10×3, 20×3, 30×3, 40×3, and 50×3, is employed. This
simultaneous extraction of temporal and spatial information from the input
sEMG signals contributes to a richer representation. The őlter sizes play a
pivotal role in inŕuencing the receptive őeld of the neural units, consequently
impacting the temporal information of the extracted deep features. Larger
őlter sizes are generally associated with lower-frequency features. In Block 2,
a comparable structure to that of Block 1 is replicated. Nevertheless, in Block
2, the number of neurons is increased twofold through the utilization of őve
convolution layers, each featuring uniform 3×3 őlter dimensions. This helps us
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map the extracted features into a higher-dimensional space. It is important to
mention that the convolution layer conőguration in Block 2 adopts separable
convolution to accomodate the transition from single-channel images in Block
1 to multichannel feature maps in Block 2. Furthermore, the integration of
Batch Normalization (BN) layers and dropout layers in both blocks aims to
enhance the overall generalization capabilities of the MKCNN model.

Part 2 The primary goal of this component is to achieve dimensionality reduction on
the feature maps emanating from Part 1, subsequently merging these maps.
Utilization of 1 × 1 őlters within this convolutional layer after Part 1 results
in a reduction in the number of feature maps, decreasing the count from 320
(64× 5) to 128.

Part 3 Building upon the preceding structure, Part 3 delves into the further extrac-
tion of deep features. Achieved through the implementation of Separable Con-
volutional layers, this facet comes into play despite the utilization of multi-scale
convolutional layers in the previous stages. The rationale here is to tap into
deep convolutional layers, enabling a more profound extraction of semantic
information.

Part 4 The pivotal role played by this őnal part is in establishing a robust mapping
relationship connecting deep features with the ultimate classiőcation results.
Through the integration of two fully connected layers, the generation of intri-
cate fused deep representations is enabled, facilitating more reőned classiőca-
tion results.

Figure 3.1: Architecture of model

A customized Convolution layer was strategically employed for the initial convo-
lutions (Conv2D_Circular8 ). The reason for this choice is that in all the databases
used, there are 8 channels arranged in a circular fashion around the arm. When tran-
sitioning from this circular physical conőguration to a linear computing arrangement
(rows by columns), the spatial relationships between the őrst and last channels, as
well as between the őrst and penultimate channels, and so on, are lost. In order to
overcome this problem, this specialized layer uses circular padding along the őrst
8-channel axis and zero temporal padding with a speciőc purpose: to preserve the
spatial relationship between electrodes. The architecture of the model, including its
layer types, kernel sizes, output sizes, activation functions, and options, is presented
in Table 3.1 below.
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Figure 3.2: Enlargement of őrst two block of Part one

Table 3.1: Architectural Layout and Data Pathways

Part Layer Type Kernel Size Output Size Activ Options

1-Input - 1/300x12 - -

5-Conv2D_Circular8 [15 - 75] x3 32/300x14 ReLU pad=’circular’

5-BatchNorm2D - 32/300x14 - -

5-MaxPooling2D 15x1 20x14 - -

1 5-Dropout2D - - 20x14 rat e= 0.2

5-SeparableConv2D 3x3 64/20x14 ReLU pad=0

5-BatchNorm2D - 64/20x14 - -

5-MaxPooling2D 2x2 10x7 - -

5-Dropout2D - 10x7 - rate=0.2

2 1-Concatenate - 320/10x7 - -

1-Conv2D 128/1x1 128/10x7 ReLU -

1-SeparableConv2D 3x3 128/10x7 ReLU pad=0

1-BatchNorm2D - 128/10x7 - -

1-MaxPool2D 2x2 128/5x3 -

3 1-Dropout2D - 128/5x3 - rate =0.2

1-SeparableConv2D 3x3 128/5x3 ReLU pad=0

1-BatchNorm2D - 128/5x3 - -

1-MaxPool2D 2x2 128/2x1 - -

1-Dropout2D - 128/2x1 - rate= 0.2

1-Flatten - 256 - -

4 1-Linear - 128 ReLU -

1-Linear - 14 SoftMax -

Note: The number before layer type represents the number of this layer, e.g., 5-Conv2D

represents there are five parallel conv2D layers. The Kernel size of the first Convolution uses a

fixed second dimension of 3, while the first dimension varies from the lower value to the upper

value in increments of 10.
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3.2.1 Triplet Margin Loss

The triplet margin loss is a popular choice in deep learning for domain adaptation.
It operates by learning embeddings or representations of data in a way that enhances
the similarity between similar samples (positive pairs) and pushes dissimilar samples
(negative pairs) apart in the high dimensional feature space. The loss is typically
deőned as:

Ltriplet =
∑

i

[max (0,margin + d(ai, pi)− d(ai, ni))] (3.1)

where ai represents the anchor sample, pi represents a positive sample (with the
same label as the anchor), ni represents a negative sample (with a different label from
the anchor), and margin is a margin parameter that enforces a minimum distance
between positive and negative samples. See appendix for more information.

The anchor in this study consists of information on the subject and their label.
Positive examples were labels that matched, but originated from distinct subjects.
Negative samples, on the other hand, were chosen to represent various labels in
order to emphasize dissimilarity in the embedding space. This method assisted the
model in learning robust features that are domain-invariant as well as effective for
the primary classiőcation job. The balance between the two loss function is weighted
by a factor (λ), which was set to 0.5 in these experiments.

3.2.2 Domain adaptation with Reversal Gradient variant

Domain adaptation is a technique used to adapt a machine learning model trained
in one domain (source domain) to perform well in another domain (target domain)
[42]. In the context of this study, the reverse gradient algorithm is employed for
this purpose. This algorithm involves the use of a second classiőer connected to
the primary model. In particular, this connection is established at the end of Part
3 of the MKCNN architecture. The objective is to classify the data based on the
subject to which it belongs, and it is achieved by minimizing a function based on
cross-entropy loss.

The key idea behind the reverse gradient algorithm is to penalize the primary
model’s loss function based on the domain classiőer’s performance. This penalization
encourages the model to learn features that are invariant to the domain, in this case
different subjects. In mathematical terms, the objective function to be minimized
can be expressed as:

min
θf ,θc

1

n

n
∑

i=1

Lc(f(xi; θf ); yi)− λ ·
1

m

m
∑

j=1

Ld(g(xj; θf ); dj) (3.2)

Here, θf represents the parameters of the primary model, θc represents the pa-
rameters of the domain classiőer, f(xi; θf ) is the output of the primary model for
input xi, yi is the true label for xi, g(xj; θf ) is the output of the domain classiőer
for input xj, dj is the domain label for xj (indicating the subject to which the data
belongs), n is the number of source domain samples, m is the number of target do-
main samples, Lc is the cross-entropy loss function for classiőcation, and Ld is the
cross-entropy loss function for domain classiőcation. The hyperparameter λ controls
the trade-off between the two loss terms, and in this work has been set as 0.5
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In simpler terms, this equation combines two cross-entropy losses, one for classi-
őcation and one for domain classiőcation, with a trade-off controlled by the hyper-
parameter λ

In this implementation, the reversal gradient algorithm involves multiplying the
gradients by an exponential scaling factor, which gradually increases from 0 to 1 over
the course of training epochs. This scaling factor serves the purpose of gradually
transitioning the model’s focus from the main task (hand gesture classiőcation),
to domain generalization. Initially, with a scaling factor of 0, the model priori-
tizes learning domain-invariant features. As the scaling factor increases, the model
progressively shifts its emphasis towards domain generalization while retaining the
capacity to perform the primary task effectively.

3.3 Experimental set-up

Due to the signiőcant variability among subjects and the ultimate goal of using
the classiőer in the prosthetic őeld, user-dependent őne-tuning was considered as
essential from the outset. For this reason, 20% of the subjects were initially set
aside and treated as new users for testing the őne-tuning capability through transfer
learning.

Subsequently, each database was divided into three sets: training, validation, and
testing using repetitions [2, 4, 6], [1, 5], and [3], respectively. This speciőc division
was chosen to mitigate the effects of muscle fatigue and assess how effectively the
model learns features that are not solely dependent on exercise conditions (e.g.,
changes in skin resistance, humidity, and electrodes shift).

3.3.1 Transfer Learning set-up

Transfer learning is a powerful technique in deep learning where a pre-trained model,
often developed on a large dataset for a speciőc task, is őne-tuned or adapted for a
different but related task.

To achieve this, certain layers of the pre-trained model are frozen, meaning their
weights are kept őxed, while other layers are modiőed to suit the new task. In
this study, transfer learning was employed to tailor the model to individual sub-
jects, thereby exploring the model’s adaptability. The process involved two distinct
experiments for each of the three algorithms used:

In the őrst experiment, only the őnal two linear layers (Part 4) were trained on
the new subject-speciőc data. In the second experiment, a more extensive retraining
was carried out, taking advantage not only of the őnal layers but also Part 2 and
Part 3 of the model.

The subject-speciőc dataset was once again divided based on repetition to ob-
serve changes in the model’s accuracy as the amount of available data changed.
The training procedure was gradual, beginning with one repetition, then to two,
then three repetitions, and so on, while being tested on the others. The order of
repetitions was set as [2, 1, 4, 5, 6, 3].

This methodical technique enabled us to investigate how the model’s accuracy
changes with increasing amounts of training data, revealing insights into its learning
and generalization skills.
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4 | Results

In the upcoming results chapter, we present the outcomes of our study, spanning
the selection of normalization methods and time window choices with the rigorous
data division technique employed. We highlight the effectiveness of convolutional
neural networks (CNNs) with varying őlter sizes, the inŕuence of hyperparameters
and asses comparisons between the two variants explored. These őndings set the
stage for experiments exploring transfer learning under different data scenarios.

4.1 Normalization types comparison

To ascertain the optimal normalization methods, experiments were carried out em-
ploying the model with the predeőned initial parameters as detailed in the "Meth-
ods" section. Proper normalization of data is a critical step in training robust
machine learning models, especially in domains like gesture recognition.

For the testing phase, Database 2 (DB2) was chosen, given its substantial num-
ber of subjects. An intermediate window of 150 ms (300 points) was employed for
the analysis.
The results from őve runs with the setup introduced in the same section showed
superior generalization capabilities when employing channel-speciőc normalization
mode, as recommended in [43] and [44], as depicted in Table 4.1. For what con-
cern the normalization types, the z-score method was the one which demonstrated
superior accuracy and slightly faster convergence rates compared to the others [45].

Hereafter, all experiments will incorporate z-score normalization with the ’by
channel’ modality.

Table 4.1: Performance Metrics for Different Normalization Modes and Types

Norm Mode Norm Type Accuracy Kappa F1 Score

Subject (0 - 1) 0.6988 0.7656 0.6988

Channel (0 - 1) 0.7192 0.7729 0.7192

Subject (-1 - 1) 0.6794 0.7362 0.6794

Channel (-1 - 1) 0.7086 0.7638 0.7086

Subject Z-score 0.7040 0.7647 0.7040

Channel Z-score 0.7308 0.7873 0.7308
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4.2 Window comparison

Selecting the appropriate window size for data processing is a crucial aspect of signal-
based tasks such as hand gesture recognition. The window size determines how the
data is segmented and presented to the model, directly affecting its ability to capture
temporal information and patterns. We employed again the same őxed parameters
as before. Moreover, the model underwent the normalization steps outlined above.
Table 4.2 presents the results of these experiments, averaged across őve trials.

As can be observed, the őrst three windows tested had no discernible change.
Particularly in terms of Kappa, which considers the presence of an unbalanced
dataset. One plausible explanation for this phenomenon could be attributed to
the increased volume of data associated with smaller windows. In fact, when using
the 200-point window, the model beneőts from a greater number of training samples

All measures show a signiőcant difference for the 20 ms span. However, when
majority vote is used, it remains a feasible option. Finally, the window size was
determined at an intermediate value of 300 points (corresponding to 150 ms), as it
is the window size suggested by several studies [46].

Except for DB1, which, as previously stated, would utilize a őxed 20 point
dataframe, all of the experiments shown will now use the dataframe with 300 point
window samples.

Table 4.2: Window selection Results

Window Lenght Best Val Loss Accuracy Kappa F1 Score Best Epoch

200 0.9760 0.7340 0.7951 0.7399 62

300 0.9710 0.7366 0.7979 0.7328 51

400 0.9885 0.7319 0.7891 0.7380 56

40 1.3404 0.5993 0.6890 0.6073 36

22



Multikernel Convolutional Neural Network for sEMG based Hand Gesture
Classiőcation Results

4.3 Grid Search for parameters optimiza-
tion

The model was fully parameterized, maintaining the consistency of the data ŕow to
determine the best combination of the remaining parameters. The same experimen-
tal setup, which consists of splitting training, validation, and test over repetitions,
was applied. Subsequently, a comprehensive grid search was performed. The model
was fully parameterized while retaining data ŕow consistency to discover the opti-
mum combination of the remaining parameters. Subsequently, a comprehensive grid
search with 50 alternative models was performed to assess the effectiveness of the
hyperparameters stated in Table 4.3.

Table 4.3: Overview of the grid search parameters tested

Hyperparameter Values chosen

batch size 64 128 256 512

optimizer SGD, Adam

learning rate 1.47 | 2.37 | 3.40 | 6.77 | 15.5 | 34.2 | 60.1 | 82.2)× 10−4

activation function ReLu, LeakyReLU, ELU

pooling type MaxPooling, AveragePooling

N_multik 16, 32, 64, 128

N_Conv_conc 64, 128, 256

N_SepConv 64, 128, 256

Kernel_Multi_Dim [10 - 50], [20 - 60], [30 - 70]

Note: This table presents the hyperparameters explored in the grid search. The
keys N_multik, N_Conv_conc, and N_SepConv represent the number of neurons
in the hidden layers of parts 1, 2, and 3, respectively. Notably, The Block 2 of Part
1 consistently uses twice as many hidden neurons as Block 1. In the table, Ker-
nel_Multi_Dim represents the conőguration for 5 parallel convolution operations.
Each operation uses a őxed second dimension of 3, while the őrst dimension varies
from the lower value to the upper value in increments of 10.

To ensure a comprehensive parameter analysis that remains valid across multiple
databases, the grid search was performed on the uniőed dataset created by merging
DB2, DB3 and DB7.

Figure 4.1 shows the results of the őrst 20 models, ordered by validation loss.
Following a comprehensive evaluation, the parameters of model number 6 was chosen
for additional testing, since they demonstrated a signiőcant discrepancy across all
metrics collected.
The Learning Rate column has been multiplied by 104 for visualization purposes.
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Figure 4.1: Grid Search Results over the merged dataset

4.3.1 Results of standard fine-tuned model

Figures 4.2, 4.3, 4.4, 4.5 and 4.6 depict the performance of the standard model,
with the parameters selected in the previous section, over the various databases. It
is clear how DB3, composed exclusively by Amputee, heavily degrades the model’s
capability.

Figure 4.2: Confusion Matrix for DB2
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Figure 4.3: Confusion Matrix for DB3

Figure 4.4: Confusion Matrix for DB7

25



Multikernel Convolutional Neural Network for sEMG based Hand Gesture
Classiőcation Results

Figure 4.5: Confusion Matrix for DB2+DB3+DB7

Figure 4.6: Confusion Matrix for DB1
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4.4 Reversal Gradient

This section presents the outcomes of the domain adaptation implementation. To
streamline the presentation, the emphasis will be placed on the confusion matrix
and plots related to the amalgamated database (DB2+DB3+DB7). While larger
datasets often lead to enhanced performance, the presence of individuals with am-
putations introduces a noticeable bias. Figure 4.7 shows the plot of the domain
classiőer loss. First, the particular pattern of the curve match the expectations of
using incremental gradient multiplier for the domain classiőer loss as described in
"Method" section. Indeed, in the őrst epochs, the classiőer is learning to accurately
predict from which patient the signals come from; then, when the multiplier starts
to rise, penalizing this ability, it starts to increase the loss.

Furthermore, another signiőcant consideration pertains to the observation that
the validation loss consistently remains below the training loss curve. This phe-
nomenon can be elucidated by the weight update process: validation data follow
training data and the corresponding updates. As a result, with each iteration, there
is a progressive divergence from the classiőer’s capability to accurately identify pa-
tients, leading to an increase in the training loss when compared to the validation
loss.

Figure 4.7: Domain Classiőer loss for DB2+DB3+DB7 Dataset
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In Figure 4.8 and Figure 4.9 are shown the plot of the task loss and the
confusion matrix respectively.

Figure 4.8: Task Loss only for DB2+DB3+DB7 Dataset with Reversal Gradient

Figure 4.9: Confusion Matrix for DB2+DB3+DB7
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4.5 Triplet Margin Loss

In this section, akin to the previous one, the focus will solely be on the presentation of
results for the consolidated database in relation to the Triplet Margin Loss. Figure
4.10 displays the loss plot of training and validation. In Figure 4.11 and Figure
4.12the plots of the task loss exclusively and the confusion matrix, respectively, are
available for observation.

Figure 4.10: Triplet Margin loss for DB2+DB3+DB7 Dataset

Figure 4.11: Task loss only for DB2+DB3+DB7 Dataset with Triplet Margin Loss
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Figure 4.12: Confusion Matrix for DB2+DB3+DB7

4.6 Transfer learning

Patients who were previously excluded from the experiment are now included in the
study for user-speciőc őne-tuning using Transfer Learning. This procedure involves
retraining a part of the network to improve its adaption to a new task, speciőcally
for a certain subject. As described in "Methods" section, for each of the three
prediction algorithms used, two experiment were conducted:

• Experiment 1: retraining only the őnal two linear layers (Part 4).

• Experiment 2: retraining Parts 2 and 3 in addition to the őnal two linear
layers (Part 4).

The initial model encompasses a total of 238,542 trainable parameters. In the
őrst experiment, only 34,702 parameters remain trainable, whereas in the second
experiment, a total of 111,374 parameters are unfrozen. The selected metric for
visualization is Cohen’s Kappa (Kappa), which proves to be a more informative
choice, particularly when dealing with imbalanced datasets.
The results presented in this section leverage the model pre-trained in the merged
database, which incorporates more data while providing a more objective overview.
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4.6.1 Pre-trained Standard Model

The outcomes of the őrst experiment, averaged across the 11 patients tested, includ-
ing two amputees, are presented in Figure 4.13.

The results of the second experiment are shown, instead, in Figure 4.14

Figure 4.13: Variation in performance for experiment 1

Figure 4.14: Variation in performance for experiment 2
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4.6.2 Pre-trained with Reversal Gradient

The two results displayed in Figure 4.15 and 4.16 represents the effect of the user-
dependent őne-tuning, respectively for experiment 1 and experiment 2 for the model
trained with Reversal Gradient algorithm.

Figure 4.15: Variation in performance for experiment 1

Figure 4.16: Variation in performance for experiment 2
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4.6.3 Pre-trained with Triplet Margin Loss

In the following, in Figure 4.17 and Figure 4.18, it is possible to observe the
results for the last tested algorithm, the Triplet Margin Loss.

Figure 4.17: Variation in performance for experiment 1

Figure 4.18: Variation in performance for experiment 2
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5 | Discussion

The development and evaluation of any machine learning model are inevitably ac-
companied by a set of limitations and challenges that provide valuable insights for
future improvements and research directions. In this section, various key limitations
encountered during the design and analysis of the model are discussed.

5.1 Constrains and limitation of the base
model

One primary constraint is the deliberate use of a low number of parameters. This
choice was driven by both the real-time constrains and the desire to mitigate overőt-
ting, a common issue in deep learning models. However, this limitation also restricts
the model’s capacity to capture intricate data relationships, potentially affecting its
overall performance.

Another signiőcant challenge arises from the substantial variability observed be-
tween patients and even within different sessions of the same person. This high
inter-subject variability presents a formidable obstacle to achieving robust perfor-
mance.

Furthermore, it’s essential to emphasize that the experimental protocol utilized
in this study does not involve model calibration for individual testing sessions, which
has a substantial impact on the model’s classiőcation accuracy. This inŕuence arises
from variations in data distributions attributable to factors such as skin resistance,
humidity, and electrode displacement, which are session-speciőc.
In this sense, the data generated offline closely resembles that of a real-time trial,
without any prior operations before using the prosthesis.

Even using generalization methods such as triplet margin loss and a small number
of parameters, the model demonstrates a tendency to overőt the data. Signiőcant
unpredictability and variations in data distributions among patients and sessions
increase this predisposition.

5.1.1 Database considerations

In Table 5.1 are summarized the performance of the őne-tuned standard model
with respect to the different databases.

Database 1 (DB1) introduces an additional layer of complexity due to its low-
frequency data. This characteristic can hinder the model’s ability to accurately
classify gestures, emphasizing the need for specialized signal processing techniques
or architectures tailored to low-frequency data.
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Database Accuracy Kappa F1 Score
DB1 0.67 0.724 0.671
DB2 0.767 0.822 0.768
DB3 0.442 0.501 0.446
DB7 0.774 0.826 0.779

DB2+DB3+DB7 0.722 0.774 0.722

Table 5.1: Performance Metrics for Different Databases

The requirement for user-adaptive control of prosthetic devices became clear
when considering the signiőcant decline in performance metrics reported in DB3,
which is primarily due to the presence of only amputee patients. These users pose
unique challenges in gesture recognition due to differences in their physiological
signals, making user-adaptive models a critical area of exploration for improved
performance.

Furthermore, a shift in performance dynamics is observed, particularly for databases
2 and 7. Notably, database 7 stands out with the highest accuracy, even though
it includes two subjects without arms. This phenomenon may be attributed to the
fact that when using only half of the subjects, the model tends to overőt on them,
resulting in enhanced performance on the included subjects.

Conversely, when considering the composite database, its performance naturally
experiences a decline due to the inclusion of database 3. Nevertheless, a satisfactory
level of performance is still maintained, probably thanks to leveraging a larger vol-
ume of data during training, which usually lead to the development of more robust
models.

5.2 Transfer Learning comparisons

This section investigates the impact of various algorithms within the context of
the transfer learning framework. The objective is to elucidate the effects of these
algorithms and offer insights into the results they produce. Table 5.2 summarizes
the results over the merged database reported in section "Results."

One prominent observation is the notably low accuracy achieved by the model
when utilizing 0 repetitions. It’s important to note that the subjects tested were
entirely distinct from those used for model training, making this column a cross-
subject experiment. These results serve as a clear indication of the substantial
variability present in the signals recorded from different subjects.

In this column the performance for both experiments remains identical since
the model hasn’t undergone retraining at this stage. However, it’s evident that in
this scenario, the implementation of the Domain Adversarial Neural Network with
reversal gradient, followed by the triplet margin loss, exhibits a greater capability to
generalize information across a broader range of subjects compared to the standard
model.

Overall, when considering the re-training of only the last two linear layers (ex-
periment 1), it becomes apparent that the DANN model with reversal gradient
achieved the highest performance. This observation suggests that learning invari-
ant features concerning session-related factors, such as repetitions, facilitated the
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Table 5.2: Cohen’s Kappa for the different algorithms and experiments in the
Transfer Learning Framework, varying number of repetitions

Number of repetitions used

Pre-training type 0 1 2 3 4 5

Standard 1 0.23 0.66 0.68 0.76 0.78 0.81

DANN 1 0.31 0.68 0.7 0.76 0.8 0.83

Triplet 1 0.27 0.65 0.69 0.74 0.79 0.82

Standard 2 0.23 0.7 0.73 0.8 0.82 0.86

DANN 2 0.31 0.69 0.71 0.77 0.81 0.84

Triplet 2 0.27 0.71 0.75 0.81 0.83 0.85

Note: In the table, "DANN 1" represents the utilization of Domain Adversarial Neural Network,

with the subsequent number denoting the specific fine-tuned experiment type.

őne-tuning process.
Now, let’s shift the focus to experiment number two. In this scenario, DANN

exhibited the poorest performance. To interpret this outcome, it’s important to
recall the information detailed in the "Methods" section. Speciőcally, the domain
classiőer is connected to the output of part 3, which occurs before the linear layers.

Unlike in experiment 1, in this case, the model is re-training not only the pa-
rameters of the last layers but also those of part 2 and part 3, all of which were
subjected to the domain classiőer’s loss, implemented via reversal gradient. Con-
sequently, during őne-tuning, the network might face more challenges in moving
towards the optimal direction, in contrast to the behavior of the standard model or
triplet margin loss.

5.3 Future improvement

Integration with virtual reality and gamiőcation techniques opens up exciting av-
enues for dynamic hand gesture recognition. This combination has the potential to
bring in a continuum of learning processes for models, improving adaptability and
real-time interaction [47].
Furthermore, the adoption of 3D motion capture cameras offers the potential to shift
from classiőcation to regression tasks. This transition could introduce ŕuidity and
precision to prosthetic devices, improving their functionality and user experience.

5.3.1 Major Voting Strategy for 20 ms Window

Interesting would be the possibility of implementing the major voting strategy for
the 20 ms window, as it is a common practice in this őeld [48] In fact, although the
accuracy of the standard model, without transfer learning or parameter tuning, is
only about 60 percent, with this strategy and some considerations one could arrive
at very good results [49]. Consider, for example, having the prosthesis only perform
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a motion if there are at least 4 out of 5 correct classiőcations in a group. For this ex-
ample, 4/5 consecutive correct classiőcations are considered due to the low accuracy
of the classiőer. Indeed, expecting the classiőer to correctly classify 5 consecutive
results in a row could be cumbersome for the user (0.605 ≈ 0.08), potentially lead-
ing to muscle fatigue, increased burden and prosthesis abandonment. Alternatively,
different criteria could be chosen, such as requiring 8/10 consecutive correct classi-
őcations. With this in mind, it is possible to use the binomial probability formula
to calculate the probability of achieving exactly k successes in n trials:

P (X = k) =

(

n

k

)

· pk · (1− p)n−k (5.1)

Where:

• P (X = k) is the probability of getting exactly k successes in n trials.

•

(

n

k

)

represents the binomial coefficient, calculated as n!
k!(n−k)!

, which accounts
for the number of ways to choose k successes from n trials.

• p is the probability of success in a single trial.

• k is the number of desired successes.

• (1− p) is the probability of failure in a single trial.

• n is the total number of trials.

To calculate the probability of getting exactly 4 correct out of 5:

P (X = 4) =

(

5

4

)

· (0.64) · (0.41) ≈ 0.2592 (5.2)

To calculate the probability of getting all 5 correct:

P (X = 5) = (0.65) ≈ 0.07776 (5.3)

Finally, to calculate the probability of having at least 4 out of 5 correct:

P (At least 4 correct out of 5) ≈ 0.2592 + 0.3888 ≈ 0.3888 (5.4)

This scenario can be summarized with a single equation, where the consideration
of whether the 5th classiőcation is correct or not is omitted:

P (X = 4orX = 5) =

(

5

4

)

· (0.64)× 1 ≈ 0.65 (5.5)

In a similar way, it is possible calculate the probability of not classifying some-
thing that was actually correct:

P (X = 4) + P (X = 5) =

(

5

4

)

· (0.44)× 1 ≈ 0.13 (5.6)

The probability of making an incorrect movement, speciőcally selecting the same
wrong class four times out of őve, under the strong assumption that all wrong classes
have an equal probability of misclassiőcation, is as follows:

P (Y = 4) + P (Y = 5) =

(

5

4

)

· 0.4× (0.4× 1/13)3 × 1 ≈ 0.00 (5.7)

Where Y in this case refers to the same wrong class and:
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• First term represents the random position in which the 5th classes can be
picked

• Second term refers to the probability of random wrong class

• Third term refers to probability of picking, between 13 classes (e.g. the wrong
ones) the same one

Therefore, with at least four out of őve correct classiőcations as threshold the ma-
jority voting strategy enhances accuracy by approximately 5%, signiőcantly reducing
the likelihood of performing the wrong task and thereby increasing its reliability. To
better explore this option would be great for future improvements.
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6 | Conclusion

In conclusion, this thesis project provides valuable insights into various techniques
applicable in the őeld of sEMGs, particularly for prosthetic applications. It delves
into the meticulous selection of normalization types and modes, along with consider-
ations regarding time window choices. The establishment of a formal and replicable
data division facilitates the creation of a comparative protocol across different tech-
niques.

Furthermore, this research underscores the potential of employing convolutional
neural networks with őlters of varying sizes to capture intricate relationships among
different frequency components, while also exploring the impact of hyperparameters
on model performance. Additionally, it assesses the effectiveness of two distinct
algorithms, aiming to enhance the model’s adaptability to new subjects and extract
universal relationships whenever possible. In addition, the research encompasses
two distinct experiments that utilize transfer learning as a method for assessing the
system’s adaptability to new users. These experiments delve into the effectiveness
of transfer learning techniques when faced with varying amounts of data, such as
different numbers of sessions.
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A | Appendix

A.1 Deep Learning

Deep Learning (DL) approaches represent relatively recent techniques that offer an
end-to-end solution for developing predictive models or classiőers. Unlike traditional
methods, DL models do not rely on the manual evaluation and extraction of hand-
crafted features. However, they are often criticized for their lack of interpretability.
Nevertheless, the growing interest in DL arises from its ability to surpass classical
machine learning techniques in certain scenarios.

Deep neural networks function by autonomously identifying signiőcant patterns
or features within data during the training phase. This process involves learning
the weights that characterize and deőne the layers, regardless of their type. These
learned weights determine the activation maps (also known as feature maps) within
each layer, generated from input data. The training of these weights relies on back-
propagation, a fundamental concept in neural network training.

The training process of a neural network is organized into epochs. It commences
by randomly initializing the weights in each layer. Within each epoch, the training
data is divided into smaller data batches. For each batch, the network performs
classiőcation or regression tasks and subsequently compares the results with the true
labels or values using speciőc loss functions. These loss functions vary according to
the nature of the task at hand. In classiőcation tasks, two commonly used loss
functions are:

• Binary Cross Entropy: it is used if the network has to solve a binary problem:

L = −
1

N

N
∑

i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (A.1)

Where yi is the label referred to the ith class, and can be 1 or 0. ŷi is the
probability outputted by the classiőer for the ith class.

• Categorical Cross Entropy: it is employed for multi-class classiőcation prob-
lems:

L = −
N
∑

i=1

yi log(p(ŷi)) (A.2)

Where yi is the ground truth and ŷi is the score for the ith class outputted by
the network.

The loss assessment measures how much the network is making errors. To up-
grade the weights, what is exploited in particular is the evaluation of the gradient
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of the loss, which is the vector of partial derivatives with respect to all coordinates
of the weights:

∇WL(W ) =

[

∂L

∂W1

,
∂L

∂W2

, ...,
∂L

∂Wm

]T

(A.3)

If ∇WL(W ) = 0, it means that a local optimum minimum is reached, which is
the situation desired. In order to reach the optimal minimum, it is necessary to move
in the direction −∇WL(W ). In particular, each time a batch of data is predicted,
the weights are updated according to this formula:

Wt + 1 = Wt − α∇WL(W )

Where α is called the learning rate and determines how strongly the movement in
the direction −∇WL(W ) should be. When ∇WL(W ) is evaluated over a batch of
data, it is called Stochastic Gradient Descent (g(t)).

There are several ways of updating weights:

• With Momentum. The objective is to make the trajectory of the weights
update more stable, preventing time loss in oscillations. It uses momentum,
which can be interpreted as a force proportional to the velocity of the object
but acts in the opposite direction:

Wt+1 = W (t) + p(t+ 1) (A.4)

p(t+ 1) = µp(t)− αg(t) (A.5)

Where: µ is in the range (0, 1) and p(t) is the momentum.

• RMSprop (Root Mean Squared Propagation): It scales gradients by dividing
them by a moving average Root Mean Squared gradient (s(t)), aiming to slow
down learning in directions where the gradient is higher and speed up the
process where the gradient is lower:

W (t+ 1) = W (t)− α
g(t)

√

s(t) + ϵ
(A.6)

s(t) = ρs(t− 1) + (1− ρ)(g(t))2 (A.7)

Where ρ is a moving-average decay factor.

• Adaptive Gradient - ADAGRAD: It is similar to RMSprop, but it uses the
cumulative sum of squared gradients c(t).

W (t+ 1) = w(t)−
η

√

c(t)
· g(t) (A.8)

c(t) =
t

∑

j=1

(g(j))2 (A.9)

• Momentum and RMSprop - ADAM: It combines momentum and RMSprop
moving averages.

W (t+ 1) = w(t)−
η

√

s(t)
· p(t) (A.10)

p(t+ 1) = β1 · p(t)− (1− β1) · g(t) (A.11)

s(t) = β2 · s(t− 1) + (1− β2) · (g(t))
2 (A.12)
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A.2 Convolutional Neural Networks (CNNs)

The őeld in which CNNs were born is image analysis, which started from a simple
classiőcation task and evolved to computer vision. Convolutional Neural Networks
have a structure composed of several layers, with convolutional layers being the most
frequent. These layers allow the convolution (2D or 3D) of the input image with a
determined number of őlters, which have speciőc dimensions in terms of width and
height (they could also have a depth dimension for 3D convolution).

Each convolutional layer is characterized by the application of a non-linear ac-
tivation function to the őlters’ output, resulting in activation maps. Common ac-
tivation functions include Rectiőed Linear Unit (ReLU), Exponential Linear Unit
(ELU), Leaky ReLU, or Parameterized ReLU (PReLU). Each activation function
has its own characteristics, which are summarized in Table A.1

Table A.1: Comparison of Non-linear Activation Functions

Name Function Pros and Cons

ReLU f(x) = max(0, x)

No saturation for x > 0
No activation for x < 0

Not zero-centered

ELU f(x) =

{

x for x > 0

α(ex − 1) for x ≤ 0

No saturation for x > 0
Not zero-centered

No de-activation for x < 0

Leaky ReLU f(x) = max(0.01x, x) -

PReLU f(x) = max(αx, x) -
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A.2.1 Fully Connected Layers and Softmax

Typically, at the end of a neural network architecture, there exist fully connected
layers that serve to consolidate the activation maps obtained from the őnal con-
volutional layer into a 1D vector. This vector is subsequently transformed into a
probabilistic distribution, where each unit in the őnal fully connected layer cor-
responds to a distinct class. To achieve this, the Softmax activation function is
applied, yielding the őnal probabilities:

f(x)i =
exi

∑K

j=1 e
xj

(A.13)

In this case, x is the vector representing the last fully connected layer, and K
is the number of its units, which corresponds to the number of distinct classes.
The Softmax function normalizes the components of the output vector, ensuring
their sum equals 1. This characteristic allows the őnal numbers to be interpreted
as probabilities. The class with the highest probability value is chosen as the őnal
forecast. A common CNN architecture is depicted in Figure A.1.

Figure A.1: Example of common CNN architecture
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A.3 Separable Convolutional Layer

Unlike traditional CNNs, which employ standard convolutions that apply a set of
learnable őlters across the entire input volume, Separable CNNs decompose the
convolution operation into two distinct stages: depthwise convolution and pointwise
convolution. This separation reduces the number of parameters and computations,
making Separable CNNs more efficient for tasks like image classiőcation while main-
taining competitive accuracy. Overall, Separable CNNs offer a practical trade-off
between computational efficiency and model performance.

In a typical convolutional layer of a normal CNN, a 3D őlter (e.g., a 3x3x3 őlter
for a color image with three channels) is applied at every spatial position across all
input channels, generating a single output channel. In contrast, Separable CNNs
őrst apply a depthwise convolution, where a separate 2D őlter (e.g., 3x3) is applied
independently to each input channel. This results in multiple output channels,
one for each input channel. Subsequently, a pointwise convolution is performed to
combine these channels linearly.

Mathematically, the depthwise convolution can be represented as:

Yi,j,k =
∑

m,n

Xi+m,j+n,k ·Wm,n (A.14)

where X is the input tensor, Y is the output tensor, and W is the depthwise őlter.
The pointwise convolution is then applied as:

Zi,j,l =
∑

k

Yi,j,k · Vk,l (A.15)

where Z is the őnal output tensor, and V is the pointwise őlter. In Figure A.2, a
visual representation illustrates the concept explained above.

Figure A.2: Comparison between standard convolution (a) and separable convo-
lution (b)
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A.4 Domain Adversarial Network with Gra-
dient Reversal

In the context of this research, a Domain Adversarial Network (DANN) is employed
to facilitate domain-invariant feature learning. DANN is a type of neural network
architecture that includes a domain classiőer alongside the primary task classiőer.
Speciőcally, the second output of the model is dedicated to the domain classiőcation
task. A visualization of the structure con be seen in Figure A.3

To encourage the model to learn domain-invariant features, a critical step in-
volves reversing the gradients during backpropagation when optimizing the domain
classiőer. This is achieved by introducing a gradient reversal layer. The purpose of
reversing the gradient is to penalize the model when the domain classiőer is correct,
thus encouraging the feature extractor to generate features that are agnostic to the
domain (e.g., different subjects).

Mathematically, the gradient reversal operation can be represented as follows,
where Ld is the loss of the domain classiőer:

∂Ld

∂θ
→ −λ ·

∂Ld

∂θ
(A.16)

Here, θ represents the model’s parameters, and λ is a hyperparameter that con-
trols the strength of the gradient reversal. By minimizing the domain classiőer
loss while simultaneously maximizing the primary task’s performance, the DANN
effectively learns features that are both discriminative for the main task and domain-
invariant, allowing for improved generalization across different domains or subjects.

Figure A.3: Structure of the Domain Adversarial Network (DANN) architecture
used for domain-invariant feature learning

48



Multikernel Convolutional Neural Network for sEMG based Hand Gesture
Classiőcation Appendix

A.5 Triplet Margin Loss

The basic goal of the Triplet Margin Loss is to train data embeddings or representa-
tions that increase the similarity of positive pairs of samples while driving negative
pairs away in a high-dimensional feature space. The loss function is given as follows:

Ltriplet =
∑

i

[max (0,margin + d(ai, pi)− d(ai, ni))] (A.17)

Where:

• Ltriplet represents the triplet margin loss.

• ai is the anchor sample.

• pi is a positive sample (with the same label as the anchor).

• ni is a negative sample (with a different label from the anchor).

• margin is a margin parameter controlling the desired minimum separation
between positive and negative samples.

• The function d(x, y) calculates the distance between feature vectors x and y
in the high-dimensional space.

In this context, Figure A.4in provides a visual illustration of how triplet margin
loss equations operate, offering deeper insights into its mathematical foundation and
practical signiőcance in domain adaptation tasks.

Figure A.4: Visualization of the Triplet Margin Loss Mechanism
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