13 research outputs found

    Towards Energy-Proportional Computing for Enterprise-Class Server Workloads

    Get PDF
    Massive data centers housing thousands of computing nodes have become commonplace in enterprise computing, and the power consumption of such data centers is growing at an unprecedented rate. Adding to the problem is the inability of the servers to exhibit energy proportionality, i.e., provide energy-ecient execution under all levels of utilization, which diminishes the overall energy eciency of the data center. It is imperative that we realize eective strategies to control the power consumption of the server and improve the energy eciency of data centers. With the advent of Intel Sandy Bridge processors, we have the ability to specify a limit on power consumption during runtime, which creates opportunities to design new power-management techniques for enterprise workloads and make the systems that they run on more energy-proportional. In this paper, we investigate whether it is possible to achieve energy proportionality for an enterprise-class server workload, namely SPECpower ssj2008 benchmark, by using Intel's Running Average Power Limit (RAPL) interfaces. First, we analyze the power consumption and characterize the instantaneous power prole of the SPECpower benchmark at a subsystem-level using the on-chip energy meters exposed via the RAPL interfaces. We then analyze the impact of RAPL power limiting on the performance, per-transaction response time, power consumption, and energy eciency of the benchmark under dierent load levels. Our observations and results shed light on the ecacy of the RAPL interfaces and provide guidance for designing power-management techniques for enterprise-class workloads

    Energy efficient heterogeneous virtualized data centers

    Get PDF
    Meine Dissertation befasst sich mit software-gesteuerter Steigerung der Energie-Effizienz von Rechenzentren. Deren Anteil am weltweiten Gesamtstrombedarf wurde auf 1-2%geschätzt, mit stark steigender Tendenz. Server verursachen oft innerhalb von 3 Jahren Stromkosten, die die Anschaffungskosten übersteigen. Die Steigerung der Effizienz aller Komponenten eines Rechenzentrums ist daher von hoher ökonomischer und ökologischer Bedeutung. Meine Dissertation befasst sich speziell mit dem effizienten Betrieb der Server. Ein Großteil wird sehr ineffizient genutzt, Auslastungsbereiche von 10-20% sind der Normalfall, bei gleichzeitig hohem Strombedarf. In den letzten Jahren wurde im Bereich der Green Data Centers bereits Erhebliches an Forschung geleistet, etwa bei Kühltechniken. Viele Fragestellungen sind jedoch derzeit nur unzureichend oder gar nicht gelöst. Dazu zählt, inwiefern eine virtualisierte und heterogene Server-Infrastruktur möglichst stromsparend betrieben werden kann, ohne dass Dienstqualität und damit Umsatzziele Schaden nehmen. Ein Großteil der bestehenden Arbeiten beschäftigt sich mit homogenen Cluster-Infrastrukturen, deren Rahmenbedingungen nicht annähernd mit Business-Infrastrukturen vergleichbar sind. Hier dürfen verringerte Stromkosten im Allgemeinen nicht durch Umsatzeinbußen zunichte gemacht werden. Insbesondere ist ein automatischer Trade-Off zwischen mehreren Kostenfaktoren, von denen einer der Energiebedarf ist, nur unzureichend erforscht. In meiner Arbeit werden mathematische Modelle und Algorithmen zur Steigerung der Energie-Effizienz von Rechenzentren erforscht und bewertet. Es soll immer nur so viel an stromverbrauchender Hardware online sein, wie zur Bewältigung der momentan anfallenden Arbeitslast notwendig ist. Bei sinkender Arbeitslast wird die Infrastruktur konsolidiert und nicht benötigte Server abgedreht. Bei steigender Arbeitslast werden zusätzliche Server aufgedreht, und die Infrastruktur skaliert. Idealerweise geschieht dies vorausschauend anhand von Prognosen zur Arbeitslastentwicklung. Die Arbeitslast, gekapselt in VMs, wird in beiden Fällen per Live Migration auf andere Server verschoben. Die Frage, welche VM auf welchem Server laufen soll, sodass in Summe möglichst wenig Strom verbraucht wird und gewisse Nebenbedingungen nicht verletzt werden (etwa SLAs), ist ein kombinatorisches Optimierungsproblem in mehreren Variablen. Dieses muss regelmäßig neu gelöst werden, da sich etwa der Ressourcenbedarf der VMs ändert. Weiters sind Server hinsichtlich ihrer Ausstattung und ihres Strombedarfs nicht homogen. Aufgrund der Komplexität ist eine exakte Lösung praktisch unmöglich. Eine Heuristik aus verwandten Problemklassen (vector packing) wird angepasst, ein meta-heuristischer Ansatz aus der Natur (Genetische Algorithmen) umformuliert. Ein einfach konfigurierbares Kostenmodell wird formuliert, um Energieeinsparungen gegenüber der Dienstqualität abzuwägen. Die Lösungsansätze werden mit Load-Balancing verglichen. Zusätzlich werden die Forecasting-Methoden SARIMA und Holt-Winters evaluiert. Weiters werden Modelle entwickelt, die den negativen Einfluss einer Live Migration auf die Dienstqualität voraussagen können, und Ansätze evaluiert, die diesen Einfluss verringern. Abschließend wird untersucht, inwiefern das Protokollieren des Energieverbrauchs Auswirkungen auf Aspekte der Security und Privacy haben kann.My thesis is about increasing the energy efficiency of data centers by using a management software. It was estimated that world-wide data centers already consume 1-2%of the globally provided electrical energy. Furthermore, a typical server causes higher electricity costs over a 3 year lifespan than the purchase cost. Hence, increasing the energy efficiency of all components found in a data center is of high ecological as well as economic importance. The focus of my thesis is to increase the efficiency of servers in a data center. The vast majority of servers in data centers are underutilized for a significant amount of time, operating regions of 10-20%utilization are common. Still, these servers consume huge amounts of energy. A lot of efforts have been made in the area of Green Data Centers during the last years, e.g., regarding cooling efficiency. Nevertheless, there are still many open issues, e.g., operating a virtualized, heterogeneous business infrastructure with the minimum possible power consumption, under the constraint that Quality of Service, and in consequence, revenue are not severely decreased. The majority of existing work is dealing with homogeneous cluster infrastructures, where large assumptions can be made. Especially, an automatic trade-off between competing cost categories, with energy costs being just one of them, is insufficiently studied. In my thesis, I investigate and evaluate mathematical models and algorithms in the context of increasing the energy efficiency of servers in a data center. The amount of online, power consuming resources should at all times be close to the amount of actually required resources. If the workload intensity is decreasing, the infrastructure is consolidated by shutting down servers. If the intensity is rising, the infrastructure is scaled by waking up servers. Ideally, this happens pro-actively by making forecasts about the workload development. Workload is encapsulated in VMs and is live migrated to other servers. The problem of mapping VMs to physical servers in a way that minimizes power consumption, but does not lead to severe Quality of Service violations, is a multi-objective combinatorial optimization problem. It has to be solved frequently as the VMs' resource demands are usually dynamic. Further, servers are not homogeneous regarding their performance and power consumption. Due to the computational complexity, exact solutions are practically intractable. A greedy heuristic stemming from the problem of vector packing and a meta-heuristic genetic algorithm are investigated and evaluated. A configurable cost model is created in order to trade-off energy cost savings with QoS violations. The base for comparison is load balancing. Additionally, the forecasting methods SARIMA and Holt-Winters are evaluated. Further, models able to predict the negative impact of live migration on QoS are developed, and approaches to decrease this impact are investigated. Finally, an examination is carried out regarding the possible consequences of collecting and storing energy consumption data of servers on security and privacy

    Machine Learning Algorithms in Cloud Manufacturing - A Review

    Get PDF
    Cloud computing has advanced significantly in terms of storage, QoS, online service availability, and integration with conventional business models and procedures. The traditional manufacturing firm becomes Cloud Manufacturing when Cloud Services are integrated into the present production process. The capabilities of Cloud Manufacturing are enhanced by Machine Learning. A lot of machine learning algorithms provide the user with the desired outcomes. The main objectives are to learn more about the architecture and analysis of Cloud Manufacturing frameworks and the role that machine learning algorithms play in cloud computing in general and Cloud Manufacturing specifically. Machine learning techniques like SVM, Genetic Algorithm, Ant Colony Optimisation techniques, and variants are employed in a cloud environment

    Taming Energy Costs of Large Enterprise Systems Through Adaptive Provisioning

    Get PDF
    One of the most pressing concerns in modern datacenter management is the rising cost of operation. Therefore, reducing variable expense, such as energy cost, has become a number one priority. However, reducing energy cost in large distributed enterprise system is an open research topic. These systems are commonly subjected to highly volatile workload processes and characterized by complex performance dependencies. This paper explicitly addresses this challenge and presents a novel approach to Taming Energy Costs of Larger Enterprise Systems (Tecless). Our adaptive provisioning methodology combines a low-level technical perspective on distributed systems with a high-level treatment of workload processes. More concretely, Tecless fuses an empirical bottleneck detection model with a statistical workload prediction model. Our methodology forecasts the system load online, which enables on-demand infrastructure adaption while continuously guaranteeing quality of service. In our analysis we show that the prediction of future workload allows adaptive provisioning with a power saving potential of up 25 percent of the total energy cost

    Understanding internet banking services and customer's adoption in Iraqi public universities

    Get PDF
    There is no doubt that internet banking services adoption represents a good opportunity for developing nations to attain greater economic development and growth, where the creation of added value is driven by information, knowledge and the adoption of information and communications technology. Although a lot of researches provide evidence on the wide adoption of internet banking in developed nations, there are only limited researches in developing nations in the Middle East, specifically in Iraq. There is definitely a need in this country to identify the factors that could encourage and improve the understanding of internet banking services adoption. There is also a paucity of empirical researches on internet banking services adoption from the perspective of customers. Taking these into cognizance, this quantitative research aims to understand internet banking services adoption, by investigating the key factors that encourage customers to adopt internet banking in the Iraqi context, using the decomposed theory of planned behavior. The research framework consists of eighteen latent variables, fourteen exogenous variables (perceived usefulness, perceived ease of use, compatibility, trust, social recommendation, prestigious media, self-efficacy, government support, technology support, internet technology literacy, resistance to technology, perceived risk of technology, anxiety about technology and information on technology); and four endogenous variables (internet banking adoption, attitude, subjective norms and perceived behavioral control). In order to test the framework, a quantitative approach using the survey method is employed consisting of eighty two items with a seven-point Likert scale. Based on proportionate stratified random sampling, 535 out of 800 employees submitted completed questionnaires suitable for analysis (a 66.8% response rate). Findings of this study reveal that all the research hypotheses are supported except three, namely subjective norms, perceived behavioral control and information on technology towards internet banking services adoption, implying that the decomposed theory of planned behavior is an applicable underpinning theory for clarifying the important antecedents of internet banking services adoption in the Iraqi context

    Operating policies for energy efficient large scale computing

    Get PDF
    PhD ThesisEnergy costs now dominate IT infrastructure total cost of ownership, with datacentre operators predicted to spend more on energy than hardware infrastructure in the next five years. With Western European datacentre power consumption estimated at 56 TWh/year in 2007 and projected to double by 2020, improvements in energy efficiency of IT operations is imperative. The issue is further compounded by social and political factors and strict environmental legislation governing organisations. One such example of large IT systems includes high-throughput cycle stealing distributed systems such as HTCondor and BOINC, which allow organisations to leverage spare capacity on existing infrastructure to undertake valuable computation. As a consequence of increased scrutiny of the energy impact of these systems, aggressive power management policies are often employed to reduce the energy impact of institutional clusters, but in doing so these policies severely restrict the computational resources available for high-throughput systems. These policies are often configured to quickly transition servers and end-user cluster machines into low power states after only short idle periods, further compounding the issue of reliability. In this thesis, we evaluate operating policies for energy efficiency in large-scale computing environments by means of trace-driven discrete event simulation, leveraging real-world workload traces collected within Newcastle University. The major contributions of this thesis are as follows: i) Evaluation of novel energy efficient management policies for a decentralised peer-to-peer (P2P) BitTorrent environment. ii) Introduce a novel simulation environment for the evaluation of energy efficiency of large scale high-throughput computing systems, and propose a generalisable model of energy consumption in high-throughput computing systems. iii iii) Proposal and evaluation of resource allocation strategies for energy consumption in high-throughput computing systems for a real workload. iv) Proposal and evaluation for a realworkload ofmechanisms to reduce wasted task execution within high-throughput computing systems to reduce energy consumption. v) Evaluation of the impact of fault tolerance mechanisms on energy consumption

    Quantifying and Predicting the Influence of Execution Platform on Software Component Performance

    Get PDF
    The performance of software components depends on several factors, including the execution platform on which the software components run. To simplify cross-platform performance prediction in relocation and sizing scenarios, a novel approach is introduced in this thesis which separates the application performance profile from the platform performance profile. The approach is evaluated using transparent instrumentation of Java applications and with automated benchmarks for Java Virtual Machines

    Energy Efficient Servers

    Get PDF
    Computer scienc
    corecore