

Michael Kuperberg

Quantifying and Predicting the Influence of Execution Platform
on Software Component Performance

The Karlsruhe Series on Software Design and Quality

Volume 5

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Quantifying and Predicting the
Influence of Execution Platform on
Software Component Performance

by
Michael Kuperberg

Dissertation, Karlsruher Institut für Technologie
Fakultät für Informatik
Tag der mündlichen Prüfung: 4. November 2010
Referenten: Prof. Dr. Ralf Reussner, Prof. Dr. Walter F. Tichy

KIT Scientific Publishing 2011
Print on Demand

ISSN 1867-0067
ISBN 978-3-86644-741-7

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Abstract

Software engineering is concerned with the cost-efficient construction of app-

lications which behave as specified, are well-designed and of high quality.

Among software quality attributes, performance is one of most prominent and

well-studied. Performance evaluation is concerned with explaining, predicting

and preventing long waiting times, overloaded bottleneck resources and other

performance problems.

However, performance remains hard to evaluate because it depends not only

on software implementation, but also on several other factors such as the work-

load and the execution platform onwhich the software runs. The execution plat-

form comprises hardware resources (CPU, networks, hard disks) and software

resources (operating system, middleware). In former approaches, the influence

of the execution platform was a hard-wired part of the model, and not an ad-

justable parameter. This meant that to answer sizing and relocation questions, a

performance model had to be recreated and quantified for each candidate exe-

cution platform.

The resulting challenge addressed by this thesis is to devise an effective ap-

proach for quantifying and predicting the influence of the execution platform

on software performance, using Model-Based Performance Evaluation (MBPE)

at the level of software architecture. The primary targeted benefit is a decrease

of the effort needed for performance prediction, since answering sizing and re-

location questions no longer needs the deployment and measurement of the

considered application on every candidate execution platform.

The application of MBPE starts at design time since delaying performance

evaluation until the implementation of the software is not desirable: the refact-

oring costs increase with the degree of completeness and deployment. To model

the artefacts of the software application, MBPE builds upon the well-studied

concept of software components and their required and provided services as

exchangeable building blocks which facilitate recomposition and reuse. In most

MBPE approaches, the atomic behaviour actions of components carry timing

values. On the basis of these timing values, an analysis of the overall applica-

tion behaviour (e.g. prediction of response times) is then performed.

Unfortunately, such timing values are platform-specific and the resulting ar-

chitectural model is also platform-specific. Therefore, the model needs to be

rebuilt for each considered execution platform and for each usage profile. Addi-

tionally, the durations of atomic component actions often amount to just a few

nanoseconds, and measuring such fine-granular actions is challenging because

conventional timer methods are too coarse for them.

The contribution of this thesis is a novel approach to quantify and to predict

both platform-independent and platform-dependent resource demands on the

basis of performance models. Using automated benchmarking of the execution

platform, the approach is able to make precise, platform-specific performance

predictions on the basis of these models, without manual effort. By separating

the performance evaluation of the application from the performance evaluation

of the execution platform, the effort to consider different platforms (e.g. for relo-

cation or sizing scenarios) is significantly decreased, since it is no longer needed

to deploy the application on each candidate platform. To select the timer meth-

ods used in measurements, this thesis introduces a novel platform-independent

algorithm which quantifies timer quality metrics (e.g. accuracy and overhead).

Building on the Palladio Component Model (PCM) and its tooling, the imple-

mentation of the approach provides a convenient user interface and a validated

theoretical foundation. The resource demands are parametrised over the usage

(workload) of the considered components, and are expressed as annotations in

the PCM-based behaviour model of the component.

To integrate the presented approach into the PCM, new meta-model concepts

have been introduced into the PCM, and corresponding tooling has been added.

The enhanced PCM workbench allows for automated creation of PCM model

ii

instances from black-box bytecode components, and also includes concepts and

tools to convert benchmarking results into PCM resource models.

The presented approach focuses on applications that will run as platform-

independent bytecode on bytecode-executing virtual machines (BEVMs) such

as the Java VM. It accounts for dynamic and static optimisations performed in

modern BEVMs, e.g. just-in-time compilation (JIT) and inlining. To translate

the platform-independent resource demands into timing values, this thesis in-

troduces a benchmark suite for BEVMs. This benchmark suite addresses both

fine-granular bytecode instructions (e.g. integer addition or array initialisation)

and platform API methods provided by BEVM’s base libraries, e.g. by the Java

Platform API.

Unlike existing approaches, the contribution of this thesis

• does not require modification or instrumentation of the execution platform

• quantifies the performance speedups of the execution platform (e.g. just-

in-time compilation) and reflects them during performance prediction

• deals with API and library methods in an atomic way, providing method-

level benchmarking results which are more intuitive than per-instruction

timings

• provides more detailed per-invocation performance results than conven-

tional profilers, and supports stochastic distributions of performance val-

ues, which are more realistic and information-richer than conventional av-

erage or median metrics

An extensive validation of performance prediction capabilities offered by

the new approach was performed on a number of Java applications, such as

widely used SPECjvm2008, SPECjvm98, SPECjbb2005 and Linpack benchmarks.

The validation demonstrated the prediction accuracy of bytecode-based cross-

platform performance prediction, and showed that it has significantly better

results than prediction based on CPU cycles. The validation used one exe-

cution platform as a basis to obtain platform-independent resource demands,

iii

and predicted the performance of the application on other execution platforms

(which were significantly different from the basis platform) without deploying

and benchmarking the application on them. The validation also addressed indi-

vidual parts of the presented approach: the precision and the overhead of the re-

source demand quantification were studied, and the heuristics-based approach

for automated method benchmarking was evaluated w.r.t. its effectiveness, cov-

erage and precision of the benchmarking results. A large comparison of timer

methods on the basis of quality attributes was performed on several Java and

.NET platforms.

iv

Zusammenfassung

Software Engineering beschäftigt sich mit kosteneffektiver Konstruktion

von qualitativ hochwertigen Softwareanwendungen, deren Verhalten einer

vorgegebenen Spezifikation folgt und denen ein zielgerichteter Entwurf zu-

grundeliegt. Unter den Qualitätsattributen von Software nimmt die Perform-

ance eine zentrale Rolle ein und wird dementsprechend intensiv erforscht. Der

Forschungsbereich Performance-Analyse beschäftigt sich mit Messung, Model-

lierung und Vorhersage von Performance, um Performance-Probleme wie z.B.

überlastete Ressourcen zu erklären und ihnen vorzubeugen.

Performance-Analyse bietet zahlreiche Herausforderungen und offene

Forschungsfragen, da die Performance einer Applikation in komplexer Weise

von Faktoren wie Implementierung, Nutzlast und Ausführungsumgebung ab-

hängt. Die Ausführungsumgebung beinhaltet Hardware-Ressourcen wie z.B.

CPU und Festplatte, aber auch Software-Ressourcen wie das Betriebssystem

oder die Middleware. In früheren Modellierungsansätzen war der Einfluss der

Ausführungsumgebung als ein konstanter und fixierter Faktor enthalten, so-

dass das Modell für Vergleiche der Ausführungsumgebungen oder für Frages-

tellungen zur Ressourcendimensionierung mehrfach neu aufgestellt werden

musste.

Daraus ergibt sich die in dieser Doktorarbeit angegangeneHerausforderung,

einen effektiven Ansatz zur Vorhersage des Einflusses der Ausführungsumge-

bung auf Software-Performance zu entwickeln. Der zu entwickelnde Ansatz

soll ohne Installation und Messung der analysierten Applikation auf jeder der

betrachteten Ausführungsumgebungen auskommen. Dieser Ansatz soll als Be-

standteil vonmodellbasierter Performance-Analyse auf der Ebene der Software-

Architektur zum Einsatz kommen, während also nur einzelne Teilkomponen-

ten der Anwendung zur Verfügung stehen. Der Nutzen des neuen Ansatzes

liegt darin, dass weniger Zeit und Kosten für modellbasierte Performance-

vorhersagen in Dimensionierungs- und Verlegungsszenarien aufgewendet wer-

den müssen.

Die Anwendung der modellbasierten Performance-Vorhersage beginnt

bereits zur Entwurfszeit, da das Hinauszögern von Performance-Analysen bis

zur Implementierungsphase dazu führt, dass die Behebung der aufgedeck-

ten Performance-Probleme mit umso höheren Kosten verbunden ist, je weiter

die Implementierung fortgeschritten ist. Die Anwendungen werden dabei

mit Hilfe von Software-Komponenten modelliert, welche als austauschbare

und unabhängig einsetzbare Einheiten mit schnittstellenbasierter Kommunika-

tion einen gegliederten Entwurf und nichtmonolitische Umsetzung erlauben.

Die zur Entwurfszeit bereits implementiert vorliegende Komponenten wer-

den dabei mit dem beschriebenen Ansatz analysiert; fr̈ noch nicht implemen-

tierte Komponentenwerden Schätzungen und Performance-Vorgaben (z.B. über

Service Level Agreements) verwendet. Die Modellierung der Performance

wird in den meisten komponentenbasierten Ansätzen über die Annotation von

Zeitwerten an Elemente von Verhaltensmodellen bewerkstelligt, welche an-

schließend durch einen analytischen oder simulationsbasierten Ansatz ausgew-

ertet werden. Der signifikante Nachteil der Verwendung von Zeitwerten zur

Performance-Modellierung ist allerdings deren plattformspezifische Natur, so-

dass das resultierende Modell auch plattformspezifisch bleibt. Deshalb muss

das Modell für jede betrachtete Ausführungsumgebung dupliziert und neu an-

notiert werden. Erschwerend kommt hinzu, dass die Dauer von Komponenten-

diensten oft im Nanosekundenbereich liegt und mit zur Verfügung stehenden

Bibliotheksmethoden zur Zeitmessung nicht akkurat gemessen werden kann,

da diese zu grobgranular dafür sind.

Der wissenschaftliche Beitrag der vorliegenden Doktorarbeit ist ein neuer

modellbasierter Ansatz für Messung und Vorhersage von plattformun-

abhängigen Ressourcenverbräuchen und plattformspezifischen Ausführung-

szeiten von Software-Komponenten. Der vorgestellte Ansatz ist auf Anwendun-

vi

gen ausgerichtet, die in Bytecode vorliegen und damit von virtuellenMaschinen

(VMs, z.B. Java VM) plattformübergreifend ausgeführt werden können. Der An-

satz berücksichtigt dabei statische und dynamische Optimierungen, die in mo-

dernen VMs eingesetzt werden, wie z.B. die Kompilierung von Bytecode nach

Maschinencode zur Laufzeit (Just-in-Time compilation, „JIT“) oder das Inlining

von Methoden.

Durch weitestgehende Automatisierung der einzelnen Schritte (und vor al-

lem durch automatisches Benchmarken der Ausführungsplattform) ist der An-

satz dabei in der Lage, den manuellen Aufwand für die Performancevorhersage

zu minimieren. Das Benchmarken der virtuellen Maschine umfasst sowohl

die feingranularen Bytecodebefehle (z.B. Addition oder Arraybenutzung) als

auch die Bibliotheksmethoden der Plattform-API. Indem die Performance der

Anwendung von der Performance der Ausführungsplattform getrennt wird,

sinkt auch der Aufwand für die Betrachtung verschiedener Plattformen in

Dimensionierungs- und Verlegungsszenarien. So ist es nicht länger notwendig,

die Anwendung auf jeder der betrachteten Plattformen zu installieren und

durchzumessen.

Für die Auswahl der Bibliotheksmethoden für die Messung der Zeit entwick-

elt die vorliegende Arbeit einen neuen plattformunabhängigen Ansatz, der die

Qualitätsattribute dieser Methoden quantifiziert und durch eine neue aggregi-

erende Metrik den Vergleich zwischen diesen Bibiotheksmethoden erleichtert.

Die Implementierung des Ansatzes erweitert das Palladio-

Komponentenmodell (Palladio Component Model, PCM), und kann damit über

dessen Werkzeuge für Performance-Vorhersagen benutzt werden. Um die neu

eingeführen plattformunabhängigen Ressourcenverbräuche in PCM-Modellen

verwenden zu können, wurde das PCM-Metamodell und die entsprechenden

Modelltransformationen erweitert. Zudem wurden Werkzeuge für die Gener-

ierung von Modellinstanzen aus Ressourcenbenutzung durch Komponenten

und aus Benchmarking-Ergebnissen von Ausführungsplattformen entwickelt.

Im Unterschied zu existierenden Ansätzen zeichnet sich der Beitrag der

vorliegenden Arbeit durch folgende Eigenschaften aus:

vii

• Die Ausführungsplattform muss weder instrumentiert noch verändert

werden.

• Die Performance-Erhöhungen durch Laufzeitoptimierungen der Aus-

führungsplattform (z.B. JIT) werden quantifiziert und bei der Performance-

Vorhersage berücksichtigt.

• Bibliotheksmethoden wie z.B. diejenigen der Java Platform API werden als

atomare Einheiten während der Benchmarking-Phase betrachtet und nicht

in Bytecodeinstruktionen aufgespalten, da ihre Performance auf Meth-

odenebene besser handhabbar und für Nutzer leichter verständlich ist.

• Während Profiler die gemessenen Zeitenwerte als Durchschnitt oder Me-

dian zur Verfügung stellen, unterstützt der vorgestellte Ansatz stochas-

tische Verteilungen von Bytecode-basierten Ressourcennutzungswerten

und hat damit einen höheren Informationsgehalt.

Eine umfangreiche Validierung des neuen Verfahrens zur Performance-

vorhersage untersucht die Güte der Vorhersageergebnisse mit Hilfe weit ver-

breiteter Benchmarks wie SPECjvm2008, SPECjbb2005 und Linpack. Die Val-

idierung zeigt die Genauigkeit der Vorhersagen und die Überlegenheit des

vorgestellten Verfahrens gegenüber dem bisher in PCM benutzten Ansatz, der

auf Zählung von CPU-Zyklen basiert. Die Validierung benutzt eine Aus-

führungsplattform als Basis für die Quantifizierung plattformunabhängiger

Ressourcenverbräuche, und sagt dann die Performance der betrachteten Ap-

plikationen auf anderen Ausführungsplattformen voraus, ohne diese Applika-

tionen dort zu installieren und zu messen.

Die Validierung umfasst ebenso die einzelnen Bestandteile des Ansatzes, also

die Bestimmung der Bytecode-orientierten Ressourcenverbräuche sowie das ap-

plikationsunabhängige Benchmarken der virtuellen Maschinen. Das im Rah-

men der Dissertation entwickelte Verfahren zur Quantifizierung von Qualitätat-

tributen der Timermethoden wird auf zahlreiche Methoden unter Java und

.NET angewandt und die Ergebnisse werden anhand der neu eingeführtenMet-

rik verglichen.

viii

Acknowledgements

This thesis has one author but many people to thank for – colleagues and col-

laborators, students and staff, family and friends.

First and foremost, the vision and wisdom of my parents Valentina and Ilya

have inspired me for many years, and I’ve learned a lot more from them than

can fit into any PhD thesis. Their unconditional love and support but also fair

and pointed criticism provided me with a framework for which I am endlessly

grateful. Therefore, I dedicate this thesis to them.

Prof. Ralf Reussner has been a great PhD advisor, research group leader and

a wonderful person to work with. Ralf has provided me with an environment

to explore, to invent and to publish and he has supported my work in every

manner. I’m especially grateful for his trust and his patience at the beginning

of my work, and for providing me with numerous opportunities to teach. Ralf

has managed to bring good mood, a sense of belonging together and a common

vision to a team of people with different backgrounds and individual research

interests. Despite his increasingly tight schedule, Ralf always found time for

advising me and his critical reviews helped to shape this thesis.

Prof. Walter F. Tichy has provided helpful feedback even before the thesis

writing phase, and his comments during IPD seminars and during oral examin-

ations have given me several useful insights. I’m very grateful for his involve-

ment as the second advisor of my thesis, and for his suggestions on how to

improve it.

Over the years, many members of the Software Design and Quality research

group (SDQ) have scrutinized my work, reviewed my publications, and gave a

lot of much-appreciated advice on my research, presentations and implementa-

tions. Klaus Krogmann has been a great officemate, a demanding co-author of

papers and an engaged reviewer of this thesis – and we also had a lot of fun

for over four years! Steffen Becker, Heiko Koziolek and Jens Happe gave me

useful advice and provided much-valued reviews at the beginning of my PhD

research. Samuel Kounev has inspired me with his enthusiasm, and invited me

to participate in the visionary work of the SPEC Research Group. Thomas Gold-

schmidt reviewed this thesis and gave me useful advice on its readability. Erik

Burger, JörgHenß, HeinzHerrmann, Elena Kienhöfer, Anne Koziolek andmany,

many others at the KIT and at the FZI supported me in various organizational,

technical and scientific matters.

Advising students was a great and rewarding part of my PhD work, and

particular gratitude goes to Martin Krogmann for his work on bytecode instru-

mentation, to Fouad Omri for his work on benchmarking, as well as to Michael

Hauck, Sebastian Bauer, and all others who influenced the work described in

this thesis.

My family and relatives, spread over countries and continents, kept remind-

ing me that there is life outside of Eclipse and TexMakerX, and their constant

inquiries about my progress and the applicability of my work were an addi-

tional inspiration. During my PhD work and the writing of this thesis, many

friends had to cut back on our joint hobbies and interests. Now that their wait-

ing is over, I look forward to all the other activities and dreams which we had

put in hibernation mode.

Karlsruhe, November 2010

Michael Kuperberg

x

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement and Scientific Challenges 4

1.3 Shortcomings of Existing Solutions . 8

1.4 Thesis Approach . 11

1.5 Contributions . 16

1.6 Validation . 18

1.7 Thesis Organisation . 19

2 Foundations and State-of-the-Art 21

2.1 Software Performance . 21

2.2 Performance Evaluation, Engineering, Optimisation, Modelling

and Prediction . 24

2.2.1 Model-based Performance Prediction 25

2.2.2 Software Performance Engineering 26

2.3 Benchmarking and Performance Measuring 27

2.3.1 Benchmark Types . 28

2.3.2 Overview of Benchmarks . 31

2.3.3 Summary . 32

2.4 An Overview of Timer Methods, Timers and Counters 33

2.4.1 Hardware Performance Counters and Monitors 34

2.4.2 Software-Provided Performance Indicators 38

2.4.3 Timer Methods . 39

2.4.4 Summary . 44

2.5 Middleware, Virtual Machines and Bytecode 45

Contents

2.6 Just-in-Time Compilation . 47

2.7 Bytecode Engineering . 50

2.8 Instrumentation . 51

2.9 Ahead-Of-Time Compilation (AOT) 52

2.10 Workload Quantification, Resource Demand Quantification and

Profiling . 54

2.11 Software Components and their Performance 56

2.11.1 Component Basics . 57

2.11.2 Component Modelling . 58

2.11.3 Component Performance Modelling 60

2.12 Platform-independent Resource Demands 62

2.13 Palladio Component Model . 63

2.13.1 Component Modelling . 65

2.13.2 Execution Platform and System Usage Modelling 67

2.14 Quantitative Impact of JVM Optimizations 69

3 Evaluating and Selecting Methods for Time Measurement 73

3.1 Issues and Challenges with Obtaining Timing Values for Perform-

ance Analysis . 74

3.2 Foundations of Timer Methods . 76

3.2.1 Quality Properties for Counters, Timers and Timer Methods 79

3.2.2 The Influence of Quantisation, Accuracy and Method In-

vocation Costs on Measured Timing Values 82

3.2.3 The Effects of Rounding and Truncating 85

3.3 Quantifying Accuracy and Invocation Cost of Timing Methods . . . 89

3.3.1 A Naive Approach to Estimating Timer Invocation Costs . . 89

3.3.2 Using Clustering for Quantifying Accuracy and Invocation

Cost 91

3.3.3 Timer Method Invocation in Detail 98

3.4 Analysing Units, Monotonicity and Stability 100

3.4.1 Quantifying Units of Counters and Timers 102

xii

Contents

3.4.2 Analysing Monotonicity during Concurrent Access to Tim-

ing Methods . 105

3.4.3 Analysing Stability of a Timer 109

3.5 Computing the MaximumMeasurable Time Interval and the Epochs113

3.5.1 Foundations . 115

3.5.2 Impact of Overflow on Timer Methods with High Precision . 117

3.5.3 Impact of Overflow on Measuring Time Intervals 119

3.5.4 Computing the Last and Next Epochs 121

3.6 A Unified Quality Metric for Timer Methods 122

3.6.1 Accounting for Different CPU Processing Speeds 123

3.6.2 Factors Contributing to the Unified Timer Quality Metric . . 123

3.6.3 Designing the Unified Timer Quality Metric 125

3.6.4 Choice of the Exponents for the Unified Timer Quality Metric126

3.7 Summary . 128

4 Quantifying Resource Demands for Performance Prediction 131

4.1 Timing Values versus Resource Demands 133

4.1.1 Effects on Preemption on Response Time Measurements . . . 134

4.1.2 Addressing Preemption during Time Measurements 134

4.1.3 Resource Demands . 136

4.2 Requirements for Resource Demand Usage in the PCM 138

4.3 Using Java Bytecode for Resource Demand Quantification 140

4.3.1 Foundations of Java Bytecode 141

4.3.2 Black-box Java Bytecode . 143

4.3.3 Bytecode Instructions with Special Roles and Properties . . . 145

4.3.4 Parameters of Bytecode Instructions 147

4.3.5 Methods in Bytecode and Java Platform API 153

4.3.6 Native Methods in Java Bytecode 158

4.3.7 Static Methods in Java Bytecode 160

4.3.8 Working with Calling Context Trees 161

4.3.9 Considering Subtrees of Calling Context Trees 166

4.3.10 Usage of Passive Resources from Java Bytecode 168

xiii

Contents

4.3.11 Bytecode Instruction Equivalence Classes 170

4.4 Using Transparent Application Instrumentation for Bytecode

Counting 171

4.4.1 Requirements for the Instrumentation Process 173

4.4.2 Evaluating and Storing Counting Results 176

4.4.3 Analysis of Bytecode Invariants and Basic Blocks 178

4.4.4 Inserting Bytecode Infrastructure for Runtime Counting . . . 182

4.4.5 Quantifying the Impact of the Instrumentation 184

4.4.6 Recording Calling Context Details 187

4.4.7 Reporting and Aggregating Counting Results 188

4.5 Assumptions and Limitations . 190

4.6 Summary . 190

5 Benchmarking the JVM Operations for Performance Prediction 193

5.1 Challenges of Translating Resource Demands into Timing Values . 194

5.2 Bytecode Instruction Benchmarking 196

5.2.1 Unsuitability of Source Code for Bytecode Instruction

Benchmarking . 200

5.2.2 Unsuitability of Kernel Collections for Bytecode Instruction

Benchmarking . 201

5.2.3 Attempting to Measure Bytecode Instructions using Byte-

code Engineering . 203

5.2.4 Attempting to Create Bytecode Benchmarks Randomly . . . 206

5.2.5 Preconditions and Postconditions of Bytecode Instructions . 208

5.2.6 Bytecode Benchmarking Scenarios 211

5.2.7 Overview of Scenario-driven Automated Bytecode Bench-

marking . 215

5.3 Method and API benchmarking . 217

5.3.1 Scientific Challenges . 218

5.3.2 Foundations . 221

5.3.3 Overview of the APIBENCHJ Framework 224

5.3.4 Satisfying Preconditions using Heuristics 227

xiv

Contents

5.3.5 Heuristic Exception Handler . 234

5.3.6 Generating and Executing Microbenchmarks 242

6 Performance Prediction and PCM Integration 247

6.1 Computing the Predicted Execution Duration 249

6.1.1 Selecting the Input for Prediction Calibration 250

6.1.2 Computing the Calibration Factor 252

6.2 Integration into the Palladio Component Model 256

6.2.1 Existing Resource Demand Modelling in the PCM 256

6.2.2 Bytecode-based Performance Prediction: Unsuitability of

existing PCM Resource Modelling 258

6.2.3 Scenarios and Requirements for Extending the PCM Meta-

model 261

6.2.4 Extensions of the PCMMetamodel 263

6.2.5 Modelling the JVM and the Bytecode Components 268

6.2.6 Representing JVM Instructions and Methods as Resource

Services . 269

6.2.7 Expressing the Platform-specific Nature of JVM Bench-

marking Results . 271

6.2.8 Modelling the Calibration Factor 273

6.3 Summary . 276

7 Validation 277

7.1 Bytecode-based Performance Prediction 277

7.1.1 Validation Overview . 278

7.1.2 Subjects and Scenarios for the Validation 280

7.1.3 Performance Prediction: Goals, Questions and Metrics 282

7.1.4 Performance Prediction: Results of Validation 284

7.1.5 Resource Demand Quantification: Goals, Questions and

Metrics for Validation . 299

7.1.6 Resource Demand Quantification: Validation Results 300

xv

Contents

7.1.7 Execution Platform Benchmarking: Goals, Questions and

Metrics for Validation . 306

7.1.8 Execution Platform Benchmarking: Validation Results 307

7.1.9 Summary and Discussion . 313

7.2 Timer Evaluation . 315

7.2.1 Stability and Monotonicity . 318

7.2.2 Units: Computing and Verifying 323

7.2.3 Accuracy, Invocation Cost and Invocation Cost Spread 327

7.2.4 Effect of Just-in-Time compilation on Timer Methods 333

7.2.5 Epochs and MaximumMeasurable Time Intervals 335

7.2.6 Unified Timer Quality Metric 338

7.2.7 Summary and Discussion . 339

8 Related Work 343

8.1 Timer Methods . 343

8.2 Runtime Counting of Executed Bytecode Instructions andMethod

Invocations . 345

8.3 JVM Benchmarking . 349

8.4 Performance Prediction . 353

8.4.1 Component-based Performance Prediction and Engineering 353

8.4.2 Bytecode-based Performance Prediction 354

8.4.3 Cross-platform Performance Prediction 355

8.5 Resource and Execution Platform Modelling in Component

Metamodels . 357

9 Conclusion 361

9.1 Summary . 361

9.2 Future Work . 366

9.2.1 Bytecode-based Resource Demand Quantification 366

9.2.2 Benchmarking of the Java Virtual Machine 368

9.2.3 Timer Methods and Performance Indicators 371

9.2.4 Resource Modelling and Palladio Component Model 371

xvi

Contents

A Appendix 373

A.1 Performance Equivalence Classes of Java Bytecode Instructions . . 373

B List of Figures 377

C List of Tables 381

D Listings 383

Bibliography 384

xvii

Chapter 1.

Introduction

This chapter motivates the work pursued in this thesis, sets the context and the

preconditions for the research that is performed, and states the problems that

the thesis addresses. The shortcomings of existing approaches are presented

to support the focus of the thesis, and to make the targeted field of research

more precise. After formulating the resulting scientific challenges and goals, the

contributions of the thesis are summarised and the validation of the developed

approaches is sketched. Finally, the organisation of the thesis is explained.

1.1. Motivation

Software engineering is concerned with efficient and systematic development

and evolution of software applications, following customer requirements and

existing best practices. In addition to functional requirements which target the

results of the application execution, non-functional requirements such as per-

formance or reliability are of substantial importance to the software users. Non-

functional requirements and software properties describe the quality of the soft-

ware, and how effective the software is in performing its tasks.

Software performance has been a major concern and a field of intense re-

search, with scientific publications on it appearing in 1969 [1, 2] and possibly

even earlier. Yet as the software and underlying hardware have grown and

become increasingly complex and concurrent, performance has remained a fo-

cal point for researchers and engineers. Performance problems and associated

costs have received public attention [3, 4, 5, 6], and have lead to significant ex-

penses [7] to correct the underlying issues in the design and implementation of

Chapter 1. Introduction

the concerned software products. To provide approaches for dealing with these

challenges, performance engineering [8] has established itself as a subfield of

software engineering.

However, when facing budgetary and time constraints in projects, practition-

ers deal with performance only at the end of software development projects,

which means that the “fix it later” approach is followed. But this delay is prob-

lematic since performance flaws are often caused by the architecture and the

overall design of an application, in addition to performance-unconscious imple-

mentation. Attempting to solve the problem by replacing the originally planned

execution platformwith one having higher performance causes additional costs,

and is ineffective when the software does not scale, as exemplified in [6]. In

such cases, correction of performance issues requires architecture-level changes,

which turn out to be very expensive since the completed implementation has to

be corrected as well.

Consequently, design-time analysis and prediction of software performance is

required to address potential performance issues as early as possible. As the

implementation progresses, performance predictions can be compared to meas-

urements, allowing timely corrective actions of need arises. To allow design-

time prediction of software performance, several architecture-level approaches

(e.g. [9, 10, 11, 12], see [5, 13] for an overview) have emerged and continue to

flourish. However, design-time performance analysis is challenging, since no

measurable implementation but only an architectural view exists at that time.

Making performance analysis a part of already happening design-time activit-

ies is particularly practical and promises effort savings through synergies. When

an explicit software architecture is being modelled, its artefacts are static as

well as dynamic models, which serve as a blueprint during later development.

Enriching these models with performance information is especially attractive

when the model can be executed (e.g. by simulation), since the model execution

then can provide a performance prediction.

Rather than developing applications as large, monotonic blocks, decompos-

ition into smaller entities has established itself as a maintainability “best prac-

2

1.1. Motivation

tice”. The prevalent kind of entities in architectural models are software com-

ponents [14] and their connectors. Software components encapsulate design de-

cisions and interact with other components over interfaces, while exposing their

functionality as services.

Examples of well-known and popular implementations of the software com-

ponents paradigm are Enterprise Java Beans [15] and Common Object Model

(COM [16]). At the same, many advanced software component metamodels (i.e.

formal descriptions of components, their roles and properties) have been de-

veloped in academia, as surveyed in [17].

Among existing component metamodels targeting business software applica-

tions, the Palladio Component Metamodel (PCM [9]) has a particularly extens-

ive support for performance predictions. It explicitly parametrises the dynamic

performance model of a component over the four performance-influencing

factors which are shown in Figure 1.1. These factors are the usage profile [18],

the component implementation, external components (addressed over required

interfaces) and the execution platform.

�������	
����������
��	
��	��������

����������
��
�������
��
�����

������
���������
����������������	������
������������������

�����	�����	������
�������������	�������

Figure 1.1.: Performance of software components: influencing factors

3

Chapter 1. Introduction

Since a PCM model of a component is parametrised over these factors, the

model can be reused in different assembly and deployments scenarios, redu-

cing the effort for modelling component-based applications. To model a com-

ponent’s usage of the execution platform, the Palladio Component Model uses

technology-independent abstractions such as CPU cycles and other low-level us-

age metrics for hardware resources. PCM considers CPU cycles as a platform-

independent metric, and CPU cycles are a convenient simplification as the soft-

ware layers between the component and the hardware are included transpar-

ently in the metric values.

1.2. Problem Statement and Scientific Challenges

Direct counting of CPU cycles has become unreliable with the increasing pop-

ularity of concurrent programming and multi-core CPUs, as will be shown in

Chapter 7. Additionally, most execution platforms do not support obtaining the

precise number of CPU cycles spent executing a given thread or method. In-

stead, only the total number of executed CPU cycles across all processes and

threads can be queried.

As an alternative, measuring the CPU demands of a component’s work re-

quest could be done on the basis of timing measurements. However, inferring

CPU cycles from timing measurements leads to imprecise results due to low

timer method accuracy [19] and due to interruptions in execution caused by

CPU interrupts and context switches. In general, there exists no approach to

select among available techniques for time measurements, as accuracy differs

between them and no approach is available to quantify it. Additionally, it is not

clear whether further relevant quality attributes exist for selecting time meas-

urement techniques, and whether it is possible to quantify them, too.

Even worse, the prediction accuracy with resource demands based on CPU

cycles is unsatisfactory when predicting performance for execution platforms

which have different hardware and software characteristics. This problem is

aggravated by the fact that modern business applications are compiled to port-

able bytecode rather than hardware-specific machine code. Such bytecode

4

1.2. Problem Statement and Scientific Challenges

is executed by virtual machines since neither operating systems nor conven-

tional CPUs can execute bytecode directly, and these virtual machines perform

runtime program optimisations to speed up the bytecode interpretation, which

is quite slow.

For example, the Just-in-Time compilation of the Java Virtual Machine detects

hot methods and compiles their bytecode into machine code, which leads to a

speedup of more than an order of magnitude when compared to conventional

bytecode interpretation. The achieved speedup depends on the Just-in-Time

compiler and the execution platform, but also on the structure and behaviour of

the compiled software, and these factors are hard to capture and to predict.

Performance prediction is needed and beneficial in scenarios where perform-

ance measurement is not possible or not rational due to resulting costs and com-

plexity. For the relocation scenario shown in Figure 1.2, the component’s per-

formance is known for the current platform where it runs, but not on the target

platform to which the relocation is planned. Conventional performance analysis

requires the component (or even the entire application containing it) to be de-

ployed and measured on the target platform. However, this incurs substantial

effort for deploying the application and measuring its performance, and a more

effective approach that makes use of the known performance on the original

platform is needed.

Exec. system 1

(a)

A E

Exec. system 2

A E ?

Figure 1.2.: Relocation scenario: predicting changes in component performance

For the sizing scenario shown in Figure 1.3, performance requirements such

as “reponse time <6 ns in 90 % of cases, and <10 ns in 99 % of cases” are violated

5

Chapter 1. Introduction

for the current execution platform, and a new platform must be chosen so that

the requirements are fulfilled again. As for the relocation scenario, conventional

treatment of the sizing scenario requires either human estimation or the costly

deployment and measuring the application on the execution platform. How-

ever, for sizing questions, several candidate platforms lead to an even higher

effort than for the relocation scenario.

Changed
performance

requirements:
choice?

Exec. system 3

F D

?

Figure 1.3.: Sizing: choosing an appropriate execution platform to fulfil performance
requirements

Performance prediction is also needed in other scenarios, such as select-

ing among component implementations, making architectural design decisions,

studying the impact of application workload, and others. For the presented

thesis, the relocation and sizing scenarios are of particular interest because the

performance model of the execution platform is of central importance for them,

while other influencing factors shown in Figure 1.1 remain fixed.

6

1.2. Problem Statement and Scientific Challenges

Unlike in embedded systems and real-time environments, performance pre-

diction for business applications is not interested in worst case execution dur-

ations, but rather in the average and median execution durations. To capture

and to predict the performance variations using stochastic distributions, the Pal-

ladio Component Model and its tooling consider resource contention, request

scheduling and other factors that impact the execution durations of individual

work requests. Still, the key to accurate performance prediction in Palladio is

the accurate quantification of the “raw” resource demands of the request, which

form the focus of this thesis.

Summarising these requirements in the field of software performance engin-

eering and shortcomings of existing approaches in one sentence, the following

problem statement serves as the starting point for the presented thesis:

Devise an approach for accurate cross-platform model-based per-

formance prediction for bytecode-based components, utilising an

application-independent resource demand metric instead of timing val-

ues and CPU cycles.

This problem statement leads to the following scientific challenges for the

presented thesis:

• To allow more accurate performance predictions than when using CPU

cycles, define a new application-independent and platform-independent

metric for expressing resource demands of components.

• Devise and implement an approach for quantifying the resource demands

on the basis of the new metric so that the approach can be applied to gen-

eric applications/components and does not require a specialised execution

platform or modification of existing execution platforms.

• Create benchmarks that translate the new platform-independent resource

demand units into platform-specific timing values.

• Extend the Palladio Component Model to support the new resource de-

mand metric using first-class model entities, without having to convert

them into CPU cycles or other existing resource demand units.

7

Chapter 1. Introduction

• Demonstrate that the new resource demand metric indeed results in better

cross-platform performance prediction accuracy.

• For the cases where the new resource demand metric cannot be used and

timing measurements have to be performed, identify quality attributes for

selecting timer methods to support accurate time measurements.

• Devise an approach for quantifying the quality attributes of timer meth-

ods without having to inspect the implementation of the timer method,

and devise a process for selecting the most appropriate method for timing

measurements.

1.3. Shortcomings of Existing Solutions

Traditional approaches to model-based performance prediction rely on manual

or semi-automated creation of queuing networks [20, 21], Petri nets [22, 23, 24]

and other fine-grained models. However, the resource demands in the elements

of these model need to be specified, and this requires measurements which in-

cur large effort. Additionally, these resource demands are usually expressed

as platform-dependent timing values, which leads to the need to perform the

measurements and benchmarks on each considered platform, further increas-

ing the modelling effort.

To address the problem that timing measurements are platform-dependent,

several approaches separate the application performance from execution plat-

form performance by identifying work units, such as application building blocks or

resource-specific demand units. However, most attempts to find resource de-

mands metric other than timing values are specific for an application, specific

for an implementation platform or a technology [25, 26, 27], and often require a

specialised toolset to work [28]. Therefore, they do not fulfil the requirement of

being both platform-independent and application-independent. Most of these

approaches are concerned with performance analysis rather than with perform-

ance prediction, and no validated cross-platform performance prediction tech-

nique that addresses the challenges from Section 1.2 has been published.

8

1.3. Shortcomings of Existing Solutions

Meyerhöfer and Lauterwald [29, 30] propose platform-independent compon-

ent measurement for Java components. However, their approach does not ad-

dress the challenge of Just-In-Time compilation, which needed for performance

modelling of today’s bytecode-executing virtual machines. The benchmarking

part of the approach in [29] quantifies the performance of bytecode instructions

and methods in the context of one application, rather than in an application-

independent way. Additionally, [29] does not validate the prediction results in

cross-platform scenarios, and does not quantify the prediction error. The quan-

tification of the application workload in [29] is also platform-specific: for ex-

ample, EJB interceptors and JVMPI (Java Virtual Machine Profiling Interface)

are used. However, JVMPI has been deprecated since 2004 and has been re-

moved from Java 6. In contrast to the choice made in [29], the approach chosen

in this thesis is both application-independent and platform-independent.

Binder et al. [28] use bytecode instructions as application building blocks, but

do not quantify the execution duration of the instructions and thus cannot pre-

dict the performance of the bytecode-based components. In [28], performance of

all bytecodes is assumed to be equal and parameters of individual instructions

(incl. names of invoked methods) are ignored, which is not realistic.

Performance prediction on the basis of bytecode benchmarking has been pro-

posed by several researchers [31, 32], but no validated cross-platform prediction

has been presented and no libraries or tools are available.

Execution durations of individual bytecode instructions have been studied in-

dependently from performance prediction by Lambert and Brown in [33], how-

ever, their approach to instruction timingwas applied only to a subset of the Java

instruction set, and has not been validated or used for predicting the perform-

ance of a real application. Hu et al. derive worst-case execution time of Java

bytecode in [34], but their work is limited to real-time JVMs.

Cost analysis of bytecode-based programs is presented by Albert et al. in [35],

but neither bytecode benchmarks not actual realistic performance values can be

obtained, since the performance is assumed to be equal for all bytecode instruc-

tions.

9

Chapter 1. Introduction

Although benchmarking and performance prediction depend heavily on the

quality of the used timer methods, there exists no definition of quality metrics

beyond accuracy. Even for accuracy, it is known that it differs across methods

and execution platforms, but no approach exists which is capable of quantify-

ing it on a given platform. Books on performance measurement, evaluation

and benchmarking (e.g. [36], [37]) discuss the importance of timer accuracy for

quantifying the errors in measurements, but do not provide algorithms for com-

puting the accuracy or other quality metrics. Also, the role of the timer method

invocation costs is not discussed and no platform-specific data is provided.

In [38], Buble et al. denote imprecise timing information as the first cause of

imprecision in CORBA benchmarking. They state that in their experience, the

RDTSC (read Timestamp Counter) instruction is “a good source of timing in-

formation on the Intel platforms”, but do not provide any proof or numbers to

justify their opinion. In [39], Holmes provides an overview of clocks, timers

and scheduling events accessible from Java, but does not provide any reusable

means to obtain precise characteristics of timer methods. In [33], Lambert and

Power build on [40] and [41] to obtain platform-independent timings of Java Vir-

tual Machine bytecode instructions, using the RDTSC (read time stamp counter)

instruction of the Intel Pentium processors. However, they also do not try to ob-

tain the accuracy or the invocation cost of RDTSC calls.

Concluding, existing attempts for cross-platform performance analysis do not

allow the prediction of the performance of business applications. In particu-

lar, they ignore the runtime optimisations such as Just-in-Time compilation, al-

though this optimisations have significant impact on application performance

in realistic environments. Existing solutions also cannot be used in a platform-

independent and application-independent way, because they rely on techniques

which are vendor-specific, or which require a significant modification of the exe-

cution platform. Finally, no approach exists that provides metric-based selection

among techniques for time measurements, which is needed because accuracy

of benchmarking part of performance prediction depends on the accuracy and

other properties of the measurement techniques.

10

1.4. Thesis Approach

1.4. Thesis Approach

The basic idea of the approach that is presented in this thesis is to separate the

performance behaviour of an application into a platform-specific part and an

application-specific, platform-independent part. The two parts are expressed

using models and then combined by performing model-based performance pre-

diction that uses bytecode-level application building blocks. The principle of the

approach is shown in Figure 1.4, and explained in the following.

In particular, the presented approach automates both the creation of a

platform-independent performance profile of the considered application, and

the creation of an application-independent performance profile of execution

platforms. Of course, it also automates the prediction of platform-specific exe-

cution durations (timings) of a given application on a particular execution plat-

form, with a given application usage profile.

Figure 1.4.: Overview of the cross-platform performance prediction approach of this
thesis

A simplified analogy for the presented prediction approach is that of a shop-

ping cart: a purchase that consists of several items can be quantified either

through the total cost of the purchase or by listing the type and quantity of indi-

vidual items. The total cost is vendor-specific if the cost of the items varies from

11

Chapter 1. Introduction

vendor to vendor – but it is also easier to grasp and requires less “memory”

to remember. Instead, describing the contents of the shopping cart in a vendor-

independent way by listing the items and their quantity in detail is a vendor-

independent representation, but it still allows customers to compare the cost of

the shopping cart across vendors but computing the total cost of the purchase.

Application Profile

An application profile as used in this thesis consists of runtime frequencies of app-

lication building blocks (Chapter 4 discusses the selection of the application

building blocks for this thesis). The execution of the application building blocks

by the execution platform can be seen as the processing of resource demands

issued by the application to the execution platform. In this thesis, the term re-

source demands is therefore applied to the application building blocks when the

execution platform is considered as a single, complex resource.

The term “application” can denote an entire, multi-component application –

but also a single component, or a single class/module. Correspondingly, an

“application profile” applies to the set of services/methods offered by the inter-

face(s) of a given application/component/module/class. The application pro-

file can encompass private (non-exposed) services/methods in addition to those

services/methods which are accessible over public interfaces.

The application profile consists of runtime (i.e. dynamic) frequencies and not

of static frequencies because loops, branches and other control flow constructs

impact the execution of the application at runtime. In some simpler cases, it

would be possible to use static code analysis or symbolic execution to approx-

imate the runtime frequencies without actually running the application. How-

ever, Chapter 4 of this thesis introduces amore universal, instrumentation-based

solution for obtaining real and precise runtime frequencies of bytecode instruc-

tions and method invocations.

Since the runtime execution of a service/method depend on its parameters,

the performance profile of a service/method needs to be quantified individu-

ally for each relevant “input”, i.e. for each parameter assignment. Instead of

specifying the performance profile of a service individually for each relevant

12

1.4. Thesis Approach

parameter combination, it is possible to generate parametrised performance profiles

which contain functions (rather than constants) as counts of individual appli-

cation building blocks. One possibility to do so is through machine learning

with genetic algorithms, as exemplified in the PhD dissertation of Klaus Krog-

mann [42].

The application profile is not a trace but an aggregated account of the runtime

frequencies of building blocks. Therefore, it abstracts from the effects of exe-

cution order: executing building blocks BB1 and BB2 in the sequence BB1 BB2

BB2 BB1 is assumed to have the same contribution to the performance profile

as BB1 BB1 BB2 BB2. A consequence of this assumption is that the kind of

building blocks must be chosen appropriately: selecting CPU instructions as

building blocks means that CPU pipelining, out-of-order execution and other

effects will violate the implicit additivity and commutativity properties of the

proposed application profile definition.

So far, the application profile is not a performance profile in the classic sense,

since neither timing values nor resource demands are attached to the elements of

the application profile. While the individual application building blocks can be

seen as the application’s resource demands to the execution platforms, it is more

usual to express resource demands in terms of hardware/software resources

(CPU, hard disk drives, threads in a thread pool, etc.) or in timing values than

in “building blocks”. Translating the application profile into application per-

formance metric values is achieved by using a platform performance profile.

Platform Performance Profile

In short, the platform performance profile consists of resource demands or tim-

ing values of a given application building block. For example, if an API method

is an application building block, its execution duration can be the resource de-

mand, or its use of resources (expressed in CPU cycles, bytes written to an HDD,

etc.) can be used for the platform performance profile. Of course, the resource

demands of an application building block depend on its usage, i.e. on its para-

meters: for example, the performance of an API method that implements revers-

13

Chapter 1. Introduction

ing the sorting order of an array depends on that array’s length (and, of course,

on the implementation of the method and on the execution platform).

Therefore, obtaining the platform performance profile means benchmarking the

execution platform and accounting for parametric performance dependencies.

A significant challenge in platform benchmarking is to perform it in a setting

that is as close as possible to the setting in which the actual application will be

run. As anymeasurement impacts themeasured system, so does benchmarking,

and obtaining a representative platform performance profile should be carried

out in a systematic, controlled environment.

It should be noted that the platform is considered as a black box, i.e. only its ex-

ternally visible properties, behaviour, configuration and interfaces are used. In

particular, the approach does not build a model of the platform’s internals, and

does not quantify the performance of the individual platform parts. A further

aspect is that this thesis targets business applications, rather than embedded

applications or scenarios with real-time requirements. Additionally, the pre-

diction approach of this thesis is to be used during the design phase and for the

applications which are built from components which are only partially available

at that time.

There are several reasons to build a black-box performance profile/model

rather than a detailed behavioural performance model which requires detailed

(“white-box”) knowledge of the execution platform:

• a detailed behavioural performance model of an execution platform is very

hard to build for today’s multi-layered, self-optimizing platforms, and re-

quires human expertise (i.e. it is hard to automate)

• the detailed model requires substantial computing efforts to be used dur-

ing performance prediction (e.g. using simulation): today’s CPU simulat-

ors execution time is several orders of magnitude larger than the duration

of the simulated work

14

1.4. Thesis Approach

• as layers of the execution platform can be exchanged independently, be-

havioural performance models would have to be built for each layer, and

corresponding interfaces between themodels would have to be established

Consequently, in this thesis, the modeling of execution platforms will follow the

“black box” approaach, rather than the “white-box” approach.

Predicting the Platform-specific Timing Values and Resource Demands

The simplest way to predict the performance of a given application on a particu-

lar platform is to combine the application profile and the platform performance

profile using element-wise multiplication and computation of the sum. In the

following, we use definitions which will be reused and expanded in Chapter 6:

• Freq(BBi,WLj , Appk) is the runtime frequency of building block BBi when

workload WLj is exercised on application Appk

• Perf(BBi, P latm) is a performance metric value of BBi on platform Platm

(e.g. execution duration, number of CPU cycles, etc.)

• PP (WLj , Appk, P latm) is the predicted platform-specific performance of Appk

with workload WLj on execution platform Platm

Pred(WLj , Appk, P latm) is computed as the sum of products over all building

blocks found in application Appk:

Pred(WLj , Appk, P latm) =
∑

i

Freq(BBi,WLj , Appk) · Perf(BBi, P latm) (1.1)

An important assumption manifested in Formula 1.1 is that of non-parallel

execution of building blocks: by computing the sum over the Freq and Perf

values, the performance is predicted for the case where the building blocks

are executed in a non-overlapping manner and without optimisations, i.e. in

a sequence. To explain this assumption, intra-application parallelism and intra-

platform parallelismmust be considered separately.

The intra-application parallelism is not a limitation of the performance predic-

tion methodology itself, since an application behaviour model can be built that

15

Chapter 1. Introduction

explicitlymodels the parallelism at the level of concurrently executed services or

methods. In fact, the Palladio Component Model that serves as the foundation

of this thesis (and whose prediction tooling is extended by this thesis) provides

exactly the needed capabilities. Therefore, Formula 1.1 can be applied individu-

ally to the application/component parts or services which have no inner con-

currency, and the partial performance prediction results can then be fed into a

behaviour model that captures the intra-application concurrency and accounts

for potential speedup.

The intra-platform parallelism is harder to capture when a black-box platform

performance model/profile is used. Here, further research is needed that must

combine application analysis and platform analysis. In this thesis, we assume

that the building blocks are chosen at such granularity that benchmarking them

on the execution platform reveals the intra-platform parallelisation effects indi-

vidually for each building block, so that the effects are then captured through the

performance metric values for a given building block. This assumption means

that the ordering of building blocks in an application does not impact the intra-

platform parallelisation – the task of finding the limitations of this assumption

are considered to be future work which should build on the findings of this

thesis.

1.5. Contributions

In line with the problems and challenges outlined in Section 1.2, this thesis

makes the following contributions:

• Quality metrics and attributes for timer methods: this thesis formalises

the relations between central timer quality metrics such as accuracy and

invocation costs, and studies their combined impact on measurement ac-

curacy. Additionally, new quality attributes such as epoch stability and

stability in multi-threaded scenarios are defined and their importance for

reliable timing measurements is demonstrated.

16

1.5. Contributions

• A platform-independent approach for quantification of timer method

quality attributes is developed and allows the analysis of timer methods

as black boxes, i.e. without having to inspect their implementation or tech-

nical details of the underlying execution platform. The approach is im-

plemented in different programming languages and validated on different

operating systems and middleware platforms.

• Quality-driven timermethod selection: a new unifiedmetric is developed

which aggregates different quality attributes into a one-valued metric. The

new metric allows for easier comparison and selection of timer methods,

and it is applied to a large variety of timer methods from different sources

and on different execution platforms to provide a quantitative survey of

existing timer methods.

• Platform-independent and application-independent performance met-
rics: This thesis establishes bytecode instruction counts andmethod invoc-

ation counts as platform-independent performance metrics, and demon-

strates the importance of their runtime parameters. This performance met-

ric is used to quantify resource demands of bytecode-based components

and applications.

• Resource demand quantification: A novel approach for effective, trans-

parent and application-independent quantification of bytecode-level re-

source demands is developed. The new approach works without requiring

specialised/modified execution platform or manual modification of appli-

cation source code. It is implemented and validated for the Java bytecode.

• Execution platform benchmarking: To translate the duration of bytecode-

based resource demands into platform-specific timing values, a novel ap-

proach for automated benchmarking of bytecode-executing virtual ma-

chines is presented. The central contribution of this approach is the auto-

mated construction of benchmarks to quantify the performance of the exe-

cution of Java bytecode instructions and methods on the Java Virtual Ma-

chine.

17

Chapter 1. Introduction

• Cross-platform performance prediction: using bytecode-based applica-

tion resource demands and platform benchmarking results, performance

prediction can be performed for several platforms without having to de-

ploy the considered application on all of them. The performance predic-

tion mechanism only requires the application-independent benchmarks to

be run on the execution platforms. The prediction addresses the perform-

ance effects of Just-in-Time compilation and other runtime optimisations

performed by modern execution platforms. The prediction accuracy of

the bytecode-based performance prediction is validated for several real-life

applications and workloads on several execution platforms with substan-

tially different capabilities and architectures. The validation also shows

that the prediction accuracy is better than for prediction based on CPU

cycles.

• Integration into model-based architecture-level performance analysis:
An extension of the Palladio Component Metamodel and its tools has been

performed to integrate bytecode-based performance prediction into it. This

extension introduced explicit resource interfaces for access of hardware re-

sources and infrastructure components, such as middleware or virtual ma-

chines. As a result, the Palladio Component Model can use bytecode-based

resource demands of components for its existing capability to predict the

performance of concurrent and multi-user application usage scenarios.

In the next section, the validation of these contributions is described.

1.6. Validation

As this thesis makes several contributions, each of them requires a thorough

validation to show the contributions’ benefits, scope and also their limitations.

The validation follows the Goal-Question-Metric approach, which guides the

selection of the validation criteria by imposing a top-down process for selection

of validation metrics.

18

1.7. Thesis Organisation

For the time-oriented performance indicators, their quality attributes such as

reliability, accuracy and overhead are examined in a large study that spans sev-

eral platforms with different hardware architectures, operating systems, virtual

machines, and programming languages. This study demonstrates that the ap-

proach developed in this thesis allows educated decisions despite lacking or

imprecise documentation, and the tools presented in this thesis eliminate the

guesswork on which indicator selection is based in state-of-the-art.

The core contribution of this thesis is the platform-independent perform-

ance prediction of black-box bytecode based components, and its validation

is performed using several applications and components. These applications

include file compression, audio file decoding, encryption as well as several

workloads which are used in software and hardware benchmarking and com-

parison. The applications and workloads originate in widely used, industry-

developed, benchmarks such as SPECjbb2005, SPECjvm2008, SPECjvm98, Lin-

pack and JavaGrande, but also include self-written algorithms.

The instrumentation-based resource demand quantification is shown to be

precise, and it is validated in terms of overhead and scalability. The benchmark-

ing of methods and APIs is validated with a focus on the novel heuristics that it

uses to facilitate finding valid, benchmarking-suitable parameters and invoca-

tion targets. Additionally, the quality of benchmarking results and the duration

of benchmark generation are discussed. Finally, it is shown that the approach

integrates well into the Palladio Component Model.

1.7. Thesis Organisation

Chapter 2 explains the foundations, concepts and terminology that is relevant

for this thesis, and explains the relation of existing techniques and tools to the

presented thesis and its contributions.

Chapter 3 presents a novel approach for selecting timer-oriented performance

indicators, using a well-defined set of quality criteria and test-based techniques

for detecting unreliable indicators.

19

Chapter 1. Introduction

Chapter 4 introduces a framework for instrumentation-based quantification

of instruction-precise runtime resource demands made by black-box, bytecode-

based components and applications. The distinguishing characteristic of

the new framework is that it instruments the applications in a transparent

(behaviour-neutral) and portable way so that the instrumented application runs

on any standard-compliant bytecode-execution virtual machine. Using basic

block analysis and bytecode invariant analysis, the instrumentation overhead is

significantly reduced.

Chapter 5 presents a generative approach for creating benchmarks that

quantify the performance of bytecode instructions and object-level methods.

The results of the benchmarks allow us to predict the performance of applica-

tions which use these instructions andmethods as building blocks. In particular,

the benchmarking results are more than characterisations of the execution plat-

form.

Chapter 6 explains how the platform-specific performance prediction is cal-

culated from platform-independent resource demand quantification results and

platform-specific benchmarking results. It also discusses the changes in the Pal-

ladio Component Model and its tooling to accommodate the approach intro-

duced in this thesis, in particular the bytecode-oriented resource demands.

Chapter 7 contains the extended, multi-platform validation which uses sev-

eral applications and workloads as well as different timer methods and per-

formance counters. Chapter 8 discusses related work, and compares it to this

thesis and its contributions. Chapter 9 concludes with a summary, discussion of

the results and lessons learned, and provides an outlook in the form of future

work and possible extensions to the presented approach.

20

Chapter 2.

Foundations and State-of-the-Art

This chapter lays the foundations for the contributions in the forthcoming

chapters, by presenting the context and areas of research targeted by this thesis.

The terminology and the current state of research are described, including the

limitations of existing solutions. The chapter is structured as follows: Section 2.1

gives an introduction to the field of software performance. Section 2.2 presents

the foundations of performance engineering. Section 2.3 provides an overview

of benchmarking research and existing benchmarks.

Section 2.4 describes the different techniques for time measurements. Sec-

tion 2.5 contains an overview of bytecode-executing virtual machines and re-

lated middleware concepts. Section 2.7 describes the foundations of bytecode

engineering. Section 2.8 explains the notion of instrumentation in the context of

this thesis.

Section 2.9 briefly introduces ahead-of-time compilation. Section 2.10 de-

scribes resource demand quantification and profiling. Section 2.11 provides an

overview of software components and performance analysis in that field of re-

search. Finally, Section 2.13 introduces the Palladio Component Model.

2.1. Software Performance

Performance is a collective term for quantifying how efficiently execution re-

sources are used by an application to perform its tasks. Performance is charac-

terised by setting the amount of accomplished work in relation to the amount

of time and resources used during the task processing. Thus, the definition of

Chapter 2. Foundations and State-of-the-Art

performance resembles the definition of power in physics, which is computed

as the ratio of accomplished work and processing time.

Quantifying performance involves considering both the view of the entity

which issues a work request (the client) and the entity which processes that

work request (the server). One server can receive and concurrently handle sev-

eral work requests from distinct clients, and the work requests usually differ in

size and complexity.

Performance metrics [43] frequently used in computer science include

• response time (i.e. the time needed to accomplish the work requested by a

client from a server, measured from client’s perspective)

• utilisation of a resource, i.e. the percentage of a defined time interval during

which the resource is busy performing work

• throughput, i.e. the (average) number/size of work items processed in a

considered time interval

A short response time is desired because the software user is interested in re-

ceiving the answer to her request quickly, as quick request processing by the

server makes the client’s own work more efficient. When a server receives sev-

eral requests concurrently, response times increase because incoming requests

have to wait until currently processed request(s) complete. Another reason

for response time increase during concurrent request processing are switching

times between requests. In general, the response time of a work request is de-

termined not only by its size and complexity, but also by the state and the load of

the execution platform, which results in resource contention and waiting times.

The maximum processing capability of the server is usually limited, and the

utilisation of resources cannot grow beyond 100 %.

The server can consist of several hardware and software parts, and it can is-

sue work requests to other servers for processing sub-tasks of the original work

request. A client can dispatch work requests in synchronous manner (blocking

until work requests processing is completed) and asynchronous manner (con-

tinuing while the work request is processed by the server). Note that the client

22

2.1. Software Performance

side and the server side can be located on the same physical computer (execu-

tion platform): the distinction is only made to explain the different views and

roles relevant for performance assessment.

The throughput of a system is usually measured in requests per time unit, and

can be computed both for the entire request-processing application (or execution

platform) and for individual resources. Of course, the value of the through-

put depends on the size and complexity of the requests used for its calculation

(smaller requests allow a higher throughput). Therefore, a precise specification

of the throughput requires that a characterisation of the requests used for the

calculation is specified with it.

The maximum throughput of a system is often called capacity, and it is lim-

ited by those resources for which the utilisation reaches 100 % and which thus

become bottlenecks. Finding bottlenecks and alleviating their impact on the sys-

tem performance is one of the primary tasks in performance engineering. Note

that the utilisation is defined over a time interval because for a given time instant,

the utilisation has a binary value: a resource is either utilised or idle. Thus, com-

puting resource utilisation for a time interval requires sampling of the resource

state, and the sampling interval influences the value and the accuracy of the res-

ulting utilisation value. Resource utilisation can also be computed for a given

request or a given application, by analysing which request/application is being

processed at the time a sample is taken.

The different performance metrics are relevant for different stakeholders: re-

source utilisation and throughput are relevant for the performance specialists

and administrators on the server side, while the response time is relevant both

for the client (customer) and the server (which strives to satisfy the customer’s

expectations). Additionally, developers use these metrics to enhance the per-

formance of the request processing and to control the costs, since an underutil-

ised execution platform means that processing capacities are being wasted.

All of the above metrics have in common that they are based on time val-

ues and time intervals. Therefore, accurate measurement of time is essential

23

Chapter 2. Foundations and State-of-the-Art

for accurate measurement of performance metrics. Section 2.4 will address this

challenge in more detail.

2.2. Performance Evaluation, Engineering, Optimisation, Modelling and

Prediction

Measuring performance metrics requires a deployed, running system (both the

client side and the server side) or a running prototype of it, and a workload

which makes the client issue work requests to the server. When direct measure-

ments are not precise enough or (technically) impossible or infeasible, indirect

measurements (e.g. using Kalman filters [44]) can be used. Indirect measure-

ments derive the desired metric from other metrics, sometimes with a loss of

accuracy.

For direct measurements, a large variety of techniques and tools exists, from

performance indicators to benchmarks and profilers, which will be covered in

the following sections. Still, measuring performance metrics remains a non-

trivial task because of lacking support for accurate measurements on execution

platforms, and because the measurement and its overhead impact the meas-

ured entity. Additionally, traditionally used wall-clock timers become unreli-

able as the parallelism of applications increases: on multi-core execution plat-

forms, threads and processes of an application can be executed concurrently.

On multi-core platforms, concurrent execution results in a speedup of applica-

tion’s execution, although the underlying resource demands remain the same

or even increase due to synchronisation overhead. Unfortunately, the granular-

ity of timer methods for measuring thread-individual CPU usage times is too

coarse-grained on many platforms [19].

In systematic software engineering, addressing the performance of an appli-

cation at the end of the development phase is too late, because fixing perform-

ance issues and bottlenecks is more expensive for a completed application than

during the design phase. Therefore, design-time performance evaluation and

performance prediction allows software authors to anticipate performance is-

sues and to address them early, before the issues find their way into the app-

24

2.2. Performance Evaluation, Engineering, Optimisation, Modelling and Prediction

lication’s implementation. Design-time performance evaluation and prediction

must operate on performance models of the application, as no measurable im-

plementation exists at that time.

Creating design-time performance models requires setting the design model (ar-

chitectural model) into a relation to the performance information, which can

originate from different sources. When applications are built top-down, projec-

ted response times for requests are decomposed (usually by estimation) into re-

sponse times and processing times for sub-requests. While approximative, such

an approach allows the developers to monitor whether the projected request

response time is later violated by the implementation of a sub-task, and coun-

termeasures can be taken (e.g. exchanging or enhancing the implementation

of the task, or adjusting the planned performance metric values for other sub-

tasks). Thus, design-time architectural performance models can serve as guidelines

(“blueprints”) for application development.

On the other hand, when an application is developed bottom up (from exist-

ing and planned components), an architectural performance model can serve

for monitoring the performance of the entire application. Here, too, perform-

ance metric values originate from different sources: measurements, estimations

and requirements. Regardless of the development approach, design-time ar-

chitectural performance modelling allows predicting the influence of the four

influence factors from Figure 1.1 on the performance of the application.

2.2.1. Model-based Performance Prediction

There are several approaches for performance prediction on the basis of architec-

tural performancemodels, and they involve analytical or simulation-based solving

of the performance model.

Analytical modelling is represented by queuing networks [21], Petri nets [22],

process algebras [11], Markov chains [45] and other formalisms. The perform-

ance model can be an instance of such a formalism, or can be translated into

it, for example through model transformations. An analytical model is solved

using mathematical techniques, which can be both exact and heuristic-based.

25

Chapter 2. Foundations and State-of-the-Art

While analytical models offer the advantages of fast model solving and a well-

studied theoretical underpinnings, they are often too limited for real-life archi-

tectural models [46] and too complex for being used by practitioners.

Simulation-based modelling differs from analytical modelling in that it mim-

ics the execution of the modelled system, but introduces simplifications and ab-

stractions. Instead of executing a work step of the simulated scenario directly,

a simulation accounts the time needed to execute that work step, adjusts the

state of the resources, and proceeds with the next work step immediately after

this. Such condensed execution allows simulating request scheduling as well as

resource usage and contention, but runs faster than a real execution of the sim-

ulated scenario would. Simulations can be derived (e.g. through model trans-

formation) from architectural performance models, and evolve together with

application’s architectural model and implementation.

Both analytical modelling and simulation-based modelling allow studying

design decisions and answering trade-off questions at architectural level. Once

parts of the developed application become available, they can be supported by

measurements, which are usually more accurate and thus more convincing than

estimations.

While the formalisms of model-based performance prediction approaches are

well-developed and usually very details, the challenge of obtaining resource

demands is not addressed by them, and manual measurements are usually as-

sumed to supply resource demand aspects of the modelling.

2.2.2. Software Performance Engineering

To bridge the semantic gap between software development (in particular ar-

chitectural models) and formal performance modelling, the Software Perform-

ance Engineering approach (SPE) was developed by Smith et al. [47]. SPE

brings together modelling of the application, application workload, applica-

tion’s resource requests and the modelling of the execution platform and its re-

sources. Additionally, SPE encourages the definition of performance goals and

26

2.3. Benchmarking and Performance Measuring

key performance scenarios, which are revisited, refined and reassessed during

the design and development phases of the studied product.

SPE covers the software execution modelling (i.e. the static and dynamic as-

pects of architectural modelling) as well as execution platformmodelling (called

system execution model). SPE encourages focussing on performance-relevant

parts of the models and on performance-critical usage scenarios, which can be

expressed as service level agreements (SLAs). From usage scenarios (i.e. work-

loads), an annotated control flow graph has to be created manually, and annot-

ated with resource demands for each of the graph nodes.

The annotations of graph nodes include hardware resource demands which

are expressed in a platform-independent way, e.g. as the number of CPU cycles

or the number of hard disk accesses. The platform-specific timing values of the

platform-independent resource demand units are specified separately, in the so-

called overhead matrix. The SPE-ED tooling [48, 49] combines several control

flow graph into a system execution model, which is translated into a queuing

network. The resulting queuing network is solved analytically to obtain per-

formance metrics such as response time or utilisation.

As with model-based approaches, SPE assumes that resource demands are

specified by the user – thus, the contribution of this thesis can be useful for SPE,

too.

2.3. Benchmarking and Performance Measuring

There exist many approaches and tools for measuring software performance.

The simplest, but least scalable way is to modify an application’s source code by

manually inserting statements for performance measurement. Such statements

can make use of timer method, performance indicators, hardware performance

counters, etc. Aspect-oriented programming can be used instead of manual in-

sertion, and it allows separating the measurement-related aspects (and code)

from the actual measured application.

In contrast to such “white-box” measurements (the application internals have

to be known), “black-box” measurements address externally visible interfaces

27

Chapter 2. Foundations and State-of-the-Art

and behaviour of the application. Black-box measurements can be performed

manually (by writing performance tests, workload drivers, measurement test-

beds etc.) or using supporting tools such as profilers. Performance measure-

ment artefacts are usually developed in an ad-hoc manner and evolve together

with the measured product. Yet often, a stable and self-contained artefact is

required to measure and to compare a product type (category) or different im-

plementations of a technology. Such artefacts are usually called benchmarks and

are described in the following.

The term benchmark originates from marks made on a workbench since these

marks enabled the workers to compare the length of created products, e.g. to

ensure their uniformity. As it is hard to compare hardware and software just be

analysing their static specifications, dynamic behaviour needs to be analysed to

expose the runtime performance (and other quality attributes) of the considered

hardware and software. For example, a higher CPU frequency does not mean

that that the CPU will execute a given workload faster, e.g. because the cache

and the RAM are critical resources for the execution.

In computing, benchmarking means running a program or a workload (called

benchmark) to obtain one or several numeric values (benchmarking results) for

comparing software and hardware products. For example, performance bench-

marking can produce absolute or relative results, e.g. a time value or a score

in percent. As multidimensional benchmarking results are harder to compare

than a single metric, benchmarks tend to produce a central “key” value which

is used for comparison, plus a hierarchy of sub-results which can be used for in-

detail comparison. A benchmark can produce aggregate result(s) for a system

as a whole, i.e. without addressing the services and capabilities of the system in

isolation – but there are also benchmarks that address each system functionality

individually.

2.3.1. Benchmark Types

Depending on its composition and origin, a benchmark is called application

benchmark if it is a real-life application, while a synthetic benchmark is a

28

2.3. Benchmarking and Performance Measuring

specifically-created workload targeting a sub-part of the benchmarked system.

For example, Whetstone [50] is a synthetic benchmark originating in 1972 which

targets the floating-point unit of the CPU and which is aware of and protected

against compiler optimisations; its result metric is “thousands of Whetstone in-

structions per second” (kWIPS).

Another synthetic benchmark is Dhrystone [51] from 1984, which can be con-

sidered as an ancestor of SPECint2000 [52], but has a rather small codesize, al-

lowing it to fit into the instruction cache of modern CPUs. The output metric of

Dhrystone is the number of iterations of the main code loop per second, which is

a more meaningful metric than MIPS (million instructions per second) because

instruction counts between CISC and RISC should not be compared.

It is also common to extract the “performance hotspots” of an application

benchmark into a separate, small benchmark, which is easier and faster to ex-

ecute but will still give a helpful preview on the performance of the full applica-

tion. Beyond comparisons of existing (already released) hardware and software,

benchmarks are also used often during design and development, to ensure that

the developed product will perform well, and to detect issues in design and

implementation.

Unfortunately, to obtain good benchmarking results, purposeful and unreal-

istic “fitting to benchmarks” was performed by some vendors, resulting in strict

benchmark run rules issued by benchmark authors, e.g. in 1992 for the SPEC

CINT92 benchmark [53]. These run rules prescribe which tuning settings, op-

timisations and configurations are allowed, to ensure that the benchmark results

are representative and realistic, and also repeatable by third parties (for verific-

ation, etc.). Some benchmark products allow submitting benchmarking results

both for the prescribed case, and for an “unlimited” scenario where the bench-

mark user can optimise and tune at her discretion.

As benchmark authoring and publishing is neither licensed nor controlled,

benchmarks can be created both by vendors and independent parties, and their

expressiveness, informative value, scope, refinement and other properties vary

29

Chapter 2. Foundations and State-of-the-Art

significantly. A particular product can produce excellent benchmarking results

for one benchmark and rank miserably in another.

Correspondingly, vendors tend to publish only those benchmarking results

which display their products favourably, and may contest benchmarks where

their products do not perform well. Then, it is the task of independent parties

(journals and magazines, scientists and consumer protection agencies) to cover

both well-performing and under-performing contestants. Also, the cases of

benchmarketing [54] should be avoided, which occurs benchmarks are created

to “make the benchmark numbers as high as possible, regardless of whether

they actually have any predicting power”.

Benchmark authoring is a challenging task which requires in-depth know-

ledge of the benchmarked system, benchmarking “best strategies” (patterns)

and pitfalls (anti-patterns). Thus, benchmark authoring is a task which needs

human thinking and human intelligence during design and development. Still,

a few researchers try to generate benchmarks in an automated way (e.g. using

model-driven techniques [55]), but their approaches require a formalisation of

the system to benchmark, e.g. an architectural model in the case of [55].

While performance is the primary focus of benchmarking in computing, other

quality attributes such as security and reliability are also important, but appli-

cations and workloads to assess them are rarely called benchmarks, but rather

tests. Increasingly, energy efficiency (energy costs being one of constituents for

cost of ownership) receive attention, resulting in energy (“power”) benchmarks

from performance evaluation authorities such as SPECpower_ssj2008 [56]. En-

ergy efficiency also leads to performance-dependent metrics, such as “opera-

tions per watt”.

When a performance benchmark returns just one key value (the benchmark

metric), other important performance-related metrics, such as scalability, stand-

ard deviation etc. are omitted. Scalability quantifies the performance behaviour

of a benchmark when the workload increases, the number of execution system

nodes increases, or both. Additionally, it is important how the performance

degradation of the benchmarked system looks like when the utilisation of the

30

2.3. Benchmarking and Performance Measuring

execution system increases and approaches the saturation point (which may be

well below 100 % utilisation). However, for the end user, having stable perform-

ance behaviour (e.g. response times of 0.5 seconds with a standard deviation of

0.1 second) may be more important than having low response time with a large

standard deviation.

A microbenchmark does not benchmark an entire application or system, but

rather focuses on a small function or service offered by the system. For example,

benchmarking a CPU should stress all components of the CPU (ALU, cache,

etc.), while a microbenchmark for floating-point operations can focus on those

and does not have to be concerned with memory operations, etc. A kernel-

based benchmark such as the Linpack benchmark [57] contains an algorithm

(which can be synthetic or extracted from a real application), and usually returns

a single metric, such as the MFLOPs (millions of floating-point operations per

second).

2.3.2. Overview of Benchmarks

More than a hundred benchmarks of various types, targets, sizes, origins, licens-

ing and ages exist, and there is unfortunately no authority or council to collect

and systematise them. Benchmarks developed as industry standards are well-

regarded, and usually driven by multi-vendor councils and consortia, such as

Standard Performance Evaluation Corporation (SPEC), Transaction Processing

Performance Council (TPC), Business Applications Performance Corporation

(BAPCo) and EmbeddedMicroprocessor Benchmark Consortium (EEMBC). Ex-

isting collections (databases) of benchmarks are limited to separate research

fields, e.g. DisCo benchmark database [58] for distributed computing.

Industry-standard benchmarks for desktop and enterprise Java include

SPECjvm2008 [59], SPECjbb2005 [59], SPECjAppServer2004 [60], as well as their

predecessors. SPECjvm2008 is a benchmark for client JVMs (i.e. local applica-

tion execution), and it contains several workloads, such as audio file decoding,

file compression, mathematical computations, Monte Carlo algorithm, Fourier

transform, and others.

31

Chapter 2. Foundations and State-of-the-Art

SPECjbb2005 models a three-tier distributed enterprise system with ware-

houses and stresses XML processing and precise numeric calculations using

Java’s BigInteger class. SPECjAppServer2004 addresses benchmarking of

Java Enterprise Edition implementations, i.e. it targets Java EE application serv-

ers. SPECjAppServer2004 is an end-to-end benchmark which exercises the web

container (incl. servlets and JSPs), the EJB container, container-managed persist-

ence, messaging services and transaction management.

Other Java benchmarks are JavaGrande [61, 62], DaCapo [63],

HBench:Java [32], UCSD Benchmarks for Java [64], and a benchmark from

JavaWorld [65]. Surprisingly, there exist no industry-standard .NET bench-

marks, and only a few research-grade benchmarks, e.g. [66, 67].

For benchmarking end-user personal computers in their entirety (rather than

a technology or a hardware/software component), third-party benchmarks such

as PCmark [68, 69] are available. Some operating system vendors even supply

their products with built-in benchmarks which can be run by end users and

serve to compare the performance of an operating system across execution plat-

forms. For example, the Windows System Assessment Tool (WinSAT) is a com-

ponent of the Microsoft Windows Vista and Windows 7 operating systems.

WinSAT measures various performance characteristics and capabilities of the

hardware and reports them as a Windows Experience Index (WEI) score. This

score has a decimal point range between 1.0 and a version-specific upper bound

that is slated to increase in future operating system versions. The WEI expli-

citly lists five sub-scores (CPU, hard disk, main memory, 2D and 3D graphics),

the reported WEI value is the minimum of the sub-scores. The WEI has differ-

ent usage scenarios: finding the least powerful hardware resource of a system,

comparison between hardware configurations, specifying the hardware require-

ments of a software product, etc.

2.3.3. Summary

Summarising the current state of benchmarking, it can be said that while there

exists an overwhelming number of benchmarks, none of them is able to quantify

32

2.4. An Overview of Timer Methods, Timers and Counters

the performance of individual services offered by a Java Virtual Machine, or a

(generic) Java API. Similarly, no benchmark exists that quantifies the perform-

ance (execution duration) of bytecode instructions.

In particular, it is not possible to predict the performance of an arbitrary Java

application from the results of an existing Java benchmark, except when the

considered application is identical or very similar to an existing benchmark.

However, defining and quantifying similarities between a benchmark and a

real-world application is a separate challenge.

While some approaches to quantify the performance similarities between app-

lications are available (e.g. [70, 71]), their require the applications to be character-

ised at microarchitecture level (i.e. CPU instruction mix, behaviour of branches,

register allocation). Thus, these similarity-based approaches are not platform-

independent, and must be performed on each candidate hardware type.

Thus, existing benchmarks are not suitable as a basis for cross-platform per-

formance prediction.

2.4. An Overview of Timer Methods, Timers and Counters

Time is a fundamental one-dimensional physical quantity (according to Interna-

tional System of Units, SI [72, p. 105]), with normed units such as second, milli-

second, minute, etc. Measuring time is quintessential for quantifying and com-

paring software and hardware performance, since performance metrics such as

throughput, response time, utilisation etc. are based on time. While philosoph-

ers disagree on whether time per se can be measured (claiming what is con-

sidered as time is in fact the occurrence of periodic events), this thesis treats

time as a measurable entity. Additionally, the assumption is made that the con-

sidered systems are not measurably affected by time dilation and other effects

resulting from relativity theory.

33

Chapter 2. Foundations and State-of-the-Art

2.4.1. Hardware Performance Counters and Monitors

Given that time units are normed (one second is defined using the amount of

radiation emitted by caesium), it is possible to measure the time by repeating

the underlying experimental setup. However, it is more convenient to resort

to simpler (albeit less precise) techniques: in modern computers and electronic

clocks, crystals oscillating under voltage with a known, stable frequency are

used. A hardware register is then keeping track of the number of oscillations (or

a derived, proportional value).

A hardware performance counter is a generic term for a hardware register that

can store the value a performance metric (the term hardware performance monitor

is also widely used). It is expected that the usage of hardware performance

counters does not impact the execution of the actual workload. This counter-

stored metric may or may not increase at constant rate: a hardware performance

counter can contain the number of CPU cache misses, the number of executed

CPU cycles, etc. Especially for CPU cycles, it should be noted that multi-core

CPUs with individually deactivatable cores, but also variable CPU speeds (as

provided by SpeedStep and other technologies) can lead to the situation where

the number of executed CPU cycles does not exhibit linear correlation with time.

The quantity of registers that can store hardware performance counter values

is limited, and varies between CPU models and manufacturers. Thus, it is only

possible to obtain a limited selection of performance counter values at the same

time, and multiplexing is used when more counter types are available than re-

gisters to save their values. When more counter types are needed than can fit

into the available registers, a measurement must be repeated until all requested

counter types have been covered – however, this also requires the measurement

runs to be identical so that counter values can be considered as if they would

originate from a single measurement.

The hardware performance counters provide the advantage of (supposedly)

low-overhead access to the performance indicators of the CPU, but they require

software to aggregate and to interpret the obtained values. For example, if a

register contains CPU cycles count, obtaining timing values requires to convert

34

2.4. An Overview of Timer Methods, Timers and Counters

the register value using CPU frequency, which may vary over time, e.g. depend-

ing on CPU load or OS energy saving settings. Additionally, to map the work

request to the values of performance counters, it must be analysed whether the

work request shape and characteristics remain the same when it arrives at the

hardware level, i.e. at the CPU.

For example, one source of imprecision associated with direct usage of hard-

ware performance counters comes into play in the context of out-of-order in-

struction processing, or when CPU pipelining is adjusted due to pipeline stalls,

cachemisses and other events. In such cases, the hardware performance counter

value may refer to different parts of the workload than planned. Instruction-

Based Sampling [73] is a performance analysis technique introduced by AMD in

2007 to mitigate the pipelining-caused problems with hardware performance

counters, and used in performance profiling and optimisation on multi-core

platforms [74, 75] and for memory subsystems [76].

Also, the basic question of how precise hardware performance counters are re-

quires attention and investigation, and needs to be repeated as new CPU archi-

tectures and generations appear.

Hardware performance counters are widely used in current research, espe-

cially in the area of operating systems and multi-core performance [77, 78, 79].

They have superseded earlier technology, such as programmable profiling cop-

rocessors [80]. Of course, the main use of hardware performance counters (apart

from the operating system and the hardware itself) is made by tools for perform-

ance analysis, debugging, prediction, and optimisation.

Time-oriented hardware performance counters such as the timestamp counter

(TSC) or the high-precision event timer (HPET) are complicated or impossible to

be used directly by the performance-measuring applications for various reasons.

To obtain timing values, the TSC values must be compensated for changes in

CPU frequency; on platform supported by PAPI library, TSC can be accessed

using a C API, instead of assembler instructions. As PAPI offers no access to

HPET, it must be read using assembler instructions. Also, support for HPET is

not available in a substantial number of operating systems, e.g. in Windows XP.

35

Chapter 2. Foundations and State-of-the-Art

TSC (the Time Stamp Counter) is a 64-bit register present on many, but not

all, x86 and x64 processors [81]. Although the TSC is considered to have a high

accuracy and a low overhead, its use is problematic when the CPU clock rate

changes (e.g. in energy-saving CPU modes), when out-of-order execution of

instructions happens, or on multi-core/multi-CPUs machines (due to unsyn-

chronised TSCs). Relying on TSC may also reduce portability, and a number

of Intel processors include a constant-rate TSC, i.e. it is read at the CPU’s max-

imum clock rate regardless of the actual CPU clock rate, invalidating measure-

ments where execution is partially performed at a lower clock rate. TSC counts

the number of CPU ticks since the last CPU reset, and is accessible through the

RDTSC (“read TSC”) assembler instruction. The RDTSC can be wrapped for Java

access using JNI, but the code needed for wrapping differs between operating

systems. For the case study, the Linux and Mac OS X versions were self-written,

while Windows version was based on a DLL and associated JNI code provided

by Roedy Green [82].

HPET (High-Precision Event Timer) is a newer timer that has appeared around

2005. Its minimum update frequency of 10 MHz and is often considered as a

more modern alternative to TSC or the real-time clock (RTC). However, HPET’s

use is restricted: it is not available from Windows XP, Windows Server 2003 or

Linux with Kernel 2.4 and older. Therefore, HPET hasn’t been evaluated, but its

usage by the timer methods will become visible as evaluation results of JVM-

provided timer methods are interpreted.

PIT (Programmable Interval Timer) is an older periodic counter originally im-

plemented on a separate chip (e.g. Intel 8253/8254, value stored using 16 bits).

The PIT was designed to update at a constant frequency of 1.193182 MHz (i.e.

an update each 838 ns) , but the system clock accuracy would be much more

coarse, as the system clock would be updated once every 65536 (=216) PIT ticks.

In any case, the PIT is inferior to HPET and TSC, and has not been evaluated in

this thesis. Hence, the only hardware counter considered during the validation

will be the TSC, as it is the only hardware timer broadly available and widely

used. Still, the algorithms developed in the next chapter can be applied to the

36

2.4. An Overview of Timer Methods, Timers and Counters

other counters timers, e.g. using a JNI implementation accessing them. Thus,

programmers should use functionality and performance indicators provided by

operating systems, virtual machines etc., which are presented in the next sec-

tions.

Profilers with documented use of hardware performance counters include VI-

Prof [83, 84], LIKWID [85], KOJAK [86], ScALPEL [87]. Performance-related

research using hardware performance counters includes [79, 88, 89, 90, 91, 92,

81, 93] and hundreds of others, with some work in the combined area of per-

formance and energy efficienty.

The wide usage of hardware performance counters means that their accuracy

and other quality characteristics (usage overhead, dependability, stability, etc.)

are critical for the tools depending on the counters. Given the large number or

hardware performance counters, and the progress in hardware development,

only a very limited amount of research on the quality of hardware performance

counters is documented. This may be due to the complexity of the undertaking

(fine-granular counter information, complex CPU behaviour), but also due to

the trust into the manufacturer’s capability to provide dependable hardware

counters.

Araiza et al. [94] have developed a cross-platform microbenchmark suite

for evaluating hardware performance counter data. They compared predicted

counts with measured counter values and concluded that for the studied coun-

ters and hardware (i.e. in 2005), the results did match. However, Araiza et al.

did not analyse the accuracy and other quality attributes of the counters, and no

follow-up work on the proposed microbenchmark has been reported.

Zaparanuks et al. [95] have performed a comparative study of the accuracy of

three measurement infrastructures (PAPI, perfctr and perfmon2) on three CPUs

(Core 2 Duo, and AMD Athlon 64 X2 and Pentium D). The work in [95] is fo-

cused on cycle counts, and provides an in-detail analysis at sub-OS level, which is

not useful for selecting performance indicators to use in application-level bench-

marking. [95] does not address the accuracy of OS-provided and VM-provided

hardware counter interface and performance counter interfaces.

37

Chapter 2. Foundations and State-of-the-Art

Dongarra et al. analyse [96] describe accuracy estimation among the ex-

periences and lessons learned with an older version of PAPI (from around

2002, [97]). PAPI is a portable interface to hardware performance counters that

is also used by Zaparanuks et al. in [95], and which has been significantly ex-

panded and redesigned since then [98].

Summarising the state of research concerning hardware performance counter,

it becomes obvious that despite wide usage of the counters, little is known about

their accuracy and other quality attributes. Furthermore, there is a semantic

gap between the application performance metrics (such as response time) and

hardware performance counters such as CPU cycles or cache misses.

2.4.2. Software-Provided Performance Indicators

In the software layers above hardware, different performance indicators are

maintained and exposed by different applications and components. Each oper-

ating systemmaintains a collection of performance indicators about itself, which

are used for scheduling and other core operating tasks, e.g. detection of hanging

applications, CPU mode switching, etc. As a service to OS-hosted applications

and to the human user, some of these performance indicators are exposed, either

in the context of an API, or using an application (either with or without a GUI).

For example, the Activity Monitor of Mac OS X is a GUI application that

shows (for each running process) its CPU time (i.e. the time the CPU spent

executing this process), current CPU and memory usage, number of threads,

number of system and kernel calls, context switches, etc. Additionally, it shows

system-wide CPU usage (broken up into per-core information), system-wide

disc and network activity, etc.

A similar command-line tool is top (also available on Linux). The recent edi-

tions of the Windows operating system offer a feature-rich GUI application that

is called Process Explorer, which offers a superset of the functionality provided

by the TaskManager application. For detailed profiling of HDD accesses onMac

OS X, the command-line tool iosnoop is available, which depends on DTrace.

38

2.4. An Overview of Timer Methods, Timers and Counters

DTrace [99, 100] is a comprehensive dynamic tracing framework created

for use in the Solaris operating system. Its original task was to assist in

troubleshooting kernel and application problems since it allows getting a global

overview of a running system. This overview includes per-process usage of sys-

tem’s resources such as main memory, CPU, file system and network connec-

tions. It can also provide very fine-grained logging details, e.g. the arguments

with which a specific function is being called, or a list of the processes possess-

ing handles to a specific file.

Despite its award-winning power and careful minimisation of tracing’s ef-

fects on performance, DTrace has found only a limited popularity. Possible

reasons may be the requirement to learn a separate language called D, and

the fact that the market share of the Solaris operating system is limited. Still,

open-sourcing of DTrace has allowed for porting to FreeBSD, NetBSD and Mac

OS X (introduced in version 10.5); the latter also provides a GUI called Instru-

ments. For Linux, SystemTap [101] provides an approach similar to DTrace, and

ProbeVue [102] targets the AIX operating system.

2.4.3. Timer Methods

All timer methods discussed in this section return 64 bit values, but not all of

them can use the entire range, as explained in Section 7.2.5. The timer methods

fall into two categories: OS-provided ones and those provided by middleware

such as virtual machines.

OS-provided timer methods abstract away from hardware timer problems and

the intricacies described above. However, the OS-provided timers introduce ad-

ditional overheadwhen compared to the underlying counter, and they often rely

on TSC, leading to issues with CPUs not properly implementing it [103], [104].

Furthermore, many applications are built on top of virtual machines (VMs)

which provide their own timer methods that should (or must) be used instead

of the specific timer methods provided by operating systems.

VM-provided timer methods provide uniform timer access independent of the

underlying hardware/software platform. In this thesis, bytecode-executing vir-

39

Chapter 2. Foundations and State-of-the-Art

tual machines such as the Java Virtual Machine and the .NET Common Lan-

guage Runtime (CLR) are considered.

In the following, the timer methods that will be studied during the validation

are presented, starting with OS-provided methods.

• QPC (QueryPerformanceCounter()) is the Windows API method ac-

cessible from C/C++, which returns the underlying counter’s state,

and not time units. The separate QueryPerformanceFrequency()

method reports the update frequency of the counter used by the

QueryPerformanceCounter() method. Using Java Native Interface,

these methods have been made accessible from Java; for .NET, the

System.Runtime.InteropServicesmechanism has been used for ac-

cessing them from the C# programming language.

• GTOD (gettimeofday) is the Linux API method that allows querying the

current time, down to a microsecond. gettimeofday has been made ac-

cessible from Java for evaluation in this thesis using JNI. Also for Linux,

the methods clock_gettime and clock_getres (defined in time.h

C header file) are available, which allow the method user to select (using

method parameters) which clocks are accessed. Accessible clocks include

the system-wide realtime clock, a monotonic clock that cannot be reset, a

high-resolution per-process timer from the CPU, and a thread-specific CPU

time clock. clock_gettime and clock_getres haven’t been analysed

in the scope of this thesis.

• CTM (java.lang.System.currentTimeMillis()) is a static wall-

clock timer method with milliseconds as units, thus being a rather coarse-

grained time method

• NANO (java.lang.System.nanoTime()) is a wall-clock timer method

(available since Java 1.5) with nanoseconds as units, but with the official

API documentation saying that it has “nanosecond precision, but not ne-

cessarily nanosecond accuracy”

40

2.4. An Overview of Timer Methods, Timers and Counters

• CTCT (java.lang.management.ThreadMXBean.getCurrent-

ThreadCpuTime()) is a method of the Java platform’s management

API which returns the calling thread’s used CPU time (in nanoseconds,

covering both system mode and user mode). It must be enabled with

java.lang.management.ThreadMXBean.setThreadCpuTime-

Enabled(true) provided that it is supported at all (which can be

checked with isThreadCpuTimeSupported()).

• CTUT (....ThreadMXBean.getCurrentThreadUserTime()) is similar

to CTCT, but returns only the time spent in user mode, not in systemmode.

Note that while it appears logical that the time spend only in system mode

can be computed as the difference of values returned by these two meth-

ods, the invocation cost and the delay between the two calls can render the

computation imprecise when the measured intervals are short.

• CPCT (com.sun.management.OperatingSystemMXBean.getPro-

cessCpuTime(), com.sun.management.UnixOperatingSystem-

MXBean.getProcessCpuTime()) belong to the JMX API as do CTCT

and CTUT. These two classes implement the java.lang.management.-

OperatingSystemMXBean interface, but unfortunately, the interface

itself does not provide the getProcessCpuTime() method, and neither

do any public classes in the Java Platform API. As can be seen by their

package names, the two classes are not part of the public Java Platform

API – still, the com.sun package is available on many JVMs beyond the

market-defining JVM of the Oracle Inc. (which bought Sun Microsystems,

the inventor of Java). For example, the JVM shipped with Mac OS X

operating system contains UnixOperatingSystemMXBean. The method

getProcessCpuTime() returns “the CPU time used by the process

on which the Java virtual machine is running” in nanoseconds, but the

returned value can be -1 if the platform does not support CPU process

time accounting. Such a case (negative returned results) is checked in the

implementation of algorithms from this thesis to prevent the algorithm

from running too long as it would be the case if the timer interval values

41

Chapter 2. Foundations and State-of-the-Art

of 0 ((−1) − (−1)) would be interpreted as “very large accuracy, and work

between timer method invocations needs to be increased until the timer

interval length reaches 1 accuracy”.

• HRC (sun.misc.Perf.highResCounter()) is a proprietary (and un-

documented, but publicly accessible) high-resolution timer method. It

is located among the classes implementing the Java Platform API, and is

notably different from Platform API methods in that it returns values in

ticks and not (nano-/milli-) seconds. Additionally, it is not a static method,

requiring the programmers to instantiate an instance of sun.misc.Perf.

This class is shipped with JDK 1.5 and later not only with the official Or-

acle/Sun distributions of the JRE/JDK, but also with the version 1.6 of

JRE/JDK bundled with Mac OS X (tested with Mac OS X 10.6.4). Using

the method highResFrequency(), the frequency of this timer can be

queried, which allows converting the ticks into (nano-)seconds. Due to low

visibility and portability concerns, this timer is rarely used directly, and be-

fore the nanoTime() method was added to the Java platform API in ver-

sion 1.5, many third-party tools were created to provide timers with better

precision (and, thus, better accuracy) than currentTimeMillis()’ mil-

liseconds. Some of these tools are still used today, e.g. for systems that run

on pre-1.5 JVMs.

Several third-party tools that provide Java-accessible timer methods exist. The

validation in Chapter 7 will only consider timer methods that are available both

for Windows and Linux operating systems; thus, PAPI [105] and PCL [106] will

not be considered, though the algorithms presented in the next chapter (and

their Java implementations) can be applied to them as well. Also, while PAPI is

being developed and updated, the last version of PCL dates from January 2003.

Instead, the JETM (Java Execution Time Measurement Library [107]) and

GAGEtimer (Genuine Advantage Gaming Engine timer [108]) have been con-

sidered as candidates:

42

2.4. An Overview of Timer Methods, Timers and Counters

• JETM: the JETM library selects the “best” available timer us-

ing bestAvailableTimer() helper method of its class

EtmMonitorFactory. The timer method used on the obtained timer

class type/instance was getCurrentTime().

• GAGE: from the GAGEtimer library, the method getClockTicks() in

class AdvancedTimer is used; the clock’s frequency can be queried using

getTicksPerSecond().

.NET is a software framework developed by Microsoft Corporations for Win-

dows platforms, with parts of the framework being accepted as standards by

ECMA and ISO, thus allowing cross-platform implementations by other parties.

The algorithms presented in Chapter 3 have been applied to the timer methods

provided by the .NETAPI to show the algorithms’ benefits beyond Java applica-

tions. In particular, the application of the algorithms will show that the vendor-

specified update frequency of .NET timer methods can be misleading, and the

timer method accuracy is an order of magnitude larger than one timer tick.

The .NET framework makes use of a Common Type System, which allows the

applications to access the .NET API (implemented by the so-called Base Class

Library) from different languages, such as C#. The virtual machine of the .NET

framework is called Common Language Runtime (CLR), and it executes .NET

bytecode (Common Language Infrastructure). The Mono framework [109] is an

alternative implementation of the .NET framework which runs on Windows,

Mac OS X, Linux and other platforms.

The .NET API provides just two timer methods which return results in ticks

rather than as timing values, but with the bonus that their update frequency (at

least for theMicrosoft implementation) is either fixed and specified, or platform-

dependent but queryable.

• .DAT: The first studied timer method is the DateTime structure in the

System namespace, which represents an instant in time, stored as a 64-

bit number of ticks. The .NET documentation states that each tick corres-

ponds to 100 ns; this unit information was verified and confirmed with the

43

Chapter 2. Foundations and State-of-the-Art

algorithm described in Section 3.4. DateTime has a property called Now

that denotes current local time of the used computer, with values ranging

from midnight, January 1st, 0001 through the end of December 31st, 9999.

The .NET API documentation states that the accuracy of this property de-

pends on the system timer, and specifies that the accuracy is 55 ms onWin-

dows 98 and 10 ms on Windows NT and newer versions. This means that

the DateTime.Now values should increase in steps of 100,000 ticks. Note

that there is no method or field in DateTime to query the accuracy, and

that the invocation cost is not queryable, too.

• .STO: The second studied timer method is StopWatch class in the

System.Diagnostics namespace, which is described as a means

to provide “a set of methods and properties that you can use to

accurately measure elapsed time”. It is possible to query its up-

date frequency using Stopwatch.Frequency, and whether it offers

a high resolution (using IsHighResolution). The documentation

states that StopWatch.GetTimestamp() method can be used in place

of the unmanaged Win32 APIs QueryPerformanceFrequency and

QueryPerformanceCounter(). Note that StopWatch should me more

precise (or, in the worst case) as precise as DateTime.Now.

2.4.4. Summary

A large number of timermethods, hardware performance counters and software

performance indicators exists. Many of them are specific to a hardware architec-

ture, an operating system, or a middleware product. In platform-independent

environments such as the Java Virtual Machine, platform API methods shield

the user from platform-specific details. Unfortunately, most timer methods do

not provide the information on the accuracy and other quality attributes of the

measurement results.

Even when APIs that access performance counters expose the update fre-

quency of the underlying counter, qualitymetrics such as invocation cost remain

unresolved. For a performance engineer, the selection among timer methods

44

2.5. Middleware, Virtual Machines and Bytecode

and performance counters remains a guessing-based task when confronted with

black-box, platform-independent APIs. Therefore, an approach to support this

selection is needed, as the accuracy of techniques used in performance measure-

ments is critical for the accuracy of the measurement results.

2.5. Middleware, Virtual Machines and Bytecode

Middleware is a termwhich describes “plumbing” software residing in the layer

above the operating system and below the application, i.e. in themiddle between

the latter. Middleware encapsulates the functionalities required by more than

one application, but not offered by the operating system, for example inter-

application communication (also across physical machines, e.g. using CORBA

for remote procedure calls), object-relational persistance (e.g. Hibernate), etc.

Another role played by the middleware is to be the broker between the dif-

ferent (and often incompatible) applications, which could not exchange inform-

ation directly due to mismatches in formatting, etc. Additionally, middleware

supports distributed computing, especially in the case where newer software

has to been connected to older (“legacy”) software, e.g. using message-passing

brokers. Transaction coordinators and transaction monitors are also considered

as middleware, especially when the coordinate transactions spanning several

participants.

Distributed, interoperability-centred computation paradigms such as service-

oriented computing (SOA), grid computing as well as cloud computing require

middleware, too. Over time, the term “middleware” has come to describe

software products that provide interoperability layers, making applications OS-

independent and often also hardware-independent. The interoperability role

of middleware has led to the development of technologies for writing portable

applications, in particular using virtual machines.

A virtual machine is a software-implemented instruction set (usually defined

by a specification) and a facility for executing the instructions from this set,

as long as they adhere to the specification and are packaged in a documented

45

Chapter 2. Foundations and State-of-the-Art

format. A well-known example of virtual machine middleware is the Java Vir-

tual Machine [110], whose instruction set is known as Java bytecode.

The instruction set of a virtual machine can be similar to the instruction set

of a hardware CPU, but usually has a higher level and abstracts from hardware

details such as registers, machine code format, etc. For example, the Java byte-

code is stack-centred and the Java Virtual Machine has been implemented on

many different hardware architectures (ARM, x86, x86-64, etc.) and many dif-

ferent operating systems. The Java slogan “write once, run everywhere” reflects

the fact that an application compiled to Java bytecode can run on any Java Vir-

tual Machine (at least as long as no platform-specific native code is part of the

application).

A middleware product usually exposes its functionality through services

which can be used by applications – but for virtual machines, the “interface”

between the application and the middleware is the bytecode-executing program

that is part of the middleware. For example, the Java Virtual Machine provides

a platform-independent program launcher whose name, parameter set and the

basic properties are fundamentally the same across implementations – again,

this is mandated by the Java technology creator (Sun Microsystems, acquired in

2010 by Oracle Corporation). By devising a Technology Compatibility Toolkit

that must be passed by JVM implementations to gain compliance confirmation,

Sun Microsystems has ensured that the JVM implementations follow the spe-

cification.

Beyond the program launcher and the bytecode format, virtual machines

provide a collection of utility classes, accessible over an application program-

ming interface (API). For example, the Java Virtual Machine provides the Java

Platform API, which offers platform-independent functionality such as data

structures (“collections”), file system access, etc. The platform API greatly sim-

plifies application programming, and can be implemented and ported by JVM

vendors, while the the interfaces of the API serve as the contract between the

application programmer and API provider.

46

2.6. Just-in-Time Compilation

The term virtual machine has obtained a second, distinctive meaning with the

increasing popularity of operating system virtualisation, where an instance of

an operating system that runs in a virtualised platform is called virtual machine.

OS virtualisers (such as Xen, VirtualBox, etc.) shield running virtual machines

from each other, allow users to assign fixed or variable resource shares to virtual

machines, etc. OS virtualisers are not considered in this thesis.

2.6. Just-in-Time Compilation

Java programs run on any standard-compliant Java Virtual Machine (JVM) be-

cause they are compiled to platform-independent bytecode. However, Java

bytecode must be interpreted: each bytecode instruction is parsed at runtime and

mapped to one or several platform-specific instructions (CPU instructions), or

even API/OS calls. One-by-one instruction interpretation is slow, and initially

(in early JVMs), Java programs were found to be substantially slower than the

same program/algorithm written in C/C++ and compiled to native, platform-

specific code.

Execution of bytecode can be sped up without sacrificing the “compile once,

run everywhere” property when programs (or parts thereof) are dynamically

translated to platform-specific instructions at runtime. When runtime transla-

tion of bytecode to machine code is possible, the interpretation overhead can

be removed and optimisations (e.g. constant folding and loop unrolling) can be

applied to entire methods. Since the dynamic compilation of bytecode is often

scheduled so that its results will become available at a certain point of time (or

when a particular program location is reached), it is often called just-in-time (JIT)

compilation, analogously to the just-in-time delivery of parts in car manufactur-

ing, where it eliminates the costs of stock-keeping and overstocking.

As Section 2.14 will demonstrate, such optimisations can result in speedups

well over an order of magnitude. The work presented in this thesis explicitly

deals with the performance-relevant optimisations performed by the Java Vir-

tual Machine at runtime. These runtime optimisations are the distinctive fea-

tures showcased by the JVM vendors and the runtime optimisations are a sub-

47

Chapter 2. Foundations and State-of-the-Art

ject of continuous enhancements. The central role is usually taken by the Just-In-

Time compiler (JIT compiler), which analyses a running Java application to find

“hot spots” (frequently executed or performance-heavy methods) for which the

bytecode recompilation is most beneficial.

The JIT compiler then recompiles the hot spots concurrently, i.e. while the non-

optimised bytecode of the application is executed. Once the hotspot is avail-

able in a native (platform-specific) version, the JVM replaces the bytecode of the

hotspot implementation through the native implementation. It is important to

highlight that this replacement takes place while the application continues to

run.

The challenges of dealing with JIT compilation in JVMs arise when the in-

determinism and gradualness of the JIT compilation must be considered. The

main questions here are following:

• the speedup of the compiled method and its effect on the overall perform-

ance of a component service or even on an entire application

• “what”: which methods are compiled and which are interpreted

• “when”: the minimum number of executions that JIT compiler sees as suf-

ficient for JIT compilation of a method

• “how far”: modern JIT compilers are capable of multi-staged compilation,

where a method is further optimised as it is “getting hotter”

• “permanence”: the JVM can revert to the interpretation of a method if

some assumptions done during the compilation, e.g. assumptions on

method usage in polymorphic environments, change and the JIT-compiled

code becomes incorrect

Some JIT compilers (such as the Oracle HotSpot JIT compiler) can be run in

different modes. For example, the HotSpot compiler has a client mode tuned for

end-user, workstation JVMs where short startup times are more important than

higher speedup, and a server mode tuned for long-running applications where

large-scale optimisations pay off.

48

2.6. Just-in-Time Compilation

The speedup effect of JIT compilation varies between programs, depending

on how much can be optimised, and on how much is optimized and when. In

particular, the internal structure of a program is a key factor – this includes the

coding style and the efficiency of the code.

For example, consider a simple example where a method contains the loop

which two additions of two different but constant value to a variable (the vari-

able is used by the method so that the addition is not an instance of “dead code”

which can be eliminated without side effects):

for(int i=0; i<max; i++){globalvar+=13; globalvar+=15;}

In this very simple example, not only the two additions can be merged into one,

but modern JIT compilers can perform program analysis and if max is found to

be a constant value on each run of the method containing the loop, the entire

loop can be replaced by a single operation on GLOBALVAR. Current JIT com-

pilers offer adaptive recompilation, on-stack replacement and other sophistic-

ated techniques [111].

Compared to ahead-of-time compilation (cf. Section 2.9 for a discussion of

AOT compilation), JIT has both advantages and disadvantages. The advantages

are that JIT compilation does not prevent the program from starting immediately,

and the compilation of the program is focusing on areas where a substantial per-

formance gain is expected, which leads to lower compilation costs. Addition-

ally, JIT can make use of profile-guided optimizations, which are based on pro-

file data collected at runtime. AOT compilation has the disadvantage of higher

upfront costs and a delayed program startup, as well as potential issues with

polymorphism and runtime bindings (unless supported by checks in the gener-

ated native code or by the execution platform). The advantage of AOT is that

the compilation results can be serialised (stored persistently) and reused on next

program startup, whereas JIT compilation is usually starting all over again on

each program start (although, conceptually, JIT compilation could store and re-

use behaviour/hints/results as long as the program/bytecode of the considered

method remains unchanged. Other bytecode-based execution environments use

AOT compilation and precompilation – for example, the .NET Native Image

49

Chapter 2. Foundations and State-of-the-Art

Generator [112] precompiles not only the bytecode of the applications, but also

the bytecode of the classes implementing the .NET platform API.

The JIT compilation is not limited to bytecode-based environments: for ex-

ample, JavaScript engines of contemporary browsers also speed up the execu-

tion of JavaScript, as does the Nanojit library [113] of the Mozilla Foundation

for the Firefox browser.

2.7. Bytecode Engineering

Compiling source code into bytecode is not the only way to create bytecode.

Bytecode engineering denotes direct dealing with bytecode, without decompiling

it into source code. Bytecode engineering is an aggregate term for bytecode

operations such as direct bytecode creation (without source code of the created

application), modifying existing source code, obfuscating it, etc.

Usage scenarios for bytecode engineering [114, 115] include aspect-oriented

programming (the aspects are woven into the compiled bytecode of the app-

lication), refactoring (e.g. Retrotranslator for Java [116]), automated test gen-

eration [117], code generation in application servers [118], object-relation data

mappings, and many more. Bytecode engineering is not limited to research and

experimental applications, but is an established technique in enterprise applica-

tions and commercially available software.

To allow the creation and manipulation of bytecode classfile contents, a byte-

code engineering framework usually provides an object-oriented representation

of the classfile contents. After the framework user has modified this representa-

tion as intended, the framework creates the executable bytecode from the repres-

entation. To simplify the dealing with bytecode, a bytecode engineering frame-

work usually introduces simplifications and assistive tooling: for example, Java

bytecode engineering frameworks such as ASM [114] tend to shield the frame-

work user from the tedious tasks of calculating maximum stack height, admin-

istrating the constant pool, etc.

There exist many bytecode engineering frameworks for different bytecode

languages, but only a couple of them enjoy maturity, stability, up-to-date sup-

50

2.8. Instrumentation

port of bytecode standards, continued development as well as support and feed-

back by developers and the user community. For the Java implementation of the

concept of this thesis, the ASM framework [114] has been chosen on the basis of

these criteria.

2.8. Instrumentation

An instrument is a tool with a technical, scientific or medical purpose, usually

for measuring a quantifiable property such as speed, temperature, time, etc.

The term instrumentation encompasses instruments as well as infrastructure to

initialise them, read their values etc. In computing, instrumentation is used to

measure software and hardware performance, but also to trace and log program

execution and values of variables, as well as to diagnose errors.

An example of instrumentation in computing is the appropriately-named

Apple Mac OS X application INSTRUMENTS, which is performance analyser

and visualiser integrated with XCode, the vendor-provided multi-language free

IDE. INSTRUMENTS is built on top of the DTrace tracing framework [119, 99]

and shows graphs and statistics of events occurring in the studied application.

The events are displayed arranged on a time axis, and include CPU activity,

memory allocation, file activity, etc.; is is also possible to record user-generated

events and replay them as required to see the effect of code modifications.

The instrumentation itself consists of instructions, which can be both inserted

into the original application, or be separate from it and called by the execution

platform as it executes the application. Often, the instrumentation can be con-

figured (“managed”) and augmented using a service provider interface (SPI);

instrumentation also often provides applications and users access to hardware

performance counters which are otherwise complicated to use. Note that in-

strumentation and profiling are different but related terms: profiling aggregates,

interprets and visualises “raw” performance data, which can originate from in-

strumentation, but also from sampling, indirect measurements and other tech-

niques. On the other hand, instrumentation is not limited to providing data for

profiling.

51

Chapter 2. Foundations and State-of-the-Art

Instrumentation can be implemented as source code instrumentation (e.g. by

inserting code to read and save timer values) or binary instrumentation (where

the instrumentation is inserted into the compiled application, e.g. using byte-

code engineering or machine code engineering [120]. The term bytecode in-

strumentation is used in a more broad term than for tracing/logging/measur-

ing/profiling/monitoring [121, 122, 123]: bytecode instrumentation can add

facilities for security [124, 125], help in implementing “design by contract”

paradigm [126, 127], etc. Note that while bytecode engineering is a more general

technique to augment and modify bytecode, bytecode instrumentation generally

refers to additive changes, i.e. the original semantics are to be preserved.

A number of different tools and techniques for instrumentation exists, both

for source-code instrumentation and binary code (e.g. bytecode) instrumenta-

tion. Early bytecode instrumentation approaches include BIT [128]; over time,

bytecode instrumentation has become one of the tasks performed by bytecode

engineering tools.

Instrumentation can be supported in a programming language (e.g.

System.Diagnostics.Trace in C#), or by the execution system (e.g. the

Instrumentation API in the java.lang.instrument package of the Java Plat-

form API). The latter allows instrumenting programs running on the JVM,

by providing ClassFileTransformer and Instrumentation interfaces

which can be implemented by a programmer.

The result of implementing these interfaces is an instrumentation agent which

can instrument all loaded Java classes except classes belonging to the implement-

ation of the Platform API (which, if allowed, could subvert the security mech-

anisms of the JVM). An instrumentation agent can be used both when a JVM is

started up, and attached to a running JVM, research to allow instrumentation of

classes belonging to the platform API is underway [129].

2.9. Ahead-Of-Time Compilation (AOT)

An alternative solution to bytecode interpretation (which is slow, simple but

universal) and Just-In-Time compilation (which is faster but complicated and

52

2.9. Ahead-Of-Time Compilation (AOT)

selective) is Ahead-Of-Time compilation (AOT) [130, 131]. AOT compilers trans-

late platform-independent bytecode into platform-specific machine code, with

the expectation of better performance than pure interpretation or than runtime

JIT compilation. Of course, AOT-compiled programs lose their platform inde-

pendence and the Java idea of “compile once, run everywhere” no longer holds

for them.

AOT compilers can be standalone tools for use by application programmers

or by end users, but AOT compilers can be also integrated into JVMs to provide

transparent, seamless bytecode execution experience. The AOT compilation can

be performed right on the execution platform before the application is executed,

and the binary form of the application can be persisted for faster startup. In

principle it is also possible to perform AOT cross-compilation [132], i.e. to per-

form the compilation of bytecode for a specific platform on a different platform.

Despite its promise, AOT has not found such a broad use in Java platforms as

did JIT compilation. One possible reason may be that major desktop/enterprise

JVM vendors (Sun Microsystems, Oracle/BEA, IBM) do not provide end-user

AOT compilers. In other Java settings with higher importance of performance,

AOT has gained a stronger foothold: some JavaMicro Edition JVMs for portable

devices and JVMs for real-time Java come with an integrated AOT compiler.

Other reasons for the slow (or under-publicised) adoption of AOT in the en-

terprise sector may be the following:

• The performance differences between JIT-compiled code and AOT-

compiled code are either unknown or considered not significant enough

for specific applications

• JVM-based and JVM-oriented tools such as Java profilers, memory usage

analysers or Java heap inspectors cannot be applied easily to native code

• Applications servers which create bytecode classes through direct byte-

code engineering (e.g. using AOP compilers), are hard to integrate with

AOT compilation (which is more suitable for end-user “desktop” applica-

tions)

53

Chapter 2. Foundations and State-of-the-Art

• Unlike the managed execution of bytecode which provides exception

handling mechanisms, garbage collection etc., purely native (unmanaged)

code is harder to control and is potentially more dangerous for the stability

of a software system

• The runtime complexity of class loading and virtual methods in Java

(where classes implementing an interface may be loaded dynamically)

• The (user-perceived) startup of the application is delayed by AOT compil-

ation time; additional memory is required for AOT compilation

• Enterprise-grade AOT compilers require payment, while Java compilers

and JVMs are free – many budget-restricted project thus choose not to af-

ford an AOT compiler

In the scope of this thesis, AOT compilation will not be considered due to lack

of relevance in enterprise applications.

2.10. Workload Quantification, Resource Demand Quantification and

Profiling

To quantify the workload that an application puts onto the execution system,

different approaches and techniques are available. To start with, the application

can be analysed statically, but this strategy is complicated in light of parallelism,

control flow constructs (conditional jumps, loops) and also randomisation and

the behaviour of external components. Therefore, the workload of an applica-

tion is usually analysed in a dynamic way, i.e. by executing the application or

by simulating it. The dynamic performance analysis is usually called profiling,

because it provides an aggregated view (summary, “profile”) rather than a full

trace of the application’s behaviour.

Profiling serves to find bottlenecks, hot spots, but also deadlocks, memory

leaks and other performance-impacting behaviour artefacts. Different ap-

proaches to implement profilers include hardware counter reading, mak-

ing used of interfaces provided by the OS and the middleware, application

54

2.10. Workload Quantification, Resource Demand Quantification and Profiling

sampling, application instrumentation, execution platform instrumentation, etc.

Profiling information is destined not only for human users (program authors,

execution platform engineers, etc.), but also for the executed programs them-

selves: using profiling information, programs become self-aware [133] and can

make decisions on reconfiguration, execution scheduling etc.

Profiler development started in the 1970s [134], and new products emerge

continuosly, fueled by new programming languages, new middleware, and in-

creasing parallelism in applications and executions platforms. Beyond manual

profiling (at source code level), profilers provide automated collection and eval-

uation of raw performance indicator values. Examples of profilers include Ec-

lipse TPTP, CodeAnalyst, gprof, IBM Rational PurifyPlus, JProb, JProfiler, Or-

acle JRockit Mission Control, Oracle VisualVM, Oracle NetBeans, JetBrains dot-

Trace, NProf, Intel VTune, and many others.

Profilers differ in feature set, price, availability, overhead, level of detail (e.g.

average values per method vs. full call graphs), precision/accuracy [135], scope

(e.g. only application classes vs. execution system co-analysis), etc. Some pro-

filers take full control of the application (they work as a layer between the appli-

cation and the execution platform), while others depend on the (instrumented)

application, the OS or the middleware to obtain raw profiling data.

Profiling interfaces are often offered by the OS or the middleware: for ex-

ample, Java Virtual Machine Tools Interface (JVMTI) [136] allows registering

listeners for events such as method entry, method exit, class loading, etc. Profil-

ing support without the need for programming is also built into some operating

systems, so that the performance of an OS-hosted application or processes can

be profiled with “on-board means”, e.g. with the Mac OS X Activity Monitor

(see Section 2.4).

Sampling profilers are in principle less precise than instrumentation-based

profilers, but incur less overhead; newer profiling products such as JPro-

filer [137] provide both mode (but not at the same time), at the programmer’s

discretion. While measuring the performance of short-running methods, pro-

filers need to ensure that the profiling overhead does not outweigh the method

55

Chapter 2. Foundations and State-of-the-Art

itself – for example, JProfiler provides an “autotuning” optionwhich attempts to

detect such methods and to include them from auto-tuning. However, neither

the thresholds used for identifying such methods, nor the information about

timer accuracy/overhead (on which these decisions are based) are exposed.

Workload quantification and profiling are preconditions for extraction of per-

formance models from application execution. After the static architecture of

the application has been extracted into a model (e.g. using reverse engineer-

ing [138]), the dynamic model of the application’s behaviour and performance

has to be extracted. Given the variety of performance models (cf. Section 2.2.1),

there exists no “universal” approach or technique for performance model ex-

traction. To reverse engineer performance models based on layered queuing

networks (LQNs), Hrischuk et al. [139] use traces obtained from instrument-

ations, as do Israr et al. [140]. These traces include timestamped events with

unique IDs, where the IDs can be established using request ID propagation, or

through correlating of the events during application execution.

Most of the described approaches for profiling and resource demand quanti-

fication return platform-specific results. None of them is both a platform-inde-

pendent and application-independent approach that is accurate down to byte-

code instructions.

2.11. Software Components and their Performance

Already introduced in Section 1.1, software components appeared as early as

1968 [141] and are seen as an approach that helps to decompose programs into

reusable entities which encapsulate design decisions, provide explicit interfaces

for access, and can be deployed independently. Component-based software en-

gineering (CBSE) [142] continues to be in the focus of attention for industry and

academia.

Meanwhile, new approaches such as OSGi [143, 144] are gaining popularity

and industry acceptance, andwith new research research questions such as com-

ponentisation in agile development [145] being addressed. Established, older

component models such as Enterprise Java Beans (EJBs [15]), Microsoft Com-

56

2.11. Software Components and their Performance

ponent Object Model (COM [146]) and others remain relevant and enjoy contin-

ued use.

2.11.1. Component Basics

In CBSE, an interface is a collection of services, where each service has a signature

that contains input and output parameters (note that the interface contains only

the descriptions of services, but no implementations of them). An interface is

a first-class entity, i.e. it can exist independently from a component (e.g. in a

repository), and it can be used by different components. To avoid confusion, a

component should provide only one instance of a given interface.

When an interface is bound to a component using a provided role, it means

that the component is offering the functionality (the services) of this interface.

When an interface is bound to a component using required role, it means that

the interface-provided functionality is used, i.e. an implementation of this inter-

face is a precondition for the working of the component. The relation between

provided and required roles/interfaces can be expressed through contracts and

protocols, which provide an abstraction of the actual component execution.

Note that programming languages without component support do not have

an exact counterpart of required interfaces even at object-oriented level: for ex-

ample, Java classes can use any classes and methods by directly calling them

in bytecode. In particular, it is the task of the execution platform to satisfy the

operating requirements of classes at runtime; if the resulting class loading or

resource loading fails, the execution platform throws an exception or stops with

an error.

Also note that the granularity of a component is not fixed or prescribed: an im-

plemented component can consist of 1 or 100 classes, provide 1 or 20 interfaces

– still, the encapsulation property means that in the normal case, component

allocation is atomic. Atomic deployment means that a component instance is

deployed on exactly one execution platform node (computer), and if a compon-

ent consists of several classes/modules, all intra-component communication is

local, i.e. no remote calls are required.

57

Chapter 2. Foundations and State-of-the-Art

At the same time, there exist approaches to inject component concepts such as

explicit specification of dependencies into applications built using component-

unaware languages for component-unaware execution platforms. For example,

the modularisation efforts in the context of OSGi [147] are met with enthusi-

asm by developers and scientists. On the other hand, not every technology that

describes itself as component-based indeed offers all concepts from component

theory: for example, composed components are not possible in Enterprise Java

Beans.

Reusability and redeployability of components have encouraged researchers

to devise work processes that provide separation of concerns during compon-

ent development and deployment. For example, Koziolek et al. have devised

a development model for components that includes the roles of the component

developer, the software architect (which assembles an application from com-

ponents), the deployer (which installs and configures the application) and the

performance analyst. The details of this development model are given in the

next section, in the context of explaining the Palladio Component Model.

2.11.2. Component Modelling

The reuse of components requires not only the specification of functional prop-

erties at an interface level, but also information on the behaviour and extra-

functional properties of components. Speaking more broadly, models of com-

ponents are required to express different views: architectural models, behavi-

oural models and extra-functional models need to be expressed, extracted, com-

pared, stored and visualised. To regulate the contents of such model instances,

meta-models formalise which entities are allowed and how they can be arranged,

connected, named, etc.

Recognising the need for standardisation in component modelling, version

2.0 of the Unified Modelling Language (UML) contains model elements such

as roles, interfaces, components, etc. UML 2.0 also contains a concrete graphic

syntax for component model instances. Still, inadequacies and insufficiently

strong semantics in UML 2.0 have led to the development of a range of com-

58

2.11. Software Components and their Performance

ponent models. A component model (see a survey in [17]) formalises the artefacts

of components, and often comes with tools for creation, analysis and editing of

models.

Component-based and component-oriented performance prediction ap-

proaches are usually based on a given component model and interoperability

with other models is rather rare (the KLAPER approach [148] contains an in-

termediate language for model-driven prediction of performance and reliabil-

ity). Internally, component-based performance modelling and prediction ap-

proaches utilise generic performance modelling techniques and tools such as

Petri nets, Markov models, process algebras, (Layered) Queuing Networks (cf.

Section 2.2). [149] contains a survey on performance evaluation of component-

based software systems, an older survey by Becker et al. [150] considers com-

ponent models from the performance perspective.

An essential requirement for functioning of component-based performance

prediction approaches is the availability of performance metric values for the

elements of the performance model (a component-oriented performance model

is rarely monolithic). In particular, if atomic component actions (i.e. their model

counterparts) are annotated with performance metric values, these values must

have been obtained in a systematic way. While obtaining these values, the mod-

elled component can either be available (and thus can bemeasured), or themod-

elling phase precedes the implementation phase, and the performance value can

only be guessed. Guessing (often called “estimation” or “approximation”) is

considered as acceptable when it is based on strong similarity measures or long

experience.

When a component implementation is already available, its performance

model should be obtained, for example when a new application is built from

some existing and some planned components. The performance model for an

existing component consists of sub-models for each of the services provided by

the component, and the performance of provided interfaces depends on the per-

formance of required interfaces.

59

Chapter 2. Foundations and State-of-the-Art

However, as the implementors of required interfaces change from deploy-

ment to deployment, so does the performance of the required services utilised

by a component (recall the component performance influences from Figure 1.1).

Consequently, these performance dependencies must be expressed, and many

components offer support for expressing such dependencies, e.g. as done by the

Palladio Component Model introduced in the next section.

The internal work performed by a component implementation while pro-

cessing an invocation of a provided service needs to be reflected in the per-

formance model of that service. To quantify these internal work in terms of per-

formance metrics (e.g. execution duration), it is intuitive to consider the direct

measurement as the solution. However, in reality, the internal work performed

by the implementation of a component service can have a complex behaviour,

parametric dependencies, usage of different hardware resources and software

layers, etc. On the other hand, the internal work can consist of a large num-

ber of very short actions which are hard to measure using existing performance

indicators, e.g. timer methods.

2.11.3. Component Performance Modelling

At the beginning of a component lifecycle [14], a component is specified with

its provided and required interfaces, and performance requirements (e.g. SLAs)

can be specified. However, since no implementation exists at that point, no re-

source demands or performance values for offered interfaces can be specified.

Only after a component implementation becomes available, an abstracted beha-

viour model can be derived together with resource demands.

These resource demands depend on the implementations of component’s re-

quired interfaces, since in general, a component’s implementation makes use

of provided interfaces’ implementations. Thus, only after the component im-

plementation has been deployed and required interfaces have been bound, the

dependencies can be resolved so that the resource demands become concrete

value metrics and no longer contain unresolved references to the performance

metrics and resource demands of required services.

60

2.11. Software Components and their Performance

At runtime, the application workload determines how the provided services

of a component are involved, and the resulting service parameters have a signi-

ficant impact on the performance metric values of that service. Resource conten-

tion and component state are important runtime impacts, too – note, however,

that component state is often abstracted and not modelled, since it is hard to

quantify and increases the complexity of performance models.

While measurement the internal component work is non-trivial per se, addi-

tional challenges appear when the scenarios detailed in Section 1.2 need to be

addressed. These scenarios (application relocation, execution platform sizing)

would require the measurement of the component implementation on each of

the considered execution platforms, which can be a time-consuming task in-

volving a significant amount of manual work to deploy and to measure the

component. Additionally, tomeasure the component, its preconditions/require-

ments (e.g. required interfaces) must be satisfied, which means than more than

just the components itself has to be deployed on each execution platform. Such

a “performance test bed” needs to be deployed on each candidate execution

platform where measurements need to be taken.

An extensive survey of performance evaluation and prediction approaches

for component-based software systems is presented by Koziolek in [14]. The

survey covers a large number of approaches, incl. CB-SPE (component-based

software performance engineering) [151], CBML [152], PECT/PACC [153, 154,

155], COMQUAD [156, 157, 158] and others.

However, only few of them have tool support for measuring resource de-

mands, and those with existing tool support have significant limitations. For

example, The Prediction Enabled Component Technology (PECT) by Hissam,

Wallnau, et al. PACC Starter Kit V2.0 is only available for the Windows oper-

ating system. The COMQUAD tooling targets C++ and Java components and

provides tooling for measuring platform-specific and platform-independent re-

source demands. Unfortunately, it is based on vendor-specific technologies and

has not been validated for performance prediction in realistic scenarios where

61

Chapter 2. Foundations and State-of-the-Art

applications are subject to runtime optimisations such as Just-in-Time compila-

tion.

2.12. Platform-independent Resource Demands

Component performance is usually measured using platform-specific metrics,

mostly response time. Response time contains the actual execution time plus

the waiting times spent while execution platform is busy with other, concurrent

requests. Less frequently, resource utilisation by a process (or by thread) is meas-

ured for resources such as hard disk or CPU, since the utilisation depends on

other, concurrent resource demands issued by other components.

When several platforms are considered, performance measurements which

use platform-specific timing values and metrics must be repeated on each of the

platforms. If it would be possible to measure the component performance in

terms of platform-independent metrics, it would suffice to measure these metrics

on one platform. Still, the conversion from the platform-independent metric

values into platform-specific timing values needs to be specified, and it is far

from trivial.

The underlying problem is that performance metrics such as response time

or resource utilisation depend on the four factors shown in Figure 1.1, which

means that the resources which constitute the execution platform have indi-

vidual shares in the platform-specific, aggregated performance metric value for

a given execution of a work request (i.e. component service invocation). This,

in turn, means that one value (e.g. execution time) needs to be split in several

values, and their order and parallelism need to be addressed, too.

The complexity of splitting the value of one performance metric into several

values of different metrics depends on the granularity used for modelling the

execution platform. For example, modelling CPU caches and the RAM as sep-

arate entities requires many more measurements than when the CPU and RAM

are modelled as one “black box” (but still separately from the hard disk).

The idea of platform-independent performance metrics has been implemen-

ted in the form of resource demands in several component models and associ-

62

2.13. Palladio Component Model

ated tools, e.g. COMQUAD/COMAERA [158] or NICTA’s unnamed compon-

ent model [25]. For example, the Palladio Component Model (see next section

for details) selects CPU cycles and bytes read/written from/to the hard disk

as platform-independent resource demands – the processing speed of the cor-

responding resources forms the bridge between the platform-independent and

platform-specific resources. The number of CPU cycles can be obtained by set-

ting the execution time into relation to the CPU frequency.

2.13. Palladio Component Model

The Palladio ComponentModel (PCM) is a domain-specific language formodel-

ling component-based software. PCMmodel instances are constructed at design

time as architectural models, and can also be be extracted from existing compon-

ents using reverse engineering [138]. On the basis of PCM model instances, the

PCM tool chain predicts performance metrics such as execution time, response

time, throughput and resource utilisation, using a variety of approaches (e.g.

event-based simulation, queuing networks, Petri nets and analytic approaches).

The PCM focuses on design-time, model-driven performance prediction to as-

sist software architects with design and deployment decisions, as well as with

the reuse of existing components. It is implemented on the basis of several Ec-

lipse technologies, incl. Eclipse Modelling Framework (EMF), Graphical Mod-

elling Framework (GMF) and others. The development of the PCM started in

2003 at the University of Oldenburg, and since 2006 continues at the Karlsruhe

Institute of Technology.

The formal foundation of the PCM is described using a metamodel [159],

which covers component entities such as interfaces, roles as well as basic and

composed components. The metamodel also covers a formalisation of compon-

ent deployment, i.e. the relation between component instances and execution

platforms. The modelling of execution platforms comprises hardware resources

such as CPUs, hard disks and network connections (called linking resources),

whereas the modelling of infrastructure-oriented software (e.g. middleware) is

not formalised.

63

Chapter 2. Foundations and State-of-the-Art

The PCM also defines a development process and associated roles for stake-

holders, together with process artefacts and tasks. The process distinguishes

between the following roles:

• The component developer addresses individual components and does not

deal with their assembly into an application and their allocation on ex-

ecution platforms. The component developer specifies the performance

properties of her components’ internal actions while all influencing factors

from Figure 1.1 (except the component implementation) are still open and

flexible. Such a parametrised performance specification enables reuse of

the component and its performance model by third parties, independently

from the component developer.

• The software architect composes the application from existing components

(bottom-up), but also perform top-down design refinements. During the

design phase, the software architect can model unavailable components

(which will be created later during the development) and estimate their

performance properties. According to the PCM development process, the

software architect does not study the performance of the entire application,

as separate roles for this task exist, which are described in the following.

• The system deployer is responsible for deploying the application on the

execution platform and for configuring it accordingly. The system de-

ployer contributes a performance model of the execution platform to the

performance-predicting workflow. The performance model of the execu-

tion platform comprises processing rates of the CPU and hard disk re-

source, the throughput of the network connections, etc.

• The domain expert is familiar with the workloads and usage scenarios to

which the application will be subjected. For modelling using the PCM, the

domain expert specifies the usage profile which comprises the number of

concurrent users, think time between requests, the parameter values for

the application’s public interfaces, etc.

64

2.13. Palladio Component Model

• The performance analyst uses information provided by the four other

roles, and executes performance prediction on the basis of it. The perform-

ance analyst can thus study the impact of relocating the application to other

execution platform, exchanging component implementations, introducing

load balancing, etc.

2.13.1. Component Modelling

Each interface declares one or several services, which are implicitly public; in-

terfaces are created by component developers and sorted in repositories. A

component which provides an interface must include an implementation of

that interface, unless the component is a composed component and delegates

the provided interface to one of its inner components. For each service of a

provided component that it implements, the corresponding component model

must provide an RDSEFF (resource demanding service effect automaton).

Figure 2.1 shows how components and their required and provided interfaces

are represented by the elements of the PCMmetamodel. Figure 2.1 uses a graph-

ical concrete model syntax, but textual concrete syntaxes for the PCM also exist.

A DelegationConnector connects the interfaces of the composed component

with the interfaces of its inner components. An AssemblyContext allows dis-

tinguishing component instances by specifying their place and wiring (using an

AssemblyConnector) in a System (i.e. themodel of a software application) or

in a CompositeComponent. A ProvidedRole respectively RequiredRole

binds an interface instance to a component instance. For other parts and con-

cepts of the Palladio Component Model, see [160, 159, 161].

The RDSEFF is of central importance to this thesis, since it specifies the re-

source demands issued by a component implementation. An example RDSEFF

is shown in Figure 2.2 and is described in the following.

The RDSEFF describes the behaviour of the service implementation including

the resource demand of the component service’s internal work. An RDSEFF has

one initial state and one terminal state, and it can contain several action types,

including the following:

65

Chapter 2. Foundations and State-of-the-Art

Figure 2.1.: A Composite Component Model Instance in the Palladio Component
Model [46]

• an InternalAction describes component-internal work and is annot-

ated with resource demands

• an ExternalCallActionmodels the invocation of a service provided by

any other component which provides the corresponding interface; since

the external component is exchangeable, annotating an external call action

with resource demands is not possible because the model should reflect the

fact that the component can be deployed independently

• a BranchAction evaluates a condition and depending on the result, one

of the two conditional branches is taken

• a LoopAction evaluates a condition and repeats the loop body, which

itself can contain further actions

The RDSEFF has further concepts, such as forking the parallel execution of

two actions, acquiring and releasing passive resources, but its most important

property is that it abstracts the behaviour of the modelled component service.

The abstraction allows the modeller to concentrate on the performance-relevant

behaviour and targets both control flow, data flow and the resource demands.

Also, note the evaluation of the service’s input parameters and their relev-

ance for the data flow: since the usage profile of the application translates to

input parameters of component services, it is important to evaluate them and

to propagate the input parameters to individual internal and external actions.

66

2.13. Palladio Component Model

<<InternalAction>>

<<ExternalCallAction>>

<<AcquireAction>>

<<ReleaseAction>>

<<PassiveResource>>

name = „Lock“

<<Processing
ResourceType>>

name = „CPU“

<<ParametricResourceDemand>>
specification = X.VALUE * 100
resourceInstance=CPU

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<BranchAction>>
<<GuardedBranchProbability>>
specification = X.VALUE < 0

<<GuardedBranchProbability>>
specification = X.VALUE >= 0

<<InternalAction>>

<<ResourceDemanding
Behaviour>>

<<LoopAction>>

iterations =
input.VALUE + 2

<<VariableUsage>>
referenceName = inputVar
type = VALUE
specification = Y.VALUE

<<VariableUsage>>
referenceName = localVar
type = BYTESIZE
specification = call.RETURN.BYTESIZE

<<ResourceDemandingSEFF>>

<<ServiceSignature>>

<<RequiredRole>>

Figure 2.2.: An example RDSEFF

Analysis of this dependencies leads to the parametrisation of the performance

model over the usage profile, and supports scalability analysis and performance

prediction.

Of the RDSEFF elements, only AcquireActions/ReleaseActions and

InternalActions are relevant w.r.t. resource demands and resource usage.

The next section describes the resource modelling in the PCM, and explains why

this thesis focuses on InternalActions.

2.13.2. Execution Platform and System Usage Modelling

An AcquireAction/ReleaseAction references a PassiveResource.

Passive resources are quantity-constrained resources such as monitors or sem-

67

Chapter 2. Foundations and State-of-the-Art

aphores. Their influence on the performance is given when a component ser-

vice is waiting to acquire an instance of a passive resource (which is in use by

another request), and thus the waiting request is blocked. Once the passive re-

source becomes available, the costs of acquiring it are so negligible that they can

be ignored, and thus the costs of acquiring them are not even modelled in the

PCM. Since the PCM tooling already deals successfully with passive resources,

they are not considered in this thesis. Note that the correct modelling of the

available quantity of a passive resource, as well as of AcquireActions and

ReleaseActions, is the responsibility of the model creator. Alternatively, re-

verse engineering approaches can be used to reconstruct passive resource usage

from existing components.

Network connections are modelled as LinkingResources in the PCM, and

their modelling employs a strong abstraction to keep complexity at a man-

ageable level. Still, validation experiments [160] have demonstrated suffi-

ciently accurate performance prediction for network-using applications. Thus,

LinkingResources are not addressed by this thesis, and is left to future work.

It remains to be studied whether a more detailed network modelling would in-

deed increase the accuracy of performance prediction, or whether the increase

in modelling effort and model complexity would be hard to justify.

In the PCM terminology, active resources are hardware resources which have a

processing rate, such as CPU or hard disk. The modelling of active resources

is split into ProcessingResourceType (which as an ID and name) and a

ProcessingResourceSpecificationwhich carries the processing rate and

the request scheduling policy. Supported scheduling policies include First Come

First Served (FCFS), processor sharing (all requests using an active resource are

executed at the same time, and have the same share of its processing rate), and

others.

Active resources reside in ResourceContainers, and

ResourceContainers are connected by linking resources. Components

are assigned to resource containers using deployment connectors (which form

AllocationContexts).

68

2.14. Quantitative Impact of JVM Optimizations

2.14. Quantitative Impact of JVM Optimizations

In this section, we first demonstrate that execution duration of Java bytecode in-

structions on different execution platforms cannot be predicted simply by relat-

ing them to CPU frequency. Then, to show that even very “basic” (elementary)

bytecode instructions have different execution durations and be benchmarked

individually, we compare two different algorithms w.r.t. bytecode instruction

counts and execution durations. Finally, to show the importance and non-linear

impact of JVM optimizations, we study the quantitative impact of JIT compila-

tion and JVM optimizations on the performance of the two algorithms.

For our study, we have designed two algorithms which have similar structure

but use different bytecode operations in the measured section; we first discuss

what is computed by the algorithms, and then lay out the design decisions and

the configuration options of the algorithms. Afterwards, we compare their byte-

code (as compiled using the Sun Microsystems JDK 1.6.0_08 with default set-

tings), and finally compare their performance in interpreted and JITted mode.

Alg1 is shown in Figure 2.3(a) as Java source code: it iteratively computes

nr numbers in Fibonacci-like way, allowing two arbitrary int values as start-

ing numbers. Alg1 stores all computed Fibonacci values into number, an

int array, so that no iteration of the algorithm can be “optimised away” by

the JVM. The duration of the core computation of Alg1 is measured using

System.nanoTime(), the most precise timer method in the Java platformAPI.

Alg2 is listed in Figure 2.3(b): it computes the first nr digits (incl. decim-

als places) of the ratio between the numbers dividend and divisor, which are

passed to the algorithm externally and are expected to be non-zero and differ-

ent. Computing a predefined number of decimal places (controlled through the

nr field) would not be possible using Java operators or platform APIs. For ex-

ample, when simply computing the double-typed result of dividing dividend

and divisor, the number of decimal places is controlled by the precision of

double.

To repeat Alg1 and Alg2 many times without the danger of JVM caching the

results (the results array) and skipping the repeated execution of Alg1, the

69

Chapter 2. Foundations and State-of-the-Art

results[0] = inputA;
results[1] = inputB;

int i=2;
start = System.nanoTime();
while (i<nr) {
 results[i] =
 results[i - 1] +
 results[i - 2];
 i++;
}
end = System.nanoTime();
[...]
 (a)

int dividend = inputA;
int divisor = inputB;
results[0] = dividend;
results[1] = divisor;

int i=2;
start = System.nanoTime();
while (i<nr) {
 results[i] = dividend/divisor;
 dividend = 10*(dividend -
 results[i]*divisor);
 i++;
}
end = System.nanoTime();
[...]
 (b)

Figure 2.3.: Java source code for (a) Alg1 (to compute nr numbers in a Fibonacci-like
way) and for (b) Alg2 (to compute first nr digits of dividend

divisor
), incl. decimal

places

starting values inputA and inputB (initialised outside of the measured sec-

tion) can be chosen differently for each run of Alg1/Alg2 in our implementation.

We consider only the measured sections of the algorithms, i.e. the while

loops. When the same value of nr is passed to Alg1 and Alg2, the loop head

(while(i<nr)) is executed the same number of times, and thus is irrelevant

for our comparison. The bytecode of the loop bodies of Alg1 and Alg2 is sim-

ilar but not exactly the same: Alg1 contains 15 instructions: 3·ALOAD, 1·IADD,
2·IALOAD, 1·IASTORE, 2·ICONST, 1·IINC, 3·ILOAD and 2·ISUB. Alg2 contains

17 instructions: 2·ALOAD, 1·BIPUSH, 1·IALOAD, 1·IASTORE, 1·IDIV, 6·ILOAD,
1·IINC, 2·IMUL 1·ISTORE and 1·ISUB.
First, Alg1 and Alg2 are executed in interpretation mode (-Xint JVM flag),

which means that no JIT compilation is performed by the JVM. Executing Alg1

100 times with nr being 50000 gives a median duration of the measured section

(end-start) of 1,498,000 ns. ExecutingAlg2 under the same condition andwith

the same input gives a median duration of the measured section of 1,621,000 ns.

Setting these numbers in relation, we obtain 1,621,000
1,498,000 ≈ 1.08, which is close to

the ratio of the number of bytecode instructions in the loop bodies: 17
15 ≈ 1.13.

70

2.14. Quantitative Impact of JVM Optimizations

Note that the overhead of the timer method System.nanoTime (invocation

cost of 1000 ns) is negligible in comparison to the algorithm runtime: it is less

than 0.1% of the latter. Computing the average duration (in nanoseconds) of

bytecode instruction for the interpretation-only modus, we obtain 1,498,000
15·50,000 ≈ 2.00

for Alg1 and 1,621,000
17·50,000 ≈ 1.91 for Alg2. On the computer where the experiments

were run, 2 ns correspond to 5.6 CPU cycles.

The numbers look quite differently when the JIT compilation is enabled, and

encouraged by repeating 50,000 method invocations as warmup. Since the

-Xint flag lets the JVM output the JIT compilation to the console, we verified

the the two studied methods were indeed JIT-compiled.

Then, with the same inputs as before, the median duration of Alg1 is measured

to be 58,000 ns, and the median duration of Alg2 is measured to be 513,000 ns.

Not only is the speedup very different (25.83 for Alg1, 3.16 for Alg2), but the

resulting average duration of an instruction is also very different. This proves

that Java bytecode instructions must be benchmarked individually, and that JIT

speedup is not a constant value.

71

Chapter 3.

Evaluating and Selecting Methods for Time

Measurement

In physics, to express the power of a working entity, the relation between the

performed work and the time spent performing the work is established. In in-

formatics, performance (which is evaluated by setting the amount of accomplished

work into the relation to the used time and the used resources) also requires precise,

dependable measurement of time.

In particular, both Chapter 4 (resource demand quantification) and Chapter 5

(JVM benchmarking) will require solid, evaluated techniques for measuring

time. This chapter addresses the fundamental question for computing perform-

ance metrics: “how to measure time in a reliable way?”, and develops an engineer-

ing approach to selecting time-measuring techniques and tools based on their

quality. For example, a quality metric for a timer method is the accuracy of its

results, and another one is the invocation cost of the method.

The approach presented in this chapter solves the following scientific chal-

lenges:

• what are the quality criteria for selecting the techniques and tools for meas-

uring very short (sub-millisecond) durations?

• how to quantify these quality criteria, and which techniques and tools for

time measurements are suitable for this thesis?

• how to detect issues of legacy timer methods, such as inadequate beha-

viour in multi-threaded contexts?

Chapter 3. Evaluating and Selecting Methods for Time Measurement

The resulting contributions include

• the identification of quality properties to evaluate and to compare time-

oriented performance indicators, and derivation of a unified quality metric

that encompasses these properties

• a platform-independent approach to quantify these quality attributes

without inspecting the implementation of the indicators

The remainder of this chapter is structured as follows: Section 3.1 describes

issues and challenges with obtaining timing values for benchmarking, perform-

ance analysis and performance prediction. Section 3.2 presents the foundations

of timer methods. Section 3.3 describes a new approach (called TIMERMETER

in the remainder of this thesis) for quantifying accuracy and invocation cost of

timer methods. Section 3.4 contains algorithms for analysing units, monoton-

icity and stability of timer methods Section 3.5 sets epochs and maximummeas-

urable time intervals into relation and shows how to compute them. Section 3.6

develops a new quality metric for timer methods, which unifies the different

quality attributes of timer methods into a single value, making timer methods

much easier to compare, especially across execution platforms. Section 3.7 sum-

marises the contents of the chapter and concludes.

3.1. Issues and Challenges with Obtaining Timing Values for Performance

Analysis

In order to obtain timing values, scientists and engineers are accustomed to

calling timer methods provided by APIs of operating systems, virtual machines,

third-party frameworks, etc. The API methods build on the underlying hard-

ware and software, which can differ in capabilities and characteristics. At the

same time, the API methods abstract from these underlying layers, shielding the

user from their complexity and platform specifics. Thus, the API timer methods

often must provide only the “greatest common denominator” timing function-

ality among the supported execution platforms. Therefore, differences between

74

3.1. Issues and Challenges with Obtaining Timing Values for Performance Analysis

the properties of timer methods and the hardware that provides the timing in-

formation can be expected.

When using timer methods to perform fine-granular or accuracy-sensitive

measurements, scientists naturally strive to select the best suitable timer method

to measure time. Of course, “best” depends on the concrete setting, and con-

cerns aspects such as accuracy of the timer method, its invocation costs, non-

interference (with the measured system), presence in current and future execu-

tion platforms, etc. These factors have a great impact on the accuracy and stat-

istical validity of their measurements. For example, to measure an operation

that takes 250 ns, a timer method that uses a counter which is updated once

every 15 ms is not appropriate.

Unfortunately, quantitative properties of timer methods are often not spe-

cified in their documentation because these properties are platform-specific:

they depend on the underlying hardware, and on the software stack that pro-

cesses the hardware signals. Also, no platform-independent algorithms or tools

exist to quantify quantitative timer method properties. Additionally, the oper-

ating system performs the management of CPU throttling and multi-core CPUs

in a transparent way, and existing timer methods must be tested for reliable and

correct functionality under the new circumstances. The increased popularity

of virtualisation poses an additional challenge: if the virtualisation layer must

emulate the CPU and its counters/registers, the quantitative properties of the

emulated CPU (update frequency of counters, etc.) can differ from the “real”

one.

Hence, when precise performance measurements need to be performed, timer

method users have to guess the accuracy and invocation costs of timer meth-

ods or have to perform ad-hoc experiments to estimate these values. Published

values as in [162] or [163] are mostly vague and provided without the code that

produced them, so it is not possible to transfer these platform-specific results to

other hardware/software platforms without re-running the original code. For

example, the official documentation [164] for the nanoTime() method in the

Java platform API only states that the method provides “nanosecond precision,

75

Chapter 3. Evaluating and Selecting Methods for Time Measurement

but not necessarily nanosecond accuracy” (the documentation does not define

the terms “precision” and “accuracy”, see next sections for definitions adopted

in this thesis).

The remainder of this chapter presents a thorough, evaluated solution for

these problems, and establishes a one-stop quality metric for timer methods by

assembling in one formula different quality properties of timer methods. The

following section lays the foundations by defining the terms used in this chapter.

3.2. Foundations of Timer Methods

A timer method is a software method that accesses a hardware timer, i.e. a peri-

odic counter which is updated at regular intervals, so that the counter’s value

can be converted to timing values. Such a periodic counter is a hardware register

that is incremented by a non-negative constant value, with a fixed timespan

between two subsequent increments. An example of a periodic counter is the

Time Stamp Counter (TSC) [165, 166], which is provided by newer CPUs.

The constant value of the increment is usually an integer value (mostly 1), but

its unit may not be a standardised time unit such as nanosecond. For example,

the Intel 64 and IA-32 Architectures Software Developer’s Manual [166] states

that for Pentium M processors, the TSC “increments with every internal pro-

cessor clock cycle”. For a CPU frequency of 2.5 GHz, a TSC increment would

correspond to 0.4 ns.

A counter tick corresponds to the atomic action of updating the counter’s

value, usually increasing it by 1. To use a counter for time measurements, the

time between two counter ticks need to be known, which corresponds to the

inverse of the counter update frequency. The relationship between update fre-

quency of a counter, and the counter unit (time corresponding to the counter

value of 1) can be expressed as follows:

counter unit :=
time between ticks

|increment| =
1

(|increment|) · (update frequency)
(3.1)

76

3.2. Foundations of Timer Methods

However, the time between two counter ticks is often unspecified or varying

among hardware platforms, making it hard to transform counter values into

time units. For some counters, the counter unit corresponds to a floating-point

multiple of a “normal” time unit such as nanosecond. For such counters, Sec-

tion 3.4 provides a uniform, black-box approach to calculate the units of timers

and counters.

Timer method unit is the amount of time corresponding to 1 of the

value returned by the timer method on a given platform with given

dynamic and static settings. Examples of timer method units are

1 ns (e.g. java.lang.System.nanoTime() method), 1 ms (e.g.

java.lang.System.currentTimeMillis()method), or 0.5468 ns (1 tick of

the TSC on Intel T2400 at full clock frequency, where the TSC is updated every

CPU clock tick).

The value type of a timer method refers to the value type of its returned

value. For example, the java.lang.System.nanoTime()method of the Java

platform APU returns long values. Timer methods can return signed or un-

signed, floating-point or integer values; some timing frameworks define their

own classtypes to encapsulate timing values (e.g. JavaSimon [167] defines a

Split as a notion of a interval measurements). The value range of a counter/-

timer depends on the number of bits used to store its values, and of course on

its value type. For example, in Java, the maximum value for a long is 263 − 1,

and the minimum value is −263, since a long is a signed 8 byte value, with 1 bit

to store the sign and 63 bits to store the value.

The method type of a timer method can be either static or instance, where in-

stance (i.e. non-static) means that the invocation target of the timer method

needs to be initialised. If the method is of instance type, it should be tested

whether an instance can be passed around and reused without unexpected side

effects, even if the CPU core affinity of the thread using a timer instance changes.

Note that the method type does not depend on the quantity of the underlying

timer: a singleton timer can be reused by many instances of a class offering

77

Chapter 3. Evaluating and Selecting Methods for Time Measurement

instance-typed timer method, and a static-typed timer method can be a facade

to a per-core timer whose quantity is ≥ 1 on multi-core platforms.

Wall-clock time is a globally advancing monotonic time. Wall-

clock time can be reported in a globally absolute way, e.g.

java.lang.System.currentTimeMillis() which returns “the differ-

ence, measured in milliseconds, between the current time and midnight,

January 1, 1970 UTC”, independent of the timezone where the computer

operates. Wall-clock time can also be reported in a measurement-local way, e.g.

java.lang.System.nanoTime() which starts from 0 each time a computer

is restarted or each time the a JVM process starts.

Thread time is a valuable metric in performance evaluation, where wall-clock

time measurements in multi-threaded setting would be implausible due to very

short OS scheduling timeslices. Thread time is the time spent by a thread in the

active state, rather than in the “ready” or “suspended” state. For example, the

interface java.lang.management.ThreadMXBean provides methods such

as getThreadCpuTime(long id).

Process time is defined for processes as thread time for threads, and corres-

ponding timer methods are offered by the Java platform API as well.

A countdown timer is a software or hardware mechanism to signal an event

or to start a task after a certain time has passed. Countdown timers may be

one-shot or periodic and are often used to simulate concurrent behaviour and

workload. An example of a countdown timer is the Java platform API class

java.util.Timer.

An epoch is a (calendar) date which corresponds to the value 0 for a given

timer, e.g. when the counter is initialised. When timer values are stored using a

limited-range type, the monotonic increase of timer values means that the timer

value will reach the maximum of the value type at some point in time. Once the

maximum value has been reached, the value of the timer can either stop increas-

ing or it can overflow, i.e. it restart from 0 or from the minimum value of value

type (which can be negative). For example, an epoch of the aforementioned Java

API timer method System.currentTimeMillis() is “midnight, January 1,

78

3.2. Foundations of Timer Methods

1970 UTC” (as stated in its documentation [164]). If the timer method overflows,

it will again reach 0 some time after the overflow, which is yet another epoch.

Correspondingly, for a given timer value, the last epoch defines the most recent

date at which the counter/timer value was 0, while the next epoch defines the

next recent date where the value is 0. If there are several instances of a counter,

using them in amulti-process (or multi-thread) setting requires that their epochs

are aligned – otherwise, the epoch offsets will distort measurements.

3.2.1. Quality Properties for Counters, Timers and Timer Methods

Based on the introduced definitions, this section presents a set of quantifiable

quality properties for timer methods. Figure 3.1 shows the quality properties

and some of the timer properties introduced above. The quality properties are

explained below in clockwise order of Figure 3.1.

Timer method
properties

Accuracy

Last and next
epoch

Value type
and range

Unit and
Precision

Stability / load
dependability

Monoto-
nicity

Thread safety /
suitability for

multicore-CPUs

Overflow behaviour /
maximum measure-

able time interval

Invocation
cost

Method type:
static / instance

JITtability /
optimisability

Quantity/
assignment

depends on

Non-quality
property

Quality
property

Legend

Figure 3.1.: Properties of counters/timers and timer methods

JITtabilitymeans the following: in Java Virtual Machine and similar bytecode-

executing platforms, the interpreted bytecode can be just-in-time compiled

79

Chapter 3. Evaluating and Selecting Methods for Time Measurement

(“JITted”) to machine code to speed up its execution. If this happens, the invoc-

ation cost of a timer method can decrease, which must be reflected in the eval-

uation of measurements and in the evaluation of timer method quality. Hence,

to detect whether a timer method is JITtable, a sufficient warmup is needed to

make the method a candidate for JIT compilation, and to quantify the differ-

ence between the pre-JIT and post-JIT invocation cost. This quality property is

addressed during the evaluation of the presented approach (see Section 7.2).

For the following definitions that describe quality properties of timers, the

terminology from the official Java platform API documentation [164] serves as

a starting point and thus provides a terminology familiar to many scientists and

engineers. The timer method properties such as accuracy are considered as they

are seen at the API level by the application which invokes the timer method.

Accuracy (synonymously: resolution or granularity) of a given timer method is

the smallest measurable positive non-zero difference between two time intervals

measured with the counter, i.e.

precision := min {(t4 − t3)− (t2 − t1)|t4 > t3, t2 ≥ t1, (t4 − t3) > (t2 − t1) ≥ 0} (3.2)

For example, the precision of java.lang.System.nanoTime() is 1 ns (=its

unit), although in practice, its resolution is often hundreds of ns. It holds that

accuracy ≥ precision because durations smaller than precision are measured as

0 (see Sections 3.2.2 and 3.2.3 for a more formal treatment of accuracy). Ac-

curacy can be a floating-point multiple of a time unit when the timer/counter

as a floating-point type, or when the unit (“tick”) of counter corresponds to a

floating-point multiple of a time unit.

Invocation cost of a timer method is a synonym for execution duration of that

timer method and spans the interval from the timer method invocation until it

returns a value, as seen by the method’s invoker. The invocation cost may vary

from call to call due to CPU scheduling and other runtime influences, as well as

due to JIT (see above). The invocation cost can be smaller than the accuracy or

larger than it, and it depends on the way in which the timer method is invoked:

for example, in Java, a method can be invoked directly, using polymorphism, or

80

3.2. Foundations of Timer Methods

using the Java platform API’s reflection capability. An algorithm to quantify the

invocation cost is presented in Section 3.3 and its results are part of the evalu-

ation in Section 7.2.

Monotonicity means that for two wall-clock time instants t1, t2 with t2 > t1,

the retrieved timing values value(t1) and value(t2) will fulfil value(t2) ≥ value(t1).

This is a very basic requirement to perform reliable timing measurements, and

practitioners expect this requirement to be fulfilled by default. Therefore, it is

usually not checked – however, especially in multi-threaded or multi-core plat-

forms, it may be non-trivial to implement, and therefore deserves attention. For

example, consider a situation where each CPU core maintains an own instance

of its counter but cores can pause the counter incrementation during inactivity

periods. Then, a thread/process that is relocated from one corei to corej (j �= i)

can encounter a situation where the counter value on corej is smaller than that

on corei, due to corej’s inactivity at an earlier moment.

Stability (incl. load dependency) of a timer/counter is a boolean-typed value

(“stable” vs. “unstable”). An example of unstable counter behaviour are skipped

compensated increments: for example, instead of increasing the counter value by 1

each 10 ns, a counter may decide to increase the counter value by 100 each 1000

ns if the processor is under low load (e.g. to save energy). In such a case, the

monotonicity is maintained but accuracy suffers and the measured values will

be unstable if the CPU changes between low-load and heavy-load states. As this

thesis takes a black-box view on the execution platform (and its timer/counter),

the stability of a counter/timer must be tested from outside. Of course, testing

can only reveal the presence of issues, and it cannot prove their absence. A

first approach to test the stability of counters (see Section 3.4) shows that the

Timestamp Counter (TSC) is an unstable counter even though it is monotonic,

has high accuracy and low invocation cost.

Thread safety and suitability for multi-core CPUs are two further boolean-typed

properties that encompass monotonicity and stability when a timer/counter is

used concurrently by several threads, which can be spread over several CPU

cores if available. For instance-typed timer methods and non-singleton timer-

81

Chapter 3. Evaluating and Selecting Methods for Time Measurement

s/counters, thread safety and suitability for multi-core CPUs must be tested for

different usage patterns (common shared instance, one instance per thread, etc.).

Overflow behaviour describes how the timer method behaves once it reaches

the maximum value of its return type. The overflow behaviour thus depends on

the value type of the method, and how soon the next overflow happens depends

on how far back the last epoch dates, as well as on how fast the timer method

values increase (i.e. on the timer method unit).

The maximum measurable time interval depends on the value type of the timer

method. A precise mathematical definition of this term and a formula to com-

pute it are given in Section 3.5, as the effects of overflow must be taken into

account to compute it.

3.2.2. The Influence of Quantisation, Accuracy and Method Invocation Costs

on Measured Timing Values

The quantisation effect is the effect shown in the left part of Figure 3.2: it occurs

because the values Ui, Ui+1, . . . stored by a timer are discrete, but the time value

tx to be measured can fall between two discrete values and a discrete value Ux

is returned instead of tx. In the following, Ui+1 − Ui will be called accuracy and

shown as A in formulas.

The quantisation error QEsingle(tx) of a single time measurements is defined as

QEsingle(tx) := Ux − tx and is a floating-point value equally distributed along the

range [0.0, 1.0). Therefore, and the expected value of the quantisation error is

E
[
QEsingle

]
= 0.5 · (Ui+1 − Ui) = 0.5 · A with i ≥ 0 (3.3)

since the location of tx between two adjacent Ui is equally distributed. Note it

holds Ux ≤ tx, i.e. single measurements are either precise or underestimated, but

never overestimated.

To compute the duration of a time interval, two time values must be meas-

ured, i.e. two quantisation errors are involved in the measurement error of the

time interval. Contrary to single measurements and also contrary to intuition,

82

3.2. Foundations of Timer Methods

t�
Time�value�tx�to�be�measured�

Descrete�timer�value�updates�Un�

t�
Returned�time�interval�(>�time�interval�to�be�measured)�

Returned�value�Ux� Time�interval�to�be�measured�

Figure 3.2.: Effects of quantisation on measuring time values and time intervals

quantisation errors for time intervals can also lead to overestimation, as shown

by the right part of Figure 3.2. Thus, the quantisation error can result in a meas-

ured value that is either Ui+1 − Ui longer or Ui+1 − Ui shorter than the real value

of the time interval. Additionally, for a single given time interval measurement,

the worst case quantisation error can be ±A, which can be as much as 15 ms

(more than 15 Million CPU cycles) on modern Windows systems, as shown in

Section 7.2.

The remainder of this section shows which issues with timer methods need to

be considered w.r.t. accuracy. It assumes that (i) during the considered meas-

urements, no jumps in wall-clock time happen (e.g. no switch from summer to

winter time occurs) (ii) no timer overflow happens (i.e. all timer values grow

monotonically) (iii) the same timer instance is used throughout an example (i.e.

on multi-core platforms, hardware counters and registers that are used belong

to the same core).

The most straightforward way to measure the duration of a method call

meth() is to place it between two invocations of the timer method time()

and to compute their difference as in Listing 3.1.

1 long time1 = time () ;

2 meth () ;

3 long time2 = time () ;

4 long duration = time2 − time1 ;

Listing 3.1: Oversimplified measurement of method execution duration

To compute the time value to return, a timer method like time() reads a

counter which is updated (increased) at regular intervals of the same length.

This means that several subsequent timer method invocations can return the

83

Chapter 3. Evaluating and Selecting Methods for Time Measurement

same value if the counter value has not been increased in between. Specifically,

consider the case shown in Figure 3.3: when the timer method reads the counter

value in the interval [Uk, Uk+1), it will use Uk as the counter value. This means

that a measurement at time point tx is not necessarily returned as tx: the timer

method returns the last stored timer value Uk instead of the (precise) value of tx,

this is hinted by the dashed line in Figure 3.3 and in the following figures. In

the best case, the returned value Uk is equal to tx while in the worst case, the

returned value Uk is smaller than tx by almost the entire size of A.

Timer�accuracy�A�

t�

Execution�duration�
of�time()�

Time�point�tx�to�be�measured�(time()�starts)�

Time�point�Ui�returned�by�time()�

Time�points�where�timer�value�is�updated�

Time�point�Ui+1�=�Ui�+A�

time()�ends,�returns�a�value�

time()�

Figure 3.3.: Effects of timer accuracy on measurements (Legend: tx: actual time to be
measured; Ui: counter updates; A: timer method accuracy)

The influence of the accuracy on the measurements differs between the two

following cases:

• Case 1: accuracy is larger than the invocation cost

• Case 2: accuracy is equal to or smaller than the invocation cost

For Case 1, consider Figure 3.4 and Figure 3.5. In Figure 3.4, the duration of

the operation meth() is measured to d = 0 · A although its duration is closer

to 1 · A and should rather be measured to 1 · A. In Figure 3.5, the duration of

the operation meth() is measured to d = 1 · A although its duration is closer to

0 · A and should rather be measured to 0 · A. For both Figure 3.5 and Figure 3.5,

the lack of knowledge about the relation of A and the invocation cost of time()

leads to wrong conclusions about d and meth().

84

3.2. Foundations of Timer Methods

Difference�of�time�points�is�0�=�duration�in�listing�1� Timer�accuracy�A�

t�
meth()�

Execution�duration�of�time()

time()�time()�

Figure 3.4.: Accuracy is larger than timer method execution duration, measured dura-
tion too small

Difference�of�time�points�is�1�A�=�duration�in�listing�1� Timer�accuracy�A�

t�

meth()�
Execution�duration�of�time()

time()�time()�

Figure 3.5.: Accuracy is larger than timer method execution duration, measured dura-
tion too large

For Case 2, consider Figure 3.6 where the accuracy is smaller than the timer

method invocation cost. The measured duration is dominated by the timer in-

vocation cost, and making conclusions about the duration of meth() from the

measured duration is not permissible.

Thus, for Case 1 and Case 2, both the accuracy and the timer invocation cost

need to be quantified to allow precise measurements and to enable the setup

of statistically controlled experiments. An algorithm to calculate both quality

properties is presented in Section 3.3.

3.2.3. The Effects of Rounding and Truncating

This subsection contains an in-depth consideration that will be needed in Sec-

tion 3.3 to compute accuracy and invocation costs from the values returned by

a timer method.

Consider an example counter that is updated with a fixed frequency of

3,579,545 Hz. Section 7.2 discusses such an OS counter, which is used by

85

Chapter 3. Evaluating and Selecting Methods for Time Measurement

time()�time()�

Difference�of�time�points��
=�duration�in�listing�1�

Timer�accuracy�

t�

First�timer�invocation�returns;�
measured�method�meth()�starts�

Time�point�returned�by��
second�timer�invocation�

Timer�value��
updates�Un�

meth()

Figure 3.6.: Accuracy is smaller than timer method execution duration, measured dura-
tion too large

the QueryPerformanceCounter method of the Windows API, and by the

System.nanoTime() Java Platform API timer method of Windows XP. The

counter’s accuracy (= 1
frequency) is then≈ 297.4 ns (rounded to one decimal place);

in the remainder of this subsection, time units are omitted to simplify the dis-

cussion. Yet most timer methods, such as java.lang.System.nanoTime(),

return values as whole-numbered longs and not as doubles, i.e. without any

decimal places.

Therefore, the timer method implementation has two choices to con-

vert double values such as 297.4 to longs: (i) truncating (e.g. using

Java casting operator) and (ii) rounding (e.g. using Java API method

java.lang.Math.round(double d)), both of which introduce numerical

errors. As this thesis considers the timer methods as “black boxes” (i.e. it does

not analyse their implementations), one cannot know beforehand whether trun-

cation (or rounding) is used or not.

Yet for devising our algorithm in Section 3.3, the effects of rounding and trun-

cating on timer values and time intervals will play a crucial role. Thus, in this

section, we prove that when using truncation or rounding to record double-

typed time points as whole-numbered long-typed values, it is possible that two

time intervals of the same actual length will be recorded as long-typed intervals

whose lengths differ by 1.

86

3.2. Foundations of Timer Methods

3.2.3.1. Truncating

For truncating, consider a timer interval E − S that starts at S and ends at E. Let

A be the accuracy of the timer, trunc(S) be the truncated value of S and trunc(E)

the truncated value of E. Due to truncation, the computed time intervals can

appear larger than they are in some cases and smaller than they are in others.

As an example, consider a case with A = 297.4 and two intervals of length 3 ·A
each (= 892.2 without truncation): the first interval starts at 7 · A and ending at

10 ·A, and the second interval starts at 10 ·A and ending at 13 ·A. With truncation,

the duration of the first interval is computed to

trunc(10 · 297.4)− trunc(7 · 297.4) = trunc(2974.0)− trunc(2081.8) = 893 (3.4)

Therefore, in this case, truncation leads to a result which is larger than the actual

duration of 892.2. In contrast to that, the duration of the second interval appears

shorter due to truncation:

trunc(13 · 297.4)− trunc(10 · 297.4) = trunc(3866.2)− trunc(2974.0) = 892 (3.5)

The definition of truncation-caused interval measurement error IMEtrunc is as fol-

lows:

IMEtrunc(E, S) := (E − S)− (trunc(E)− trunc(S)) (3.6)

IMEtrunc(E, S) is equivalent to (E − trunc(E))− (S − trunc(S)). It holds that

0 ≤ (E − trunc(E)) < 1 (3.7)

and

0 ≤ (S − trunc(S)) < 1 (3.8)

The largest value of IMEtrunc(E, S) is achieved when S − trunc(S) = 0 and

E − trunc(E) is maximised (yet still E − trunc(E) < 1). Correspondingly, the

smallest value of IMEtrunc(E, S) is achieved when S− trunc(S) is maximised (yet

still S − trunc(S) < 1) and E − trunc(E) = 0.

87

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Finally, we can summarise that

− 1 < IMEtrunc(E, S) < +1 (3.9)

As the open interval (−1,+1) contains at most two long values (i.e. without

decimal spaces), we can conclude that trunctation can cause a time interval of a

given length to be measured in at most two versions, in the above example 892

and 893.

3.2.3.2. Rounding

For rounding, again consider time interval start S and end E and assume that

time values with decimal values of 0.5 and larger are rounded up, while smaller

decimal values are rounded down. Using above example accuracy of 297.4, con-

sider the time interval between S = 1 ·297.4 and E = 2 ·297.4 = 594.8. S is rounded

to 297 while E is rounded to 595, the resulting interval E − S is 298. At the same

time, for S = 2 · 297.4 = 594.8 and E = 3 · 297.4 = 892.2, the same underlying time

interval (1 ·297.4) after rounding is computed to 892−595 = 297. Thus, an interval

can appear both longer and shorter due to rounding.

For the rounded value round(S) and round(E), it holds that

− 0.5 < (round(S)− S) ≤ 0.5 (3.10)

and

− 0.5 < (round(E)− E) ≤ 0.5 (3.11)

We define the rounding-caused interval measurement error

IMEround(E, S) := (E − S)− (round(E)− round(S) (3.12)

Note that IMEround(E, S) is equivalent to (E − round(E))− (S − round(S)).

IMEround(E, S) achieves its largest (positive) value E − round(E) is maximized

and S − round(S) is minimised. Let ε be an arbitrarily small value with 0 < ε < 1.

The maximum value of E − round(E) is 0.5 − ε (when E is rounded down) and

88

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

the minimum value of S − round(S) is −0.5 (when S is rounded up). Hence, the

maximum value of (E − round(E))− (S − round(S)) is 1− ε, which is smaller than

1.

In a similar way, the minimum value of IMEround(E, S) is achieved when E −
round(E) is minimised (i.e. it is −0.5) and S − round(S) is maximised (i.e. 0.5− ε).

Thus, the minimum value of (round(E)−E)− (round(S)−S) is −1+ ε. Altogether,

it holds that

− 1 < IMEround(E, S) < 1 (3.13)

Therefore, the open interval (−1,+1) contains at most two long values (i.e. in-

teger values without decimal spaces).

Combining results of Section 3.2.3.1 and Section 3.2.3.2, we conclude that both

truncation and rounding of timer values can cause two time intervals of the same

actual length to be saved as two different whole-numbered long values, which

have a difference of 1. This conclusion will be used in our algorithm presented

in the Section 3.3.

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

Among the properties described in the previous section, accuracy and invoca-

tion cost are important and frequently considered quality properties. A plat-

form-independent approach to quantify them has been introduced in [168], and

constitutes an initial step for the work described in this chapter.

3.3.1. A Naive Approach to Estimating Timer Invocation Costs

Trying to obtain the invocation cost of the method time(), the straightforward

way is to remove the call to meth() from Listing 3.1, and re-run the measure-

ment as in Listing 3.2.

1 long time1 = time () ;

2 long time2 = time () ;

3 long t imerInvocat ionCost = time2 − time1 ;

Listing 3.2: Oversimplified measurement of timer method invocation cost

89

Chapter 3. Evaluating and Selecting Methods for Time Measurement

However, for timers where the invocation cost is smaller than half of the ac-

curacy (e.g. java.lang.System.currentTimeMillis() in Java – cf. Sec-

tion 7.2), timerInvocationCost is likely to be zero. Meyerhöfer’s code [30]

repeats the measurements in Listing 3.3 (which discards the cases where

time2==time1) a number of times and analyses the maximum and the average

value of timerInvocationCost:

1 long time2 = time1 ;

2 while (time2==time1) {

3 time2 = time () ;

4 }

5 long t imerInvocat ionCost = time2 − time1 ;

Listing 3.3: Measuring timer method invocation costs according to [30]

However, Listing 3.3 does not analyse how many times the while loop was

executed before the value of time2 becomes larger than time1, and therefore

time2-time1 can include more than one invocation cost of time(). An en-

hancement of the code in Listing 3.3 will be presented in Section 3.3.2 in List-

ing 3.5. However, neither the code in Listing 3.3 nor the code in Listing 3.5 can

compute both the accuracy and the invocation cost.

Another possibility would be a stochastic approach (see [40, 41, 33]), as

sketched in Listing 3.4:

1 long sum = 0 , time1 =0 , time2 =0;

2 fo r (i = 0 . . . s) {

3 time1 = time () ; // f i r s t of s measurements

4 time2 = time () ;

5 sum = sum+(time2−time1) ;

6 }

7 long t imerInvocat ionCost = sum/s ;

Listing 3.4: Stochastic measurement of timer method invocation cost

As with the preceding algorithms, the code in Listing 3.4 cannot compute both

the accuracy and the timer invocation cost.

A novel solution that covers both accuracy and invocation cost is presented in

the next section.

90

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

3.3.2. Using Clustering for Quantifying Accuracy and Invocation Cost

As discussed in Section 3.3.1, if the invocation cost of the timer method is smal-

ler than its accuracy, the two timer method calls as in Listing 3.2 are likely to

return the same value for time1 and time2, which is not helpful in finding the

timer method’s accuracy using clustering. Hence, we must “force” the second

timer invocation to return a value which is one accuracy “step” higher. A visual

explanation of this principle is shown in Figure 3.7 and Figure 3.8.

time()�time()�

�����������

time()�time()�

���������������	
������������������

�
�

�����������������	��
���������������

Figure 3.7.: Quantifying the accuracy (for the case accuracy < invocation cost)

result��=�0*�
accuracy

Timer�accuracy�A

t

Execution�duration�
of�time()

time()time()

Timer�accuracy�A

t
time()time()

duration =�1*�accuracy�(instead�of�0*�accuracy)duration =�0*�accuracy

Additional�work�insertedInitial�work

Figure 3.8.: Quantifying the accuracy (for the case accuracy ≥ invocation cost)

91

Chapter 3. Evaluating and Selecting Methods for Time Measurement

So, instead of invoking the second timer call immediately after the first one,

a very small task should precede the second timer call so that the inserted

task cannot be optimised away by the execution platform. If the inserted task

is too small for a non-zero difference to appear, it should be enlarged until

time2-time1≥ 0 (cf. Algorithm 3.1). Further enlargement of the inserted task

shall lead to time2-time1 becoming another accuracy “step” larger.

In reality, however, this idea is still too simple to work, as the results of

running a Java implementation of this idea for the timer method java.-

lang.System.nanoTime() show. Executing this implementation on Sun JDK

1.6.0_07 (default JIT and JVM settings, Windows XP Professional OS, Intel T2400

CPU), the following statistics for the measured time interval emerge: minimum

value is 1676 ns, median value is 1956 ns, and the maximum value is 4190 ns.

The initial interpretation of these results can be the following: the lower values

are the minimal costs of invoking nanoTime(), the larger median values are

due to delays caused e.g. by CPU scheduling, and the largest values are outliers

caused by garbage collection etc.

However, a closer look at the individual measured results reveals that there

are a few results that yield 1676 ns or 1677 ns, and the remaining majority yields

1955 ns or 1956 ns. In particular, there are no measurements between 1677 ns

and 1955 ns, and the measurements following 1956 ns have a significant dis-

tance (278 ns and 279 ns, as well as multiples of those) to 1956 ns, which is very

similar to the distance between 1676 ns/1677 ns and 1955 ns/1956 ns. Thus,

the results are forming “clusters” with small intra-cluster element distances of

1 ns and larger inter-cluster distances of ca. 279 ns. A plausible explanation of

intra-cluster differences is given by the effects of rounding and truncating (cf.

Section 3.2.3). The inter-cluster differences appear to be due to the accuracy of

the timer method, i.e. the values of 1955 ns/1956 ns equal “minimum timer

invocation cost + 1 timer method accuracy”.

An additional challenge arises for computing the invocation cost of timers

whose accuracy is significantly larger than the invocation cost. One possibility is

to perform an approximative, stochastic computation: repeat the code in Listing

92

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

4.2 n times (with n � 1000), and then assume that invocationCostapproximate :=
∑n

i=1 timerInvocationCosti
n . However, CPU scheduling, garbage collection and other

effects can have a negative impact on the quality of the results.

Another possibility would be to use stochastic approach as in Listing 3.4 or re-

peat a significant number s of timer method invocations, and to divide the time

distance between the result of the first and the last invocation by s, as shown in

Listing 3.5. However, in practice, the accuracy is larger than the invocation cost

by the factor of 5 · 105 (cf. the method currentTimeMillis() in Section 7.2).

This would make the computation run for a long time if time2-time1 should

be more than just 1 · accuracy of the method.

1 long time1 = time () ; // f i r s t of s measurements

2 long time2 ;

3 fo r (i n t i =1 ; i <s ; i ++) {

4 time2 = time () ;

5 }

6 long t imerInvocat ionCost = (time2 − time1)/s ;

Listing 3.5: Oversimplified measurement of timer method invocation cost

Instead of stochastic approximation or the approach in Listing 3.5, this thesis

makes use of “helper” timer methods which have already known small (i.e.

good) accuracy and low (i.e. well-suitable) invocation costs. First, it is checked

whether the accuracy of the considered timer is larger than its invocation cost:

this is visible by the minimum timer invocation being 0. Then, the invocation

cost of the consideredmethod is quantified using a “helper” timermethod, since

it holds that helper’s invocation cost and accuracy are less than the accuracy of

the considered timer.

In practice, for the timer methods with the best accuracy, the invocation cost

is usually a multiple of the accuracy. For example, in Section 7.2, to compute the

invocation cost of the Java platform API timer method java.lang.System.-

currentTimeMillis() (unit: 1 ms, accuracy on the above platform: 15

ms), the helper method java.lang.System.nanoTime() is used (unit: 1

ns, accuracy on the above platform: 279 ns, median invocation cost: 1955 ns).

This results in 0.0002 ms as invocation costs of currentTimeMillis() on the

93

Chapter 3. Evaluating and Selecting Methods for Time Measurement

above platform, which is equal to 0.2 μs or 200 ns. Note that the accuracy of

currentTimeMillis() is ca. 53763 times the accuracy of nanoTime().

Algorithm 3.1 illustrates the data collection for cluster-based computation of

accuracy and invocation costs. In Part A of Algorithm 3.1, the timer invocation

cost is computed, if possible (if the smallest value of R (results) is 0, the min-

imum timer invocation cost is set to undefined, and needs to be computed in the

way defined earlier in this section).

In Part B of Algorithm 3.1, the work performed between the timer invocations

is gradually increased, to allow the time interval to grow by one duration of

timer accuracy. Note that the globalVariable incremented in Algorithm 3.1

is globally visible (i.e. non-private) and is read after the computation is finished.

The objective of this is to ensure that the incrementation task will not be “op-

timised away” by the dead-code analysis and similar techniques, and that each

iteration of the loop will be executed. While this solution works pretty well for

current execution platform such as Java Virtual Machine, the computation per-

formed between the timer invocations can be replaced by another, more com-

plicated algorithm (such as Fibonacci computation) if needed. Some efficiency-

increasing techniques (not shown in Algorithm 3.1) have been implemented in

this scope of this thesis to let Algorithm 3.1 terminate as soon as a predefined

number of distinct values have been saved into R.
The solution continues in Algorithm 3.2, which computes the accuracy and in-

vocation cost from the measured values, using clustering. Part C of the solution

(see Algorithm 3.2) creates clusters which contain at most two values of meas-

ured time intervals. Themotivation for using clustering is that one interval value

may have up to two long-typed values due to rounding/truncation, as shown

in Section 3.2.3. Thus, a cluster can contain at most two values (a value stores

a measured time interval); if an value with distance 1 to the larger element in a

given cluster appears, it starts a new cluster. For the aforementioned example of

nanoTime, 1676 ns and 1677 ns would belong to the same cluster, and 1955 ns

and 1956 ns to another one.

94

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

Algorithm 3.1:Collecting values for computing accuracy and invocation cost
Data: numberOfMeasurements, numberOfWorkIncreaseSteps,

workIncreaseStepSize
Result: R, minimumTimerInvocationCost, medianTimerInvocationCost,

maximumTimerInvocationCost
/* R is a set of time intervals */
R ← ∅;

// A. compute timer method invocation costs
for i← 0 ... (numberOfMeasurements-1) do

start← Timer.timer(); finish← Timer.timer(); R← R∪ (finish− start);
end
sort(R);
if R.get(0)>0 then

minimumTimerInvocationCost←R.get(0);
else

minimumTimerInvocationCost← undefined;
end
if R.get(R.length/2)>0 then

medianTimerInvocationCost←R.get(R.length/2);
else

medianTimerInvocationCost← undefined;
end
if R.get(R.length-1)>0 then

maximumTimerInvocationCost←R.get(R.length-1);
else

maximumTimerInvocationCost← undefined;
end

// B. further measurement data for computing accuracy
for k← 0 ... (numberOfWorkIncreaseSteps-1) do

workAmount←workAmount + workIncreaseStepSize;
for i← 0 ... (numberOfMeasurements-1) do

start← Timer.timer();
for a← 0 ... (workAmount-1) do

globalVariable++; a++;
end
finish← Timer.timer(); R← R∪ (finish− start);

end

end
sort(R);
[...] // read the global variable to prevent dead-code elimination;

95

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Finally, in Part D, the first two clusters are used to compute the accuracy of

the timer method as the distance between their cluster centers. The cluster center

is defined as the average of the two (or one) value(s) contained in the cluster,

independently from the frequency of each value. For example, the cluster center

for a cluster with 224 values of 1676 ns and 101 values of 1677 ns is still 1676.5 ns.

With the cluster center of 1955 ns/1956 ns being 1955.5 ns, the timer accuracy

would be computed to 1955.5 ns-1676.5 ns=279 ns.

For the solution shown in Algorithms 3.1 and 3.2 to work, several constraints

and assumptions must be fulfilled (in addition to those listed at the beginning

of this section). This constraints and assumptions, along with some limitations

of the solution, are discussed in the remainder of this section.

Firstly, theremust be at least two clusters, and the centers of the first two neigh-

bouring clusters indeed have to be one timer method accuracy apart. The imple-

mentation of the approach can fulfil this constraint by either creating clusters

on-the-fly, or by a sufficiently high numberOfWorkIncreaseSteps (e.g. 1000)

and other inputs, for which the current implementation already provides suit-

able defaults. Using them, the constraint is fulfilled in practice by all studied

timer methods (cf. Section 7.2).

Secondly, the solution cannot distinguish between the two cases “accuracy=1”

and “accuracy=2”: for example, with accuracy being 1, the first created cluster

will contain the values x and x+1, and the second cluster will contain the values

x+ 2 and x+ 3. With x = 5, the accuracy will be computed to

(x+ 3) + (x+ 2)

2
− (x+ 1) + (x)

2
= (x+ 2.5)− (x+ 0.5) = 7.5− 5.5 = 2 (3.14)

while for the case with accuracy being 2, the first cluster will contain x (as the

only value) and the secondwill contain x+2 (as the only value), which again res-

ults in the computed accuracy of x+2
1 − x

1 = 7
1− 5

1 = 2. A simple but sufficient rem-

edy to this problem is to detect the presence of the pattern (x),(x+1),(x+2),(x+3)

before the clustering begins, and to assume that the underlying accuracy is 1 (the

pattern x,x+ 1,x+ 2,x+ 3 cannot occur when the accuracy is 2 or greater).

96

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

Algorithm 3.2: Computing Counter Accuracy and Invocation Cost
Data: R from Algorithm 3.1 (sorted in ascending order)
Result: accuracy

// definition of the Cluster class class Cluster(firstElement,secondElement);

// C. compute clusters from values/frequencies
List<Cluster> C ← ∅;
R← R \ 0 for currentValue ∈ R do
if C contains cluster whose firstElement == (currentValue-1) then

add currentEntry as secondElement to that cluster
end
else
NC ← new cluster with currentValue as firstElement
C ← C ∪ NC

end

end
//C is sorted and stores ≥ 2 clusters

// D. compute accuracy from the first two clusters
// (this is a simplified view of the algorithm)
Cluster clusterA← C.get(0);
Cluster clusterB← C.get(1);
if clusterA.secondElement �= null then

clusterCenterA← (clusterA.firstElement.timingValue+
clusterA.secondElement.timingValue)/2;

else
clusterCenterA← clusterA.firstElement.timingValue;

end
if clusterB.secondElement �= null then

clusterCenterB← (clusterB.firstElement.timingValue+
clusterB.secondElement.timingValue)/2;

else
clusterCenterB← clusterB.firstElement.timingValue;

end
accuracy← clusterCenterB - clusterCenterA;

97

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Thirdly, when the first cluster contains one value and the second cluster con-

tains two values (or vice versa), the computed accuracy will be a floating-point

value, ending with .5. However, during the evaluation (see Section 7.2), such

cases did not occur, and thus these cases are not investigated further in this

thesis. In the implementation of the presented approach, if such a cases occurs,

the accuracy is returned as a range whose width is 1 timer unit (e.g. “the ac-

curacy is between 5 ns and 6 ns”). Such precision is usually sufficient for most

performance measurement cases in practice.

Finally, both the first and the second cluster could contain just one value. The

optimistic view of this case is that there is neither rounding nor truncation in-

volved in the implementation of the timer method, and all timing values (and,

therefore, time intervals) are multiples of the integer-typed accuracy which is

2 units or larger. The pessimistic view of this case is that rounding or trunca-

tion are involved, and each of the two clusters is missing one value that was

not measured due to runtime disturbances or other reasons. One possible pess-

imistic scenario for the above example of nanoTime() would occur if 1677 ns

would be missing in the first cluster (1676, 1677) and 1955 ns would be missing

in the second cluster (1955, 1956). In such a scenario, the timer method accur-

acy would be computed as 1956 ns-1676 ns=280 ns. In a different case, if 1676 ns

would bemissing in the first cluster and 1956 ns would bemissing in the second,

the timermethod accuracywould be computed to 1955 ns-1677 ns=278 ns. Thus,

having only one value in the first and one (other) value in the second cluster

means that the real accuracy is within ±2 precision units (for nanoTime(), this

means ±2 ns).

3.3.3. Timer Method Invocation in Detail

To read the value of performance indicators (e.g. a timer or the CPU cycle

counter) in Java, theymust be accessed by invokingmethods, as there are no “ele-

mentary” bytecode-level instructions to access performance indicators. There

are several ways to call a method in the source code of a Java program:

98

3.3. Quantifying Accuracy and Invocation Cost of Timing Methods

1. invoke the method directly (i.e. choice of the timer method is fixed inside

source code)

2. use polymorphism or delegation (e.g. define a facade or a wrapper using

interfaces, the implementing class can be chosen flexibly)

3. use Java Reflection API (e.g. to find out whether a given timer method is

available at runtime)

4. use AOP or bytecode engineering to define insertion points for concrete

timer methods (which are weaved at loading time or at compile time into

the bytecode)

There are several reasons for using the alternative 2. through 4.:

• The first reason is that since using a timer is a cross-cutting concern, the

timer accesses are often spread over several components and classes of the

source code, and programmers tend to prepare source code for quick and

easy replacement of timers. For example, a given timer method needs to be

replaced when a better counter becomes available, or when the application

is ported to a platform where certain counters are not available. However,

timer methods rarely implement an interface (the JMX beans provided by

the package java.lang.instrument are a notable exception), and it’s

usually not possible to change the inheritance/implementation relations of

timers (cf. java.lang.System class that defines two of the most widely

used Java timers is final). Thus, a straightforward solution is to provide a

facade/wrapper to the actual timer or counter.

• Another reason is that unlike logging, there is no “log level” mechanism

for timer methods, at least in the standard Java Platform API (but also, at

the time of writing, in no other timing library compatible with Java SE).

Therefore, to distinguish “fine-granular” time measurements from “info-

level” timemeasurements, programmers tend to introduce several facades,

where one facade corresponds to one level in logging mechanism. By con-

figuring the individual facades, developers can “rewire” unneeded “tim-

99

Chapter 3. Evaluating and Selecting Methods for Time Measurement

ing levels” to empty methods, allowing the JVM to perform runtime op-

timisations similar to what is done in logging libraries.

• The third reason is that runtime reconfiguration has become commonplace

in today’s system, allowing to change settings without shutting down the

application. More generally, the configuration of a system is often separate

from its actual implementation (cf. deployment descriptor in Enterprise

Java Beans). To allow runtime reconfigurations w.r.t. timer methods (espe-

cially given the fact that they are often implemented in system classes or in

classes implementing the Platform API), additional steps must be taken.

Therefore, the accuracy and the invocation cost of a timer method should be

quantified for all four of the above method invocation techniques. A further

aspect is added by instance-typed timer methods (cf. Section 3.2.1): the duration

of the creating/initialising the invocation target needs to be measured as well.

This is done in a waywhich is very similar to the quantification of the invocation

costs.

Finally, to address JITtability (cf. Section 3.2.1), the algorithms from Sec-

tion 3.3.2 needs to be run (a) without warmup and (b) after sufficient warmup.

How much warmup is sufficient depends on the concrete virtual machine im-

plementation and its setting; for the Java Virtual Machine, 20000 invocations

are usually thought to be sufficient, but the warmup mechanism itself must be

implemented properly [169]. Alternatively, the Algorithms 3.1 and 3.2 can be

modified in such a way that a sudden drop in the values of measured time in-

tervals is detected, and interpreted as “JIT has completed” signal, leading to a

second run of the Algorithms 3.1 and 3.2. The current implementation of the

Algorithms 3.1 and 3.2 includes this enhancement, which can be activated as an

option.

3.4. Analysing Units, Monotonicity and Stability

Often, the timer unit is known or (implicitly) specified (e.g. nanoseconds for

Java platform API’s System.nanoTime(), as confirmed by the method’s doc-

100

3.4. Analysing Units, Monotonicity and Stability

umentation). However, hardware counters such as TSC are often more precise,

yet their implementation may be different between CPU manufacturers and

models, leading to different update frequencies and thus to different units.

At the same time, the update frequency of counters is often aligned with CPU

clock frequency and thus is not a power of 10 (typical CPU frequencies are 1.83

GHz, 2.8 GHz etc.). Thus, the counter time unit is not integer-typed multiple

of time unit such as 1 ns or 1 ms. To use the high-resolution TSC and similar

counters for measuring time intervals, the value of the unit must be obtained in

a platform-independent way. In particular, by assuming a black-box view, the

presented approach does not need to inspect the implementation of a counter to

quantify its unit.

Sometimes, the timer methods accessing “unitless” counters are accompan-

ied by a method that exposes the counter’s update frequency. This implies

that the counter’s accuracy (resolution), which is the inverse of the update fre-

quency, is exactly one “tick”. For example, the QueryPerformanceCounter

method (exclusively available on Windows) is accompanied by the method

QueryPerformanceFrequency. Yet for those counters (TSC, HPET) where

the update frequency cannot be queried, the need still exists for a platform-in-

dependent way to quantify the unit of the counter or, more precisely, of the

method accessing it.

To quantify a counter’s unit, a novel algorithm was developed in this thesis,

and it is outlined in Algorithms 3.3 and 3.4 using pseudocode. In the following,

we assume that a method to access the counter/timer is available, and that it

returns monotonically increasing values during the execution of algorithm (in

particular, the timer method’s results do not “overflow”). An evaluation of the

algorithm is provided in Section 7.2.

The algorithms use three methods:

1. sleep(int r) is a method that will pause the execution or the calling

thread for (at least) r milliseconds

2. t1() is a timer method whose unit is known (e.g. nanoTime() in Java)

101

Chapter 3. Evaluating and Selecting Methods for Time Measurement

3. t2() is the actual timer method whose unit has to be quantified

3.4.1. Quantifying Units of Counters and Timers

The central idea behind our solution is to measure the executing thread’s sleep

durations (induced by sleep(r)) using both t1() and t2(), and to correlate

the resulting interval durations so the relation between the known unit t1unit

of t1() and unknown unit of t2() can be established.

We use t1() in addition to sleep(r) because in reality, the requested sleep

duration r can differ significantly from the real sleep duration measured by

t1() (in other words, we use sleep(r) as a measurement driver). This

issue [170] is particularly visible on certain Linux distributions for the Java

method

Thread.sleep(int r)when parametrised with small r, where the values of

r are in milliseconds. Measurements that demonstrate this issue and show the

need for t1() are presented later in this section, after the overall algorithm is

presented and explained.

The Algorithm 3.3 makes use of two helper functions, findOutliers and

getLinearCorrelationSlope. While findOutliers is shown in Al-

gorithm 3.4 and detailed in Section 3.4.1.1, getLinearCorrelationSlope is

a standard algorithm for getting linear regression using least square error [171,

p. 730], and is not detailed here.

Note that the slope of the linear function that expresses the regression is non-

zero, and therefore the counter unit (which is the inverse of the slope) can be

computed safely. Also note that the correlation coefficient and the y-axis offset

will be used later in this chapter to evaluate the quality of a counter with respect

to its stability.

Note that in Algorithm 3.3, the calls to t1 do not “wrap” the invocations to

t2(). Instead, t1 and t2 are arranged in an interleaved way, which helps to

compensate for potentially different invocation costs of t2() and t1().

102

3.4. Analysing Units, Monotonicity and Stability

Algorithm 3.3: Computing Counter Unit
Data: t1unit,numberOfIncreases, numberOfIterations, initialSleepDuration,

sleepDurationIncrease, sleepOutlierThreshold,
groupOutlierThreshold

Result: counter unit (as a multiple of t1()’s counter unit)
for i = 1 ... nrOfIncreases do

sleepT imei ← initialSleepDuration+ i · sleepDurationIncrease

end
for j = 1 ... numberOfIterations do
for k = 1 ... numberOfIncreases do

t1start← t1();
t2start← t2();
sleep(sleepT imek);
m1k+j·numberOfIncreases ← (t1() - t1start);
m2k+j·numberOfIncreases ← (t2() - t2start);

end

end
outlierIndexes← findOutliers(m1, m2, sleepOutlierThreshold,
groupOutlierThreshold);

correlationSlope← getLinearCorrelationSlope(m1, m2, outlierIndexes);

counterUnit← t1unit/correlationSlope; //relative

103

Chapter 3. Evaluating and Selecting Methods for Time Measurement

3.4.1.1. Filtering Outliers

Linear correlation is suitable because with monotonic and stable timers, the

measurements of the time interval (induced through sleep) should be similar

between t1() and t2().

Of course, there will be differences between them:

• the accuracy of t1() and t2() influences the accuracy of

measurementT1 and measurementT2

• measurementT1 includes the invocation costs of sleep(r), t1() and

t2(), as does measurementT2 – yet the invocation costs can vary from

invocation to invocation by one or several accuracies (see [19])

• CPU scheduling, memory management, thread affinity scheduling of the

execution platform etc. can lead to interruptions at any point of Al-

gorithm 3.3, which can in turn lead to outliers.

To prevent such outliers from overimpacting the algorithm, two filters are

used (the need for them is shown later in this section). The filters, encapsulated

in Algorithm 3.4, accomplish the following:

1. if the t1()-measured sleep time is more than

sleepOutlierThreshold % longer than the requested sleep time,

the measurement point is skipped (i.e. it is not saved into m1/m2)

2. among the numberOfIterations measurements for a concrete value of

sleepTimes[k], we find the measurement with the minimum value of

m2, and skip those of numberOfIterations measurements where m2 is

groupOutlierThreshold% or more above the minimum value of m2

We discuss the impact of choosing the values for sleepOutlierThreshold

and groupOutlierThreshold during the evaluation in Section 7.2.

104

3.4. Analysing Units, Monotonicity and Stability

Algorithm 3.4: Identifying outliers: findOutliersmethod
Data: m1, m2,sleepOutlierThreshold, groupOutlierThreshold
Result: outlierIndexes
outlierIndexes← ∅;
for k = 1 ... numberOfIncreases do

minSleep← +∞;
for j = 1 ... numberOfIterations do
if m1k+j·numberOfIncreases > (1 + sleepOutlierT hreshold

100) · sleepT imek then
outlierIndexes← outlierIndexes ∪ (k + j · numberOfIncreases);

end
if m2k+j·numberOfIncreases<minSleep then

minSleep← m2k+j·numberOfIncreases

end

end
for j = 1 ... numberOfIterations do
if m2k+(j·numberOfIncreases) > (1 + groupOutlierT hreshold

100) ·minSleep then
outlierIndexes← outlierIndexes ∪ (k + j · numberOfIncreases);

end

end

end

3.4.2. Analysing Monotonicity during Concurrent Access to Timing Methods

In single-threaded scenarios, testing the monotonicity of a timer can be done

by repeating a large number of timer method invocations with minimal work

(i.e. saving of the timer values) performed between two adjacent timer method

invocations. But for concurrent access to timers in multi-threaded platform, a

more elaborate technique is needed.

For example, consider an unsynchronised (i.e. unprotected) static timer

method which retrieves a value from a counter with an update frequency of

1 MHz and converts the retrieved value to nanoseconds, using a static field. As

one counter tick equals 1 microsend (=1000 nanoseconds), the counter value is

multiplied with 1000. Assume that a first thread starts executing the code in

Listing 3.6, but is interrupted right after the second line when a second thread

kicks in.

105

Chapter 3. Evaluating and Selecting Methods for Time Measurement

The second thread executes the code in lines 2 and 3, before it pauses and the

execution of the first thread continues. As the value of the variable a (which is

shared among the threads as it is static) has already been multiplied by 1000, the

second multiplication (performed by the first thread) leads to a wrong result be-

ing stored in a. Not only does the first thread return thewrong result (the second

and thus wrong value of the counter, and it is multiplied with 1000000 instead

of 1000), but so does the second thread (the correctly read value of counter is

multiplied with 1000000 instead of 1000).

1 long getTime () {

2 a=Counter . value ; //a i s a s t a t i c f i e l d of type long

3 a = a ∗1000 ;
4 re turn a ;

5 }

Listing 3.6: Example concurrency-unsafe timer method

When dealing with timer methods from public interfaces, clients must make

smallest possible assumptions, i.e. they must treat the methods of these inter-

faces as possibly concurrency-unsafe, as in the above example. Assuming that

the used implementation of the public interface is a black box and thus unmodi-

fiable, clients should at least try to test whether the considered timer method

is concurrency-(un)safe, with the option to switch to concurrency-safe alternat-

ives. In this section, we describe a heuristic for studyingwhether a timermethod

is suitable for concurrent access.

To provoke concurrency issues, concurrent accesses to the timer method

should “fire” (almost) simultaneously. But depending on the programming lan-

guage, scheduling a task to run at a specific timepoint may or may not be avail-

able. In Java, the java.util.Timer class includes different methods to sched-

ule java.util.TimerTasks, both one-shot and periodic ones. However, it

uses the java.util.Date class to specify times, which “represents a specific

instant in time, with millisecond precision” – such precision might be insuffi-

cient to deal with nanosecond-level timers.

Thus, a simpler technique which is independent of a programming language

is employed (cf. Listing 3.7): phaseLength calls to the timer method are ex-

106

3.4. Analysing Units, Monotonicity and Stability

ecuted in a loop, and the shortest-possible pause between two calls is being

inserted afterwards. The pause is inserted to change the shift (offset) between

the timer method invocation starts for the cases where several instances of this

algorithm are executed concurrently without external disturbances.

Each value returned by the timer method is recorded individually for later

analysis, which is described below. The difference between the two neighbour-

ing values corresponds to the timer invocation costs plus the overhead of record-

ing the returned value (and additionally the time paused, where applicable).

107

Chapter 3. Evaluating and Selecting Methods for Time Measurement

1 i n t phases = 100 ;

2 i n t phaseLength = 200 ;

3 i n t currPhase =0;

4 i n t cur rCa l l ;

5 while (currPhase < phases) {

6 cur rCa l l =0 ;

7 while (currCal l <phaseLength) {

8 t h i s . record (t imer . getValue ()) ; //record value

9 cur rCa l l ++;

10 }

11 pause (shortes tSupportedTimeInterval) ;

13 //phase length randomised to y ie ld d i f f e r e n t method s t a r t t imes

14 phaseLength=100+Math . random(100) ;// uniformly d i s t r i bu t ed in

[100 , 200)

15 currPhase ++;

16 }

Listing 3.7: Code for testing timer monotonicity in concurrent setting

The load on the execution platform is minimised, and a warmup phase pre-

cedes the actual measurements. We assume that no overflow (cf. Section 3.5)

happens during a run, with the resulting expectation that the recorded timer

method values are monotonically increasing. While the suggested test is just a

heuristic, it is motivated by the observations of the TSC counter (cf. Section 7.2).

The TSC counter exhibited frequent but unsystematic jumps of its values (res-

ulting in values which are several times higher than those expected) though for

the single-threaded case, the TSC fulfils the monotonicity requirement.

While many timer methods are static (e.g. those in the

java.lang.System class of the Java platform API), some are not (e.g.

sun.misc.Perf.highResCounter()). For the timer methods which are

non-static (i.e. instance-typed, see Section 3.2.1), one cannot see from the

signature whether there is just one instance of the implementing class (i.e. the

implementation uses a singleton pattern). To check at runtime whether each

call to the constructor (or factory method) returns a singleton or a new instance

108

3.4. Analysing Units, Monotonicity and Stability

of the implementing class, the Java implementation of our approach can use

object IDs.

Altogether, in Section 7.2, the following degrees of freedom will be explored

when running the code in Listing 3.7:

• the number of concurrent threads running the algorithm in Listing 3.7

• for non-static methods, the usage of the implementing class instance:

(a) same instance for all threads as opposed to

(b) individual instance for each thread

3.4.3. Analysing Stability of a Timer

Section 3.2.1 introduced the notion of timer stability to express that the timer val-

ues indeed correspond to what is being measured. In this section, an approach

to test and to quantify the stability of a timer method is suggested, based on the

idea of correlation that was already employed in Section 3.4.2.

To see why stability is not a trivial property and needs to be assessed system-

atically, consider Figure 3.9. It shows the duration of a Thread.sleep(long

millis) operation (the parameter is the requested sleep time in milliseconds),

measured using the System.nanoTime() Java Platform API timer method.

Each requested sleep time was measured 20 times to visualise the differences

between individual measurements. It can be seen that nanoTime() is a stable

timer as the measured values are very close to the requested sleep values, and

only minor differences between the measurements for a given sleep time are

observed.

In the same algorithm run, TSC was used to measure the sleep times, and

the resulting co-measured values (in TSC ticks) are plotted in Figure 3.10. The

TSC is accessed from Java using JNI; it returns the number of CPU ticks after an

epoch that remains fixed during a program run. The experiment was run on a

computer with CPU frequency of 2.8 GHz, i.e. 2.8 CPU cycles are executed in a

nanosecond, and one cycle takes ≈0.357 ns (rounded to 3 decimal places). The

x axis values in Figure 3.10 carry the requested sleep time (converted to ns), the

109

Chapter 3. Evaluating and Selecting Methods for Time Measurement

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000
Planned sleep time in ns

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

110,000,000

120,000,000

130,000,000

140,000,000

150,000,000

160,000,000

170,000,000

M
ea

su
re

d
sl

ee
p

tim
e

us
in

g
ch

ar
ac

te
ri

se
d

tim
er

 in
 n

s

Figure 3.9.: Relation of requested sleep times (x-axis, in ns) to values measured with
nanoTime (y-axis, in ns)

zigzagged line carries the measured TSC values (y axis in TSC ticks). The red

line carries the minimum number of TSC ticks that should have been measured

(since the parameter of the sleepmethod has the semantic of “at least”, the real

sleep duration can be higher).

In contrast to Figure 3.9, the sleep times measured with TSC and shown in

Figure 3.10 exhibit large jumps, which means that TSC is not a stable timer

method. In Figure 3.10, there seems to be no useful correlation between the

requested and TSC-measured sleep times despite the almost-perfect correla-

tion for nanoTime()-based measurements in Figure 3.9. As the invocations

of nanoTime() seem not to suffer from outliers as much as TSC does, it seems

that the outliers of TSC are not caused by external factors and disturbances.

It should be noted that the shown measurements were performed on a dual-

core computer with no external load (only the measurements and the OS were

110

3.4. Analysing Units, Monotonicity and Stability

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000
Planned sleep time in ns

0

25,000,000

50,000,000

75,000,000

100,000,000

125,000,000

150,000,000

175,000,000

200,000,000

225,000,000

250,000,000

275,000,000

300,000,000

325,000,000

350,000,000

375,000,000

400,000,000

425,000,000

450,000,000
M

ea
su

re
d

tic
ks

 o
f R

D
TS

C

Figure 3.10.: Zigzagged line with round shapes: requested sleep times (x-axis, in ns)
and values measured with TSC (y-axis, in ticks); straight line with square
shapes: number of CPU cycles (y-axis) corresponding to the requested
sleep time (x-axis)

running), yet repeating the measurements on the same computer but with CPU

load close to 100% (caused by a parallel thread) showed that nanoTime() kept

its stability while TSC got even worse. These results suggest that TSC is not a

reliable and stable timer for measurements on this platform. But what are the

reasons for it? Is it still possible to obtain the unit of TSC?

To formalise the notion of stability, one needs to quantify how far and how often

the measurements can deviate from what is expected to be measured. The im-

pact of the timer method accuracy and invocation on the measured values has

been discussed in Section 3.3. Thus, this section is presented under the assump-

tion that the accuracy/invocation cost of the considered timer method can be

111

Chapter 3. Evaluating and Selecting Methods for Time Measurement

ignored as the time interval to be measured is significantly (at least two orders

of magnitude) larger than the accuracy and the invocation cost.

The quantification of timer stability is shown in Algorithms 3.5 and 3.6. The

approach uses the correlation principle of Algorithm 3.3, but with the difference

that the units of t1() and t2() are already known and converted to the same

unit.

In Algorithm 3.5, aboveExpectationThreshold and belowExpectationThreshold

quantify how far the measurement can deviate from the expected value before it

qualifies as an outlier.

Both aboveExpectationThreshold and belowExpectationThreshold are positive val-

ues which are interpreted as shares of the expected measurement result. For

example, aboveExpectationThreshold set to 0.45 means that values which are 45 %

and more above the expected measurement result are outliers. outlierFrequency-

Threshold is the maximum percentage of outliers among the measured values,

before a timer is considered unstable on the basis of analysed experiment.

Of course, the outcome of an experiment depends on the execution platform’s

state (e.g. load, CPU utilisation etc.), and several experiment runs should be

carried out under varying condition. Additionally, it is possible to use a more

elaborate formula, e.g. by weighting how far off the measured value is com-

pared to the expectation, rather than treating each outlier equally. This would

allow expressing the stability of a timer as a floating point value, rather than as

a boolean value in Algorithm 3.5.

In Algorithm 3.5, apart from the time whose stability is to be analysed, an

additional timer t1() is used because, as explained in Section 3.4.1, the actual

sleep time resulting from the invocation of sleep() can be different from the

requested sleep time. So instead of comparing the requested sleep time to the

measurements of t2(), the requested sleep time is compared to both t1() and

t2(). If possible, t1() should be a timer which has been analysed for stability

with positive result. Then, the conclusions about t2()’s stability are trivial.

112

3.5. Computing the MaximumMeasurable Time Interval and the Epochs

If both the stability of t1() and t2() is unknown, several outcomes for m_1

and for m_2 in Algorithm 3.5 are possible and all of their combinations should

be analysed:

• for t1(): either

(i) m_1 is within aboveExpectationThreshold / belowExpectationThreshold of r

or

(ii) it is not

• for t2(): either

(iii) m_2 is within aboveExpectationThreshold / belowExpectationThreshold of

r or

(iv) it is not

The combination (i)/(iii) is good: the considered measurement is not an out-

lier, neither for t1() nor for t2(). The combination (i)/(iv) hints to an outlier

for t2(), while the combination (ii)/(iii) hints to an outlier for t1(). Finally,

the combination (ii)/(iv) canmean that either (a) both t1() and t2() produced

an outlier, or (b) both produced non-outliers but the effective sleep time was dif-

ferent from the requested sleep time.

There are several possibilities to deal with the combina-

tion (ii)/(iv), the possibility chosen in this thesis is to consider

both m_1 and m_2 as non-outliers if |m1 −m2| < min(m1,m2) ·
min(aboveExpectationThreshold, belowExpectationThreshold), and consider both of

them as outliers otherwise.

In Section 7.2, the stability of serveral frequently-used timers will be evaluated

using the presented approach.

3.5. Computing the MaximumMeasurable Time Interval and the Epochs

The overflow behaviour of a counter/timer describes what happens once the max-

imum value of the counter is reached, and the date of this event (which is dif-

ferent from the next epoch).

113

Chapter 3. Evaluating and Selecting Methods for Time Measurement

An example that motivated the work described in this section is the Java API

timermethod System.nanoTime(): its official documentation [164] states that

“the value returned represents nanoseconds since some fixed but arbitrary time

(perhaps in the future, so values may be negative)”. Clearly, the value of “fixed

but arbitrary time” impacts the overflow behaviour of this method, and must be

determined. Furthermore, it is unclear how “fixed” that value is: for example,

for a multi-JVM application residing on a single computer with a multi-core

CPU, is the above value really “fixed” across cores and JVMs, even in the light of

CPU sleep management and when JVMs are started up at different times? Thus,

what is needed here is a scientifically sound approach for obtaining the value

of the “fixed but arbitrary time”, and a study of whether it changes between

JVM products, application runs, operating systems etc. A further question is:

whenwill the values of System.nanoTime() overflow? It is also interesting to

know the overflow behaviour, i.e. whether the timer method will start returning

negative values, or start again from 0.

In this section, <TYPE>.MAX_VALUE refers to the maximum value for a nu-

meric primitive data type <TYPE>, and <TYPE>.MIN_VALUE to its minimum

value. To shorten the notation, Typemin is used instead of <Type>.MIN_VALUE,

and Typemax is used instead of <Type>.MAX_VALUE.

The numeric range is usually fixed for a given type, but some languages

provide integer (i.e. non-decimal) data types with dynamically growing nu-

meric range. In Java, for example, the class BigInteger has a quasi-arbitrary

value range, though its runtime instances are immutable (i.e. the memory re-

quirement of each instance is computed at its creation, and remains unchanged

over the lifetime of the instance). Therefore, BigInteger is rather rarely used

due to its memory demand, as each operation (even additions or subtractions)

results in a new BigInteger instance. In this section, we consider only integer

(non-decimal) types with a fixed numeric range, as all known timer methods (cf.

Section 7.2) return timing value as fixed-value types.

The arithmetic overflow (hereafter simply called the overflow) occurs when an

arithmetic calculation leads to a result that is greater than Typemax. Overflows

114

3.5. Computing the MaximumMeasurable Time Interval and the Epochs

form an object of intense research in the areas of verification research, security

and robustness [172, 173, 174], as unhandled overflows can lead to unexpected

behaviour and immense costs (e.g. Ariane rocket failure, cf. [175]).

Prevention, prediction or at least detection of an overflow is important be-

cause an overflow changes the results of a measurement in an undesirable way.

In the broader context of software engineering, a number of costly or comprom-

ising failures stem from undetected overflows, e.g. the failure of the Ariane

rocket [175]. Therefore, though the potential risks in performance engineering

may be lower, a sound scientific approach is needed to understand this issue.

This section addresses these challenges using a general and platform-indepen-

dent approach. It also formalises the computation of themaximum correctly meas-

urable time interval, which depends on the overflow behaviour of timer methods.

3.5.1. Foundations

A few programming languages and execution platforms provide special arith-

metical operators to detect overflows [176], e.g. C# operation “+” throws an

OverflowException in certain cases. In the majority of the cases, however,

users have to deal with overflow themselves (which increases the complexity of

the code and decreases the performance of the application).

A wraparound is observed when an integer type overflows with no mechan-

isms in place to detect it, to handle it, or to throw an exception. More formally,

the following overflow types exist:

1. a wraparound uses the entire numeric range of the value type:

Typemax + 1 = Typemin and

Typemin − 1 = Typemax

2. saturation stops modifying the value once it reaches one of the bounds:

Typemax + 1 = Typemax and Typemin − 1 = Typemin

3. nulling “resets” the value to 0 if an overflow occurs:

Typemax + 1 = 0 and Typemin − 1 = 0

115

Chapter 3. Evaluating and Selecting Methods for Time Measurement

In all three cases, it holds that Typemax − 1 < Typemax and Typemin + 1 > Typemin.

In this section, we only consider wraparound because saturation and nulling are

not used for primitive numeric types in modern object-oriented programming

languages, such as Java.

This method returns long-typed timing values, i.e. it will overflow

once it reaches long’s Typemax (which is defined in the corresponding

java.lang.Long class). Whether the reaction to the overflow will be a wrap-

around, a nulling or even a saturation remains unknown from the (textual) doc-

umentation of the method. However, assuming that a wraparound to long’s

Typemin occurs and assuming that currentTimeMillis()will continue to re-

turn monotonically increasing values, there will be a next epoch once the value

returned by currentTimeMillis() again reaches 0.

overflow0

epoch1

returned
timer value

maxValue

minValue

range of
type

returned
by timer

wall-clock
time

overflow period (=epoch period)

epoch0

overflow1

Figure 3.11.: Overflow of range-limited values

An overflow period is the timespan between two subsequent overflows of a

counter (or timer) which returns monotonically increasing integer-typed values

and which does not handle arithmetic overflows. Under these conditions, the

overflow period is finite and it is determined by the numeric range of the used

numeric type. Figure 3.11 illustrates such a case (using wraparound as overflow

116

3.5. Computing the MaximumMeasurable Time Interval and the Epochs

consequence), and features indexed epochs (epochi, ...) and indexed overflows

(overflowi, ...). In Figure 3.11, epoch0 denotes the most recent epoch from an

analyst’s point of view, i.e. at the time of drawing the diagram, the analyst’s

“now” is in the interval [epoch0, epoch1). Note that the x-axis (with wall-clock

time) continues to the left to account for the (hypothetical) case that the timer

method may have had previous epochs epoch−1, epoch−2, etc.

The most recent epoch, called epoch0 in this section, is not standardised across

platforms and languages, as many timer methods choose between system

time, computer startup time etc. as the value for epoch0. For example, the

epoch of Windows NT is 00:00:00 UT on January 1st, 1601, while the system

time on Unix is 00:00:00 UT on January 1st, 1970. On the other hand, plat-

form-independent APIs often select a platform-independent epoch, such as the

System.currentTimeMillis() method of Java Platform API, which uses

00:00:00 UT on January 1st, 1970 on all supported platforms.

3.5.2. Impact of Overflow on Timer Methods with High Precision

The impact of overflow issues in security-related software warrants a closer look

on the impact of overflow on timer measurements. It also reveals why timer

methods with certain characteristics (high resolution, early epoch) are not avail-

able in particular languages/execution platforms.

Assume that a programmer is requested on April, 1st 2009 to implement

a long-returning Java timer method with the fixed epoch of Windows sys-

tem time, and a unit of 1 ns. That is, the timer must return the number

of nanoseconds which have passed since January 1st, 1601 00:00:00 UTC. Re-

calling that a long in Java ranges from −263 to 263 − 1, the programmer

decides to study the overflow period. The programmer takes 263 − 1 =

9, 223, 372, 036, 854, 775, 807 ≈ 9.223 · 1018 ns, which, converted to years, is
263−1

109·60·60·24·365 ≈ 9.223·1018
31.536·1015 ≈ 292.22 years. This means that overflow0 (i.e. the first

overflow after epoch0) would happen at a timer method value corresponding to

a wall-clock date during the year 1893 (=1601+292).

117

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Nomatter which of the three overflow scenarios described in Section 3.5.1 will

apply, the overflow has very negative effects and reveals the flaw in the request

to the programmer:

1. For a wraparound, the timer method will return negative values for ≈
292.22 years after 1893, i.e. until ca. 2185, which means that the request

given to the programmer cannot be fulfilled (and, of course, negative tim-

ing values are not very intuitive). Note that the overflow period is 264 ns,

i.e. 584 years – the next overflow from Typemax to Typemin will happen dur-

ing the year 2477 (=1893+584).

2. For saturation, the timer method would be “stuck” at long’s Typemax since

the moment that the programmer obtains the request, prohibiting any

meaningful use of the timer since after saturation, since measurement of

time intervals would always return 0.

3. For nulling, the timer would return increasing positive values at the time

of writing – however, its last epoch epoch0 would be in the year 1893, not in

the year 1601 as requested.

These considerations explain why Windows’ system time is counted in ticks,

where each tick corresponds to 100 ns – this way, the overflow will take place

after 29222 years, which is more than enough. In contrast to Windows, several

popular operating systems have relatively imminent system time overflows:

September 17th 2042 for IBM’s z/OS, and 19 January 2038 for certain imple-

mentation of the time() function in Unix [177, 178, 179].

Dates before the (most recent) epoch form a further challenge in conjunction

with overflow. For example, consider the case where a programmer is reques-

ted to use the class java.sql.Date from the Java platform API. The docu-

mentation states that java.sql.Date is a “thin wrapper around a millisecond

value [...] [which] represents the number of milliseconds that have passed since

January 1, 1970 00:00:00.000 GMT” (the official documentation uses GMT and

UT almost synonymously, differences are explained in the documentation for

the java.util.Date class). If the application that the programmer is working

118

3.5. Computing the MaximumMeasurable Time Interval and the Epochs

on also needs to save dates before 1970, and use them for the computation of

time intervals, java.sql.Date will have to be used with negative values. At

this point the programmer has to think about timing values and timestamps

with different signs, and look into classes such as java.sql.Timestamp,

java.util.Date, etc.

3.5.3. Impact of Overflow on Measuring Time Intervals

A further overflow-related issue is signalled by the documentation of System.-

nanoTime() method in the Java platform API, which says that “Differences

in successive calls that span greater than approximately 292 years (263 nano-

seconds) will not accurately compute elapsed time due to numerical over-

flow” [164]. It is unclear, however, what “accurately” means, and whether the

problem is specific for the nanoTime() method but not other timer methods.

From the findings in the previous subsection, however, the statement “263 nano-

seconds” points to an issue with the type of values that nanoTime() returns,

which is again long.

The issue of this subsection, which we called Maximum Correctly Measurable

Time Interval (MCMTI), depends on (i) the numeric range of the used data type

(which is expressed by Typemax and Typemin) and (ii) the overflow behaviour.

Here, we consider the most common case (Typemin ≤ 0, Typemax > 0, overflow

behaviour is “wraparound”) – other cases can be analysed in a very similar

way. Recall that for the considered case, it holds that Typemax + 1 = Typemin

and Typemin − 1 = Typemax.

Let t1 be the first value returned by a timer method and let the second, later

value be t2; the trivial case of t1 = t2 is excluded. Let bound(tx) be the value of tx
which fits into the numeric range of the data type <TYPE> which is to store tx.

In particular, Typemin ≤ bound(tx) ≤ Typemax, even if tx > Typemax or tx < Typemin.

Therefore, due to overflow it may happen that bound(t2) < bound(t1) even if t2 is

later than t1. Also note that t1 and t2 need not be wall-clock time values – they

can be timestamps referring to a timepoint in future or in the past.

119

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Typemax�Typemin� 0� t1� t2�

dist�

Typemax�Typemin� 0� t1�t2�

dist�

overflow�

Typemax�Typemin� 0�t1� t2�

Typemax�Typemin� 0�t1� t2�

dist�

dist�

dist� ...�...�

Case�1�

Case�2�

Case�3�

Case�4�

Figure 3.12.: The impact of numeric ranges on measuring time intervals between t1 and
t2

First, consider a simple example for nanoTime()which reveals the problem:

Typemin = −263, Typemax = 263 − 1, t2 = 262 + 5 < Typemax, t1 = −262 > Typemin.

bound(t2)−bound(t1) = t2−t1 = 262+5−(−262) = 263+5, which is larger than Typemax

and thus overflows to Typemax+5 = (Typemax+1)+4 = (Typemin)+4 = −263+4 < 0.

The negative result means that t2 is earlier than t1 – a clear contradiction to the

value of t1 and t2.

In a more systematic way , the following cases can occur (all of them with

t2 > t1, see Figure 3.12):

1. 0 ≤ t1 ≤ Typemax, 0 ≤ t2 ≤ Typemax

⇒ bound(t2)− bound(t1) = t2 − t1 > 0

⇒ no overflow happens and the time interval is measured correctly

2. 0 ≤ t1 ≤ Typemax, Typemin ≤ t2 ≤ 0

(i.e. an overflow occurred between t1 and t2)

⇒ bound(t2)−bound(t1) = ((t2−Typemax−1)+Typemin)−t1 = t2−t1−(Typemax+

1) + Typemin = t2 − t1 (since Typemax + 1 = min)

⇒ if t2−t1 > Typemax, the value of bound(t2)−bound(t1)will overflow into the

120

3.5. Computing the MaximumMeasurable Time Interval and the Epochs

negative (which means that t2 came before t1), contradicting the assump-

tions.

3. Typemin ≤ t1 ≤ 0, Typemin ≤ t2 ≤ 0

⇒ |t2| < |t1| and bound(t2)−bound(t1) = t2−t1 = (− |t2|)−(− |t1|) = |t1|−|t2| > 0

⇒ no overflow happens and the time interval is measured correctly even

though both t2 and t1 are negative

4. Typemin ≤ t1 ≤ 0, 0 ≤ t2 ≤ Typemax

⇒ bound(t2)− bound(t1) = t2 + |t1|
⇒ if t2 + |t1| > Typemax, the value of bound(t2)− bound(t1) will overflow into

the negative (which means that t2 came before t1), contradicting the as-

sumptions.

This analysis shows how overflow affects the computation of time in-

tervals, and explains in detail the comment in the documentation of

System.nanoTime()method, which motivated the analysis in this section by

stating that “differences in successive calls that span greater than approximately

292 years (263 nanoseconds) will not accurately compute elapsed time due to nu-

merical overflow” [164].

3.5.4. Computing the Last and Next Epochs

For the time method with the signature <Type> m(), we can compute the last

epoch e0 (as observed from timepoint tnow with epoch0 < tnow ≤ epoch1) from the

following input values

• m()’s unit ut in seconds (see Section 3.4.1 for unit computation)

• the minimum value Typemin of the returned value’s <Type>

• the maximum value Typemax of the returned value’s <Type>

• the value mnow returned by the method m() at the timepoint tnow

121

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Then, it holds that

epoch0 = tnow −mnow · ut (3.15)

and ∀i ∈ N, x ∈ N,

epochi+x = epochi + x · ut · (|Typemin|+ Typemax) (3.16)

This implies that the epoch period can be computed as

epochi+1 − epochi = ut · (|Typemin|+ Typemax) (3.17)

and the next epoch following tnow, denoted as nextepoch(tnow), will occur at

ut · (|Typemin|+ Typemax −mnow) (3.18)

seconds after mnow (i.e., after tnow).

3.6. A Unified Quality Metric for Timer Methods

In Sections 3.3, 3.4 and 3.5, the algorithms to compute the individual quality

properties of a timer method have been presented and they result in a set of

metrics. However, most users prefer a single metric as a simple way to compare

things, instead of using multidimensional metric sets. Therefore, the individual

quality properties such as accuracy, invocation cost etc. should be composed to

form a new unified and pragmatic metric. Additionally, the new metric should

reflect how much spread (i.e. variance) the invocation cost of the timer method

exhibits.

A timer method is only usable if it is monotonic, stable and thread-safe. In the

following, we assume that all three of these quality requirements are fulfilled –

otherwise, the quality metric defined below should be set to 0.

122

3.6. A Unified Quality Metric for Timer Methods

3.6.1. Accounting for Different CPU Processing Speeds

Quality properties of timer methods are computed from measurements collec-

ted at runtime under specific circumstances such as system load, CPU core af-

finity etc. Therefore, the quality properties are valid for the specific execution

platform and the settings in which the measurements were performed. A uni-

fied timer quality metric should reflect the properties of the execution platform,

in particular its processing speed.

For example, consider two execution platforms: platform P1 has a 1.0 GHz

CPU and platform P2 has a CPU with 2.0 GHz. A timer method that is available

on both platforms has an accuracy of 100 ns on platform P1 and an accuracy

of 80 ns on platform P2. At the first glance, the timer method is more accurate

on platform P2. However, consider an algorithm implementation which takes a

largely constant (but unknown) number of cycles to execute, independent of a

concrete CPU and platform- For this algorithm, the choice between P1 and P2

looks different: the timer method accuracy on platform P1 corresponds to 100

cycles but on platform P2, the timer method accuracy corresponds to 160 cycles.

Thus, the algorithm implementation should be measured on platform P1

rather than on platform P2, as the timer accuracy there will account for lesser

measurement error on P1 than on P2. In a similar way, the timer method invoca-

tion cost should be expressed in CPU cycles, rather than in time units. Based the

fact that the smallest unit of time-related measurements is 1 CPU cycle, the fol-

lowing discussion presumes that theminimumvalue of accuracy and invocation

cost is 1 CPU cycle. We assume that the CPU frequency of the execution plat-

form on which the measurements were performed remained constant over the

course of the measurements, and therefore the effective CPU processing speed

remained constant as well.

3.6.2. Factors Contributing to the Unified Timer Quality Metric

The first element of the formula is based on timer method accuracy, for which

it holds that “smaller value is better” while Qualitytimer is a metric for which

“bigger value is better” applies. The accuracy value is expressed in CPU cycles

123

Chapter 3. Evaluating and Selecting Methods for Time Measurement

(with the minimum value being 1) and not in conventional time units such as

nanoseconds for above reasons; the unit is dropped because Qualitytimer is unit-

less.

The second element of the formula is based on the timer method invocation

cost, again with minimum value of 1 CPU cycle. For the same reasons as for

accuracy, invocation costs are expressed in CPU cycles (again, the units are

dropped to make Qualitytimer is unitless). As with accuracy, “smaller value is

better” applies to invocation cost.

As Section 7.2 will show, there is a minimal invocation cost but very often, the

invocation cost varies from invocation to invocation by one or more values of

timer method accuracy. When the invocation cost varies in such a way, the me-

dian invocation cost is a more realistic measure for the majority of samples (see

Section 7.2 for a more detailed analysis of the distribution of invocation cost val-

ues). Therefore, the second element of the formula uses the median invocation

cost, which leads to the need to express in Formula (3.19) how the entirety of all

recorded invocation cost values are spread around the median invocation cost.

This need is addressed by the next element in Formula (3.19).

The third element of Formula (3.19) is called invocationCostSpread and based

on the percentage of invocation cost values (samples) within ±1 accuracy of the

median invocation cost. To make invocationCostSpread have the value range

[0.0, 1.0], the percentage values are divided by 100%. For invocationCostSpread, it

holds that “larger value is better”, since the less invocation cost samples are too

far away from the median, the easier it is to capture the timer method overhead.

invocationCostSpread will never become 0 as long as there is at least one sample

invocation value and therefore also a median invocation cost which makes the

aforementioned percentage non-zero.

The definition of invocationCostSpread allows it to become 1.0 even if the in-

vocation cost varies between samples – as long as it all samples remain within

±1 accuracy. The motivation for the definition of invocationCostSpread is the con-

sideration of the case pictured in Figure 3.10 in Section 3.4.3. Note the difference

between the definition of invocationCostSpread and the relation between the me-

124

3.6. A Unified Quality Metric for Timer Methods

dian and standard deviation in the context of Gaussian distributions: there is no

established relation between accuracy and standard deviation in our case.

3.6.3. Designing the Unified Timer Quality Metric

The formula for the new unified timer method quality metric is given in Equa-

tion (3.19). Qualitytimer has no unit and its values are in the range (0.0, 1.0]; its

design and details are explained in the remainder of this section. For conveni-

ence purposes, Qualitytimer can be expressed as percentage value, in the range

(0 %, 100 %].

Qualitytimer := accuracy−0.1 · invocationCostmedian
−0.1 · invocationCostSpread0.5

(3.19)

The elements of Equation (3.19) (mathematical operations and values of the

exponents) have been chosen to fit two requirements:

• The range of Qualitytimer should be (0.0, 1.0] so that Qualitytimer would work

as a normalised metric (the Qualitytimer value is 0.0 iff the timer method is

non-monotonic, unstable, not thread-safe or a combination thereof)

• The values of Qualitytimer for real-life measurements and timer methods

should be expressible in four decimal places, i.e. the smallest realistically

expected value (after rounding) should be 0.0001 (i.e. the calculated value

should be at least 0.00005).

The first requirement was solved by devising a product of three contributions

as described below, and by designing the contributions so that the value range

of every contribution is within (0.0, 1.0]. The exponents (−0.1, −0.1 and 0.5) of the

contributions are explained and justified in the next section.

The fulfilling of the second requirement is based on the worst-case scenario

where a timer has an accuracy of 15 ms (i.e. 15,000,000 ns) and a median in-

vocation cost of 16 μs, with the CPU running at 4.0 GHz. Such a coarse accur-

acy was in fact observed for java.lang.System.currentTimeMillis()

125

Chapter 3. Evaluating and Selecting Methods for Time Measurement

on Windows XP computes, though with invocation costs significantly be-

low 16 μs. An invocation cost of 16 μs would correspond to 64,000

CPU cycles on a given CPU, which is also a rather high value, though

invocation costs of 47,709 CPU cycles have in fact been found for

java.lang.management.ThreadMXBean.currentThreadCpuTime() on

modern machines (Core 2 Duo CPU) running Linux (see Table 7.19, platform

T400b, row CTCT).

The worst-case scenario assumes an invocation spread of 0.3, although in

practice, values below 0.5 did not occur during the validation of the presented

approach (cf. Section 7.2). The value of Qualitytimer for the worst case scenario is

calculated from timing values using the relation that 1 ns correspond to 4 CPU

cycles on a 4 GHz CPU. Thus, Qualitytimer = (4 ∗ (15 ∗ 106))−0.1 · (4 ∗ (16 ∗ 103))−0.1 ·
0.30.5 ≈ 0.1668 · 0.3307 · 0.5477 ≈ 0.03021 ≡ 3.02%. Thus, the second requirement is

fulfilled by the above formula.

3.6.4. Choice of the Exponents for the Unified Timer Quality Metric

The contribution of accuracy is set to accuracy−0.1, and since accuracy ≥ 1, one ob-

tains for accuracy−0.1 (= 1
accuracy0.1) the range estimation 0 < accuracy−0.1 ≤ 1. The

contribution of invocation cost is set to invocationCostmedian
−0.1, and it means that

0 < invocationCostmedian
−0.1 ≤ 1. The median value has been chosen to decrease

the impact of outliers, and since the invocation cost spread already captures the

fact that the invocation cost is a stochastically distributed rather than a constant

value.

The choice of non-trivial exponents for the first two contributions is motivated

by the range of the raw values accuracy and invocationCostmedian. The initial solu-

tion for the metric was accuracy−1 · invocationCostmedian
−1 · invocationCostSpread,

and it fulfilled the first requirement, since 0 < accuracy−1 ≤ 1 and

0 < ·invocationCostmedian ≤ 1. However, for timer methods which return value in

ms (1 ms=1,000,000 ns), the first contribution of the formula would be too small,

in particular since modern CPUs execute more than 1 cycle in 1 ns.

126

3.6. A Unified Quality Metric for Timer Methods

For example, on a CPU running at 2 GHz, a timer method with 1 ms accuracy,

100 ns invocation cost and invocation cost spread of 1.0 would have resulted in a

metric value of 1
2,000,000 · 200· 1.0 = 0.0000000025 ≡ 0.00000025 %, which is a very small

value compared to the range (0.0, 1.0]. For an other timer method with a smaller

invocation cost of 100 ns (and same values otherwise, on the same machine), the

formula with the trivial exponents would yield 0.000000005. While the values are

clearly different (by the factor of 2), they are hard to compare because they are

too small, and the do not fulfil the second requirement stated above.

With the exponents in Formula (3.19), things look differently and better for

these two timers: quality is ≈ 0.1379 (i.e. ≈ 13.79%) for the first timer and ≈ 0.1479

(i.e. ≈ 14.79%) for the second timer. The quality values no more differ by the

factor of two, but this is an advantage: since the (identical) accuracy is rather

poor, the differences in invocation cost are no so important anymore, which is

made clear by the quality values. In Section 7.2, the quality values for different

timer methods on different platforms will be compared, which will add further

empirical justification to the choice of exponents in Equation (3.19).

For the invocation spread, the contribution is set to invocationCostSpread0.5, to

decrease its impact onto the total result (note that 0 < invocationCostSpread ≤ 1).

To see the reasons for the adjusting the impact of the spread, consider the follow-

ing two results (which are real-life values, taken from Table 7.19 and obtained

on the same execution platform T400b, rows HRC and JETM):

• Timer a has an accuracy of 2400 CPU cycles, an invocation cost of 4800 CPU

cycles, and an invocation cost spread of 0.993.

• Timer b has an accuracy of 168 CPU cycles, invocation cost of 1680 CPU

cycles and a spread of 0.578;

For a, the resulting quality metric value (in %) is ≈ 19.60 for spread’s exponent

being 0.5 and would be ≈ 19.53 if the exponent were 1.0. For b, the quality metric

value (in %) is ≈ 21.67 for exponent 0.5 but would be ≈ 16.48 for exponent 1.0.

Despite its higher spread, b is more accurate and causes less overhead: thus, its

quality should be higher than that of a – this is the case when the exponent if

127

Chapter 3. Evaluating and Selecting Methods for Time Measurement

the spread’s contribution is 0.5 but is not the case when the exponent is 1.0. This

small example illustrates the need to decrease the impact of the spread – still,

note that the choice of the concrete exponent value has no formal underpinning.

Given that x0.5 =
√
x, 0 < invocationCostSpread0.5 ≤ 1 means that the range of

the spread’s contribution is (0.0, 1.0].

3.7. Summary

In this chapter, timer method quality attributes have been identified and their

impact on the accuracy of measurements has been explained. In addition to ac-

curacy and invocation cost, further important properties such as stability, mono-

tonicity and epochs have been analysed. Platform-independent algorithms for

quantification of these properties have been developed, and these algorithms

do not require any analysis of the implementation of the timer method: they are

designed to work on black-box implementations of timer methods.

After considering the timer method quality attributes individually, a new uni-

fied metric has been devised which aggregates these attributes into one value.

Since a one-valuedmetric is easier to perceive for human users, it simplifies ana-

lysis and comparison of timer methods. The new metric allows expressing the

timer method quality as a value between 0 % and 100 %, making comparisons

between timer methods more intuitive.

The algorithms and metrics developed in this chapter will be studied and val-

idated in Section 7.2. In the next chapter, resource demand quantification is

addressed as the first part of cross-platform performance prediction.

128

3.7. Summary

Algorithm 3.5: Analysing timer stability, Part 1
Data: numberOfIncreases, numberOfIterations, initialSleepDuration,

sleepDurationIncrease, aboveOutlierThreshold (as percentage),
belowOutlierThreshold (as percentage), outlierFrequencyThreshold
(as percentage)

Result: counter unit
for i = 1 ... nrOfIncreases do

sleepT imei ← initialSleepDuration+ i · sleepDurationIncrease

end
for j = 1 ... numberOfIterations do
for k = 1 ... numberOfIncreases do

t1start← t1();
t2start← t2();
sleep(sleepT imek);
m1k+j·numberOfIncreases ← (t1() - t1start);
m2k+j·numberOfIncreases ← (t2() - t2start);

end

end
outlierFrequency1← 0
outlierFrequency2← 0
for j = 1 ... numberOfIterations*numberOfIncreases do
if m1j ≥ aboveOutlierThreshold · sleepT imej then

m1j is an above-outlier
end
if m1j ≤ belowOutlierThreshold · sleepT imej then

m1j is a below-outlier
end
if m2j ≥ aboveOutlierThreshold · sleepT imej then

m2j is an above-outlier
end
if m2j ≤ belowOutlierThreshold · sleepT imej then

m2j is a below-outlier
end

if |m1j −m2j | <
min(m1j ,m2j) ·min(aboveExpectationThreshold, belowExpectationThreshold)

then
similarityj ← true

else
similarityj ← false

end

end

129

Chapter 3. Evaluating and Selecting Methods for Time Measurement

Algorithm 3.6: Analysing timer stability, Part 2
Data: numberOfIncreases, numberOfIterations, initialSleepDuration,

sleepDurationIncrease, aboveOutlierThreshold (as percentage),
belowOutlierThreshold (ditto), outlierFrequencyThreshold (ditto)

Result: counter unit
for j = 1 ... numberOfIterations·numberOfIncreases do
if m1j is an above-outlier then
if m2j is an above-outlier ∧ similarityj==true then

neither m1j nor m2j are outliers
end
if m2j is a below-outlier then

/* both m1j and m2j are outliers */
outlierFrequency1++, outlierFrequency2++;

end
/* only m1j is an outlier */
outlierFrequency1++;

end
if m1j is a below-outlier then
if m2j is an below-outlier ∧ similarityj==true then

/* neither m1j nor m2j are outliers */
end
if m2j is a above-outlier then

/* both m1j and m2j are outliers */
outlierFrequency1++, outlierFrequency2++;

end
/* only m1j is an outlier */
outlierFrequency1++;

end
if m1j is not an outlier then
if m2j is not an outlier then

/* neither m1j nor m2j are outliers */
end
/* only m2j is an outlier */
outlierFrequency2++;

end

end
if outlierFrequency1 > outlierFrequencyThreshold then

t1() is an unstable timer
end
if outlierFrequency2 > outlierFrequencyThreshold then

t2() is an unstable timer
end

130

Chapter 4.

Quantifying Resource Demands for

Performance Prediction

The bytecode-based performance prediction presented in this thesis is imple-

mented as a tool suite called BYSUITE. This chapter describes how BYSUITE

quantifies resource demands for the subsequent use in performance evaluation

and performance prediction.

In devising an approach for resource demand quantification, this chapter ad-

dresses following scientific challenges:

• no special (purpose-built or modified) execution platform shall be needed

to run resource demand quantification

• the starting point of the approach is black-box bytecode of an application, i.e.

no source code should be needed

• the approach should require a minimum of execution platform perform-

ance indicators and monitoring facilities (to increase the applicability of

the approach to execution platform implementations)

• the approach should be applicable to complex, multi-threaded applications

and transparent non-explicit background resource demands

• the resulting demands should form an abstraction-raising aggregation of

individual resource usages, rather than a trace of them

The high-level view of the work performed by BYSUITE is shown in Figure 4.1:

the input consists of black-box bytecode application classes, the application

Chapter 4. Quantifying Resource Demands for Performance Prediction

workload plus the BYSUITE settings, and its output consists of aggregated re-

source demands which are valid for a given workload.

...
IINC
meth1()
IMUL
meth2()
ISTORE
LLOAD
LLOAD
...

Bytecode classes
of application

BySuite ...
27865*LLOAD
11108*IADD
976*meth1() ...

Application Workload Aggregated
resource
demands

348 KB read, ...BySuite Settings

Figure 4.1.: High-level overview of Resource Demand Quantification in BYCOUNTER

In general, resource demands of an application depend on its runtime usage

profile, because control flow constructs such as loops or branches depend on the

values of input variables. In the PCM, the state of an application is (currently)

not modelled explicitly, and case studies have shown that this does not pre-

vent the PCM and its tooling from delivering a very good accuracy for perform-

ance prediction. Instead, the variability of performance behaviour is captured

by measuring and predicting probability distributions of performance metrics,

which offers more information than just one value, be it worst case, median or

the mean.

Therefore, this thesis considers neither the state of the application nor the state

of execution platform and its resources in an explicit way. When quantifying

resource demands, the BYSUITE users need to make sure that the considered

application runs in the same state as intended (alternatively, different states of

the application or of the execution platform should be compared to each other

in terms of resource demands).

132

4.1. Timing Values versus Resource Demands

The contribution of this chapter is described in Section 4.4: using transparent

instrumentation of the application’s bytecode,platform-independent resource

demands are quantified accurately yet with a conveniently low overhead. This

solution runs on any standard-compliant Java Virtual Machine, and requires no

performance indicators since the executed bytecode instructions and methods

are the quantified resource demands.

This chapter starts with discussing the notion of resource demands (Sec-

tion 4.1), which is followed by the derivation of requirements for the process

to quantify resource demands in the scope of PCM (Section 4.2). Foundations of

Java bytecode and challenges for taking it as the basis for platform-independent

resource demands are discussed in Section 4.3.

4.1. Timing Values versus Resource Demands

“Why resource demands?” is a question often heard from practitioners when

the subject of a conversation is software performance. Indeed, time (and some-

times utilization or throughput) is the favourite performance metric as it is fa-

miliar, comparable, universal and (apparently) easy to measure. Another objec-

tion often heard is that it is sufficient to rank several alternatives (be it applica-

tions or platforms), and that concrete performance metrics are not needed, or

need not be precise: even if the value of a metric is off by a given factor, it is

sufficient for ranking as long as the other alternatives are off by the same factor.

In this section, time as the base metric for performance evaluation is demysti-

fied and the issues with platform-specific nature of timing values are explained.

From these findings, requirements for a better performance metric are derived,

and platform-independent resource demands are proposed as an alternative

which has several advantages over timing values and which can serve as (par-

tial) replacement for timing values.

133

Chapter 4. Quantifying Resource Demands for Performance Prediction

4.1.1. Effects on Preemption on Response Time Measurements

The most requested performance metric is the execution time of a request (a

request is a component service call, class method invocation, etc.). However,

simply measuring the timestamps at request start and request stop is not suf-

ficient and in general incorrect, as illustrated by Figure 4.2. If the request R1

R1
R2 R1

R2 R1
R2 R1

R2 R1
R2

R3 R3 R3

1 5 10 15 20 25 30 35

response time request R1: 9 time units
(work amount: 6 time units)

response time request R1: 14 time
units (work amount: 6 time units)

t

Figure 4.2.: Effects of preemption on relating response demands to execution time

is executed in parallel with other requests and activities (R2, R3), the preemp-

tion employed by the execution platform will mean that the timespan between

the start and the end of the request R1 will include phases where the request

is paused and other requests are executed. In a setting with different number

and behaviour of concurrent requests (or with different preemption behaviour

of the execution platform), the measured timespan between the start and stop

timestamps will be significantly different even if the actual request (and the res-

ulting resource demands) are the same.

4.1.2. Addressing Preemption during Time Measurements

Off-the-shelf performance evaluation tools such as profilers attempt to account

for preemption using sampling, application instrumentation or platform-provided

monitoring and instrumentation interfaces.

When using sampling, a profiler records (at short, regular intervals) which

thread and method are currently executed. From the recorded samples, the

134

4.1. Timing Values versus Resource Demands

profiler interpolates the approximate time that is spent executing a particu-

lar method by a given thread. The limitations of sampling are its inability to

grasp the actions that happen between samples, and the need of the execution

platform to support the sampling technique itself. Additionally, the interval

between samples influences the accuracy of the results, and must be set accord-

ingly.

Application instrumentation works by inserting code for querying and sav-

ing of the performance indicators values (values of instruments), for example

at method entry and method exit. The performance indicators can be time,

memory state etc., and vary from platform to platform in availability, accur-

acy and overhead. Even though application instrumentation promises a better

accuracy than sampling, it requires appropriate performance indicators to fulfil

that promise. For example, if the instrumentation is inserted only at method

entry and method exit, any preemption-caused execution pauses between will

only be captured properly is the recorded timestamps are thread-time and not

wall-clock time. As preemption is transparent to the executed application, it

must rely on the execution platform to provide timing information that accounts

for preemption, by providing thread time or process time performance indicat-

ors.

However, as has been shown in Chapter 3, accuracy of thread time perform-

ance indicators is far too coarse (e.g. 15 ms in the Java VM running onWindows)

to be useful for measurements on today’s systems. A rather large task, such as

sorting of an array with 4096 (!) random Integer elements takes 4 ms on a

computer with 1.6 GHz single-core CPU running the 32 bit Sun JVM on 32-bit

Windows XP computer with just 1 GB of main memory. 4 ms is less than the ac-

curacy of the thread time performance indicator on that platform, making that

indicator unusable for even such large tasks. With computers becoming faster

and the number of cores increasing, the conventional timer-based instrumenta-

tion becomes even less usable.

Monitoring and instrumentation interfaces cover a large spectrum of perform-

ance metrics and execution events, such as memory allocation, method entry,

135

Chapter 4. Quantifying Resource Demands for Performance Prediction

disk access, etc. Their availability, accuracy and overhead vary strongly across

operating systems, execution platforms and hardware. Examples of monitoring

interfaces provided by Java virtual machines include JMX (Java Management

Extensions) and JVMTI (JVM Tooling Interface), and the latter one is is a native

(i.e. non-Java) interface which requires manual implementation of JNI wrappers

to access the interface.

What can be seen from the discussion of sampling, instrumentation and mon-

itoring/instrumentation interfaces is that there are significant drawbacks when

focusing on timing values as primary performance evaluation results. To an-

swer the question “what are the alternatives?”, the mechanisms and actions that

lead to response time and other externally visible work effort quantifiers need

to be analysed.

4.1.3. Resource Demands

Resource demands are issued by applications and are executed by software re-

sources (e.g. operating system) and hardware resources (e.g. CPU and hard

disks). In addition to processing resources such as the CPU, there are passive

resources (e.g. monitors, barriers or instance of a pool) which influence the per-

formance of an application through waiting times that occur when a passive

resource to be acquired is not available immediately. This thesis focuses on pro-

cessing resources because the usage of passive resources is highly dependent on

the state and the usage profile of the application, and a PhD thesis on usage pro-

file ([160]) has dealt with these issues. Passive resources are outside the scope of

this thesis, but their influence of the approach described in this chapter will be

covered in Section 4.3.10.

From an application’s view, a resource demand results in time spent in dif-

ferent resources (resources can in turn use other resources, and resources can

work concurrently), plus some waiting times due to data flow or resource con-

tention. For example, the operating system processes a request to save data onto

the hard disk by performing CPU work (e.g. calculation of metadata), using the

main memory (to cache data) and the hard disk itself. Additionally, the result-

136

4.1. Timing Values versus Resource Demands

ing execution times are platform-dependent: the CPUs across platforms differ

in quantity and speed, memory sizes vary, etc. Thus, a timing value from one

CPU is not valid on another CPU; converting times into corresponding num-

ber of CPU cycles is not a remedy since pipelining and other resources do not

behave in a way that can be described by a linear factor.

Decomposing a resource demand into a demand tree (to quantify individual

resource demands) is a very complicated task which significantly increases the

complexity of performance evaluation. The resulting resource demand tree is

also platform-dependent and in the worst case, the level of detail becomes pro-

hibitively expensive: the CPU and other resources need to be simulated (or

emulated) down to a single work step, and a single work step is very hard to

time due to CPU pipelining and other issues. Additionally, the same resource

demand can be executed differently depending on the state of the execution plat-

form and the application itself: for example, when reading the data that is stored

on a hard disk, the presence of the data in the disk cache has a significant influ-

ence.

In some execution platforms, the resource demands are not issued explicitly

(i.e. through actions of the application), but the required work is determined

and performed by the execution platform in a more transparent way. For ex-

ample, in Java EE, the Enterprise Java Beans (EJBs) carry annotations in source

codewhich determine persistence, transactionality and other runtime behaviour

properties. The Java EE execution platform (i.e. an application server running

on top of a Java Virtual Machine) uses annotations that it finds inside the com-

piled bytecode to perform the needed runtime actions (e.g. persistence) without

the need for the application to call these actions explicitly, let alone to know their

signature. Such background resource demands pose an additional challenge

for performance prediction, not least because even for the same technology or

standard (e.g. Java EE), the background actions differ among implementors of

the standard.

137

Chapter 4. Quantifying Resource Demands for Performance Prediction

4.2. Requirements for Resource Demand Usage in the PCM

For performing architecture-level performance evaluation, the aforementioned

disadvantages of timing values and precise trees of resource demands call for

a trade-off solution which balances universality, precision and quantification

effort. The performance metric(s) constituting the sought solution should fulfil

the following requirements:

1. be suitable for performance modelling and performance prediction using

the Palladio Component Model

2. support the resources offered by the Palladio Component Model (in partic-

ular, active resources such as CPU or hard disks, see Section 2)

3. be platform-independent, but convertible into platform-dependent per-

formance metrics (e.g. timing values) in a systematic way with reasonable

overhead

4. be suitable for business application running on a managed execution plat-

form (i.e. where the memory management is the responsibility of the plat-

form, and not of the application)

5. incur a low effort to quantify the performance metric values (in particular,

the application should not be rewritten just to quantify resource demands)

6. reflect the parametric performance dependencies w.r.t. application work-

load

7. be applicable to complex, multi-threaded applications and transparent

non-explicit background resource demands

8. form an abstraction-raising aggregation of individual resource demands

(rather than a trace of resource demands)

9. require a minimum of execution platform performance indicators and

monitoring facilities (to increase the applicability of the metric to execu-

tion platform implementations)

138

4.2. Requirements for Resource Demand Usage in the PCM

10. account for future application of PCM and its tooling to other application

categories (such as embedded platforms)

The first requirement (suitability for the PCM) is of particular interest, because

the PCM already encourages platform-independent resource demands by dis-

tinguishing resource types (e.g. “CPU”) from concrete resource instances (e.g.

“Intel T7200”). The PCM as it was before this thesis required to specify the

number of CPU cycles needed to execute an internal action (of course, single-

threaded uninterrupted executionwas assumed as the valid setting for the num-

ber of CPU cycles). However, quantifying the number of CPU cycles in a static

way is not a viable option not only because of control flow and data flow de-

pendencies, but also because of CPU-specific pipelining-caused speedups.

Additionally, the executable form of today’s application is often not binary

machine code, but rather platform-independent, higher-level bytecode which is

executed by a virtual machine that sits on top of the operating system (CPUs

that have native support for bytecode are scarce and limited to embedded app-

lications, thus being out of scope for this thesis). Execution platforms that are

used for today’s applications often modify the application executables, as it is

the case when using aspect orientation (AOP) that employs bytecode weaving

or binary instrumentation.

Determining CPU cycle counts in a dynamic way requires support from the

execution platform, but the TSC counter which was discussed in Chapter 3

has been shown to be unreliable and unsuitable for multi-core operation (see

Section 7.2). Taking timing measurements for later conversion into CPU cycle

counts suffers from the drawbacks (outlined above in Section 4.1 in this chaper

as well as in Chapter 3), such as accuracy, reliability, influence of preemption

etc. Finally, modern CPUs feature load-dependent CPU frequency adjustment

mechanisms.

A universally applicable pattern for analysis of large, complex system is ana-

lysis of the system into its building blocks, e.g. components. The expectation

behind decomposing a system into its building blocks is that analysis of smaller

problems is simpler and more effective – but it is also implied that the results

139

Chapter 4. Quantifying Resource Demands for Performance Prediction

can be mapped back to the original system. In software engineering, breaking a

large application into components (or classes, modules, packages etc.) is done

with the same aim.

So far, the smallest (i.e. atomic) behaviour building blocks available in the

PCM were InternalActions, ExternalActions etc. – for a given atomic

building block, its resource demands (number of CPU cycles, etc.) had to be

determined using estimation, platform-specific measurements etc.

4.3. Using Java Bytecode for Resource Demand Quantification

Based on above requirements and observations, the solution chosen in this thesis

is to consider bytecode instructions and bytecode-level method invocations as building

blocks. These building blocks are platform-independent “by design”, as byte-

code is platform-independent and not specific for a given operating system,

hardware architecture or system type (bytecode is use on a wide range of com-

puters, frommainframes tomobile phones). In the remainder of this chapter, the

bytecode resource counting part of BYSUITE will be referred to as BYCOUNTER.

To obtain the number of executed bytecode-level building blocks for a given

component service request, transparent instrumentation of application bytecode

will be used. The design and details if the instrumentation mechanism will be

described in Section 4.4, but first, the foundations must be discussed, starting

with the bytecode itself. At a later step, these platform-independent resource

demands must be translated into platform-specific timing values (this challenge

is the subject of Chapter 5).

As a bytecode-based solution alone cannot be sufficient in all cases (i.e. when

a native method is called), this thesis devises a novel, hybrid approach which

is capable of measuring both platform-independent resource demands (on the

basis of bytecode) and platform-dependent timing values and resource de-

mands.

Before the proposed solution and the hybrid approach using it are explained,

the following section presents an introduction to bytecode, which is a prerequis-

ite for understanding the remainder of this thesis. In this thesis, Java bytecode

140

4.3. Using Java Bytecode for Resource Demand Quantification

is used as it is a very widely used, hardware-independent bytecode format

to which many programming languages beyond Java itself are compiled (e.g.

Scala, Clojure, JRuby and many others). Java bytecode is also the executables

format for enterprise applications and frameworks such as Java EE, Spring,

Grails, JBoss Seam etc. Even grid computing and cloud computing providers (e.g.

Google App Engine and others) execute applications supplied as Java byte-

code, where grid/cloud computing means virtualised multi-server execution

platforms which make the actual resources transparent and provide dynamic

runtime redeployment to support scalability, while still ensuring application

isolation and end-user satisfaction.

4.3.1. Foundations of Java Bytecode

Java bytecode is a hardware-independent and OS-independent format for ex-

ecutables, and it includes both instructions and data. Java bytecode is executed

on the Java Virtual Machine (JVM), which abstracts the specific details of the

underlying software/hardware platform. The JVM specification [110] sets the

JVM, the Java programming language and the Java bytecode into relation. It

includes a description of the semantics of bytecode execution, an explanation of

the format of bytecode classfiles, and discusses the compilation of programming

languages to Java bytecode. However, the JVM specification neither mandates

nor clarifies how Java bytecode is executed on particular hardware/software of

a given execution platform.

Java bytecode is more abstract and higher-level than machine code (which is

executed directly by a computer’s CPU): for example, Java bytecode does not

contain instructions to allocate or free memory, since the JVMmanages memory

for applications that it executes. On the other hand, Java bytecode contains con-

structs which are not found in machine code: bytecode contains classes, objects

andmethods as visible, first-class entities (whereas machine code is not aware of

functions but only uses jumps and stack-based saving of instruction points for

function returns). The names of variables/fields (and methods) are also visible

141

Chapter 4. Quantifying Resource Demands for Performance Prediction

in bytecode (unless obfuscated), and even line numbers are visible by default

(for debugging purposes).

Java bytecode is stack-oriented, but it also provides up to 65536 local variables

that methods can use to store value-typed data as well as pointers to objects.

The executable elements of Java bytecode fall in two categories: methods and

primitive instructions (the primitive instructions form the bodies of methods;

primitive instructions used for invoking methods will be described further be-

low). Other elements of a classfile, such as the constant pool, attributes, fields,

access flags etc. are not executable.

There can be at most 28 primitive instructions (where 8 is the bitsize of 1 byte)

– the name bytecode stems from the 1 byte needed to store primitive instruc-

tions, not taking into account instruction parameters. Currently, only 203 in-

structions are defined and implemented, with the remainder being reserved for

future purposes (and thus unavailable for programmer-driven extensions of the

instruction set). Rather than referring to bytecode instruction by their numerical

values, the JVM specification and other bytecode publications and tools make

use of textual mnemonics which convey the semantic of the instruction.

For example, consider the allocation of object arrays: the Java bytecode fea-

tures an own instruction with hexadecimal opcode 0xBC for this task, which

corresponds to decimal opcode 188. The textual mnemonic for it is NEWARRAY, a

self-described name which is more suitable for documentation – the remainder

of this thesis prefers mnemonics over opcodes. Note that the primitive type of

the array to create is stored directly in the bytecode of the method which in-

cludes NEWARRAY. At runtime, NEWARRAY expects the size of the array to create

to be located on the top of the JVM stack – when executing NEWARRAY, the JVM

pops the stack’s topmost element, uses it as the size of the array, and pushes

a reference to the created array onto the stack. From the performance point of

view, the execution duration of NEWARRAY is influenced by the size of the ar-

ray and by the type of the array (e.g. a a primitive double needs twice as much

bits as a primitive int on 32-bit hardware) [180]. The performance of NEWARRAY

may also depend on the JVM configuration and other factors – Chapter 5 will ad-

142

4.3. Using Java Bytecode for Resource Demand Quantification

dress this question in more detail. Note that a separate instruction, ANEWARRAY,

is used for creating arrays with non-primitive elements.

Direct dealing with bytecode is cumbersome and error-prone, but neither the

Java Development Kits (JDKs) nor the JVMs are providing bytecode construc-

tion tooling beyond source code compilers. As a consequence, bytecode engin-

eering frameworks such as BCEL [115] or ASM [114] have been created to al-

low analysis, instrumentation, direct creation and verification of Java bytecode.

However, these tools often introduce simplifications that hide some aspects of

bytecode from the programmer.

For example, consider loading of primitive integer values from local variables

onto the stack. In Java bytecode, this is accomplished by the ILOAD instruction

that pops its sole parameter (the index of a local variable storing a primitive

integer) from the stack and pushes the primitive integer (read from the local

variable) onto the stack. There exist four additional instructions that serve as

shortcuts for ILOAD: ILOAD_0, ILOAD_1, ILOAD_2, ILOAD_3, where the local

variable index is signalled by the digit in the opcode’s mnemonic. The shortcuts

do not expect a parameter on the stack, and the JVM may execute a ILOAD_0

faster than ILOAD with 0 on the stack (or faster than ILOAD preceded by an

operation such as ICONST_0 to push 0 onto the stack).

However, the ASM framework does not distinguish between ILOAD_0 and

ILOAD 0when parsing the bytecode of classfiles, and similar simplifications are

applied to other cases, incl. the WIDE instruction. The effect of this simplification

will be studied later by comparing the performance of ILOAD_0 vs. ILOAD, and

for similar constellations. In the following two subsections, the role of methods

andmethod invocations in bytecode is studied, followed by the usage of passive

resources in bytecode.

4.3.2. Black-box Java Bytecode

A black-box Java bytecode component (hereafter called BBBC) is a set of Java classes

which are present only as bytecode without further information about their in-

ternals. In particular, a BBBC comes without source code, without static or

143

Chapter 4. Quantifying Resource Demands for Performance Prediction

dynamic models (architectural, performance or other), and without human-

readable documentation about its internal working.

As it is possible to modify bytecode after compilation in several ways: by

applying post-compilation AOP (rather than using AOP inside source code),

using load-time instrumentation (e.g. using java.lang.instrument pack-

age of the Java Platform API), at runtime using JVM’s Hotswap technique [181]

or using JRebel [182], etc. However, using bytecode for resource usage quan-

tification must be applied to the bytecode as it is executed. Thus, we assume

that during analysis presented in this thesis, a BBBC is final in the sense that its

bytecode will not be changed for execution. However, as the implementation of

the presented approach itself supports and uses load-time instrumentation, it is

nonetheless possible to apply it even in scenarios where third-party load-time

instrumentation is taking place: by assuring that BYCOUNTER instrumentation

is the last part of the instrumentation chain, resource demandswill be quantified

properly.

The only artefacts which are exposed by BBBC are its provided and required

interfaces (we follow Szyperski’s definition of a component [183]), and a BBBC

cannot directly access the fields of classes that belong to other BBBCs. Since the

BBBC is black box, there is also no behaviour model and thus no description on

how and when externals calls to other components are performed. Note that

the calls to the Java Platform API which are present in Java bytecode are not

considered as calls to external components, but rather as calls to the underlying

infrastructure.

While some programming languages offer constructs and concepts of com-

ponents, there are no components at bytecode level – only classes and (object-

oriented) interfaces. Therefore, to apply component-oriented approaches (such

as performance prediction in the Palladio Component Model context) on black-

box bytecode, the semantic gap between bytecode and components must be

bridged, by mapping bytecode-level artefacts to component-level modelling

artefacts.

144

4.3. Using Java Bytecode for Resource Demand Quantification

For example, a black-box component that implements sorting can consist of

several classes (dictionary, buffer, main logic etc.), and it provides one or several

interfaces to access its functionality. The sorting component may use classes and

methods of the Java PlatformAPI (e.g. collection classes). Creating performance

models for BBBC is needed in reverse engineering, as well as in scenarios where

legacy or IP-protected third party components are used: without source code or

when decompilation is not allowed, bytecode and the publicly visible interfaces

are the only artefacts available for model creation.

BBBCs are also important even when the source code is available: the source

code does not provide enough information on the performance and the source

code cannot be executed to observe its dynamic (runtime) behaviour. To the best

of our knowledge, there is no tool that analyses the performance of a component

on the basis of its source code. Additionally, the results of translating source

code into executable bytecode also depend on the used compiler, and the Java

compilation is not standardized.

In the next section, bytecode instructions are subjected to a more detailed

analysis which will help in explaining the design and implementation of BY-

COUNTER.

4.3.3. Bytecode Instructions with Special Roles and Properties

The majority of Java bytecode instructions are rather straightforward to under-

stand and to analyse, as they perform stack loading and clearing, mathematical

operations, comparisons, conversions, control flow and similar tasks. Some in-

structions, however, require more attention from the performance point of view,

e.g. when their parameters have a strong impact on their performance.

The ATHROW instruction throws an error or an exception, which results in a

rather costly chain of operations by the JVM. However, as exceptions/errors

should not be a part of conventional program execution, their influence on com-

ponent performance under normal conditions is expected to be negligible in this

thesis. Note that both PCM and Beagle neither consider nor model exception-

s/errors for the same reasons.

145

Chapter 4. Quantifying Resource Demands for Performance Prediction

CHECKCAST is another instruction of special interest : it pops an object in-

stance from the stack, tries to cast it into an instance of a type given by

CHECKCAST’s bytecode-stored argument, and pushes the result of the cast onto

the stack (if the cast operation is illegal or fails, an exception is thrown). Con-

sider the following sequence of statements:

float floatA = 0f;

double doubleB = (double) floatA;

java.lang.Number numberC = new java.lang.Float(0);

java.lang.Number numberD = (java.lang.Double) numberC;

While the cast from floatA to doubleB is performed via the primitive byte-

code instruction with the mnemonic F2D (float to double), the cast from

numberC to numberD is performed via the CHECKCAST instruction. Note that

at runtime, a java.lang.- ClassCastException will be thrown because a

Float cannot be casted into a Double despite the fact that both are floating-

point values and the range of Double fully includes (and extends) the range of

Float.

The instruction INSTANCEOF is similar to CHECKCAST: it returns int values

0/1 as false/true if the object on the stack is instance of its in-bytecode para-

meter (which designates the class type to perform the check against). Note tat

INSTANCEOF does not throw runtime exceptions.

The instruction WIDE is an optional immediate predecessor for instructions

such as ILOAD, istore etc. [110]. The WIDE instruction is used to allow the

immediately following instruction the access to local variables beyond indexes

0...255 (stored in 1 byte) by using WIDE addressing. Wide addressing means that

the index of the local variable is stored in two bytes (16 bits), which allows up

to 216 = 65, 536 local variables to be addressed. Note that the JVM specification

does not mandate the bytecode creator’s choice of used local variable indexes:

an index ≥ 256 can be used even if local variables with indexes ≤ 255 haven’t

been used up. In practice, however, methods which required more than 256

local variables are extremely infrequent, and possible performance implications

of the WIDE instruction can be considered negligible.

146

4.3. Using Java Bytecode for Resource Demand Quantification

4.3.4. Parameters of Bytecode Instructions

Java methods have explicit input parameters (i.e. the parameters are listed in

the method’s signature) – any other values that a method needs can be accessed

from inside the method’s body, adhering to the Java access modifiers and inher-

itance rules.

In contrast to methods, arguments of Java bytecode instructions come from

three locations: bytecode of the class, the stack and the JVM local variables. For

example, consider the NEWARRAY instruction: it creates a new primitive-typed

array, where the new array’s type is compiled into bytecode (i.e. it is fixed after

compilation) and the new array’s size is passed over the stack.

To used bytecode instructions as resource demand metric for performance

prediction, bytecode instructions’ input parameters which are relevant for per-

formance must be identified. The majority of bytecode instructions has no para-

metric dependencies: for example, the execution duration of adding 1 and 2

using IADD should be the same as adding 10 and 20. Even for “border cases”

(such as adding Integer.MAX_VALUE to Integer.MAX_VALUE, which leads

to an overflow), IADD should have the same performance: the IADD operation

does not signal the overflow in any way (i.e., not exception is thrown and no

flag is set).

Among the Java bytecode instructions, the following instructions have input

parameters which could be performance-relevant, or could influence other in-

struction in a performance-relevant way:

1. WIDE

2. NEW

3. DDIV/LDIV/IDIV/LDIV and DREM/LREM/IREM/LREM

4. MONITORENTER, MONITOREXIT

5. LOOKUPSWITCH and TABLESWITCH

6. MULTIANEWARRAY, NEWARRAY, ANEWARRAY

147

Chapter 4. Quantifying Resource Demands for Performance Prediction

The NEW instruction ensures that “memory for a new instance of that class is

allocated from the garbage-collected heap, and the instance variables of the new

object are initialized to their default initial values” [110]. This definition im-

plies that the type for which NEW is executed is relevant for NEW’s performance:

after all, the time to initialise an object instance depends on that object’s type.

Note, however, that the bytecode-level NEW instruction does not correspond to

source-level new keyword: in bytecode, a NEW is followed by the invocation of

a constructor (the equivalent of source code construct new <Type>(...) or a

method which creates an instance of the desired type. BYCOUNTER approaches

the NEW bytecode instruction in the following way: it does not separate the time

spent calling a constructor/factory method from the time spent executing NEW

and thus the performance of NEW on its own does not have to be quantified.

For DDIV and similar mathematical operations, itmay be the case that the divi-

sion is performed iteratively and finishes faster if the result is an integer number:

for example, 4.0 divided by 2.0 may be faster than 2.9 divided by 7.9. To study

if such an effect is indeed observable, two experiments were performed, where

each experiment contained 500 repetitions of a measurement containing 4000 di-

visions. Each repetition started by filling an array of dividends (4000 elements)

and the divisors into another array of 4000 elements. In the first experiment,

all divisions had integer-typed results while the second experiment had exclus-

ively floating-point results. For each of the repetitions of the first experiment,

this was achieved by randomly generating the dividends ddi and divisors dsi

(0 ≤ i < 4000) in the following way (nextInt(val) returns a random integer r with

0 ≤ r < val):

expds,i := nextInt(30) (4.1)

dsi := 2expds,i (4.2)

ddi := 2expds,i+1+nextInt(30−1−expds,i) (4.3)

For each of the repetitions of the second experiment, the dividend and the di-

visor were created in a random way (where the division result would be an

integer, the random generation was repeated until the results of the division

148

4.3. Using Java Bytecode for Resource Demand Quantification

would be non-integer). Comparing the results of the first and the second exper-

iment (after capping the outliers, i.e. the largest 10% of the repetitions), the sig-

nificant statistics computed from the 500 repetitions are within 5% of each other.

Therefore, DDIV does not show significant parametric performance dependen-

cies, and its parameters can be disregarded. Since the parameters of LDIV, etc.

behave in a similar way, they can be disregarded as well.

For MONITORENTER and MONITOREXIT, see the discussion in Section 4.3.10:

the parameters may be relevant, but they refer to runtime object instances,

which may or may not be recorded persistently. Therefore, the parameter of

the MONITORENTER and MONITOREXIT can e.g. be a String representation

of the object instance (e.g. a concatenation of the class type and the int value

returned by java.lang.Object.hashCode()method).

4.3.4.1. LOOKUPSWITCH and TABLESWITCH

The instructions LOOKUPSWITCH and TABLESWITCH are used to implement

the switch-case Java construct in bytecode, where switch supports a vari-

able number of cases (0 cases are also supported). The “control variable” of

switch must be integer-typed, but byte, char, short, their boxed object

types (Integer etc.) and enums are also supported. The switch construct re-

quires that all case conditions are constant expressions; optionally, an explicit

default case can be specified.

To demonstrate the intricacies of switch, an example of switch is given

in Listing 4.3 alongside the corresponding bytecode, as created by the default

compiler in Eclipse 3.5 and shown by the Bytecode Outline Plugin [184] using

ASM-oriented mnemonics. The switcher variable is an int, as is the incre-

mented variable. Note that the source-level keyword break plays an im-

portant role for switch: if case that applies does not terminate with break

(e.g. switcher==1), all subsequent case(s) are executed, regardless of whether

their case check returns true or false. In Listing 4.3, replacing the con-

stant expression 100 in the last case check with 3 leads to the replacement of

LOOKUPSWITCHwith TABLESWITCH.

149

Chapter 4. Quantifying Resource Demands for Performance Prediction

switch (switcher) {
 case 1:
 case 0:
 variable += 1;
 break;
 case 2:
 variable += 2;
 break;
 case 100:
 case 101:
 variable += 100;
 break;
 default:
 variable += 256;
}

L2 ILOAD 3
 LOOKUPSWITCH
 0: L3
 1: L3
 2: L4
 100: L5
 101: L5
 default: L6
L3 LLOAD 1 LCONST_1 LADD LSTORE 1
L7 GOTO L8
L4 LLOAD 1 LDC 2 LADD LSTORE 1
L9 GOTO L8
L5 LLOAD 1 LDC 100 LADD LSTORE 1
L10 GOTO L8
L6 LLOAD 1 LDC 256 LADD LSTORE 1
L8 RETURN
L11

Figure 4.3.: Implementation of switch Java construct in Java bytecode

The performance of TABLESWITCH/LOOKUPSWITCH depends on the num-

ber of checks (case comparisons) that must be performed, all other work is ex-

plicit in the form of GOTO statements. To study whether TABLESWITCH and

LOOKUPSWITCH indeed have significant parametric dependencies on the num-

ber of checks, a series of four experiments was created for each of these two

opcodes: Exper1,. . .,Exper4 and Exper5,. . .,Exper8.

Each experiment consists ofmmeasurements, and each measurement consists

of c “chainings” of switch statement executions, i.e. the time interval retrieved

by one measurement corresponds to c switch statement executions. The meas-

ured switch statements are designed so that the experiments Exper1 through

Exper4 use TABLESWITCH and Exper5 through Exper8 use LOOKUPSWITCH.

The experiments are designed as follows:

1. Exper1 and Exper5: such a constant value is passed to the switch state-

ment that exactly 1 case check is required

2. Exper2 and Exper6: such a constant value is passed to the switch state-

ment that exactly n (n > 1) case checks are required

150

4.3. Using Java Bytecode for Resource Demand Quantification

3. Exper3 and Exper7: such a randomly generated value is passed to the

switch statement that 1 case check is required in 50% of the cases and

2 case checks are required in remaining 50% of the cases (the duration of

value generation is included in the measurement and the generation re-

peated for each of the c chainings)

4. Exper4 and Exper8: such a randomly generated value is passed to the

switch statement that n (n > 1) case checks are always requireds in all

100% of the cases (the duration of value generation is included in the meas-

urement and repeated for each of the c chainings)

Table 4.4 presents the results of the experiments, run on a computer with a

single-core Intel N270 CPU (1.60 GHz) and 1 GB of main memory. The used

JVM was Sun’s Java SE JDK with JRE 1.6.0_18 with default settings, i.e. with

JIT turned on. The timer method was java.lang.System.nanoTime(), and

the results in Table 4.4 are values after nanoTime()’s median invocation cost

on the used platform were substracted from the actual measurements. All eight

experiments were run with m = 1000, c = 200 and n = 7, and the values in Table

4.4 are median values (across 1000measurements) for 200 chainings of the switch

statement.

m=100, c=200,
n=7, medians:

1 comparison,
fixed case

n comparisons,
fixed case

1 comparison,
random case

n comparisons,
random case

 incl. random case generation
TABLESWITCH E1 1118 ns E2 2514 ns E3 20674 ns E4 21512 ns
LOOKUPSWITCH E5 1118 ns E6 2236 ns E7 20674 ns E8 21791 ns

Figure 4.4.: Parametric performance dependencies of LOOKUPSWITCH and TABLE-
SWITCH

As can be seen from Table 4.4, the number of checks influences the execution

duration of the instruction by the factor of two: compare Exper1 (1118200 ≈ 5.5 ns

151

Chapter 4. Quantifying Resource Demands for Performance Prediction

per instruction) with Exper2 (2514200 ≈ 11.5 ns per instruction). Is is also plaus-

ible that the execution scales approximately linearly with the number of per-

formed comparisons. Yet to evaluate the actual number of checks performed by

LOOKUPSWITCH/TABLESWITCH, a complicated runtime monitoring and ana-

lysis of cases would be necessary.

Instead, BYCOUNTER assumes that for a given switch statement that has n

checks, the runtime number of performed checks is equally distibuted between 1

and n (incl.). Then, it suffices to record how often a particular switch statement

is executed, given that its maximum number of checks (n) is parsed statically

and given that its execution duration is parametrised over the number of per-

formed checks (see Section 5 for how this is accomplished during benchmarking

phase in BYCOUNTER).

4.3.4.2. ANEWARRAY, NEWARRAY and MULTIANEWARRAY

The last group of instructions (NEWARRAY, ANEWARRAY and MULTIANEWARRAY)

are the most interesting one from the performance point of view. For one-

dimensional arrays, NEWARRAY is used for primitive data types (int, long

etc.), while ANEWARRAY is used for object-typed arrays (Integer, Long etc.).

MULTIANEWARRAY is used for multi-dimensional arrays, both primitive and

object-typed – it distinguishes between a primitive short and an object-typed

Short.

As shown in [180], array creation performance depends on the array type and

array size. For the primitive types (i.e. NEWARRAY), a possible simplification

would be to abstract from the concrete types and to concentrate on the perform-

ance: than, it would be better to see NEWARRAY as depending on the bytesize of

the array type. However, the bytesize of primitive types differs across platforms

(e.g.. between 32 bit and 64 bit).

ANEWARRAY allocates the memory of (initially unresolved/null) references to

the objects, which are created and stored separately. ANEWARRAY does not alloc-

ate the memory for the elements of the array it creates – therefore, the perform-

ance of ANEWARRAY depends only on the size of the array to create.

152

4.3. Using Java Bytecode for Resource Demand Quantification

Finally, MULTIANEWARRAY must be addressed. In source code, a multidi-

mensional primitive typed array declaration such as int[][] arr = new

int[2][4] is translated to bytecode as a single MULTIANEWARRAY instruc-

tion – the sub-arrays are not created explicitly. An alternative to considering

the individual dimensions would be to consider totalNumberOfElements,

which would be a product of individual dimensions (in the above example,

totalNumberOfElements would be 8). This alternative would also invite

a simplification to enable performance-oriented comparison and aggregation:

new int[3][5]would be treated the same as new int[5][3], and the same

as new int[15].

4.3.5. Methods in Bytecode and Java Platform API

In Java bytecode, four instructions are used to invoke Java methods, includ-

ing those of the Java API: INVOKEINTERFACE, INVOKESPECIAL, INVOKE-

STATIC and INVOKEVIRTUAL (hereafter called INVOKE*). The signature of the

invoked method (callee) appears as the parameter of the INVOKE* instruction

executed by the caller, while the parameters of the invokedmethod are prepared

on the stack before method invocation.

While the extent (package, classes/interface, methods) of the Java Platform

API is known, each JVM is supplied with a set of Java classes that form the

vendor-specific implementation of the Java API. At bytecode level, no distinction

is made between methods that are part of the Java Platform API and non-API

methods, even though the extent of the Platform API is known. Furthermore,

from a caller’s side, it is impossible to detect whether the implementation of a

callee is native except by analysing the callee’s implementation (native methods

will be addressed in Section 4.3.6).

These facts raise the question of how to deal with a callee when quantifying

resource demands of the caller, with the following options being available:

• treat a callee as an atomic entity and do not decompose it into the constitu-

ent bytecode instructions (and possibly method invocations)

153

Chapter 4. Quantifying Resource Demands for Performance Prediction

• decompose every callee as far as possible into bytecode instructions, skip-

ping nativemethods and accepting that at runtime, a polymorphic call may

land at a callee method that hasn’t been decomposed

• specify which callees should be decomposed (e.g. callees that belong to

the considered application’s implementation) from those callees which

shouldn’t be decomposed (e.g. the Java Platform API methods or nat-

ive methods), with the latter being regarded as atomic resource demands

which must be translated at platform-specific timing values at a later stage

For a considered method (either a “direct” callee of the considered caller, or a

“child callee” of a callee down the calling context tree), these three options boil

down to a binary decision: decompose or leave atomic.

For a method implementation which is “left atomic”, its (platform-specific) ex-

ecution duration depends on its input parameters. For non-static methods, the

execution duration also depends on the state of the invocation target- the state

of the execution platform beyond this will be ignored due to complexity and

lack of support in the PCM. To simplify the wording, from now on method para-

meters refers both to method input parameters and to the invocation target (for

non-static methods).

To understand the impact of polymorphism on bytecode analysis, consider the

example in Listing 4.1 which helps with analysing the invocation targets of non-

static methods, and the bytecode instructions used for invoke these methods.

1 public c l a s s GettingObjectRuntimeType {

2 private s t a t i c void ca l lPo lymorphica l ly (MyClassInterface

myClassInter face) {

3 myClassInter face . s tdP r in t l n () ;

4 System . out . p r in t l n (myClassInter face . ge tClass () . getCanonicalName ())

;

5 }

7 public s t a t i c void main (S t r ing [] args) {

8 / / 1 .

9 MyClassParent parent = new MyClassParent () ;

154

4.3. Using Java Bytecode for Resource Demand Quantification

10 parent . s tdP r in t l n () ;

11 System . out . p r in t l n (parent . ge tClass () . getCanonicalName ()) ;

13 / / 2 .

14 MyClassParent childMaskingAsParent = new MyClassChild () ;

15 childMaskingAsParent . s tdP r in t l n () ;

16 System . out . p r in t l n (childMaskingAsParent . ge tClass () .

getCanonicalName ()) ;

18 / / 3 .

19 MyClassChild ch i ld = new MyClassChild () ;

20 ch i ld . s tdP r in t l n () ;

21 System . out . p r in t l n (ch i ld . ge tClass () . getCanonicalName ()) ;

23 / / 4 .

24 MyClassInterface parentMaskingAsInterface = new MyClassParent () ;

25 parentMaskingAsInterface . s tdP r in t l n () ; / / i n v o k e i n t e r f a c e on

MyC l a s s I n t e r f a c e

26 System . out . p r in t l n (parentMaskingAsInterface . ge tClass () .

getCanonicalName ()) ;

28 / / 5 .

29 MyClassInterface chi ldMaskingAsInterface = new MyClassChild () ;

30 chi ldMaskingAsInterface . s tdP r in t l n () ; / / i n v o k e i n t e r f a c e on

MyC l a s s I n t e r f a c e

31 System . out . p r in t l n (chi ldMaskingAsInterface . ge tClass () .

getCanonicalName ()) ;

33 / / 6 .

34 ca l lPo lymorphica l ly (new MyClassParent ()) ;

36 / / 7 .

37 ca l lPo lymorphica l ly (new MyClassChild ()) ;

38 }

39 }

155

Chapter 4. Quantifying Resource Demands for Performance Prediction

43 in t e r f a ce MyClassInterface {

44 public void s tdP r in t l n () ;

45 }

47 c l a s s MyClassChild extends MyClassParent {

48 public void s tdP r in t l n () {

49 System . e r r . p r in t l n (" Child ") ;

50 }

51 }

53 c l a s s MyClassParent implements MyClassInterface {

54 public void s tdP r in t l n () {

55 System . out . p r in t l n (" Parent ") ;

56 }

57 }

Listing 4.1: Effect of polymorphism on method invocation in bytecode

For case 1., the INVOKEVIRTUAL instruction is used to invoke the signature

MyClassParent.stdPrintln() – this is well expected, and the output on

standard out is Parent. For case 2., the INVOKEVIRTUAL instruction is used to

invoke the same signature MyClassParent.stdPrintln(), and this means

that the declared type of childMaskingAsParent is used – still, the output on

standard out is Child, i.e. the correct implementation of the method (the one

in MyClassChild, the runtime type of childMaskingAsParent) is used. As

these two cases show, one must analyse the invocation target type to correctly

account for the actually executed method – note that the reference to the invoc-

ation target is placed onto the JVM stack during execution, and can be analysed

by BYCOUNTER, using the java.lang.Object.getClass()method.

The fact that the declared type of the invocation target decides which sig-

nature will be inserted into bytecode is visible from cases 4. and 5.: in

both, INVOKEINTERFACE of MyClassInterface.stdPrintln() is found

in bytecode. Still, of course, the right method implementation is resolved

by the JVM, and the runtime type of the invocation target can be retrieved

using getClass(), which works for Interface-typed variables. For case

156

4.3. Using Java Bytecode for Resource Demand Quantification

6., INVOKEINTERFACE is found in the bytecode of callPolymorphically,

which is expected.

Due to polymorphism, the implementation of a callee may change between in-

vocations and thus the callee’s performance changes between invocations. Even

for a fixed callee implementation, the parameters of the callee can vary from

invocation to invocation and they can have crucial impact on the method’s per-

formance, which then also differs among invocations. Thus, the parameters of

atomic, non-decomposed methods must be recorded during resource demand

quantification as a prerequisite for correct translation to timing values at a later

stage. Consequently, translation of callee invocations to time values must also

be parameter-aware.

Often, the parameter values are not needed in their entirety, but the parameter

characteristics are sufficient: for example, if a method takes an int array as in-

put parameter, it is sufficient to record the array’s size instead of recording all

the values in the array. Such an abstraction (discussed in more detail in Sec-

tion 4.4) helps to raise the abstraction of resource demand quantification, and

simplifies/streamlines the quantification itself.

On the other hand, an abstraction may miss the point: if the method is sorting

the array elements, the entropy (“un-sortedness”) of the array may be import-

ant as well, though it is hard to quantify in an effective way. Additionally, as

Java bytecode instructions or methods can have parameters of arbitrary object

types (incl. transient ones), persistent parameter recording by simply saving

the parameter value may be not only irrational, but also technically impossible.

Hence, to allow for flexibility in parameter characterisation treatment, hooks (in-

sertion points, “callbacks”) should be provided so that third parties can “plug

in” external methods for computing parameter characterisations.

For “decompose”, the question arises on how to deal with the method invoca-

tions found in a given method implementation: should they be decomposed as

well (and possibly in a recursive way)? It also remains questionable whether de-

composing a method into a large number of fine-grained bytecode instructions

leads to higher precision during performance prediction. This question will be

157

Chapter 4. Quantifying Resource Demands for Performance Prediction

addressed later in Chapter 5, in the context of benchmarking of API methods,

where the benchmarking of an API method as an atomic entity will be contras-

ted with predicting its performance from the constituent bytecode instructions.

From a practitioner’s point of view, the resource demand of a method is easy

to understand when it is specified as (platform-specific) timing value (possibly

with a parametric dependency on the method’s input parameter). In contrast

to that, if the practitioner is confronted with (aggregated) counts of bytecode

instructions (and possibly some indecomposable native methods), the method’s

performance is harder to judge and to compare.

Note, however, that it is still possible to turn the aggregated instruction counts

into a platform-specific timing value if there is a mapping from instructions to

their platform-specific execution durations (Chapter 5 shows how to obtain such

a mapping using virtual machine benchmarking).

Parameters of non-INVOKE* bytecode instructions can be significant, because

they influence the execution speed of the instruction [185]. Hence, in order to

describe the bytecode-based resource demands of applications as precisely as

possible, it must be possible to record bytecode parameters. However, para-

meter recording slows down the execution of the instrumented methods, and

parameters may be relevant only in specific cases and only for some instruc-

tions or methods.

4.3.6. Native Methods in Java Bytecode

Because native methods cannot be decomposed into bytecode instructions, they

must be treated as atomic entities and should not be instrumented – this means

that native methods must be recognised as such by BYCOUNTER. In byte-

code, a native method implementation is visible by the access flag ACC_NATIVE

(see [110], Section 4.1), though this flag is not part of the method’s signature and

thus not visible to the method’s caller.

The JVM Tooling Interface (JVMTI) supports dealing with native methods,

and Binder et al. [92] have performed a study on the quantitative evaluation

of the contribution of native code to Java workloads inside SPECjvm98 bench-

158

4.3. Using Java Bytecode for Resource Demand Quantification

marks. According to [92], the quantitative contribution was below 6% for all

SPECjvm98 parts except for the Java compiler javac and for “Jack”, a Java parser

generator.

Native method detection can be implemented using JVMTI following the

guidelines of [92], but a JVM is not required to implement JVMTI and JVMTI

is missing from Jikes RVM and other Java Virtual Machines. Therefore, a sim-

pler but equally effective approach was chosen for BYCOUNTER that performs

bytecode analysis using the ASM framework without using JVMTI. Not requir-

ing JVMTI (which must be accessed using native C/C++ code) ensures that BY-

COUNTER itself does not use native code and remains a truly platform-indepen-

dent approach.

In Java bytecode, it is not possible to recognise whether a called method is

native or not just by looking at the method’s invocation in caller’s bytecode:

the signature does not expose a method’s nativeness, and all four INVOKE*
opcodes are used to invoke native methods, and none of them is exclusive to

nativemethods. Though there are no methods declared as native in interfaces

(JVM specification[110], Section 2.13.3.2), still “a method declared in an interface

may be implemented by a method that is declared native [...] in a class that

implements the interface”.

Thus, the callee’s method bytecode implementationmust be inspected to check

for the ACC_NATIVE flag, which can be detected statically by ASM (but also

by bytecode engineering frameworks or through direct bytecode analysis, so

using ASM is not a restriction) Note that there are no native constructors (JVM

specification [110], Section 2.12.1), so constructors (which are very similar to

methods at bytecode level) can be treated as non-nativemethodswithout further

inspection.

Thus, if before execution it is known which methods will be invoked during an

application’s execution, it is possible to detect which ones of them are native.

In the case where it cannot be known which methods will be invoked during an

application’s execution (e.g. due to polymorphism), approaches such as the one

159

Chapter 4. Quantifying Resource Demands for Performance Prediction

introduced in this thesis (using load-time bytecode instrumentation, see Sec-

tion 4.4) need to analyse the method’s access flags on the fly.

4.3.7. Static Methods in Java Bytecode

Static methods are invoked at bytecode level only using the INVOKESTATIC in-

struction – other INVOKE* instructions cannot be used. This is particularly inter-

esting in the context of polymorphism: static methods cannot be abstract

and therefore interfaces cannot contain static methods. abstract classes can

contain staticmethods but cannot contain abstract staticmethods.

At the level of Java programming language, it is allowed (though discour-

aged) to invoke static methods on instances of declaring classes. For example,

consider Listing 4.2: running the class MyClass will output true, false and

true.

1 public c l a s s MyClass {

2 public s t a t i c void main (S t r ing [] args) {

3 MyClass myClassA = new MyClass () ;

4 System . out . p r in t l n (myClassA . doSmthg ()) ;

6 ExtendingMyClass myClassB = new ExtendingMyClass () ;

7 System . out . p r in t l n (myClassB . doSmthg ()) ;

9 MyClass myClassC = (MyClass) myClassB ;

10 System . out . p r in t l n (myClassC . doSmthg ()) ;

11 }

13 public s t a t i c boolean doSmthg () { return true ; }

14 }

16 public c l a s s ExtendingMyClass extends MyClass {

17 public s t a t i c boolean doSmthg () { return fa l s e ; }

18 }

Listing 4.2: Static methods in declared and runtime classes

While the first two outputs are expected, the third output shows that when

using the (discouraged) source code style for calling static methods on a class

160

4.3. Using Java Bytecode for Resource Demand Quantification

instance, the instance’s declared type is deciding (here, it is MyClass) – not the in-

stance’s runtime type (which is ExtendingMyClass for myClassC, even des-

pite the cast to MyClass).

Another executable static element of Java classes are static initialisers, ex-

pressed at source code level as static{...}. Inside bytecode, they are im-

plemented using a special static method, called <clinit> by ASM. <clinit>

is not invoked explicitly inside bytecode when its class is used – instead, the

JVM invokes <clinit>when the class is loaded by the ClassLoader. However,

as <clinit> contributes to the total performance of an application, it must be

instrumented as well.

A related concern are constructors: at bytecode level, they are represented as

non-static special methods. Even when the source code of a non-abstract class

does not contain an explicit constructor, a default constructor (ASM signature

public <init>()V) is created. As for static initialisers, the bytecode of con-

structors must be instrumented to account for the resource demands created

by class instance construction. Note that when instrumenting transitively, con-

structor implementation will be instrumented once their invocations (through

the INVOKESPECIAL opcode) is detected. As <clinit> is never called expli-

citly inside bytecode, it will be instrumented for all application classes to make

sure its performance impact is not missed.

4.3.8. Working with Calling Context Trees

When a method invokes another method, the invoked method can itself invoke

other methods. Rather than just the signatures of the callees, their paramet-

ers are also significant, and a calling context encompasses a concrete invocation

case incl. the caller and the callee. At runtime, calling context trees describe the

method invocations startingwith the root node of the tree, i.e. the initial invoked

method (e.g. public static void main in conventional Java programs).

For a given calling context tree node CCTNi, its resource demands include the

resource demands of all the nodes in the subtree which has CCTNi as its root.

161

Chapter 4. Quantifying Resource Demands for Performance Prediction

Thus, the nodes of the subtree must be analysed as well, and the dealing with

calling context trees is the subject of this section.

In the remainder of this section, the example in Listing 4.3 will be used as

a running example. In Listing 4.3, some methods of MyClass are omitted in

source code to shorten the example, and because they are not relevant for the

following discussion.

1 long methodExample (In ter faceA param , in t inputValue) {

2 long s t a r t = java . lang . System . nanoTime () ;

3 th i s . performPreparat ions (inputValue) ;

4 for (in t i =0 ; i < java . lang .Math .pow(inputValue , 2) ; i ++) {

5 th i s . arrayOfElements [i%inputValue] = param . performWork () ;

6 }

8 / / s t a t i c method , Oth e rC l a s s b e l o n g s t o an o t h e r component

9 OtherClass . doService (th i s . arrayOfElements) ;

11 long stop = java . lang . System . nanoTime () ;

12 th i s . record (s t a r t , stop) ; / / s e t s t h i s . s t a r t T im e and t h i s . s t opTime

13 return th i s . performCleanup () ;

14 }

16 void performPreparat ions (in t input) {

17 / / . . . some o t h e r work

18 th i s . arrayOfElements = new int [input] ;

19 }

21 long performCleanup () {

22 long r e t ;

23 r e t = th i s . stopTime − th i s . s tar tTime ;

24 return r e t ;

25 }

26 }

Listing 4.3: Example of a Java class

Consider the method performCleanup() in Listing 4.3: its implementa-

tion (and, consequently, the corresponding bytecode) are invariant: it contains

162

4.3. Using Java Bytecode for Resource Demand Quantification

neither control flow constructs nor calls of other methods. Speaking with

compiler construction terminology, the entire method body is a single basic

block. Therefore, the bytecode-level resource demands can be analysed in a

static way: 2· ALOAD, 2· GETFIELD, 1· LSUB, 1· LSTORE, 1· LLOAD and 1· LRET.
Note that the corresponding bytecode contains further elements (linenumber,

localvariable, maxstack and maxlocals), but these are not executable in-

structions.

For the performPreparations method, the situation is slightly more in-

teresting: since the performance of the NEWARRAY instruction is parametric,

the individual invocations of performPreparations must be distinguished

as long as input varies between invocations. Consequently, a runtime ana-

lysis (dynamic analysis) of the bytecode execution is needed. But as long as

performPreparations does not call other methods (in the listing, it is indic-

ated that it may perform some other work), it suffices to consider only it and

other methods can be ignored.

The method methodExample is significantly more complex: it includes

loops, nested statements and runtime polymorphism (using param). The ex-

pected result of BYCOUNTER when applied to methodExample (with val-

ues of input variables) is the number of bytecode instructions executed for

a given methodExample invocation with the used input values. The num-

ber of bytecode instructions should include the bytecode instructions ex-

ecuted by all method invocations inside it (java.lang.System.nanoTime,

java.lang.Math.pow, etc.). Consequently, the resource demands of the in-

voked methods must be quantified as well, incl. the runtime instance(s) of

param and the doServicemethod of OtherClass.

The first method invoked from inside methodExample is Java Platform

API method java.lang.System.nanoTime(). The implementation of BY-

COUNTER is based on the instrumentation of application’s bytecode, and by de-

fault, API methods are treated as atomic entities which are not further decom-

posed (cf. 4.3.5). Section 5.3 presents API benchmarking as a novel technique to

quantify platform-specific timing values of API methods.

163

Chapter 4. Quantifying Resource Demands for Performance Prediction

However, BYCOUNTER is capable of instrumenting java.lang.System.-

nanoTime() for obtaining its (dynamic) bytecode counts as resource demands.

Due to the security-motivated restrictions of the Java Platform, load-time (or

runtime) instrumentation of classes that belong to the Java Platform API is not

allowed. Therefore, instrumenting the PlatformAPI methods with BYCOUNTER

needs to be performed statically (before execution and before loading, i.e. “off-

line”), and the instrumented classes must replace the original classes on the

classpath. The Platform API method java.lang.Math.pow is treated in the

same way as nanoTime.

The invocation of the polymorphic method performWork (declared in

InterfaceA) can have one or different runtime invocation target. However,

in general, the invocation target’s classtype is not known at compile time and

in general needs not to be known at load time, since runtime classloading (e.g.

over an URLClassLoader) is supported in Java. But even given this complex-

ity, treating performWork as an atomic method just to avoid instrumenting

it (for obtaining bytecode-level resource demands) does not constitute a good

solution.

Instead, instrumenting the classtypes of param instances (i.e. runtime invoc-

ation targets) should be used, and several opportunities exist for this task.

Load-time instrumentation is the first opportunity, and it means that the instru-

mentation is delayed until loadtime. In load-time instrumentation, each loaded

class that implements InterfaceA is checked for whether it is a Platform API

class. If a loaded class is not part of the Platform API, performWork (and pos-

sibly other methods whose bytecode resource demands are needed) are instru-

mented on the fly, except when a method is abstract, has a native implementa-

tion or is already instrumented. Section 4.4 describes how load-time instrument-

ation works, and how BYCOUNTER marks instrumented methods and detects

alredy instrumented methods.

One disadvantage of load-time instrumentation is its runtime impact incurred

by class checking on each execution of a virtual method, plus the runtime instru-

mentation overhead. Additionally, the complexity of load-time instrumentation

164

4.3. Using Java Bytecode for Resource Demand Quantification

is high (dealing with classloading in Java is error-prone), and each application

run repeats the instrumentation because the instrumented classes are not per-

sisted and do not overwrite the original classes.

Offline instrumentation of virtual methods is a (partial) remedy for problems

incurred by load-time instrumentation. Offline instrumentation attempts to dis-

cover all known implementations of InterfaceA before load time, and instru-

ments the found implementations of performWork. Of course, offline instru-

mentation cannot guarantee that all runtime instances of InterfaceA will be

found. Furthermore, it only removes the overhead of load-time instrumentation

– the overhead of load-time checking remains. Offline instrumentation may also

instrument those implementations of InterfaceA.performWork that will ac-

tually never be used at runtime.

To find all implementers of a given interface, offline instrumentation needs to

to an extensive search as it there is no such functionality in the Java Reflection

API or other platform facilities. Some application (e.g. the Eclipse IDE) main-

tain an internal index by parsing the entire classpath, which could be a possible

solution for BYCOUNTER.

For the remaining methods in Listing 4.3 (doService, record,

performCleanup), the same considerations apply. However, an open

question remains: should the resource demands of the methods invoked by

methodExample (“callees” of the “caller”) be considered individually (i.e.

the structure of the calling context tree is fully preserved), or should they just

be inlined into the resource demands of methodExample (i.e. the subtree is

replaced by one node with aggregated resource demands)? Note that after

inlining, the resource demands of the caller do not expose any hint that a callee

resource demand existed and was inlined. With other words, inlining is a

one-way operation (as it is in compiler construction from which the term was

borrowed). The general disadvantage of inlining is that after it is performed,

it is impossible to quantify the resource demand contribution of the callee

towards the caller.

165

Chapter 4. Quantifying Resource Demands for Performance Prediction

For inlining of the callee’s resource demands, both “online” inlining (at exe-

cution time) and “offline” inlining (after the execution of the caller has finished)

are possible candidates. Online inlining has the advantage that less storage is

needed, and that the “so far” resource demands are available at any execution

step of the caller. The disadvantages of online inlining is runtime overhead of

the inlining-caused calculations. Offline inlining has the advantage that it pre-

serves the original tree of resource demands, and can be performed in a selective

way.

4.3.9. Considering Subtrees of Calling Context Trees

In a multi-threaded platform, a method such as methodExample from

Listing 4.3 can be invoked concurrently, which means that invocations of

methodExample’s callees (performPreparations and others) must be

mapped to the correct CCT node representing a given methodExample invoc-

ation. That is, information needed to construct a CCT must be made available –

however, from inside an executed Java method, it is not possible to query for its

caller. While a method can find out the thread ID of the thread that is executing

it, the calling relations needed to create a CCT also need the caller method.

While some JVMs support an event-based notification mechanism that signals

both the callee and the caller of a method invocation, request IDs are a more gen-

eral technique to collect data for CCT construction. A request ID is passed from

the caller to the callee, which requires the signatures of the callees to be exten-

ded (e.g. by introducing wrappers) and also requires that the callee invocations

be replaced by the wrappers/extended signatures.

However, there are scenarios where a single request ID is not sufficient, as it is

the case when for a given considered CCT, one or several CCT subtrees are also

requested. Figure 4.5 shows an example which needs more than one request

ID: assume that that the aggregated resource demands of both method1() and

method2() are sought. method1 runs in ThreadA and invokes method2 asyn-

chronously, which runs in a separate thread (Thread B). After method2 starts,

method1 invokes method3 in a synchronous way, and method1 continues to

166

4.3. Using Java Bytecode for Resource Demand Quantification

run after method3 terminates. After some time, method2 invokes method4 in

a synchronous way – note that method3 runs at the same time in parallel (in

Thread A).

Thread B

Thread A
method1()

method2()

method3()

method1()

t
t1 t2 t3 t4

method4()

method2()

Figure 4.5.: Subtrees of Calling Context Trees

The resource demands of method1 include those of method2, method3 and

method4 – but the resource demand of method2 (which includes the resource

demands of method4) does not include the resource demands of method3.

The resource demands of method1 can be aggregated (both online and off-

line) by propagating a request ID to method2 (which propagates it to method4)

and to method3, thus identifying their resource demands as sub-demands of

method1.

However, judging just by the request ID that method2 receives, it is not clear

which sub-demands belong to it. It is also not possible to deduce the resource

demand aggregation relations using the timestamps and “contains” relation:

while method2 starts before method3 and ends after it, the resource demands

of method3 do not belong to method2.

A possible solution would be to create a separate request ID for method2 and

propagate it to method4 together with the request ID from method1. However,

each nesting level would add one request ID to the list of request IDs, and the

resulting hierarchy of IDs adds to the management and instrumentation over-

167

Chapter 4. Quantifying Resource Demands for Performance Prediction

head. Section 4.4.6 describes how BYCOUNTER costructs CCTs and CCT sub-

trees in an efficient and scalable way.

4.3.10. Usage of Passive Resources from Java Bytecode

As explained above, the focus of this thesis is the quantification of processing

resource demands for PCM-level InternalActions and ExternalActions

– the identification of RDSEFF elements incl. control flow constructs such

as LoopAction or BranchAction (e.g. using reverse engineering) is a

separate task which is covered by Klaus Krogmann’s dissertation [42] and

Heiko Koziolek’s dissertation [186]. For passive resources, the identification

of AcquireResource and ReleaseResource actions for building PCM RD-

SEFFs is also outside the focus of this thesis and the assumption taken in this

chapter is that BYCOUNTER does not need to be aware of passive resources.

However, the following brief discussion of the bytecode methods/instruc-

tions that can correspond to AcquireResource and ReleaseResource is

warranted for the following two reasons: (i) BYCOUNTER can check whether

bytecode sections that should correspond to internal actions contain unexpec-

ted (or undesired) usages of passive resources and (ii) future versions of BY-

COUNTER and a PCM-independent usage of BYCOUNTER may need a bytecode-

level understanding of passive resources usage. Additionally, the following dis-

cussion shows which bytecode instructions carry potential performance implic-

ations because they affect the acquisitions and releases of passive resources.

The keyword synchronized in Javamarks a method or a code section which

can be used by at most one thread at a time; a second thread that wishes to

enter the synchronizedmethod/sectionmust wait until the first thread leaves

it. At bytecode level, synchronized source code keyword in the signature

of methods results in the ACC_SYNCHRONIZED flag, which can be used to de-

tect whether a given method is synchronized. Since the JVM implementa-

tion must ensure that a monitor is acquired at method entry and released at

method exit (both normal and with exception), there are no further traces of

168

4.3. Using Java Bytecode for Resource Demand Quantification

synchronized in the bytecode of methods which carry synchronized in

their signature.

For entirely synchronized methods, the JVM specification does not clarify

which monitor is acquired; for modelling in a PCM RDSEFF, a synchronized

method should be preceded by an AcquireAction and followed by a

ReleaseAction (on the same passive resource). The cardinality of the

PassiveResource that is acquired/released to model the synchronization

should be 1, and the PassiveResource should not be acquired/released

in other SEFFs or AcquireActions/ReleaseActions. A proper treatment

of synchronized methods implies that if the InternalAction that contains

the considered synchronized method contains additional methods, the con-

sidered InternalActionmust be broken into several parts.

When the keyword synchronized is applied to code sections and not to the

entire method, it has a different source code syntax: synchronized(obj),

where obj is any initialised object instance. At bytecode level, the byte-

code instructions MONITORENTER and MONITOREXIT are used to implement

the beginning ({) and the end (}) of a synchronized(obj) statement. The

used obj object instance is the only parameter needed by MONITORENTER

and MONITOREXIT , it is expected to be found on the stack and is con-

sumed by MONITORENTER /MONITOREXIT from the stack. The presence of

MONITORENTER /MONITOREXIT in bytecode can be used to reconstruct (reverse

engineer) acquire/release actions for PCM model instances.

Usage of any other passive resources (locks, barriers etc.) from Java bytecode

happens over method calls, with the Java Platform API already providing a sig-

nificant set of passive resources. For example, the java.util.concurrent

package and its subpackages provide a CyclicBarrier, a Semaphore, a

mechanism for locks and a thread pool mechanism etc. Therefore, purely at

bytecode level, only MONITORENTER and MONITOREXIT are visible, while to

properly account for method invocations accessing barriers, locks etc., an under-

standing of the patterns involved in using CyclicBarrier etc. is needed. Con-

sequently, only when there is a mapping from bytecode to PCM, BYCOUNTER

169

Chapter 4. Quantifying Resource Demands for Performance Prediction

analyses the presence of MONITORENTER /MONITOREXIT in bytecode sections

which are declared to correspond to InternalActions, and reports violations

that it finds.

4.3.11. Bytecode Instruction Equivalence Classes

As discussed above, the Java bytecode instruction set is not orthogonal: it con-

tains instructions which duplicate the effect of other instructions (or sequences

thereof). For example, ILOAD_0 (which occupies one byte in the classfile) is

equivalent to ILOAD 0 (which occupies two bytes because the parameter 0 is

stored explicitly). Similarly, I2D (integer to double conversion) is equivalent

to I2F followed by F2D (F stands for float), without loss of precision.

But from the performance perspective, performance equivalence is even more

interesting. A trivial performance equivalence classification only aggregates se-

mantically close instructions such as ILOAD variants in the above example, but

there is potential for more. For example, DDIV (double division) and FDIV (float

division) are likely to be mapped to the same CPU instruction(s) as they are both

floating-point operations, and are likely to expose the same performance.

Instruction grouping has been explored in the performance community on

several occasions: [187] has introduced incremental grouping based on criteria

such as operation type, data type, etc. However, the grouping relations do not

address performance equivalence, and haven’t been validated empirically.

In the following, the performance equivalence classes are suggested which

simplify the identification of performance invariants. The presented classes will

be empirically validated by benchmarking results in Section 5, and are different

from equivalence classes introduced by Dujmovic in [187]. For the discussion

on performance equivalence classes, it is important to highlight the differences

and the mismatches between the primitive Java programming language types

and the primitive Java bytecode types.

Unlike for int or long, there is no support for booleans in Java bytecode,

and only a limited support for bytes, chars and shorts (the last two types

occupy 2 bytes, i.e. chars support UTF-16). These types are mainly represented

170

4.3. Using Java Bytecode for Resource Demand Quantification

as integers (occupying 4 bytes, i.e. 32 bits): for example, the source code state-

ment byte b = 120; is translated to BIPUSH 120, ISTORE <index> by

the Eclipse compiler. Note that depending on an integer’s size, a source code

compiler can use different instructions to push an integer value onto the stack:

BIPUSH (as long as the integer value fits into one byte) or SIPUSH otherwise –

the S stands for signed, not for short.

The data types bytes, chars and shorts only become visible when they are

targets of a conversion (e.g. I2B (for byte), I2C, I2S – note that there is no

inverse conversion), or when creating arrays (e.g. BALOAD, etc.). Figure 4.6

gives an overview on the conversion and array support of the Java bytecode

instruction set – note that other instructions types (such as ISUB etc.) are not

listed.

byte char double float int long short

byte - - - - - - -

char - - - - - - -

double - - - D2F D2I D2L -

float - - F2D - F2I F2L -

int I2B I2C I2D I2F - I2L I2S

long - - L2D L2F L2I - -

short - - - - - - -

array
operations

BALOAD
BASTORE

CALOAD
CASTORE

DALOAD
DASTORE

FALOAD
FASTORE

IALOAD
IASTORE

LALOAD
LASTORE

SALOAD
SASTORE

Figure 4.6.: Overview of Conversion-oriented Java Bytecode Instructions

Appendix A.1 contains a detailed list of the identified performance equival-

ence clases for Java bytecode instructions. The equivalence of these classes will

be analysed using benchmarks, as described in Section 5.

171

Chapter 4. Quantifying Resource Demands for Performance Prediction

4.4. Using Transparent Application Instrumentation for Bytecode

Counting

In Section 4.3, the number of executed bytecode instructions andmethods invoc-

ations has been identified as a platform-independent resource demand metric.

In the course of Section 4.3, it was mentioned that BYCOUNTER uses transpar-

ent instrumentation of application’s bytecode to quantify this metric. In this section,

the design and implementation of this mechanism are discussed in more detail.

Since this part of BYSUITE can also be used as a stand-alone tool (independ-

ent of the remaining parts of BYSUITE), it is referred to as BYCOUNTER in the

remainder of this section.

BYCOUNTER proceeds in two steps, shown in Figure 4.7: after the instru-

mentation is carried out, the instrumented classes are executed with a workload

to obtain the counting results. The results of the first step (the instrumented

classes) can be persisted and are reused with several workloads. The instru-

mentation phase identifies performance invariants in the application to instru-

ment (to minimize the instrumentation overhead) and that inserts counters into

the bytecode which will be incremented and evaluated at runtime, when the

instrumented application is executed. A detailed description of the instrument-

ation phase will be provided in Section 4.4.4.

...
IINC
meth1()
IMUL
meth2()
ISTORE
LLOAD
LLOAD
...

Bytecode
classes of
application

BySuite
instrumentation

...
27865*LLOAD
11108*IADD
976*meth1()
...

Application
workload

Aggregated
resource
demands

348 KB HDD
read, ...

BySuite settings

JVM
Instrumented
application

classes

(optional) Load-
time instr. agent

Figure 4.7.: Overview of BYCOUNTER instrumentation and phases

172

4.4. Using Transparent Application Instrumentation for Bytecode Counting

In the situations where methods are called polymorphically, the runtime type

of the invocation target is unknown before instrumentation starts. Thus, to

account for dynamic method dispatching, BYCOUNTER offers load-time instru-

mentation that is implemented as an agent hooked to the JVM. In BYCOUNTER,

load-time instrumentation can be configured to either complement static instru-

mentation (when new classes are loaded which were not known during static

implementation), or to replace it entirely. Load-time instrumentation can also

persist the classes containing instrumented methods for later re-use.

As different instruction types have different execution durations, they must

be counted separately, and the parametric dependencies of the array-creating

instructions (see Section 4.3.4) must be considered as well. Method invocations

should be recorded, with their parameters (or characterisations) where appro-

priate – BYCOUNTER should provide ways to configure which methods need

parameter analysis and which don’t. Calling Context Trees (cf. Sections 4.3.8

and 4.3.9) should be considered as well.

To obtain runtime counts of instructions and methods, static analysis (i.e. ana-

lysis without executing the application) could be used, but it would have to be

augmented to evaluate runtime effects of control flow constructs like loops or

branches. Even if control flow consideration is attempted with advanced tech-

niques such as symbolic execution, additional effort is required for handling

infinite symbolic execution trees [188, pp. 27-31]. Hence, it is imperative to use

dynamic (i.e. runtime) analysis for counting executed instructions and invoked

methods.

However, dynamic counting of executed Java bytecode instructions is not

offered by Java profilers or conventional Java Virtual Machines (JVMs). Ex-

isting program behaviour analysis frameworks for Java applications (such as

JRAF [28]) do not differentiate between bytecode instruction types, do not iden-

tify method invocations performed from bytecode, or do not work at the level

of bytecode instructions at all. These frameworks frequently rely on the instru-

mentation of the JVM, however, such instrumentation requires substantial effort

and must be reimplemented for different JVMs.

173

Chapter 4. Quantifying Resource Demands for Performance Prediction

4.4.1. Requirements for the Instrumentation Process

Bytecode instrumentation performed by BYCOUNTER has to fulfil the following

requirements:

1. the instrumentation has to account for each instruction type individually

and return precise counts for each instruction type and each method signa-

ture, but also be configurable to support bytecode instruction equivalence

classes (e.g. those described in Section 4.3.11)

2. the instrumentation has to count how often a concrete method implement-

ation is invoked (for polymorphic calls, e.g. over an interface, BYCOUNTER

should record both the polymorphic, in-bytecode method’s signature and

the concrete method’s signature – see the examples in Section 4.3.5)

3. BYCOUNTER should recognise native methods and skip instrumenting

them (cf. Section 4.3.6)

4. BYCOUNTER should recognise Java Platform API methods and skip instru-

menting them during load-time instrumentation (for static instrumenta-

tion of Java PlatformAPI classes, it is the BYCOUNTER user’s responsibility

to replace the uninstrumented Java Platform API classes on the classpath

through the instrumented ones)

5. PCM awareness: PCM constructs such as internal actions often correspond

to sections of non-abstractmethods rather than to entire non-abstract meth-

ods – thus, BYCOUNTER must support quantifying bytecode resource de-

mands for one or several method sections (with the requirement that the

specified method sections are non-overlapping)

6. resource demand quantification targets: the methods and CCTs for which the

resource demands have to be obtained should be configurable in a con-

venient way, and should support CCT subtrees as well as separate quanti-

fication of callees’ resource demands

174

4.4. Using Transparent Application Instrumentation for Bytecode Counting

7. instrumentation scope: it should be possible to configure the instrumenta-

tion scope with minimal effort, where the default implicit instrumentation

behaviour is “instrument all method in all application classes” (of course,

excluding native methods and abstract methods which lack an implement-

ation body), but the instrumentation scope can also be specified at the level

of packages, classes and methods

8. parameter analysis: it should be configurable for which instructions and

which methods parameter analysis should be performed (incl. input para-

meters or characterisations thereof, and invocations targets or characterisa-

tions thereof for non-static methods)

9. controlling class size increase: the instrumentation should introduce as few

additional instructions into the classfile as possible (and the bytesize of

classes and methods must be controlled to remain within the JVM specific-

ation)

10. minimizing runtime overhead: the runtime overhead of the instrumentation

(incl. results collection) should be minimized, both in terms of execution

time and memory

11. deactivatable resource demand quantification for instrumented classes: even a

class is instrumented, it should be possible to switch off the metric col-

lection and metric reporting as far as possible, to minimize the overhead of

BYCOUNTER whenmetric collection is unneeded but it is not appropriate/-

possible to replace the instrumented class back with the uninstrumented

one

12. transparency: BYCOUNTER must not unnecessarily change the existing

fields, variables, method signatures, class structure and execution se-

mantics

13. method wrappers for CCT support: method wrappers are only introduced if

concurrency-safeCCT construction is required explicitly (by default, it is suf-

ficient to have CCT support which is potentially thread-unsafe)

175

Chapter 4. Quantifying Resource Demands for Performance Prediction

14. precision: for methods with control flow constructs (loops, ...) that depend

on the input parameters, counts must be reported correctly for any execu-

tion path, i.e. for all allowed values of input parameters

15. self-awareness: BYCOUNTER should mark instrumented classes in such

a way that it can recognise already instrumented classes to prevent er-

roneous/unintended double-instrumentation (no matter from where the

candidate classes are loaded)

16. storage of metric results: storing all collected bytecode metrics in memory

may slow down the execution of BYCOUNTER, so the options of (back-

ground) serialisation to HDD or a database should be available

17. aggregation: for CCTs, the aggregation should happen offline (i.e. after the

CCT root’s execution has terminated), but an option should be available

to enable online aggregation, since online aggregation offers up-to-date re-

source demands of a method incl. the resource demands of that method’s

callees, even while that method is still executing

18. passive resources usage checking: optional checking of MONITORENTER and

MONITOREXIT (see Section 4.3.10)

4.4.2. Evaluating and Storing Counting Results

In BYCOUNTER, there are several possibilities to deal with counting result trees

(where each tree node corresponds to a CCT node). Consider the example where

method Amakes a synchronous calls to method B and afterwards to the method

C, while method B calls the method D. Assume that the resource demand of A is

required, i.e. the resource demands of B, C and D count towards it.

In the simplest case which is called offline inlining, the full resource demands

of A are calculated once B, C and D have terminated. This means that these

results must be kept (either in main memory or in a persisted storage) until A

has terminated. This storage requires effort and space, and it would be sufficient

to add the resource demands of B to those of A once B has terminated – this is

176

4.4. Using Transparent Application Instrumentation for Bytecode Counting

called online inlining. Of course, a counting result must indicate whether inlining

of its sub-demands has already been performed or not – this is supported by

BYCOUNTER implementation.

For both online and offline inlining, the inlined counting results can be dis-

carded once they have been evaluated – however, BYCOUNTER can be con-

figured to keep these intermediate results after inlining, e.g. for analysing them

offline.

To see what this means for (in)transparent inlining of resource demands, again

consider the above example with methods A, B, C and D, but now assume that

the resource demands of both A and B are needed. Figure 4.8 illustrates the two

different options available for online inlining – note the difference between the

counting results available at the end.

A

B

C

B (continued)

A (continued)

D

A (continued)

B (initial)

A (initial) A (temp.)
incl. B, C

A (temp.)
incl. B, C, D

A (final)
incl. B, C, Donline transparent

demands inlining:
counting result trees
over time

A (initial) A (initial)

B (initial)

A (initial)

C (initial)

B (incl. C)

A (temp.)
incl. B, C

D (initial)

B (initial)

A (initial) A (temp.)
incl. B, Conline non-transparent

demands inlining:
counting result trees
over time

A (initial) A (initial)

B (initial)

A (initial)

C (initial)

B (temp.)
incl. C

A (temp.)
incl. B, C

D (initial)

C (final)

B (final)
incl. C

C (final)

B (final)
incl. C

C (final)

t

A (temp.)
incl. B, C, D

D (final)

B (final)
incl. C

C (final)

A (final)
incl. B, C, D

D (final)

B (final)
incl. C

C (final)

Legend:

Control flow

References
between
counting
results

Figure 4.8.: Different Options for Online Inlining of Counting Results in BYCOUNTER

177

Chapter 4. Quantifying Resource Demands for Performance Prediction

To prevent heap memory from being flooded by counting results, at most

a predefined threshold number of counting results is kept in memory by BY-

COUNTER. Since the reporting of counts is currently implemented using a syn-

chronous method, the counting result collector (described in Section 4.4.7) can

be implemented to block until the result serialisation backlog is resolved when

capacity of memory storage for counting results is depleted.

Another issue encountered during the implementation was the overflow

of counters: initially, int-typed counter were used. After refactoring, BY-

COUNTER now uses long-typed counters (see Section 4.4.4 for more details).

This means that counter incrementation needs several instruction: LLOAD for

on-stack loading, LCONST for putting increment onto the stack, LADD for the

addition and LSTORE for storing the actual results.

While these instruction sequence may be replaced by one processor instruc-

tion on some platforms, executing the instrumented code in interpretation (i.e.

non-JITted) modus still incurs more overhead than if int-based counters are

used since a single IINC instruction would be sufficient for int counters. In

scenarios where the range-limited int counters are sufficient, the BYCOUNTER

user can switch back to them. Note, however, that only plausibility checking

(counter results must always be positive), but no counter overflow checking is

implemented in BYCOUNTER.

To judge how soon (i.e. in the worst case) it is possible to obtain an undetected

overflow using int counters, consider the following: positive values of int are

in the interval [0 , 2147483647]. Ignoring all but one (the most often executed)

instruction in the method, and assuming that this instruction takes 1
12 CPU

cycle to execute (which is well possible given JIT compilation being followed

by CPU pipelining), on a 2 GHz CPU (which would execute 2 · 109 CPU cycles

per second), we obtain 2,147,483,647
12·2·109 ≈ 89.48 seconds. This computation shows that

for long-running methods, int counters may indeed be insufficient.

178

4.4. Using Transparent Application Instrumentation for Bytecode Counting

4.4.3. Analysis of Bytecode Invariants and Basic Blocks

A basic block is not necessarily invariant with respect to performance: even

though it does not contain any control flow branches, loops etc, it can contain

parameter-dependent instruction, whose parameter change between basic block

executions. In BYCOUNTER, this means that for a performance-invariant basic

block, one counter is sufficient: the actual bytecode-oriented resource demands

of a performance-invariant basic clock can be identified statically. If a basic block

contains an instruction with parametric performance dependencies, that basic

block must be split into three parts, unless analysis of instruction parameters

reveals that they are always the same (e.g. the array size is fixed).

To minimize the counting-caused overhead, it is tempting to check whether

performance invariants can be found beyond single performance-invariant basic

blocks. We define a performance invariant as a consecutive bytecode section

(but possibly including branches and other non-linear control flow) which has

performance-equivalent bytecode counts independent of the input parameters

of the method which contains the bytecode section.

As an example, consider the method example() which contains a

performance-invariant call of method meth(). The call to meth() is performed

between two basic blocks B1 and B2, and the particular invocation of meth()

is indexed as meth()idx. The index is used to distinguish a particular invoc-

ation from other calls to meth(), and the index idx can be the bytecode offset

from the beginning of example() or any other unique index. As B1 and B2 are

performance invariants, they are refered to as PI1 and PI2, and since meth() is

performance-invariant (i.e. PI3 :=meth()idx), the three can be merged into one

performance invariant: PI4 := PI1PI3PI2.

Real-world examples of performance-invariant methods are

CodeTable.set(int i, int v), CompBase.getMaxCode(),

DeStack.isEmpty(), DeStack.pop() from SPECjvm2008’s compress

benchmark, and others. While performance-invariant methods are often short

(e.g. getters and setters), they are often called very often, and invariant

detection leads to valuable speedup at runtime: in the above example, only

179

Chapter 4. Quantifying Resource Demands for Performance Prediction

one counter (for PI4) is needed and used, instead of creating and incrementing

three counters (for PI1, PI2 and PI3), instrumenting meth()idx, collecting its

counting results, etc.

Requiring absolute bytecode counts to be identical (after “normalisa-

tion” using the above equivalence classes and parameter erasure) may

be too “strong” and leaves room for relaxation. Consider the fol-

lowing example of a suggested performance invariant: the source code

if(condition){a=b+2;}else{c=d+2;} would be translated to the byte-

code in Listing 4.4:

1 . . .

2 L5

3 ILOAD 5

4 IFEQ L6

5 ILOAD 2

6 ICONST_2

7 IADD

8 ISTORE 1

9 GOTO L7

10 L6

11 ILOAD 4

12 ICONST_3

13 IADD

14 ISTORE 3

15 L7

Listing 4.4: Branch Invariant In Java Bytecode

Note that the condition checking is done using IFEQ instruction, that is the

boolean condition value is treated as an integer that is compared to 0. The

IFEQ instruction performs two tasks: the comparison and (depending on the

outcome) a jump to label L6. Also note that the labelblock between L5 and L6

is not a basic block since it includes a conditional jump caused by IFEQ that is

only taken if condition is false (i.e. the variable stored at index 5 is 0).

The branch path which is taken if the condition is false consists of an ILOAD,

ICONST, IADD and ISTORE. The branch path taken if condition is true also

180

4.4. Using Transparent Application Instrumentation for Bytecode Counting

consists of an ILOAD, ICONST, IADD and ISTORE, but with different parameters

– yet assuming that these four instructions do not have a parametric perform-

ance behaviour, the two branch pathes are almost equivalent. If it can be as-

sumed that the IFEQ with jump but without GOTO is performance-equivalent to

“jump-less” IFEQ plus GOTO, the two pathes are indeed performance-equivalent

and the entire bytecode in Listing 4.4 is performance-invariant.

Another example of performance invariants are loops whose conditions are

independent from their input and the state of the executing class. For ex-

ample, for(int i=0; i<10; i++){arr[i]=i*i;} (where arr is an array

of integers) is a performance-invariant loop. In fact, detecting performance

invariants is related to inlining performed by source code compilers and JIT

compilers, but the novel contribution of performance invariant detection as in-

troduced by this thesis is the use of hard, platform-independent performance

equivalence classes for bytecode instructions.

In BYCOUNTER, the performance invariant detection is implemented for ba-

sic blocks (which are detected by BYCOUNTER on the basis of bytecode) and for

simple if-then-else structures. Performance invariant detection would ad-

ditionally benefit from method-level analysis and semantic invariant detection

as performed by Daikon [189]. A platform-specific invariant detection may also

be possible if platform-specific performance equivalence classes are known (e.g.

on some platforms, LDIV and DDIVmay end up in the same performance class).

However, using platform-specific performance invariants for instrumentation

optimization would results in platform-specific bytecode resource demands,

and contradict the design goal of BYCOUNTER.

In this thesis, the performance invariant analysis is not carried out further

than discussed above for the following reasons: (i) the speedup of executing the

instrumented application (achieved through less instrumentation code) is not

significant enough to warrant performance invariant analysis beyond branch

comparisons, e.g. using point-to analysis and data flow analysis (ii) the ap-

proaches that create parametrised performance models with bytecode resource

demands (such as BEAGLE) carry out performance abstractions and model sim-

181

Chapter 4. Quantifying Resource Demands for Performance Prediction

plifications that have an even stronger influence than the relaxation of the equi-

valence classes.

Another research area is related to performance invariants is worst-case per-

formance analysis: in the above example on the if branch, the “worst case”

would include GOTO as if it would be executed in both of the to branches (“then”

and “else”). The resulting deviation would be small enough to accept it given

the simplification of instrumentation and counting. However, BYCOUNTER is

designed to yield precise bytecode counts, and worst-case analysis lies outside

of this thesis’ scope.

4.4.4. Inserting Bytecode Infrastructure for Runtime Counting

After parsing the instrumentation settings, BYCOUNTER analyses the bytecode

to instrument and inserts the counting infrastructure, incl. result reporting in-

frastructure. It does so in two passes: the first one performs the analysis, while

the second one inserts the counting infrastructure into bytecode.

In the first pass, BYCOUNTER parses the existing bytecode class file into a

navigable, structured representation, because direct manipulation of bytecode is

very complex and error-prone. BYCOUNTER uses the ASM bytecode engineer-

ing framework [114], which offers a bytecode class representation that includes

semantic details (method signatures, fields, etc.). ASM’s bytecode represent-

ation can be accessed and changed through the ASM API, which follows the

visitor pattern and allows creating custom visitors to add, change or delete the

elements of the class representation down to the level of individual bytecode

instructions.

During the first pass, BYCOUNTER identifies performance-invariants (e.g.

basic blocks without parametric bytecode instructions, performance-invariant

methods, etc.). It also detects which methods are invoked from the parsed

method, and analyses which invocations are polymorphic.

During the second pass, BYCOUNTER inserts counting instrumentation into

the bytecode representation using a special ASM class visitor that is part of the

BYCOUNTER implementation. The basic principle behind the visitor is to add

182

4.4. Using Transparent Application Instrumentation for Bytecode Counting

new counters to existing bytecode instructions and method invocations, and to

add parameter-analysing bytecode, invocation target analysis bytecode as well

as bytecode that reports the counting results. Later, during the execution the

instrumented method, these counters will be initialised, incremented, evaluated

and finally reported.

A suitable data structure must be selected for the counters, which should

be both effective, occupy a reasonable amount of space, and should be

specification-compliant. The JVM specification [110] and recent official addi-

tions (such as INVOKEDYNAMIC opcode) result in 203 valid bytecode instruc-

tions, including four INVOKE* instructions. Hence, these instructions require a

fixed number of counters (one per instruction). Note that the “discovery” pass

could identify bytecode instructions that really occur in the considered bytecode

to initialise less than 203 counters (one for each officially defined opcode). How-

ever, this enhancement ultimately results inmore overhead than simply creating

counters for all 203 instructions.

In contrast to bytecode instruction, the number of the different runtime meth-

ods (including application’s own methods and API methods) which will be

invoked using INVOKE* in the instrumented method depends on the con-

crete application which is considered. Hence, in principle, method invoca-

tions inside the instrumented bytecode should be counted using a data struc-

ture which allows a dynamic addition of new counters for found method signa-

tures. For BYCOUNTER, the counters for method invocations could be stored

in a java.util.Map-like data structure. At runtime, this structure can be eas-

ily extended, however, each access to a Map-like structure for incrementing a

counter is very expensive.

Thus, a more efficient technique is used in BYCOUNTER by creating long

counters for both polymorphic and non-polymorphic method invocations, and

of course “primitive” bytecode instructions. For each polymorphically invoked

signature (i.e. which is called using INVOKEVIRTUAL), an additional dynamic-

ally extending structure is maintained, which counts how often a given invoca-

183

Chapter 4. Quantifying Resource Demands for Performance Prediction

tion target runtime type is used. This allows keeping track of the actual methods

executed at runtime.

The list of found signatures might contain some methods that will not (or not

always) be executed at runtime, because the execution path does not reach them

for some values of input parameters passed to the instrumented method. The

case-specific non-execution of these methods is not problematic, as the corres-

ponding counts will simply maintain their initial value of 0.

Potentially, other bytecode-instrumenting operations (e.g. advice and

pointcut insertion from AOP programming) could take place after BYCOUNTER

instrumentation. These insertions could add new method invocations to byte-

code, and runtime counting of BYCOUNTER would not capture them. Yet when

no bytecode modification happens after BYCOUNTER instrumentation, the list

of callee method signatures used inside bytecode of a given caller method will

not grow at runtime. Hence, for correct counting results, we require that BY-

COUNTER is the last tool in the bytecode instrumentation chain.

After the list of found method signatures has been populated in the “dis-

covery” pass, BYCOUNTER performs its “instrumentation” pass over bytecode.

In the “instrumentation” pass, counters of type long are added to bytecode

through ASM-based instrumentation. From the bytecode view, these counters

are “local variables”. The maximum number of “local variables” in the bytecode

of a Java method is 65536 (incl. those variables that existed before instrument-

ation), and this number does not constitute a limitation in realistic cases. After

creating the counters, BYCOUNTER adds instrumentation to update (i.e. incre-

ment) them when the corresponding instructions and methods are executed.

So far, the instrumentation inserted by BYCOUNTER into the application byte-

code was transparent in the sense that no method signatures were changed, and

the functional behaviour of the application remained unchanged as well. Only

if recording calling context trees is enable, BYCOUNTER must apply changes to

method signatures, which is needed to support caller ID propagation required

for CCT construction. The details of this step are described in the next section,

before Section 4.4.7 describes how results are reported and collected.

184

4.4. Using Transparent Application Instrumentation for Bytecode Counting

4.4.5. Quantifying the Impact of the Instrumentation

The BYCOUNTER instrumentation has static overhead: it impacts the size of

classes and methods of the instrumented application as it inserts additional in-

strumentation instructions into the application. Even more important, the BY-

COUNTER instrumentation leads to runtime overhead since extra execution time

is spend on the instrumentation itself and because larger classfiles lead to longer

classloading times for the JVM.

In the following, we discuss both types of overhead by considering three BY-

COUNTER phases: (i) counter creation and initialisation, (ii) counter increment-

ation and (iii) reporting of counter values. It is important to remember that the

overhead can decrease significantly when performance-invariant bytecode in-

struction sequences (PIBISes) are identified and used, as will be shown during

the validation in Section 7.1.6. In the following, we only consider the “worst

case scenario” which does not benefit from the use of PIBISes.

The dynamic overhead of counter creation/initialisation depends on the num-

ber of building blocks (instructions and called methods) in the implementation

of the instrumented method. Per building block, about 20 instructions need to

be executed for initialisation. Even for a large number of building blocks, this

overhead is not critical when compared to the overhead of the counter incre-

mentation and reporting, which are given in the following.

The dynamic overhead of counter incrementation depends on the chosen

counter type, as was already explained in Section 4.4.2 on page 177: increment-

ation of an int-typed counter only needs one IINC instruction, while long-

typed counters need four instructions (even six instructions if counters are al-

located in JVM local variables which have high indexes accessible only with the

wide addressing instruction). Thus, in the worst case, the counter incrementa-

tion can lead to a slowdown factor of 6 – or even more if the counter increment-

ation operations are costlier than the counted operation itself.

The dynamic overhead of counter reporting is that of the call to the reporting

method. The reporting method writing to the console will be delayed by the

console’s performance, and providing exact numbers for this operation is not

185

Chapter 4. Quantifying Resource Demands for Performance Prediction

possible – however, as a rule of thumb, reporting to the console takes in excess

of 1 millisecond, and should therefore be avoided. Instead, reporting of the

result can be cached in memory or written to a series of files: once a reporting

file is complete it can be saved to permanent storage by a background operation.

The more performance-heavy building blocks (e.g. costly API methods) ap-

pear in the instrumented method and the more often they are executed, the

lesser is the runtime overhead of BYCOUNTER, since the counter incrementing

overhead remains constant and thus has a smaller share of the overall execu-

tion time of the instrumented application. In some cases where a large number

of very short methods had to be instrumented and the reporting of each ex-

ecution of such methods overweights the duration of the actual method, the

dynamic overhead of instrumentation can be as high as a factor of 27 (i.e. 2700

%). While this appears to be a heavy burden, it should be kept in mind that

BYCOUNTER delivers instruction-precise bytecode counts, and many applica-

tions exhibit a significantly smaller BYCOUNTER overhead. The use of PIBISes

reduces the overhead as well.

For the static overhead, it should be noted that for non-trivial applications,

classloading (even from slow storage) usually has a very minuscule share of ex-

ecution time compared to the actual work performed by the program. The static

overhead of BYCOUNTER includes BYCOUNTER’s own classes (which have a

total size of 130 KB) – this bytecode which must be verified and loaded.

In each instrumented method, counter creation and initialisation is done by

a method which consists of 647 bytecode instructions with a bytesize of 1505

bytes. When int-typed counters are used, each counter incrementation consists

of 1 parameterless instruction which fits into 1 byte; when long-typed counters

are used, each counter incrementation consists of up to 6 instructions with a total

size of up to 10 bytes. The code to do the reporting of results is a rather compact

operation: 227 bytecode instructions that occupy 511 bytes (this is a static count,

as we only consider classloading-related overhead).

Overall, the overhead of BYCOUNTER depends on the structure of the instru-

mented application and on the instrumentation settings. The runtime overhead

186

4.4. Using Transparent Application Instrumentation for Bytecode Counting

(which caused by counter usage and reporting) overweights the “static” over-

head caused by increased classfile sizes and the addition of BYCOUNTER-own

classes. In general, the largest share of the dynamic overhead is taken by counter

incrementation and reporting – counter initialization is a rather low-effort task.

4.4.6. Recording Calling Context Details

The approach taken by BYCOUNTER for supporting Calling Context Trees is

both simple and powerful: it needs to pass just one ID from caller to callee and

allows reconstructing a thread-aware execution trace from the counting results.

The approach works as follows: for each instrumented method, the instrument-

ation code is inserted that generates a unique invocation ID – a new invocation

ID is generated for each invocation. Each time an instrumented method calls

another instrumented method, the caller’s invocation ID is passed to the callee,

which reports its caller’s invocation ID in addition to its own (i.e. callee’s) in-

vocation ID.

In the example from Section 4.3.9, method3 knows that it has been called by

method1, but method4 only knows that it has been called by method2 – it is

not directly aware that it is part of a request originating in method1. However,

having the invocation relations method1→method2 and method2→method4,
the transitive relation method1→method4 can be reconstructed. Thus, it is pos-

sible to construct an entire CCT from binary relations. The inserted instrumenta-

tion for invocation ID generation is customisable to allow for invocation IDs that

embed the executing thread’s ID or other details (e.g. JVM instance ID, etc.).

One restriction of this simple and effective approach is caused by calling con-

text trees that include uninstrumented methods, e.g. API methods: if method2

is not being instrumented, it is not possible to establish the (transitive) relation

method1→method4.
To trace CCTs through ID passing, the signatures of instrumented methods

must be enhanced with an additional input parameter, for receiving the caller’s

ID. Figure 4.9 shows a simplified example of the additional changes performed

187

Chapter 4. Quantifying Resource Demands for Performance Prediction

by BYCOUNTER – the counting instrumentation is omitted for brevity and clar-

ity.

// to be instrumented
int m(int x){

c = b(x);
c++;
e = d(c);
return e;

}

// to be instrumented
int b(int prm){...}

// NOT to be instrumented
int d(int prm){...}

// for compatibility, uninstrumented
// delegation to modified
int m(int x){

ID myID = generateCallerID();
return m_modified(x, myID);

}

// as for method m: ID creation and
delegation to b_modified
<modifier> int b(int prm){...}

// left unchanged, uninstrumented
<modifier> int d(int prm){...}

// counting instrumentation not shown
int m_modified(int x, ID id){

ID receivedCallerID = id;
ID myID = generateCallerID();
c = b_modified(x, myID);
c++;
e = d(c); //call to d() left unchanged
// instrumentation (not shown) reports
// results with myID and received ID
return e;

}

// similar changes to m_modified(...)
int b_modified(int prm, ID id){...}

ByCounter

Figure 4.9.: Effects of preemption on relating response demands to execution time

Several precautions are taken to ensure that the application remains in a con-

sistent state despite these changes:

1. the suffix added to the newly created method (e.g. b_modified in Fig-

ure 4.9) is chosen in such a way that no naming collisions in class that

contains the method is created, which also means that b_modified may

not exist in superclasses of the class holding b_modified

2. the access modifiers of the original method meth to be modified (e.g. b

in Figure 4.9) is preserved for its both the “renewed” meth and the new

meth_modified

3. in all instrumented methods that call a method meth, if meth is in-

strumented, the invocation of meth is replaced by the invocation of

meth_suffix, where the caller’s invocation ID is passed as an input para-

meter to meth_suffix

188

4.4. Using Transparent Application Instrumentation for Bytecode Counting

4.4.7. Reporting and Aggregating Counting Results

For reporting of counting results, two alternatives have been implemented in

BYCOUNTER. The first alternative instruments the method with code to directly

write a log file with the counting results; for this, no additional classes must be

loaded manually into the JVM. Details of the log file writing, such as the log

file path, can be configured by the BYCOUNTER user before the instrumentation

starts. The second alternative is based on BYCOUNTER’s ResultCollector

class, and has the advantage that it can aggregate and reference counts of differ-

ent methods. In order to report the state of counters using ResultCollector,

a call to its collectResultsmethod is inserted by the instrumentation.

BYCOUNTER is implemented to report the complete results immediately be-

fore the instrumented method exits. However, if a method declares pos-

sible uncaught exceptions in its signature (instead properly handling them with

try/catch and the resulting exception table), there is no way to foresee from

the bytecode where and when method execution will exit due to an exception.

At the same time, caught exceptions declared using try/catch/finally are

handled properly in BYCOUNTER, as they are a part of the “normal” control

flow. Thus, the BYCOUNTER implementation ensures that the counting results

are reported if and only if the method exits properly (i.e. if it returns without an

uncaught exception).

To achieve this, for both reporting alternatives (log file and

ResultCollector), BYCOUNTER adds instructions that report the result

immediately preceding every “return”-like bytecode instruction. These in-

structions include areturn, dreturn etc., depending on the type of returned

value (bytecode of methods returning void also uses a return instruction).

As the proper execution of a method always terminates with exactly one

*return instruction, any such *return instruction is accounted for properly

by pre-initialising the corresponding counter with 1.

For the interpretation of the counting results, it can be important to have

knowledge about the runtime parameters of the instrumented method itself.

Hence, BYCOUNTER is designed to store the characterisations of these parameters

189

Chapter 4. Quantifying Resource Demands for Performance Prediction

at the beginning of the method’s execution and can report them together with

the counting results. These characterisations can be the length of a String, size

of an array etc.

After the instrumentation has been completed, BYCOUNTER converts the in-

strumented ASM bytecode representation into a Java class which is to substitute

the original, uninstrumented class. The instrumented class can be saved as a

class file, or passed to a suitable ClassLoader for immediate, reflection-based

invocation.

4.5. Assumptions and Limitations

We assume that it is possible to pass the final class bytecode that will be executed

to BYCOUNTER for instrumentation. For applications where bytecode is gener-

ated on the fly and not by the Java compiler (for example in Java EE application

servers), additional provisions must be taken. We also assume that the bytecode

to instrument conforms to the JVM specification, even if it has been protected

using obfuscation.

The ASM library that is used in BYCOUNTER has one small limitation: ASM

does not generate a 1:1 representation of parsed bytecode in a few cases. For ex-

ample, ASM visitors consider the parameterless LLOAD_0 bytecode instruction

to be the same as the (different) LLOAD instruction with parameter 0. Hence,

BYCOUNTER reports the four LLOAD_* instructions and the LLOAD instruction

using one counter, and their execution durations are considered to be the same.

However, as there is no semantic difference between the two instructions in the

above example, it does not invalidate the semantic accuracy of BYCOUNTER. If

needed, this small limitation can be overcome by modifying the ASM library.

Finally, superfluous bytecode instructions can exist in an application, i.e. byte-

code which can be optimized away by Just-In-Time (JIT) compiler of the JVM

without effects on execution results. These instructions are instrumented by BY-

COUNTER as it cannot anticipate later JIT optimisations. The instrumentation in-

structions cannot be optimised away by JIT, with the effect that they increment

190

4.6. Summary

counters even for those (superfluous) instructions that have been removed by

JIT.

4.6. Summary

This chapter presented a novel approach for dynamic resource demand quan-

tification on the basis of executed instructions and method invocations in

bytecode-based applications. The approach works by instrumenting the app-

lication bytecode, without the need to instrument or modify the JVM or the

Java API implementation. By instrumenting the application bytecode and not

the JVM, BYCOUNTER simplifies the entire counting process and becomes truly

portable across JVMs.

The instrumentation added by BYCOUNTER is designed to be as lightweight

as possible to keep the runtime overhead of counting low despite instruction-

level accuracy. In addition to being portable, the presented approach has been

designed for easy use: no understanding of bytecode internals is needed to use

it, and the application methods available for instrumentation are automatically

identified and proposed to the user.

To minimise disruptions, BYCOUNTER instrumentation preserves the signa-

tures of methods and constructors, and it also preserves the application ar-

chitecture. It supports request For reporting of counting results, BYCOUNTER

offers two alternatives: either using structured log files or using a result col-

lector framework (the latter can aggregate counting results across methods and

classes).

In the course of this chapter, an in-depth discussion of Java bytecode was used

to motivate the design decisions for BYCOUNTER. The discussion included such

topics as treatment of native methods during instrumentation, analysing para-

meters of bytecode instructions, working with calling context trees, etc.

By identifying and using performance equivalence classes of Java bytecode

instructions, the presented approach simplifies instrumentation and decreases

the runtime counting overhead. An additional novel feature is the identifica-

tion of performance-invariant bytecode instruction sequences and performance-

191

Chapter 4. Quantifying Resource Demands for Performance Prediction

invariant methods. In the future, extending the presented approach to other vir-

tual machines and their bytecode languages (for example .NET runtime and its

CIL bytecode) would allow the use BYCOUNTER in heterogeneous systems.

In Chapter 7, the Java implementation of the presented approach will be eval-

uated, and will be used to supply resource demands for bytecode-based cross-

platform performance prediction. To perform this prediction, platform-specific

timing values of the application-agnostic resource demand elements (bytecode

instructions and methods) are needed. The next chapter presents novel ap-

proaches for JVM benchmarking and API benchmarking, which provide the

sought timing values.

192

Chapter 5.

Benchmarking the Java Virtual Machine

Operations for Performance Prediction

To translate platform-independent resource demands into platform-specific tim-

ing values, the resource demands must be measured on the execution plat-

form. For the bytecode-based performance prediction approach presented in

this thesis, this means that bytecode instructions and methods must be bench-

marked.

Response time and other platform-specific timing values are the desired res-

ult metrics in the scope of performance evaluation and performance prediction.

So far in this thesis, quantifying platform-independent application resource de-

mands has been presented in Chapter 4: runtime counts of executed low-level

building blocks (bytecode instructions and method invocations) were quantified

using a platform-independent technique. Now, to obtain platform-specific tim-

ing values (e.g. for performance prediction) on the basis of these resource de-

mands, platform-specific timings (i.e. execution durations) of all building blocks

are needed.

However, such timings for bytecode instructions (let alone API methods)

are not provided by the execution platform. Whereas real-time systems and

JVMs [190, 191] offer a guarantee on the worst-case execution durations, they do

not provide expected or average or median execution durations. As most busi-

ness applications do not make use of real-time JVMs, even worst-case execution

times are not available and cannot be used for predicting realistic (average or

median) application performance.

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

Significant challenges concerning themeasurement of bytecode-level building

blocks remain unsolved, especially due to the shortness of the measured opera-

tions and the impact of runtime optimisations, such as Just-in-Time compilation

(cf. Section 2). Further challenges are described in the following section, and

they have served as guidelines for developing a new approach, since existing

attempts to quantify the execution durations of bytecode-level building blocks

provide no solution to these approaches, e.g. by ignoring the impact of Just-in-

Time compilation.

The contribution of this chapter is a novel approach for automated construc-

tion and execution of microbenchmark suites which fulfil the identified require-

ments and decrease the amount of human involvement in benchmarking. The

microbenchmark suite provides timing values for all bytecode-level building

blocks – it is not just a conventional benchmark suite (e.g. SPECjvm2008) which

provides a limited set of metrics which characterise the execution platform as a

whole. The suite addresses both fine-grained, low-level bytecode instructions

and high-level, complex and parametric API methods.

Before the details of these benchmarks are explained, Section 5.1 details the

challenges that are solved by the benchmark suite. The remainder of this chapter

is structured as follows: Section 5.2 presents the benchmarking of elementary

bytecode instructions, while Section 5.3 describes benchmarking of Java meth-

ods and entire APIs.

5.1. Challenges of Translating Resource Demands into Timing Values

The scientific challenges addressed and solved in this chapter are the following:

• finding an approach for benchmarking of fine-granular virtual machine

operations so that the results can be used for performance prediction

• quantifying the duration of operations that are orders of magnitude shorter

than timer resolution andwhich cannot be executed repeatedly in isolation,

but require additional operations for ensuring preconditions and postcon-

ditions

194

5.1. Challenges of Translating Resource Demands into Timing Values

• automated finding of pre- and postconditions for complex operations, such

as Java Platform API methods

• automated construction of benchmarks out of semi-formal definition of

preconditions and postcondition of benchmarked elements

• dealingwith JIT compilation and other optimisations in the scope of bench-

marking

From the implementation point of view, the execution duration of a bytecode

instruction or of a group of instructions heavily depends on the concrete JVM

and the hardware/software of the underlying execution platform. The same

is true for methods, especially for Java Platform API methods which are con-

sidered as atomic basic blocks in this thesis (cf. Section 2).

In particular, the capabilities of the JVM (such as JIT optimizations), the JVM

configuration (settings such as the heap memory usage) and the state of the JVM

are relevant. The measurement itself depends on the granularity of the meas-

ured instruction(s), on the accuracy of the used timer methods, and is subject

to non-determinism (CPU scheduling, interference from other CPU processes,

etc.).

A measurement must be repeated several times to control systematic errors

due to garbage collection, CPU scheduling etc. The number of repetitions also

depends on the precision/accuracy of the used timer method (see Chapter 3),

the amplitude of measurement errors, and the desired confidence level or other

statistical measures. However, repeating too many measurements in a row may

exhibit unexpected side effects (e.g. garbage collection interruptions that did

not occur for a smaller number of repetitions).

The most precise Java platform API timer (System.nanoTime()) has a ac-

curacy of more than hundred CPU cycles (see Section 7.2). This means that

the timer method accuracy is more than two orders of magnitude larger than it

takes to execute a simple CPU instruction such as a subtraction of two integer

values, and instruction pipelining of the CPU further increases the instruction

throughput. This means that a single bytecode instruction such as IADD (integer

195

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

addition) cannot be measured in isolation. Additionally, the invocation cost of

the timer methods also needs to be considered.

The JVM configuration (and, in a broader sense, the configuration of the ex-

ecution platform) plays a significant quantitative role. For example, switching

between the interpretation-only and optimising JVM modes results in perform-

ance differences in the order of a magnitude, as we show in Section 2. Ideally,

a sensitivity analysis should be run to study the impact of the individual con-

figuration parameters and also of their combination. This chapter provides the

infrastructure for performing a sensitivity analysis, which is left for future work.

The JVM optimization capabilities of current JVM implementations provide

several techniques for optimising bytecode execution and performance. For ex-

ample, just-in-time compilation (JIT) is monitoring the execution of bytecode

for some time before it decides that some “hot spots” (frequently-executed or

performance-heavy) methods need to be optimised.

The JIT can then optimise these “hot spots” using a variety of techniques, such

as loop unrolling, method inlining, but also the partial or full translation of (in-

terpreted) bytecode methods into native machine code. The scope, time point,

scale and performance effect of JIT optimizations exhibit strong variances across

components, usage profiles, JVM implementations and even JVM settings, as we

have shown in Section 2.

Even if we assume business systems where only the “steady state” is relevant

(which is reached after JIT optimization have taken place), the speedup achieved

by JIT can vary among JVMs, and also among applications. Existing approaches

to bytecode instruction benchmarking disregard the speedup introduced by JIT

despite the fact that JIT introduces speedups at the order of one magnitude and

even more.

5.2. Bytecode Instruction Benchmarking

The contribution of this section is a novel approach for benchmarking the byte-

code instruction set of a virtual machine, by automatically generating a set of

valid executable microbenchmarks from which a uniquely solvable system of

196

5.2. Bytecode Instruction Benchmarking

linear equations is derived and solved to yield the execution duration of each in-

struction type. This approach pioneers the use of bytecode-level generative pro-

gramming for benchmark creation, and its results will be validated in Chapter 7

by predicting the performance of real-world programs.

The contributions described in this section have been designed and imple-

mented for Java bytecode, which is the target of many programming languages

beyond Java itself, e.g. Scala, JRuby and others. At the same time, the under-

lying ideas and design decisions are likely to be applicable to other bytecode

formats, such as the Common Intermediate Language of the .NET platform.

Some challenges might even be simpler to solve for other platforms than for

Java: for example, .NET runtimes usually utilise Ahead-of-Time compilation

(AOT) instead of Just-in-Time compilation or bytecode interpretation, so the res-

ulting native code may be simpler to quantify, in contrast to the runtime inde-

terministic effects and scope of Java JIT (de-optimisation, on-stack-replacement).

In general, the performance of a bytecode instruction is the result of instruc-

tion’s usage of underlying software layers and hardware resources. For ex-

ample, a Java bytecode instruction that initialises an array is processed by the

JVMwhich in turn uses the CPU, but also allocates logical memory and may in-

clude accesses to the hard disk. Such a detailed, low-level consideration of an in-

struction’s execution is not needed at all if its total execution duration is already

sufficient to predict the response time of the entire component service [192]. In

our approach, we consider the execution platform as a black box and consider

the time that this black box spends executing the bytecode instructions as the

desired performance metric.

Four Java bytecode instructions (INVOKEINTERFACE, INVOKESPECIAL,

INVOKESTATIC and INVOKEVIRTUAL) are responsible for calls to Java meth-

ods. Using these instructions, bytecode classes can call other classes’ methods,

including the Java platformAPImethods. The calledmethod, the target class in-

stance (for non-static methods), and the method’s parameters are passed using

the stack which need to be set up accordingly before the method is invoked.

197

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

The performance of these four INVOKE* instructions hence strongly depends

on the implementation of the called method, which may include native meth-

ods, etc. Therefore, in this section, we consider the performance of these four

instructions as being part of the called methods’ performance. Method bench-

marking is a separate task which needs to deal with parameter generation, ex-

ception handling, target class instance setup and other issues that are not relev-

ant for primitive bytecode instructions. In addition, there is a potentially infinite

number of methods, while there can be at most 28 = 256 bytecode instructions (1

byte = 8 bits). Method benchmarking will be addressed in Section 5.3.

If an invoked method is itself provided by a Java bytecode class, it can be

analysed using tools such as BYCOUNTER (see Chapter 4) to analyse its com-

position from elementary bytecode instruction. Then, the results of this section

can be applied to the “decomposed” method to obtain its performance. Altern-

atively, the method can be benchmarked as an atomic entity, which will be the

focus of Section 5.3. Native methodsmust be considered as atomic entities, since

their implementation does not consist of bytecode instructions. the execution of

an instruction cannot

The following subsections address the following hypotheses, which form a

logical chain leading to the solution adopted in this thesis. The hypotheses are:

1. It is not possible to write source code for benchmarks that measure the dur-

ation of an individual bytecode instruction type.

2. It is not feasible to write source code for a system of benchmarks (“kernels”)

that measure the duration of several bytecode instruction types, so that the

set of kernels leads to a system of linear equations which can be solved to

yield the (approximate) duration of each existing bytecode instruction.

3. It is possible to bytecode-engineer valid executable classes (which cannot be

created from source code), so that the engineered classes attempt to meas-

ure the duration of a single instruction.

4. It is not feasible to employ brute-force random generation of bytecode in an

attempt to create executable benchmarks.

198

5.2. Bytecode Instruction Benchmarking

5. It is in general not possible to write a single benchmark for a given in-

struction by chaining several instructions of the same type between timer method

invocations (to overcome the issues of timer method accuracy), as the pre-

conditions and postconditions of the instructions do not match and require

additional helper instructions which are then co-measured and need to be

benchmarked separately.

6. It is possible to bytecode-engineer a set of benchmarks which accounts for

all instructions with their preconditions and postconditions as well as the

timer resolution, and can be represented as a system of linear equations

that is uniquely solvable without approximating.

7. To bytecode-engineer a set of valid benchmarks with a corresponding solv-

able linear equations system, the preconditions and postconditions of the

bytecode instructions must be checked.

8. It is beneficial to separate the semantics of bytecode-engineered benchmarks

(what is being benchmarked) from their syntax (concrete contents of the

executed classes) to simplify human understanding of the benchmarks.

9. The separation of benchmark semantics and benchmark syntax can be

solved by applying generative programming: the benchmark semantics are

represented as textual scenarios, and a benchmark generator takes the

scenarios as inputs and generates the valid bytecode classes for them, as

well as the corresponding system of linear equations.

10. Usage of benchmark scenarios facilitates creation of benchmarks that ex-

plore the instruction parameter space.

11. The advantage of textual scenarios is that new benchmarks can be created

efficiently for multi-instruction tuples (e.g. basic blocks), and also existing

scenarios can be re-generated quickly and new instruction types can be

covered efficiently.

199

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

12. As the benchmark scenarios are meant to be provided, modified and added

by human users and humans can make errors, the set of scenarios must

be machine-checked for correctness, completeness (instruction set cover-

age), redundancies and contradictions, cycles and whether it is under-

determined (i.e. no unique equation solution can be computed); the hu-

man user should be provided with feedback and suggestions on how to fix

the set of scenarios.

13. While the textual benchmark scenarios are initially provided by humans,

it is possible to generate valid scenarios automatically when an explicit, ex-

ecutable instruction sequence generator is created which incorporates the

analysis and fulfilment of instructions’ preconditions and postconditions.

14. The set of scenarios can be used for analysing instruction equivalence

classes w.r.t. execution durations, and to analyse the parametric depend-

encies.

5.2.1. Unsuitability of Source Code for Bytecode Instruction Benchmarking

To measure the execution duration of a Java bytecode instruction, it must be

executed by the JVM, which requires a complete and standard-compliant Java

bytecode class (as a classfile) and a method which contains the considered in-

struction. The conventional way to create an executable Java classfile is to write

source code and to compile it. The source code of the method would read a

performance counter (e.g. by invoking a timer method) immediately before and

after the instruction execution, and compute the execution duration from their

distance.

In practice, however, it is not feasible to measure the execution duration at

source code level: consider for example the IADD instruction: at source code

level, it corresponds to the “+” operator. This operator can only be used together

with an assignment, e.g. a=b+1 (we assume a and b to be integers – otherwise,

additional instructions for casting or boxing/unboxing would be needed). Note

that even for this example, the current value of a needs to be loaded onto the

200

5.2. Bytecode Instruction Benchmarking

stack, as well as the constant value 1. Also note that a=a+1 is semantically equi-

valent to a++, and a compiler may deliberately choose the IINC instruction to

increment the value directly in the JVM register (“local variable” in Java termin-

ology). The IINC instruction does not load the values onto the stack; thus, the

performance bytecode that is the result of source code statement a=a+1may be

different from the bytecode corresponding to a=b+1.

Omitting the assignment (e.g. by writing an expression like a+2; is valid,

but most JVMs will simply skip its execution after detecting its uselessness as

the addition on its own has no durable side effects in this example. Measur-

ing a+2;would then in fact measure only the timer overhead and nothing else.

Thus, writing source code to measure the duration of a=a+2; (with assign-

ment) means unintentionally co-measuring the assignment (which will result in

an ISTORE or similar bytecode instruction), plus the loading of the summands

onto the stack using two additional bytecode instructions.

To subtract the duration of the assignment and the loading operations, addi-

tional separate measurements need to be written and performed. However, this

leads to similar problems: e.g. an assignment at source code level (such as d=1) is

compiled to several bytecode instructions. To summarise, writing and compil-

ing source code to measure the execution durations of bytecode instructions is

not feasible, even more so if time method resolution is taken into account.

5.2.2. Unsuitability of Kernel Collections for Bytecode Instruction

Benchmarking

Instead of directly writing the programs for measuring the execution durations

of bytecode instructions, several researchers (e.g. Meyerhöfer [158]) have used

a set of existing programs (called “kernels”). Each distinct kernel ki contains

several different bytecode instructions, and the execution duration si > 0 of the

kernel ki is measured, which corresponds to the total (aggregated) duration of

the kernel’s executed instructions.

In the following, the indexes of bytecode instructions range from 1 to 256, al-

though only 203 bytecode instructions are currently defined and valid according

201

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

to the JVM specification; the remaining 53 are reserved for internal JVM use and

for future extensions.

A given bytecode instruction type ti (1 ≤ i ≤ 256) occurs in several of the exist-

ing kernels k1, . . . , kn, and the kernel-based approaches assume that the duration

di of the instruction ti is the same across all kernels.

Then, each kernel can be mapped to a linear equation when fi,j ≥ 0 denotes

the runtime frequency of instruction type ti in kernel kj :

256∑
i=1

fi,j · di = sj (5.1)

When the kernel set cardinality denoted as c, the measurement data (all the sk

with 1 ≤ k ≤ c) results in a system of c linear equations, which needs to be set

up and solved to derive individual instruction durations di from the execution

durations sk of the “kernels”. To quantify the execution durations individually

for each instruction, the equation system needs to have a unique solution, which

is hard to achieve due to runtime measurement imprecision (timer method ac-

curacy, OS scheduling, CPU interrupts, etc.). Even assuming that the equation

system can be solved approximately, the rank of the execution system (i.e. the

number of linearly independent equations) must be equal to or greater than the

number of unknowns (here, the number of currently defined bytecode instruc-

tions, i.e. 203).

None of the kernel-based approaches for bytecode instruction benchmarking

provides enough kernels to yield this number of linearly independent equa-

tions. Even if the bytecode instruction equivalence classes were used, which

reduce the number of bytecode instructions to 87 (cf. Section 4), kernel-based

approaches are still short of sufficient. Additionally, none of them has been

validated by predicting the performance of applications, let alone in a scenario

where JIT compilation leads to a speedup over the interpreted bytecode exe-

cution. An additional problem with kernel-based approaches is that they are

not able to explicitly explore the parameter space of bytecode instructions, and

202

5.2. Bytecode Instruction Benchmarking

that they are not suitable for exploring the performance of instruction tuples (e.g.

basic blocks).

The conclusion that we have drawn from analysing the existing kernel-

based approaches was that we needed to construct benchmarks that purpose-

fully benchmark bytecode instructions individually or as configurable instruc-

tion tuples, while leaving us full control over the structure of the bench-

marks. In the next section, a novel approach is introduced that separates the

semantics of benchmarks from their syntax, by directly generating executable

bytecode to measure bytecode instruction performance, with textual, human-

understandable scenarios as the input for the generator.

An additional problemwith existing approaches is that they often require spe-

cialised or instrumented JVMs to work (e.g. [33]).

5.2.3. Attempting to Measure Bytecode Instructions using Bytecode

Engineering

Beyond creation of benchmarks through source code writing or kernel-based

analysis, bytecode engineering allows programmatic creation of executable byte-

code with the control over individual instructions. Bytecode engineering means

direct creation and modification of bytecode, in contrast to compiler-based

creation of bytecode from source code. Frameworks such as BCEL [115] or

ASM [114] facilitate this task by providing programmatic access to (or even

transparent administration of) the constant pool and other complicated parts of

the classfile. Bytecode engineering allows an engineer to create bytecode which

is valid but cannot be created by writing source code and compiling it.

Measuring the execution duration of a single bytecode instruction does not

make any sense when considering the accuracy of API-provided timer methods

(cf. Chapter 3): even for most accurate and precise timer methods the accuracy

amounts to at least 100 CPU cycles, which is orders of magnitude larger than a

single bytecode instruction. But as this section aims at explaining the advant-

ages of bytecode engineering for benchmark creation, the single-instruction case

is taken – to serve for demonstration purposes only.

203

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

As an example, consider the following Java method: public void

add(){a+b;}, where a and b are int-typed fields defined outside of the

method. The (rather conventional) compiler of Eclipse 3.6 complies this method

to the following bytecode (line number information, local variable mapping

and stack administration definitions omitted for brevity):

ALOAD 0

ALOAD 0

GETFIELD Test.a : I

ALOAD 0

GETFIELD Test.b : I

IADD

PUTFIELD Test.c : I

RETURN

Bytecode engineering makes it possible to rewrite this instruction sequence,

which will remain executable as long as the resulting sequence is valid

(specification-compliant) w.r.t. stack usage, pre- and postconditions, local vari-

able usage, etc. In particular, it is possible to write a similar method which

attempts at measuring the execution duration of IADD in isolation, and returns

the measured value, replacing the void return type.

While doing so, the inserted measurement infrastructure must not endanger

the correct execution of the PUTFIELD instruction, i.e. the int-typed ad-

dition result must be on top of the stack at the moment when the exe-

cution of PUTFIELD starts. The following bytecode is valid – note that

the method now returns the long-valued result, and the local variables 1

and 2 are used to store the results of the invocation to the timer method

java.lang.System.nanoTime().

Still, note that while the timer methods have been placed as close to IADD

as possible, it is still needed to store the timing values using LSTORE, which is

consequently co-measured by the timers. All API-provided timer method have

204

5.2. Bytecode Instruction Benchmarking

non-void return types – rather than storing the value internally, it is returned

to the caller which is than able to analyse it.

ALOAD 0

ALOAD 0

GETFIELD Test.a : I

ALOAD 0

GETFIELD Test.b : I

INVOKESTATIC java/lang/System.nanoTime()J

LSTORE 1

IADD

INVOKESTATIC java/lang/System.nanoTime()J

LSTORE 3

PUTFIELD Test.c : I

LLOAD 3

LLOAD 1

LSUB

LRETURN

Note that after the execution of INVOKESTATIC followed by LSTORE, the JVM

stack is in the same state as before – this instruction tuple is thus stack-neutral.

Yet as it has other side effects (writing to local variables which are used later on),

this tuple is not dead code and won’t be skipped by the JVM.

Returning to the issue of measuring just single IADD, it would make sense to

measure several (or, better, several hundreds) of them. However, it is not possible

to simply insert an arbitrary number of IADDs between the timer method invoc-

ations. To see why, consider the fact that IADD is not stack-neutral: it consumes

two integer values from the stack, but pushes just a single one (the result) back

onto the stack. Inserting even a single additional IADD into the above bytecode

sequence would lead to invalid code which will be detected by the verifier of the

JVM: the preconditions of the second IADD instructions do not match the postcon-

ditions of the execution of the first IADD.

205

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

Thus, to measure a custom-created bytecode instruction sequence, the pre-

and postconditions of the sequence’s elements must be analysed and fulfilled.

This analysis and the subsequent fulfilment are a central challenge addressed

by this thesis, and the following section describes the pre- and postconditions in

more depth.

5.2.4. Attempting to Create Bytecode Benchmarks Randomly

A brute-force approach to bytecode benchmarking would be to create the meas-

ured bytecode sections (i.e. methods) randomly. It could be hoped that by gen-

erating many different methods, a linear equation system could be derived from

them, and that solving the equation systemwould yield the execution durations

of individual instructions. However, this is a rather unrealistic hope: the precon-

ditions and postconditions of bytecode instructions rarely fit together.

To see this in numbers, consider the (very simple) instruction ICONST_0,

which has not preconditions whatsoever: it simply puts a constant int value

0 onto the JVM stack. Let’s now quantify the likelihood that randomly choosing

the next instruction (with equal probability of choosing any of the instructions)

will lead to a mismatch between the postconditions of ICONST_0 and the pre-

conditions of the randomly chosen instructions. Note that it would make sense

to let the computer test whether this measured sequence is already ill-fated, be-

fore adding further instructions to the sequence.

If made by hand, the identification of the instructions whose preconditions are

met incurs a considerable effort, even for a single instruction (note that later in

this chapter, we describe an automated approach for doing this kind of tedious

work). There are 32 instructions that can potentially follow an ICONST_0:

• ACONST_NULL, BIPUSH, DCONST_0, DCONST_1,

• FCONST_0, FCONST_1, FCONST_2 LCONST_0, LCONST_1,

• DUP, NOP, POP, I2B, I2C, I2D, I2F, I2L, I2S, INEG,

• ICONST_M1, ICONST_0, ICONST_1, ICONST_2, ICONST_3, ICONST_4,
ICONST_5,

206

5.2. Bytecode Instruction Benchmarking

• RETURN, ISTORE, ISTORE_0, ISTORE_1, ISTORE_2, ISTORE_3.

Note that for the last group (starting with RETURN), the insertion must be

made carefully: RETURN is only admissible if the method’s return type is void,

and effectively terminates the method. The ISTORE* instructions may over-

write an existing local variable when it’s not desired: for example, in non-static

methods, the local variable with index 0 holds the reference to the invocation

target (referenced as this in Java source code).

The probability of randomly correcting a suitable successor to IADD is thus
32
203 ≈ 0.158 – and it’s even less when one considers the fact that for many instruc-

tions, in-bytecode parameters need to be generated as well (e.g. for ISTORE*).

The probability of 0.158 means that on average, more than 6 random guesses

will be needed per instruction. For instruction sequence of length 2000 (a real-

istic value given the accuracy of timer methods), at least 12000 trials for creating

a single benchmarking class will be needed when benchmark is constructed one

instruction at a time.

Note that it is still possible that after 1999 valid instructions have been found,

the last (2000th) instruction cannot be created at all so that the stack is in the

same state as before the instruction sequence. For example, 1999 ICONST_0s

result in 1999 ints on the stack – there is no bytecode instruction that would

wipe all of them off the stack in a single step. It is also likely that the suc-

cessful results of random bytecode generation will tend to include simpler (less

demanding) instructions, and instructions whose postcondition are less signific-

ant.

Taking into account the complexity of control flow instructions such as

IF_ICMPLE (jump to a given label if the int on top of the stack is less or equal

to 0), it is very hard to randomly create valid classes that include IF_ICMPLE, as

the corresponding label must be generated correctly as well. Introducing con-

straints on random generation of bytecode would ease the situation, but could

not qualify as random generation anymore. Even if it would succeed, a min-

imum of 203 correct different benchmarks (corresponding to the number of op-

codes currently used in Java bytecode, out of 256 available slots) would have to

207

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

be generated so that the resulting equations in the linear equation systemwould

be linearly independent.

One of the future work ideas that emerged in the scope of this thesis was to

use bytecode mutation to generate benchmarks out of existing, valid app-

lication. However, the conventional use of bytecode mutation lies in the field

of fuzzying and robustness testing, where the task is to generate invalid pro-

grams for testing whether the JVM will indeed reject them. Contrary to that,

benchmarking requires valid, correct benchmarks, and generating them through

bytecode mutation is unlikely to yield satisfactory results quickly.

Overall, randomly generating bytecode benchmarking is not a feasible option.

5.2.5. Preconditions and Postconditions of Bytecode Instructions

As stated in the previous section, bytecode engineering offers a technical possib-

ility for goal-oriented creating and measuring of custom instruction sequences,

and it allows us to control the instructions which are actually measured. Yet to

measure the duration of a bytecode instruction sequence (i.e. to benchmark it),

that instruction sequence must be executable. To be executable, an instruction

sequence must be valid and part of a valid method which is located in an ex-

ecutable class (classfile) that complies to the Java Virtual Machine specification.

An instruction sequence is valid when its preconditions and postconditions

are fulfilled, which in turn means that the preconditions and postconditions

of individual classes are valid (i.e. comply to the virtual machine specific-

ation). This leads to the need to analyse pre- and postconditions of indi-

vidual bytecode instructions. A special case are the pre- and postconditions

of the four method-invoking instructions INVOKEDYNAMIC, INVOKESPECIAL,

INVOKESTATIC, INVOKEDYNAMIC. As their pre- and postconditions depend

not on the instructions themselves but on the invoked methods, the INVOKE*
instructions are not considered in this section. The performance of these in-

structions is an inseparable part of the method invocation and execution, which

is benchmarked in a different way, as described in Section 5.3.

208

5.2. Bytecode Instruction Benchmarking

For the remaining (non-INVOKE*) instructions, a JVM executes a given single

bytecode instruction atomically and deterministically, unless when an exception

is thrown. Even though instructions have no signature and thus do not declare

exceptions, the JVM specification explains which exceptions are thrown and

under which conditions. However, in the context of benchmarking bytecode

instructions, exceptions and associated instruction types (e.g. ATHROW) don’t

need to be considered. Consequently, it is always the case that for a given non-

INVOKE* instruction, same precondition lead to the same postcondition since

none of the Java bytecode instructions performs activities with randomness.

To see what pre- and postconditions are possible for Java bytecode instruc-

tions, the use of input and output parameters must be studied as well as the

places where the JVM keeps the execution state. The parameters of a bytecode

instruction and the values it uses can be passed over or stored in the JVM local

variables, JVM stack, class variables and instance fields, but some parameters

are specified directly in bytecode. For example, the NEWARRAY instruction ex-

pects the array’s size on the stack (as it is a dynamic parameter), and the stack’s

type is found directly in bytecode (as it is a static parameter, which can already

be set by the compiler). The reference to the NEWARRAY-created array is pushed

onto the stack after execution, i.e. the stack also contains the returned value.

The pre- and postconditions of all Java bytecode instructions are described in-

formally using human language in the Java Virtual Machine specification [110].

Additionally, many tools (e.g. JVM verifiers and compilers) analyse pre- and

postconditions of instructions as they generate or parse classes, and symbolic

execution provide an alternative to direct bytecode execution by the virtual ma-

chine. Finally, formalisations of Java bytecode have been developed for reason-

ing and conducting security and another analyses, e.g. the KeY approach [193].

However, there exists no published API or tool which would allow dealing

with preconditions and postconditions explicitly and in an analytic way, as re-

quired by the bytecode benchmark presented in this thesis. In particular, no

API or tool which is capable of generating valid instruction sequences from the

scratch is available publicly. Similarly, no tool is capable of deciding which of

209

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

the Java bytecode instructions can be appended to an existing valid bytecode se-

quence instruction1, . . . , instructionn the sequence so that the extended sequence

is still valid. Note that the appended instruction’s preconditions must match the

postconditions of the existing instruction sequence.

Also, the choice of the appended instruction includes the non-deterministic

choice of its parameters: for example, if the result of IADD is to be stored using

ISTORE (which is not the only possibility), the local variable index for ISTORE

needs to be selected. The index should be chosen so that the storing does not

overwrite an already occupied local variable which may be needed later – and if

the “base” 256 local variables (8-bit addressing) are full, wide addressing needs

to be used to access the local variables with indexes 256 through 65535 (16-bit

addressing).

The challenge of checking or even fulfilling preconditions and postconditions

becomes even harder to solve when the extension of an existing bytecode se-

quence is subject to constraints, and more than one instruction is allowed to be

appended. Examples of constraints may be “use a minimum of additional in-

structions”, “the stack must be empty after the execution of the entire extended

sequence” or “the extended sequence may not contain instruction(s) ti, . . .”.

Some instructions, such as INVOKESPECIAL, require proper classes to be

loaded in the background by the classloader [110] – this is managed by the JVM

and does not need to be addressed in the scope of this section. Even then, for

instructions other than the rather simple IADD, it is not trivial to create pre- and

postconditions in accordance with the Java bytecode specification.

The approach presented in this chapter checks valid bytecode benchmarking

scenarios (explained in the next Section) and generates bytecode benchmarks as

executable classes from them. As preparation for explaining (in Section 5.2.6)

how these steps work, the remainder of this section explains the analysis and

treatment of pre- and postconditions of bytecode instructions. The analysis util-

ises symbolic interpretation of bytecode instructions, i.e. of executing the in-

structions in a real JVM, the state of the JVM is simulated.

210

5.2. Bytecode Instruction Benchmarking

The instructions of the sequence are represented in an intermediate format

(implemented by an own Java API), and the instruction-representing types of

the API can be instantiated by parsing existing bytecode, or by parsing the

benchmarked scenarios (which will be described in the next section). This en-

ables the identification in-bytecode parameters of instructions, and abstracts

away from the concrete representation of bytecode instructions.

An instruction is represented by its opcode, plus an array of in-bytecode

instruction parameters (stack-passed instruction parameters do not appear in

the bytecode of a method, and correspondingly do not appear in the instruction

sequence representation). As it is required to distinguish between primitive-

typed parameters (e.g. int) and the corresponding “boxing” object types (e.g.

Integer), the instruction parameters must be stored in a way that allows the ap-

proach to infer their types. The solution for this requirement is based on the

design decision to store the parameters in an array of generic Objects, and to

store the parameter types in a separate array of Strings. This mirrors the fact

that in-bytecode parameter types can be arbitrary.

The analysis itself (i.e. the symbolic execution) simulates the JVM state:

the stack, the local variables and the class variables. Before an instruction is

executed, its preconditions are checked carefully and detailed information is

provided when a mismatch is identified. For example, when checking the IADD

instruction, if a float is discovered on top of the stack, the error message de-

scribes the mismatch, as the top element of the stack should be an int. If an

instruction can be executed successfully, its postconditions are applied to the

JVM state, and the instruction pointer shifts to the next instruction.

5.2.6. Bytecode Benchmarking Scenarios

As a motivating example for bytecode benchmarking scenarios, let’s study how

IADD instruction can be measured. To account for timer meter accuracy, a sig-

nificant number of IADDs (� 1000) needs to be measured. At the same time,

since “helper” instructions may be needed because IADD instructions cannot

be simply chained as explained above, the number and diversity of “helper”

211

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

instructions should be minimised to reduce the density of the linear equation

system. Note that while this example focuses on a single instruction, similar

principles apply for benchmarking scenarios when instruction tuples (e.g. basic

blocks) are to be benchmarked.

Let <T1> denote a timer method invocation (or reading of any other, pos-

sibly several, performance indicators), and assume that <T1> does not have

any preconditions, in particular regarding the stack. Assume that <T1> also

includes instructions to store the read value(s) in local variable(s) so that the

postcondition of <T1> only concerns the local variable, in the sense that <T1> is

stack-neutral. In particular, this means that if the bytecode instruction sequence

instr1, . . . , instri, instri+1, . . . , instrn exists and is valid, inserting <T1> between

instri and instri+1 preserves the validity of the resulting sequence, as long as

storing the results of <T1> does not overwrite a value which is already stored

in a local variable and which will be needed by the instructions following the

inserted <T1>.

An IADD instruction cannot be directly followed by another IADD unless the

stack is prepared with additional integer value required by the second addi-

tion. Hence, either (i) the stack must be replenished between the two IADD calls,

or (ii) a sufficient “inventory” of integers must be stored on the stack before the

sequence/loop of IADDs starts executing. For the alternative (i), the stack re-

plenishment (e.g. using an instruction such as ICONST_1 which loads the in-

teger value 1 onto the stack) will be co-measured with the actual focus of the

microbenchmark (i.e. IADD). The measured instruction(s) can be repeated using

chaining (concatenation) or in a loop.

A simple example for alternative (i) (i.e. in-between stack replenishment) is

the following:

ICONST_0, ICONST_1, <T1>, IADD,ICONST_1︸ ︷︷ ︸
n times

, IADD, <T2>, ISTORE 123

In this scenario, with <T1> is the first performance indicator value recording

(recall that it is stack-neutral) and <T2> is the second recording. They are dis-

tinguished because <T2> saves the values to different local variables than <T1>,

212

5.2. Bytecode Instruction Benchmarking

as the values saved by <T1> would otherwise be overwritten. The ICONST_1

instruction (which pushes an int value 1 onto the stack) is used for stack re-

plenishment. In this scenario, repeating the execution of IADD plus its helper

ICONST_1 is performed n times by concatenating n repetitions; the concrete

syntax for expressing “n repetitions”, as well as the alternatives for concatena-

tion (e.g. loop-based repetitions) will be discussed later.

Looking at the scenario more closely, it becomes clear that the instructions

preceding <T1> are the scenario preconditions, while the instruction following

<T2> is the scenario postcondition. The measured value (<T2>-<T1>) thus in-

cludes the performance of (n + 1)·IADD and n·ICONST_1 instructions, and the

performance contribution of the latter must be quantified using a separate mi-

crobenchmark. Additionally, <T2>-<T1> includes the invocation cost of the

second performance indicator reading, which can significantly contribute to the

measured value (cf. Chapter 3 for the overhead of timer methods). Also note

that the scenario postcondition stores the scenario result into local variable 123,

which should be used (e.g. printed on standard output stream) so that the com-

putation is not considered superfluous. This serves to prevent purity analysis

from inferring that the additions can be skipped without side effects, whichmay

lead to measuring “nothing”.

Now, instead of in-between stack replenishment as in alternative (i), consider

the aforementioned alternative (ii), which creates the “inventory” of integers on

the stack. The following scenario implements alternative (ii):

ICONST_1︸ ︷︷ ︸
(n+1) times

, <T1>, IADD︸ ︷︷ ︸
n times

, <T2>, ISTORE 123

This scenario seems straightforward and more appealing, as the scenario is

shorter and as ICONST_1 is no longer co-measured with IADD.

However, this scenario has its disadvantages. For example, the value of n is

limited, as the maximum stack height permitted in a method is limited by the

JVM specification to 65536 slots (double-wide types such as long and double

occupy two slots). Experiments conducted to study the real-life working upper

213

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

bound on stack height have shown that when using even substantially lower

stack heights (less than 30000), severe errors in mature JVM implementations

(such as the Sun JVM on 32-bit Windows) occur despite the fact that the byte-

code is correct and has passed the verifier. Additionally, pre-allocating such a

large collection of values on the stack is different from the “normal” stack usage

behaviour, where stack heights beyond 100 are very seldom. Unusually high

stack heights are likely to lead to memory access overhead which would render

benchmarking results for IADD higher than normal.

The current implementation uses simple unformatted textual scenarios,

whose syntax contains useful shortcuts and macros to express scenarios easily

and effectively. For example, the variable n in the above scenarios can be

referenced, so it is not needed to manually type the repeated instruction n types.

Thus, the second example scenario from above is written as

(n+ 1) ∗ ICONST_1, <T1>, n ∗ IADD, <T2>, ISTORE 123

Additionally, it is possible to inject randomness into the scenarios. For ex-

ample, on each visit of the scenario token ICONST_any, the benchmark gener-

ator will insert one of the following instructions: ICONST_M1 (pushes -1 onto

the stack), ICONST_0, . . ., ICONST_5. This allows us to vary the (performance-

equivalent) instructions to make the scenario less susceptible to inlining and

other optimisations. The benchmark scenario parser supports parentheses for

grouping instructions together, which allows repeating instruction sequences:

for example, the above scenario for the alternative (i) can be written as

ICONST_0, ICONST_1, <T1>, n ∗ (IADD,ICONST_1), IADD, <T2>, ISTORE
123

So far, the syntax and semantics of the textual scenarios has been described.

Before the generation of executable bytecode benchmarks from the scenarios

and other workflow steps are addressed in more detail, the following section

provides an overview over the workflow.

214

5.2. Bytecode Instruction Benchmarking

5.2.7. Overview of Scenario-driven Automated Bytecode Benchmarking

Figure 5.1 summarises the inputs, workflow and the outputs of BYBENCH. The

are two phases, separated by the dashed line: the generation phase (which is

run once on any platform, and yields executable benchmarks), and the bench-

marking phase, which is run on every platformwhere the execution durations of

bytecode instructions are needed.

The inputs for the first phase (generation of benchmarks) consist of the textual

benchmarking scenarios as discussed in Section 5.2.6 and a configuration for the

generation, e.g. the methods to read performance indicators (timer methods etc.

– refered to as <T1> and <T2> in textual scenarios). The output of the first

phase consists of the executable benchmark plus the infrastructure to execute

them, as well as collect and evaluate results (which includes the solving of the

linear equation system). Additionally, details about the generation are available

(both interactively and as a summary at the end), e.g. when cycles in scenarios

are identified (see next section for detail).

The second phase consists of invoking the benchmarkmanagement infrastruc-

ture, which executes benchmarks, analyses their results, and stores them for

later use, e.g. in the scope of performance prediction. The inputs in this phase

are a run configuration (incl. an option to override the default value for how

often a benchmark is executed), and the JVM configuration (e.g. the size of

heap memory, etc.). The benchmarking results record the details about execu-

tion platform in which the benchmarks were executed, so that the benchmark

results from different platforms can be collected and compared.

A scenario is translated into an executable bytecode sequence and inserted

into a generic bytecode template, which contains performance indicator infra-

structure, output of values to prevent unwanted purity analysis optimisations,

etc. The inserted bytecode sequence should not expect anything on the stack

or in the local variables, should not modify the existing stack contents (if any),

and should not use the local variables with the index higher than 10000, as the

performance indicator values are stored there. After the execution, the inserted

bytecode sequence should have pushed a single new java.lang.Object in-

215

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

1. Scenario
Editor and

Parser

2. Semantic
Correctness

Analyser

3. Scenario Graph
Builder and Cycle

Analyser

4. Scenario Graph Completeness
and Overdetermination Analyser

Human-specified
Microbenchmark Scenario

Human-specified
Microbenchmark Scenario

Textual Microbenchmark
Scenario

Checked & Adapted Set of
Microbenchmark Scenarios

5. Microbenchmark Suite
Generator and Tester

Generation Config.
(e.g. Timer Usage) Feedback, Log, Docs

Executable Bytecode of the
Microbenchmark Suite

6. Virtual Machine
JVM Configuration

(Optional: Profiling Agents)
Run Configuration

(e.g. Results Storage)

Benchmarking
Results

7. Statistical Processing of Benchmarking Results
(Dependencies, Sensitivity Analysis, Parametric Dependencies)

Benchmark Provider Actions & Artefacts

Benchmark User Actions & Artefacts

Figure 5.1.: ByBench Overview

stance onto the stack, which is treated by the template as a purity-related value

which must be printed to prevent unwanted optimisation based on purity ana-

lysis.

But these requirements also mean that the (human) scenario author must

know the bytecode language semantic and these requirements – still, humans

can make errors, and human input must be checked. So after parsing their tex-

tual representation into an object-oriented structure (Step 1), the analysis for

semantic correctness is performed in Step 2, which checks whether the pre- and

postconditions are met as described above.

Still, even if each scenario is individually correct (semantically and syntactic-

ally), the collection of scenarios can have significant problems. For example, the

resulting linear equation system can be under-determined (i.e. the set of scen-

arios is incomplete). Step 3 builds a graph, with nodes being scenarios and a

directed edge from node Ni to Nk if the benchmarking result of Ni includes the

duration of a helper instruction which is the target instruction of scenario Nk.

216

5.3. Method and API benchmarking

Every benchmarking scenario has a specific instruction opt (or a sequence

of instructions) that is the target of the benchmark, i.e. the instruction(s) that

the scenario author intends to measure. However, there are often co-measured

“helper” instructions, which are needed to fulfil the preconditions of opt and to

keep the timed block stack-neutral, since the timed block is repeated many times

between <T1> and <T2>. This means that the measured time <T2>-<T1> con-

tains not only the execution duration of opt, but also the execution duration of

all other instructions in the timed block.

It is important to note thatNi is connected with all candidatesNk, even though

only one of the candidates is needed to compute the duration of Ni’s target

instruction. During the graph construction, Step 3 detects cycles and under-

determination, but does not fix them – these problems are addressed by Step 4.

5.3. Method and API benchmarking

This section addresses the next constituent of the platform-independent met-

ric, the methods. Of course, only non-abstract methods and constructors can

be benchmarked, as abstract methods have no implementation body and only

non-abstract methods are executed at runtime. The mechanisms and principles

described in this section apply to both the methods of the application itself and

to external methods, such as API methods and other components’ methods (cf.

Section 4.3.5 for usage of methods in Java bytecode).

One possibility for quantifying the performance of methods would be to de-

compose them into bytecode instructions, and use instruction timing values to

compute the method’s performance. However, this would not be applicable to

native methods, and would become very complex for methods with parametric

dependencies, as instruction counts for every occurring instructionwould have to

be parametrised over the method’s inputs.

Method benchmarking as described in this section should not study the in-

ternals of the method’s implementation – still, analysing the bytecode of the

method’s implementation would not violate the black-box nature, as long as the

bytecode is not decompiled into source code. However, as discussed in Sec-

217

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

tion 4.3, it is often impossible to decompose a method into its implementation’s

bytecode instructions (e.g. when a method is native). Even when such as de-

composition is technically possible, considering and analysing a method as an

atomic entity has several advantages:

• programmers and software engineers think at level of methods and service,

rather than at the level of bytecode

• parametric dependencies should be studied and expressed atmethod level,

using method input parameters

• for non-static methods, the invocation target can play a significant role for

the method’s performance – such information is hard to capture at the level

of bytecode instructions

• method-level benchmarking enables performance characterisation of large

APIs that often contain thousands of methods

A simpler alternative is to use just one performance metric, i.e. the (platform-

specific) execution time, eventually parametrised over the method inputs. This

means that benchmarked methods are considered as atomic entities, and this

allows treating methods as black boxes. In particular, the approach presented

in this sections permits to benchmark third-party methods which come without

source code and without functional specification or interface contracts – only

externally visible artefacts of a method (signature incl. parameters and their

types) are allowed to be used.

5.3.1. Scientific Challenges

Writing a method benchmark (even for a single method) is a non-trivial task:

consider, for example, the method valueOf(char[] data, int offset,

int count) in the Java PlatformAPI class java.lang.String. For a human

programmer, it is obvious that the offset parameter should be non-negative

and the count parameter should match the data’s length and offset so that

offset+count≤data.length. Also, data should be non-null, etc – but

218

5.3. Method and API benchmarking

this understanding and reasoning are not available to a computer due to lack of

formal specification and due to the fuzzy, human-oriented documentation.

Different from testing, where the target is to find a test case where a method

behaves differently than expected, parameter generation for benchmarking

needs to find one (or, for parametric dependencies, several) cases (=parameter

assignments) which are valid, i.e. suitable. The IndexOutOfBounds exception

that the above method valueOf would throw if wrong parameters are passed

contains information about the problem, which can help the human program-

mer – using such information during parameter finding for benchmark creation

would be helpful. Even if the programmer is unsure how the method behaves

(e.g. when offset>data.length), the API documentation can be consulted,

or a trial-and-error approach can be followed. Also, the parametric depend-

ency should be studied by experimenting with data of different length, differ-

ent counts, etc.

For benchmarking many methods (e.g. large components, or complete APIs),

an automated solution is needed because manual benchmarking does not scale

to the size of production-level APIs: for example, the Java platform API is com-

prised of thousands of methods. Even if it is known which external methods an

application will use, benchmarking only the used methods by manually writ-

ing and executing benchmarks incurs a high effort. But due to the complexity

of method benchmarking w.r.t. parameter finding etc., there exists no standard

automated API benchmarking tool or strategy, even for a particular language

such as Java.

Developers and researchers often manually create microbenchmarks that

cover only tiny portions of the APIs (e.g. 30 “popular” methods [32]). While

profiling tools such as VTune [194] help with finding performance issues and

“hot spots”, they are not suitable for performance testing of many methods or

of entire APIs: suitable parameters must be specified by humans, who have to

create a workload with suitable method parameters.

Also, the statistical impact of measurements error is ignored and the de-

velopers must manually adapt their (micro)benchmarks when the API changes.

219

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

Additionally, modern execution platforms such as the Java Virtual Machine per-

form extensive non-deterministic runtime optimisations, which need to be con-

sidered and quantified for realistic benchmarking. To obtain realistic results,

extensive runtime optimisations such as Just-in-Time compilation (JIT) that are

provided by the JVM and the CLR need to be induced during benchmarking

and quantified.

The resulting scientific challenges are the following:

• How to automate benchmark creation and benchmark evaluation, scaling

to thousands of methods and to future methods (e.g. API extensions)?

• How to automate the finding of suitable input parameters for methods,

while performing better than the trivial, brute-force parameter finding?

• How to automate the finding of parametric dependencies of the bench-

marked methods, including parametric dependencies on invocation tar-

gets of non-static methods?

• Devise an approach to create dependable, realistic benchmarks for meth-

ods that execute in less than a microsecond, while accounting for runtime

optimisations (e.g. JIT compilation, method inlining, dead code elimina-

tion, invariant detection)?

• How to combine several source of information on suitable method para-

meters, e.g. from human specification, application execution monitoring

and the suggested automated parameter finding?

• When methods are grouped into APIs: how to make use of the API struc-

ture (e.g. inheritance trees) while constructing the benchmarks?

The contribution of this section is an automated solution for benchmarking

not only single methods in isolation (on their own), but also in the context of

APIs, since APIs provide additional context such as inheritance trees, usage pat-

terns, etc. The central novel idea of this section is to use heuristics during find-

ing of suitable parameters: by analysing the method’s signature and exceptions

220

5.3. Method and API benchmarking

thrown by trying unsuitable parameters, the search for suitable parameters is

accelerated. For each method, a set of directly executable microbenchmarks is

created as a set of bytecode classes, enabling automated execution of bench-

marks. When a method implementation or an API changes, the benchmarks can

be regenerated quickly, e.g. to be used for regression benchmarking.

The solution is called APIBENCHJ and it requires neither the source code of

the API, nor a formal model of method input parameters. The approach presen-

ted in this section has been implemented for methods and (arbitrary) APIs that

are available as Java bytecode, and an evaluation for several large packages of

the Java Platform API is given in Chapter 7. Among other capabilities, the im-

plementation induces the optimisations of the Just-In-Time compiler to obtain

realistic benchmarking results.

5.3.2. Foundations

In the remainder of this section,API benchmarking is used as a synonym tomethod

benchmarking. While the described principles and mechanisms apply not only to

entire APIs but also to arbitrary sets of methods and to single methods, bench-

marking entire APIs (such as the Java Platform API) poses additional challenges

and chances that the presented work addresses.

Benchmarking a method means systematically measuring its execution dur-

ation as it is executed, i.e. measuring the response time from the view of the

method’s caller. To execute a method, it must be called by some custom-written

Java class, i.e. the bytecode of such a suitable caller class must be loaded and ex-

ecuted by the JVM (in addition to the callee bytecode). There are three different

techniques for caller construction:

1. using the Java Reflection API to dynamically call methods at runtime,

2. using code generation to create caller source code that is compiled to execut-

able caller classes, and

3. using bytecode engineering techniques to directly construct the binary Java

classes that call the benchmarked methods

221

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

All these three techniques differ with respect to their scalability and their im-

pact on the behaviour of the JVM (just-in-time compilation, etc.). They also

differ with respect to the measurement itself (e.g., whether the overhead of Java

Reflection API usage can be clearly separated from the execution duration of the

benchmarked method). The measurements have to be carried out with respect

to statistical validity, which is influenced by the resolution of the used timer (cf.

Chapter 3) and the duration of the benchmarked method.

JIT compiler optimisations can cause significant problems when benchmark-

ing: for example, the constant folding algorithm implemented in JIT can identify

a simplification possibility by replacing successive calls to an arithmetic opera-

tion by a constant node in the dependency graph of the JIT compiler [195]. In

order to avoid constant folding during benchmarking, the JIT compiler should

not identify input parameters of the benchmarked methods as constants.

Purity analysis and dead code elimination pose a further challenge: if the

benchmarked piece of code is repeated n times with the same outcome and the

same inputs, n− 1 repetitions will be eliminated when they have no side effects.

Such challenges have to be met in order to avoid misleading benchmarking res-

ults.

During benchmarking, in order to execute a method that has one or several

input parameters, these parametersmust be supplied by the caller and theymust

be appropriate. In general, method parameters can be of several types: primitive

types (int, long etc.), object types that are ’boxed’ versions of primitive types

(e.g. Integer), array types (e.g. int[] or Object[]) and finally of general

object or interface types (e.g. StringBuffer, List, etc.)

For primitive parameter types, often only specific values are accepted, and if

a ’wrong’ parameter value is used, the invoked method will throw an excep-

tion – either a documented or an undocumented runtime exception. Very often,

runtime exceptions do not appear in method signatures, and are also undocu-

mented in the API documentation.

Even for a single int parameter, randomly guessing a value (until no runtime

exception is thrown) is not recommended: the parameter can assume 232 differ-

222

5.3. Method and API benchmarking

ent values. For parameters of types extending java.lang.Object, additional

challenges arise [168].

Unfortunately, almost all APIs provide no formal specification of parameter

value information, and also provide no suitable (functional) test suites or an-

notations from which parameters suitable for benchmarking could be extracted.

The same also holds for individual methods of classes and components, since a

formal description of their input parameter ranges is very infrequent.

To see why parameter finding benefits from considering the surrounding API,

consider the method append(java.lang.CharSequence s, int start,

int end) in the class java.lang.String. The type of parameter s is an in-

terface, and to initialise an instance of s, a class implementing CharSequence

must be found. Unfortunately, the Java Platform API (and in particular its Re-

flection API) do not provide facilities for querying types implementing a given

interface, or types extending a given type. Furthermore, some methods such as

for example Long.parseLong(String s) require specific parameter types

to be cast into Strings or Objects.

To collect and use this information, indexing of the API implementation (i.e.

the type hierarchy) is employed by Javadoc utility, by the Eclipse IDE and also

by the presented approach. Collecting such information by querying all classes

available at the classpath can lead to incompatibilities when the classpath con-

tains classes outside the benchmarked scope, and such classes may not be avail-

able on the platform different from the one where the benchmarks were gener-

ated.

Due to the size of APIs, manual specification of parameters is extremely work-

intensive, and only a minor alleviation in comparison with completely manual

benchmarking. Hence, manual specification of parameters should only be used

where it is indispensable, and automated specification/generation of paramet-

ers should be used otherwise.

An API can cover a vast range of functionalities, ranging from simple data

operations and analysis up to network and database access, security-related set-

tings, hardware access, and even system settings. Hence, the first consideration

223

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

in the context of automated benchmarking is to set the limits of what is admiss-

ible for automated benchmarking.

For example, an automated approach should be barred from benchmarking

the method java.lang.System.exit, which shuts down the Java Virtual

Machine. Likewise, benchmarking the Java Database Connectivity (JDBC) API

would report the performance of accessed database, not the performance of the

JDBC API, and it is likely to induce damage on database data. Thus, JDBC as

part of the Java Platform API is an example of an API part that should be ex-

cluded from automated benchmarking – APIBENCHJ handles exclusion using

patterns that can be specified by its users.

From the elements of an API that are allowed for automated benchmarking,

the only two element types that can be executed and measured are non-abstract

methods (both static and non-static) and constructors (which are represented in

bytecode as special methods). Opposed to that, neither class fields nor interface

methods (which are unimplemented) can be benchmarked.

5.3.3. Overview of the APIBENCHJ Framework

Figure 5.2 summarises the main steps of control flow in APIBENCHJ, and we ex-

plain it in the following – relevant details of its implementationwill be described

in the following Sections. The output for APIBENCHJ is a platform-independent

suite of executable microbenchmarks for the considered API which runs on any

Java SE JVM. While the approach has been tailored to methods executing on

the Java Virtual Machine, the novel, heuristics-based parameter generation and

other contributions of this section can be applied on the .NET execution plat-

form which also offers the exception mechanism and a reflection API.

Note that all but the last step can performed on any execution platform, and

the generated microbenchmarks are persisted so that they can be readily run on

any platform. Also note that when not an entire API needs to be benchmarked,

a knowledge of the surrounding API is useful or even essential, as explained

above.

224

5.3. Method and API benchmarking

1. Obtain benchmarking scope: parse API structure, apply user-specified exclusion filters

2. Create benchmarking dependency graph and benchmarking scenarios for each method

3. Satisfy preconditions for method / constructor invocation (parameters, …)

4. Test preconditions: perform tentative method invocation without benchmarking

5a. Save successful
preconditions for later reuse

6. Generate individual method microbenchmark; add it to microbenchmark suite

7. Run microbenchmark suite on the target platform, evaluate benchmarking results

5b. Analyse exception(s) / error(s),
recommend new preconditions

Successful?yes no (i.e. runtime exception/error occured)

Steps 1-6: only 1x per A
P

I, on any platform

benchmarking results
are platform-specific

St
ep

s
3-

6:
 p

er
fo

rm
ed

 fo
r e

ac
h

A
P

I m
et

ho
d

Figure 5.2.: APIBENCHJ : overview of automated API benchmarking

Step 1 starts with parsing and storing the API structure to identify the rela-

tions between API elements, e.g. inheritance relations and package structure.

APIBENCHJ can operate directly on bytecode and does not requires source code,

i.e. it is suitable for black-box APIs whose implementation is not exposed. The

Java platform and its Reflection API do not provide sufficient functionality for

this task, e.g. one cannot programmatically retrieve all implementers of an inter-

face. Thus, APIBENCHJ has its additional tools to parse the API structure using

the bytecode classfiles of its implementation. Step 1 also applies user-specified

exclusion filters to exclude entities that must not be benchmarked automatically.

The exclusion filters are specified beforehand by users (i.e. APIBENCHJ does

not try to exclude such entities itself). Filters can be package names, classes

implementing a specific interface or extending a given class, etc.

Step 2 in Figure 5.2 creates benchmarking scenario(s) for each method. Scen-

arios describe the requirements for benchmarking, e.g. which parameters are

needed and which classes must be instantiated before the considered method

can be benchmarked. Actual runtime values and objects are created/instantiated

later, in steps 3 through 7. In APIBENCHJ, a scenario consists of preconditions, the

actual benchmarked operation and the postconditions for a method invocation. At

225

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

the beginning, step 2 creates a benchmarking dependency graph, which holds rela-

tions such as “String.contentEquals must be preceded by initialisation of

a String instance”, or “the constructor String() has no preconditions”. As

several constructors for String and StringBuffer exist, several scenarios

can be created which differ in the choice of constructors used to satisfy precon-

ditions, and which allow the quantitative comparison of these choices. Step 2

can also compute metrics for the complexity of benchmarking methods, so that

step 3 can start with the methods having lowest complexity.

Step 3 starts with trying to satisfy the precondition requirements of a benchmark-

ing scenario. Satisfying benchmarking requirements from Step 2 means gener-

ating appropriate method parameters, invocation targets, etc. A precondition

may have its own preconditions, which APIBENCHJ must then satisfy first. As

discussed in Sections 5.3.1 and 5.3.2 as well as in author’s previous work [168],

automating of these tasks is challenging due to runtime exceptions and the com-

plexity of the Java type hierarchy/polymorphism. APIBENCHJ incorporates a

combined approach to this challenge by providing a plug-in mechanism with

different precondition sources which can be ranked by their usefulness. For

example, manual specification has a higher rank than heuristic search, with dir-

ected brute-force search having the lowest ranking of the three. If, for example,

APIBENCHJ finds that no manual plug-in exists for a precondition type, it could

choose the heuristic search plug-in described in [168]. The generated precon-

ditions can lead to runtime exceptions – hence, before they are accepted as

benchmarking-ready, they must be tested.

Step 4 performs a tentative method invocation to test that using the generated

preconditions does not lead to runtime exceptions (if such an exception occurs

APIBENCHJ proceeds with step 5b). The error handler in step 5b triggers a new

attempt to satisfy preconditions of the considered benchmarking scenario, or

gives up the scenario if a repetition threshold is surpassed (this threshold serves

to prevent infinite or overly long occupation with one scenario, especially if

using brute-force parameter search).

226

5.3. Method and API benchmarking

Step 5a is entered if the tentative invocation succeeds, and the information on

successful precondition values are internally saved for future reuse. The saved

information may be a pointer to the successful heuristic, pointer to a code sec-

tion that has been manually specified by a human, or a serialised parameter

value.

Step 6 generates an executable microbenchmark for the considered scenario,

using successfully tested precondition values. The generated microbenchmark

implementation explicitly addresses measurement details such as timer resolu-

tion (cf. Section 3), JVM optimisations, etc. The execution of the resulting mi-

crobenchmark does not require the APIBENCHJ infrastructure that implements

steps 1 through 6 – each microbenchmark is a portable Java class that forms a

part of the final microbenchmark suite. The microbenchmark suite includes the

microbenchmarks plus additional infrastructure for collecting microbenchmark

results and evaluating them.

In the following Sections 5.3.4 and 5.3.6, we describe the implementation of

APIBENCHJ.

5.3.4. Satisfying Preconditions using Heuristics

In this section, we present the heuristic parameter generator (HPG) which is

used in step 3 of APIBENCHJ (cf. Figure 5.2) to generate appropriate parameter

values for method and constructors. The following algorithm descriptions de-

note the signature of an invokable I (i.e., a method or a constructor) as SG. The
declaring class of an invokable I is referred to as DC and the instance of DC as

DCI.
APIBENCHJ operates in a context which offers a set of types (classes) that can

be used by APIBENCHJ . As any other Java SE, APIBENCHJ has access to the

types of the Java Platform API, but additional types can be available on the

classpath, e.g. when external libraries are used or benchmarked. For a given

classpath context, container types, denoted as CT , is the set of static types whose

instance has a length or a capacity, for example arrays, collections or maps. In

227

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

Java, Strings are also contained types (they contain characters and have a

length attribute), as are buffers and similar structures.

The following discussion is split into several parts: first, the generation of pri-

mitive-typed parameters is described in Section 5.3.4.1, followed by container

types (Section 5.3.4.2) and generic object types (Section 5.3.4.3). Afterwards, the

treatment of runtime exceptions which occur if the initial parameter values are

inappropriate is detailed (Section 5.3.5).

5.3.4.1. Generation of Primitives

The choice of heuristics for the generation of primitives is motivated by two

observations:

• often, the constants declared in DC and/or its superclasses are

the input parameters which are more likely (or even exclusively)

accepted by the considered method: for example, the method

java.util.Calendar.set(int year,int month,int date)

should make use of static int fields JANUARY etc. in that class

• if one of the method parameters is container-typed (e.g. an array or

a List), the int-typed parameters in the method signature are likely

to refer to that container, e.g. as ’from’ or ’to’ indexes: an example

is the method java.lang.String.getChars (int srcBegin, int

srcEnd, char[] dst, int dstBegin)

Accordingly, we describe here the twomost important heuristic strategies that

HPG defines for generating instances of primitive types as input parameters for

an invokable I.
The first heuristic of HPG is to use the constants (i.e. static final variables, if

available) defined in DC. The constants in the superclasses of DC are also con-

sidered (the set of superclasses is denoted S.DC). These constants may well be

negative; the order of selecting them is randomised. If no declared constants are

available (or if there are less declared constants than primitive parameters in the

signature), the primitive values are generated randomly and may be negative as

228

5.3. Method and API benchmarking

well. A random number generator with uniform distribution is currently used,

but distributions that favour smaller positive and larger negative values (i.e.

values around zero) should be considered as a replacement, because it appears

that these values are more frequent in practice.

The HPG needs to accounts for the fact that int parameter values are

often used as indexes and thus are the only primitives likely to throw

IndexOutOfBoundsExceptions.

Therefore, a second heuristic has been defined for int-typed parameter

values: a lower and an upper bound are imposed on int-typed para-

meter values if container-typed parameters are present in the signature,

or if DC is itself container-typed. For example, for generating the para-

meters for the method String.getChars(int srcBegin, int srcEnd,

char[] dst, int dstBegin), the dst array of chars should be gener-

ated first, and then the int values srcBegin, srcEnd and dstBegin should

be generated afterwards, as they have an obvious, important relation to dst.

Hence, the second heuristic is applied after generating all other parameters in

SG.
A simple constraint that is used by the second heuristic is to set the lower

bound of int values to 0. It should be stressed that this restrictive constraint

is only applied if either DC is of container type, or if at least one of parameters

in the signature of I is container-typed. In other cases, int parameters may be

negative.

After the lower bound has been calculated, the heuristic calculation of the

upper bound BOUND for the int values is carried out, as specified in the

Algorithm 5.1. In the case of the above method String.getChars(int

srcBegin, int srcEnd, char[] dst, int dstBegin), the upper

bound that HPG will find is dst.length which means that the fol-

lowing three conditions should be true: (i) 0 ≤ srcBegin ≤ dst.length, (ii)

0 ≤ srcEnd ≤ dst.length and (iii) 0 ≤ dstBegin ≤ dst.length.

In the Algorithm 5.1, if the signature of the target method has container-typed

parameters, parameter generation of int-typed values does not consider the

229

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

length or the size of the target class instance on which the method will be in-

voked. Thus is because it assumes that container-typed parameters used in

Algorithm 5.1 have been already generated with consideration to the class in-

stance, as we will demonstrate in the next section while generating container

types.

Algorithm 5.1: Finding the Upper Bound for Integer Arguments
/* SINT is the set of int constants declared by S.DC */
Data: Method I
Result: BOUND: upper bound for generating int parameter values in

SG(I)
CT S ← {{param|param ∈ SG} ∩ {param|param.TY PE ∈ CT }};
if CT S �= ∅ then

/* SG declares container types */
BOUND ← min((param.VALUE).LENGTH|∀param ∈ CT S);

else
if (I is not static) ∩(DCI.TYPE ∈ CT) then

/* DCI is of container type */
BOUND ← DCI.LENGTH;

else
if SINT �= ∅ then
BOUND ← x ∈ SINT ;

else
BOUND ← random positive int value;

end

end

end
return BOUND;

5.3.4.2. Generation of Container Types

During the generation of container-typed parameters, HPG must decide on the

length of the container and the type and values of its elements. The static type

of the container’s elements is called component type in convention with the Java

230

5.3. Method and API benchmarking

programming language specification For computing the length of the container

parameter to generate, HPG selects the first available value from the following

list as an upper inclusive bound for the container size: (i) if the type of the DC
is a container type: the length of DCI on which I is invoked, (ii) a positive non-

zero int constant value declared in DC or (iii) a random positive non-zero int

value.

’Non-zero’ condition is imposed because containers of size zero (i.e. empty

containers) will not allow the benchmark to call methods like elementAt. Cur-

rently, APIBENCHJ sets an upper bound for case (iii) to 105 to limit the size of

containers to realistic values. Of course, if the benchmarking framework that

uses APIBENCHJ needs larger containers, this restriction may be overridden by

that framework by specifying larger containers, or by adding elements to the

container that APIBENCHJ has generated. The length L of the generated con-

tainer should satisfy 1 ≤ L ≤ BOUND, if BOUND > 0 and 1 ≤ L otherwise.

According to the declared component type of the container, HPG randomly

generates L elements of the declared component type, except where the com-

ponent type is Object. When the component type is Object, HPG generates

Object values having the same dynamic type as DC.
Details about the generation of reference component types (i.e. Object and

its subclasses) are described in the next section in the scope of generation of

non-primitive, non-container type instances.

5.3.4.3. Generation of Objects

The parameters for which Object-typed parameters need to be generated can

have different static types: interface static type (e.g. java.util.List), abstract

class static type (e.g. java.util.AbstractList), or non-abstract class static

type (e.g. java.util. ArrayList). The Java API does not contain facilit-

ies to query which (non-abstract) subclasses of an interface exist. APIBENCHJ

collects such information and creates a parameter graph, which indicates for

an interface-typed or abstract-typed parameter which concrete types (to in-

stantiate a parameter) are available. However, when several candidates exist,

231

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

APIBENCHJ still needs to decide which subclass to choose, and which con-

structor to take.

Interface static types are instantiated by first retrieving the public non-abstract

classes implementing the interface, and then instantiating one of them as ex-

plained below. For abstract-class static types, the subclasses of the type’s de-

claring class are retrieved and one of them is instantiated. If this doesn’t work,

factory methods returning the interface type/abstract type are tried, and the

dynamic type they return is identified and stored.

To generate a parameter whose static type is declared as a non-abstract class,

HPG first chooses the simplest constructor/factory method based on complex-

ity of its signature. For example, the constructor String(byte[] bytes,

String charsetName) is complexer than the constructor String(int[]

codePoints,int offset,int count). The complexity of a constructor’s

signature is judged on both the number of parameters it declares and their static

type. From the perspective of HPG, signatures that declares only primitive para-

meters are less complex than the ones that declare fewer but reference type para-

meters.

The simplest constructor can turn out to be inappropriate, e.g. runtime excep-

tionsmay occurwhen the generated parameters are used. Similarly, the simplest

constructor can return null objects, or empty objects such as a String of length

0. In such cases, other constructors or factory methods will be tried.

Preferring the simplest constructor means that APIBENCHJ is more likely

to be successful in constructing the parameter value (type instance), because

a more complex constructor intuitively offers more ’chances’ to fail. At

the same time, simpler constructors often sufficiently cover the parameter

space: String(byte[] bytes) is as powerful as the more complex con-

structor String(byte[] bytes, int offset, int length). A study

to quantify the impact of preference of simpler constructors can be performed

in future work.

Some API methods declare parameters of java.lang.Object type, a gen-

eric non-abstract type. As we have observed that the use of objects that imple-

232

5.3. Method and API benchmarking

ment the interface java.lang.Comparable reduces the likelihood of excep-

tions (because sorting and administration of collections are easier), we prefer

java.lang.Comparable-implementing subclasses of java.lang.Object,

e.g. classes such as String and its subclasses.

HPG pays special attention to the generation of reference container types (e.g.

collections, maps, strings, buffers). Container types are very similar to arrays,

hence HPG computes the length of reference container types in the same way

as for arrays (cf. Section 5.3.4.2). Another heuristic strategy is used for initial-

isation of such types: APIBENCHJ prefers constructors whose input parameters

are arrays, for example String(char[]).

For collections such as classes implementing Lists and Maps, HPG con-

structs empty instances and then fills them with n objects (n smaller than

the above fixed capacity/length). The filling proceeds with respect to the

type parameter bounds which the collections declare. For example, in or-

der to generate a List<E extends Number>, HPG constructs an empty

java.util.ArrayList instance and fills it with objects having a dynamic

type that is a subtype of the type parameter bound Number (Long is such a

subtype of Number).

5.3.4.4. Impact of Java Generics on Parameter Finding

Generics in Java were introduced with Java 5, and allow programmers to im-

pose type restrictions on method parameters, method return types and even

class types (in particular container types). Java generics are similar to template

libraries and parametrised types in other programming languages.

As an example, consider the Java Platform API class

java.lang.ArrayList. Since Java 5, it is denoted as

java.lang.ArrayList<E>, where the type parameter E denotes the type

of elements stored in the ArrayList. E can be any type that is subtype of

java.lang.Object. Correspondingly, the methods of ArrayList also

feature E in their signature: for example, add(E) means that only elements of

type E (or a subtype thereof) can be added to the ArrayList. The parameter of

233

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

the method addAll(Collection<? extends E> c) must be a collection

whose component type is type-compatible with the type of the invocation

target ArrayList instance. Note that primitive types (e.g. int etc.) are not

permitted as type arguments.

While Java generics are a great way to support programmers at source

code levels, they do not appear at bytecode level: a source compiler trans-

lates generics into bytecode using a mechanism called type erasure. In partic-

ular, for the above example, an ArrayList<Integer> would be translated

to bytecode which does not feature any information about the Integer gen-

eric type. At the same time, generics allow for a transparent type casting:

invoking Collections.min() on a ArrayList<Integer> will result in

bytecode which performs the conversion from Collections.min()-returned

java.lang.Object to java.lang.Integer, without having to write the

casting step manually.

Generics present an additional challenge APIBENCHJ , but their bench-

marking is fully supported by APIBENCHJ , as is their usage in parameter

types. APIBENCHJ also supports wildcards usage in Java generics: e.g.

do(List<?> a), where <?> denotes any type aswell as polymorphism expres-

sions such as do(List<? extends SomeType>) and do(List<? super

SomeType>) During the generation of the type parameters for generic types,

APIBENCHJ relies on the type information delivered after type erasure.

5.3.5. Heuristic Exception Handler

The heuristically generated argument values still can cause runtime exceptions,

as heuristics generally offer no guarantee of success. Consequently, in steps 6

and 7 of our approach (cf. Figure 5.2), the caught exceptions are analysed and

handled by the Heuristic Exception Handler (HEH), which devises new input

for the heuristic parameter generator.

The handler (HEH) and the generator (HEG) interact closely, but are separ-

ate entities to allow for better extendability. The HEH is modular and creates

feedback for the HEG to repeat parameter generation (as described below). The

234

5.3. Method and API benchmarking

HEG can be modified without an effect on the HEG as long as the interfaces

between them are kept constant.

First, it needs to be clarified which exceptions will be analysed and reacted

upon by the HEH. In the Java SE 6 Platform API, the java.lang.Exception

class has almost 80 direct subclasses, some of which in turn have their own

subclasses. From our initial benchmarking experience, the vast majority of ex-

ceptions that occur in case of inappropriate method parameters are the 38 sub-

classes of java.lang.RuntimeException.

From these, APIBENCHJ currently covers 19 which are both general-purpose

and frequent. APIBENCHJ currently does not address exceptions which relate

to GUIs (AWT and Swing), annotations, XML processing, CORBA calls, secur-

ity permissions as well as I/O and concurrency/multi-threading. In particular,

the assumption holds that the benchmarked methods are executed in a single-

threaded fashion.

In the future, the principles of APIBENCHJ can be extended to the currently

unaddressed exceptions, as well as runtime Errors. Note that it is still pos-

sible to tun APIBENCHJ on methods which may throw RuntimeException

not covered by APIBENCHJ .

Even if a RuntimeException is thrown for which HEH does not have a

heuristic, APIBENCHJ will try to generate other input parameters and/or (for

non-static methods) other invocation target and will re-run the method. Thus,

even when there is no heuristic to handle a particular RuntimeException,

APIBENCHJ is still more sophisticated than pure brute-force search, because it

starts with parameters generated by HEG, which already takes care to generate

meaningful parameters.

In the following subsections, several heuristics will be covered in more detail.

5.3.5.1. Handling IndexOutOfBoundsExceptions

An IndexOutOfBoundsException is thrown when an index is out of range

for a container class (e.g. List, Queue, etc.), for an array, or for a String.

The heuristics of APIBENCHJ handle IndexOutOfBoundsExceptions

235

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

as well as its subclasses ArrayIndexOutOfBoundsExceptions and

StringIndexOutOfBoundsExceptions. Indexes are int-typed para-

meters, and as discussed in Section 5.3.4.1, they are generated after other

parameters have been generated. In particular, all container-typed parameters

have already been generated before generation of int-typed parameters starts.

Let the range R be the local minimum of positive (non-zero) lengths of

container-typed elements in the method signature. These elements include the

(already generated) container-typed method parameters as well as (when the

DC is container-typed and where the considered method I is non-static) the in-

vocation target instance DC itself. Suppose that I declares n int arguments and

that the discrete value of argument ai is vi (1 ≤ i ≤ n). Let A = {a1, a2, ..., an}
denote the set of int arguments, and let V = {v1, v2, ..., vn} denote the value set

of A which should be generated.

APIBENCHJ imposes three conditions for the generation of V , as described in

equations 5.2, 5.3 and 5.4:

∀vi ∈ V : vi ≥ 0 (5.2)
∑
vi∈V

vi < R (5.3)

∀i ∈ {2, ..., |A|} : vi−1 ≤ vi (5.4)

According to the equation 5.3, the (positive) int values that have to be gen-

erated should have a sum that is smaller than the range R. This restriction and

the sorting order imposed by equation 5.4 are designed to correspond to many

method signatures where the “from” index appears before the “to” index, and

where the indexes (which start with 0) should not reach beyond the collection’s

first or last element.

236

5.3. Method and API benchmarking

To define an individual value interval for each int parameter, the heuristic

uses equation 5.5 and proceeds starting with i = 1 up to i = n, with R being the

aforementioned range and Li defined as follows:

Li =

⎧⎨
⎩
0 if i = 0

vi if 0 < i ≤ n

Li−1 ≤ vi ≤
(R−

∑|A|
k=1 Lk−1)

(|A| − i+ 1)
. (5.5)

The algorithm tries the generated int values by invoking the considered

method I and recording any eventual exceptions. If the generated values still

cause an instance IndexOutOfBoundsException or one of its subtypes, the

algorithm permutates the generated int values.

The algorithm terminates if no IndexOutOfBoundsException is thrown,

or if all possible permutations have been tested. The possible number of per-

mutations are defined as follows: for n int parameters in a method signature,

the algorithm can perform maximal n! parameter value permutations (in gen-

eral, this is an acceptable value, with 4! = 24 permutations for a method that has

4 int-typed parameters, 24 ranging orders of magnitude below the range of an

int value in Java).

5.3.5.2. Handling ClassCastExceptions

ClassCastExceptions are thrown to indicate that the code has attempted to

cast an object to a class type of which that object is not an instance. In order to

handle ClassCastExceptions, APIBENCHJ includes a heuristic that attempts

to determine the appropriate dynamic type of the parameter. If several Object-

typed parameters exist, the heuristic is applied to all of them.

ClassCastExceptions often occur when the I and/or DC are gen-

eric, since the parameters must be of appropriate types, even though this

is not directly visible from the signature. For example, when execut-

ing the method java.util.concurrent.DelayQueue.add(Object), a

237

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

ClassCast Exception can be thrown. The exception indicates that the

Object parameter cannot be cast to java.util.concurrent.Delayed, the

latter being an interface. A heuristic thus has to deduce from the declaration of

the class DelayQueue (DelayQueue<E extends Delayed>) that it accepts

Delayed-implementing parameters only.

The extends keyword thus signals an upper bound w.r.t. type hierarchy, (a

lower bound would be signalled by the super keyword). So in the case of DC
being generic, the heuristic creates SC∪IF so that it contains (depending on the

keyword in the DC signature) either all subclasses of the upper bound (incl. the

bound itself), or all superclasses of the lower bound (including the lower bound

itself, but excluding Object).

Then, for each static type T ∈ SC∪IF , the heuristic generates new parameter

value of type T and tests it by invoking the target method with the new para-

meter value. The algorithm terminates when no ClassCastExceptions are

thrown, or when all possible types from SC∪IF have been used. Similar tech-

niques are used for casting instances from Strings.

If the DC that declares the considered method is not generic, the heuristic gen-

erates the set SC∪IF of candidate static types for the parameter as follows: SC∪IF
includes DC and all its subclasses/subinterfaces. Interface-typed or abstract Ts

are skipped in favor of their non-abstract subtypes (if any). Then, elements of

SC∪IF are processed as just described.

If the generated parameter values still lead to exceptions, their handling is

delegated to other exception handlers, which can access the execution history

stored in the repository. Note that here, too, the heuristic is more purposeful

than a brute-force search.

5.3.5.3. Handling NumberFormatExceptions

A significant number of Java Platform API methods (many of them

static) take numeric parameters which are encoded in String instances.

For example, the method Integer.valueOf(String s) will throw a

NumberFormatException when the passed s is 1.00, i.e. a double. The

238

5.3. Method and API benchmarking

scope of methods which throw NumberFormatExceptions is not limited to

numeric classtypes such as Byte, Integer or Long – java.lang.Pack-

age.isCompatibleWith(String desired) expects a numeric value en-

coded in desired, too.

APIBENCHJ handles NumberFormatExceptions by generating instances of

the considered method’s declared type, and converting them to a String. The

creation of instances is tried until a predefined threshold is reached, after which

other heuristics are tried, such as the more generic heuristic defined in the next

section.

A particular challenge in the context of NumberFormatExceptions

arises when dealing with radix-converting methods such as

Integer.parseInt(String s, int radix). The meaning of the radix

is best illustrated with an example: parseInt("FF", 16) returns 255, i.e.

the characters in the parsed String are interpreted as hexadecimal digits

ranging from 0 to F. Consequently, parseInt("33", 2) would throw a

NumberFormatException.

Thus, if there are one (or several) int-typed parameters in the signature of

the method which has thrown an NumberFormatException, the String is

generated from the chars reaching from 0 to the smallest value of the int-typed

parameters. The String is generated by (randomly) deciding on the sign of the

number to encode (as long as the number type permits both positive and negat-

ive values), and then by randomly creating the digits (i.e. the characters of the

String) one-by-one.

Note that the heuristic pays attention to the MAX_VALUE and MIN_VALUE

fields of the declaring type, as long as the declaring type is a subtype of

java.lang.Number. In fact, all numeric types of the Java Platform API inherit

from it: AtomicInteger, AtomicLong, BigDecimal, BigInteger, Byte,

Double, Float, Integer, Long and Short.

239

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

5.3.5.4. Handling State Exceptions for Collections

Collections contain a set or a list of elements, and include queues, maps, iterators

and other structures. Some collections in Java allow duplicate elements and

others do not; some are ordered and others unordered. Most collections have

capacity-restricted implementations, which means that exceptions are thrown

if the collection capacity is exceeded after an add or similar operation, or if a

remove or a similar operation cannot be performed because the collection is

empty.

There are several runtime exceptions that can be thrown by

a collection operation, depending on the actual problem. The

java.nio.BufferOverflowException is thrown when the put

operation reaches the limit of the invocation target buffer, the

java.nio.BufferUnderflowException happens when the get operations

fails. The java.util.EmptyStackException and the java.util.No-

SuchElementException are thrown if there are no more elements in the

collection.

In order to handle a collection state exception thrown by a collec-

tion operation OP , the relative operation of OP has to be called before

OP . The relative operation changes the state of the collection and pre-

pares it for the target operation OP . For example, in order to handle

a java.util.NoSuchElementException thrown for example by the

element operation on a Queue, APIBENCHJ should fill the queue by calling

the relative operation add and then call the method element again.

In order to handle such exceptions, APIBENCHJ includes mappings to the rel-

ative operation for each collection operation, e.g. add has the relative operation

remove). Special attention to filling the collections is paid in APIBENCHJ : ca-

pacity restrictions should not be violated, and the number of elements to add in

a collection should not exceed its declared capacity.

240

5.3. Method and API benchmarking

5.3.5.5. Handling Exceptions Based on the Class Variables

One generic opportunity for handling runtime exceptions is the heur-

istic use of the static and non-static (instance) class variables of

the class declaring the method that threw the exception. For ex-

ample, the class java.util.zip.Deflater declares the constructor

Deflater(int level) which throws an IllegalArgumentException

if the specified compression level is invalid. The same class also de-

clares methods like setStrategy(int strategy) which throws an

IllegalArgumentException if the compression strategy is invalid.

In order to handle such an exceptions thrown by the Deflater constructor,

APIBENCHJ heuristically selects the compression level/strategy from the class

variables of Deflater. Thus, public static final int DEFLATED 8

and the other seven variables are used for the constructors of the constants-

declaring class, but also for its methods when initial parameters lead to an ex-

ception.

This heuristic is one of the most generic ones and is widely used in

APIBENCHJ when themore specialised heuristics (outlined in previous sections)

do not apply or do not lead to successful parameters. The constants are re-

trieved from both the declared class of the considered method, but also from the

superclasses/superinterfaces of the declared class, as well as (for object-typed

parameters) from the types of the parameters.

5.3.5.6. Handling EncodingExceptions

EncodingExceptions are thrown to indicate that an API operation

has attempted to specify an unsupported encoding. For example,

the method String.getBytes(String charsetName) throws an

UnsupportedEncodingException if the given charsetName is not

supported.

In order to handle such exceptions, APIBENCHJ includes a heuristic that ad-

dresses both the data to convert (i.e. to encode) and the name of the encoding.

Initially, the heuristic assumes that String-typed parameters designate encod-

241

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

ings, and fills these parameters with values specifying the standard charset

names. The standard charset names (cf. the definitions in the Java Platform API

class java.nio.charset.Charset for the minimum set of supported char-

sets) are US-ASCII, ISO-8859-1, UTF-8, etc.

For the data to encode, the heuristic generates new invocation targets by

avoiding special characters. For primitive parameters such as characters or

bytes, the algorithm makes use of the American Standard Code for Information

Interchange (ASCII) printable characters. Such ASCII characters are usually sup-

ported by each encoding.

If the found parameter values repeatedly lead to encoding exceptions, the

heuristic starts to consider the String-typed parameters as the data to con-

vert, rather than as the charset designation. If this also fails, APIBENCHJ resorts

to more generic heuristics.

5.3.6. Generating and Executing Microbenchmarks

In this section, we assume that appropriate method parameters are known, and

it is known how to obtain the invocation targets for non-static methods (see

steps 1-5 in Section 5.3.3). Using the results of Chapter 3, we know the accur-

acy and invocation cost of the timer method used for measurements, and thus

can compute the number of measurements needed for a given confidence level

(see [196] for details).

The remaining steps 6 (generating individual microbenchmarks) and 7 (ex-

ecuting the benchmarks) are discussed in this section. First, we discuss the

runtime JVM optimisations and how they are addressed (Section 5.3.6.1), fol-

lowed by the discussion in Section 5.3.6.2 on why bytecode engineering is used

to construct the microbenchmarks.

5.3.6.1. JIT and other JVM Runtime Optimisations

Java bytecode is platform-independent, but it is executed using interpretation

which is significantly slower than execution of equivalent native code. There-

fore, modern JVMs monitor the execution of bytecode to find out which meth-

242

5.3. Method and API benchmarking

ods are executed frequently and are computationally intensive (“hot”), and op-

timise these methods.

The most significant optimisation is Just-in-Time compilation (JIT), which

translates the hot method(s) into native methods on the fly, parallel to the run-

ning interpretation of the “hot” method(s). To make benchmarked methods

“hot” and eligible for JIT compilation, they must be executed a significant num-

ber of times (10,000 and more, depending on the JIT compiler), before the actual

measurements start. JIT optimisations lead to speedups surpassing one order of

magnitude (See Chapter 2), and an automated benchmarking approach has to

obtain measurements for the unoptimised and the optimised execution, as both

are relevant.

Different objectives lead to different JIT compilation strategies, e.g. the Sun

Microsystems Server JIT Compiler spends more initial effort on optimisations

because it assumes long-running applications, while the Client JIT Compiler is

geared towards faster startup times. We have observed that the Sun Server JIT

Compiler performs multi-stage JIT compilation, where a “hot” method may be

repeatedly JIT-compiled to achieve even higher speedup if it is detected that the

method is even “hotter” that originally judged.

Therefore, the benchmarks generated by APIBENCHJ can be configured

with the platform-specific threshold number of executions (“warmup”) after

which a method is considered as “hot” and JITted by that platform’s JIT

compiler. To achieve this, APIBENCHJ implements a calibrator which uses

the -XX:+PrintCompilation JVM flag to find out a platform’s calibration

threshold, which is then passed to the generated benchmarks.

APIBENCHJ must also ensure that JIT does not “optimise away” the bench-

marked operations, which it can do if a method call has no effect. To have

any visible functional effect, a method must either return a value, change the

value(s) of its input parameter(s), or it must have side effects which not visible

in its signature. These effects can be either deterministic (same effect for the same

combination of input parameters and the state of the invocation target in case of

non-static methods) or non-deterministic (e.g. random number generation).

243

Chapter 5. Benchmarking the JVM Operations for Performance Prediction

If a method has non-deterministic effects, APIBENCHJ simply has to record

the effects of each method invocation to ensure that the invocation is not optim-

ised away, and can use rare and selective logging of these values to prevent JIT

from “optimising away” the invocations. But if the method has deterministic

effects, the same input parameters cannot be used repeatedly, because the JVM

detects the determinism and can replace all the method invocation(s) directly

with a single execution (native) code sequence, e.g. using “constant folding”.

This forms an additional challenge that has been solved in APIBENCHJ.

Thus, APIBENCHJ needs to supply different and performance-equivalent

parameters to methods with deterministic behaviour, and it solves this chal-

lenge by using array elements as input parameters. By referencing the ith

element of the arguments array arg in a special way (arg[i%arg.length]),

APIBENCHJ is able to “outwit” the JIT compiler, and also can use arrays that

are significantly shorter than the number of measurements. Altogether, this pre-

vents the JIT compiler from applying constant folding, identity optimisation and

global value numbering optimisations where we do not want them to happen.

Other JVM optimisations such as Garbage Collection interfere with measure-

ments and the resulting outliers are detected by our implementation in the con-

text of statistical evaluation and execution control.

5.3.6.2. Generating Executable Microbenchmarks

Using the Java Reflection API, it is possible to design a common flexible mi-

crobenchmark for all methods of the benchmarked API, where the latter are

invoked with the Reflection API method method.invoke(instanceObj,

params). However, invoking benchmarked API methods dynamically with

the Reflection API is very costly [197] and will significantly bias the measured

performance.

An alternative is source code generation, which is the straightforward way to

construct reliable microbenchmarks. Source code is generated based on models

that represent the code to render; in case of benchmarking, each microbench-

244

5.3. Method and API benchmarking

mark is specific to a single method of the Java API. Hence, for each method to

benchmark, a model has to be manually prepared.

However, the manual generation of the models and code templates for each

API method would be extremely work-intensive and would contradict the goal

of APIBENCHJ, which strives to automate the benchmarking of Java methods

and APIs. In addition, if the API changes, the generation models must be manu-

ally adapted. Consequently, the scope of the benchmark would be limited to

specific Java implementations.

The solution used in APIBENCHJ employs direct creation of the ’skeleton’

bytecode for a microbenchmark, using the Javassist bytecode instrumentation

API [198]. This ’skeleton’ contains timer method invocations (e.g. calls to

nanoTime()) for measuring the execution durations. The ’skeleton’ also con-

tains control flow for a warmup phase which is need to induce the JIT compil-

ation (cf. Section 5.3.6.1). Thus, two benchmarking phases are performed: one

for the ’cold’ method (before JIT), and one for the hot (after JIT).

For each benchmarking scenario with appropriate preconditions, APIBENCHJ

creates a dedicated microbenchmark that starts as a bytecode copy of the ’skel-

eton’. Then, the actual method invocations and preconditions are added to

the ’skeleton’ using Javassist instrumentation. Finally, APIBENCHJ renames the

completed microbenchmark instance, so that each microbenchmark has a glob-

ally unique class name/class type, and all microbenchmarks can be loaded in-

dependently at runtime. An infrastructure to execute the microbenchmarks and

to collect their results is also part of APIBENCHJ. Finally, APIBENCHJ evaluates,

aggregates and persists the benchmarking results.

245

Chapter 6.

Bytecode-based Performance Prediction and its

Integration into the Palladio Component

Model

Section 1.4 described how the performance prediction proposed by this thesis

is made: it works on the basis of the application performance profile and the plat-

form performance profile. The two profiles share the same choice of application

building blocks, which are seen as the resource demand units that express the

workload put by the application onto the platform.

The choice of bytecode instructions and API methods as application building

blocks was motivated and detailed in Section 4.2. Bytecode-based performance

prediction is an alternative to performance prediction on the basis of CPU cycles.

It provides the possibility to quantify the workload in a platform-independent

way, and promises better prediction accuracy (the validation in Section 7.1 will

show that this is indeed the case).

In bytecode-based performance prediction, the application performance pro-

file is composed of runtime frequencies of bytecode methods and instructions.

This profile is platform-independent but needs to be parametrised over the app-

lication workload. In Chapter 4, an approach for quantifying the bytecode-

based application performance profile was presented, which works through

transparent instrumentation of application’s bytecode and does not require a

specialised JVM. The developed approach itself is thus also platform-indepen-

dent.

In Chapter 5, a novel approach for creating the matching platform perform-

ance profile was described, which works by benchmarking bytecode instruc-

Chapter 6. Performance Prediction and PCM Integration

tions and methods. The results of the benchmarks are the platform-specific per-

formance metrics (e.g. execution durations) of these building blocks.

One notable observation from Chapter 5 was that the speedup caused by

Just-In-Time compilation (JIT) by the JVM was different across applications and

benchmarks: the speedup measured for bytecode microbenchmarks was sig-

nificantly lower than for method benchmarks or for larger, non-synthetic app-

lications. While the instruction execution durations obtained from these mi-

crobenchmarks are suitable for predicting the performance of applications in

environments where JIT is not available or not activated, predicting the per-

formance of applications in realistic settings requires the consideration of JIT.

As has been demonstrated in Section 2.14, the JIT-caused speedup is

application-dependent. In particular, the result of a predictionmade on the basis

of microbenchmark results needs to be calibrated individually for each applica-

tion. In Section 6.1, this calibration will be formulated and explained. The cal-

culation of the calibration factor will also take into account the fact that the API

method benchmarks are subject to JIT compilation to such a degree that their

contribution to the performance of the considered application does not need to

be calibrated. Therefore, the calibration will only be applied to the contribution

of individual instructions and instruction sequences that are not part of an API

method implementation.

The subject of this chapter is to describe the actual process of the prediction

and the calculation of the calibration, and to introduce support for bytecode-

based performance prediction into the Palladio Component Model (PCM). This

task is performed in a systematic way, by defining scenarios and requirements

and extending the PCM metamodel and the tooling to support them. The sci-

entific challenges addressed in this chapter are the following:

• finding an approach for considering the effects of Just-In-Time compila-

tion (cf. Sec. 2.6) and other runtime optimisations performed by the JVM,

balancing prediction accuracy and simplicity

• extending the Palladio Component Model to support bytecode-based per-

formance prediction

248

6.1. Computing the Predicted Execution Duration

• design the PCM extension so that a more detailed modelling of the execu-

tion platform is possible for several benchmarking and performance pre-

diction extensions that are currently being developed

The resulting contributions are

• a prediction model that minimises the effort and the number of inputs that

are needed for the calibration of the prediction model

• an extension of the Palladio Component Model that balances abstraction,

detailedness and prediction precision

The remainder of this chapter is structured as follows: Section 6.1 defines the

prediction process and explains the design rationale for it. Section 6.2 details

the integration into the Palladio Component Model. Section 6.3 concludes.

6.1. Computing the Predicted Execution Duration

The final step of bytecode-based performance prediction is calculating the

platform-specific execution duration for the considered component service. The

first input for the calculation are the platform-independent instruction/method

counts, and the second input consists of the platform-specific timing values of

instructions/methods from benchmarking. As this thesis deals with perform-

ance prediction at design time, no absolute precision is required for the predic-

tion, as it would be the case in real-time platforms. In particular, according to

Menasce [199], performance prediction errors of 30 % are considered sufficient

in software engineering, since the used abstractions and simplifications have

their impact on the prediction accuracy.

As explained in Section 5.3, method benchmarking is designed so that it en-

courages just-in-time compilation – thus, the resulting timing values will be

used without calibration. For the bytecode instruction benchmarking, however,

the situation is different. While just-in-time compilation indeed takes place for

the bytecode microbenchmarks (as confirmed through the analysis of JIT log-

ging), the resulting speedup for microbenchmarks is different from the speedup

which is observed for entire, real applications and algorithms.

249

Chapter 6. Performance Prediction and PCM Integration

The difference between speedups of bytecode microbenchmarks and of entire

applications means that the prediction contribution (i.e. execution durations)

of the bytecode instructions cannot be derived directly from the results of in-

struction microbenchmarks. Instead, these results must be calibrated for correct

accounting during the prediction, since the JIT speedup must be reflected in the

prediction.

Before devising an approach for calibration, experiments were designed and

performed to study whether it depends on the considered program, on the pro-

gram inputs, or even on the execution platform. Clearly, taking as much in-

formation into the calibration as possible makes the prediction precision better

– however, the presented approach should not lose its advantages by requiring

that the calibration factor is measured on the target platform. Indeed, perform-

ing any application-related (or even application-specific) measurements on the

target platform would violate the intention to construct an approach that de-

creases the effort of prediction in relocation and sizing scenarios (cf. Section 1.2).

6.1.1. Selecting the Input for Prediction Calibration

For several execution platforms, algorithms and algorithm inputs, bytecode-

based performance prediction was performed successfully [200] on the basis

of a platform-independent yet workload-dependent multiplicative factor. While

the calibration factor is workload-dependent, it works very well (see validation

in Chapter 7) when it is fixed for a given algorithm implementation, while the

algorithm input varies [138].

The fact that this multiplicative factor is used in a platform-independent way

means that it only needs to be measured on the platform where the component

service is already running. The validation in Chapter 7 will also investigate the

impact of the execution platform choice for the calibration for the performance

prediction precision for other platforms. Additionally, the differences of the cal-

ibration factor between the considered applications will be discussed.

It is important to highlight that the prediction precision generally increases

when the calibration factor is more specialised, i.e. more information is made

250

6.1. Computing the Predicted Execution Duration

available during the computation of it. For example, the calibration factor can

be computed as the average of calibration factors obtained on several, different

“reference platforms”. Alternatively, a set of calibration factors can be main-

tained, categorised by the properties of the execution platforms. For example,

the calibration factor can be distinguished for platforms with an Intel CPU and

with an AMD CPU, or for platform with the Oracle JVM as opposed to Apple

JVM.

Another possibility for future work is identifying the correlation between the

bytecode of the considered application and the calibration factor. For example,

studying the basic blocks in the application’s bytecode could help to establish

such relationships. Additionally, a deeper understanding of native code results

of JIT compilation and how they map to the bytecode could be helpful here.

However, such a refinement would introduce significant complexity into the

approach presented in this thesis, since the inner working of JIT compilation is

highly complex, dependent on program structure and behaviour, and constantly

evolving as JVM engineers optimise JIT for new processors, operating systems,

and application profiles.

Considering the fact that the calibration factor is computed from executing

and measuring the algorithm with one single algorithm input, the choice of the

input itself has a strong impact on the prediction precision when the obtained

calibration factor is used. In Section 7.1, the impact of this choice will be studied,

by locking the reference platform as well as the algorithm, while varying the

inputs to the considered algorithm.

The choice of the algorithm input used for calibration can be based on sev-

eral criteria (representativeness, complexity, etc.). Another option to mirror the

diversity of algorithm inputs would be to use the average of calibration factors

from different inputs, or even create a library of calibration factors for a given

algorithm, and (for an input not present in the library) select the most suitable

one on the basis of similarity. Apart from the danger that such a library may

start to resemble a “lookup table” (while still remaining a platform-indepen-

251

Chapter 6. Performance Prediction and PCM Integration

dent prediction approach), a measure of similarity would be needed. Here, too,

potential for future work is clearly visible.

6.1.2. Computing the Calibration Factor

After discussing the choice of the calibration factor’s nature, its calculation and

usage have to be formalised. The multiplicative calibration factor is applied to

the prediction contribution of the bytecode instructions but not (as explained

above) to methods that were benchmarked using the approach from Section 5.3.

The reason for choosing CPU cycles in the following definitions is that the in-

tegration into the Palladio Component Model will involve expressing platform-

specific execution durations in CPU cycles rather than in timing values. Using

CPU cycles is potentially more accurate than timing values for CPUs which op-

erate at variable frequencies and thus execute a varying number of CPU cycles

per unit of time.

In the remainder of this chapter, an algorithm A is employed as a running

example and the following notation is used:

• Calib(A) is the calibration factor which is calculated using a reference plat-

form Pref and a reference input Inpref

• Dur(A, Inpref , Pref) is the measured duration (in CPU cycles) of the con-

sidered algorithm with reference input on the reference platform

• Freq(Opci, A, Inp) denotes the runtime frequency of opcode Opci for al-

gorithm A with input Inp

• Freq(Methi, A, Inp) denotes the runtime frequency of method Methi for al-

gorithm A with input Inp

• Perf(Opci, P) denotes the uncalibrated benchmarked duration in CPU

cycles of Java bytecode instruction (opcode) Opci on platform P (it holds

that 0 ≤ i < 203, since only 203 of the 256 possible Java opcodes are cur-

rently used according to the Java Virtual Machine specification [110] and

recent extensions of it)

252

6.1. Computing the Predicted Execution Duration

• Perf(Methi, P) denotes the benchmarking duration in CPU cycles of

method Methi (Perf(Methi, P) needs no calibration since method bench-

marking already exercises execution platform optimisations and captures

the resulting speedup, which is independent of the application that con-

tains calls to Methi.)

Depending on the benchmarking scenario from which Perf(Opci, P) was ob-

tained, the value of Perf(Opci, P) can vary on the same platform due to sev-

eral reasons in additional to the normal nondeterminism of execution on non-

realtime platforms. The first reason is that the performance of the instruction

Opci can be parametric – this aspect has been discussed in detail in Section 4.3.4.

The second reason is that the pipelining effects may have an impact on the

benchmarked instruction execution duration, depending on the benchmarking

scenario. The pipelining effects are almost impossible to capture (and especially

to predict) at bytecode level in the platform performance model without introdu-

cing a very detailed knowledge of the CPU and without knowing the mapping

of bytecode instructions to native instructions. This mapping, however, is spe-

cific to the interpreter/JIT compiler (and possibly specific to the hardware archi-

tecture), and would require additional effort to measure the pipelining-caused

speedup.

Finally, the context of a bytecode instruction, e.g. whether it is a part of a basic

block (which is JIT-compiled into a native code) plays a role. The structure of

this basic block determines how it is JIT-compiled and whether other (non-JIT)

optimizations can be applied, e.g. constant folding and constant propagation.

The detailed consideration of these factors would require much more know-

ledge about the application and about the execution platform, while this thesis

puts the emphasis on simplicity and easy handling of performance models. Ad-

ditionally, as the validation in Section 7.1 will show, the prediction accuracy of

the approach presented in this thesis is within the borders defined in the stand-

ard literature, and constitutes an improvement over the previous prediction ap-

proaches which were based on CPU cycle counts.

253

Chapter 6. Performance Prediction and PCM Integration

Unlike instructions (opcodes) which have a numbering according to a specific-

ation, the methods Methi that contribute to the performance of the considered

method can be from different APIs, libraries and components. Therefore, the in-

dexes of Methi in general apply only to the considered algorithm, and no glob-

ally unique numbering exists.

The calculation of the calibration factor is shown in Formula (6.1) and ex-

plained in the following

Calib(A) =
Dur(A, Inpref , Pref)−

∑
j(Freq(Methj , A, Inpref) · Perf(Methj , Pref))∑202

i=0(Freq(Opci, A, Inpref) · Perf(Opci, Pref))
(6.1)

During the prediction of algorithm A’s performance, methods calls which

are A’s building blocks are either considered atomically (i.e. they are not de-

composed into their constituting bytecode instructions and the internally called

methods), or they are decomposed into their own building blocks. A trivial con-

dition for the correct working of the prediction for A is that one execution of

a given building block is not counted twice. Therefore, if a method which is a

building block of A has been decomposed into its own building blocks, it should

not appear in Equation (6.1) as Methj when it building blocks are counted in

Equation (6.1) as well.

Equation (6.1) subtracts the contribution of the countedmethods from the total

duration of the considered method, thus obtaining the contribution of the coun-

ted bytecode instructions to the total duration of the method. The measured con-

tribution of the instructions is than set into relation to their predicted contribu-

tion. In the implementation of the presented approach, this calibration is only

performed on one platform, as will be detailed in the validation (Section 7.1).

The resulting ratio is the multiplicative calibration factor which is applied to the

contribution of the bytecode instructions towards the performance of A – and

now on other platforms than Pref , and/or to other inputs then Inputref).

Note that Calib(A) is useful for predicting the execution durations on the ref-

erence platform, too – it can be used for inputs other than Inputref . Similarly, it

254

6.1. Computing the Predicted Execution Duration

can be used for Inputref on platforms other than Pref . Finally, note that applying

it to A on Pref with Inputref will simply return 1 in that case.

The elements of Equation 6.1 do not need to be constant values: they can

be functions or stochastic distributions. For example, Perf(Methj , Pref) is the

benchmarked performance of method Methj and it can be a distribution rather

than a single value. Using distributions would reflect the fact that method exe-

cution duration is rarely constant due to CPU scheduling by the operating sys-

tem and due to CPU interrupts. Note that when distributions appear in For-

mula (6.1), the sign · should be read as convolution, which is usually denoted as

⊗.
Similarly, consider Freq(Opci, A, Inputref), the runtime frequencies (counts) of

opcode Opci. In general, the runtime counts depend on the algorithm input

Inputref , and can parametrised over it; the fact that the counts are already for-

mulated as a function in Equation (6.1) stems from this view. For example, the

bytecode-based performance prediction approach presented in this thesis has

been combined with genetic algorithms in [138] to learn the dependence of byte-

code counts on the input parameters of the considered algorithm. Several al-

gorithm inputs were used in [138] as learning data, and the suitability of the

obtained dependencies has been validated successfully on a separate set of al-

gorithm inputs.

After the calibration factor has been expressed and explained, the prediction

of the execution duration for algorithm implementation A on platform P with

input Inp is shown in shown in Equation (6.2) (recall that there are 203 valid

bytecode instructions – thus, i is in the range [0, 202]):

Pred(A, Inp, P) = Calib(A) ·
202∑
i=0

(Freq(Opci, A, Inp) · Perf(Opci, P))

+
∑

j

(Freq(Methj , A, Inp) · Perf(Methj , P)) (6.2)

255

Chapter 6. Performance Prediction and PCM Integration

6.2. Integration into the Palladio Component Model

In this section, the integration of bytecode-based performance prediction into

the Palladio Component Model is described. After revisiting the existing PCM

concepts for resource demand specification in Section 6.2.1, Section 6.2.2 ex-

plains why it is not possible to realise bytecode-based performance prediction

on the basis of current PCM concepts. Based on requirements and scenarios

developed in Section 6.2.3, extensions of the Palladio Component Model are

presented in Section 6.2.4. Section 6.2.5 details how the JVM and bytecode

components are modelled, and Section 6.2.6 explains how bytecode instructions

and methods are represented in the model instances of the extended PCM. Sec-

tion 6.2.7 shows how the modelling expresses the platform-specific nature of

benchmarking results, while Section 6.2.8 explains how the prediction calibra-

tion is modelled.

6.2.1. Existing Resource Demand Modelling in the PCM

In the Palladio Component Model, the resource demands of components are

specified using annotations to internal actions (see Section 2.13). Note that in

this section, the state of PCM modelling constructs is described as it existed

before the extensions developed in this thesis, which will be described in Sec-

tion 6.2.4.

Figure 6.1 shows such an internal action, which has a parametrised resource

demand to the CPU resource. The CPU resource model does not correspond to

a specific exemplar or series from a specific manufacturer. Instead, it is a generic

(“abstract”) CPU which is parametrised over the processing rate (with Hz as

unit).

Concrete instances of CPU resource models are stored in a repository,

and a component model instance can be placed in different allocation con-

texts (cf. Section 2.13.2) to run the performance prediction on differ-

ent CPUs. Figure 6.2 shows a repository with several resources, as it is

seen by a PCM workbench user. A ResourceEnvironment consists of

256

6.2. Integration into the Palladio Component Model

<<InternalAction>>

<<ParametricResourceDemand>>
demand = PrimitiveParameter(„file“).
PrimitiveParameterCharacterisation(
BYTESIZE) * 3
unit = „CPU instructions“

<<Parameter>>
parameterName=“file“

<<ResourceDemandingSEFF>>
ProcessFile

Figure 6.1.: PCM RDSEFF with one internal action

a ResourceContainer, which contains several resource specifications, e.g.

ProcessingResourceSpecifications. The resource specifications refer to

the ResourceRepositorywhich stores resource types, and a CPU ismodelled

as an instance of the ProcessingResourceType.

Figure 6.2.: Resource Modelling and Resource Demands in the PCM before Extending it
to support Bytecode-based Performance Prediction

When setting the allocation contexts for components, the user chooses

among execution platforms and assigns single components to the

ResourceContainers. She can configure the CPUs and other processing

257

Chapter 6. Performance Prediction and PCM Integration

resources (e.g. hard disks) by setting their processing rates and scheduling

algorithms. The resources repositories can be stored to and loaded from XML

files, which allows PCM users to share and to version model-containing files.

Note that the performance prediction results will be based on the same in-

formation for two different modelled CPUs as long as their processing rates

and the scheduling policy used for modelling (e.g. PROCESSOR_SHARING, see

Figure 6.2) are the same. This makes it impossible to distinguish two execu-

tion platforms that have different characteristics and capabilities (e.g. different

amount of RAM and different cache sizes) as long as the CPU frequencies are

identical.

When simulation is used by the PCM tooling for performance prediction,

preemption and resource contention need to be simulated, too. Thus, the request

scheduling can have a certain degree of non-determinism, as it is the case in real-

world applications. Consequently, the simulation’s internal non-determinism

can lead to different performance values (i.e. predicted wall-clock times) for in-

dividual executions of one particular internal action. The different performance

values for different executions of one internal action are stored as a stochastic

distribution, rather than a simple average value across all occurrences, so the

simulation results carry a greater detail and are more realistic.

6.2.2. Bytecode-based Performance Prediction: Unsuitability of existing

PCM Resource Modelling

As has been shown in Section 2, having the processing rate as the only perform-

ance characteristic is not sufficient: the precision of cross-platform prediction on

the basis of CPU cycles is often not satisfactory when dealing with bytecode-

based components and applications. Thus, measuring an internal action’s exe-

cution on one platform and converting the results into CPU cycles will lead to a

valid model on the employed platform, but not necessarily on other platforms.

Therefore, if CPU cycles would have to be kept as the CPU resource us-

age metric, either the modelling of components or the modelling of resources

requires adaptations to accommodate bytecode-based performance prediction.

258

6.2. Integration into the Palladio Component Model

The first option would be to devise different amounts of resource demands (in

CPU cycles) for different execution platforms, and the second option would be

to specify a single component model instance, and to modify the CPU model

instances. In the remainder of this section, we consider both alternatives and

show that they are not viable, leading to the requirement for a new resource

model, which will be described in Section 6.2.3.

6.2.2.1. Considering Platform-specific Resource Demands in Internal Actions

Creating RDSEFFs with internal actions that carry platform-specific resource de-

mands is not an option, and would violate the semantics of PCM and the inten-

tion of the modelling. It is not possible to encode platform dependencies (such

as “only valid for CPU x”) in resource demand annotations, so more than one

instance of the considered business component would have to be created.

Since the interfaces of the existing and additional components would be

identical, the platform-specific instances of the considered component would

be interchangeable, and performance prediction would become error-prone be-

cause users would have to know exactly which component model instance to

use with which CPU. Additionally, it would produce a number of additional

components (which grows linearly with the number of considered platforms),

and would require measurements on each considered target execution platform

to obtain the platform-specific CPU cycle count.

6.2.2.2. Considering Platform-specific Resource Demands using Resource

Modifications

The second option is to encode the platform-specific nature of CPU counts us-

ing the resource modelling. This alternative is even less viable, and it would

also violate the semantics of application-independent processing resources in

the PCM. It would mean that each measurement or prediction (i.e. each com-

bination of an internal action’s resource demand and a concrete CPU model)

would require an own CPU model instance.

259

Chapter 6. Performance Prediction and PCM Integration

More formally, consider two applications, A1 and A2, and two execution plat-

forms, P1 and P2. The CPU cycle count C for application a on platform p

is denoted as C(a, p). Even if C(A1, P1) = C(A1, P2) (i.e. CPU cycle counts

match between platforms P1 and P2 for A1), it does not have to hold that

C(A2, P1) = C(A2, P2).

More generally, if C(A1,P1)
C(A1,P2)

= x, it does not have to hold that C(A2,P1)
C(A2,P2)

= x – the

ratio describing the difference between the CPU counts on the two platforms

can vary across applications. Finally, the ratios of CPU cycle counts for two dif-

ferent applications on the same execution platform do not need to match across

platforms: C(A1,P1)
C(A2,P1)

= x does not need to mean that C(A1,P2)
C(A2,P2)

= x.

6.2.2.3. Attempting to Model the JVM as a Separate Component

Finally, modelling the JVM as a separate component with explicit provided in-

terfaces is an option, which would require business components to use a JVM

interface offered by the JVM component. The JVM component would have no

required interfaces – instead, each provided interface would have a RDSEFF

with internal actions only, and with CPU resource demands annotated to these

internal actions.

This would mean that the JVM component could be deployed on any CPU,

which in turn would mean that the CPU frequency would remain the con-

trolling factor for the performance of bytecode-based components. However,

it is known [201] that the platform-specific performance of bytecode instruc-

tions does not scale linearly with the CPU frequency. With other words, the

JVM benchmarking results (execution durations of bytecode instructions and

method invocations) are specific to a given combination of JVM and execution

platform – in general, they cannot be expressed so that they are valid for a given

JVM on any execution platform.

6.2.2.4. Conclusion

The results of Sections 6.2.2.1 through 6.2.2.3 mean that modelling the JVM as

a component using the current PCM metamodel is not viable, and a concept

260

6.2. Integration into the Palladio Component Model

that allows expressing the dependence of benchmarking results on the combin-

ation of JVM and execution platform is needed. Therefore, the PCM concepts of

modelling the active resources and components’ resource demands need to be

expanded to accommodate the bytecode-based resource demands. The design

decision for this task and the resulting changes for the PCM meta-model are

described in the next section.

6.2.3. Scenarios and Requirements for Extending the PCMMetamodel

Supporting bytecode-based performance prediction requires an extension of the

modelling of resources and components, as shown in the preceding section. This

extension is a wide-reaching operation, which is subject to concerns and require-

ments such as backward compatibility, ease of modelling, expressive power

and others. The prime scenario requiring the extension was the support for

bytecode-based performance prediction, but other scenarios (such as the sup-

port for layered execution environments, and third-party non-PCM perform-

ance models and simulators) have also been covered, as described in [192].

For each PCM internal action, a bytecode-based resource demand consists of

instruction counts (individual for each instruction type) and method invocation

counts. Of course, the method invocation counts should not contain methods

of other components, but only the methods of the component itself. Calls to the

Java Platform API are considered as part of component-internal work as long

as they do not target other components: for example, using the Java Reflection

API to invoke a method which belongs to another component is effectively an

external call. As components have to be used directly over their provided inter-

faces, we assume that reflection-based calls to other components are recognised

as such and are not counted towards component-internal work.

From this scenario, the following requirements have been derived:

R1 “explicit platform dependencies”: Components should notmake assump-

tions on their platform that are not stated in their required interface(s), as

required by Szyperski’s component definition [142]. This requirement is

not fully addressed in the current PCM version, since the resources used by

261

Chapter 6. Performance Prediction and PCM Integration

the component are not made explicit, but are specified indirectly (and not

by the component developer), namely through the component allocation.

Instead of stating platform assumptions through interfaces, the compon-

ents’ use of platform resources is visible only when performance annota-

tions to internal actions are considered. At the same time, the requirement

that third parties should be able to deploy a component independently is

correctly mirrored in the PCM through the use of resource types. When

extending the PCM, resource independence should me maintained: for ex-

ample, a component cannot know whether it is run directly on hardware

(e.g. a hard disk) or on a virtualiser of it (e.g. a RAID array). At the same

time, explicit resource dependencies need to be introduced using the com-

ponent’s interfaces, to capture the assumptions of a component.

R2 “support for non-hardware execution platform elements”: so far, the

PCM only considers hardware resources of the execution platform, e.g.

CPU, hard disk and network connections. However, to represent those

software layers that are not part of the application (e.g. the JVM or the mid-

dleware), the execution platform modelling needs to support infrastructure

components.

R3 “explicit interfaces for execution platform resources”: supporting differ-

ent bytecode instruction types, as well as (API) methods, requires an in-

frastructure component to offer several interfaces, in contrast to current

modelling in the PCM where the CPU (and even the hard disk) offer just

one operation. For hard disk, this current modelling restriction means that

read and write operations have the same processing rate, although in real-

ity, difference in processing speeds can be very significant, especially when

file systems are used and meta-data needs to be written, too.

R4 “third-party models”: Existing third-party, source-code level behaviour

models of complex parts of execution platforms (e.g. operating system

schedulers [202]) needed to be supported. Integration of such behaviour

models promises and increased precision of performance prediction.

262

6.2. Integration into the Palladio Component Model

6.2.4. Extensions of the PCMMetamodel

This section describes the extension of the PCM model to support the require-

ments listed in the previous section.

The extended PCM metamodel introduces explicit ResourceInterfaces,

which contain ResourceServices. ResourceInterfaces allow the exten-

ded PCMmetamodel to fulfil the requirementsR1,R2 andR3 from Section 6.2.3.

ResourceInterfaces are different from conventional component interfaces

in a number of ways, as described below.

Usage of conventional (business) required interfaces is modelled in a RDSEFF

as an ExternalCallAction: each single invocation of a service from a re-

quired interface requires one ExternalCallAction. For resource interfaces,

the usage of required resource services is handled differently, in the same way

as conventional resource demands: resource demands over resource interfaces

are expressed as annotations of the internal action which issues the resource

demands. In particular, each used resource interface service (i.e. with a non-

zero demand) has an entry in the annotation. This entry expresses the resource

demand quantity as a stochastic expression (StoEx, see [46] for details), and ex-

plicitly says which required resource service is used.

A resource has at least one provided resource interface, but no required re-

source interface and no component interfaces. A resource service of a (hard-

ware) resource does not have an associated RDSEFF – instead, a platform-

dependent fixed timing value (for non-concurrent resource usage) is associ-

ated with a resource service. Work requests to this resource service are pro-

cessed directly by the PCM tooling, e.g. by the SimuCom simulation. The

ControllerScope contains the aforementioned controllers; note that control-

lers are not allowed to have required or provided component interfaces – only re-

source interfaces are permitted, and a controller must have at least one provided

and one required resource interface. An infrastructure component can provide

and require both component and resource interfaces; a given interface can be

both provided and required. This allows the implementation to forward a work

request to layers further below, and permits to model the overhead added by

263

Chapter 6. Performance Prediction and PCM Integration

the forwarding layer, if such overhead is quantifiable and important for per-

formance prediction. Note that the infrastructure components are modelled in

the same way as business components, and share meta-modelling elements. In

fact, a component becomes a business component by placing it in the corres-

ponding layer/scope, and can be seen as an infrastructure component if it is

placed in the infrastructure scope. A clarification of terminology is needed con-

cerning the service-providing resource interfaces: a component issues resource

demands to roles, not to interfaces: different instances of one interface type can

only be distinguished by their role-implemented attachment to a component/re-

source. A role is what connects the interface to the component – therefore, in the

following illustrations, it is the role’s name which appears in internal actions as

the addressee of resource demands.

Figure 6.3 [203] shows the PCM workbench view of an example RDSEFF (on

the basis of PCM extensions described in this Chapter) with resource require-

ments over resource interfaces. The used resource service is process, and it is

a part of the newly-introduced ResourceInterface called ICpu. Note that

the resource demand is parametrised over the input fileToMark.BYTESIZE

of the watermark service which is modelled by the shown RDSEFF.

Figure 6.4 [203] shows the “background” view for Figure 6.3, and illustrates

the component and resource repositories.

For the ICpu resource interface, specifying the resource demands in the in-

ternal actions of RDSEFFs carries similar effort as specifying CPU demands us-

ing the “old” PCM resource modelling. For JVM-oriented resource interface

with hundreds of provided resource services, the effort of manual specification of

resource demands would be very high. Additionally, counting results were ob-

tained in an automated way and an automation of PCM instance creation from

bytecode-based resource demands offers itself as a missing link in the toolchain.

Therefore, the creation of PCM model artefacts has been automated to de-

crease the effort of bytecode-based performance prediction using the PCM. PCM

artefacts which carry JVM-related information (resource instances, resource in-

terface, components, internal actions, RDSEFFs, etc.) are created from the arte-

264

6.2. Integration into the Palladio Component Model

Figure 6.3.: PCMWorkbench View of an RDSEFF which uses newly-introduced Explicit
Resource Interfaces [203]

facts produced with approaches from Chapter 4 and Chapter 5. The created

artefacts are stored in file-based repositories, in the same manner as manually

created PCM artefacts are persisted. PCM users can take advantage of these

artefacts when they create PCMmodels which consist of component models for

existing and planned components. While the approach presented in this thesis

focuses on the resource demands of internal actions of components, the integ-

ration with reverse engineering of static and dynamic component models by

Krogmann has been demonstrated in [204, 200].

ResourceInterfaces can be offered by (hardware) resources and control-

lers, but not by infrastructure components or business components. The reason

for this is that resource interfaces are meant to be tightly integrated with the per-

formance prediction tooling of the PCM, rather than resemble conventional ser-

265

Chapter 6. Performance Prediction and PCM Integration

Figure 6.4.: PCM Workbench View with Component Repositories, Resource Repositor-
ies, and their Elements [203]

vices for which RDSEFFs with resource-demanding actions need to be provided.

Correspondingly, no RDSEFFs are allowed to be specified for resource services.

The interface compatibility of newly introduced resource and conventional

(“business”) interfaces is summarised in Table 6.1. It is obvious that a required

conventional business interface can be connected to a provided business inter-

face, and a provided resource interface is compatible with a required resource

interface. If need arises, a required resource interface can be connected to a

provided business interface because infrastructure components may not offer

resource interfaces. Finally, a required business interface cannot be connected to

266

6.2. Integration into the Palladio Component Model

Provided
interface

Required
interface

Business
interface

Resource
interface

Business
interface

Resource
interface ()

Table 6.1.: Compatibility of Resource Interfaces and Business Interfaces

a provided resource interface because a resource service cannot be used from an

ExternalCallAction.

Controllers are new constructs to fulfil the requirement R4: it is used to sup-

port complex existing non-PCM behaviour models, e.g. network simulations

or operating system schedulers. A controller has no provided component in-

terfaces and no required component interfaces, instead it must have at least one

provided and one required resource interface. A controller contains no RDSEFFs

– it can be used together with other PCM model instances because the control-

ler’s existing behaviour model (e.g. a network simulator) integrates with the

PCM prediction/simulation tooling. Controllers have been introduced to sup-

port future extensions of the PCM, and are not discussed further in this thesis.

Resources can only offer resource interfaces, may not require resource inter-

faces, and may not offer or require business interfaces. They do not contain

RDSEFFs for the provided resource services – instead, resources are integrated

with the PCM toolchain at the implementation level.

Further implementation details including the metamodel extensions and the

modification of PCMmodel transformations can be found in the diploma thesis

of Michael Hauck who implemented them [203].

267

Chapter 6. Performance Prediction and PCM Integration

6.2.5. Modelling the JVM and the Bytecode Components

To predict the performance of an internal action using bytecode instruction/-

method counts, their platform-dependent timing values (i.e. execution dura-

tions) are used, as detailed in Section 6.1. These timing values are specific for

the combination of the JVM and the underlying parts of the execution platform,

and Section 6.2.2.3 detailed why it is not viable to model the JVM as a com-

ponent that can use any CPU. Thus, even after the PCM metamodel extension

have been introduced, the question on how to model the benchmarking results’

dependency on the used execution platform needs to be solved.

As explained in Sections 5.2 and 5.3, the benchmarking of the internal actions’

building blocks (bytecode instructions and methods) returns timing values that

are abstractions of resource usage during the building blocks’ execution. For

example, the initialisation of an array may incur RAMmemory swapping to the

hard disk, but such level of detail is neither predictable at architectural level,

nor easy to model. On the other hand, of the hardware resources constituting

the execution platform, the PCM currently models the CPU, the hard disk and

the network connections.

Modelling the JVM together with the underlying layers of the execution plat-

form as one big box offering both a JVM interface and hardware resource in-

terfaces (e.g. hard disk) would contradicts the layering approach presented in

the previous section. Thus, the aggregated, resource-abstracting timing values

obtained during benchmarking must be mapped to one resource or several of

them, though it is not known which of these resources are used in reality.

Since none of the bytecode instructions performs direct hard disk or network

operations, only methods (including but not limited to API methods) can lead

to hard disk access and network access. Consequently, it makes sense to assume

that significant hard disk and network access for internal actions is captured

and modelled outside of bytecode-based benchmarking. This allows the user to

map the benchmarking-obtained timing values exclusively to the CPU, but the

problem that the benchmarking values are not valid for any CPU still remains.

268

6.2. Integration into the Palladio Component Model

6.2.6. Representing JVM Instructions and Methods as Resource Services

Expressing primitive bytecode instructions as provided services of the resource

interfaces (of a JVM infrastructure component) needs a few considerations.

Bytecode instructions aren’t methods (they have no declaring class, not signa-

ture, no body, etc.), and their treatment of parameters is significantly different

as well.

To choose the name of the JVM infrastructure component service that mirrors

a bytecode instruction, a simple mapping from the mnemonic to the method’s

name offers itself first. However, it works only if the mnemonic is capitalised:

otherwise, e.g. the mnemonic goto collides with the Java protected token goto,

while GOTO as method is permissible and treated differently then goto. Note

that no naming clashes to classes of the Java platform API can occur, because all

classes of the latter are located in non-default packages.

It would be tempting to reduce the number of instruction in the JVM resource

interface for the PCM, e.g. to decrease its complexity. Indeed, the JVM instruc-

tion set is designed with attention to code size, rather than orthogonality, and

on several occasions, two instruction can be used for the same tasks. For ex-

ample, to decrease the code size, the JVM specification defines several “short-

cuts” (ILOAD_0 through ILOAD_3) for the instruction ILOAD. ILOAD requires

one byte and one byte for the index parameter, whereas the shortcuts occupy

only one bytecode as the parameter is implicit.

In principle, ILOAD_n and similar shortcuts can be dropped from the signa-

ture of the provided interface of the JVM infrastructure component. Indeed,

performance equivalence classes from Section 4.3.11 provide a good start for

such an optimisation. However, for the sake of completeness, such “shortcuts”

have been kept and the entire Java bytecode instruction set is represented in the

interface.

For methods, the signature, is original signature is adopted for the resource

service, of the IJavaPlatformApi interface, but the types are fully qualified

(i.e. their package is included), both for the method’s declaring type and for its

parameters.

269

Chapter 6. Performance Prediction and PCM Integration

The expression of instruction and method parameters in PCMmodel instance

is subject of future research, the currently used option is to keep the resource

interface simple by permitting only one double-typed input parameter for a

resource service. This simplification enforces performance abstractions, and

simplifies the creation of models. It must be matched by the resource demand

quantification and benchmarking phases.

A separate issue is the treatment of return values. The JVM specification does

not allow method signatures which differ only at the returned value and are

otherwise identical. Thus, returned values are not critical for distinguishing API

method signatures. Also, returned values are not quantified BYSUITE because

their influence on the performance is already captured: a returned value matters

when it is used as input parameter for another method/instruction – in such a

case, it is captured as the input parameter of that method/instruction. So in the

current version of BYSUITE, the returned values are not included in the provided

interface of the JVM infrastructure component.

Enumerations (Enums) are Java programming language constructs for

typesafe enumerations, and a Java compiler translates an enum into a conven-

tional Java class which extends the Java API class java.lang.Enum. For ex-

ample, the declaration enum Train{ICE,TGV,Thalys} is translated into a

class which has three public final static fields of type Train, and an ar-

ray which contains all of these fields. An enum does not need getters/setters

(as an enum’s fields are all public), but an enum can define its own methods

as it extends the java.lang.Enum class. For example, the enum Train could

define the method public int getMaxSpeed(). For the provided interface

of the JVM infrastructure component, a component’s accesses to enum values

are treated as fields accesses (i.e. intro-component resource demands) regardless

of the enum’s location. Accesses to an enum’s methods are treated as method

invocation, i.e. it is a resource demand when the enum belongs to the same

component or the Java Platform API, or it is an external call if the enum belong

to another component.

270

6.2. Integration into the Palladio Component Model

Java generics are programming language constructs that are checked

by the compiler/editor – inside Java bytecode, generics are not vis-

ible as they are dropped/ignored during the compilation. For ex-

ample, the statements ArrayList untypedList = new ArrayList();

and ArrayList<Long> untypedList = new ArrayList<Long>(); res-

ult in the same bytecode. For methods, the Java treatment of generics is erasure,

i.e. the generic types are replaced by the most common type confirming to the

type required by the generic declaration (in some cases, even erased). Therefore,

in the scope of this chapter, generics can be ignored.

6.2.7. Expressing the Platform-specific Nature of JVM Benchmarking Results

To express the platform-specific nature of JVM benchmarking results, it must

be expressed that the benchmarking results are valid for a given combination

of JVM and underlying layers of the execution platform. From the underlying

layers, only the CPU is considered, as explained in Section 6.2.5. However, the

CPU cannot be “hidden” by modelling the execution platform as one atomic

entity, since for other infrastructure components (e.g. a database), direct usage

of CPU may need to be modelled, as these components do not use the JVM.

Thus, the JVM needs to be modelled separately from the CPU (which has 1

resource service called process in the new resource model). Consequently,

the only solution to express the platform-specific nature of JVM benchmarking

results is to specialise the interface between the JVM and the CPU.

Pictured in Figure 6.5, the infrastructure component

JVM-Oracle1.6.20-W732-Intel-C2D models a specific JVM and

offers the generic IJvm interface. The name of the component

(JVM-Oracle1.6.20-W7-Intel-C2D) expresses the fact that it models

an Oracle JVM (version 1.6.20) running on Windows 7 (32-bit version), with

an Intel Core 2 Duo (“C2D”) CPU. JVM-Oracle1.6.20-W7-Intel-C2D

requires a specialised ICpu-Intel-C2D resource interface, which inherits from

the generic, PCM-standard ICpu interface. Note that other components that

271

Chapter 6. Performance Prediction and PCM Integration

require the CPU can access the ICpu-Intel-C2D interface without problems,

as it offers the services of its parent type ICpu.

<<InfrastructureComponent>>
JVM-Oracle1.6.20-W732-Intel-C2D

<<Resource>>
CPU-IntelT7200-Core2Duo

IJvm

ICpu-Intel-C2D

Figure 6.5.: Specialising CPU Resource Interfaces to Model Platform-Dependent JVM
Benchmarking Results (the squared interface is a resource interfaces)

The specialisation of the ICpu interfaces makes it possible to express that

the timing values in JVM-Oracle1.6.20-W7-Intel-C2D (which have been

converted into CPU cycles) are valid not for any CPU, but only for CPUs

offering certain behaviour. Here, the ICpu-Intel-C2D interface expresses

the specialisation to the CPUs from the Intel Core 2 Duo CPU family, but

the hardware resource model instance offering the ICpu-Intel-C2D inter-

face can also represent other CPUs for which the resulting timing values

of Oracle1.6.20-W7-Intel-C2D’s offered interface IJvm correspond to

benchmarking results. The many degrees of execution platform variability

found in reality (operating system, amount of mainmemory, etc.) are not forgot-

ten or abstracted here: JVM-Oracle1.6.20-W7-Intel-C2D has been bench-

marked on a fixed execution platform configuration.

Using the extended PCMmodel, it is also possible tomodel the execution plat-

form in different ways. For example, a controller model instance representing

an operating system scheduler could be modelled to offer the ICpu interface (or

272

6.2. Integration into the Palladio Component Model

a subtype thereof), and the infrastructure component model instance represent-

ing a JVM could access that interface (since it would not be allowed to access

the CPU resource model anymore, because it would be on a lower layer than

the controller). Using a controller, the dependency of benchmarking results of

the JVM-representing infrastructure component could be factored out, and the

JVM infrastructure component could be parametrised over the controller. Al-

ternative modelling of the JVM are also possible, and the flexibility introduced

by the extension of the PCMmetamodel offers both opportunities and dangers.

For instance, the creator of the JVM-Oracle1.6.20-W7-Intel-C2D in-

frastructure component in the above example cannot control the creation of

CPU resource models offering the ICpu-Intel-C2D resource interface. This

means that some other stakeholder could create a CPU model that offers

ICpu-Intel-C2D but still violates the validity of resulting timing values for

JVM-Oracle1.6.20-W7-Intel-C2D’s offered interface. In fact, it remains

the responsibility of the system deployer to ensure that the JVM infrastructure

component is connected to the matching, valid CPU resource model.

An infrastructure component model instance must be created for each con-

sidered (and benchmarked) combination of JVM and execution platform, unless

the benchmarking results (as timing values) for two different execution platforms

become identical when converted from timing values to CPU cycles. Note that

it is normal to expect small differences in the resulting benchmarking values

(in CPU cycles), and it is advisable to define a threshold up to which the differ-

ences are attributed tomeasurement errors. Above the threshold, the differences

would be attributed to substantial changes in execution platforms, and would

require a differentiation using distinct CPU interfaces, and different infrastruc-

ture component model instances.

6.2.8. Modelling the Calibration Factor

Finally, the calibration factor from Section 6.1.2 must be considered in the ex-

tended PCM model, since it is substantial for realistic performance prediction.

Initially, it was assumed that this factor would be algorithm-independent but,

273

Chapter 6. Performance Prediction and PCM Integration

instead, platform-dependent. Therefore, it was modelled by a separate com-

ponent, as shown in Figure 6.6. Recall that t

<<Resource>>
CPU-IntelT7200-Core2Duo

IJavaPlatformApi

ICpu-Intel-C2D

IJavaBytecode

<<InfrastructureComponent>>
JVM-Oracle1.6.20-W732-Intel-C2D

<<Infrastructure-
Component>>
JitCalibration

IJavaBytecode

Figure 6.6.: Initial Modelling of the Calibration Factor as a Separate Infrastructure
Component

However, the validation in the following Chapter 7 refuted this assumption,

and instead found that a better prediction accuracy is achievedwith a calibration

factor that is algorithm-specific and platform-independent. Consequently, the

speedup cannot be expressed in the infrastructure component that models the

JVM. Instead, it must be expressed in the internal actions that constitute the

algorithm whose workload has been quantified using bytecode instruction and

method counting.

274

6.2. Integration into the Palladio Component Model

The currently favoured approach to do this is to introduce an attribute of the

internal action, and to express the calibration factor there. The new attribute

must be presented to the PCMworkbench users in a way which does not irritate

those PCM users who are not familiar with the JIT and its impacts. Additionally,

it would have to be made clear that it applies only to the bytecode instructions,

and not to atomically benchmarked methods.

The attribute would be specified in a similar way as the failure probability

attribute already supported in the PCM for reliability analysis. The adaptation

of the PCM simulation toolchain that is required to evaluate this new field has

not been completed yet.

Since this thesis assumes that the calibration factor has been quantified for the

stable state of the application (i.e. after JIT compilation and other optimisations

have been applied), the performance before the stable state has been reached is

not very relevant. Consequently, to provide a temporary workaround until the

calibration factor is available as an attribute of the internal action, it has been

integrated transparently into the performance prediction and resource demand

quantification.

This is done by applying the calibration factor to each of the collected instruc-

tion counts before specifying them as resource demands in the internal action.

Why it is true that this temporary solution alters the semantics of the instruc-

tion counts in the internal action’s resource demands, the resulting perform-

ance prediction adheres to Equation (6.2). Recall that the method benchmark-

ing results are already calibrated, and the calibration factors is not applied to

method counts. Equation (6.2) demonstrates multiplying the instruction counts

with Calib(A), instead of calibrating the prediction contribution of the instruc-

tions:

Predmodif (A, Inp, P) =

202∑
i=0

(Calib(A) · Freq(Opci, A, Inp)) · Perf(Opci, P)

+
∑

j

Freq(Methj , A, Inp) · Perf(Methj , P) (6.3)

275

Chapter 6. Performance Prediction and PCM Integration

6.3. Summary

This chapter detailed the computation of predicted execution durations using

bytecode-based performance prediction. It explained the need of a calibration

factor, and how this factor is quantified. The rationale for selecting the input

data for calibration factor calculation was presented, and the selected tradeoff

between prediction accuracy and overfitting was explained.

To integrate bytecode-based performance prediction into the Palladio Com-

ponent Model, a careful study of its concepts was undertaken to understand

whether bytecode-based performance prediction can be realised with existing

concepts. As it emerged that an extension of the PCM meta-model and tool-

ing would be needed to accommodate the bytecode-based prediction approach,

this extension was carried out according to a set of requirements defined in

Section 6.2.3. Additionally, the task of constructing PCM model instances us-

ing bytecode-based workloads has been automated, and reusable infrastructure

components representing JVMs can also be created in an automated way.

While the modelling of the calibration factor remains to be refined, the PCM

tooling is already capable to use bytecode-oriented performance models for per-

formance prediction. At the same time, bytecode-based component perform-

ance models can be combinedwith performance models with resource demands

based on CPU cycles or other resource interfaces, and obtained in other ways.

By introducing explicit resource interfaces, this chapter has brought explicit

parametrisation over the execution platform to the component modelling in the

PCM. Future extensions of the PCM can benefit from explicit resource interfaces

when new resource types are added to it.

276

Chapter 7.

Validation

In this chapter, the contributions of this thesis are validated, which can be

grouped into two fields: cross-platform performance prediction and quality-

driven timer method selection. Cross-platform performance prediction encom-

passes bytecode-based resource demand quantification (Chapter 4), virtual ma-

chine benchmarking (Chapter 5), and the prediction process (Chapter 6).

Cross-platform performance prediction is validated in Section 7.1, which val-

idates both the entire prediction process and its constituents.

Quality-driven timer method selection was presented in Chapter 3, and its

results have been used during virtual machine benchmarking. Quality-driven

timer method selection is validated in Section 7.2.

7.1. Bytecode-based Performance Prediction

To realise performance prediction in relocation and sizing scenarios (see Sec-

tion 1.2), this thesis has introduced a bytecode-based performance prediction

approach which is evaluated in this section. The approach quantifies the

platform-independent performance of applications in terms of instruction and

methods counts (see Chapter 4).

The platform-independent counts are translated into platform-specific tim-

ings using instruction benchmarking (Section 5.2) andmethod/API benchmark-

ing (Section 5.3). Runtime optimisations of the execution platform (such as

Just-In-Time compilation) are considered during prediction using an algorithm-

specific but input-independent and platform-independent calibration factor (see

Section 6.1 for the details).

Chapter 7. Validation

Validating performance prediction means validating the entire approach

atomically, i.e. comparing the predicted performance to the measured perform-

ance, while also studying the properties of the approach, such as scalability,

overhead, effort etc. At the same time, the individual steps of the approach (re-

source demand quantification, benchmarking, calculation of the predicted val-

ues) need to be evaluated individually to study their strengths and limitations.

As discussed in Section 6.1, performance prediction errors of 30 % are con-

sidered sufficient in software engineering according to Menasce [199], since the

used abstractions and simplifications have their impact. This prediction error

sets the target for the presented approach, and it will be shown that it is achieved

in almost all cases, while prediction based on CPU cycles fails this targets for the

vast majority of predictions.

The remainder of this section is structured as follows: Section 7.1.1 gives

an overview of the validation including the Goal-Question-Metric approach

(GQM) which guides it. Section 7.1.2 presents the applications and algorithms

onwhich the validationwas performed. Section 7.1.3 details the goals, questions

and metrics for the validation of the bytecode-based performance prediction

which is then performed in Section 7.1.4. The GQM elements for bytecode-based

resource demand quantification form the contents of Section 7.1.5, with the res-

ults following in Section 7.1.6. For JVM benchmarking, the GQM elements are

given in Section 7.1.7, and the validation of JVM benchmarking follows in Sec-

tion 7.1.8. Section 7.1.9 concludes with the discussion of the validation results

for bytecode-based performance prediction and its sub-steps.

7.1.1. Validation Overview

Figure 7.1 provides an overview of the contributions and artefacts involved in

the validation of the approach presented in this thesis. Figure 7.1 shows that

the validation involves three comparisons: between predicted and measured

execution durations (C1), between manually quantified and instrumentation-

quantified resource demands (C2), and between manual and automated bench-

marking of bytecode instructions/API methods (C3).

278

7.1. Bytecode-based Performance Prediction

Automatically
quantified
resource
demands

Application
workload

Bytecode-
based resource

demand quantification

Manually
quantified
resource
demands

JVM

Application
performance

measurements

JVM

Bytecode
and method/API
benchmarking

results

Bytecode
and method/API

benchmarks

Bytecode-
based

performance
prediction

Predicted
application

performance

C2

 C1

Bytecode
and method/API

manual perf.
measurements

 C3

Legend

Application
bytecode

Artefact
Processing

Thesis contrib. Cx Comparison
for validation

Data and
control flow

Platform-independent part of the approach Platform-specific
part of the approach

Figure 7.1.: Validation of Bytecode-based Performance Prediction (Overview)

To perform a validation in a systematic way, its goals must be made explicit,

and the metrics which are measured to achieve the goals must be selected ac-

cordingly. A three-level approach by Basili et al. [205] is called GQM (“goals,

questions, metrics”), and the remaining sections of this chapter follow the GQM

approach. This thesis uses the following notation: Gx is the goal x, Qy is the

question y andMz is the metric z.

On the top, conceptual level, a goal is described using human language, and

can be formulated using a hypothesis, e.g. “show that approach X scales”. The

level between the goal and the metric is taken by questions that related to a

particular goal, e.g. “how many concurrent requests can be processed by the

approach?”. One possible metric for such a question is “number of concurrent

requests per CPU core”. The descriptions of GQM instances can contain de-

279

Chapter 7. Validation

tails on the purpose of setting the goal(s)/asking the question(s), information on

stakeholders, views and contexts, etc.

In this thesis, an extensive Type 1 validation that focuses on performance pre-

diction has been performed for several Java applications (workloads) which dif-

fer in type, size, shape, complexity and age. These applications are described

in Section 7.1.2, and the GQM goals for the cross-platform performance predic-

tion are described in Section 7.1.3. The validation results are described in the

Sections 7.1.4.1 through 7.1.4.6.

After successfully validating the performance prediction as an atomic mech-

anism, its constituents are validated on their own, to show the feasibility of the

novel approaches developed in this thesis. The instruction-precise workload re-

cording mechanism from Chapter 4 is evaluated in Section 7.1.6 following the

goals that are set in Section 7.1.5, which include the demonstration of precision,

low overhead, scalability and other advantages.

The method benchmarking from Section 5.3 (using parameter generation

heuristics and automated generation of executable bytecode microbenchmarks)

is evaluated in Section 7.1.8 following the goals set in Section 7.1.7. These goals

include the precision of benchmarking, the success rate of the heuristics, the

effort of benchmark generation, etc.

Bytecode instruction benchmarking can only be validated in the context of

performance prediction and not be validated on its own: there are no available

alternative measurement approaches for bytecode instruction duration. There-

fore, it is validated indirectly, as a contributor to bytecode-based cross-platform

performance prediction.

7.1.2. Subjects and Scenarios for the Validation

Seven different workloads from six applications were used for validation of the

performance prediction approach, and this section describes the applications in

more detail. Note that the resource demand quantification and performance pre-

diction were performed for a number of other workloads, but the precision of

the prediction accuracy was only verified for the seven workloads described be-

280

7.1. Bytecode-based Performance Prediction

low, since the validation of cross-platform prediction requires deployment and

measurement on several platforms.

SPECjvm2008 [59] is an industry-grade benchmark developed by SPEC

(Standard Performance Evaluation Council), and it is the successor of the SPEC-

jvm98 benchmark. SPECjvm2008 measures the performance of a Java Runtime

Environment (JRE) using several real-life applications and workloads that focus

on core Java platformAPI and functionality. Its documentation states that it “has

low dependence on file I/O and includes no network I/O across machines”.

The workloads of SPECjvm2008 can be run in different modes, e.g. to measure

the startup performance of the JVM (which, however, is of lesser significance to

business applications than response time and throughput). From the workloads

of SPECjvm2008, the two most complicated were selected for performance pre-

diction validation (the complexity was judged by the number and size of classes

outside of the JVM/Java Platform API that used for the implementation of the

workloads). These two workloads are compress (13 classes) and MPEGaudio

(35 classes), and the latter is an MP3 encoder and thus a functionality whose

performance had to be measured manually in previous publications concerned

with PCM validation [206].

Complexity served as the criterion because workloads should be as realistic

as possible. At first, SPECjvm2008 benchmarks with the prefix startup were

excluded from consideration, because they measure the performance of the cor-

responding workloads as the JVM starts up – before JIT compilation can show

its benefits and before the execution reaches a “steady state”. Additionally,

workloads were not considered when the bulk of complexity (and execution

time) was shouldered by a API methods, as it is the case with XML workloads

in SPECjvm2008. Other workloads were rather “toy benchmarks” (e.g. small

mathematical kernels, such as Fast Fourier Transform or the LU algorithm).

SPECjbb2005 [207] is another benchmark developed by SPEC, SPECjbb-

2005 is a benchmark for evaluating the performance of execution platforms

running business applications written in Java, and it designed as an order-

processing application for a wholesale supplier. More than 540 publicly avail-

281

Chapter 7. Validation

able SPECjbb2005 results have been published by hardware and software

vendors such as IBM, Oracle, Sun Microsystems, Hewlett-Packard, SAP, AMD,

Apple and others. During a SPECjbb2005 run, the degree of parallelism is

gradually increasing by increasing the number of concurrently active, and the

reported results allow the users to analyse how the benchmark scales, in partic-

ular on multi-core platforms.

JFreeChart is a framework for creating complex diagrams, with support for

Gantt charts, histograms, time series etc. It is an open-source product that is

very popular (more than 20000 downloads per month) and which is widely

used in enterprise applications such as JBoss application server, Atlassian JIRA

(an issue tracking and project management tool) and others. Its data processing

algorithms such as regression calculation form good candidates for bytecode-

based performance prediction, while the charting functionality is GUI-oriented

and therefore not targeted by the Palladio Component Model and the contribu-

tion of this thesis.

Linpack is a benchmark that performs numeric linear algebra computations,

originally written in Fortran by Jack Dongarra et al. (in this thesis, a Java im-

plementation of Linpack is used [208]). Originally intended for use on super-

computers of the 1970s and 1980s, it continues to be developed and used for

benchmarking supercomputers in the 21st century. The last incarnation, called

High-Performance Linpack (HPL), was published in 2008 and its results are the

single criterion used for ranking supercomputers in the TOP500 list [209]. Still,

the core algorithm continues to be linear algebra computations.

Finally, Whetstone is an even older benchmark (the original version ap-

peared in 1972 and was written in Algol60), and it focuses on floating-point

performance. The validation uses a Java implementation which was retrieved

from [210].

7.1.3. Performance Prediction: Goals, Questions and Metrics

Following the GQM approach described in Section 7.1.1, the following goals,

questions and metrics guide the evaluation of the performance prediction:

282

7.1. Bytecode-based Performance Prediction

G1: show that the approach predicts the execution durations accurately

G1-Q1: what is the difference between the predicted and manually measured

execution durations?

G1-Q1-M1: the difference between prediction and measurement, calculated

from the formula predicted−measured
measured

G1-Q2: is it sufficient to consider the JIT speedup factor as input-independent?

G1-Q2-M1: the dependence of G1-Q1-M1 on the algorithm input for which the

calibration was performed

G2: show that the bytecode-based approach predicts the execution dura-

tions more accurately than the approach based on CPU cycles

G2-Q1: what is the difference between the prediction errors based on bytecode

instructions vs. based on CPU cycles?

G2-Q1-M1: the difference between the prediction errors obtained for the two

approaches

The metric G2-Q1-M1 deserves some attention, because the prediction error

can be both positive (overprediction) and negative (underprediction). For ex-

ample, if the prediction error is -5 % for one approach and 5 % for the other,

it’s hard to compare them because the absolute error percentage is the same.

However, overprediction is better in the sense that in reality, the system will run

faster than predicted, and no “undersizing” error can happen when prediction

results are used for system sizing.

When comparing prediction errors x%and−x%(x ≥ 0), the absolute difference

between the prediction errors is 2·x%, although the prediction errors are of equal

amplitude (but opposite signs). The absolute difference between the prediction

errors 0 % and 2 · x % is also 2 · x % , but in this case, the first prediction error is

clearly better than the second.

Therefore, the absolute difference between prediction errors is not a good for-

mula for G2-Q1-M1. In this thesis, G2-Q1-M1 for prediction errors PE1 (from

CPU cycle counts, computed in the same manner as G1-Q1-M1) and PE2 (G1-

283

Chapter 7. Validation

Q1-M1 from bytecode counts) is computed as |PE1| − |PE2|. The larger G2-Q1-
M1 is, the better is bytecode-based performance prediction when compared to

prediction based on CPU cycles.

7.1.4. Performance Prediction: Results of Validation

In the following, the prediction results are presented individually for the valid-

ation subjects which were listed in Section 7.1.2, and the results are discussed.

For the validation, three execution platforms were selected so that they would

differ in hardware characteristics, operating system and JVM:

1. MBP53: a MacBook Pro notebook (model identifier “MacBookPro5,3”)

with 2.8 GHz Intel Core 2 Duo CPU (T9600), 4 GB of RAM, running Mac

OS X 10.6.4 and Apple JVM (JDK 1.6.0_21).

2. T60a: a Lenovo notebook (T60, model ID 2007-49G) with 1.83 GHz Intel

Core Duo T2400 CPU, 3.0 GB of RAM and Windows 7 Professional, with

the JVM from Oracle (JDK 1.6.0_21)

3. X110a: an LG Electronics notebook (model X110-L.A7SAG) with 1.60 GHz

Intel CPU (x86 Family 6 Model 28 Stepping 2), 1 GB of RAM andWindows

7 Professional, with Oracle JDK 1.6.0_20

7.1.4.1. SPECjvm2008 MPEGaudio and Compress Workloads

As described in Section 7.1.2, the MPEGaudio benchmark of SPECjvm2008 is a

real-world workload concerned with decoding of compressed audio files. The

evaluation has been performed on six MP3 files (of different size, duration,

and bitrate) which are bundled with SPECjvm2008 and used as workloads for

the MPEGaudio benchmark. In detail, the characteristics of files (referenced in

Table 7.1) are as follows:

• FileA: 19,676 bytes, 20 seconds, 1 channel, 8 kbps

• FileB: 61,741 bytes, 62 seconds, 1 channel, 8 kbps

284

7.1. Bytecode-based Performance Prediction

• FileC: 140,563 bytes, 12 seconds, 2 channels, 96 kbps

• FileD: 729,600 bytes, 52 seconds, 2 channels, 112 kbps

• FileE: 32,596 bytes, 2 seconds, 2 channels, 128 kbps

• FileF: 3,257,258 bytes, 204 seconds, 2 channels, 128 kbps

In addition to 9 classes of SPECjvm2008MPEGaudio itself, the decoder library

used by the benchmark have also been instrumented, to provide complete and

“unfolded” bytecode instructions for the entire workload. The instrumentation

of the decoder library meant instrumenting 40 classes of JLayer [211], which

results in more 200 instrumented methods, and only one method needs to be

treated specially (see Section 7.1.6.1 for details).

To answer questionG1-Q1 following goalG1, Table 7.1 presents the results of

metricG1-Q1-M1 for the performance prediction on three platforms, employing

the SPECjvm2008 MPEGaudio benchmark for the six input files listed above.

For the calculation of the calibration factor, one platform and one input file

(the first platform T60a and the first input file FileA) have been taken without

special consideration, and without searching for the calibration basis which of-

fers the best (smallest) prediction errors. In particular, this calibration factor is

used not only for the other platforms, but also for the remaining five input files

on platform T60a. Note that the files are significantly different both in size and

in decoding complexity, which makes it particularly challenging to predict the

performance on the basis of one of these files.

The prediction error for the input file FileA on platform T60a is put in par-

enthesis because it is not really a prediction error: this input is the source of

calibration. For other input five files on platform T60a, the prediction error is

reasonably small (<10 %). On the other platforms, the prediction error is at most

31.6 % (platformMBP53, FileC), and below 30 % in all but this one case.

TheMBP53 platform is also the platform exhibiting the largest prediction er-

rors, which may be caused by a significantly different operating system (Unix-

based Mac OS X, in contrast to Windows 7 on T60a and X110a). In all but one

285

Chapter 7. Validation

Considered
platform

Input Calibration source
Calibration

factor
Prediction [ns]

calibrated
Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a FileA T60a, input=FileA 0.146 55,793,369 55,793,369 (0)
X110a FileA T60a, input=FileA 0.146 148,917,852 163,657,995 -0.090
MBP53 FileA T60a, input=FileA 0.146 24,000,703 21,034,000 0.141

T60a FileB T60a, input=FileA 0.146 174,671,876 173,301,895 0.008
X110a FileB T60a, input=FileA 0.146 466,466,780 429,283,365 0.087
MBP53 FileB T60a, input=FileA 0.146 75,186,312 64,781,000 0.161

T60a FileC T60a, input=FileA 0.146 343,556,040 322,451,898 0.065
X110a FileC T60a, input=FileA 0.146 922,351,348 808,278,066 0.141
MBP53 FileC T60a, input=FileA 0.146 145,984,146 110,904,000 0.316

T60a FileD T60a, input=FileA 0.146 1,595,659,664 1,478,855,755 0.079
X110a FileD T60a, input=FileA 0.146 4,257,424,070 3,711,015,853 0.147
MBP53 FileD T60a, input=FileA 0.146 675,909,520 523,973,000 0.290

T60a FileE T60a, input=FileA 0.146 64,630,749 60,839,992 0.062
X110a FileE T60a, input=FileA 0.146 171,986,004 159,949,288 0.075
MBP53 FileE T60a, input=FileA 0.146 27,302,198 21,714,000 0.257

T60a FileF T60a, input=FileA 0.146 6,459,242,657 5,921,457,916 0.091
X110a FileF T60a, input=FileA 0.146 17,195,872,763 14,978,219,424 0.148
MBP53 FileF T60a, input=FileA 0.146 2,729,345,361 2,113,442,000 0.291

Table 7.1.: SPECjvm2008 MPEGaudio benchmark: Bytecode-based performance predic-
tion using calibration on platform T60a and one input file FileA

case (platform X110a, FileA), the bytecode-based performance prediction over-

predicts, and the most likely reason for this is that the runtime optimisations per-

formed by the execution platform have more time and possibilities to become

effective since all other input files are larger than FileA. The slight underpredic-

tion experienced for FileA on platformX110a is not surprising since the platform

X110a is the least powerful (in terms of CPU and memory) of the studied execu-

tion platforms.

The intentionally unoptimised choice of the calibration base for SPECjvm2008

follows the discussion in Section 6.1, where it was argued that the relocation and

sizing scenarios should be based on one platform, and limited application input.

A better prediction could be achieved by using more information for the calib-

286

7.1. Bytecode-based Performance Prediction

ration factor, e.g. by taking an average of the calibration factors of all six files on

platform T60a, possibly weighted with file sizes. Additionally, the calibration

factor could be parametrised over the file size, bitrate, or other properties, and

such parametrisation could be made using the least-squares technique or other

approaches.

To answer question G1-Q2, Table 7.2 presents the results of the performance

prediction for the same platforms and input files as in Table 7.1, but the cal-

ibration factor is calculated as a simple average of the calibration factors for

the six input files on platform T60a. The resulting calibration factor is 0.139

(= 0.146+0.145+0.137+0.135+0.137+0.134
6), i.e. it has been computed as a simple average,

without weighting the contributing calibration factors by the file size or other

input file properties.

The six input files used for the calculation of the calibration factor can be seen

as a training set, but the approach presented in this thesis does not memorise

the input files and the predictions for them. Thus, these files can be reused as

part of the validation set, to see how well they are predicted. Correspondingly,

in Table 7.2, the prediction error value for the different input files on platform

T60a are not zero, because the calibration factor has been used for them, too.

From Table 7.2, it can be seen the the prediction error (G1-Q1-M1) improves,

and Table 7.3 summarises the improvements and computes G1-Q2-M1: in 15

out of 18 cases, the prediction accuracy improves (by at least 5 percentage

points). In the three cases where the prediction accuracy decreases, it does so

by less than 5 percentage points (marked in red in Table 7.3). Of these three

cases, one case (platform T60a, FileA) was the “reference case” in Table 7.1, i.e.

the prediction error was 0 because the calibration factor was computed from this

single reference case. As expected, using more information for the calculation

of the calibration factor increases prediction accuracy, but not very dramatically.

Therefore, even if only one input file is used for the calibration factor calculation,

the prediction accuracy is sufficient.

Following goal G2, it remains to be shown that that bytecode-based perform-

ance prediction has better prediction accuracy (i.e. a smaller prediction error)

287

Chapter 7. Validation

Considered
platform

Input Calibration source
Calibration

factor
Prediction [ns]

calibrated
Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a FileA T60a, input=FileA 0.139 53,148,917 55,793,369 -0.047
X110a FileA T60a, avg over inputs 0.139 141,859,557 163,657,995 -0.133
MBP53 FileA T60a, avg over inputs 0.139 22,863,136 21,034,000 0.087

T60a FileB T60a, input=FileB 0.139 166,392,912 173,301,895 -0.040
X110a FileB T60a, avg over inputs 0.139 444,357,543 429,283,365 0.035
MBP53 FileB T60a, avg over inputs 0.139 71,622,689 64,781,000 0.106

T60a FileC T60a, input=FileC 0.139 327,272,433 322,451,898 0.015
X110a FileC T60a, avg over inputs 0.139 878,634,442 808,278,066 0.087
MBP53 FileC T60a, avg over inputs 0.139 139,064,900 110,904,000 0.254

T60a FileD T60a, input=FileD 0.139 1,520,029,804 1,478,855,755 0.028
X110a FileD T60a, avg over inputs 0.139 4,055,633,930 3,711,015,853 0.093
MBP53 FileD T60a, avg over inputs 0.139 643,873,276 523,973,000 0.229

T60a FileE T60a, input=FileE 0.139 61,567,430 60,839,992 0.012
X110a FileE T60a, avg over inputs 0.139 163,834,342 159,949,288 0.024
MBP53 FileE T60a, avg over inputs 0.139 26,008,150 21,714,000 0.198

T60a FileF T60a, input=FileF 0.139 6,153,092,399 5,921,457,916 0.039
X110a FileF T60a, avg over inputs 0.139 16,380,835,900 14,978,219,424 0.094
MBP53 FileF T60a, avg over inputs 0.139 2,599,981,931 2,113,442,000 0.230

Table 7.2.: SPECjvm2008 MPEGaudio benchmark: Bytecode-based performance predic-
tion using calibration on platform T60a and all input files

than the prediction based on CPU cycles. To see that this is indeed the case,

consider Table 7.4. It illustrates performance prediction based on CPU cycles,

where the T60a platform serves as the source of CPU cycle counts.

Note that the measurement is performed individually for each of the six in-

put files, because the cycle-based prediction approach needs to measure each

workload individually. This puts the prediction based on CPU cycles in a more

favourable position, because input-specific timing behaviour of the considered

algorithm’s implementation is captured more precisely. The calculation of CPU

cycle values on T60a is performed by multiplying the measured time (in nano-

seconds) with 1.83, since the CPU frequency of T60a is 1.83 GHz.

288

7.1. Bytecode-based Performance Prediction

Platform T60a X110a MBP53 T60a X110a MBP53 T60a X110a MBP53
Input file FileA FileA FileA FileB FileB FileB FileC FileC FileC
Prediction error when calibration
 is based on one file (FileA)

0.00% -9.00% 14.10% 0.80% 8.70% 16.10% 6.50% 14.10% 31.60%

Prediction error when calibration
factor is averaged across files

-4.70% -13.30% 8.70% -4.00% 3.50% 10.60% 1.50% 8.70% 25.40%

G1-Q2-M1 (Change of prediction
errors, in percentage points)

4.70% 4.30% -5.40% 4.80% -5.20% -5.50% -5.00% -5.40% -6.20%

Platform T60a X110a MBP53 T60a X110a MBP53 T60a X110a MBP53
Input file FileD FileD FileD FileE FileE FileE FileF FileF FileF
Prediction error when calibration
 is based on one file (FileA)

7.90% 14.70% 29.00% 6.20% 7.50% 25.70% 9.10% 14.80% 29.10%

Prediction error when calibration
factor is averaged across files

2.80% 9.30% 22.90% 1.20% 2.40% 19.80% 3.90% 9.40% 23.00%

G1-Q2-M1 (Change of prediction
errors, in percentage points)

-5.10% -5.40% -6.10% -5.00% -5.10% -5.90% -5.20% -5.40% -6.10%

Table 7.3.: SPECjvm2008 MPEGaudio benchmark, bytecode-based performance predic-
tion: Comparison of prediction errors between calibration based on 1 input
file and on 6 input files for bytecode-based performance prediction

The predicted CPU cycle count for a given file has the same value on all three

platform and corresponds to the measured CPU cycle count on T60a. The meas-

ured CPU cycle on X110a is obtained by multiplying the measured timing value

(cf. 7.1) with 1.6; forMBP53, the multiplication factor is 2.8.

From Table 7.4, it can be seen that the predicted and measured CPU cycle

counts on X110a andMBP53 differ significantly. Comparing the prediction er-

rors in Tables 7.1 and 7.4, it can be seen that for the large majority of the cases,

the prediction errors are significantly higher when using performance predic-

tion on the basis of CPU cycles. Since prediction based on CPU cycles measures

the cycle counts for all six input files on platform T60a, the prediction error is

0.0 % for these cases, whereas the bytecode-based performance prediction exhib-

its a small but non-zero prediction error because it is based on only one input

file, namely FileA.

289

Chapter 7. Validation

Considered
platform

Input Calibration source

CPU cycles:
Prediction based
on measurement

on Lenovo

CPU cycles:
Measurement

Prediction
error for

CPU cycles

T60a FileA T60a, input=FileA 102,101,865 102,101,865 (0)
X110a FileA T60a, input=FileA 102,101,865 261,852,792 -0.610
MBP53 FileA T60a, input=FileA 102,101,865 58,895,200 0.734

T60a FileB T60a, input=FileB 317,142,468 317,142,468 (0)
X110a FileB T60a, input=FileB 317,142,468 686,853,384 -0.538
MBP53 FileB T60a, input=FileB 317,142,468 181,386,800 0.748

T60a FileC T60a, input=FileC 590,086,973 590,086,973 (0)
X110a FileC T60a, input=FileC 590,086,973 1,293,244,906 -0.544
MBP53 FileC T60a, input=FileC 590,086,973 310,531,200 0.900

T60a FileD T60a, input=FileD 2,706,306,032 2,706,306,032 (0)
X110a FileD T60a, input=FileD 2,706,306,032 5,937,625,365 -0.544
MBP53 FileD T60a, input=FileD 2,706,306,032 1,467,124,400 0.845

T60a FileE T60a, input=FileE 111,337,185 111,337,185 (0)
X110a FileE T60a, input=FileE 111,337,185 255,918,861 -0.565
MBP53 FileE T60a, input=FileE 111,337,185 60,799,200 0.831

T60a FileF T60a, input=FileF 10,836,267,986 10,836,267,986 (0)
X110a FileF T60a, input=FileF 10,836,267,986 23,965,151,078 -0.548
MBP53 FileF T60a, input=FileF 10,836,267,986 5,917,637,600 0.831

Table 7.4.: SPECjvm2008 MPEGaudio benchmark: Performance prediction on the basis
of CPU cycle counts, measured on platform T60a (to use inG2-Q1)

Thus, the goal G2 is achieved successfully, as shown by the values of met-

ric G2-Q1-M1 in Table 7.5. Note that G2-Q1-M1<0 % (i.e. the prediction er-

ror seams to decrease when using CPU cycles) only for those cases where the

CPU cycles are based on measurements. As the six measurements are individu-

ally taken on the corresponding platform (T60a) and for the corresponding files

(FileA through FileF), the value of G2-Q1-M1 for these six cases corresponds to

the prediction error (G1-Q1-M1) values in Table 7.1 for platform T60a and files

FileA, FileB etc.

Instead of having to measure CPU cycle counts individually for each input

file, it could be parametrised over the attributes of the input file, such as file size.

However, as Table 7.6 shows, the correlation between filesize and the number

of the CPU cycles is non-linear. Thus, parametrising CPU cycles over file size

290

7.1. Bytecode-based Performance Prediction

Platform T60a X110a MBP53 T60a X110a MBP53 T60a X110a MBP53
Input file FileA FileA FileA FileB FileB FileB FileC FileC FileC
Prediction error for bytecode-
based prediction with calib-
ration based on one file (FileA)

0.0% -9.0% 14.1% 0.8% 8.7% 16.1% 6.5% 14.1% 31.6%

Prediction error for prediction
based on CPU cycle counts
on platform T60a

0.0% -61.0% 73.4% 0.0% -53.8% 74.8% 0.0% -54.4% 90.0%

G2-Q1-M1 (Increase of predic-
tion error when using CPU
cycles, in percentage points)

0.0% 52.0% 59.3% -0.8% 45.1% 58.7% -6.5% 40.3% 58.4%

Platform T60a X110a MBP53 T60a X110a MBP53 T60a X110a MBP53
Input file FileD FileD FileD FileE FileE FileE FileF FileF FileF
Prediction error for bytecode-
based prediction with calib-
ration based on one file (FileA)

7.9% 14.7% 29.0% 6.2% 7.5% 25.7% 9.1% 14.8% 29.1%

Prediction error for prediction
based on CPU cycle counts
on platform T60a

0.0% -54.4% 84.5% 0.0% -56.5% 83.1% 0.0% -54.8% 83.1%

G2-Q1-M1 (Increase of predic-
tion error when using CPU
cycles, in percentage points)

-7.9% 39.7% 55.5% -6.2% 49.0% 57.4% -9.1% 40.0% 54.0%

Table 7.5.: SPECjvm2008 MPEGaudio benchmark: Comparison of prediction errors
between bytecode-based performance prediction and prediction based on
CPU cycle counts

would further decrease the prediction accuracy of the approach based on CPU

cycle counts.

In the next sections, further algorithms and components will be studied to

provide further evidence for the accuracy and superiority of bytecode-based

performance prediction.

7.1.4.2. SPECjbb2005 Benchmark

The SPECjbb2005 benchmark computes and reports the throughput values for

a number of configurations, with varying number of warehouses and different

291

Chapter 7. Validation

Considered
platform

Input
File size

[byte]
Measurement
[CPU cycles]

CPU cycles
per byte

T60a FileA 19,676 102,101,865 5,189.16
X110a FileA 19,676 261,852,792 13,308.23
MBP53 FileA 19,676 58,895,200 2,993.25

T60a FileB 61,741 317,142,468 5,136.66
X110a FileB 61,741 686,853,384 11,124.75
MBP53 FileB 61,741 181,386,800 2,937.87

T60a FileC 14,563 590,086,973 40,519.60
X110a FileC 14,563 1,293,244,906 88,803.47
MBP53 FileC 14,563 310,531,200 21,323.30

T60a FileD 729,600 2,706,306,032 3,709.30
X110a FileD 729,600 5,937,625,365 8,138.19
MBP53 FileD 729,600 1,467,124,400 2,010.86

T60a FileE 32,596 111,337,185 3,415.67
X110a FileE 32,596 255,918,861 7,851.24
MBP53 FileE 32,596 60,799,200 1,865.23

T60a FileF 3,257,258 10,836,267,986 3,326.81
X110a FileF 3,257,258 23,965,151,078 7,357.46
MBP53 FileF 3,257,258 5,917,637,600 1,816.75

Table 7.6.: SPECjvm2008 MPEGaudio benchmark: Correlation between CPU cycle
counts and file sizes

workload sizes. SPECjbb2005 is a multi-threaded benchmark with one master

thread and one thread per warehouse instance (the minimum number of ware-

houses is 1). The number of concurrently active threads/tasks increases in sev-

eral phases; the throughput values are reported for each phase.

The approach presented in this thesis predicts the execution duration of a

method (i.e. of an internal action of a component) for the single-threaded ex-

ecution. The tooling of the Palladio Component Model then uses this execution

duration (expressed as CPU resource demand) and simulates the effect of con-

text switching, resource contention andwaiting timeswhich occur duringmulti-

292

7.1. Bytecode-based Performance Prediction

threaded execution. This functionality of the PCM tooling has been validated in

several contexts and for several applications [212].

Creating a PCM model instance which captures the inner concurrency of

SPECjbb2005 is outside the scope of this thesis. Still, an attempt was made to

analyse whether its performance can be predicted, by analysing the design and

implementation of SPECjbb2005. The results if this analysis are described in the

following.

In each phase, after completing some preparatory work, the master thread of

SPECjbb2005 sets a control variable that will be queried periodically by each

of the warehouse threads; after that, the master thread goes to sleep for a fixed

timespan. The work performed by a warehouse thread is implemented in a

while loop; in the head of the loop, the aforementioned control variable is quer-

ied.

Once the master thread wakes up, it sets the control variable to a value which

means “finish warehouse work”; upon reading this value of the control variable,

a warehouse thread wraps up. When the last of the warehouse threads finishes,

the master thread continues, prints the statistics, persists them and then termin-

ates. This strategy means that number of loop iterations can vary across threads,

and that the number of loop iteration depends on the performance of the execu-

tion platform. In particular, this strategy means that if an bytecode-instrumented

method is run in this time-constrained manner, the number of loop iterations

will be lower than for an uninstrumented method, because the instrumented

method contains more instructions and method calls.

Thus, to validate the performance prediction, the number of loop iteration

must be equal between the uninstrumented case and the instrumented case.

However, achieving this without breaking the semantics and the code struc-

ture of SPECjbb2005 does not seem possible. Therefore, it has been decided to

identify the hottest spot of SPECjbb2005 (i.e. the method which has the greatest

share of the execution time of SPECjbb2005), and to validate the performance

prediction for it.

293

Chapter 7. Validation

The hottest method of SPECjbb2005 is create_random_a_string(int

length_lo, int length_hi, short warehouseId) in the class

spec.jbb.JBButil. According to JProfiler [137], it accounts for ca. 7 % of the

execution duration of the entire benchmark. At the same time, it is a rather short

method, but it is invoked very often. Table 7.7 shows the results of bytecode-

based execution duration prediction for the create_random_a_string

method with parameter values 20, 20 and 1. Since the prediction was calib-

rated on platform T60a, the prediction error for that platform is 0 per definition

and has no argumentative power, it is thus put in parentheses in Table 7.7.

Considered
platform

Method input
parameters

Calibration
source

Calib.
factor

Prediction
[ns]

calibrated

Measure-
ment with

JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a 20;20;1 T60a 0.161 1,375 1,375 (0.0)
X110a 20;20;1 T60a 0.161 3,063 2,345 0.306
MBP53 20;20;1 T60a 0.161 689 493 0.397

Table 7.7.: SPECjbb2005, hot spot create_random_a_string: results of bytecode-
based performance prediction

It can be seen that the prediction is not as good as for SPECjvm2008 MPEGau-

dio benchmark, but still good enough for performance prediction at design time.

The execution durations for platforms X110a and MBP53 are overpredicted;

note that the execution duration is so short that it measuring it using timermeth-

ods at runtime would incur substantial overhead. Still, bytecode-based per-

formance prediction is better than prediction based on CPU cycles, as Table 7.8

shows. There, for platform X110a, the execution duration is significantly un-

derpredicted, while a very significant overprediction can be seen for platform

MBP53, with the prediction error being twice the size of that using bytecode-

based performance prediction.

The performance prediction and error comparison have been performed for

other values of the method input that 20, 20 and 1. As the prediction accuracy

294

7.1. Bytecode-based Performance Prediction

Considered
platform

Method
input
para-

meters

Calib-
ration
source

CPU cycles:
Prediction
based on

measurement
on T60a

CPU cycles:
Measurement

Prediction
error when
using CPU

cycles

G1-Q1-M1
(Prediction
error when

using
bytecode)

G2-Q1-M1
(Difference

between
prediction

errors)
T60a 20;20;1 T60a 2,516 2,516 (0) (0) (0)
X110a 20;20;1 T60a 2,516 3,752 -0.329 0.306 0.023
MBP53 20;20;1 T60a 2,516 1,380 0.823 0.397 0.426

Table 7.8.: SPECjbb2005, hot spot create_random_a_string: results of performance
prediction based on CPU cycles, and values ofG2-Q1-M1

differs only marginally, questionG1-Q2 can be answeredwith “yes”, and values

of metric G1-Q2-M1 are not given here in full detail.

7.1.4.3. Linpack

The prediction errors for the Linpack benchmark are given in Table 7.9

(bytecode-based prediction) and Table 7.10 (prediction based on CPU cycle

counts). As the Linpack benchmark has no inputs which could be varied and

studied, G1-Q2 does not need to be addressed. Here, too, bytecode-based pre-

diction yields much better prediction accuracy, fulfilling goal G2: G2-Q1-M1 is

0.560 for platform X110a, and 0.579 for platformMBP53.

Considered
platform

Calibration
source

Calibration
factor

Prediction [ns]
calibrated

Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a T60a 0.125 2,950 2,950 (0)
X110a T60a 0.125 8,426 9,026 -0.066
MBP53 T60a 0.125 1,296 1,093 0.185

Table 7.9.: Linpack benchmark: results of bytecode-based performance prediction

295

Chapter 7. Validation

Considered
platform

Method input
parameters

Calibration
source

CPU cycles:
Prediction based
on measurement

on T60a

CPU cycles:
Measurement

Prediction
error

T60a 20;20;1 T60a 5,399 5,399 (0)
X110a 20;20;1 T60a 5,399 14,442 -0.626
MBP53 20;20;1 T60a 5,399 3,060 0.764

Table 7.10.: Linpack benchmark: results of performance prediction based on CPU cycle
counts

7.1.4.4. JFreeChart Linear Regression

The performance of the linear regression calculation in JFreeChart depends on

the number of inputs. Table 7.11 shows the results of bytecode-based perform-

ance prediction for three different input sizes. One difference to the results of

SPECjvm2008, SPECjbb2005 and Linpack is that the calibration factor is signific-

antly lower: 0.082 as compared to 0.146, 0.161 and 0.125, respectively.

This observation canmean that either the studied algorithm is optimisedmore

significantly by JIT and other JVM facilities, or that the inputs of the prediction

(counting results or benchmarking results) contain imprecisions. However, the

latter is unlikely as the prediction results in previous section were sufficiently

precise.

It can be seen that the prediction error (G1-Q1-M1) increases as the input para-

meter size increases, whichmeans that calculating the calibration factor onmore

than just one input value would be beneficial in this case. Furthermore, it can be

seen that the prediction error is 30 % or larger (but less than 50 %) on platforms

X110a andMBP53.

However, the prediction accuracy of the bytecode-based performance pre-

diction is still better than that of based on CPU cycles, as the last column in

Table 7.12 shows. Note that the prediction based on CPU cycles has the advant-

age that for the input sizes 2048 and 4096 on platform T60a, measurements are

296

7.1. Bytecode-based Performance Prediction

done to obtain the number of CPU cycles, whereas the accuracy of bytecode-

based performance prediction is based on the calibration, which is performed

only for the input size 1024 on the platform T60a.

Therefore, the values for T60a and input sizes 2048 and 4096 are negative in

the last column in Table 7.12, and they correspond to the prediction errors for

these entries in Table 7.11.

Considered
platform

Algor.
input

Calibration source
Calibration

factor
Prediction [ns]

calibrated
Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a 1024 T60a, input=1024 0.082 13,438 13,438 (0)
X110a 1024 T60a, input=1024 0.082 33,043 24,960 0.324
MBP53 1024 T60a, input=1024 0.082 4,419 3,418 0.293

T60a 2048 T60a, input=1024 0.082 26,839 24,637 0.089
X110a 2048 T60a, input=1024 0.082 65,983 46,079 0.432
MBP53 2048 T60a, input=1024 0.082 8,823 6,701 0.317

T60a 4096 T60a, input=1024 0.082 53,643 47,034 0.141
X110a 4096 T60a, input=1024 0.082 131,864 90,238 0.461
MBP53 4096 T60a, input=1024 0.082 17,631 12,784 0.379

Table 7.11.: JFreeChart computation of linear regression: Results of bytecode-based per-
formance prediction

7.1.4.5. Whetstone

Table 7.13 shows the performance prediction results for the Whetstone bench-

mark, based on the calibration performed on the T60a platform. All of 20 meth-

ods found in the used Java implementation have been instrumented, but not all

of them are executed at runtime: the implementation contains methods to run it

as an applet, while the performance prediction has been applied to the execution

as a conventional Java program.

The recorded workload consists of 12,840,438 instructions of 56 different types

and 10 method invocations (6 fromWhetstone itself and 4 from the Java API). It

297

Chapter 7. Validation

Considered
platform

Algor.
input

Calibration
source and
input

CPU cycles:
Prediction based
on measurement

on T60a

CPU cycles:
Measurement

Prediction
error when
using CPU

cycles

G2-Q1-M1
(Difference

between pre-
diction errors)

T60a 1024 T60a; 1024 24,592 24,592 (0) (0)
X110a 1024 T60a; 1024 24,592 39,936 -0.384 0.060
MBP53 1024 T60a; 1024 24,592 9,570 1.570 1.277

T60a 2048 T60a; 2048 45,086 45,086 (0) -0.089
X110a 2048 T60a; 2048 45,086 73,726 -0.388 -0.044
MBP53 2048 T60a; 2048 45,086 18,763 1.403 0.086

T60a 4096 T60a; 4096 86,072 86,072 (0) -0.141
X110a 4096 T60a; 4096 86,072 144,381 -0.404 -0.057
MBP53 4096 T60a; 4096 86,072 35,795 1.405 1.026

Table 7.12.: JFreeChart computation of linear regression: Results of performance predic-
tion based on CPU cycles

can be seen from Table 7.13 that the prediction is again within 30 %, slightly

overpredicting for plaform X110a and underpredicting for platform MBP53.

Table 7.14 shows that once again, bytecode-based performance prediction is

more precise that that based on CPU cycles.

Considered
platform

Calibration
source

Calibration
factor

Prediction
[ns] calibrated

Measurement
with JIT [ns]

G1-Q1-M1
(Prediction

error)
T60a T60a 0.089 4,340,555 4,340,555 0.000
X110a T60a 0.089 10,790,606 10,157,186 0.062
MBP53 T60a 0.089 1,483,198 2,039,000 -0.273

Table 7.13.: Whetstone benchmark: Performance prediction on the basis of bytecode in-
structions, calibration performed on T60a

298

7.1. Bytecode-based Performance Prediction

Considered
platform

Calibration
source and
input

CPU cycles:
Prediction based
on measurement

on T60a

CPU cycles:
Measurement

Prediction
error

T60a T60a 7,943,216 7,943,216 (0)
X110a T60a 7,943,216 16,251,498 -0.511
MBP53 T60a 7,943,216 5,709,200 0.391

Table 7.14.: Whetstone benchmark: Performance prediction on the basis of CPU cycles,
calibration performed on T60a

7.1.4.6. Summary and Discussion

As has been demonstrated in the course of this section, bytecode-based perform-

ance prediction is vastly superior to performance prediction based on CPU cycle

counting.

Bytecode-based performance prediction has been successfully applied to

other applications and algorithms as well. For example, in [201], cross-platform

performance prediction for a custom-written implementation of the Lempel-

Ziv-Welch compression algorithm was demonstrated.

Overall, it can be stated that bytecode-based performance prediction is well-

suited for design-time performance prediction in environments where runtime

optimisations have a great impact on the performance of bytecode-based appli-

cations.

7.1.5. Resource Demand Quantification: Goals, Questions and Metrics for

Validation

The resource demand quantification leads to a certain runtime overhead, be-

cause the instrumented applications execute slower than their uninstrumented

original. Resource demand quantification needs to be run only once for each

input that should be covered by the prediction, and the resulting overhead is

not a critical property of the approach presented in this thesis.

299

Chapter 7. Validation

Still, the overhead should be assessed for completeness’ sake, alongside other

properties of the approach. For validating the instrumentation-based resource

demand quantification (i.e. runtime counting of bytecode instructions and

method invocations), the following goals, questions and metrics have been

identified:

G3: show that the BYCOUNTER-reported counting results are precise

G3-Q1: do BYCOUNTER-collected counting results (instructions and methods)

correspond to manually computed counting results ?

G3-Q1-M1: what is the deviation (in percent) of BYCOUNTER-collected count-

ing results versus manually computed counting results?

G4: quantify the overhead resulting from the instrumentation

G4-Q1: what is the overhead of the instrumentation phase?

G4-Q1-M1: how long does it take to instrument an application (in seconds)?

G4-Q2: what is the influence on the execution time (i.e. runtime overhead)?

G4-Q2-M1: how large are the increases (in percent) for the execution duration

when compared to the uninstrumented application?

G4-Q2-M2: how large (in percent) is the benefit of using basic blocks, when

execution times of an application instrumented with the two different modes

are compared?

7.1.6. Resource Demand Quantification: Validation Results

For addressing goal G3 by answering question G3-Q1, several workloads were

counted by hand and using the instrumentation-based approach developed in

this thesis. The workloads included benchmark from JavaGrande, Linpack

and Scimark benchmark suites [201]. The results did match in all cases (G3-

Q1-M1=0 %), and the workloads are now used as test cases for the bytecode-

counting implementation.

300

7.1. Bytecode-based Performance Prediction

Note that the design of the instrumentation ensures that the counting results

are recorded correctly if the method terminates (returns) correctly, and when a

checked exception is thrown. Only if an unchecked (and thus not caught) runtime

exception or error are thrown, the counting results are not reported – but in such

a case, the program execution is disrupted, and the counting results would be

of little value anyway.

Concerning goal G4 (the overhead of the instrumentation), different work-

loads of SPECjvm2008 benchmark have been measured. It should be stressed

that SPECjvm2008 benchmarks function as test subjects (i.e. the applications to

instrument), not as workload drivers to evaluate the execution platform.

During all measurements, the just-in-time compilation (JIT) was monitored

and it was confirmed that instrumented methods are also JITted, although at

different timepoints than their uninstrumented versions. The reported execu-

tion duration values for instrumented methods include not only the execution

duration of the instrumented methods, but also the effort to store the counting

results and to aggregate them: if method a() calls method b(), the final (eval-

uated) counts of method a()must include those of b().

Of SPECjvm2008 workloads, the overhead of MPEGaudio, Crypto.AES and

Derby is discussed here because the three workloads are diverse and thus offer

sufficient insight into the overhead of bytecode instrumentation. The overhead

of the instrumentation is compared to a conventional profiler, and the benefits of

using performance-invariant bytecode instruction sequences (PIBISes) are dis-

cussed for reducing the instrumentation-caused runtime overhead.

All measurements were performed on platform MBP53, which is notebook

with 2.8 GHz Intel Core 2 Duo CPU equipped with 4 GB of 1067 MHz DDR3

main memory, and running Mac OS X 10.6.4 (which is a 64-bit OS). The 1.6.0_20

JVM provided by the manufacturer (Apple Corp.) was used, running in the

default mode for 64-bit JVMs. This default mode is equal to -server, which

allows JIT compilation and favours higher optimisation degree over short com-

pilation time). The JVM was configured to use up to 768 MB of heap memory

for running the executed workload, using the -Xmx768M flag.

301

Chapter 7. Validation

For each of the workloads, the median value was obtained from 21 samples,

measured using java.lang.System.nanoTime()) timer method of the Java

platform API. This method has an accuracy of 1000 ns on the used platform

and average invocation costs of 1031 ns, as obtained by The profiler used for

finding hotspots was JProfiler 6.0.6, started from the EclipseHelios (3.6) IDE, run

without autotuning and with instrumentation-based timing value recording.

The values are reported for each of the three following scenarios:

• uninstrumented: execution duration of uninstrumented workload

• instrumented: execution duration of instrumented workload, the instru-

mentation was performed without basic block analysis

• instrumented-enhanced: execution duration of instrumented benchmark us-

ing basic block analysis

7.1.6.1. SPECjvm2008 MPEGaudio Benchmark

The MPEGaudio benchmark of SPECjvm2008 is concerned with decoding and

encoding of different MPEG audio files, incl. MP3. The benchmark-own code

is relatively simple, and it relies heavily on the JLayer library that comes with

SPECjvm2008.

Thus, to make the instruction counts cover more non-API meth-

ods, we have also instrumented JLayer classes, which resulted in more

than 200 instrumented methods. BYCOUNTER found that the class

javazoom.jl.decoder.huffcodetab is very large, and instrumenting all

of its methods would surpass Java classfiles’ mandated maximum method

length and classfile length. Therefore, only the inithuff method is not in-

strumented in the javazoom.jl.decoder.huffcodetab class, yet as that

method is executed only once, the ramifications for the counting results are neg-

ligible.

Uninstrumented MPEGaudio runs in 5.03 seconds (median duration of 21

measurements, all six input files decoded, JIT enabled). Profiling it with JPro-

filer results in a median duration of 52.8 seconds. Instrumenting it (G4-Q1-M1)

302

7.1. Bytecode-based Performance Prediction

takes 25.2 seconds conventionally and 25.5 seconds when using basic blocks –

the difference is minor. Conventionally-instrumented MPEGaudio runs in 139.1

seconds (G4-Q2-M1=139.1
5.03 = 27.65), and such a high instrumentation overhead is

explained by a very high number of instructions (> 4·109) andmethods (> 2·107):
for each reported method, the counting results need to be evaluated and stored.

Using instrumentation based on performance-invariant bytecode instruction

sequences unfolds its potential for MPEGaudio: the instrumented workload ex-

ecutes in 48.02 seconds (G4-Q2-M1=48.02
5.03 = 9.55), which means that the speedup

G4-Q2-M2 is slightly less than 3 (=139.1
48.02 = 2.897). This comparison shows that

the usage of basic blocks in BYCOUNTER is indeed beneficial for long-running,

counting-heavy workloads.

It also shows that identifying and using performance-invariant bytecode in-

structions leads to an instrumentation overhead that is comparable to that of a

conventional profiler. Of course, the information collected by a profiler is differ-

ent (less detailed timing results, but information about memory usage), while

the presented approach returns accurate bytecode instruction counts for each

instruction type. Still, it can be argued that instruction-precise resource demand

quantification is viable even for large applications and large number of instru-

mented classes and methods.

7.1.6.2. SPECjvm2008 Crypto.AES Benchmark

The Crypto benchmark of the SPECjvm2008 suite includes the AES work-

load, described in the SPECjvm2008 documentation as “encrypt and decrypt

using the AES and DES protocols, using CBC / PKCS5Padding and CBC /

NoPadding. Input data size is 100 bytes and 713 kB”. Running AES work-

load in -Xint mode, the execution duration is 106.13 s, while running it

in the default mode takes only 5.79 s: JIT compiles and optimizes over 100

methods, though only 4 of them are from SPECjvm2008 (all in the class

spec.benchmarks.crypto.Util).

Profiling AES (JVM is running in the default mode) shows that JPro-

filer introduces some overhead: the execution now takes 6.54 s, i.e.

303

Chapter 7. Validation

ca. 5.1 % more. Hotspot analysis of JProfiler results shows that ca.

80 % of execution time is spent executing the Java Platform API method

javax.crypto.Cipher.update(byte[]), although it is executed only 192

times (in contrast to java.io.ByteArrayInputStream.read, which is ex-

ecuted 182,824 times, but contributes much less to the total execution time).

JProfiler does not decompose the update method any further, and it is hard

to recognise how far JIT has been applied to this hotspot: the method itself is

not listed as JITted, but a number of its callees are.

Instrumenting AES means instrumenting all methods in classes spec.-

benchmarks.crypto.Util and spec.benchmarks.crypto.aes.Main.

This results in the instrumentation of 17 methods, and instrumenting in the

conventional way (G4-Q1-M1) takes 1.2 s. When executing the conventionally

instrumented AES, 56 counting results are recorded (which are spread across

the 17 methods), and it takes 6.09 s (=G4-Q2-M1), i.e. only 5.1 % more than an

uninstrumented run, and less than JProfiler overhead.

This low overhead is due to the very small number of recorded counting

results, which also means that the counting results include some method of

SPECjvm2008 packages which have not been instrumented. When 11 addi-

tional SPECjvm2008 classes used during AES execution are instrumented as

well, the instrumentation takes 12 seconds (G4-Q1-M1), and 221 methods are

instrumented. For the resulting instrumented bytecode, the execution takes 6.47

seconds (G4-Q2-M1), which is still a very modest overhead of 11.7 %.

Instrumenting two main classes of AES using PIBIS analysis takes 1.22 s (G4-

Q1-M1), but (surprisingly) results in a marginally higher execution duration of

the instrumented method than for conventional instrumentation, namely 6.10

s (G4-Q2-M1). This is due to the fact that currently, BYCOUNTER writes and

reads the definition of PIBISes using persistent storage on the hard disk, which

adds disk access times to the total image and has a disproportionally impact

for AES, since the instrumented methods are executed only a few dozen times.

Additionally, the reported PIBIS counts must be converted back into individual

304

7.1. Bytecode-based Performance Prediction

instruction counts, which causes some overhead. Thus, using PIBIS-based in-

strumentation may not be warranted for the AES workload.

7.1.6.3. SPECjvm2008 Derby Benchmark

The Derby benchmark “uses an open-source database written in pure Java” [59].

Derby is “synthesized with business logic to stress the BigDecimal library”,

while the “focus of this benchmark is on BigDecimal computations (based on

telco benchmark) and database logic, especially, on locks behaviour”.

The uninstrumented execution of Derby takes 84.0 s to execute. The conven-

tional instrumentation takes 3.76 seconds (G4-Q1-M1) as it instruments 6 classes

and 66 methods in total. The conventionally instrumented workload takes 112.4

s , i.e. 33.8 % more than uninstrumented (G4-Q2-M1).

But after the workload has been instrumented using performance-invariant

bytecode instruction sections (G4-Q1-M1=5.10 seconds), the execution of the

benchmark takes 84.13 seconds (G4-Q2-M1), i.e. less than when using conven-

tional instrumentation. Thus, G4-Q2-M2=112.4
84.13 = 1.34. Note that after using

performance-invariant bytecode instruction sections, the execution duration is

very close to that of the uninstrumented method. The reason for this is the fact

the major part of execution time is spent in the methods of the Java Platform

API, which are not instrumented.

7.1.6.4. Summary

The instrumentation overhead depends on the number of instrumented meth-

ods and classes, and also depends on the uninstrumented methods’ contribu-

tion to the performance of the considered component/application: since library

methods (e.g. Java Platform API methods) are not instrumented in the presen-

ted approach, the instrumentation-induced runtime overhead does not impact

their performance.

The identification and usage of performance-invariant bytecode instruction

sequences has a significant impact in cases where the instrumented methods are

executed a large number of times. For example, the instrumentation overhead

305

Chapter 7. Validation

for the SPECjvm2008 MPEGaudio benchmark was decreased by a factor of 2.89.

The instrumentation-caused overhead ranges from a few percent to a factor of

9.55, i.e. to more than 850 %. The duration of the instrumentation phase itself is

a few seconds, and and is rather negligible.

Overall, instrumentation-based quantification of bytecode resource demands

has an acceptable overhead, which has the same magnitude as the overhead of

commercial profilers, though the collected data differs between the presented

approach and the used compilers. Since there exists no profiler with the capab-

ility to collect accurate bytecode instruction counts, the presented approach can

be seen as a favourable solution, especially since it is application-agnostic and

platform-independent. In particular, no specialised JVM is needed to run it, and

no modification of the execution platform is required.

7.1.7. Execution Platform Benchmarking: Goals, Questions and Metrics for

Validation

As explained above, bytecode instruction cannot be validated in isolation, since

there is no manual approach for benchmarking bytecode instruction perform-

ance. Instead, it has already been validated in the context of bytecode-based

benchmark prediction. Thus, this section is only concerned with benchmarking

methods, in particular API methods.

To validate the novel approach for method and API benchmarking (and in

particular its parameter-generating heuristics), the comparison between the

method execution duration returned by the benchmark and the execution dura-

tion “in reality” would be the most preferable metric. However, there exists no

alternative approach which would yield the precise execution duration of Java

methods, and in particular the method of the Java platformAPI. This means that

reference execution durations must be obtained by manual benchmarking.

The following goals, questions and metrics are used for evaluating method

benchmarking:

G5: show that the benchmarking results are precise

G5-Q1: how different are the results of manual and automated benchmarking?

306

7.1. Bytecode-based Performance Prediction

G5-Q1-M1: difference (in %) between results of manual and automated bench-

marking

G6: show that the heuristics-based approach is helpful for generating method

preconditions

G6-Q1: how many methods can be benchmarked successfully?

G6-Q1-M1: effective coverage (in %) of packages/classes/methods

G6-Q1-M2: reduction (in %) of initially thrown exception after heuristic-based

handling of exception reasons

G7: quantify the benchmark generation effort

G7-Q1: how long does the generation and execution of the benchmarks take?

G7-Q1-M1: time (in seconds) for generation of preconditions and microbench-

marks

G7-Q1-M2: time (in seconds) for warmup and execution of microbenchmarks

Once the implementation will be complemented by a facility to detect para-

metric performance dependencies, a fourth GQM element (detectability of lin-

ear parametric dependencies) can be added. Of course, detecting parametric

performance dependencies requires more than one input data sample to pos-

sess different parameters and different invocation targets – this aspect will be

addressed in future work.

All following measurements were performed on a computer with Intel Pen-

tium 4 2.4 GHz CPU, 1.25 GB of main memory and Windows Vista OS running

Sun JRE 1.6.0_03, in -server JVM mode.

7.1.8. Execution Platform Benchmarking: Validation Results

To evaluate G5 (the precision of automated method benchmarking), the val-

idation has to compare its results to results of manual benchmarking, since no

“reference” performance values exist. As discussed above, manual benchmarks

for methods are also not readily available and had to be createdmanually for the

307

Chapter 7. Validation

validation. To enable a fair comparison, method parameters (and also method

invocation targets) must be identical in both cases.

Hence, automated benchmarking was done first, and method preconditions

during its execution were recorded and afterwards reused during manual

benchmarking. This comparison is an indicator of whether the microbenchmark

generation mechanism (cf. Section 5.3.6.2) generates microbenchmarks which

will produce realistic results w.r.t JIT etc.

The method java.lang.String.substring(int beginIndex, int

endIndex) was selected as a representative API method, because it is

performance-intensive and because its declaring class is used very often. This

method was benchmarked with an invocation target String of length 14,

beginIndex 4 and endIndex 8. Since the same technique (template) is used

for all microbenchmark scenarios, the application of the approach (benchmark

generation, warmup, prevention of overoptimisation and measurement setup)

is comparable across the methods to benchmark. Consequently, it appears that

it is not necessary to repeat this evaluation for all 66 public methods of the class

String.

The result of manual “best-effort” benchmarking performing by an experi-

enced MSc student with profound knowledge of the JVMwas 9 ns for the above

parameters. On the same execution platform, the benchmarking result of auto-

mated benchmarking (after removing GC-caused outliers) had the following

distribution, as shown in Figure 7.2: 7 ns for 19 % of measurements, 8 ns: 40 %,

9 ns: 22.5 %, 10 ns: 9 %, 11 ns: 4 %, and 12 ns for 5.5 % of measurements. Thus,

the average result from automated benchmarking is 8.555 ns, which constitutes

a deviation G5-Q1-M1 of 5 % compared to manual benchmarking. Note that a

distribution and not just a single value is returned by automated benchmark-

ing because several measurements are run, and because the JVM execution is

interrupted by the OS scheduler to allow the OS other applications to use the

CPU. Note that the measured time continues to run when the JVM is interrup-

ted because wall-clock timers are used, given the insufficient accuracy of timer

308

7.1. Bytecode-based Performance Prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.000

0.100

0.200

0.300

0.400

Execution duration [ns]

P
ro

ba
bi

lit
y

Figure 7.2.: Probabilities of benchmarked execution durations of the java.lang.-
String.substringmethod (parameter values: beginIndex=4, endIn-
dex=8; invocation target String length: 14)

methods which should provide thread CPU time and process CPU time (cf. Sec-

tion 7.2.3).

Clearly, this is a promising result, but it does not give any guarantees for other

parameter values of substring, or for other API methods. At the same time,

it is seen is a strong argument for the generation mechanism described in Sec-

tion 5.3.6.2. A more extended evaluation of the benchmark generation mechan-

ism and its approach for realistic benchmarking (in particular the JIT-addressing

design) is planned for future work.

Concerning G6 (benchmarking coverage), it should be noted that there exists

no alternative approach to compare against, so the reference coverage percent-

age is set to 100 %. Such a high coverage can be reached only by manual bench-

marking, and only with extremely high effort – or by brute-force benchmarking

with extremely high effort.

The automated method benchmarking approach presented in this thesis can

benchmark all the methods for which correct (appropriate) and sufficient input

parameters are given. Sufficient means that the benchmarking method can be

executed repeatedlywith the input parameters, i.e. more than just once.

For example, the java.util.Stack class contains the method pop()which

should be benchmarked, which means that the method must be called often

309

Chapter 7. Validation

enough to account for timer resolution. If the Stack does not contain enough

elements to call pop, an EmptyStackException is thrown – thus, the invoc-

ation target (the used Stack instance) must be sufficiently pre-filled. For non-

static methods, correct invocations targets must also be found or provided ex-

ternally.

If parameter generation is automated, the resulting benchmarking coverage (the

percentage of methods for which parameters have been generated successfully)

is less than 100 % because not all parameters are generated successfully. For the

java.util package of the Java platform API, all 58 public non-classes have

been considered for validation, which contain 738 public non-abstract methods.

The automated approach can benchmark 645 out of 738 these methods, which is

a success rate (G6-Q1-M1) of 87.4 %. Similarly, for the java.lang package, the

presented approach can benchmark 790 out of 861 public non-abstract methods,

which is a success rate (G6-Q1-M1) of 91.75%.

To see in detail where the automated benchmarking has a low coverage, we

now consider those classes for which the effectiveness of heuristic-based para-

meter benchmarking was low (below 70 %).

In the java.util package, this was the case for only five classes, namely

java.util.Currency, java.util.Properties, java.util.Scanner,

java.util.StringTokenizer and java.util.Timer. The underlying is-

sues are diverse and would require human parameter specification to work

around. For example, creating instances of the java.util.Currency fails be-

cause currencies are identified by ISO 4217 currency codes, but the Currency

does not declare static field from which the codes could be derived. Since

automated creation of invocation targets fails, just the one static method can

be benchmarked. The java.util.Properties class has methods with byte

streams as input parameters, and automated parameter creation heuristics can-

not handle such a case. The java.util.Scanner class requires special reg-

ular patterns (encoded as Strings or java.util.regex.Pattern), and

such complex inputs need human intelligence. All but one methods of the

java.util.Timer class require java.util.TimerTasks as parameters, so

310

7.1. Bytecode-based Performance Prediction

these methods couldn’t be benchmarked. Finally, repeated invocation of the

nextToken() method in the class java.util.StringTokenizer requires

the considered String to have a large number of tokens, which currently is not

ensured by automated benchmarking.

For the java.lang package, the coverage rate is under 70 % for

three classes, namely: java.lang.Object, java.lang.Runtime and

java.lang.SecurityManager. For the class java.lang.Object,

five methods could not be benchmarked: notify(), notifyAll(),

wait(), wait(long) and wait(long, int). All of them throw an

IllegalMonitorStateException because the thread executing these meth-

ods is not the owner of the monitor of the Object instance on which the five

methods are executed. Such a precondition is very hard to fulfil in an automated

way. The class java.lang.Runtime declares six convenience methods for ex-

ecution of operating system commands, such as the method exec(String[]

cmdarray, String[] envp, File dir). All six methods check that a

valid operating system command is passed in cmdarray (some methods also

take the command as a single String). Such commands are of course platform-

dependent, yet the approach presented in this thesis cannot guess the names of

valid system commands and consequently a SecurityException is thrown.

Of course, adding source code for operating system recognition and adding

some valid commands is possible, but adding human intelligence to the bench-

marking infrastructure would contradict the intention of measuring the suc-

cess of automated parameter finding. None of the 34 methods declared in the

class java.lang.SecurityManager could be executed since the creation of

a SecurityManager invocation target is not trivial to automate. The only

constructor declared by that class throws a SecurityException if a secur-

ity manager already exists and its checkPermission method does not allow

the creation of a new SecurityManager instance.

To validate the effectiveness of the heuristics for parameter generation (G6-

Q1-M2), the number of runtime exceptions that were thrown before the heurist-

ics were was applied has to be compared to the number of runtime exceptions

311

Chapter 7. Validation

that were thrown after heuristics were applied. Additionally, the duration of

the entire process, including initial heuristic parameter generation (and includ-

ing exception handling during parameter generation) needs to be considered.

Since no reference implementation or approach that uses completely-random

parameter generation (especially for object-typed parameters) was available, the

validation cannot compare the effectiveness of the initial parameter generation

to completely-random parameter generation.

The time values (G7-Q1-M1 and G7-Q1-M2) given below include the effort

needed for the generation of arguments and for the verification of the argu-

ments by executing the method and observing whether runtime exceptions are

thrown. The values also include the handling of runtime exceptions (if they

occur), but excludes the time needed for storing the generated parameter val-

ues for subsequent reuse, because the storage process is currently not optimised

(verbose XML serialisation is used). Also, it makes sense to concentrate on the

core contribution of the presented approach, i.e. on the parameter-generating

heuristics. The microbenchmark for which the parameters were created have

been executed using the Java Reflection API.

For the methods in the package java.lang, 151 out of 204 thrown runtime

exceptions could be successfully handled, resulting in a success rate G6-Q1-M2

of 74.01 %. The parameter generation took about 259.44 seconds (i.e. G7-Q1-M1

is less than 4.5 minutes).

For the methods in the package java.util, 95 out of 160 thrown runtime ex-

ceptions were handled successfully by the heuristics-based approach, resulting

in a success rate G6-Q1-M2 of 59.37 %. The parameter generation took about

168.67 seconds (i.e. G7-Q1-M1 is less than 3 minutes).

The benchmarking duration (G7-Q1-M2) for the java.utilwas 107minutes

due to extensive warmup for inducing JIT optimisations. For the java.util

package, the persisted input parameters (incl. parameters to create invocation

targets) together with persisted benchmarking results occupy 1.15 GB on hard

disk. In comparison, only 75 MB of data needed to be stored for the java.lang

package.

312

7.1. Bytecode-based Performance Prediction

The generation of individual microbenchmarks using bytecode engineering is

very fast in comparison to parameter finding and the actual execution durations

of the microbenchmarks. For the String method contains(CharSequence

s), the generation of the microbenchmark took less than 10 ms. The actual

benchmarking took ca. 5000 ms: the microbenchmark runs were repeated un-

til the predefined confidence interval of 0.95 was reached, which required 348

repetitions. In general, the number of repetitions depends on occurrence of out-

liers and on the stability of measurements, and it varies across methods and

platforms.

A comprehensive validation of the total effort for automated benchmarking

should be performed in the future, by comparing it to manual creation, execu-

tion and evaluation ofmicrobenchmarks. However, to get a reliable comparison,

a controlled experiment needs to be set up according to scientific standards, and

this remains future work due to the size and complexity of APIs.

7.1.9. Summary and Discussion

Following the Goal-Questions-Metrics approach presented in Section 7.1.1,

the bytecode-based cross-platform performance prediction and its constituents

have been validated in Sections 7.1.3 through 7.1.8, using applications described

in Section 7.1.2.

Validating the bytecode-based cross-platform performance prediction has

shown promising results, and delivers better prediction accuracy than predic-

tion based on CPU cycles. Despite a high abstraction and limited input, it has

shown good prediction accuracy when varying the input of the predicted com-

ponent service/application. In Section 7.1.4.6, the results of the validation of the

bytecode-based performance prediction have been discussed in detail.

The prediction approach has been evaluated on execution platforms that differ

significantly in hardware characteristics, operating system and other properties.

A prediction error of less than 30 % is achieved in most cases, and a deviation of

at most 50 % can be observed over all scenarios. In the overwhelming majority

of the cases, the bytecode-based approach overpredicts the measured execution

313

Chapter 7. Validation

duration. Overprediction is better than underprediction because for relocation

and sizing scenarios, decisions made on the basis of overprediction result in

(slightly) oversized systems, rather than undersized systems.

There are numerous ways in which the bytecode-based performance predic-

tion can be enhanced in the future. It can be modified to use more information

sources for the calibration, e.g. by performing calibration on several execution

platforms rather than one; using multiple inputs instead of just one can also

lead to a better prediction accuracy. In general, analyses of application similar-

ity and calibrating the prediction on instruction sequences rather than on entire

methods are further research directions.

An additional enhancement would be to consider the platform-independent

and application-specific calibration as a function of the application input, rather

than as a constant. This would allow the approach to address the effects ob-

served in Section 7.1.4.1, where there is a certain dependency on the application

input’s size.

The prediction approach currently requires to perform resource demand

quantification for each application input, and is not equipped to approximate

resource demands for a “new” input on the basis of previously observed in-

puts. The derivation of parametric performance dependencies is solved by an

automated approach described in [138], which calls the BYCOUNTER tooling to

collect the counting results that are specific for one assignment of the input vari-

ables of the internal action. From several counting results of different assign-

ments, the approach in [138] produces instruction/method counts expressed as

functions parametrised over the input variables of the internal action. The pre-

diction tooling developed in this thesis reads these functions and can evaluate

them both symbolically and for concrete input values.

The validation of the resource demand quantification has shown that the over-

head of the bytecode instrumentation depends on the instrumented applica-

tion’s architecture and implementation, and on the performance share of meth-

ods that are not instrumented by the presented approach (e.g. library method

such as Java Platform API methods). It has also been shown that identifying

314

7.2. Timer Evaluation

and using performance-invariant bytecode instruction sequences speeds up the

execution of the instrumented application. The speedup was as high as 2.89, as

shown using an application for with the instrumentation-caused runtime over-

head is particularly high.

Finally, the heuristics-based automated method and API benchmarking has

been validated in Section 7.1.8, and shows promising results concerning the suc-

cess of the heuristics, and the precision of the benchmarking results. Additional

validation effort is needed to study representativeness of the generated para-

meters, and future work should add capabilities to detect parametric depend-

encies and performance-relevant parameters. Furthermore, sensitivity analysis

should be investigated to study whether the parameter space of a given method

can be divided into ranges with approximately constant performance within a

given range.

In the next section, the approach from Chapter 3 for quality-driven selection

of timer methods is validated.

7.2. Timer Evaluation

This section presents the evaluation of the the Java and .NET implementations

of the TIMERMETER approach from Chapter 3. The evaluation is performed

for the different timers methods described in Section 2.4, using the following

platforms:

1. MBP53: a MacBook Pro notebook (model identifier “MacBookPro5,3”)

with 2.8 GHz Intel Core 2 Duo CPU (T9600), 4 GB of RAM, running Mac

OS X 10.6.4 and Apple JVM (JDK 1.6.0_21).

2. MBP62: a MacBook Pro notebook (model identifier “MacBookPro6,2”)

with 2.66 GHz Intel Core i7 CPU, 8 GB of RAM, running Mac OS X 10.6.4

and Apple JVM (JDK 1.6.0_21).

3. T60a: a Lenovo notebook (T60, model ID 2007-49G) with 1.83 GHz Intel

Core Duo T2400 CPU, 3 GB of RAM, running Windows 7 Professional (32

bit) and Oracle JVM (JDK 1.6.0_21)

315

Chapter 7. Validation

4. T400a: a Lenovo notebook (T400, model ID 2767WD9) with 2.40 GHz Core

2 Duo P8600 CPU, 4 GB of RAM, running 64-Bit Windows 7 Professional

and Oracle JVM (JDK 1.6.0._17)

5. T400b: same as T400a, but running Ubuntu 10 (Lucid Lynx) and Open-

JDK Runtime Environment (IcedTea6 1.8.1 6b18-1.8.1-0ubuntu1, set to use

OpenJDK 64-Bit Server VM build 16.0-b13, mixed mode)

6. X110a: an LG Electronics notebook (model X110-L.A7SAG) with 1.60 GHz

Intel CPU (x86 Family 6 Model 28 Stepping 2), 1 GB of RAM, runningWin-

dows 7 Professional (32 bit) and Oracle JDK 1.6.0_21

7. X110b: same as X110a, but running Windows XP Professional SP3 (32bit)

and Oracle JDK 1.6.0_17

8. SAMSa: a Samsung notebook with Intel Pentium M 1.73 GHz CPU, 1 GB

of RAM, running openSUSE Linux with Kernel 2.6.34 incl. HPET support

(kernel-reported HPET frequency 14,318,180 Hz, i.e. 1 tick every 69.8 ns)

and Oracle JVM (JDK 1.6.0_20)

9. SAMSb: same as SAMSa, but running Windows XP Professional and Or-

acle JVM (JDK 1.6.0_21)

Mono 2.6.7 was installed on all platforms (except T400a, for which no installer

is available). Additionally, .NET Framework 4.0 was installed on all platforms

running Windows OS.

The studied timer methods include those provided by operating systems, Java

and .NET Platform APIs, third-party libraries/tools, as well as Java methods

that access hardware counters using assembler instructions in native methods.

The following list recapitulates the abbreviations from Section 2.4, which are

used in this section in the given, alphabetic order:

• CTCT is java.lang.management.ThreadMXBean.getCurrent-

ThreadCpuTime(), a method which returns the calling thread’s used

CPU time in nanoseconds

316

7.2. Timer Evaluation

• CTM is java.lang.System.currentTimeMillis(), a static wall-clock

timer method with milliseconds as units

• CTUT is java.lang.management.ThreadMXBean.getCurrent-

ThreadUserTime(), a method which returns only the time a thread has

spent in user mode, not in system mode

• CPCT is com.sun.management.OperatingSystemMXBean.getPro-

cessCpuTime() or com.sun.management.UnixOperatingSystem-

MXBean.getProcessCpuTime(), depending on the JVM (see explana-

tions on page 41 in Section 2.4.3)

• GAGE: from the GAGEtimer library, the method getClockTicks() in

class AdvancedTimer is used

• HRC is sun.misc.Perf.highResCounter()

• JETM: the JETM library selects the “best” available timer us-

ing bestAvailableTimer() helper method of its class

EtmMonitorFactory. The timer method used on the obtained timer

class type/instance was getCurrentTime().

• NANO is java.lang.System.nanoTime(), a static wall-clock timer

method with nanoseconds as units

• QPC (QueryPerformanceCounter()) is the Windows API method re-

turning values in ticks; the separate QueryPerformanceFrequency()

method reports the update frequency of the counter used by the

QueryPerformanceCounter()method.

• TSC is the Time Stamp Counter

• .DAT: .NET API’s DateTime.Now structure in the System namespace

• .STO: .NET API’s start/stop methods in the StopWatch (System.Diag-

nostics namespace)

317

Chapter 7. Validation

To implement the algorithms from Chapter 3 for the .NET framework, C# was

chosen as it is the most popular language for .NET – however, the language

choice is not important, as the result of the compilation is CIL bytecode. The

algorithms were developed and compiled using the Mono framework (Mono

JIT compiler version 2.6.7) for x86 architecture, using the Monodevelop 2.4 IDE.

OnWindows platforms, in addition to the two .NET timer methods described

in Section 2.4.3, the algorithms fromChapter 3 were implemented forWin32 API

method QueryPerformanceCounter. This native method is called from CIL

bytecode using System.Runtime.InteropServices bridge facility offered

by the .NET API. The update frequency of QueryPerformanceCounter is

retrieved with a call to the native QueryPerformanceFrequency method.

QueryPerformanceCounter serves as a comparison to the two API meth-

ods, and to study whether it is worthwhile to use “native” Win32 API where

available.

The remainder of this section is structured as follows: Section 7.2.1 shows that

stability testing is indeed an issue which requires testing by the end users, and

proves that the Timestamp Counter (TSC) is not reliable. Section 7.2.2 studies

the units of methods that return values in ticks, and shows that the duration of

a given timer method’s tick on a given platform can differ by a factor of more

than 6, depending on the vendor of the bytecode-executing virtual machine.

Section 7.2.3 addresses accuracy, invocation cost and invocation cost spread of

timers. Section 7.2.5 shows that epochs are important for multi-threaded meas-

urements. Section 7.2.6 presents the result of the unified timer quality metric

and Section 7.2.7 concludes with a discussion of the obtained results and in-

sights that have been won from them.

7.2.1. Stability and Monotonicity

All of the tested timers and timer methods were monotonic on all tested plat-

forms, both in the single-threaded and in the multi-threaded cases (for multi-

threading testing, up to 64 threads were started). However, the stability and re-

liability of some timers was unacceptable: for example, the Timestamp Counter

318

7.2. Timer Evaluation

(TSC) exhibits jumps when the algorithm from Section 3.4 is run. In the follow-

ing, these jumps and possible reasons for them are discussed.

Consider Figure 7.3, which is a reproduction of Figure 3.9 in Section 3.4.3 on

page 110. The values on x axis in Figure 7.3 contain requested sleep times that

are passed to Thread.sleepmethod (the values are converted to nanoseconds

in Figure 7.3). The requested sleep times start at 20 ms and increase in steps

of 10 ms up to and including 160 ms; for each value, 20 repetitions are made,

resulting in a total of 300 measurements. The y-axis values are real sleep times

measured with System.nanoTime() on platform MBP53 (y-axis is labelled

with “characterised timer” since the units of System.nanoTime() are known).

Making several measurements for one value of requested sleep time means

that one value on the x axis can have several values on the y axis, and connect-

ing them (line with round shapes in Figure 7.3) results in vertical stretches, for

example at x=160 ms. The line with round shapes connects the maximum meas-

ured value of a given requested time with the minimum measured value of the

next requested time.

Clearly, there is a strong linear correlation between median nanoTime()

measurements and requested sleep times, the resulting line (shown in red in

Figure 7.3 using square shapes, but hardly distinguishable from the line with

round shapes) has a gradient of 0.9986 and a correlation coefficient of 0.9999

when outliers are removed.

In contrast, consider Figure 7.4 (which is a reproduction of Figure 3.10 in Sec-

tion 3.4.3 on page 111), where the y axis contains the sleep times measured with

TSC, during the same run. The used execution platform has a CPU frequency of

2.8 GHz, i.e. one CPU cycle takes 1
2.8 ≈ 0.557 ns).

In Figure 7.4, there seems to be no useful correlation between the reques-

ted and TSC-measured sleep times despite the almost-perfect correlation for

nanoTime()-based measurements in Figure 7.3. The red line that appears in

Figure 7.4 shows which values should appear when using TSC: its gradient is

2.8, since 1 ns corresponds to 2.8 CPU cycles on the used platform.

319

Chapter 7. Validation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000
Planned sleep time in ns

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

110,000,000

120,000,000

130,000,000

140,000,000

150,000,000

160,000,000

170,000,000

M
ea

su
re

d
sl

ee
p

tim
e

us
in

g
ch

ar
ac

te
ri

se
d

tim
er

 in
 n

s

Figure 7.3.: Relation of requested sleep times (x-axis, in ns) to values measured with
nanoTime() (y-axis, in ns) onMBP53

These results suggest that TSC is not a reliable, stable timer for measurements

on this platform, but what are the reasons for it? And is it still possible to obtain

the unit of TSC?

To answer these questions, the Thread.sleep() call has been replaced with

a computationally intensive function, namely a Fibonacci function whose start-

ing values and number of calculations can be parametrised. Then, the above ex-

periment was repeated, and the problem size of Fibonacci calculation has been

increased linearly. The results of the modified experiment are shown in Fig-

ure 7.5 and Figure 7.6. Additionally, Figure 7.7 shows the correlation between

the nanoTime()measurements and TSCmeasurements.

The results in Figure 7.6 look better than Figure 7.4, but there are still jumps,

although in a more systematic way. Note that the same jumps exist in Fig-

ure 7.5, and Figure 7.7 shows that there is an almost perfect correlation between

320

7.2. Timer Evaluation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000
Planned sleep time in ns

0

25,000,000

50,000,000

75,000,000

100,000,000

125,000,000

150,000,000

175,000,000

200,000,000

225,000,000

250,000,000

275,000,000

300,000,000

325,000,000

350,000,000

375,000,000

400,000,000

425,000,000

450,000,000
M

ea
su

re
d

tic
ks

 o
f R

D
TS

C

Figure 7.4.: TSC instability on MBP53: Zigzagged line with round shapes shows the
relation between requested sleep times (x-axis, in ns) and values measured
with TSC (y-axis, in ticks); straight line with two square shapes shows the
number of CPU cycles (y-axis) corresponding to the requested sleep time
(x-axis)

the nanoTime() measurements and TSC measurements. The jumps (and the

height of vertical y “ranges” for a given value of x) mean that the Fibonacci

computation for the same problem size takes different amounts of time (due to

garbage collection, interruptions of the JVM by the OS, etc.) – note that the amp-

litude of y “ranges” increases as the problem size increases. At the same time,

the TSC returns reliable measurements when Thread.sleep is no more used.

Thus, the thread scheduling seems to be the problem affecting TSC reading.

To investigate this hypothesis, thread sleeping should be replaced with an op-

eration that involves a different kind of thread scheduling. This effect was

achieved by performing the Fibonacci computation in a parallel helper thread,

and the results of the investigation are shown in Figure 7.8 and Figure 7.9. The

321

Chapter 7. Validation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000
Problem size for Fibonacci computation

0
10,000,000
20,000,000
30,000,000
40,000,000
50,000,000
60,000,000
70,000,000
80,000,000
90,000,000

100,000,000
110,000,000
120,000,000
130,000,000
140,000,000
150,000,000
160,000,000
170,000,000
180,000,000
190,000,000
200,000,000
210,000,000
220,000,000
230,000,000
240,000,000

M
ea

su
re

d
tim

e
us

in
g

ch
ar

ac
te

ri
se

d
tim

er
 in

 n
s

Figure 7.5.: Correlation of Fibonacci problem sizes and values measured with
nanoTime() onMBP53

nanoTime() and TSCmeasurements were taken in the main thread, not in the

helper thread; the main thread called join to wait until the helper thread com-

pletes.

It seems that Thread.sleep() causes problems, while starting and waiting

for threads does not; other techniques and calls for multi-threaded execution

(barriers, locks) have not been tested in the scope of this thesis. Still, the prob-

lems with Thread.sleep() have appeared on Linux and on Windows com-

puters, for different JVMs and operating systems. No clear pattern could be

found, yet the application of the algorithms presented in this thesis can answer

the questions on the monotonicity and stability of a particular timer on a par-

ticular platform. As a conclusion, it can be said that TSC should be avoided in

multi-threaded scenarios if possible.

322

7.2. Timer Evaluation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000
Problem size for Fibonacci computation

0
25,000,000
50,000,000
75,000,000

100,000,000
125,000,000
150,000,000
175,000,000
200,000,000
225,000,000
250,000,000
275,000,000
300,000,000
325,000,000
350,000,000
375,000,000
400,000,000
425,000,000
450,000,000
475,000,000
500,000,000
525,000,000
550,000,000
575,000,000
600,000,000
625,000,000
650,000,000

M
ea

su
re

d
tic

ks
 o

f R
D

TS
C

Figure 7.6.: Correlation of Fibonacci problem sizes and values measured with TSC

7.2.2. Units: Computing and Verifying

Most studied Java timer methods have a unit which is a time value (such

as nanosecond or a millisecond), but there is an exception which returns

its value in ticks, namely HRC (the method highResCounter in the class

sun.misc.Perf). In the .NET API, both .DAT (DateTime) and .STO

(StopWatch) have ticks as units, but with the advantage that either the tick

duration is documented (100 ns for DateTime, at least for the official .NET im-

plementation of Microsoft Corp.), or can be queried (for StopWatch). For the

.NET API timer methods, it makes sense to check whether the tick duration in

the alternative implementation (Mono) corresponds to the one specified in the

official documentation provided by Microsoft Corp.

Additionally, some OS-provided timer methods and counter methods re-

turns their values in ticks: QueryPerformanceCounter on Windows and

323

Chapter 7. Validation

50,000,000 100,000,000 150,000,000 200,000,000
Measured time using characterised timer in ns

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

350,000,000

400,000,000

450,000,000

500,000,000

550,000,000

600,000,000

650,000,000

M
ea

su
re

d
tic

ks
 o

f U
N

ch
ar

ac
te

ri
se

d
tim

er

Figure 7.7.: Correlation of values measured with TSC and values measured with
nanoTime for Fibonacci workload

gettimeofday on Linux (both provide methods to query the underlying up-

date frequency). Finally, the duration of a Timestamp Counter tick needs to be

quantified, as it varies across and as it is questionable whether it indeed is 1 CPU

cycle.

Table 7.15 shows the results of unit value computation for the TSC timestamp

counter and four timer methods (HRC, .DAT, .STO, QPC), on six different plat-

forms. Cells marked n/amean that the timer method is not available on a given

platform. On T60a, two different JVMs (Oracle HotSpot and Bea JRockit) were

used, but the comparison of the unit values did not reveal any differences.

There are several useful insights that can be gained from these values:

• the TSC unit is one CPU cycle on the studied considered platforms

324

7.2. Timer Evaluation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000
Problem size for Fibonacci computation

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

110,000,000

120,000,000

130,000,000

140,000,000

150,000,000

160,000,000

170,000,000

180,000,000

190,000,000

M
ea

su
re

d
tim

e
us

in
g

ch
ar

ac
te

ri
se

d
tim

er
 in

 n
s

Figure 7.8.: Correlation of Fibonacci problem sizes and values measured with
nanoTime()when running Fibonacci workloads in a separate thread (mas-
ter thread waits until completion of the started thread)

• when TSC is taken aside (due to multi-threading issues explained in Sec-

tion 7.2.1), none of the timers has the best (smallest) units on every execu-

tion platform (the more important notion of acccuracy will be quantified in

the next section)

• some units are the same on all studied platforms (TSC, .DAT), while oth-

ers vary significantly (HRC, .STO), even on the same hardware (HRC on

X110a/X110b and SAMSa/SAMSb)

• comparing the HRC unit values across platforms, it can be seen that their

differences are up to three orders of magnitude (1 ns onMBP53 vs. 1000 ns

on SAMSa)

325

Chapter 7. Validation

25,000,000 50,000,000 75,000,000 100,000,000 125,000,000 150,000,000
Problem size for Fibonacci computation

0

25,000,000

50,000,000

75,000,000

100,000,000

125,000,000

150,000,000

175,000,000

200,000,000

225,000,000

250,000,000

275,000,000

300,000,000

325,000,000

350,000,000

375,000,000

400,000,000

425,000,000

450,000,000

475,000,000

500,000,000

525,000,000

550,000,000

M
ea

su
re

d
tic

ks
 o

f U
N

ch
ar

ac
te

ri
se

d
tim

er

Figure 7.9.: Correlation of Fibonacci problem sizes and values measured with TSCwhen
running Fibonacci workloads in a separate thread (master thread waits until
completion of the started thread)

• for Windows platforms T60a, X110a, X110b and SAMSb, the timers HRC,

.STO and QPC have the same unit value (560 ns, 279 ns, 640 ns and 279 ns,

respectively); onWindows XP, the API-reported updated frequency of HRC

and QPC (3,579,545 Hz) is the same for the studied platforms

• considering the API-reported frequency of HRC, one obtains 3,579,545 Hz

for the X110a execution platform (which runs Windows XP) and 1,562,539

Hz on X110b (which runs Windows 7). These frequencies are returned

independently of the JVM, and the latter frequency value is a few percent

lower than 1
1000 of the CPU frequency, which is 1.6 GHz: 1,562,539

1,600,000 ≈ 0.977

– note that since this value is reported by the API and neither measured

not changed by the presented algorithms, it is not subject to measurements

errors

326

7.2. Timer Evaluation

Timer MBP53 T60a X110a X110b SAMSa SAMSb

TSC 0.357 ns � 0.546 ns � 0.625 ns � 0.625 ns � 0.578 ns � 0.578 ns �

HRC 1 ns 560 ns 279 ns 640 ns 1000 ns 279 ns
.DAT 100 ns 100 ns 100 ns 100 ns 100 ns 100 ns
.STO 100 ns 560 ns ♣ 279 ns � 640 ns � 100 ns 279 ns
QPC n/a 560 ns 279 ns 640 ns n/a 279 ns

Table 7.15.: Units of tick-returning timers (Legend: �: corresponds to 1 CPU cycle; �:
640 ns on .NET and 100 ns on Mono; ♣: 560 ns on .NET and 100 ns on
Mono; �: 279 ns on .NET and 100 ns on Mono)

• the units of .STO (.NET’s StopWatch) either match those of .DAT

(DateTime) when the Mono is used, or match those of QPC

(QueryPerformanceCounter) when the .NET framework is used

• on the same platform, the accuracy of .STO differs between .NET Frame-

work and Mono Framework (it is important to highlight that this differ-

ence of the units does not mean that a particular VM is more favourable:

it is the accuracy and the invocation cost that is deciding, and they will be

addressed in the next section).

In the next section, the core quality properties of timer methods are studied,

namely accuracy and invocation cost.

7.2.3. Accuracy, Invocation Cost and Invocation Cost Spread

Tables 7.16, 7.17, 7.18 and 7.19 show the values of quality attributes for eight

different execution platforms. In the tables, “Accuracy” denotes accuracy (i.e.

resolution), and “Cost” denotes the median invocation cost, i.e. the median ex-

ecution duration of one timer method invocation. “Spread” denotes invocation

cost spread, which was defined in Section 3.6 as the percentage of invocation

cost values (samples) within ±1 accuracy of the median invocation cost. A per-

centage value x % is shown as the floating-point value x
100 , rounded to three

decimal places.

If the accuracy of a timer is (much) larger than its invocation cost, TIMER-

METER can only conclude that the invocation costs are between zero and

327

Chapter 7. Validation

one accuracy (cf. Section 3.2). Since this is the case for some methods (e.g.

getCurrentThreadCpuTime(), which has a (declared) precision of 1 ns),

an alternative way is needed to estimate the invocation cost. For the altern-

ative invocation cost computation, a more precise timer is used (currently

nanoTime()), and a large number of invocations to the considered timer is

made and their total duration is measured.

With a (pessimistic) estimation that one invocation takes no less than 10 ns,

and with the requirement that the imprecision introduced by nanoTime()

should not account for more than 5% of themeasured value, the minimum num-

ber of invocations to the considered timer method can be computed. The inter-

mediate values returned by the considered method are used in such a way as to

ensure that the invocations are not optimised away by the JVM, and the over-

head of nanoTime() is subtracted. For .NET methods .DAT (DateTime) and

.STO (StopWatch), the method itself is used instead of nanoTime(), after the

accuracy has been quantified.

The timer method of GAGEtimer is not included in the following Tables, since

it produced results that were absolutely identical to those of nanoTime(). A

short inspection of the source code revealed that the timer class of GAGE checks

for the availability of timers at initialisation, and selects either nanoTime() if

available, and otherwise either QueryPerformanceCounter (if running on

Windows), or the method currentTimeMillis() (as the “fallback default”).

When nanoTime() is available, GAGE incorrectly states that the timer accuracy

is 1 ns, while TIMERMETER returns the correct, platform-specific accuracy.

Table 7.16 provides the data for a comparison of how different the quality at-

tributes are for the studied methods when two platforms with different hardware

but the same operating system are used.

In detail, the following observations can be made in Table 7.16:

• the well-known Java Platform API timer method NANO

(System.nanoTime()) is significantly less precise than HRC

328

7.2. Timer Evaluation

Execution platform MBP53 Execution platform MBP62
Timer Accuracy Cost Spread Accuracy Cost Spread
CTCT 1,000 ns 2,232 ns � 0.999 1,000 ns 1,756 ns � 0.983
CTM 1 ms 101 ns � 1.000 1 ms 70 ns � 1.000
CTUT 1,000 ns 2,204 ns � 0.999 1,000 ns 1,643 ns � 0.984
HRC 3 ticks � 51 ticks � 0.778 1 tick � 36 ticks � 0.648
JETM 1,000 ns 92 ns � 1.000 1,000 ns 70 ns 0.999
NANO 1,000 ns 97 ns � 1.000 1,000 ns 70 ns 1.000
PCT 10,000,000 ns 2,298 ns � 1.000 10,000,000 ns 1,712 ns � 1.000
QPC n/a n/a n/a n/a n/a n/a
TSC 10 ticks ♦ 63 ticks ♦ 0.630 3 ticks ♦ 33 ticks ♦ 0.529
.DAT 10 ticks ♣ 2 ticks ♣ 1.000 10 ticks ♣ 2 ticks ♣ 1.000
.STO 10 ticks ♣ 2 ticks ♣ 1.000 10 ticks ♣ 2 ticks ♣ 1.000

Table 7.16.: Accuracy, Invocation Cost and Invocation Cost spread for execution plat-
forms MBP53 and MBP62 (Legend: �: invocation cost measured using
System.nanoTime()method; ♦: 1 tick = 1 CPU cycle = 1

2.8
ns≈0.357 ns; �:

1 tick = 1 ns; calculated from frequency; ♣: 1 tick = 100 ns; �: 1 tick = 1000
ns.)

• the Java Platform API timer method PCT (getProcessCpuTime()) has

a very bad accuracy (10 ms), making it useless for fine-granular measure-

ments

• NANO and CTCT/CTUT onMBP53 show the same accuracy, but their invoc-

ation costs differ by a factor of more than 22; the situation for MBP62 is

identical.

• CTCT/CTUT and PCT have similar intentions (obtaining measurements

that are not wall clock time values), but their accuracies differ by 3 orders

of magnitude onMBP53.

• The most accurate timer method on platform MBP53 is NANO, the least

accurate is CTM.

• NANO and JETM exhibit almost identical quality attributes, making JETM

useless onMBP53 (same situation can be observed onMBP62).

329

Chapter 7. Validation

• forMBP62, despite lower CPU frequency thanMBP53, the accuracy is bet-

ter (or equal) and invocation cost is smaller for all studied methods.

• the invocation cost spread is better onMBP53 than onMBP62

Table 7.17 shows the evaluation results for two different operating system run-

ning on the same hardware (in fact, the same computer was booted with the

two different operating systems). Note that this allows different conclusions

compared to the measurements in Table 7.16, as detailed below. Additionally,

Table 7.17 shows the result for Linux andWindows XP operating systems, while

Table 7.16 contained the result for Mac OS X.

Execution platform SAMSa Execution platform SAMSb
Timer Accuracy Cost Spread Accuracy Cost Spread
CTCT 10,000,000 ns 30,000 ns � 0.999 15,625,000 ns 896 ns � 1.000
CTM 1 ms 1,267 ns � 1.000 16 ms 127 ns � 1.000
CTUT 10,000,000 ns 8,000 ns � 1.000 15,625,000 ns 889 ns � 1.000
HRC 1 � 1,283 ns � 0.999 1 � 5 � 0.999
JETM 69 ns 1,047 ns 0.695 279 ns 1396 ns 0.996
NANO 69 ns 978 ns � 0.736 279 ns 1,876 ns 0.997
PCT 10,000,000 ns 555 ns � 1.000 15,625,000 ns 476 ns � 1.000
QPC n/a n/a n/a 1 � 5 � 0.999
TSC 3 ♦ 86 ♦ 0.994 3 ♦ 84 ♦ 0.896
.DAT 10 ♣ 10 ♣ 0.996 156,250 ♣ 8 ♣ 1.0
.STO 1 ♣ 11 ♣ 0.944 1 ♣ 5 ♣ 0.992

Table 7.17.: Accuracy, Invocation Cost and Invocation Cost spread for execution plat-
forms SAMSa and SAMSb (Legend: �: invocation cost measured using
System.nanoTime() method; ♦: in ticks, 1 tick = 1 CPU cycle = 1

1.73
ns ≈

0.578 ns; �: in ticks, 1 tick = 1,000 ns; calculated from frequency; ♣: in ticks,
1 tick = 100 ns; �: in ticks, 1 tick = 1

3579545
s ≈ 279 ns.

Table 7.17 shows the results for one computer with two different operating sys-

tems: SAMSa uses openSUSE Linux with Kernel 2.6.25, while SAMSb uses

Windows XP Professional. An analysis of the data in Table 7.17 shows that

330

7.2. Timer Evaluation

SAMSa has better values for accuracy and invocation than SAMSb in all of the

cases except HRC.

In detail, the following observations can be made in Table 7.17:

• CTCT on SAMSa is 10,000 less accurate than on MBP53 or MBP62, and

even less accurate on SAMSb; the same is true for CTUT

• CTM is much less accurate on Windows (SAMSb) than on Linux (SAMSa);

the same is true for NANO/JETM and even for .DAT

• converting the accuracy of .DAT to nanoseconds leads to the same value

as for PCT, CTCT and CTUT

• on SAMSb, converting the accuracy of CTM to nanoseconds returns a value

that is very close to that of .DAT, PCT, CTCT and CTUT – it seams plausible

that the implementation of CTM performs rounding (or truncating) intern-

ally – see Section 3.2.3 for the discussion of these effects

• on the other hand, HRC is more accurate on SAMSb than on SAMSa

• invocation cost spread is better on SAMSb, except for the TSC

Table 7.18 shows the evalution results for two different versions of Windows

OS (both 32 bit), and provides further insights in addition to Tables 7.16 and 7.17:

• the majority of accuracy values is equal for the two operating systems –

surprisingly, the (newer) Windows 7 on X110a has worse accuracy for HRC

and NANO/JETM

• invocation cost spread is generally smaller on SAMSb than on SAMSa

• it appears that for CTM, the obtained accuracy (15 ms) is again a “victim”

of method-internal rounding, so CTM is based on the same counter (or OS

method) as CTCT, CTUT, PCT and .DAT.

331

Chapter 7. Validation

Execution platform X110a Execution platform X110b
Timer Accuracy Cost Spread Accuracy Cost Spread
CTCT 15,625,000 ns 2916 ns � 1.000 15,625,000 ns 2289 ns � 1.000
CTM 15 ms 379 ns � 1.000 15 ms 423 ns � 1.000
CTUT 15,625,000 ns 2653 ns � 1.000 15,625,000 ns 2850 ns � 1.000
JETM 640 ns 2560 ns 0.629 279 ns 1676 ns 0.796
HRC 1 � 3 � 0.851 1 � 7 � 0.963
NANO 640 ns 1920 ns 0.728 279 ns 1676 ns 0.797
PCT 15,625,000 ns 2778 ns � 1.000 15,625,000 ns 1562 ns � 1.000
QPC 1 � 3 � 0.991 1 � 9 � 0.991
TSC 12 ♦ 108 ♦ 0.859 12 ♦ 108 ♦ 0.858
.DAT 156,250 ♣ 23 ♣ 1.000 156,250 ♣ 8 ♣ 1.000
.STO 1 � 3 � 0.991 1 � 13 � 1.000

Table 7.18.: Accuracy, Invocation Cost and Invocation Cost spread for execution plat-
forms X110a and X110b (Legend: �: invocation cost measured using
System.nanoTime() method; ♦: in ticks, 1 tick = 1 CPU cycle = 1

1.6
ns

= 0.625 ns; �: in ticks, 1 tick = 1
1562539 Hz

= 640 ns (i.e. calculated from fre-
quency);♣: in ticks, 1 tick = 100 ns;�: in ticks, 1 tick = 1

3579454 Hz
= 279 ns (i.e.

calculated from frequency).)

Table 7.19 again compares two operating system on one hardware configuration,

but makes use of different hardware and operating systems than the previous

Tables in this section. For the execution platformsT400a andT400b in Table 7.19,

TSCwas not evaluated because no 64 bit versions of the libraries for reading TSC

could be obtained. ForT400b, .DAT and .STO had to be skipped as well because

the Mono framework installation failed for the used Linux operating system.

Rounding/truncating have been mentioned several times over the course

of this section, and are discussed here to provide some additional clarifica-

tions. Windows-specific QueryPerformanceCounter() method has a pre-

cision that depends on the frequency with which the counter is updated; the

Windows method QueryPerformanceFrequency() returns 3,579,545 (with

Hz as unit) on SAMSb as the update frequency on both CPUs, i.e. the (roun-

ded) time spent between the updates is 279.4 ns. Notably, this counter update

frequency does not correlate in any way with the CPU frequencies. The value of

279.4 ns is identified by the presented approach as 279 (i.e. rounded with merely

332

7.2. Timer Evaluation

Execution platform T400a Execution platform T400b
Timer Accuracy Cost Spread Accuracy Cost Spread
CTCT 15,600,100 ns 581 ns � 1.000 10,000,000 ns 19,879 ns � 1.000
CTM 15 ms 64 ns � 1.000 1 ms 767 ns � 1.000
CTUT 15,600,100 ns 545 ns � 1.000 10,000,000 ns 17,939 ns � 1.000
HRC 1 � 3 � 0.991 1 � 2 � 0.993
JETM 427 ns 1283 ns � 0.822 70 ns 700 ns 0.578
NANO 427 ns 1283 ns � 0.824 70 ns 700 ns 0.682
PCT 15,600,100 ns 375 ns � 1.000 10,000,000 ns 255 ns � 1.000
QPC 1 � 5 � 0.993 n/a n/a n/a
TSC - - - - - -
.DAT 156,000 ♣ 8 ♣ ♦ 1.000 - - -
.STO 1 � 18 � 1.000 - - -

Table 7.19.: Accuracy, Invocation Cost and Invocation Cost spread for execution plat-
forms MBP53 and T400 (Legend: �: invocation cost measured using
System.nanoTime() method; ♦: invocation cost measured using .STO
method and chaining several .DAT invocations; �: in ticks, 1 tick = 427.73
ns; calculated from frequency (2,337,919); ♣: in ticks, 1 tick = 100 ns; �: in
ticks, 1 tick = 1000 ns.)

0.143 % accuracy loss). Also note the similarity of accuracy values for Linux-

running platforms: 70 ns for NANO/JETM on T400b vs. 69 ns for NANO/JETM on

SAMSa. This accuracy corresponds to the (rounded) time interval between two

successive updates of the HPET timer, whose update frequency the Linux kernel

reports to be 14,318,180 Hz. Hence, this interval is (14, 318, 180Hz)−1 ∼= 69.841 ns.

On Windows XP, HPET is known but not used – the results of this section show

that none of the analysed platforms running Windows 7 used HPET, either.

HRC, the unofficial sun.misc.Perf counter found in the JDK is not docu-

mented in the Java platform API, and does not bring any advantage except on

Mac OS X (MBP53,MBP62). Its accuracy is identical to that of nanoTime() or

often even worse that it (SAMSa).

7.2.4. Effect of Just-in-Time compilation on Timer Methods

In Java, when a timer method is used frequently, it makes sense to perform a

warmup by invoking the method often enough for the JIT compiler to recog-

333

Chapter 7. Validation

nise it as popular and hot. Given that the largest invocation cost in Tables 7.16

through 7.19 is still less than 20 μs (CTCT for T400b), a warmup that invokes the

time method 50,000 times takes less than a second, and should be performed

before measurements are started.

Still, information on whether the timer method has already been optimised

during the warmup phase is needed, and so is the information on whether ad-

ditional optimisations are to be expected. Unfortunately, such “feedback” about

optimisations is not available from today’s JVMs – the only way to monitor JIT

compilation from a running application is to parse the JIT logging output on the

command line, or to use non-portable command-line switches [213] that create a

logging file. Still, tools for online parsing of the logging file are not available, and

the JMX-provided interfaces do not contain method-level information. There-

fore, it must be studied empirically whether JIT affects timer methods, and how

much warmup is really needed to see the effects.

Figure 7.10 shows the invocation cost of the

sun.misc.Perf.highResCounter() method, which has been called

100,000 times on platform MacBookPro. The obtained values have been parti-

tioned into 1000 bins (in the order of measurement), and the median value of

each bin’s 100 values have been calculated and are plotted in Figure 7.10. The

partitioning into bins leads to a reduced number of samples to plot, and blends

out the outliers.

It can be seen that initially, bin median of the invocation cost increases (until ca.

48th bin), and than decreases in several steps. The latter fact means that a warmup

phase should not be aborted after the first durable decrease, since a stable value

is reached after only after ca. 55,000 calculation. Since one calculation needed

two timer method invocations, more that 110,000 timer method invocations are

needed until the optimisation appears to be finished.

The initial decrease to ca. 79 ticks (after ca. 4600 measurements, i.e. 9200

invocations) can be caused by the JIT compilation or other optimisation that is

applied to a separate method which is called/reused by the considered timer

method. Only after the third decrease, the invocation cost reaches a stable value

334

7.2. Timer Evaluation

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000
bin index (100 measurements in a bin)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

240

250

260

270

in
vo

ca
tio

n
co

st
 s

ta
tis

tic
 fo

r
th

e
bi

n

Figure 7.10.: Warmup influence on the invocation cost of sun.misc.Perf.highRes-
Counter: medians of bins (each bin contains 100 measurements)

of 51 ticks. Similar behaviour (multiple optimisation “steps”) have been ob-

served for other methods, e.g. System.nanoTime. Finally, this observation

confirms the fact that the optimisations performed by the JVM are highly dy-

namic, and rules of thumb such as “invoke a method 16,000 times to trigger JIT

compilations” do not always apply.

7.2.5. Epochs and MaximumMeasurable Time Intervals

Understanding epochs andmaximummeasurable time interval lengths is essen-

tial for dependable performance measurements, in particular in multi-threaded

applications, measurements that span multiple processes, or when a thread mi-

grates across cores or processors on amulti-core/multi-CPU execution platform.

Similar to Lamport clocks [214] and vector clocks [215, 216] which are concerned

335

Chapter 7. Validation

with clock synchronisation and event ordering across physical machines, tim-

ing measurements that are performed by several threads/processes on the same

machine need the security that the events and timestamps are properly ordered

across threads and processes. It is usually assumed that for thread and processes

running on the same machine, the last epoch (i.e. the last point in time when the

value of a considered counter/timer was 0) is the same.

To study whether this is indeed the case, the last epoch must be cal-

culated. Calculating epochs only makes sense for wall-clock timer meth-

ods with a constant linear increase rate, and not for timer methods such as

getCurrentThreadCpuTime() for which the values may not increase lin-

early. Note that while the values of timers such as TSC usually increase pro-

portionally to wall-clock time, the proportion may be linearly dependent on the

CPU frequency and thus change over time, violating the requirement for a con-

stant linear increase rate.

Table 7.20 shows the results of evaluating timermethod epochs andmaximum

measurable times, performed on different computers, operating systems, and

JVMs. Note that .NET timer methods were not studied, because the epochs

of DateTime are explicitly specified and known, while the StopWatch is start

by explicitly calling a method. For both .NET timer methods, the maximum

measurable time interval is in excess of hundred years.

To study whether the epochs depend on process start time, thread start time,

machine start time etc., the algorithms described in Section 3.5 were implemen-

ted as threads. Thus, when one (running) thread instance starts another thread

instance of the algorithm, it is possible to study whether the epochs are depend-

ent on the thread start time. To evaluate whether the epochs are dependent on

the process start time, the Java launcher was invoked several times, so that the

process which runs the algorithm implementation would be different, and fea-

ture different start times. Finally, for timer method implementations where the

last epoch of the timer was identical to the startup time of the computer, the

computer was restarted to study whether the epoch is indeed dependent on this

time value.

336

7.2. Timer Evaluation

MBP53 (22.8 GHz Intel Core 2 Duo CPU, Mac OS X 10.6.4, Apple JDK 1.6.0_18)

Timer Value
type Unit Epoch

assignment Last / next epoch Overflow Period and
MMT

TSC tick 1 tick
= 1/2.8 ns

set at thread
start time

thread start
/ ca. 208.91 years
after thread start

ca. 208.91 years
and
ca. 104.45 years

CTM long 1 ms
fixed across
processes
and threads

Jan 1st, 1970
/ Jul 22nd, 2554

ca. 584.94 years
and
ca. 292.47 years

NANO long 1 ns
fixed across
processes
and threads

Jan 1st, 1970
/ Jul 22nd, 2554

ca. 584.94 years
and
ca. 292.47 years

HRC tick 1 tick
= 1.0 ns

set at process
start time

process start
/ ca. 584.94 years
after process start

ca. 584.94 years
and
ca. 292.47 years

T60a (1.83 GHz Core Duuo CPU, Windows 7 Pro 32 bit, Oracle JDK 1.66.0_21)

Timer Value
type Unit Epoch

assignment Last / next epoch Overflow Period and
MMT

TSC tick 1 tick
= 1/1.83 ns

set at last
computer
power up

last power up
/ ca. 319.64 years
after last power up

ca. 319.64 years
and
ca. 159.82 years

QPC long 1 tick
= 560 ns

last computer
restart

last computer restart
/ ca. 327,525 years after
last epoch

ca. 327,525 years
and
ca. 163,763 years

NANO long 1 ns set at process
start time

process start time
/ ca. 584.94 years
after last epoch

ca. 584.94 years
and
ca. 292.47 years

HRC tick 1 tick
= 560 ns

set at process
start time

process start time
/ ca. 327,525 years
after process start

ca. 327,525 years
and
ca. 163,763 years

Table 7.20.: Epochs and MMT (maximum measurable time interval) of different timer
methods, measured on two different platforms

From Table 7.20, several conclusions can be drawn beyond the basic observa-

tion that the measurable time intervals are sufficient in all cases. For the TSC

(timestamp counter), it can be seen that it is not suitable for multi-threaded

measurements onMBP53, at least on multi-core computers: the epoch depends

on the start time of a thread, and measuring across threads needs complex syn-

chronisation, e.g. by passing the TSC value of the calling thread to the called

thread. The HRC (high-resolution counter) and System.nanoTime() can also

cause problems in concurrent programs, as their epochs on some machines de-

pend on the start time of the called process. Overall, the epoch behaviour

must be evaluated on a machine-to-machine basis, e.g. using the algorithms

337

Chapter 7. Validation

presented in this thesis. Alternatively, timer methods with fixed epochs (such as

System.currentTimeMillis()) can be used as reference point.

7.2.6. Unified Timer Quality Metric

The unified timer quality metric assembles quality attributes accuracy and in-

vocation cost into one metric, and takes into account the invocation cost spread,

as described in detail in Section 3.6. Table 7.21 summarises the values for this

metric for the timers studied in Section 7.2.3, computed using Formula 3.19.

Platform Timer Quality
in %

Frequency
CPU [GHz]

Accuracy
[CPU cycles]

Invoc. cost
[CPU cycles]

Invoc. cost
spread

MBP53 CTCT 18.86 2.800 2,800.00 6,249.60 0.9990
MBP53 CTM 12.89 2.800 2,800,000.00 282.80 1.0000
MBP53 CTUT 18.88 2.800 2,800.00 6,171.20 0.9990
MBP53 HRC 54.08 2.800 2.80 47.60 0.7780
MBP53 JETM 25.95 2.800 2,800.00 257.60 1.0000
MBP53 NANO 25.82 2.800 2,800.00 271.60 1.0000
MBP53 PCT 9.43 2.800 2,800,000.00 6,434.40 1.0000
MBP53 .DAT 24.01 2.800 2,800.00 560.00 1.0000
MBP53 .STO 24.01 2.800 2,800.00 560.00 1.0000

T400b CTCT 6.22 2.400 24,000,000.00 47,709.60 1.0000
T400b CTM 10.85 2.400 2,400,000.00 1,840.80 1.0000
T400b CTUT 6.29 2.400 24,000,000.00 43,053.60 1.0000
T400b HRC 19.60 2.400 2,400.00 4,800.00 0.9930
T400b JETM 21.67 2.400 168.00 1,680.00 0.5780
T400b NANO 23.54 2.400 168.00 1,680.00 0.6820
T400b PCT 9.62 2.400 24,000,000.00 612.00 1.0000

Table 7.21.: Unified quality metric values for timer methods on platform MBP53 (see
Table 7.16) and T400b (see Table 7.19)

Several observations can be made on the basis of Table 7.21. The best timer

method across the two platforms is HRC (high-res counter) on platformMBP53,

338

7.2. Timer Evaluation

while its quality on platform T400a is significantly lower. The worst timer

method across the two platforms is CTCT (getCurrentThreadCpuTime())

on platform T400a, since it has a very low accuracy and very high invocation

costs.

The quality metric developed in this thesis captures even fine differences

between timer methods: for example, consider CTCT and CTUT on platform

T400a. The value of the metric is different (6.22 % vs. 6.29 %) since the invoca-

tion cost is different, even though the accuracy is same for both timer methods

and it is significantly larger than the invocation cost. The visibility of this differ-

ence is the consequence of metric design decisions outlined in Section 3.6.4.

Overall, the new unified metric allows the users to select the most suitable

timer method on a given platform and across platforms.

7.2.7. Summary and Discussion

In this section, a validation of the TIMERMETER approach from Chapter 3 has

been performed on a wide range of execution platforms. The TIMERMETER ap-

proach defined quality metrics for selecting timer methods, and introduced al-

gorithms to quantify the values of these metrics. Thus, it allows developers and

performance engineers to perform accurate timing measurements by selecting

an accurate, low-overhead timer for a given execution platform.

First, it was demonstrated how the approach identifies unreliable and un-

stable timer methods, such as TSC on Linux platforms. Afterwards, units of

methods which return values in ticks rather than in timing values were com-

puted and verified. The effects of warmup and Just-In-Time compilation were

studied in Section 7.2.4, and the epochs were computed and discussed in Sec-

tion 7.2.5.

The results of quantifying the accuracy of timer method have lead to several

interesting observations. For example, we have demonstrated that the widely

used nanoTime() Java platform API timer method performs differently than

expected, and is far from being precise down to a nanosecond. In the best case,

339

Chapter 7. Validation

nanoTime() has an accuracy of only 69 ns (e.g. on SAMSa, see Table 7.17) while

in the worst case (on Mac OS X platforms), the accuracy is merely 1000 ns.

Additionally, the invocation cost overhead of nanoTime() is between 70 ns

(MBP63 platform in Table 7.16) and 1876 ns (SAMSb platform in Table 7.17).

With these large differences, obtaining accuratemeasurements becomes not only

a question of choosing a timer methods, but also the question of choosing an

execution platform. The presented approach is perfectly suited for this task, as

it considers timer methods as black boxes and does not require an investigation

of their implementation.

A further interesting observation is the difference between quality metric val-

ues for the same hardware but different operating systems. For example, on one

of the considered computers, the accuracy of the nanoTime() method is four

times better under Linux than under Windows (and the invocation cost is also

significantly smaller).

The presented approach does not require modifications of the execution plat-

form, and it can also be easily ported to other object-oriented or procedural lan-

guages. It is applicable to any kind of absolute and relative timer, independ-

ent of the underlying hardware or software stack. For example, the two timer

methods provide by the API of the .NET execution platform have also been

evaluated by implementing the TIMERMETER approach for them, and the res-

ults have been reported.

To make timer method comparisons simpler and to allow better comparisons

across execution platforms, a new unifiedmetric has been introduced. This met-

ric combines accuracy, invocation costs and stability of timer methods into one

value in the range [0.0, 1.0] (larger values are better), and it accounts for different

CPU clock speeds across execution platforms. The metric calculation has been

carefully designed to reflect even small differences between timer method qual-

ity values, and being a single value, it can be interpreted by users as a range

between 0 % and 100 %.

We have assumed that the accuracy of a timer method is stable over time,

i.e. the accuracy (resolution) does not change over the course of several timer

340

7.2. Timer Evaluation

method invocations. This is a very basic requirement that is needed by any

measurements, not only by TIMERMETER. In the course of evaluation, we have

not encountered a setup where this assumption was violated. Interferences

(such as garbage collection) will produce measurement outliers (i.e. longer time

intervals than expected), which are recognised as such and filtered out.

Researchers and developers benefit from using TIMERMETER when they need

to obtain accuracy and invocation cost of timer methods. This is often the case

while performing reliable and statistically sound measurements, for example in

microbenchmarking and during fine-granular measurements.

We have evaluated the applicability and the benefit of our approach using

a Java implementation of TIMERMETER, and provide an extensive discussion

of the obtained results. In the evaluation, we applied TIMERMETER to the timer

methods provided by the Java SE platformAPI and additionally other timers ac-

cessible from Java, including hardware and software timers, as well as to third-

party timing tools.

341

Chapter 8.

Related Work

In this chapter, related work is presented and compared to the contributions of

this thesis. Section 8.1 describes work related to identifying and quantifying

quality attributes for timer methods and performance indicators. Section 8.2 as-

sesses related work on resource demand estimation. Section 8.3 studies related

approaches for benchmarking the JVM. Section 8.4 presents related work for

performance prediction. Section 8.5 addresses modelling of resources and the

execution platforms.

8.1. Timer Methods

In [38], Buble et al. denote imprecise timing information as the first cause of

imprecision in CORBA benchmarking. They also state that in their experience,

the RDTSC (read Timestamp Counter) instruction is “a good source of timing

information on the Intel platforms”. However, they do not quantify the accur-

acy or other quality attributes of timers, and seem not to have experienced the

reliability issues described in this thesis.

Books on performance measurement, evaluation and benchmarking

(e.g. [36], [37]) discuss the importance of timer accuracy for quantifying

the errors in measurements. However, these books do not provide algorithms

for computing the accuracy or other quality metrics of counters, timers or timer

methods. Also, the role of the timer method invocation costs is not discussed

and no platform-specific data is provided.

Language-specific books also consider this topic. In “Java Performance Tun-

ing” [162], Shirazi states that “[java.lang.]System.currentTimeMillis() can take

Chapter 8. Related Work

up to half a millisecond to execute” (p. 15), but does not explain the origins of

this (rather imprecise) statement, and no other timer methods of the Java plat-

formAPI are discussed. As the 2nd edition of [162] is from 2003, newer methods

such as java.lang.System.nanoTime() are not discussed at all. The same

is true for [163], which was published in 2000.

In the “Effective Java” book [217], Bloch states that “for interval timing,

always use [java.lang.]System.nanoTime in preference to [java.lang.]System.-

currentTimeMillis. System.nanoTime is both more accurate and more precise,

and it is not affected by adjustments to the system’s real-time clock” (p. 276).

Also here, it is not explained how this conclusion was reached, and no concrete

values are given.

In the remainder of this section, we describe further related work in a top-

downmanner, from application-level approaches, over third-party tools, virtual

machines and operating systems down to hardware.

In [39], Holmes provides an overview of clocks, timers and scheduling events

accessible from Java, but does not provide any reusable means to obtain precise

characteristics of timer methods. For example, he states (in 2006) that “typic-

ally, a Windows machine has a default 10 ms timer interrupt period, but some

systems have a 15 ms period”. At the same time, our measurements in 2008 on

a machine running Windows XP on a Intel dual-core processor show that the

accuracy of Java’s nanoTime() is better than a microsecond, which means that

“better” timers are used by the JVM in newer versions.

In [30], Meyerhoefer describes time measurements from and within Java on

a variety of operating systems and platforms. He computes the accuracy of

currentTimeMillis() in Java using an algorithm that does not consider the

effects of the timer invocation cost and hence would not be applicable to the

nanoTime() timer method or other fine-granular timers where the invocation

costs are larger than the accuracy. He also does not account for the effects of

just-in-time compilation.

In [40], Danzig and Melvin describe how to measure time intervals that are

shorter than the precision of available timers (in their case, the precision cor-

344

8.2. Runtime Counting of Executed Bytecode Instructions and Method Invocations

responds to the accuracy of the hardware clocks they use). In [40], the authors

assume that the clock accuracy/resolution (i.e. timer resolution) is known, and

disregard the cost of timer invocations. They compute the number of measure-

ments needed to achieve a given confidence level for a given number of signific-

ant digits, using statistical techniques and approximations. This thesis presents

an approach to compute the timer precision on which [40] relies.

In [41], Beilner describes a stochastic measurement technique and correspond-

ing statistical evaluation that are applied to sub-accuracy operations in a distrib-

uted, message-based system; however, Beilner has to guess the (smallest) dura-

tion of the operations to be measured. In [33], Lambert and Power build on [40]

and [41] to obtain platform-independent timings of Java Virtual Machine byte-

code instructions, using the RDTSC (read time stamp counter) instruction of the

Intel Pentium processors. However, they also do not try to obtain the accuracy

or the invocation cost of RDTSC calls.

In [105], Browne et al. introduce PAPI, a “portable programming interface

for performance evaluation on modern processors”. The purpose of the PAPI

project is to “specify a standard application programming interface (API) for

accessing hardware performance counters”. However, PAPI does not offer

any means to query the accuracy or the invocation cost of the timer meth-

ods it provides. Similar interfaces to hardware or operating system timers are

PCL [106], JETM [107] and GAGEtimer [108], but none of them provides inform-

ation on both accuracy and invocation costs.

8.2. Runtime Counting of Executed Bytecode Instructions and Method

Invocations

In [218], Collberg et al. perform an empirical study of static properties on more

than 1000 Java programs. In their study, they found that 98 % of methods had

a method size of 699 bytes or less and contained no more than 299 instruc-

tions. This results indicate that officially specified method code length restric-

tion (65536 bytes) does not present a critical obstacle for instruction-inserting

instrumentation performed by the counting approach.

345

Chapter 8. Related Work

In [219], Cooper et al. describe ProfBuilder, a package for rapidly building

Java Execution Profilers. However, ProfBuilder does not distinguish individual

Java bytecode instruction types, and it is not capable of recording instruction

parameters.

JOIE [220, 221] (Java Object Instrumentation Environment) is a framework for

automatic program transformation at bytecode level. It is similar to ASM and

BCEL (and precedes those by a few years), but JOIE, too, does not offer the

instruction counting functionality – it is a tool which could be employed to build

the instruction-counting approach presented in this thesis. However, ASM has

been used instead of JOIE due to better performance, larger community and

higher degree of documentation.

Unlike work that is concerned with static shape of Java programs (also

called structural and architectural shape), this thesis is interested in dynamic (i.e.

runtime) shape of Java programs. Research on the static shape of Java programs

(e.g. [222]) is usually not concerned with (runtime) performance; sometimes

(e.g. in [223]), the performance ramifications of decisions at architectural and

implementation level are discussed (but not quantified). Deriving performance

models from software architecture specifications has been researched extens-

ively [21, 224], but the resulting approaches still have to perform estimation or

to measure the performance of models’ elements at runtime. Therefore, the re-

mainder of this section only considers runtime (dynamic) analysis of program

performance.

InsECTJ [225] is an open-source, GUI-driven customisable generic instrument-

ation framework for collecting dynamic information within the Eclipse IDE. It

leverages bytecode instrumentation using the BCEL library, and allows users

to define won probes and instrumentation tasks. However, it does not support

counting bytecode instructions, and its overhead is not quantified. Addition-

ally, the requirement to use a GUI means that a human user must interact with

InsECTJ using an instance of Eclipse, whereas the approach presented in this

thesis can be run in a headless way, by specifying a JVM agent as the bytecode-

instrumenting entity.

346

8.2. Runtime Counting of Executed Bytecode Instructions and Method Invocations

JMT (Java Modelling Tools [226]) is an open-source tool suite of applications

developed by Politecnico di Milano, and it claims to offer “a complete frame-

work for performance evaluation, system tuning, capacity planning and work-

load characterization”. It offers a simulator (with GUI) for Queueing Network

Models, a tool for MVA (Mean Value Analysis) and other facilities. However,

it requires performance data to be collected as input (the input format can be

defined by the JMT user), and the data collection is not part of the tool suite. In

contrast to JMT, the approach presented in this thesis focuses on performance

data collection and performance prediction, none of which is covered by JMT.

Bytecode instruction counts can be considered as a dynamic bytecode metric.

In [227], a collection of other metrics for Java bytecode is presented, but that col-

lection does not include execution counts for individual bytecode instructions

and method invocations.

Existing approaches for dynamic (runtime) counting of Java bytecode instruc-

tions and method invocations can be grouped into three categories, according

to the technology they rely upon:

(a) using monitoring/reporting interfaces provided by the JVM

(b) by instrumenting the JVM or its API-implementing library

(c) by instrumenting the actual application bytecode or source.

For case (a), different interfaces are explicitly exposed by JVMs, such as

JVMTI [136], which must be programmed in a native language. These interfaces

are used by standalone Java tools and profilers, such as Intel VTUNE [228]. In

general, profilers measure resource usage and need manual supervision and in-

terpretation. In contrast to that, BYCOUNTER obtains exact counts of executed

instructions without human supervision of the counting process.

Since Java 6, direct access to individual bytecode instructions with Java-own

means is possible only with JVMTI – for this, execution of bytecode must be

single-stepped, substantially slowing down bytecode execution. JVMTI is not a

mandatory part of the JVM standard, and many virtual machines (such as Jikes

RVM [229]) do not implement JVMTI at all. Hence, JVMTI is not suitable as a

347

Chapter 8. Related Work

portable basis for platform-independent bytecode counting when compared to

bytecode instrumentation.

In category (b), two parts of a JVM must be differentiated: the bytecode in-

terpreter with its components and the JVM’s Java API implementation, which

consists of (partially platform-specific) Java classes. Instrumenting the first part

means dealingwith native (non-Java) code or binaries, which is generally a com-

plicated, both platform-specific and JVM-specific task. Instrumenting the API

implementation means instrumenting Java bytecode or source code of a very

large number of Java classes. For both JVM parts, commercial JVMs usually do

not provide the source code.

JVM instrumentation is done for replaying the behaviour of multi-threaded

Java programs, for example in [230] and similar approaches; however, only

high-level constructs and not bytecode instructions or method invocations are

considered. Vertical profiling approaches such as [231], [232] or [233] also use

JVM instrumentation, and only consider high-level events, too. JRAF / FER-

RARI [234] instruments the entire Java API, but it could not be obtained for

evaluation. The available documentation shows that it does not offer counting

of individual bytecode instructions and method invocations, as its instrumenta-

tionmaintains only one counter for all bytecode instructions. Furthermore, FER-

RARI captures JVM-specific calling context trees and not an expandable “flat”

view as BYCOUNTER does.

To instrument bytecode, the Java API itself does not provide any means, but

only methods to read/load already instrumented bytecode. Instead, external

frameworks for bytecode engineering (such as ASM [114] or SOOT [235]) can

be used, as they offer rich APIs for analysing and modifying bytecode. How-

ever, they do not include bytecode-counting functionality or instrumentation

templates.

For case (c), the actual application code must be instrumented and then ex-

ecuted by the JVM. This approach is used in BYCOUNTER. Generic frameworks

for bytecode manipulation, such as SOOT [235], do not offer the functionality

348

8.3. JVM Benchmarking

provided by BYCOUNTER, they serve as tools to implement this functionality.

For example, the ASM framework [114] was used for BYCOUNTER.

Aspect-oriented bytecode-analysing frameworks such as in [236] do not

provide the instruction-counting functionality itself, but merely offer a different

way to implement instrumentation when compared to ASM or other bytecode

engineering frameworks.

In [237], Arnold and Ryder present a framework for reducing the runtime

overhead of instrumented code, by using an elaborate sampling-based tech-

nique. Their approach is applied to Java bytecode using custom extensions to a

particular JVM (Jalapeno), and works by maintaining one uninstrumented and

one instrumented version of the program, and switching between the two. Us-

ing adaptive feedback and by adding edges between the flow control elements

of instrumented and uninstrumented code, the latter is used as much as pos-

sible, since it incurs no additional overhead. The approach is evaluated using

two instrumentation scenarios (call-edge recording and field access recording),

and provides an accuracy in excess of 93 % (sampling mode compared to pre-

cise mode), with an overhead of 6 % and less. While [237] is an interesting and

widely cited approach, it is not applicable in the scope of this thesis since precise

bytecode counts and required – however, it constitutes an interesting opportun-

ity for future research. Additionally, the approach requires a specialised JVM

to work, and increases the size and complexity of instrumented bytecode more

than the approach of this thesis does.

8.3. JVM Benchmarking

JVM benchmarking can focus on three different views:

1. entire virtualmachinewith performance-impacting aspect such asmemory

allocation, garbage collection, bytecode interpretation, just-in-time compil-

ation etc.

349

Chapter 8. Related Work

2. performance of the individual instructions from the bytecode instruction

set, e.g. for statements on individual bytecode instruction in the context of

instruction set optimisation or performance prediction

3. performance of the methods constituting the Java platform API, which is

implemented by the “foundation classes” bundled with the JVM

The description of related work for JVM benchmarking for these three views is

given in Section 8.3.

One of the open issues at the time of publication (2005) is that the results of

middleware benchmarking depend on the supporting infrastructure (hardware,

operating system), but need to abstracted from to characterise only the mid-

dleware layer. They state that the lifetime of benchmarking results is short,

which leads to increased cost of benchmarking, and can be understood as a

factor speaking for the advantage of automated approaches presented in this

thesis. Long simulation times and the need of realistic workloads are further is-

sues discussed, but the overall focus of [238] is to characterise the middleware,

rather than to predict the performance of applications.

A number of Java benchmarks was presented in Section 2.3.2, and it was ex-

plained why none of them can be used in the context of cross-platform perform-

ance prediction. In the following, additional benchmarks that run on the JVM

are discussed.

Existing bytecode benchmarks that focus on the JVM vary in granularity and

intended use. SPECjvm2008 [59] is announced as “a benchmark suite for meas-

uring the performance of a Java [Standard Edition] Runtime Environment ([SE]

JRE), containing several real life applications and benchmarks focusing on core

java functionality”. Granularity of the 10 benchmarks in SPECjvm2008 [59] is

very large in comparison to instruction benchmarking or method benchmark-

ing, and is not helpful in predicting the performance of Java applications, as

shown in [32]. Additionally, the Java Platform API coverage of SPECjvm2008 is

unknown, and the performance of individual API methods cannot be derived

from SPECjvm2008 results.

350

8.3. JVM Benchmarking

Other benchmarks that execute on the Java Standard Edition are for example

JavaGrande [61, 239], Linpack [208] and SciMark [240]. Additional benchmarks

can be found on the JavaGrande site [61]. Benchmarks for the Java EE (enterprise

edition) usually target the Java EE middleware infrastructure (application serv-

ers, Enterprise Java Beans containers) that are built on top of the JVM, instead

of directly targeting the JVM. Java EE also makes extensive use of dependency

injectionmechanisms instead of direct API usage.

Comparative benchmarking yields “performance proportions” or “perform-

ance ordering” of alternatives. In contrast to it, method and API benchmarking

needs to yield precise quantitative metrics (e.g. execution duration), paramet-

rised over the input parameters of methods. Quantitative method benchmark-

ing was done in HBench:Java [32], where Zhang and Seltzer have selected and

manually benchmarked only 30 API methods, but they did not consider the im-

pact of Just-In-Time compilation.

Other Java SE benchmarks such as Linpack [208] or SciMark [240] are con-

cerned with performance of both numeric and non-numeric computational

“kernels” such as Monte Carlo integration, or Sparse Matrix multiplication.

Some Java SE benchmarks (e.g. from JavaWorld [65]) focus on highlighting the

differences between Java platforms, determining the performance of high-level

constructs such as loops, arithmetic operations, exception handling and so on.

The UCSD Benchmarks for Java [64] consist of a set of low-level benchmarks

that examine exception throwing, thread switching etc.

All of these benchmarks have in common that they neither attempt to bench-

mark atomic methods nor benchmark any API in its entirety (most of them

benchmark mathematical kernels or a few Java platform methods). Addition-

ally, they do not consider runtime effects of JVM optimisations (e.g. JIT) system-

atically and they have not been designed to support non-comparative perform-

ance evaluation or prediction.

Execution durations of individual bytecode instructions have been studied in-

dependently from performance prediction by Lambert and Brown in [33], how-

ever, their approach to instruction timingwas applied only to a subset of the Java

351

Chapter 8. Related Work

instruction set. Their results have not been validated for predicting the perform-

ance of a real application. In the Java Resource Accounting Framework [28],

performance of all bytecodes is assumed to be equal and parameters of indi-

vidual instructions (incl. names of invoked methods) are ignored, which is not

realistic. Hu et al. derive worst-case execution time of Java bytecode in [34], but

their work is limited to real-time JVMs.

Cost analysis of bytecode-based programs is presented by Albert et al. in [35,

241], but neither bytecode benchmarks not actual realistic performance values

can be obtained, since the performance is assumed to be equal for all bytecode

instructions. Harkema et al. [91] monitor the performance of Java applications

using a profiler interface, but do not attempt to do performance predictions.

As already described above, using benchmarks focusing on the bytecode in-

struction set, execution durations of individual bytecode instructions have been

studied by Lambert and Brown in [33]. However, their approach to instruction

timing was applied only to a subset of the Java instruction set, and has not been

validated for predicting the performance of a real application. In the Java Re-

source Accounting Framework [28], performance of all bytecodes is assumed

to be equal and parameters of individual instructions (incl. names of invoked

methods) are ignored, which is not realistic.

Also focusing on the instruction set, Hu et al. deriveworst-case execution time

of Java bytecode in [34], but their work is limited to real-time JVMs. For .NET

bytecode, a benchmark was attempted in a student thesis [242], but it failed to

produce results that could be used for performance prediction. No other work

about bytecode benchmarking with the focus on the instruction set is known to

the authors.

In the author’s ownwork [185], it has been shown that parameters at bytecode

level are very significant, especially for operations on collections. Addition-

ally, bytecode parameters specify which API methods are called from bytecode.

The importance of parameters for performance prediction is a central outstand-

ing contribution of Palladio Component Metamodel, and is detailed in the PhD

thesis of Heiko Koziolek [46].

352

8.4. Performance Prediction

However, most publications in the field of bytecode performance ignore this

fact; for example, in the Java Resource Accounting Framework (JRAF [28]),

Binder and Hulaas use bytecode instructions counting for the estimation of

CPU consumption, but all bytecodes are treated equally, and parameters of in-

dividual instructions (incl. API method names) are ignored.

In the previously mentioned HBench:Java [32], Zhang and Seltzer built

the system vector by separating high-level JVM “components” (e.g. system

classes implementing the platform API), memory management, JIT and control

flow/primitive bytecode execution. However, the evaluation was performed by

selecting and benchmarking only 30 particularly expensive API methods (some

of them were found to show linear dependency on one parameter). Also, no ab-

solute comparison between measured and predicted performance is provided.

In HBench:Java, individual bytecode instructions haven’t been considered at all.

For API benchmarking, finding appropriate parameters without knowing

the constraints on their choices resembles the needs of black-box functional test-

ing [243]. However, black-box testing is interested in path coverage w.r.t. control

flow/data flow and in producing of unexpected errors and exceptions. In con-

trast to black-box testing, API benchmarking is interested in finding at least one

set of appropriate method parameters so that themethod executeswithout errors

or exceptions.

8.4. Performance Prediction

8.4.1. Component-based Performance Prediction and Engineering

In [244, 73], Drongowski et al. describe instruction-based sampling as a perform-

ance analysis technique for a family of CPUs manufactured by AMD. However,

while this technique is promising and precise, it is vendor-specific and is relev-

ant for performance analysis at operating system (kernel) level, rather than on

the level of middleware and business components. Additionally, while it is sup-

ported by tools (e.g. AMDCodeAnalyst), no performance prediction approach or

tooling based on instruction-based sampling is provided. The approach presen-

353

Chapter 8. Related Work

ted in this thesis is instruction precise (at bytecode level), while sampling (as

employed in [244, 73]) is only approximate.

The correlation between code and performance has been studied by many

researchers, with different outcomes and subjects of analysis. In [245], Annav-

aram et al. focus on the Cycles per Instruction performance metric prediction,

depending on the control flow behaviour of the studied program. After finding

that the predictability differs strongly across studied applications, the authors

propose an approach to select the sampling technique to accurately capture the

program behaviour. In contrast to [245], the approach presented in this thesis

operates on a higher level, and does not require extended instruction pointers

and similar low-level detail as [245] does.

8.4.2. Bytecode-based Performance Prediction

In [246], Alexander et al. present a unifying approach to performance analysis in

Java platforms. They suggest a single datamodel and a standard set of reports to

simplify performance data collection, recording and reporting. However, [246]

relies on vendor-specific tools, JVM extensions and kernel extensions to collect

performance data, while the approach presented in this thesis is platform-in-

dependent and vendor-agnostic. Unlike existing document standards such as

ODF (Open Document Format), no standard performance data exchange format

is available.

Performance prediction on the basis of bytecode benchmarking has been pro-

posed by several researchers [30, 31, 158, 32], but no working approach has been

presented and no libraries or tools are available. Validation has been attempted

in [32], but it was restricted to very few Java API methods, and the actual byte-

code instructions were neither analysed nor benchmarked. In [185], bytecode-

based performance prediction that explicitly distinguishes between method in-

vocations and other bytecode instructions has been proposed.

In [247], Aycock presents a history of Just-In-Time compilation, including the

different types and design choices in the context of Java Virtual Machines. The

author states that Java revived interest in JIT, and describes research work on

354

8.4. Performance Prediction

concurrent JIT (where the compilation runs parallel to bytecode interpretation),

multi-stage compilation, and other JVM implementation techniques. How-

ever, [247] does not provide any numbers on the speedup achieved by JIT, and

the publication date (2003) means that recent development is not covered.

8.4.3. Cross-platform Performance Prediction

Cross-platform performance prediction has been addressed by a large num-

ber of researchers, but none of the published approaches is based vendor-

independent and application-independent resource demands.

In [248], Yang et al. focus on parallel applications and demonstrate perform-

ance prediction across platforms using relative performance between two plat-

forms. They observe (i.e. measure) relative performance without completely run-

ning a parallel application. Instead, short partial executions are analysed on the

target platform because the authors argue that most parallel tasks are iterative

and behave predictably after a short startup period. However, the approach in

[248] carries a number if limitations compared to the approach presented in this

thesis: it requires application-specific measurements on the target platform, it

assumes a specific application behaviour that is typical for high-performance

computing but not necessarily typical in other scenarios, and it is based on tim-

ing values rather than platform-independent resource demands. The accuracy

of the used timer methods and their impact on the accuracy of measurements is

not discussed, either.

In [249], Sodhi et al. build a performance prediction approach on the basis

of performance skeletons, i.e. shorter representations of existing program. They

claim that the performance of these skeletons “in any scenario reflects the per-

formance of the application it represents”, but the skeletons can be executed sig-

nificantly faster. The paper presents a framework for automated construction of

performance skeletons and evaluates their use in performance prediction with

CPU and network sharing. However, the construction of skeletons requires a

full trace of the application execution, which the authors obtain from execution

in a controlled testbed. This execution must be done without any competing

355

Chapter 8. Related Work

jobs, and requires a specialised profiling library developed by the authors. Ad-

ditionally, timing measurement are done with Linux gettimeofday system call,

for which the authors claim “microsecond granularity”. Despite the fact that the

skeletons are measured on the target platform, the prediction error is up to 25 %.

The authors state that their approach is limited tomodelling coarse computation

and communication behaviour, while its implementation is limited to message-

passing MPI programs. Additionally, a new skeleton must be constructed for

each application input. In contrast to the skeleton-based approach of Sodhi et al.,

the work presented in this thesis has lesser requirements on application and ex-

ecution platform and is capable of quantifying finer-grained resource demands

in a platform-independent way.

In [250], Shimizu et al. present a regression-based approach for cross-platform

performance prediction. The model inputs include execution platform charac-

terisations such as front-side bus bandwidth, and requires the considered app-

lication to be profiled on several execution platforms with varied static resource

configurations. Additionally, the approach must must model different inputs by

remodelling the entire application, rather than changing model parameters. In

contrast to [250],

Most other approaches for cross-platform performance prediction are specific

for a technology such as MPI-based or Grid applications [251, 252, 253]. Some

approaches use program similarity, but none of them is both platform-indepen-

dent and application-independent.

In [254], Marin andMellor-Crummey statically analyse the binary executables

of application to identify the control flow in it. A dynamic analysis then para-

metrises the elements of the control flow model, and binary rewriting is used

to instrument the application for obtaining native instructions count and low-

level (cache, memory) hardware resource usage. However, the approach in [254]

requires a CPU instruction level simulator to make performance prediction. Ad-

ditionally, the approach requires the final native code and would not work with

managed code executed by virtual machines such as JVM, since the resource

usage in CPU instructions cannot be derived from bytecode instructions. Fi-

356

8.5. Resource and Execution Platform Modelling in Component Metamodels

nally, the static analysis part of the approach in [254] would be unreliable on

polymorphism-heavy platforms, such as Java.

Other approaches requiring native code and/or CPU-level simulators, such as

that of Lee and Brooks [255] or PACE [256], suffer from the same drawbacks. The

PACE approach [256, 257] is limited to parallel applications written in C, Fortran

77 and 90, that utilise a message passing interface (MPI or PVM). Recently [258],

it has been extended to obtain input data for the performancemodel using appli-

cation instrumentation, which makes the prediction process simpler. However,

the extension utilises dynamic instrumentation of source code, while the ap-

proach presented in this thesis also works for black-box executable components

which are only available as bytecode.

8.5. Resource and Execution Platform Modelling in Component Metamodels

The OMG has published UML-SPT [259], the UML Profile for Schedulability,

Performance and Time. UML-SPT extends the UML standard to enable themod-

elling of time aspects, schedulability aspects and performance-related aspects.

UML-SPT also contains a resource model including resource usage, resource

management and deployment modelling. In addition to UML-SPT, the OMG

develops the UML Profile for Modelling and Analysis of Real-time and Embed-

ded Systems (MARTE) [260]. MARTE is supposed to replace the current UML-

SPT profile and contains an even more sophisticated resource model. However,

the UML-SPT itself does not include tools or approaches for performance pre-

diction, and the resource modelling part of this thesis focuses on the Palladio

Component Model, which is not based on UML.

In [261], Atkinson and Kuehne discuss the notion of execution platforms in

the scope Model-Driven Development and conclude that the notions of “plat-

form” and “platform model” are vaguely defined. They present a new defini-

tion of “platform” which is based on four orthogonal elements: language, types,

instances and patterns. The authors also require individual characterisation of

language platform, operating system platform, and hardware platform. How-

ever, their approach remains theory, as no implementation for it is provided.

357

Chapter 8. Related Work

The Core Scenario Model (CSM) [262] also supports modelling of resources,

and it can be considered as a bridge between the UML-SPT profile and per-

formance models like layered queueing networks. Beyond modelling capabil-

ities for the dynamic aspects of components, CSM also provides basic resource

modelling, i.e. processing resources such as CPU and passive resources such as

monitors. Another approach for bridging modelling concepts and approaches is

KLAPER [263], the Kernel LAnguage for PErformance and Reliability analysis.

KLAPER is designed to be simple and so resources are it does not distinguish

between active and passive resources. Instead, it focuses on component-based

systems and provides another approach which bridges design-centric models

such as UML and analysis-oriented models like queueing networks or Petri

nets. However, neither CSM nor KLAPER are useful for bringing explicit para-

metrisation over resources and execution platform into the Palladio Component

Model.

SOFA 2.0 [264] is a component model which supports code generation as well

as performance prediction. Its distinguishing features are the support for dy-

namic component reconfiguration and controllers (controllers in SOFA are com-

ponent interfaces that provide non-functional features such as lifecycle man-

agement or reconfiguration). The execution platform of SOFA components is

a distributed platform called SOFAnode which contains several deployment

“docks”. However, SOFA does not provide explicit resource interfaces, has no

support for bytecode-oriented infrastructure components, and it is not compat-

ible with the Palladio Component Model.

Resource modelling in SPE (see Section 2.2.2) revolves around the system ex-

ecution model, which is separate from the software execution model. A system

execution model consists of servers and queues; jobs waiting for a service are

stored in queues, while resources providing a service to the software are mod-

elled as servers. The resulting meta-model is very generic and tied to queuing

networks [46]: a resource can only be modelled as a server, which has attributes

such as quantity and schedulingPolicy, timeUnits and serviceTime.

358

8.5. Resource and Execution Platform Modelling in Component Metamodels

Thus, neithermiddleware nor bytecode-oriented resource demands can bemod-

elled with SPE tooling.

The ROBOCOP [265, 266] project (Robust Open Component Based Software

Architecture for Configurable Devices Project) focuses on embedded applica-

tions and performance prediction of them. It contains an execution framework

which defines abstractions of the underlying platform [266] and aims at devel-

oping software which has to meet real-time requirements. Supported resource

types include CPU, memory and data buses; the model of a component can

contain resource usage specifications. However, the CPU demands must be ex-

pressed as timing values in milliseconds, and it is not possible to specify the

resource demand in a platform-independent way.

359

Chapter 9.

Conclusion

This chapter presents a summary of this thesis (Section 9.1), followed by sug-

gestions for future work in Section 9.2.

9.1. Summary

This thesis has introduced a new approach for cross-platform performance pre-

diction of bytecode-based applications and components. The approach works

by disentangling application performance from execution platform perform-

ance, and it offers several advantages over conventional time-based measure-

ments. The main benefit of this approach is a decreased prediction effort, since

the application does not have to be deployed and measured on each candidate

execution platform.

The approach works by expressing the application performance using plat-

form-independent metrics based on bytecode instructions and methods. To pre-

dict platform-specific timing values, the application performance metric is com-

bined with platform-specific timings of the metric elements. The contributions

of this thesis include a new instrumentation-based approach for quantifying the

bytecode-based application performance metric, and a new benchmarking ap-

proach for obtaining the platform-specific timing values of bytecode instruc-

tions and methods.

A prediction methodology which accounts for runtime optimisations per-

formed by modern bytecode-executing virtual machines enables the prediction

of execution durations which can be used in platform sizing and application re-

location scenarios. The prediction accuracy has been validated for several well-

Chapter 9. Conclusion

established applications and benchmarks, and has been performed for several

execution platforms. The used execution platforms differ substantially in hard-

ware resources, operating systems and middleware.

The bytecode-based application performance metrics can be quantified pre-

cisely on any platform, e.g. on a platform where the application is already

running or on a different platform. These metrics consist of runtime execution

frequencies of bytecode instructions and methods, and they consider paramet-

ers of instructions and methods due to their importance for performance. The

individual bytecode instruction types are considered separately, since their per-

formance is substantially different. The bytecode-based performance metric has

the advantage of being application-agnostic, since it does not use application-

specific building blocks found in related approaches.

To obtain platform-independent application performance metrics, the thesis

utilises a new kind of application instrumentation which does not require

changes to the application source code or modifications of the execution en-

vironment. By instrumenting the black-box application bytecode, it becomes

possible to obtain precise runtime counts of bytecode instructions (and method

invocations) without using vendor-specific platform interfaces, or even modi-

fying the execution platform. The instrumentation is transparent in the sense

that the application functionality is not impacted; the application is not aware

that it has been instrumented. This application instrumentation has been im-

plemented for the Java bytecode, and minimises overhead through usage of ba-

sic block analysis and detection of performance-invariant methods. The instru-

mentation does not prevent the execution platform from performing runtime

optimisations, such as Just-in-Time compilation of bytecode into machine code.

To translate the platform-independent metric elements into platform-specific

timing values, this thesis introduced separate approaches for bytecode instruc-

tion benchmarking and for method benchmarking. Unlike in real-time sys-

tems with predictable timing behaviour, these benchmarking approaches target

bytecode-executing virtual machines which host business applications. Both

benchmarking approaches are designed to automate the process of benchmark-

362

9.1. Summary

ing, in order to decrease the overall effort of performance prediction and in order

to encapsulate the complexity of benchmarking in tools.

Bytecode instructions are benchmarked by creating executable microbench-

marks that target individual instruction types. Since bytecode instructions ex-

ecute very quickly (in a fraction of one CPU cycle when instruction pipelining is

possible), they are too short for direct measurement using timer methods. The

approach presented in this thesis allows handling the preconditions and post-

conditions (e.g. the preparation of the JVM stack) that are needed for repeated

invocations of the benchmarked bytecode instructions. The number of repeated

invocations depends on the timer method’s accuracy, which is quantified using

a novel, clustering-based algorithm as described below.

Bytecode instruction benchmarking separates the semantics of the mi-

crobenchmarks (which are saved as benchmarking scenarios) from the technical

implementation of the microbenchmarks. Most bytecode instructions cannot be

simply repeated an arbitrary number of times, as their preconditions must be

satisfied, which requires additional helper instructions to be executed. These

helper instructions need to be benchmarked separately and thus require separ-

ate microbenchmarks to be constructed.

The resulting dependencies between benchmarking scenarios are expressed

using an linear equation system which captures how the benchmarking scen-

arios depend on each other. This thesis implements the automated creation of

microbenchmarks for Java bytecode instructions, by employing bytecode engin-

eering which allows creating benchmarks that cannot be created by a compiler

from source code. The implementation of the approach ensures that the linear

equation system is not underdetermined, and solves it to obtain execution dur-

ations of individual instructions.

As a high-level executable representation, bytecode contains not only “prim-

itive” bytecode instructions, but also high-level, object-oriented method invoc-

ations. Yet decomposing all method implementations into their bytecode in-

structions is not possible: for example, native methods’ performance cannot

be quantified on the basis of bytecode instructions. Thus, it is often needed

363

Chapter 9. Conclusion

to benchmark methods as atomic entities, i.e. to treat their implementations as

black boxes.

Benchmarking of methods needs to satisfy the methods’ preconditions such

as finding suitable input parameters and creating invocation targets for non-

static methods. Satisfying semantically complex preconditions makes method

benchmarking an intellectually challenging task, and makes automating it a

non-trivial undertaking. Additionally, benchmarkingmethods in an atomic way

makes it possible to capture the performance effects of runtime optimisation in

a more precise way, as the effects of Just-in-Time compilation and similar op-

timisations can be captured better using method-level benchmarks than when

using instruction-level benchmarks.

As applications make heavy use of platform APIs (such as the Java API), this

thesis chooses to benchmark the performance of methods which do not belong

to a component’s own implementation in an atomic way, i.e. without decom-

posing such methods into the bytecode instructions. The reason for this choice

is that platform API methods have a complex implementation which often con-

tains platform-specific and native code. Additionally, quantifying the perform-

ance of API methods allows the programmer to compare the performance of dif-

ferent alternatives, for example different sorting algorithms. Finally, parametric

dependencies of methods can be captured more effectively during method-level

benchmarking.

The main obstacle for automating method benchmarking is the complexity of

finding appropriate preconditions, i.e. input parameters and invocation targets.

This thesis provides a substantial relief for this task by devising a heuristics-

based approach for finding these preconditions. The heuristics aremore efficient

than a brute-force approach, as they take into account the information stored in

the variables and constants of the class type.

Accurate time measurements are quintessential for benchmarking bytecode

instructions and methods. Additionally, timing measurements have to be used

in situations where bytecode-based performance prediction is not applicable,

e.g. when accesses to native databases need to be measured. However, the ac-

364

9.1. Summary

curacy of timer methods and performance indicators is normally not specified

because it is platform-dependent and defined by the accuracy of the underly-

ing hardware counters. This thesis contributes a new platform-independent al-

gorithm which allows quantifying the accuracy of a timer method on any plat-

form, without having to inspect its implementation.

The algorithm for quantifying the accuracy and other quality attributes of

timer methods has been implemented in Java and C#. It was applied to all timer

methods of the Java and .NET platform APIs to demonstrate the significant

differences across methods on the same platform, and the differences between

platforms for a given timer method. Additionally, the validation has been per-

formed for third-party timer methods and for native access to platform-specific

hardware performance counters. The algorithm implementations can be run on

a concrete platform to quantify the accuracy of its timers.

Beyond accuracy, other quality attributes for timer methods have been iden-

tified in this thesis. They include method invocation cost (which often has a

greater impact than the accuracy), timer stability and cross-thread epoch stabil-

ity. This thesis established algorithms and techniques for analysing these qual-

ity properties, and shows why they are important for measurements in multi-

threaded scenarios on multicore platforms.

To compare and to select timer methods for accurate measurements, several

quality properties with different ranges have to be compared, which makes the

comparison complex and depends on the preferences of the user. As working

with one single metric is simpler than with a set of metrics, this thesis devises

a new aggregate metric for timer quality, which results in one value that can

be used easily for comparisons and rankings. This new metric is normalised,

i.e. the timer quality can range between 0 % and 100 % , and it aggregates such

metrics as accuracy, invocation cost and stability. The metric is designed in such

a way as to make even small differences between timer methods visible and

takes into account the CPU characteristics of the platform on which the metric

value has been obtained.

365

Chapter 9. Conclusion

To enable the usage of bytecode-based performance prediction during early

stages of software development, it has been integrated with the Palladio Com-

ponent Model. This integration makes it possible to express bytecode-based

resource demands in component models, and the bytecode-executing virtual

machines can be modelled as infrastructure components.

Concluding, it can be said that the thesis achieved its goals.

9.2. Future Work

9.2.1. Bytecode-based Resource Demand Quantification

Future work in the area of bytecode-oriented resource demand quantification

would address the runtime overhead, which offers several possibilities for im-

provement.

Currently, an instrumented method reports its collected instruction/method

counts immediately before it returns, using a synchronous method call and

blocking until that method finishes. The reported counts are processed by a

central result collector – and this collector is implemented in a single-threaded

fashion, running in the same thread as the reporting method. Parallelising the

counting result collector could lead to performance improvements onmulti-core

platforms, especially where calling context tree evaluation involves significant

computations. However, allowing concurrent access to the data structures that

store the counting results would require measures to prevent race conditions,

which could diminish the performance gains.

An additional enhancement would be the introduction of load balancing with

a queue for reported counting results. Load balancing would be based on a

thread pool for processing the reporting counting results, rather than having

the reporting thread execute the corresponding code. This decoupling would

allow making the reporting method calls asynchronous and thus increase the

degree of parallelism.

Another interesting aspect of the instrumentation-based resource demand

quantification is the possibility to switch dynamically between the instrumented

366

9.2. Future Work

and uninstrumented version of the application, without having to restart the

application. Since the uninstrumented version does not cause any counting

overhead, it would be possible to revert the execution speed to its normal value

after the resource demand quantification has been finished. Such functionality

could be implemented in several ways: either by class duplication or by dy-

namic class reloading.

Class duplication loads and maintains (at the same time) two distinct ver-

sions of the application’s classes and switches between them on the basis of

some control variables, i.e. without requiring the platform classloader to re-

define the classes. Alternatively, method duplication can be employed, which

maintains the uninstrumented and the instrumented versions of a method and

allows switching between them at runtime, without reloading the class. Class/-

method duplication requires the application programmer to ensure that the class

state is maintained correctly when the execution switches from one class version

to another, which is a non-trivial task and can introduce programming errors. It

also has the disadvantage of increasing the memory footprint of the application.

Dynamic class reloading is capable of replacing the loaded class definition

through a different one, while maintaining a consistent class state. This tech-

nique is offered by some (but not all) execution platforms; for Java, Oracle’s

HotSpot JVM offers it [181, 267, 268] and it is used by debuggers and profilers.

Another enhancement of bytecode-based resource demand quantification is

concerned with a more fine-grained selection of the instrumentation scope,

which is needed when a single object method contains both component-internal

actions and component-external service calls. In such a case, quantifying the

resource demands of an internal action means that only the corresponding part

of the considered method should be instrumented.

The current Java implementation of the instrumentation-based approach is

already capable of instrumenting method ranges, but these method ranges need

to be specified by the user. These method ranges are expressed as source code

ranges, which works for bytecode that is compiled using default settings since

the line numbers are saved in classfiles: the JVM uses this information when

367

Chapter 9. Conclusion

printing stack traces, and debuggers uses this information for indicating the

current position in source code.

However, when the bytecode does not contain such information, an altern-

ative solution needs to be devised. One possibility to do so in future work is

to use the information about component boundaries to identify method calls

which are component-external. From the results of such analysis, the instru-

mentation ranges could be reverse engineered even for black-box bytecode of

components.

A further direction of research could use purity analysis and dead code ana-

lysis to identify bytecode sections which should not be instrumented: internally,

many virtual machines will perform these analyses and will not execute “use-

less” bytecode section which have no side effects. These kind of analysis is not

performed by most source-to-bytecode compilers, but the virtual machines per-

form aggressive optimisation of the executed bytecode andmachine code.

A further field of future work would be concerned with applying

instrumentation-based resource demand quantification on other platforms and

using other bytecode languages than Java. For example, Java EE (enterprise edi-

tion) and JavaME (micro edition, for handheld devices) could be targeted by the

approach presented in this thesis. Additionally, the .NET framework and its CIL

bytecode format could be addressed.

Finally, comparing the performance of the presented, instrumentation-based

approach to platform-specific approaches using JVMTI and similar interfaces

could be performed.

9.2.2. Benchmarking of the Java Virtual Machine

The novel bytecode instruction benchmarking presented in Section 5.2 has been

applied to individual instructions, but it can be applied to instruction sequences

(e.g. basic blocks), too. The number of candidate basic blocks increases exponen-

tially with their length (with significant effects on the benchmarking duration).

Also, existing research indicates that some basic blocks are more frequent than

others, but the appearance of basic blocks depends on the considered applica-

368

9.2. Future Work

tion. Future work can studywhether benchmarking basic blocks and using their

durations leads to a better prediction accuracy.

Additionally, experiments with further benchmarking scenarios would mean

that the timing values of bytecode instructions would base on a larger body of

measurements. Further automation of benchmark scenario creation could help

with creating benchmark scenarios for basic blocks, and with identifying valid

basic blocks in an automated way.

The translation of bytecode into machine code is a further research direction

of significant interest, and it would encompass both Just-in-Time compilation

and Ahead-of-Time compilation. Since the resulting speedup greatly impacts

the performance of applications, it is often the distinguishing factor between

vendor-specific implementations of bytecode-executing virtual machines.

Understanding how a bytecode instruction (or a sequence of them) is mapped

to native instructions may help with benchmarking of bytecode instructions,

and thus benefit the bytecode-based performance prediction. However, as this

translation is vendor-specific and platform-specific (e.g. because different CPU

architectures have different native instruction sets), the knowledge gain may be

moderate compared to the overhead.

The method benchmarking presented in Section 5.3 offers several opportunit-

ies for future work. For example, the heuristics-based generation of valid input

parameters could be complemented by collecting valid parameters from run-

ning, real-world applications.

Additionally, valid parameters could be retrieved from a human operator,

both in an interactive way (by asking the user if the heuristics fail) and in a

static way (requiring the user to provide the parameters before attempting to

run the benchmark). A further source of parameter information could be found

in functional tests, although it would be needed to separate tests with a positive

outcome from the tests with negative outcome. Additionally, method bench-

marking can be extended by incorporating machine learning and other tech-

niques of search-based software engineering for findingmethod parameters and

parametric dependencies [138].

369

Chapter 9. Conclusion

The method benchmarking approach can be used to express parametric de-

pendencies and for identifying method parameters that have no (or insignific-

ant) influence on method performance. On the other hand, it can also be used

to identify “performance-dangerous” value ranges of method parameters, i.e.

parameter values for which the performance degrades considerably.

In perspective, such information could be used during development to detect

performance degradation, and to ensure performance testing covers the para-

meter range accordingly. Method benchmarking could be used for a variety of

tasks beyond performance prediction of applications: for example, comparing

and selecting different implementations of an interface method could be done

on the basis of method benchmarking results.

In general, instruction and method benchmarking as presented in this thesis

mapped the execution of an instruction or method to a timing value which com-

prises all resource usage that occurs during the execution. With other words,

the resources beyond the CPU were not considered individually – for design-

time, model-based performance prediction, such abstraction is fully warranted

(because a low-level view of the execution platform would be complex to build

and lead to exorbitant performance simulation duration). While other resources

such as hard disk and network links are considered explicitly in the Palladio

Component Model, the usage of them is only quantified when they are used

explicitly.

The automated benchmarking approach developed in this thesis can be used

for exploring the configuration space of the execution platform. For example,

the Java Virtual Machine offers a large set of settings which impact application

performance and scalability: the memory allocated to an application can be set,

several garbage collection algorithms are available, etc. As many of these set-

tings cannot be set to arbitrary values, and “more is better” does not apply to

many of them, exploring the configuration space could help developers and

users achieve better application performance and possibly also better execution

platform utilisation.

370

9.2. Future Work

9.2.3. Timer Methods and Performance Indicators

Quality-driven selection of timermethods can be extended to other performance

indicators. For example, the utilisation of resources and system load are two

important performancemetric which are often exposed by the operating system.

However, their accuracy and other quality attributes are usually unspecified,

and no methods exist to obtain them. Future work can address this issue, and

help with a more precise quantification of performance.

9.2.4. Resource Modelling and Palladio Component Model

The extension of the Palladio Component Model and the integration of

bytecode-based performance prediction already have allowed to increase the

accuracy of performance prediction. The introduction of explicit resource inter-

faces has paved the way for a more precise modelling of other existing hardware

resources, such as hard disks. As it now has become possible to model read and

write accesses separately, future work should create benchmarks for hard disks

and approaches for quantifying hard disk accesses of components.

While performance modelling of hard disks has enjoyed attention of research-

ers over the past decades, most of existing performance models consider hard

disks at the level of hardware accesses, and disregard the impact of software lay-

ers such as operating system and middleware. Additionally, existing hard disk

performance models require very detailed information about the disk internals

such as distribution of data, and a detailed model of the workload to predict the

impact and scope of caching.

Future work in resource modelling should address hard disk modelling start-

ing with a simple model and refining it until a predefined prediction accuracy

is reached. Additionally, hard disk modelling should consider the impact of

the software layers which are used to access hard disks, and quantify the over-

head of these layers. For example, the Java platform API defines an extens-

ive hierarchy of classes for file system access, split into categories for access in

byte-oriented, character-oriented, stream-oriented and other ways. Making the

performance differences between these categories explicit would benefit Java

371

Chapter 9. Conclusion

programmers since the official platform API documentation provides no per-

formance information for these I/O classes.

This thesis extended the Palladio Component Model to support infrastructure

components using explicit resource interfaces. Beyond modelling the JVM, the

new concepts can be used for explicit consideration of other middleware parts,

such as application servers. Until now, some support for middleware has been

implemented in the PCM using declarative specification and so-called model

completions [269] which are based on model transformations.

Also, the calibration factor calculation could be refined using program simil-

arity analysis to detect the connection between the contents of methods or byte-

code sequences (i.e. method parts or basic blocks) and the corresponding JIT

speedup.

372

Appendix A.

Appendix

A.1. Performance Equivalence Classes of Java Bytecode Instructions

The following list contains the performance equivalence classes of Java bytecode

instructions. These classes have been identified in Section 4.3.11 and are used in

BYCOUNTER:

1. AALOAD, BALOAD, CALOAD, FALOAD, IALOAD, SALOAD

2. DALOAD, LALOAD (eventually merged with the previous class)

3. ASTORE, BASTORE, CASTORE, FASTORE, IASTORE, SASTORE

4. DASTORE, LASTORE (eventually merged with the previous class)

5. ALOAD, ALOAD_0, ALOAD_1, ALOAD_2, ALOAD_3

6. ASTORE, ASTORE_0, ASTORE_1, ASTORE_2, ASTORE_3

7. DLOAD, DLOAD_0, DLOAD_1, DLOAD_2, DLOAD_3

8. DSTORE, DSTORE_0, DSTORE_1, DSTORE_2, DSTORE_3

9. DCONST_0, DCONST_1

10. FLOAD, FLOAD_0, FLOAD_1, FLOAD_2, FLOAD_3

11. FSTORE, FSTORE_0, FSTORE_1, FSTORE_2, FSTORE_3

12. FCONST_0, FCONST_1, FCONST_2

Appendix A. Appendix

13. ILOAD, ILOAD_0, ILOAD_1, ILOAD_2, ILOAD_3

14. ISTORE, ISTORE_0, ISTORE_1, ISTORE_2, ISTORE_3

15. ICONST_0, ICONST_1, ICONST_2, ICONST_3, ICONST_4, ICONST_5,

ICONST_M1

16. BIPUSH, SIPUSH (eventually merged with the previous class)

17. LLOAD, LLOAD_0, LLOAD_1, LLOAD_2, LLOAD_3

18. LSTORE, LSTORE_0, LSTORE_1, LSTORE_2, LSTORE_3

19. LCONST_0, LCONST_1

20. ARETURN, DRETURN, FRETURN, IRETURN, LRETURN, RETURN

21. DCMPG, DCMPL

22. FCMPG, FCMPL (eventually merged with the previous class)

23. GOTO, GOTO_W

24. IFNULL, IFNONNULL

25. IF_ACMPEQ, IF_ACMPNE

26. IF_ICMPEQ, IF_ICMPGE, IF_ICMPGT, IF_ICMPLE, IF_ICMPLT,

IF_ICMPNE

27. IFEQ, IFGE, IFGT, IFLE, IFLT, IFNE

28. INVOKEINTERFACE, INVOKESPECIAL, INVOKESTATIC, INVOKEVIR-

TUAL

It is also plausible that the following classes are valid:

1. DUP, DUP_X1 and DUP_X2

2. DUP2, DUP2_X1 and DUP2_X2 (possibly the same as the previous class)

374

A.1. Performance Equivalence Classes of Java Bytecode Instructions

3. JSR, JSR_W

4. LDC, LDC_W, LDC2_W

5. GOTO, GOTO_W POP, POP_2

Even if the group 2, 4, 16 and 22 are not merged with groups 1, 3, 15 and 21, the

groupings reduce the cardinality of the instruction set by 83, i.e. by more than

40%.

375

Appendix B.

List of Figures

1.1 Performance of software components: influencing factors 3

1.2 Relocation scenario: predicting changes in component performance 5

1.3 Sizing: choosing an appropriate execution platform to fulfil per-

formance requirements . 6

1.4 Overview of the cross-platform performance prediction approach

of this thesis . 11

2.1 AComposite ComponentModel Instance in the Palladio Compon-

ent Model [46] . 66

2.2 An example RDSEFF of the Palladio Component Model 67

2.3 Java source code for demonstrating differences between durations

of bytecode instructions . 70

3.1 Properties of counters/timers and timer methods 79

3.2 Effects of quantisation on measuring time values and time intervals 83

3.3 Effects of timer accuracy on measurements 84

3.4 Accuracy is larger than timer method execution duration, meas-

ured duration too small . 85

3.5 Accuracy is larger than timer method execution duration, meas-

ured duration too large . 85

3.6 Accuracy is smaller than timer method execution duration, meas-

ured duration too large . 86

3.7 Quantifying the accuracy (for the case accuracy < invocation cost) . 91

3.8 Quantifying the accuracy (for the case accuracy ≥ invocation cost) . 91

List of Figures

3.9 Relation of requested sleep times (x-axis, in ns) to valuesmeasured

with nanoTime (y-axis, in ns) . 110

3.10 Zigzagged line with round shapes: requested sleep times (x-axis,

in ns) and values measuredwith TSC (y-axis, in ticks); straight line

with square shapes: number of CPU cycles (y-axis) corresponding

to the requested sleep time (x-axis) . 111

3.11 Overflow of range-limited values . 116

3.12 The impact of numeric ranges on measuring time intervals

between t1 and t2 . 120

4.1 High-level overview of Resource Demand Quantification in BY-

COUNTER . 132

4.2 Effects of preemption on relating response demands to execution

time . 134

4.3 Implementation of switch Java construct in Java bytecode 150

4.4 Parametric performance dependencies of LOOKUPSWITCH and

TABLESWITCH . 151

4.5 Subtrees of Calling Context Trees . 167

4.6 Overview of Conversion-oriented Java Bytecode Instructions 171

4.7 Overview of BYCOUNTER instrumentation and phases 172

4.8 Different Options for Online Inlining of Counting Results in BY-

COUNTER . 177

4.9 Effects of preemption on relating response demands to execution

time . 188

5.1 ByBench Overview . 216

5.2 APIBENCHJ : overview of automated API benchmarking 225

6.1 PCM RDSEFF with one internal action 257

6.2 Resource Modelling and Resource Demands in the PCM before

Extending it to support Bytecode-based Performance Prediction . . 257

6.3 PCM Workbench View of an RDSEFF which uses newly-

introduced Explicit Resource Interfaces [203] 265

378

List of Figures

6.4 PCM Workbench View with Component Repositories, Resource

Repositories, and their Elements [203] 266

6.5 Specialising CPU Resource Interfaces to Model Platform-

Dependent JVM Benchmarking Results (the squared interface is

a resource interfaces) . 272

6.6 Initial Modelling of the Calibration Factor as a Separate Infrastruc-

ture Component . 274

7.1 Validation of Bytecode-based Performance Prediction (Overview) . 279

7.2 Probabilities of benchmarked execution durations of the java.-

lang.String.substring method (parameter values: begin-

Index=4, endIndex=8; invocation target String length: 14) 309

7.3 Relation of requested sleep times (x-axis, in ns) to valuesmeasured

with nanoTime() (y-axis, in ns) onMBP53 320

7.4 TSC instability on MBP53: Zigzagged line with round shapes

shows the relation between requested sleep times (x-axis, in ns)

and values measured with TSC (y-axis, in ticks); straight line with

two square shapes shows the number of CPU cycles (y-axis) cor-

responding to the requested sleep time (x-axis) 321

7.5 Correlation of Fibonacci problem sizes and values measured with

nanoTime() onMBP53 . 322

7.6 Correlation of Fibonacci problem sizes and values measured with

TSC . 323

7.7 Correlation of values measured with TSC and values measured

with nanoTime for Fibonacci workload 324

7.8 Correlation of Fibonacci problem sizes and values measured with

nanoTime() when running Fibonacci workloads in a separate

thread (master thread waits until completion of the started thread) 325

7.9 Correlation of Fibonacci problem sizes and values measured with

TSCwhen running Fibonacci workloads in a separate thread (mas-

ter thread waits until completion of the started thread) 326

379

List of Figures

7.10 Warmup influence on the invocation cost of sun.misc.Perf.-

highResCounter: medians of bins (each bin contains 100 meas-

urements) . 335

380

Appendix C.

List of Tables

6.1 Compatibility of Resource Interfaces and Business Interfaces 267

7.1 SPECjvm2008 MPEGaudio benchmark: Bytecode-based perform-

ance prediction using calibration on platform T60a and one input

file FileA . 286

7.2 SPECjvm2008 MPEGaudio benchmark: Bytecode-based perform-

ance prediction using calibration on platform T60a and all input

files . 288

7.3 SPECjvm2008 MPEGaudio benchmark, bytecode-based perform-

ance prediction: Comparison of prediction errors between calibra-

tion based on 1 input file and on 6 input files for bytecode-based

performance prediction . 289

7.4 SPECjvm2008 MPEGaudio benchmark: Performance prediction

on the basis of CPU cycle counts, measured on platform T60a (to

use inG2-Q1) . 290

7.5 SPECjvm2008 MPEGaudio benchmark: Comparison of prediction

errors between bytecode-based performance prediction and pre-

diction based on CPU cycle counts . 291

7.6 SPECjvm2008 MPEGaudio benchmark: Correlation between CPU

cycle counts and file sizes . 292

7.7 SPECjbb2005, hot spot create_random_a_string: results of

bytecode-based performance prediction 294

List of Tables

7.8 SPECjbb2005, hot spot create_random_a_string: results of

performance prediction based on CPU cycles, and values of G2-

Q1-M1 . 295

7.9 Linpack benchmark: results of bytecode-based performance pre-

diction . 295

7.10 Linpack benchmark: results of performance prediction based on

CPU cycle counts . 296

7.11 JFreeChart computation of linear regression: Results of bytecode-

based performance prediction . 297

7.12 JFreeChart computation of linear regression: Results of perform-

ance prediction based on CPU cycles 298

7.13 Whetstone benchmark: Performance prediction on the basis of

bytecode instructions, calibration performed on T60a 298

7.14 Whetstone benchmark: Performance prediction on the basis of

CPU cycles, calibration performed on T60a 299

7.15 Units of tick-returning timers . 327

7.16 Accuracy, Invocation Cost and Invocation Cost spread for execu-

tion platformsMBP53 andMBP62 . 329

7.17 Accuracy, Invocation Cost and Invocation Cost spread for execu-

tion platforms SAMSa and SAMSb 330

7.18 Accuracy, Invocation Cost and Invocation Cost spread for execu-

tion platforms X110a and X110b . 332

7.19 Accuracy, Invocation Cost and Invocation Cost spread for execu-

tion platformsMBP53 and T400 . 333

7.20 Epochs and MMT (maximum measurable time interval) of differ-

ent timer methods, measured on two different platforms 337

7.21 Unified quality metric values for timer methods on platform

MBP53 and T400b . 338

382

Appendix D.

Listings

3.1 Oversimplified measurement of method execution duration 83

3.2 Oversimplified measurement of timer method invocation cost . . . 89

3.3 Measuring timer method invocation costs according to [30] 90

3.4 Stochastic measurement of timer method invocation cost 90

3.5 Oversimplified measurement of timer method invocation cost . . . 93

3.6 Example concurrency-unsafe timer method 106

3.7 Code for testing timer monotonicity in concurrent setting 108

4.1 Effect of polymorphism on method invocation in bytecode 154

4.2 Static methods in declared and runtime classes 160

4.3 Example of a Java class . 162

4.4 Branch Invariant In Java Bytecode . 180

Bibliography

[1] K. S. Trivedi and T. M. Sigmon, “A performance comparison of optim-

ally designed computer systems with and without virtual memory,” in

Proceedings of the 6th annual symposium on Computer architecture, 1979, pp.

117–121.

[2] D. J. Roek and W. C. Emerson, “A hardware instrumentation approach to

evaluation of a large scale system,” in Proceedings of the 1969 24th national

ACM Annual Conference/Annual Meeting. New York, NY, USA: ACM,

1969, pp. 351–367.

[3] Compuware Corporation, “New Survey Finds That Poor Application

Performance Causes Significant Financial Losses,” February 2009,

http://investor.compuware.com/releasedetail.cfm?releaseid=359867,

last retrieved August 31st, 2010. [Online]. Available:

http://investor.compuware.com/releasedetail.cfm?releaseid=359867

[4] V. Briegleb, “Bericht: Probleme bei SAPs neuer

Mittelstandssoftware,” 2007, heise online news,

http://www.heise.de/newsticker/meldung/88300/, last accessed

on August 31st, 2010.

[5] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software Per-

formance Engineering,” in Proceedings of ICSE 2007, Future of SE. IEEE

Computer Society, Washington, DC, USA, 2007, pp. 171–187.

[6] C. U. Smith and L. G. Williams, Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software. Addison-Wesley, 2002.

Bibliography

[7] L. G. Williams and C. U. Smith, “Making the Business Case for Software

Performance Engineering,” in Proceedings of the 29th International Computer

Measurement Group Conference, December 7-12, 2003, Dallas, Texas, USA.

Computer Measurement Group, 2003, pp. 349–358.

[8] C. U. Smith and L. G. Williams, “Software performance engineering: A

case study including performance comparison with design alternatives,”

IEEE Transactions on Software Engineering, vol. 19, no. 7, pp. 720–741, 1993.

[9] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component

model for model-driven performance prediction,” Journal of Systems

and Software, vol. 82, pp. 3–22, 2009. [Online]. Available: http:

//dx.doi.org/10.1016/j.jss.2008.03.066

[10] J. Keung, Y. Liu, K. Foster, and T. Nguyen, “A Statistical Method for Mid-

dleware System Architecture Evaluation,” in 21st Australian Software En-

gineering Conference. IEEE, 2010, pp. 183–191.

[11] A. Aldini, F. Corradini, and M. Bernardo, “Component-Oriented Per-

formance Evaluation,” A Process Algebraic Approach to Software Architecture

Design, pp. 203–238, 2010.

[12] A. Pimentel, “The Artemis workbench for system-level performance eval-

uation of embedded systems,” International Journal of Embedded Systems,

vol. 3, no. 3, pp. 181–196, 2008.

[13] C. Smith, “Introduction to software performance engineering: origins

and outstanding problems,” Formal Methods for Performance Evaluation, pp.

395–428, 2007.

[14] H. Koziolek, “Performance evaluation of component-based software sys-

tems: A survey,” Performance Evaluation, 2009.

[15] Oracle Corporation, “Enterprise JavaBeans Technology Homepage,”

2010, last retrieved August 31st, 2010. [Online]. Available: http:

//www.oracle.com/technetwork/java/index-jsp-140203.html

386

Bibliography

[16] M. Kirtland,Designing component-based applications. Microsoft Press, 1999.

[17] K.-K. Lau, “Software Component Models,” in Proceedings of the 6th Inter-

national Conference on Software Engineering (ICSE06). ACM Press, 2006,

pp. 1081–1082.

[18] H. Koziolek, “Parameter Dependencies for Reusable Performance Spe-

cifications of Software Components,” Ph.D. dissertation, Universität

Oldenburg, January 2008.

[19] M. Kuperberg, M. Krogmann, and R. Reussner, “TimerMeter: Quantifying

Accuracy of Software Times for System Analysis,” in Proceedings of the 6th

International Conference on Quantitative Evaluation of SysTems (QEST) 2009,

2009. [Online]. Available: http://www.qest.org/qest2009

[20] E. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,Quantitative Sys-

tem Performance - Computer SystemAnalysis Using Queueing NetworkModels.

Prentice-Hall, 1984.

[21] S. Balsamo, M. Bernardo, and M. Simeoni, “Performance Evaluation at

the Software Architecture Level,” Formal Methods for Software Architectures,

vol. 2804, pp. 207–258, 2003.

[22] S. Kounev, “Performance Modeling and Evaluation of Distributed

Component-Based SystemsUsingQueueing Petri Nets,” IEEE Transactions

on Software Engineering, vol. 32, no. 7, pp. 486–502, July 2006.

[23] F. Bause and P. S. Kritzinger, Stochastic Petri Nets, 2nd ed. Vieweg, 2002.

[24] F. Bause, “Queueing Petri Nets-A Formalism for the Combined Qualitat-

ive andQuantitative Analysis of Systems,” Petri Nets and PerformanceMod-

els, 1993. Proceedings., 5th International Workshop on, pp. 14–23, Oct 1993.

[25] Y. Liu, A. Fekete, and I. Gorton, “Design-Level Performance Prediction of

Component-Based Applications,” IEEE Transactions on Software Engineer-

ing, vol. 31, no. 11, pp. 928–941, 2005.

387

Bibliography

[26] I. Gorton and A. Liu, “Performance Evaluation of Alternative Component

Architectures for Enterprise JavaBean Applications,” IEEE Internet Com-

puting, vol. 7, no. 3, pp. 18–23, 2003.

[27] A. Liu, Ian, Gorton, and L. Hu, “Evaluating bea systems application server

technology,” CSIRO Mathematical and Information Sciences, Macquarie

University, Australia, Tech. Rep. 2000/241, July 2001.

[28] W. Binder and J. Hulaas, “Using Bytecode Instruction Counting as Port-

able CPU Consumption Metric,” Electr. Notes Theor. Comput. Sci., vol. 153,

no. 2, pp. 57–77, 2006.

[29] M. Meyerhöfer and F. Lauterwald, “Towards Platform-Independent Com-

ponent Measurement,” in Tenth International Workshop on Component-

Oriented Programming, W. Weck, J. Bosch, R. Reussner, and C. Szyperski,

Eds., 2005.

[30] M. Meyerhöfer, “Messung und Verwaltung von Komponenten für die

Performancevorhersage,” Ph.D. dissertation, University of Erlangen-

Nürnberg, Germany, 2007.

[31] C. Herder and J. J. Dujmovic, “Frequency Analysis and Timing of Java

Bytecodes,” Computer Science Department, San Francisco State Univer-

sity, Tech. Rep., 2000, technical Report SFSU-CS-TR-00.02.

[32] X. Zhang and M. Seltzer, “HBench:Java: an application-specific bench-

marking framework for Java virtual machines,” in JAVA ’00: Proceedings

of the ACM 2000 conference on Java Grande. New York, NY, USA: ACM

Press, 2000, pp. 62–70.

[33] J. Lambert and J. F. Power, “Platform Independent Timing of Java Vir-

tual Machine Bytecode Instructions,” in Workshop on Quantitative Aspects

of Programming Languages, Budapest, Hungary, March 29-30, 2008, 2008.

[34] E. Y.-S. Hu, A. J. Wellings, and G. Bernat, “Deriving Java Virtual Ma-

chine Timing Models for Portable Worst-Case Execution Time Analysis,”

388

Bibliography

in OTM Workshops, ser. LNCS, R. Meersman and Z. Tari, Eds., vol. 2889.

Springer, 2003, pp. 411–424.

[35] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini, “Experi-

ments in Cost Analysis of Java Bytecode,” Electr. Notes Theor. Comput. Sci.,

vol. 190, no. 1, pp. 67–83, 2007.

[36] D. J. Lilja, Measuring Computer Performance: A Practitioner’s Guide. Cam-

bridge University Press, 2000.

[37] L. K. John and L. Eeckhout, Performance Evaluation And Benchmarking.

CRC Press, 2006.

[38] A. Buble, L. Bulej, and P. Tuma, “CORBA benchmarking: A course with

hidden obstacles,” in Parallel and Distributed Processing Symposium, 2003.

Proceedings. International, April 2003, pp. 1–6.

[39] D. Holmes, “Inside the Hotspot VM: Clocks, Timers and Scheduling

Events,” 2006, last retrieved August 31st, 2010. [Online]. Available:

http://blogs.sun.com/dholmes/entry/inside_the_hotspot_vm_clocks

[40] P. B. Danzig and S. Melvin, “High Resolution Timing with Low Resolution

Clocks and Microsecond Resolution Timer for Sun Workstations,” ACM

SIGOPS Operating Systems Review, vol. 24, no. 1, pp. 23–26, 1990.

[41] H. Beilner, “Measuring with Slow Clocks,” ICSI-Technical Report-88-O03,

Tech. Rep., 1988.

[42] K. Krogmann, “Reconstruction of software component architectures and

behaviour models using static and dynamic analysis,” Ph.D. dissertation,

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2010.

[43] H. Koziolek,Dependability Metrics, ser. LNCS. Springer Heidelberg, 2008,

vol. 4909, ch. Introduction to Performance Metrics, pp. 199–203. [Online].

Available: http://www.springerlink.com/content/r6625lp264177m72/

fulltext.pdf

389

Bibliography

[44] T. Zheng, C. Woodside, and M. Litoiu, “Performance model estimation

and tracking using optimal filters,” IEEE Transactions on Software Engineer-

ing, vol. 34, no. 3, pp. 391–406, May-June 2008.

[45] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks and

Markov Chains. John Wiley & Sons Inc., 1998.

[46] H. Koziolek, “Parameter Dependencies for Reusable Performance

Specifications of Software Components,” Ph.D. dissertation, University

of Oldenburg, 2008. [Online]. Available: http://sdqweb.ipd.uka.de/

publications/pdfs/koziolek2008g.pdf

[47] C. U. Smith, Performance Engineering of Software Systems. Addison-Wesley,

1990.

[48] SPE-ED User Guide, Performance Engineering Services, Austin, TX, 2003,

http://www.perfeng.com.

[49] C. U. Smith and C. M. Llado, “Performance Model Interchange Format

(PMIF 2.0): XML Definition and Implementation,” in QEST ’04: Proceed-

ings of the The Quantitative Evaluation of Systems, First International Confer-

ence. Washington, DC, USA: IEEE Computer Society, 2004, pp. 38–47.

[50] H. Curnow, “Whither Whetstone? The synthetic benchmark after 15

years,” in Evaluating supercomputers. Chapman & Hall, Ltd., 1990, p. 266.

[51] R. Weicker, “Dhrystone: a synthetic systems programming benchmark,”

Communications of the ACM, vol. 27, no. 10, pp. 1013–1030, 1984.

[52] A. Phansalkar and L. K. John, “Analyzing Program Behavior of

SPECint2000 Benchmark Suite using Principal Components Analysis,”

Department of Electrical and Computer Engineering The University of

Texas at Austin, Austin TX 78712, Tech. Rep. TR-040122-01, 2003.

[53] Y. Chan, A. Sudarsanam, and A. Wolfe, “The effect of compiler-flag tun-

ing on spec benchmark performance,” SIGARCH Comput. Archit. News,

vol. 22, no. 4, pp. 60–70, 1994.

390

Bibliography

[54] B. Colwell, “Benchmarketing competition,” Computer, vol. 36, no. 12, pp.

9–11, 2003.

[55] L. Zhu, I. Gorton, Y. Liu, and N. B. Bui, “Model Driven Benchmark Gen-

eration for Web Services,” in SOSE ’06: Proceedings of the 2006 International

Workshop on Service-Oriented Software Engineering. ACM, 2006, pp. 33–39.

[56] L. Gray, A. Kumar, and H. Li, “Workload Characterization of the SPEC-

power_ssj2008 Benchmark,” Performance Evaluation: Metrics, Models and

Benchmarks, pp. 262–282, 2008.

[57] J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK Benchmark: past,

present and future,” Concurrency and Computation: Practice and Experience,

vol. 15, no. 9, pp. 803–820, 2003.

[58] “DisCo Benchmarking Database (DBD),” 2010,

http://www.cse.scitech.ac.uk/disco/database/search-parallel.php,

last retrieved August 31st, 2010. [Online]. Available:

http://www.cse.scitech.ac.uk/disco/database/search-parallel.php

[59] Standard Performance Evaluation Corp., “SPECjvm2008 Benchmarks,”

2008, URL: http://www.spec.org/jvm2008/, last visit: October 9th, 2009.

[Online]. Available: http://www.spec.org/jvm2008/

[60] S. P. E. C. (SPEC), “SPECjAppServer2004 Benchmark,” 2004, uRL:

http://www.spec.org/jvm2008/, last visit: June 9th, 2008. [Online].

Available: http://www.spec.org/jAppServer2004/

[61] “The Java Grande Forum Sequential Benchmarks 2.0,” 2007,

http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande,

last retrieved August 31st, 2010. [Online]. Available: http:

//www2.epcc.ed.ac.uk/computing/research_activities/java_grande

[62] M. Philippsen, R. F. Boisvert, V. Getov, R. Pozo, J. E. Moreira, D. Gannon,

and G. Fox, “JavaGrande - High Performance Computing with Java,” in

PARA, 2000, pp. 20–36.

391

Bibliography

[63] S. Blackburn, R. Garner, C. Hoffmann, A. Khang, K. McKinley, R. Bentzur,

A. Diwan, D. Feinberg, D. Frampton, S. Guyer et al., “The DaCapo bench-

marks: Java benchmarking development and analysis,” in Proceedings of

the 21st annual ACM SIGPLAN conference on Object-oriented programming

systems, languages, and applications. ACM, 2006, p. 190.

[64] W. Griswold and P. Phillips, “UCSD Benchmarks for Java,”

http://cseweb.ucsd.edu/users/wgg/JavaProf, last visited October

9th, 2009. [Online]. Available: http://cseweb.ucsd.edu/users/wgg/

JavaProf/javaprof.html

[65] D. Bell, “Make java fast: Optimize,” JavaWorld, vol. 2,

no. 4, 1997, http://www.javaworld.com/javaworld/jw-04-1997/jw-04-

optimize.html, last visit: October 9th, 2009. [Online]. Available: http:

//www.javaworld.com/javaworld/jw-04-1997/jw-04-optimize.html

[66] Z. Avramov and J. Dujmović, “A NETWORK BENCHMARK FOR THE

.NET FRAMEWORK,” nature, vol. 14, p. 15, 2004.

[67] T. Kalibera and P. Tuma, “Precise regression benchmarking with ran-

dom effects: Improving Mono benchmark results,” Formal Methods and

Stochastic Models for Performance Evaluation, pp. 63–77, 2006.

[68] F. Sibai, “Evaluating the performance of single and multiple core pro-

cessors with PCMARK R© 05 and benchmark analysis,” PERFORMANCE

EVALUATION REVIEW, vol. 35, no. 4, p. 62, 2008.

[69] ——, “Dissecting the PCMark R© 05 Benchmark and Assessing Perform-

ance Scaling,” Innovations in Information Technology, 2006, pp. 1–5, 2006.

[70] A. Phansalkar and L. John, “Performance prediction using program simil-

arity,” in Proceedings of the 2006 SPEC Benchmark Workshop, 2006.

[71] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. John, and

K. De Bosschere, “Performance prediction based on inherent program

392

Bibliography

similarity,” in Proceedings of the 15th international conference on Parallel ar-

chitectures and compilation techniques. ACM, 2006, p. 122.

[72] Le systeme international d unites (SI) = The international system of units (SI),

8th ed., Sevres, 2006.

[73] P. Drongowski, A. Devices, and I. Center, “Instruction-Based Sampling: A

New Performance Analysis Technique for AMD Family 10h Processors,”

AMD Code Analyst Project Report, 2007.

[74] C. McCurdy and J. Vetter, “Memphis: Finding and Fixing NUMA-related

Performance Problems on Multi-core Platforms,” ISPASS, IEEE Computer

Society, pp. 87–96, 2010.

[75] R. Azimi, D. Tam, L. Soares, andM. Stumm, “Enhancing operating system

support for multicore processors by using hardware performance monit-

oring,” ACM SIGOPS Operating Systems Review, vol. 43, no. 2, pp. 56–65,

2009.

[76] S. Eranian, “What can performance counters do for memory subsystem

analysis?” in Proceedings of the 2008 ACM SIGPLAN workshop on Memory

systems performance and correctness: held in conjunction with the Thirteenth

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS’08). ACM, 2008, pp. 26–30.

[77] G. P. V. Venkataramani, “Low-cost and efficient architectural support for

correctness and performance debugging,” Ph.D. dissertation, Georgia In-

stitute of Technology, 2009.

[78] D. Tam, “Operating System Management of Shared Caches on Multicore

Processors,” Ph.D. dissertation, University of Toronto, 2010.

[79] F. Schneider, “Online optimizations using hardware performance monit-

ors,” 2009.

393

Bibliography

[80] C. B. Zilles and G. S. . Sohi, “A Programmable Co-processor for Profil-

ing,” in Proceedings of the 7th International Symposium on High-Performance

Computer Architecture, 2001, pp. 241–252.

[81] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan, D. Grove,

and M. Hind, “Using Hardware Performance Monitors to Understand the

Behavior of Java Applications,” Proceedings of the 3rd conference on Virtual

Machine Research And Technology Symposium, pp. 57–72, 2004.

[82] R. Green, “Pentium RDTSC Access using JNI,” 2008, last retrieved August

31st, 2010. [Online]. Available: http://www.mindprod.com/products1.

html#PENTIUM

[83] H. Mousa, C. Krintz, L. Youseff, and R. Wolski, “VIProf: Vertically integ-

rated full-system performance profiler,” in Proceedings of the Workshop on

Next-Generation Software (NGS). Citeseer, 2007.

[84] H.Mousa, K. Doshi, T. Sherwood, and E. Ould-Ahmed-Vall, “VrtProf: Ver-

tical Profiling for SystemVirtualization,” in hicss. IEEE Computer Society,

1899, pp. 1–10.

[85] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight

performance-oriented tool suite for x86 multicore environments,” Arxiv

preprint arXiv:1004.4431, 2010.

[86] B. Wylie, B. Mohr, and F. Wolf, “Holistic hardware counter performance

analysis of parallel programs,” Proceedings of Parallel Computing 2005.

[87] H. Pyla, B. Ramesh, C. Ribbens, and S. Varadarajan, “ScALPEL: A Scal-

able Adaptive Lightweight Performance Evaluation Library for applica-

tion performance monitoring,” Arxiv preprint arXiv:0903.0035, 2009.

[88] H. Inoue and T. Nakatani, “How a Java VM can get more from a hardware

performance monitor,” ACM SIGPLAN Notices, vol. 44, no. 10, pp. 137–

154, 2009.

394

Bibliography

[89] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware per-

formance counters,” in 5th Workshop on Fault Diagnosis and Tolerance in

Cryptography, 2008. FDTC’08, 2008, pp. 59–67.

[90] M. Curtis-Maury, D. Nikolopoulos, and C. Antonopoulos, “Dynamic Pro-

gram Stirring on Multiple Cores: How Hardware Performance Monit-

ors Can Help Regulate Performance, Power, and Temperature Simultan-

eously,” in Proc. of the SecondWorkshop on Functionality of Hardware Perform-

ance Monitors (held in conjunction with MICRO-39), Orlando, FL. Citeseer,

2006.

[91] M. Harkema, D. A. C. Quartel, B. Gijsen, and R. D. van der Mei, “Per-

formance Monitoring of Java Applications,” in Workshop on Software and

Performance, 2002, pp. 114–127.

[92] W. Binder, J. Hulaas, and P. Moret, “A quantitative evaluation of the con-

tribution of native code to Java workloads,” in 2006 IEEE International

Symposium on Workload Characterization, 2006, pp. 201–209.

[93] G. Ammons, T. Ball, and J. Larus, “Exploiting hardware performance

counters with flow and context sensitive profiling,” in Proceedings of the

ACM SIGPLAN 1997 conference on Programming language design and imple-

mentation. ACM, 1997, pp. 85–96.

[94] R. Araiza, M. Aguilera, T. Pham, and P. Teller, “Towards a cross-platform

microbenchmark suite for evaluating hardware performance counter

data,” in Proceedings of the 2005 conference on Diversity in computing. ACM,

2005, p. 39.

[95] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance

counter measurements,” Technical Report 2008/05, University of Lugano,

Tech. Rep., 2008.

[96] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, H. You, and

M. Zhou, “Experiences and lessons learned with a portable interface to

395

Bibliography

hardware performance counters,” in Parallel and Distributed Processing

Symposium, 2003. Proceedings. International, 2003, p. 6.

[97] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable pro-

gramming interface for performance evaluation on modern processors,”

International Journal of High Performance Computing Applications, vol. 14,

no. 3, p. 189, 2000.

[98] D. Terpstra, H. Jagode, H. You, and J. Dongarra, “Collecting Performance

Data with PAPI-C,” Tools for High Performance Computing 2009, pp. 157–

173, 2010.

[99] T. Beauchamp andD.Weston, “Dtrace: The reverse engineer’s unexpected

swiss army knife,” Blackhat Europe, 2008.

[100] R. McDougall, J. Mauro, and B. Gregg, “Solaris (TM) Performance and

Tools: DTrace andMDB Techniques for Solaris 10 andOpenSolaris (Solaris

Series),” 2006.

[101] F. Eigler and R. Hat, “Problem solving with systemtap,” in Proceedings of

the Ottawa Linux Symposium, vol. 2006. Citeseer, 2006.

[102] IBM AIX Version 6.1 differences guide. Riverton, NJ, USA: IBM Corp., 2008.

[103] Bhavana Nagendra (AMDDeveloper Central), “AMD TSCDrift Solutions

in Red Hat Enterprise Linux,” 2006, last retrieved August 31st, 2010.

[Online]. Available: http://developer.amd.com/pages/1214200692.aspx

[104] Microsoft Help and Support, “Computers that are running Windows

XP Service Pack 2 and that are equipped with multiple processors

that support processor power management features may experience

decreased performance,” 2007, last retrieved August 31st, 2010. [Online].

Available: http://support.microsoft.com/kb/896256/EN-US/

[105] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Pro-

gramming Interface for Performance Evaluation on Modern Processors,”

396

Bibliography

International Journal of High Performance Computing Applications, vol. 14,

no. 3, p. 189, 2000.

[106] R. Berrendorf, H. Ziegler, and B. Mohr, “PCL - the Performance

Counter Library,” 2003, last retrieved 2009-04-04. [Online]. Available:

http://www.fz-juelich.de/jsc/PCL/

[107] JETM Team, “Java Execution Time Measurement Library,” 2009, last

retrieved August 31st, 2010. [Online]. Available: http://jetm.void.fm

[108] J. Banes, “GAGE - Genuine Advantage Gaming Engine,” 2004, last

retrieved April 4th, 2009; Website no longer online as of August 31st,

2010. [Online]. Available: http://java.dnsalias.com/

[109] K. Candar, MONO .Net goes LINUX, ser. Franzis professional series.

Poing: Franzis-Verl., 2007, gb. : EUR 49.95 (D). [Online]. Available:

http://media.obvsg.at/AC06551236-1001

[110] T. Lindholm and F. Yellin, The Java Virtual Machine Specification. Addison-

Wesley, 1999.

[111] T. Rodriquez and K. Russel, “Client compiler for the java hotspot virtual

machine,” JavaOne, Sun’s 2002 Worldwide Java Developer Conference, 2002.

[112] “Native Image Generator (Ngen.exe),” last consulted on May 5th,

2011. [Online]. Available: http://msdn.microsoft.com/de-de/library/

6t9t5wcf(v=vs.80).aspx

[113] “Nanojit, a small, cross-platform C++ library that emits machine

code,” last consulted on May 5th, 2011. [Online]. Available: https:

//developer.mozilla.org/En/Nanojit

[114] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: a code manipulation

tool to implement adaptable systems,” Adaptable and Extensible Component

Systems, 2002, http://asm.ow2.org. [Online]. Available: http://asm.ow2.

org

397

Bibliography

[115] M. Dahm, “Byte Code Engineering with the BCEL API,” Freie

Universitaet Berlin, Tech. Rep. B-17-98, 2001. [Online]. Available:

http://bcel.sourceforge.net/downloads/report.pdf

[116] “Retrotranslator: a tool that makes Java applications compatible with

Java 1.4, Java 1.3 and other environments.” 2010, last retrieved August

31st, 2010. [Online]. Available: http://retrotranslator.sourceforge.net/

[117] “AgitarOne JUnit Generator creates thorough JUnit tests on your code,”

2010, http://www.agitar.com/, last retrieved August 31st, 2010. [Online].

Available: http://www.agitar.com/

[118] “Oracle WebLogic Products,” 2010,

http://www.oracle.com/us/products/middleware/application-

server/index.htm, last retrieved August 31st, 2010. [Online]. Available:

http://www.oracle.com/us/products/middleware/application-server/

index.htm

[119] J. Thiel, “An overview of software performance analysis tools and tech-

niques: From gprof to dtrace,” Citeseer, Tech. Rep., 2006.

[120] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. Reddi, and K. Hazelwood, “Pin: building customized program ana-

lysis tools with dynamic instrumentation,” in Proceedings of the 2005 ACM

SIGPLAN conference on Programming language design and implementation.

ACM, 2005, pp. 190–200.

[121] M. Dmitriev, “Design of JFluid: A profiling technology and tool based

on dynamic bytecode instrumentation,” Sun Microsystems, Inc. Mountain

View, CA, USA, p. 22, 2003.

[122] H. Lee and B. Zorn, “Bytecode Instrumentation as an Aid in Understand-

ing the Behavior of Java Persistent Stores,” in OOPSLA 1997 Workshop on

Garbage Collection and Memory Management. Citeseer.

398

Bibliography

[123] H. B. Lee and B. G. Zorn, “Bit: a tool for instrumenting java bytecodes,”

in USITS’97: Proceedings of the USENIX Symposium on Internet Technologies

and Systems on USENIX Symposium on Internet Technologies and Systems.

Berkeley, CA, USA: USENIX Association, 1997, pp. 7–7.

[124] A. Chander, J. Mitchell, and I. Shin, “Mobile code security by Java byte-

code instrumentation,” in 2001 DARPA Information Survivability Conference

& Exposition (DISCEX II). Citeseer, 2001.

[125] M. Yang, “Secure J2ME Application with Bytecode Instrumentation,”

2008.

[126] P. Abercrombie and M. Karaorman, “jContractor:: Bytecode Instrumenta-

tion Techniques for Implementing Design by Contract in Java,” Electronic

Notes in Theoretical Computer Science, vol. 70, no. 4, pp. 55–79, 2002.

[127] Y. Cheng, C. Chen, and C. Hsieh, “ezcontract: Using marker library and

bytecode instrumentation to support design by contract in java,” 2007.

[128] H. Lee, “BIT: Bytecode instrumenting tool,” 1997, bachelor Thesis at the

University of Washington.

[129] W. Binder, J. Hulaas, and P. Moret, “Advanced Java bytecode instrument-

ation,” in Proceedings of the 5th international symposium on Principles and

practice of programming in Java. ACM, 2007, p. 144.

[130] T. Proebsting, G. Townsend, P. Bridges, J. Hartman, T. Newsham, and

S. Watterson, “Toba: Java for applications a way ahead of time (wat) com-

piler,” in Proceedings of the 3rd conference on USENIX Conference on Object-

Oriented Technologies (COOTS)-Volume 3. USENIX Association, 1997, p. 3.

[131] G. Muller, B. Moura, F. Bellard, and C. Consel, “Harissa: A flexible and

efficient Java environment mixing bytecode and compiled code,” in Pro-

ceedings of the 3rd conference on USENIX Conference on Object-Oriented Tech-

nologies (COOTS)-Volume 3. USENIX Association, 1997, p. 1.

399

Bibliography

[132] A. Puder and S. H

"aberling, “Byte code level cross-compilation for developing web applica-

tions,” Science of Computer Programming, vol. 74, no. 5-6, pp. 379–396, 2009.

[133] S. Kounev, F. Brosig, N. Huber, and R. Reussner, “Towards self-aware

performance and resource management in modern service-oriented sys-

tems,” in Proceedings of the 7th IEEE International Conference on Services

Computing (SCC 2010), July, pp. 5–10.

[134] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: a call graph exe-

cution profiler,” SIGPLAN Not., vol. 39, no. 4, pp. 49–57, 2004.

[135] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney, “Evaluating the

accuracy of Java profilers,” in Proceedings of the 2010 ACM SIGPLAN con-

ference on Programming language design and implementation. ACM, 2010,

pp. 187–197.

[136] “Sun Microsystems, Inc., Java Virtual Machine Profiler Interface

(JVMPI),” 2007, last visit: December 21st, 2007. [Online]. Available:

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/

[137] “JProfiler,” 2010, http://www.ej-

technologies.com/products/jprofiler/overview.html, last re-

trieved August 27th, 2010. [Online]. Available: http:

//www.ej-technologies.com/products/jprofiler/overview.html

[138] K. Krogmann, M. Kuperberg, and R. Reussner, “Using Genetic Search

for Reverse Engineering of Parametric Behaviour Models for Performance

Prediction,” IEEE Transactions on Software Engineering, 2009, accepted for

publication, to appear.

[139] C. Hrischuk, C. Murray Woodside, and J. Rolia, “Trace-based load charac-

terization for generating performance softwaremodels,” IEEE Transactions

Software Engineering, vol. 25, no. 1, pp. 122–135, Jan/Feb 1999.

400

Bibliography

[140] T. Israr, M. Woodside, and G. Franks, “Interaction tree algorithms

to extract effective architecture and layered performance mod-

els from traces,” Journal of Systems and Software, 5th International

Workshop on Software and Performance, vol. 80, no. 4, pp. 474–492,

April 2007. [Online]. Available: http://www.sciencedirect.com/science/

article/B6V0N-4KSSW5C-1/2/be38c84d6892a796dc2833b6622f66d3

[141] M. D. McIlroy, “Mass Produced Software Components,” in Software Engin-

eering, P. Naur and B. Randell, Eds. Brussels: Scientific Affairs Division,

NATO, 1969, pp. 138–155, report of a conference sponsored by the NATO

Science Committee, Garmisch, Germany, 7th to 11th October 1968.

[142] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond Object-

Oriented Programming, 2nd ed. New York, NY: ACM Press and Addison-

Wesley, 2002.

[143] O. Alliance, “OSGi service platform, Core Specification release 4.1,” Draft,

May, 2007.

[144] J. Zhou, D. Zhao, Y. Ji, and J. Liu, “Examining OSGi from an ideal en-

terprise software component model,” in Software Engineering and Service

Sciences (ICSESS), 2010 IEEE International Conference on. IEEE, 2010, pp.

119–123.

[145] Z. Durdik, “Architectural modeling in agile methods,” in WCOP2010,

B. Bühnová, R. H. Reussner, C. Szyperski, and W. Weck, Eds.,

vol. Technical Report 2010-14. Karlsruhe Institue of Technology,

Faculty of Informatics, June 2010, pp. 23–30. [Online]. Available:

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018464

[146] Microsoft Corporation, “The DCOM homepage,” 2007, last retrieved

August 31st, 2010. [Online]. Available: http://www.microsoft.com/com/

default.mspx

401

Bibliography

[147] J. Dietrich, C. McCartin, E. Tempero, and S. Shah, “Barriers to Modularity-

An Empirical Study to Assess the Potential forModularisation of Java Pro-

grams,” Research into Practice–Reality and Gaps, pp. 135–150, 2010.

[148] V. Grassi, R. Mirandola, and A. Sabetta, “From Design to Analysis Mod-

els: a Kernel Language for Performance and Reliability Analysis of

Component-based Systems,” in WOSP ’05: Proceedings of the 5th interna-

tional workshop on Software and performance. New York, NY, USA: ACM

Press, 2005, pp. 25–36.

[149] H. Koziolek, “Performance evaluation of component-based software

systems: A survey,” Performance Evaluation, vol. In Press, Corrected Proof,

pp. –, 2009. [Online]. Available: http://www.sciencedirect.com/science/

article/B6V13-4WXC21F-1/2/602bed8a6bd384b5516b8f84ac82c672

[150] S. Becker, L. Grunske, R. Mirandola, and S. Overhage, “Performance Pre-

diction of Component-Based Systems: A Survey from an Engineering Per-

spective,” in Architecting Systems with Trustworthy Components, ser. LNCS,

R. Reussner, J. Stafford, and C. Szyperski, Eds. Springer, 2006, vol. 3938,

pp. 169–192.

[151] A. Bertolino and R. Mirandola, “CB-SPE Tool: Putting Component-Based

Performance Engineering into Practice,” in Proc. 7th International Sym-

posium on Component-Based Software Engineering (CBSE 2004), Edinburgh,

UK, ser. LNCS, I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C.

Wallnau, Eds., vol. 3054. Springer Heidelberg, 2004, pp. 233–248.

[152] X. Wu and C. M. Woodside, “Performance modeling from software

components,” in WOSP, J. J. Dujmovic, V. A. F. Almeida, and

D. Lea, Eds. ACM, 2004, pp. 290–301. [Online]. Available: http:

//doi.acm.org/10.1145/974044.974089

[153] J. Ivers and G. Moreno, “PACC starter kit: developing software with pre-

dictable behavior,” in Companion of the 30th international conference on Soft-

ware engineering. ACM, 2008, pp. 949–950.

402

Bibliography

[154] ——, “Model-driven development with predictable quality,” in Compan-

ion to the 22nd ACM SIGPLAN conference on Object-oriented programming

systems and applications companion. ACM, 2007, p. 875.

[155] S. A. Hissam, G. A. Moreno, J. A. Stafford, and K. C. Wallnau, “Packaging

Predictable Assembly.” in Component Deployment, IFIP/ACMWorking Con-

ference, CD 2002, Berlin, Germany, June 20-21, 2002, Proceedings, ser. Lecture

Notes in Computer Science, J. M. Bishop, Ed., vol. 2370. Springer, 2002,

pp. 108–124.

[156] R. Aigner, H. Berthold, E. Franz, S. Gbel, H. Hrtig, H. Humann, K. Meiner,

K. Meyer-Wegener, M. Meyerhoefer, A. Pfitzmann, S. Rttger, A. Schill,

T. Springer, and F. Wehner, “COMQUAD - Komponentenbasierte Soft-

waresysteme mit zusagbaren quantitativen Eigenschaften und Adap-

tionsfhigkeit,” TU Dresden, Fakultt Informatik, Technical Report TUD-

FI02-10, Nov. 2002.

[157] S. Goebel, C. Pohl, S. Roettger, and S. Zschaler, “The COMQUAD compon-

ent model: enabling dynamic selection of implementations by weaving

non-functional aspects,” in AOSD ’04: Proceedings of the 3rd International

Conference on Aspect-oriented Software Development. New York, NY, USA:

ACM Press, 2004, pp. 74–82.

[158] M. Meyerhöfer and K. Meyer-Wegener, “Estimating Non-functional Prop-

erties of Component-based Software Based on Resource Consumption,”

Electr. Notes Theor. Comput. Sci., vol. 114, pp. 25–45, 2005.

[159] S. Becker, H. Koziolek, and R. Reussner, “The Palladio Component Model

for Model-Driven Performance Prediction: Extended version,” Journal

of Systems and Software, vol. 82, pp. 3–22, 2008. [Online]. Available:

http://dx.doi.org/10.1016/j.jss.2008.03.066

[160] H. Koziolek, Parameter Dependencies for Reusable Performance Specifications

of Software Components, ser. The Karlsruhe Series on Software Design and

Quality. Universitätsverlag Karlsruhe, 2008, vol. 2.

403

Bibliography

[161] S. Becker, Coupled Model Transformations for QoS Enabled Component-Based

Software Design, ser. The Karlsruhe Series on Software Design and Quality.

Universitätsverlag Karlsruhe, March 2008, vol. 1.

[162] J. Shirazi, Java Performance Tuning, 2nd ed. O’Reilly, 2003.

[163] C. Larman and R. Guthrie, Java 2 Performance and Idiom Guide. Prentice

Hall PTR, 2000.

[164] “Java Platform API Documentation, java.lang.System class,” 2010,

http://download.oracle.com/javase/1.5.0/docs/api/java/lang/System.html,

last retrieved August 31st, 2010. [Online]. Available: http:

//download.oracle.com/javase/1.5.0/docs/api/java/lang/System.html

[165] Chuck Walbourn, “Game Timing and Multicore Processors,”

http://msdn.microsoft.com/en-us/library/ee417693March 9th, 2010.

[Online]. Available: http://msdn.microsoft.com/en-us/library/

ee417693%28VS.85%29.aspx

[166] Intel, “Time Stamp Counter, Intel 64 and IA-

32 Architectures Software Developer’s Manual Volume

2B: Instruction Set Reference, N-Z, Pages 251–252,”

http://developer.intel.com/design/processor/manuals/253667.pdf, last

visit: March 9th, 2010. [Online]. Available: http://developer.intel.com/

design/processor/manuals/253667.pdf

[167] R. Richter, “Java Simon - Simple Monitoring API,”

http://code.google.com/p/javasimon/, last visit: March 9th, 2010.

[Online]. Available: http://code.google.com/p/javasimon/

[168] M. Kuperberg, F. Omri, and R. Reussner, “Using Heuristics to Automate

Parameter Generation for Benchmarking of Java Methods,” in Proceedings

of the 6th International Workshop on Formal Engineering approaches to

Software Components and Architectures, York, UK, 28th March 2009 (ETAPS

2009, 12th European Joint Conferences on Theory and Practice of Software),

404

Bibliography

2009. [Online]. Available: http://sdqweb.ipd.uka.de/publications/pdfs/

kuperberg2009a.pdf

[169] M. Kuperberg and F. Omri, “Automated Benchmarking of Java APIs,” in

Proceedings of Software Engineering 2010 (SE2010), February 2010, to appear.

[170] G. Stuer, K. Vanmechelen, J. Broeckhove, and T. Dhaene, “Sleeping in

Java,” in Proceedings of the EuroMedia 2004 conference, Belgium, vol. 10, 2004,

pp. 74–78.

[171] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and Computer

Science Applications, 2nd ed. Wiley, 2001.

[172] B. Beckert and S. Schlager, “Software verificationwith integrated data type

refinement for integer arithmetic,” vol. 2999. Springer, 2004, pp. 207–226.

[173] D. Brumley, D. X. Song, T. cker Chiueh, R. Johnson, and H. Lin, “Rich:

Automatically protecting against integer-based vulnerabilities,” in Pro-

ceedings of the Network and Distributed System Security Symposium, NDSS

2007, San Diego, California, USA, 28th February - 2nd March 2007, 2007.

[174] D. Keaton, T. Plum, R. C. Seacord, D. Svoboda, A. Volkovitsky, and

T. Wilson, “As-if infinitely ranged integer model,” CERT Program, Soft-

ware Engineering Institute (SEI), Tech. Rep. CMU/SEI-2009-TN-023, July

2009, www.cert.org/archive/pdf/09tn023.pdf.

[175] A. . I. Board, “Ariane5 flight 501 failure,” Online, 1996,

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf. [Online]. Avail-

able: http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

[176] S. Brunthaler, “Virtual-machine abstraction and optimization techniques,”

Electr. Notes Theor. Comput. Sci., vol. 253, no. 5, pp. 3–14, 2009.

[177] R. Martin, “The Testing Slant on the Different Types of Y2K Errors,” in

Unpublished briefing to the Intelligence Community on Year 2000 Testing Work-

shop, Washington, DC, vol. 23, 1998.

405

Bibliography

[178] L. Prechelt, “The surprising dynamics of a simple year 2000 bug,” ACM

SIGSOFT Software Engineering Notes, vol. 24, no. 3, pp. 56–57, 1999.

[179] C. Jones, “Bad days for software,” IEEE Spectrum, vol. 35, no. 9, pp. 47–52,

1998.

[180] M. Kuperberg, “Influence of Execution Environments on the Performance

of Software Components,” in Proceedings of the 2nd International Research

Training Groups Workshop, Dagstuhl, Germany, November 6 - 8, 2006, ser.

Reihe Trustworthy Software Systems, J. Happe, H. Koziolek, andM. Rohr,

Eds., vol. 3, 2006. [Online]. Available: http://www.gito.de/impress/

produkte.nsf/0/81B3A5D1DBB12943C125738B00762D3C

[181] S. Chiba, Y. Sato, and M. Tatsubori, “Using HotSwap for implementing

dynamic AOP systems,” in 1st Workshop on Advancing the State-of-the-Art

in Run-time Inspection, july. Citeseer, 2003.

[182] J. Kabanov, “JRebel Tool Demo,” Bytecode 2010, p. 71, 2010.

[183] C. S. Wolfgang Weck, Jan Bosch, Ed., Proceedings of the Second International

Workshop on Component-Oriented Programming (WCOP ’97). Finnland:

TUCS, Sep. 1997, general Publication No. 5.

[184] A. Loskutov, “Bytecode Outline plugin for Eclipse,” last visit: October 1st,

2007. [Online]. Available: http://andrei.gmxhome.de/bytecode/index.

html

[185] M. Kuperberg and S. Becker, “Predicting Software Component Per-

formance: On the Relevance of Parameters for Benchmarking

Bytecode and APIs,” in Proceedings of the 12th International Work-

shop on Component Oriented Programming (WCOP 2007), R. Reussner,

C. Czyperski, and W. Weck, Eds., July 2007. [Online]. Available:

http://sdqweb.ipd.uka.de/publications/pdfs/kuperberg2007a.pdf

[186] H. Koziolek and J. Happe, Dependability Metrics, ser. LNCS. Springer

Heidelberg, 2008, vol. 4909, ch. Performance Metrics for Specific

406

Bibliography

Domains, pp. 233–240. [Online]. Available: http://www.springerlink.

com/content/t13718l56531335p/fulltext.pdf

[187] C. Herder and J. J. Dujmovic, “Workload Characterization Using Metrics

Based on Instruction Grouping,” International Journal of Computer and In-

formation Science, vol. 5, no. 1, 2004.

[188] J. Lee, “Program Validation by Symbolic and Reverse Execution,” PhD

thesis, BRICS Ph.D. School, Department of Computer Science, University

of Aarhus, Aarhus, Denmark, November 2006. [Online]. Available:

http://www.brics.dk/~jlee/papers/thesis-jooyong.pdf

[189] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz, and C. Xiao, “The Daikon system for dynamic detection of likely

invariants,” Science of Computer Programming, vol. 69, no. 1–3, pp. 35–45,

Dec. 2007.

[190] F. Siebert, “Realtime garbage collection in the JamaicaVM 3.0,” in Proceed-

ings of the 5th international workshop on Java technologies for real-time and em-

bedded systems. ACM, 2007, p. 103.

[191] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and M. Turnbull, The

real-time specification for Java. Citeseer, 2000.

[192] M. Hauck, M. Kuperberg, K. Krogmann, and R. Reussner, “Mod-

elling Layered Component Execution Environments for Perform-

ance Prediction,” in Proceedings of the 12th International Sym-

posium on Component Based Software Engineering (CBSE 2009), ser.

LNCS, no. 5582. Springer, 2009, pp. 191–208. [Online]. Available:

http://www.comparch-events.org/pages/present.html

[193] B. Beckert, R. Hähnle, and P. H. Schmitt, Eds.,Verification of Object-Oriented

Software: The KeY Approach, ser. LNCS 4334. Springer-Verlag, 2007.

[194] Intel Corporation, “Intel VTune Performance Ana-

lyzer,” 2009, http://software.intel.com/en-us/articles/intel-vtune-

407

Bibliography

performance-analyzer-for-windows-documentation/, last visit: October

9th, 2009. [Online]. Available: http://software.intel.com/en-us/articles/

intel-vtune-performance-analyzer-for-windows-documentation/

[195] C. Click and M. Paleczny, “A simple graph-based intermediate represent-

ation,” in ACM SIGPLANWorkshop on Intermediate Representations. ACM

Press, 1995.

[196] F. Omri, “Design and Implementation of a fine-grained Benchmark for

the Java API,” Study thesis at chair ’Software Design and Quality’ Prof.

Reussner, February 2007.

[197] I. R. Forman and N. Forman, Java Reflection in Action (In Action series).

Greenwich, CT, USA: Manning Publications Co., 2004.

[198] S. Chiba, “Javassist (Java Programming Assistant),” last retrieved August

31st, 2010. [Online]. Available: http://www.csg.is.titech.ac.jp/projects/

index.html

[199] D. A. Menascï¿12 and V. A. F. Almeida, Capacity Planning for Web Services:

metrics, models, and methods. Prentice Hall, 2001, ch. 3.1: Basic Perform-

ance Concepts: Service Times at single Disks and Disk Arrays, pp. 72–90.

[200] M. Kuperberg, K. Krogmann, and R. Reussner, “Performance Prediction

for Black-Box Components using Reengineered Parametric Behaviour

Models,” in Proceedings of the 11th International Symposium on Component

Based Software Engineering (CBSE 2008), Karlsruhe, Germany, 14th-17th

October 2008, ser. LNCS, vol. 5282. Springer Heidelberg, October 2008,

pp. 48–63. [Online]. Available: http://sdqweb.ipd.uka.de/publications/

pdfs/kuperberg2008c.pdf

[201] M. Kuperberg, M. Krogmann, and R. Reussner, “ByCounter: Portable

Runtime Counting of Bytecode Instructions and Method Invocations,”

in Proceedings of the 3rd International Workshop on Bytecode Semantics,

Verification, Analysis and Transformation, Budapest, Hungary, 5th April

408

Bibliography

2008 (ETAPS 2008, 11th European Joint Conferences on Theory and

Practice of Software), 2008. [Online]. Available: http://sdqweb.ipd.uka.

de/publications/pdfs/kuperberg2008a.pdf

[202] J. Happe, “Predicting Software Performance in Symmetric Multi-core and

Multiprocessor Environments,” Dissertation, University of Oldenburg,

Germany, August 2008.

[203] M. Hauck, “Extending Performance-Oriented Resource Modelling in the

Palladio Component Model,” Master’s thesis, University of Karlsruhe

(TH), Germany, February 2009. [Online]. Available: http://sdqweb.ipd.

uka.de/publications/pdfs/hauck2009a.pdf

[204] K. Krogmann, C. M. Schweda, S. Buckl, M. Kuperberg, A. Martens, and

F. Matthes, “Improved Feedback for Architectural Performance Prediction

using Software Cartography Visualizations,” in Architectures for Adaptive

Systems (Proceeding of QoSA 2009), ser. LNCS, C. H. Raffaela Mirandola,

Ian Gorton, Ed., vol. 5581. Springer, 2009, pp. 52–69. [Online]. Available:

http://www.springerlink.com/content/m0325512hl4857v1

[205] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric

approach,” in Encyclopedia of Software Engineering, 2nd ed., J. J. Marciniak,

Ed. John Wiley & Sons, 2002, pp. 578–583.

[206] A. Martens, H. Koziolek, L. Prechelt, and R. Reussner, “From monolithic

to component-based performance evaluation of software architectures –

a series of experiments analysing accuracy and effort,” Journal of Empir-

ical Software Engineering, 2010, to appear in the Special Issue on Empirical

Studies in Software Architecture: Opportunities, Approaches, and Chal-

lenges, edited by M. Ali Babar, Patricia Lago and Arie van Deursen.

[207] SPEC, “SPECjbb2005 - Industry-standard server-side Java benchmark

(J2SE 5.0).” Standard Performance Evaluation Corporation, Jun. 2005,

SPECtacular Award. [Online]. Available: http://www.spec.

org/jbb2005/

409

Bibliography

[208] “Linpack Benchmark (Java Version),” 2007, uRL:

http://www.netlib.org/benchmark/linpackjava/, last visit: October

9th, 2009. [Online]. Available: http://www.netlib.org/benchmark/

linpackjava/

[209] “TOP500 Supercomputing Sites,” 2010, http://www.top500.org/, last

retrievedAugust 31st, 2010. [Online]. Available: http://www.top500.org/

[210] “Roy Longbottom’s PC Benchmark Collection,” 2010,

http://www.roylongbottom.org.uk, last retrieved August 31st, 2010.

[Online]. Available: http://www.roylongbottom.org.uk

[211] “The JLayer project: MP3 decoder/player/converter library for Java

platform,” 2010, http://www.javazoom.net/javalayer/javalayer.html,

last retrieved August 31st, 2010. [Online]. Available: http://www.

javazoom.net/javalayer/javalayer.html

[212] A. Martens, H. Koziolek, S. Becker, and R. H. Reussner, “Automatically

improve software models for performance, reliability and cost using

genetic algorithms,” in Proceedings of the 1st Joint WOSP/SIPEW

International Conference on Performance Engineering (WOSP/SIPEW ’10).

New York, NY, USA: ACM, 2010. [Online]. Available: http://sdqweb.ipd.

uka.de/publications/pdfs/martens2010a.pdf

[213] S. Wilson and J. Kesselman, Java platform performance: strategies and tactics.

Prentice Hall PTR, 2000.

[214] L. Lamport, “Time, clocks, and the ordering of events in a distributed sys-

tem,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[215] F. Mattern, “Virtual time and global states of distributed systems,” Parallel

and Distributed Algorithms, pp. 215–226, 1989.

[216] C. Fidge, “Timestamps in message-passing systems that preserve the par-

tial ordering,” in Proceedings of the 11th Australian Computer Science Confer-

ence, vol. 10, no. 1, 1988, pp. 56–66.

410

Bibliography

[217] J. Bloch, Effective Java, 2nd ed. Addison-Wesley Professional, 2008.

[218] C. Collberg, G.Myles, andM. Stepp, “An empirical study of Java bytecode

programs,” Software: Practice and Experience, vol. 37, no. 6, pp. 581–641,

2007.

[219] B. Cooper, H. Lee, and B. Zorn, “ProfBuilder: A package for rapidly build-

ing Java execution profilers,” University of Colorado, Boulder, Technical Re-

port CU-CS-853-98, 1998.

[220] G. Cohen and J. Chase, “An architecture for safe bytecode insertion,”

Software–Practice and Experience, vol. 34, no. 7, pp. 1–12, 2001.

[221] G. Cohen, J. Chase, and D. Kaminsky, “Automatic program transforma-

tion with JOIE,” in Proceedings of the annual conference on USENIX Annual

Technical Conference. USENIX Association, 1998, p. 14.

[222] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton,

and E. Tempero, “Understanding the shape of Java software,” ACM SIG-

PLAN Notices, vol. 41, no. 10, p. 412, 2006.

[223] E. Tempero, “How fields are used in java: An empirical study,” apr. 2009,

pp. 91 –100.

[224] S. Balsamo, A. Di Marco, P. Inverardi, andM. Simeoni, “Model-Based Per-

formance Prediction in Software Development: A Survey,” IEEE Transac-

tions on Software Engineering, vol. 30, no. 5, pp. 295–310, May 2004.

[225] A. Seesing and A. Orso, “Insectj: a generic instrumentation framework for

collecting dynamic information within eclipse,” in eclipse ’05: Proceedings

of the 2005 OOPSLA workshop on Eclipse technology eXchange. New York,

NY, USA: ACM, 2005, pp. 45–49.

[226] M. Bertoli, G. Casale, and G. Serazzi, “Jmt: performance engineering tools

for system modeling,” SIGMETRICS Perform. Eval. Rev., vol. 36, no. 4, pp.

10–15, 2009.

411

Bibliography

[227] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge, “Dynamic Metrics

for Java,” in OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN

conference on Object-oriented programing, systems, languages, and applications.

New York, NY, USA: ACM, 2003, pp. 149–168.

[228] J. Donnell, “Java Performance Profiling using the VTune Performance

Analyzer,” http://software.intel.com/file/29675, 2004, last retrieved Au-

gust 31st, 2010.

[229] B. Alpern, S. Augart, S. Blackburn, M. Butrico, A. Cocchi, P. Cheng,

J. Dolby, S. Fink, D. Grove, M. Hind, K. McKinley, M. Mergen, J. Moss,

T. Ngo, V. Sarkar, and M. Trapp, “The Jikes Research Virtual Machine pro-

ject: building an open-source research community,” IBM Systems Journal,

vol. 44, no. 2, pp. 399–417, 2005.

[230] V. Schuppan, M. Baur, and A. Biere, “JVM Independent Replay in Java,”

Electr. Notes Theor. Comput. Sci., vol. 113, pp. 85–104, 2005.

[231] J. Maebe, D. Buytaert, L. Eeckhout, and K. D. Bosschere, “Javana: a system

for building customized Java program analysis tools,” in OOPSLA, 2006,

pp. 153–168.

[232] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hin, “Vertical profiling:

understanding the behavior of object-priented applications,” in OOPSLA

’04: Proceedings of the 19th annual ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications. New York, NY,

USA: ACM, 2004, pp. 251–269.

[233] J. Steven, P. Chandra, B. Fleck, and A. Podgurski, “jRapture: A Cap-

ture/Replay tool for observation-based testing,” in ISSTA, 2000, pp. 158–

167.

[234] W. Binder, J. Hulaas, and P. Moret, “Advanced Java Bytecode Instrument-

ation,” in PPPJ 2007, Lisboa, Portugal, September 5-7, 2007. ACM, 2007, pp.

135–144.

412

Bibliography

[235] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co,

“Soot - a Java Optimization Framework,” in Proceedings of CASCON 1999,

1999, pp. 125–135.

[236] S. Yamazaki, M. Matsumoto, T. Nakanishi, T. Kitasuka, and A. Fukuda,

“A Case Study of Development of a Java Bytecode Analyzer Framework

Using AspectJ,” IPSJ Digital Courier, vol. 1, no. 0, pp. 104–116, 2005.

[237] M. Arnold and B. Ryder, “A framework for reducing the cost of instru-

mented code,” in Proceedings of the ACM SIGPLAN 2001 conference on Pro-

gramming language design and implementation. ACM, 2001, pp. 168–179.

[238] P. Brebner, E. Cecchet, J. Marguerite, P. Tuma, O. Ciuhandu, B. Dufour,

L. Eeckhout, S. Frénot, A. S. Krishna, J. Murphy, and C. Verbrugge, “Mid-

dleware benchmarking: approaches, results, experiences,” Concurrency

and Computation: Practice and Experience, vol. 17, no. 15, pp. 1799–1805,

2005.

[239] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and R. A. Davey,

“A benchmark suite for high performance java,” Concurrency - Practice and

Experience, vol. 12, no. 6, pp. 375–388, 2000.

[240] “Java SciMark 2.0,” 2007, uRL: http://math.nist.gov/scimark2/, last

visit: Oct. 9th, 2009. [Online]. Available: http://math.nist.gov/scimark2/

[241] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini, “Removing

useless variables in cost analysis of Java bytecode,” in Proceedings of the

2008 ACM symposium on Applied computing. ACM, 2008, pp. 368–375.

[242] Winfried Klinker, “Analyse von MS IL Byte Code unter Performance-

gesichtspunkten,” BSc thesis at the University of Oldenburg, 2005.

[243] B. Beizer, Black-Box Testing. John Wiley & Sons, Inc.; 1st Ed., 1995.

[244] P. Drongowski, L. Yu, F. Swehosky, S. Suthikulpanit, and R. Richter, “In-

corporating Instruction-Based Sampling into AMDCodeAnalyst,” in 2010

413

Bibliography

IEEE International Symposium on Performance Analysis of Systems & Software

(ISPASS), 2010, pp. 119–120.

[245] M. Annavaram, R. Rakvic, M. Polito, J. Bouguet, R. Hankins, and B. Dav-

ies, “The fuzzy correlation between code and performance predictability,”

in 37th International Symposium on Microarchitecture, 2004. MICRO-37 2004,

2004, pp. 93–104.

[246] W. Alexander, R. Berry, F. Levine, and R. Urquhart, “A unifying approach

to performance analysis in the Java environment,” IBM Systems Journal,

vol. 39, no. 1, pp. 118–134, 2000.

[247] J. Aycock, “A brief history of just-in-time,” ACM Computing Surveys

(CSUR), vol. 35, no. 2, p. 113, 2003.

[248] L. Yang, X. Ma, and F. Mueller, “Cross-platform performance prediction

of parallel applications using partial execution,” 2005.

[249] S. Sodhi, J. Subhlok, and Q. Xu, “Performance prediction with skeletons,”

Cluster Computing, vol. 11, no. 2, pp. 151–165, 2008.

[250] S. Shimizu, R. Rangaswami, H. Duran-Limon, and M. Corona-Perez,

“Platform-independent modeling and prediction of application resource

usage characteristics,” Journal of Systems and Software, vol. 82, no. 12, pp.

2117–2127, 2009.

[251] R. Badia, J. Labarta, J. Gimenez, and F. Escale, “DIMEMAS: Predicting

MPI applications behavior in Grid environments,” in Workshop on Grid

Applications and Programming Tools (GGF8), vol. 86, 2003.

[252] D. Katramatos and S. Chapin, “A cost/benefit estimating service for map-

ping parallel applications on heterogeneous clusters,” in IEEE International

Conference on Cluster Computing. Citeseer, 2005.

[253] S. Sadjadi, S. Shimizu, J. Figueroa, R. Rangaswami, J. Delgado, H. Duran,

and X. Collazo, “A modeling approach for estimating execution time

414

Bibliography

of long-running scientific applications,” in Proceedings of the Fifth High-

Performance Grid Computing Workshop. Citeseer, 2008.

[254] G. Marin and J. Mellor-Crummey, “Cross-architecture performance pre-

dictions for scientific applications using parameterized models,” in Pro-

ceedings of the joint international conference on Measurement and modeling of

computer systems. ACM, 2004, pp. 2–13.

[255] B. Lee and D. Brooks, “Illustrative design space studies with microarchi-

tectural regression models,” in IEEE 13th International Symposium on High

Performance Computer Architecture, 2007. HPCA 2007, 2007, pp. 340–351.

[256] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry, J. Harper, and D. Wil-

cox, “Pace–A Toolset for the Performance Prediction of Parallel and Dis-

tributed Systems,” International Journal of High Performance Computing App-

lications, vol. 14, no. 3, p. 228, 2000.

[257] E. Papaefstathiou, D. Kerbyson, G. Nudd, D. Wilcox, J. Harper, and

S. Perry, “A Common Workload Interface for the Performance Predic-

tion of High Performance Systems,” in Proceedings of the IEEE International

Symposium On Computer Architecture, Workshop on Performance Analysis in

Design (PAID 98) Barcelona. Citeseer, 1998.

[258] A. Alkindi, D. Kerbyson, and G. Nudd, “Dynamic instrumentation and

performance prediction of application execution,” in High-Performance

Computing and Networking. Springer, 2009, pp. 513–523.

[259] Object Management Group (OMG), “UML Profile for Schedulability,

Performance and Time,” January 2005. [Online]. Available: http:

//www.omg.org/cgi-bin/doc?formal/2005-01-02

[260] ——, “UML Profile for Modeling and Analysis of Real-Time and

Embedded systems (MARTE) RFP (realtime/05-02-06),” 2006. [Online].

Available: http://www.omg.org/cgi-bin/doc?realtime/2005-2-6

415

Bibliography

[261] C. Atkinson and T. Kuehne, “A generalized notion of platforms for model-

driven development,” Model-driven Software Development, pp. 119–136,

2005.

[262] D. B. Petriu andM.Woodside, “AMetamodel for Generating Performance

Models fromUMLDesigns,” inUML 2004 - The UnifiedModeling Language.

Model Languages and Applications. 7th International Conference, Lisbon, Por-

tugal, October 11-15, 2004, Proceedings, ser. LNCS, T. Baar, A. Strohmeier,

A. Moreira, and S. J. Mellor, Eds., vol. 3273. Springer, 2004, pp. 41–53.

[263] V. Grassi, R. Mirandola, E. Randazzo, and A. Sabetta, “Klaper: An in-

termediate language for model-driven predictive analysis of performance

and reliability,” The Common Component Modeling Example, pp. 327–356,

2008.

[264] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced features

in a hierarchical component model,” in SERA ’06: Proceedings of the Fourth

International Conference on Software Engineering Research, Management and

Applications. Washington, DC, USA: IEEE Computer Society, 2006, pp.

40–48.

[265] E. Bondarev, J. Muskens et al., “Predicting Real-Time Properties of Com-

ponent Assemblies: a Scenario-Simulation Approach,” 2004.

[266] J. Gelissen and R. M. Laverty, “Robocop: Revised specification of frame-

work andmodels (deliverable 1.5),” Information Technology for European

Advancement, Tech. Rep., 2003.

[267] M. Dmitriev, “Application of the HotSwap technology to advanced profil-

ing,” in Proceedings of the First Workshop on Unanticipated Software Evolution,

held at ECOOP 2002 International Conference. Citeseer.

[268] D. Kim and E. Tilevich, “Overcoming JVMHotSwap constraints via binary

rewriting,” in Proceedings of the 1st International Workshop on Hot Topics in

Software Upgrades. ACM, 2008, p. 5.

416

Bibliography

[269] L. Kapova and S. Becker, “Systematic refinement of performance models

for concurrent component-based systems,” in 7th International Workshop

on Formal Engineering approaches to Software Components and Architectures

(FESCA), ser. Electronic Notes in Theoretical Computer Science. Elsevier,

2010. [Online]. Available: http://sdqweb.ipd.uka.de/publications/pdfs/

kapova2010a.pdf

417

