
Operating Policies for Energy Efficient
Large Scale Computing

Matthew James Forshaw
School of Computing Science

Newcastle University

In Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

Submitted: January 2015

Acknowledgements

First, I wish to express my gratitude to my supervisor Dr Nigel Thomas, who has given

me the opportunity to undertake a PhD and has provided me with invaluable sup-

port, guidance and crucial insights throughout these four years. Furthermore, I wish

to thank Dr Stephen McGough of Durham University, who has been demonstrative and

generous in his support throughout the process.

I have had the pleasure of studying at the School of Computing Science at New-

castle University since 2006, through undergraduate and postgraduate degrees, and

most recently my PhD. During this time I have had the pleasure of working alongside

numerous kind, entertaining and helpful individuals. In particular I wish to thank the

following people for their support over the years; Budi Arief, Alex Barfield, Michael Bell,

Anirban Bhattacharyya, Matt Collison, John Colquhoun, Marie Devlin, Andrew Dinn,

Ryan Emmerson, Paul Ezhilchelvan, Hugo Firth, Carl Gamble, Barry Hodgeson, Phillip

Lord, Oonagh McGee, Tudor Miu, Chris Phillips, Ken Pierce, Chris Ritson, Francisco

Rocha, Rebecca Simmonds, Gerry Tomlinson, Jennifer Warrender, and Paul Watson.

I also wish to acknowledge those with whom I have had the pleasure to collaborate

on publications; Ben Allen, Clive Gerrard, Feng Hao, Paul Robinson, Anton Stefanek,

Ehsan Toreini, and Stuart Wheater.

Additionally, I wish to thank my external examiner, Professor Stephen Jarvis of War-

wick University, my internal examiner Professor Aad van Moorsel, and my independent

chair Dr Stephen Riddle, for an enjoyable and engaging viva examination.

Finally, and most importantly, I wish to thank my parents and close friends for their

inspiration, patience and support over the years. In particular, Heather and Harry For-

shaw, Amy Crimmens, Matthew Marlow, and Michael, Rebecca, Eva and Ashby Ross.

Abstract

Energy costs now dominate IT infrastructure total cost of ownership, with datacen-

tre operators predicted to spend more on energy than hardware infrastructure in the

next five years. With Western European datacentre power consumption estimated at

56 TWh/year in 2007 and projected to double by 2020, improvements in energy effi-

ciency of IT operations is imperative. The issue is further compounded by social and

political factors and strict environmental legislation governing organisations.

One such example of large IT systems includes high-throughput cycle stealing dis-

tributed systems such as HTCondor and BOINC, which allow organisations to leverage

spare capacity on existing infrastructure to undertake valuable computation.

As a consequence of increased scrutiny of the energy impact of these systems, ag-

gressive power management policies are often employed to reduce the energy impact

of institutional clusters, but in doing so these policies severely restrict the computa-

tional resources available for high-throughput systems. These policies are often con-

figured to quickly transition servers and end-user cluster machines into low power

states after only short idle periods, further compounding the issue of reliability.

In this thesis, we evaluate operating policies for energy efficiency in large-scale

computing environments by means of trace-driven discrete event simulation, lever-

aging real-world workload traces collected within Newcastle University.

The major contributions of this thesis are as follows:

i) Evaluation of novel energy efficient management policies for a decentralised

peer-to-peer (P2P) BitTorrent environment.

ii) Introduce a novel simulation environment for the evaluation of energy efficiency

of large scale high-throughput computing systems, and propose a generalisable

model of energy consumption in high-throughput computing systems.

iii

iii) Proposal and evaluation of resource allocation strategies for energy consump-

tion in high-throughput computing systems for a real workload.

iv) Proposal and evaluation for a real workload of mechanisms to reduce wasted task

execution within high-throughput computing systems to reduce energy con-

sumption.

v) Evaluation of the impact of fault tolerance mechanisms on energy consumption.

Table of Contents

Table of Contents iv

List of figures ix

List of tables xii

Nomenclature xiv

1 Introduction 1

1.1 Research Problem . 2

1.2 Contributions . 3

1.3 Thesis Structure . 5

1.4 Related Publications . 6

2 Background 11

2.1 Energy characteristics . 12

2.1.1 Servers . 12

2.1.2 Data centres . 16

2.2 Energy-efficiency mechanisms . 18

2.2.1 Software . 18

2.2.2 Virtualisation . 19

2.2.3 Datacentre . 20

2.2.4 Network . 23

2.2.5 Federated / multi-site environments 24

2.3 Directly Related Work . 26

2.3.1 Energy efficient content distribution with BitTorrent 26

Table of Contents v

2.3.2 Evaluation of energy consumption in large-scale systems 27

2.3.3 Resource Allocation . 33

2.3.4 Reducing the number of miscreant tasks executions in a multi-use

cluster . 35

2.3.5 Energy efficient checkpointing . 36

3 Energy efficient content distribution with BitTorrent 39

3.1 Introduction . 40

3.2 BitTorrent . 41

3.3 System Models and Objectives . 42

3.4 Approach . 44

3.4.1 Energy Proportional Tracker Migration 44

3.4.2 Elastic Capacity Provisioning . 45

3.4.3 Peer Connectivity Shaping . 45

3.5 Experimentation . 47

3.6 Results . 51

3.7 Conclusions and Further Work . 54

3.7.1 Further Work . 54

4 Trace-driven simulation for energy consumption in High Throughput Com-

puting systems 56

4.1 Introduction . 57

4.2 System Model . 60

4.2.1 Compute resources . 60

4.2.2 Interactive user sessions . 61

4.2.3 Cluster . 62

4.2.4 HTC Job . 62

4.2.5 Policy decisions - HTC . 64

4.2.6 Policy decisions - Infrastructure . 65

4.2.7 Metrics . 65

4.3 Case Study of HTCondor . 68

4.3.1 Newcastle University HTCondor pool 69

Table of Contents vi

4.3.2 HTCondor-specifics . 70

4.3.3 Preparing User logs . 71

4.3.4 Preparing HTCondor logs . 72

4.4 Performance Evaluation . 75

4.5 Conclusions and Further Work . 77

4.5.1 Further Work . 77

5 Resource Allocation 80

5.1 Introduction . 81

5.2 Existing Examples of Policy . 82

5.3 Policy . 83

5.3.1 Cluster management . 83

5.3.2 Selecting computers to use . 84

5.3.3 Job management . 85

5.3.4 New Proposed Policy . 86

5.3.5 Policy Combinations . 90

5.4 Simulations and Results . 91

5.4.1 Baseline Evaluation . 91

5.4.2 Power management policies . 91

5.4.3 Computer Selection policies . 94

5.4.4 Management Policies . 94

5.4.5 Cluster termination policies . 97

5.4.6 Combined polices with synthetic jobs 100

5.5 Conclusion . 102

5.5.1 Further Work . 104

6 Reducing the number of miscreant tasks executions in a multi-use cluster 107

6.1 Introduction . 108

6.2 Task Deallocation . 110

6.2.1 Definitions . 112

6.3 Analysis of the Newcastle Condor System . 113

6.4 Policy for handling miscreant tasks . 115

Table of Contents vii

6.4.1 Baseline policy . 116

6.4.2 Computer selection policy . 116

6.4.3 Dedicated resources . 116

6.4.4 Miscreant task identification . 117

6.5 Simulation results . 118

6.6 Conclusion . 139

6.6.1 Future Work . 140

7 Energy efficient checkpointing in HTC systems 141

7.1 Introduction . 142

7.2 Checkpointing and Failure Model . 144

7.2.1 Power model . 145

7.3 Policies . 145

7.3.1 Baseline policies . 146

7.3.2 Checkpoint Interval . 146

7.3.3 Defer checkpoint policies . 149

7.3.4 Proactive migration . 149

7.4 Results . 150

7.4.1 Policy Results . 151

7.4.2 Summary . 164

7.5 Discussion . 166

7.5.1 Operating policies . 166

7.5.2 Workload . 166

7.5.3 User base . 167

7.5.4 Resource composition . 167

7.6 Conclusion . 168

7.6.1 Further work . 168

8 Conclusions 172

8.1 Thesis Summary . 173

8.2 Limitations . 174

8.3 Future Research Directions . 175

Table of Contents viii

8.3.1 Generalise operating policies to other environments 175

8.3.2 Combined with analytical approach 176

8.3.3 Energy efficient printing . 177

References 180

List of figures

3.1 State transition diagram for a compute resource 49

3.2 BitTorrent tracker workload trace WL1. 52

3.3 BitTorrent tracker workload trace WL2. 52

3.4 Comparison of energy savings for two workload traces with homoge-

neous and heterogeneous groups of servers of size n. 53

4.1 Model of an HTC system and multi-use environment 59

4.2 State transition diagram for a compute resource 61

4.3 State transition diagram for a job within an HTC system 63

4.4 Bandwidth measurements for EC2 upload and download throughput . . . 67

4.5 Newcastle University Interactive user activity trace for 2010 71

4.6 Newcastle University HTCondor workload trace for 2010 72

4.7 Proportion of cluster time used by interactive users and HTCondor 74

4.8 Heat map showing the probability of successful job completion given job

duration and submission time . 74

4.9 Breakdown of Job durations per day . 75

4.10 HTC-Sim performance analysis: Maximum memory footprint 76

4.11 HTC-Sim performance analysis: Execution time 77

5.1 The impact of Power Management policies on energy consumed 92

5.2 The impact of Power Management policies vs. overheads 92

5.3 The impact of Power Management policies on energy consumed 93

5.4 The impact of Computer Selection policies on energy consumed 95

5.5 The impact of Computer Selection policies on overheads 95

List of figures x

5.6 The impact of Management policies on energy consumed 96

5.7 The impact of Management polices on overheads 97

5.8 The impact of Suspension time on energy consumed 98

5.9 The impact of Suspension time on overheads 98

5.10 The impact of Suspension percentage on energy consumed 99

5.11 The impact of Suspension percentage on overhead 99

5.12 The impact of Job Termination policies on energy consumed 100

5.13 The impact of Job Termination policies on overheads 100

5.14 The impact of Job Termination policies on ‘good’ jobs killed 101

5.15 The impact of Combined policies on energy consumed 102

5.16 The impact of Combined policies on overhead 103

6.1 Graph of total wasted time against evictions 112

6.2 Histogram of good task evictions . 114

6.3 Cumulative idle time . 115

6.4 The impact of Terminate after N allocations policy on Energy consumption119

6.5 The impact of Terminate after N allocations policy on Good tasks killed . . 120

6.6 The impact of Terminate after N allocations policy on Overheads 121

6.7 The impact of Individual policy on Energy 122

6.8 The impact of Individual policy on Good Jobs Killed 123

6.9 The impact of Individual policy on Overheads 124

6.10 The impact of Exponential policy on Energy 125

6.11 The impact of Exponential policy on Good Jobs Killed 126

6.12 The impact of Exponential policy on Overheads 127

6.13 The impact of Random policy on Energy . 128

6.14 The impact of Random policy on Good Jobs Killed 129

6.15 The impact of Random policy on Overheads 130

6.16 The impact of Dedicated policy on Energy 131

6.17 The impact of Dedicated policy on Good Jobs Killed 132

6.18 The impact of Dedicated policy on Overheads 133

6.19 The impact of Accrued policy on Energy . 134

List of figures xi

6.20 The impact of Accrued policy on Good Jobs Killed 135

6.21 The impact of Accrued policy on Overheads 136

6.22 The impact of Percentile policy on Energy 137

6.23 The impact of Percentile policy on Good Jobs Killed 138

6.24 The impact of Percentile policy on Overheads 139

7.1 Job state transition diagram . 145

7.2 Average Task Overheads . 150

7.3 Energy Consumption . 151

7.4 The impact of Fixed checkpoint policy on energy consumption, overhead

and checkpoint utilisation . 153

7.5 The impact of ClosedCluster policy and Scheduled proactive migration

on energy consumption, overhead and checkpoint utilisation 155

7.6 The impact of Geometric policy on energy consumption, overhead and

checkpoint utilisation . 157

7.7 The impact of MinuteInHour policy on energy consumption, overhead

and checkpoint utilisation . 159

7.8 The impact of Ratio policy on energy consumption, overhead and check-

point utilisation . 161

7.9 The impact of Start Delay policy on energy consumption, overhead and

checkpoint utilisation . 162

7.10 The impact of Interarrival policy on energy consumption, overhead and

checkpoint utilisation . 164

8.1 Energy consumption trace for Konica BizHub C280 178

List of tables

2.1 Comparison of simulation frameworks . 31

3.1 Computer Types . 51

4.1 Computer Types . 69

4.2 Job Characteristics to HTCondor mappings 70

5.1 Resource Allocation : Policy Combinations 90

6.1 Miscreant tasks policies: Baseline Results . 118

Nomenclature

List of Acronyms

AC PI Advanced Configuration and Power Interface [103]

C PU Central Processing Unit

D AG Directed Acyclic Graph

DV F S Dynamic Voltage and Frequency Scaling

FC F S First-come, first-served

FGC S Fine-Grained Cycle Sharing Systems

F I FO First In, First Out

HPC High Performance Computing

HT C High Throughput Computing

I aaS Infrastructure as a Service

MPI Message Passing Interface

MT T F Mean time to failure

P2P Peer-to-peer

PU E Power Usage Effectiveness

QoE Quality of Experience

QoS Quality of Service

Nomenclature xiv

S JF Shortest Job First

SL A Service Level Agreement

Chapter 1

Introduction

Energy costs now dominate IT infrastructure total cost of ownership, with data cen-

tre operators predicted to spend more on energy than hardware infrastructure in the

next five years [20]. The U.S. Environmental Protection Agency (EPA) attribute 1.5% of

US electricity consumption to data centre computing [43], and Gartner estimate the

ICT industry was responsible for 2% of global CO2 emissions in 2007 [186]. With west-

ern european data centre power consumption estimated at 56 TWh/year in 2007 and

projected to double by 2020 [32], improving energy efficiency of IT operations is im-

perative.

In addition to the compelling financial savings sought through reduced power con-

sumption of IT infrastructures, energy saving initiatives are further motivated by leg-

islative pressures. These include the Carbon Reduction Commitment Energy Effi-

ciency Scheme [71] governing private and public sector organisations, UK Government

targets of reducing UK carbon emissions by 80% by 2050, and recent calls for a more

stringent target of a legally binding 40% energy reduction by 2030 [239].

Finally, there is a social driver for improving energy efficiency in the form of Cor-

porate Social Responsibility , highlighting an organisation’s willingness to take the re-

sponsibility for the social and environmental impact of their business practices. Re-

sponsible business practices can serve as a compelling means of business differentia-

tion in competitive markets, is significant in brand and reputation management, and

has been shown to be beneficial in the recruitment and retention of staff [33].

In this thesis we focus on energy consumption in the context of large scale high

1.1 Research Problem 2

throughput computing (HTC) systems. In particular, we consider HTC systems op-

erating on so called ‘multi-use’ clusters, where resources are shared with interactive

users of the system. As a consequence of increased scrutiny of the energy impact of

large scale systems, aggressive power management policies are often employed [213]

to reduce the energy impact of these systems. Such policies are often configured to

quickly transition servers and end-user cluster machines into low power states after

only short idle periods. Consequently, this may result in a negative impact on system

performance, further compounding the issue of long-term hardware reliability [121]

and lowering the availability of compute resources perceived by applications running

in the system.

In this thesis, we evaluate operating policies for energy efficiency and performance

in large computing environments by means of trace-driven simulation, leveraging real

world workload traces collected within Newcastle University.

1.1 Research Problem

In order to evaluate the energy and performance impact of operating policies within

large-scale computing environments, we must investigate the following research prob-

lems:

Energy and system modeling for HTC systems Despite a number of previous works

considering the energy efficiency of high throughput computing environments,

there does not exist a generalisable model for HTC systems and their associated

energy consumption.

Trace-driven simulation environment for HTC systems Prior works propose simula-

tion environments capable of modeling grid and Cloud systems; however, these

do not explicitely model the operation of HTC systems operating over these com-

pute resources, nor do many offer an adequate model for energy consumption.

We must develop a simulation environment, combining our system and energy

models such that we may evaluate the impact of operating policies on energy

and performance.

1.2 Contributions 3

Further research problems exist in relation to operational decisions made by HTC sys-

tems, and their impact on energy consumption. We investigate the impact of the fol-

lowing operational decisions in this thesis.

Power management In HTC systems capable of the powering on and off of resources,

a trade-off exists between powering off idle resources hastily to conserve energy,

with the potential for starving the system of required resources and long-term

implications for system reliability, and circumspect approaches leading to sig-

nificant energy waste.

Resource allocation When allocating tasks to a pool of dedicated and non-dedicated

resources which are heterogeneous in terms of performance, energy consump-

tion, and reliability, a decision must be made to balance energy consumption

while delivering acceptable performance.

Task abandonment When considering a workload comprising a proportion of faulty

jobs, as well as unreliable servers, a decision must be made governing when to

cease attempting to execute a given job and classify it as being faulty. Doing

so too aggressively will lead to tasks being abandoned which would otherwise

have completed successfully in a subsequent run, while a conservative approach

would impact negatively energy consumption and system load.

Fault tolerance mechanisms The application of fault tolerance mechanisms in HTC

systems has the potential for significant improvements in performance, but may

incur significant energy consumption. The suitability of applying fault tolerance

approaches is dependent on a number of factors including current system load,

likelihood of interruption, the composition of resources and characteristics of

the offered workload.

1.2 Contributions

The work presented in this thesis makes a number of key contributions:

1.2 Contributions 4

i) Evaluation of novel energy efficient management policies for a decentralised

peer-to-peer (P2P) BitTorrent environment.

ii) Introduce a novel simulation environment for the evaluation of energy efficiency

of large scale HTC systems, and propose a generalisable model of energy con-

sumption in HTC systems.

iii) Proposal and evaluation of resource allocation strategies for energy consump-

tion in HTC systems for a real workload.

iv) Proposal and evaluation for a real workload of mechanisms to reduce wasted task

execution within HTC systems to reduce energy consumption.

v) Evaluation of the impact of fault tolerance mechanisms on energy consumption.

1.3 Thesis Structure 5

1.3 Thesis Structure

Chapter 1 describes the motivations behind the work carried out as part of this thesis,

and highlights the main contributions of the research. Finally, we describe the

related peer-reviewed publications produced throughout the course of the PhD.

Chapter 2 presents technical background material closely related to the work carried

out in the chapters of this thesis.

Chapter 3 describes a preliminary investigation into the trade-off between energy and

performance, using BitTorrent as an example system. We acknowledge difficul-

ties in enacting energy-efficient operating policies in systems with decentralised

decision making.

Chapter 4 outlines the approach we adopt to trace-driven simulation for energy con-

sumption in high-throughput computing systems. We present HTC-Sim for sim-

ulating High Throughput Computing systems, and apply this to our case study

of the Newcastle University HTCondor pool. We evaluate the impact of running

the simulation software both in terms of memory footprint and execution time.

Chapter 5 In Chapter 5 we explore resource allocation and task suspension strategies

in high-throughput computing systems in the context of multi-use clusters, and

evaluate their impact on energy consumption and performance. We propose

resource allocation schemes capable of reducing energy consumption by 55%

compared to the polices enacted in the Newcastle University HTC cluster in 2010.

Chapter 6 investigates the issue of ‘miscreant’ tasks in HTC systems, and propose a

number of mechanisms for curtailing their execution. We show the our ap-

proaches to have potential for significant savings in terms of energy consump-

tion.

Chapter 7 evaluates the impact of fault tolerance mechanisms on energy consump-

tion within HTC systems operating within a multi-use cluster environment.

1.4 Related Publications 6

Chapter 8 summarises the conclusions of the work presented in this thesis and moti-

vate future directions for work in the area.

1.4 Related Publications

During the course of my PhD I have contributed to the following peer-reviewed publi-

cations.

[88] Matthew Forshaw and Nigel Thomas. A novel approach to energy efficient con-

tent distribution with BitTorrent. In Computer Performance Engineering, Lecture

Notes in Computer Science (LNCS) 7587, pages 188–196. Springer-Verlag Berlin

Heidelberg, 2013

This paper introduces an exploratory work into the energy efficiency issues surround-

ing peer-to-peer (P2P) systems, particularly in the context of BitTorrent. We propose

three approaches to promote energy efficient and energy proportional operation of

content distribution systems. This paper forms the basis of Chapter 3 of this thesis.

[90] Matthew Forshaw, Nigel Thomas, and A. Stephen McGough. Trace-driven simu-

lation for energy consumption in High Throughput Computing systems. In Dis-

tributed Simulation and Real Time Applications (DS-RT), 2014 IEEE/ACM 18th

International Symposium on, 2014

In this paper we introduce our approach to trace-driven simulation of distributed sys-

tems for energy consumption, and perform performance evaluation demonstrating

our simulation scales linearly with the modelled workload, for both execution time

and memory consumption. This paper forms the basis of Chapter 4.

[161] Andrew Stephen McGough, Matthew Forshaw, Clive Gerrard, Paul Robinson,

and Stuart Wheater. Analysis of power-saving techniques over a large multi-use

cluster with variable workload. Concurrency and Computation: Practice and Ex-

perience, 25(18):2501–2522, 2013. ISSN 1532-0634. URL http://dx.doi.org/10.

1002/cpe.3082

1.4 Related Publications 7

In this paper we demonstrate the energy and performance impact of resource alloca-

tion and task suspension strategies in high-throughput computing systems in the con-

text of multi-use clusters. We demonstrate that these policies could save 55% of the

currently used energy for our high-throughput jobs over our current cluster policies

without affecting the high-throughput users’ experience.

[163] A.S. McGough, M. Forshaw, C. Gerrard, and S. Wheater. Reducing the number of

miscreant tasks executions in a multi-use cluster. In Cloud and Green Computing

(CGC), 2012 Second International Conference on, pages 296–303, 2012. doi: 10.

1109/CGC.2012.111

In this paper we explore the impact of so called ‘miscreant’ tasks on the energy con-

sumption and overheads of a high-throughput computing system. We investigate tech-

niques to increase the chance of ‘good’ tasks completing in a timely manner, while

curtailing the execution of ‘bad’ tasks. We observe potential reduction in energy con-

sumption of approximately 50 %. This paper forms the basis of Chapter 6 of this thesis.

[89] Matthew Forshaw, A. Stephen McGough, and Nigel Thomas. On energy-efficient

checkpointing in high-throughput cycle-stealing distributed systems. In 3rd In-

ternational Conference on Smart Grids and Green IT Systems (SMARTGREENS),

2014

In this short paper we introduce our preliminary investigation into energy-efficient

checkpointing in high-throughput systems. We demonstrate through trace-driven

simulation the potential of existing checkpointing mechanisms to have a significant

negative impact on energy consumption, motivating the need for a class of energy-

aware checkpointing strategies. We finally highlight key issues determining whether to

employ checkpointing within an HTC environment. This paper contributes in part to

Chapter 7 of this thesis.

1.4 Related Publications 8

[91] Matthew Forshaw, A. Stephen McGough, and Nigel Thomas. Energy-efficient

checkpointing in high-throughput cycle-stealing distributed systems. Electronic

Notes in Theoretical Computer Science, 310:65–90, 2015

In this extended paper we expand on ideas introduced in [89], introducing a number of

candidate energy-aware checkpointing strategies and conduct a full evaluation of their

performance for our HTCondor workload from 2010. We demonstrate the naive appli-

cation of checkpoint mechanisms to lead to a significant negative impact on energy

consumption, and show new approaches energy- and load-aware strategies may lead

to significant benefits. This paper and [89] form the basis for Chapter 7 of this thesis.

[41] Jeremy T. Bradley, Matthew Forshaw, Anton Stefanek, and Nigel Thomas. Time-

inhomogeneous population models of a cycle-stealing distributed system. In

29th Annual UK Performance Engineering Workshop (UKPEW) 2013, pages 8–13.

Loughborough University, 2013

This paper presents initial application of Hybrid PCTMC (hPCTMC) modelling for our

HTCondor workloads. The future research directions based on this preliminary work

is discussed in detail in Chapter 8 of this thesis.

[159] A. Stephen McGough, Matthew Forshaw, Gerrard Clive, Wheater Stuart, Allen

Ben, and Robinson Paul. Reduction of wasted energy in a volunteer comput-

ing system through reinforcement learning. Sustainable Computing, Informatics

and Systems, 2014. doi: 10.1016/j.suscom.2014.08.014

This paper builds upon our previous investigations into resource allocation strategies

for HTC systems [161], and present a Reinforcement Learning (RL) [226] approach to

resource allocation and task delay decisions. We evaluate the ability of this machine

learning approach to adapt to a changing operating environment. We find the ap-

proach capable of yielding energy reductions of 30% with no impact on task comple-

tion, or up to 53% in situations where a modest overhead increase may be incurred.

This paper demonstrates the potential of Reinforcement Learning for parameterless

1.4 Related Publications 9

operating policies, and forms the foundations of ongoing research efforts discussed in

detail in Chapter 8.

Cloud-related papers

Furthermore, the following publications were produced during the course of the PhD

in the areas of high-throughput computing and Cloud computing. These works con-

sider the energy impact and energy cost on local infrastructure, but we do not currently

have reliable information on cloud energy consumption so consider only financial cost

of cloud operation. Since we do not explicitly consider energy consumption of cloud

resources, these works do not form part of the thesis.

[162] Andrew Stephen McGough, Matthew Forshaw, Clive Gerrard, Stuart Wheater,

Ben Allen, and Paul Robinson. Comparison of a cost-effective virtual cloud clus-

ter with an existing campus cluster. Future Generation Computer Systems, 2014.

ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2014.07.002

In this paper we explore the viability of running institutional high-throughput com-

puting workloads on the Cloud. We explore a number of policy decisions governing

resource allocation decisions, cloud instance keep-alive, and the delayed deployment

of jobs. We evaluate the operation of cloud-based and local clusters in terms of finan-

cial cost, with local cost including the proportional share of hardware ownership and

energy consumption.

Other Publications

Furthermore, the following journal and conference papers were produced during the

course of the PhD on related topics but do not form part of the thesis.

[179] Thai Ha Nguyen, Matthew Forshaw, and Nigel Thomas. Operating policies for

energy efficient dynamic server allocation. In 30th Annual UK Performance En-

gineering Workshop (UKPEW 2014), 2014

1.4 Related Publications 10

[204] Kiavash Satvat, Matthew Forshaw, Feng Hao, and Ehsan Toreini. On the privacy

of private browsing - a forensic approach. Journal of Information Security and

Applications, 19(1):88–100, 2014

[203] Kiavash Satvat, Matthew Forshaw, Feng Hao, and Ehsan. Toreini. On the privacy

of private browsing - a forensic approach. In 8th DPM International Workshop

on Data Privacy Management. Royal Holloway, University of London, 2013

Chapter 2

Background

Summary

This chapter provides an overview of the relevant background material mo-

tivating and underpinning the work conducted in this thesis. Section 2.1

discusses previous works to evaluate and classify the energy consumption

of computer systems, from server- to datacentre level. In Section 2.2, mech-

anisms leveraging these observations are used. Finally, in Section 2.3 we

discuss works directly related to each chapter of this thesis.

For a comprehensive summary of approaches to energy-efficient comput-

ing, readers are advised to refer to the taxonomy and survey presented by

Beloglazov et al [28]. Furthermore, Reda et al [196] offer a detailed survey of

low-level power measurement techniques of computing devices.

2.1 Energy characteristics

In this section we discuss the energy characteristics at server and datacentre level, and

detail efforts in the literature to develop predictive models and benchmarks of energy

consumption.

2.1.1 Servers

We categorise the literature concerning energy characteristics at the server level as fol-

lows. Early works consider the use of low-level system metrics to derive predictive

models of server energy consumption (Section 2.1.1). These observations lead to the

introduction of a number of industry benchmarks for server energy efficiency 2.1.1.

Further works have emphasised the importance of energy proportional system design

(Section 2.1.1) and temperature (Section 2.1.1) on the energy characteristics of servers.

2.1 Energy characteristics 13

Predictive Models

The energy consumption of server and commodity hardware has been studied exten-

sively in the literature. Early works leveraged low-level metrics such as performance

counters [25, 212] when developing predictive models of energy consumption, while

others aimed to simulate individual [42, 258] or groups of system components [11, 94].

These models tend to require significant architecture knowledge and typically were not

generalisable to other hardware, nor scalable to entire computer systems.

Fan et al [82] observed that total power consumption of server hardware was

strongly correlated with CPU utilisation, and power consumption may be modeled

linearly for values between active/idle and peak CPU consumption. The authors also

present a linear model as well as an empirical model which includes a parameter which

may be obtained through a calibration phase.

Economou et al [73] introduce the Mantis model, which extends [82] to also include

the energy consumption of memory, storage and network subsystems. The model re-

lies only on readily-obtainable server utilisation metrics, and a single calibration step

where resource utilisation is correlated with full-system power consumption. The re-

sulting models benefit from broader applicability to non-CPU-dominant workloads,

and for systems whose energy consumption is not dominated by the CPU (e.g. sys-

tems with a very large RAM provision).

More recently, Davis et al [65] further explore predictive power models using per-

formance measures made available within the Microsoft Windows operating system.

However, these models are not applicable to systems running alternative operating

systems. Davis et al also explore the inter-node variability within homogeneous clus-

ters [64], demonstrating that applying power models obtained from a single node to

the rest of the cluster is insufficient in achieving quality predictions. However, this

work is limited by using the same OS-specific measures as in [65].

Predictive models of energy consumption typically use the power consumption

at peak resource utilisation to represent maximum energy consumption for a server.

Meisner et al [164] challenge this assumption, demonstrating interactions between

server utilisation and the behaviour of switched-mode power supplies, and propose

2.1 Energy characteristics 14

an operating system-level metric to more accurately predict peak power consumption

for a commodity and enterprise-level server.

Benchmarking

SPECpower_ssj2008 [134], released in November 2007, was the first industry-standard

benchmark designed to evaluate and provide a means of comparison between mea-

sured performance and measured power consumption. SPECpower extends existing

SPEC benchmarks incorporate energy meaurement, and is based on an enterprise

Java workload. The benchmark exerts graduated levels of load on a given machine,

typically evaluating the energy consumption and performance of server hardware be-

tween active-idle (0%) and peak (100%) load at 10% graduated load levels. More re-

cently, SPEC released SPECvirt®sc2013 [220], which combines a variety of benchmark

workloads (including web server, application server, mail server and CPU-dominant

workloads) to evaluate the performance of servers for virtualised environments.

Other energy-aware performance benchmarks include Storage Performance Coun-

cil (SPC) benchmarks for the energy efficiency of storage systems [224] and TPC-

Energy by the Transaction Processing Performance Council (TPC), a benchmark fo-

cusing on transactional database systems [236]. A common limitation of many existing

energy consumption benchmarking approaches is the dependance on specific work-

loads, with performance and energy characteristics unpredictable between workloads.

Poess et al [188] present a survey of energy benchmarks for server systems.

Energy proportionality

Barroso et al [19] were first to highlight the need for energy-proportional server de-

signs. An ‘energy proportional’ system is defined as one which exhibits a wide dynamic

power range (the proportion of system power consumption attributable to the load

placed upon the system and its sub-components) and low energy consumption while

in an active/idle state (often referred to as the static component of a server’s power con-

sumption). They further highlight the impact of traditional server provisioning strate-

gies, leading to typical server CPU consumption of between 10 and 50 percent. This is

2.1 Energy characteristics 15

true also of the desktop estates we consider as part of this work; with desktop idle time

reported in the literature has been shown to be in excess of 75% [174].

Publicly available results from the SPECpower_ssj2008 [134] benchmark have

formed the basis of a number of analyses of trends in server energy efficiency [108,

243, 254].

Varsamopoulos et al [243] make use of the 139 entries published from 2007 to the

time of publication. Two energy proportionality metrics are proposed. First, the idle-

to-peak power ratio (IPR) metric is defined as

IPR = Pi dle /Ppeak (2.1)

where Pi dle and Ppeak represent a server’s energy consumption in idle and peak

states respectively. The IPR metric is normalised, allowing direct comparison between

servers, with lower IPR values denoting a more energy-proportional system.

Secondly, the linear deviation ratio (LDR) metric is expressed as

LDR = max |·|
u

P (u)° ((Ppeak °Pi dle)u +Pi dl e)

(Ppeak °Pi dle)u +Pi dl e)
(2.2)

where max |·|
u is the maximum value, retaining the sign of the maximum value. Lower

LDR values signify a more linear energy profile, with negative and positive LDR val-

ues denoting sublinear and superlinear energy profiles respectively. The LDR metric is

normalised, allowing for direct comparison between systems.

Varsamopoulos et al compute these metrics for each of 139 published SPECpower

results, and observe clear historical trends in reductions of idle-to-peak power ratio

(IPR) and increasing linear deviation ratio (LDR) values over time, with power profiles

becoming more proportional but less linear over time.

Wong et al [254] also propose metrics for server energy proportionality, including

the deviation between the target machine’s energy proportionality curve and that of

a perfectly energy proportional machine. Contrary to the work of Varsamopoulos et

al [243], this measure does not consider the typical operating conditions of servers,

characterised by low system utilisation.

Hsu et al [108] analyse a larger corpus of SPECpower results (a total of 177 col-

2.1 Energy characteristics 16

lected between 2007 and 2010), and challenge the suitability of linear models to repre-

sent energy consumption, demonstrate that simple nonlinear functions may be fitted

to model the energy profile of servers under aggressive power management schemes.

These authors later revisit the area, presenting quadratic models of energy consump-

tion [109].

Temperature

Kazandjieva et al [125] introduce PowerNet, a monitoring infrastructure designed and

deployed within Stanford Unviersity across a six month period. PowerNet comprised

85 power meters and collected power consumption and CPU resource utilisation for a

group of fifteen workstations and ten servers. A key finding of the study was the im-

pact of ambient temperature on on the power consumption of server hardware. When

evaluating a rack of homogeneous 1U servers in a rack, the study observed a server in

the highest position in the rack, where temperature will be greater, consumed as much

as 20% more energy than that of its neighbours. [73, 198].

Ambient temperature has also been shown to be an important factor in system re-

liablity, with every 10C temperature increase over 21C shown to decrease the reliability

of electronics by 50% [225].

2.1.2 Data centres

Energy consumption in large-scale computing systems originates not only from com-

pute nodes, but also the data centres and clusters in which they are housed. In partic-

ular, the cost of powering and cooling within data centres has been shown to dominate

data centre costs [231], with cooling costs attributed for as high as 50% of total cost in

some cases [205]. The American Society of Heating, Refrigerating and Air-Conditioning

Engineers (ASHRAE) estimate Infrastructure and Energy (I&E) to contribute 75% of to-

tal IT energy [23] in 2014. Another significant contributor to energy consumed within

data centres are network hardware, which may consume as much as half of the energy

consumed by server hardware [210].

Pelley et al [184] offer an early attempt at developing an analytical model to rep-

2.1 Energy characteristics 17

resent the total energy consumption of a data centre. The model comprises a num-

ber of components which individually estimate power consumption of servers, power

conditioning systems, heat and airflow, as well as cooling equipment. The model has

subsequently formed the basis of a number of analytical and simulation studies.

Energy-efficiency metrics

A number of energy-efficiency metrics for data centre operation are proposed in the

literature.

The Power Usage Effectiveness (PUE) metric proposed by The Green Grid [21],

quantifies the proportion of total facility power consumed by the IT equipment (in-

cluding servers, network and storage equipment) within the facility, and may be ex-

pressed as follows:

PUE = Total IT Equipment Power
Total Facility Power

(2.3)

A PUE value of 2.0 would signify that for every watt of energy used by IT equip-

ment within the datacentre, an additional watt is consumed by the power delivery and

cooling systems. Reported PUE values facilities are commonly misinterpreted as an

absolute measure of efficiency, with a lower PUE value representing greater efficiency.

Rather, PUE is a measure of IT equipment power draw relative to total facility power.

Two facilities with identical computing capacity and reported PUE values may exhibit

very different levels of power consumption, depending on server efficiency and utili-

sation levels.

Where a PUE value is a ratio, The Green Grid [21] also propose the Data Center

infrastructure Efficiency (DCiE) which is defined as follows:

DCi E = 1
PU E

= IT Equipment Power
Total Facility Power

§100% (2.4)

Carbon Usage Effectiveness (CUE) [22] is a further metric proposed by The Green

Grid which seeks to quantify the operational carbon usage for datacentres, and is de-

2.2 Energy-efficiency mechanisms 18

fined as follows:

CU E = CO2 emitted (kg CO2 eq)
unit of energy (kWh)

§ Total Data Centre Energy
IT Equipment Energy

(2.5)

Finally, the SWaP (Space, Watts and Performance) metric introduces space as a

third criteria for comparison, and is defined as:

SW aP = Performance
Space x Power Consumption

(2.6)

where performance is measured using industry-standard benchmarks (though guid-

ance as to which is not specified formally), power consumption is measured in Watts,

and space is measured as the total count of rack units for the system. SWaP not only

has applications in comparison of facilities, but also of servers. While maximising the

performance per rack unit is desirable, many facilities are constrained by the power

density supported by power distribution and cooling subsystems.

A number of additional metrics have been proposed in the literature. The Rack

Cooling Index (RCI) [102] is proposed as a measure of how effectively datacentre racks

are cooled and maintained with respect to industry thermal guidelines and standards.

Wang et al provide a detailed survey of data centre performance and energy-

efficiency metrics [250].

2.2 Energy-efficiency mechanisms

Here we introduce a number of important works which leverage the energy character-

istics of computer systems discussed in Section 2.1 to achieve energy savings, enacted

at various levels in the system from software-level approaches to those governing the

operation and decisions made at network and full-system levels.

2.2.1 Software

Sampson et al [202] propose EnerJ, a framework which leverages the observation that

high-precision computation is more costly in terms of execution time and energy

consumption. EnerJ extends the Java programming language to provide support for

2.2 Energy-efficiency mechanisms 19

both approximate and precise data types by way of annotations. In doing so, EnerJ is

able to relax the precision of certain computations to reduce energy consumption. The

authors port a number of existing open-source Java applications to EnerJ and demon-

strate energy savings of 10-50%.

Kansal et al [122] concentrate on the potential for energy saving at the software

design stage, presenting a tool promoting energy-aware programming which leverages

energy profiles and application characteristics to guide software developers’ choice of

data structures and algorithms.

Koller et al [131] acknowledge the significant impact of the target workload on

the accuracy of energy predictions [244], introducing WattApp, a framework for

application-aware energy prediction within shared datacentres. The authors propose

an approach whereby applications are benchmarked on each class of server within

the system; however, in our context it is unreasonable to assume wide-spread power

instrumentation of our infrastructure, nor longitudinal measurement of power con-

sumption of these resources.

A number of approaches are suggested at the operating system level. Early works in

the area, which include ECOsystem [259] and Nemesis OS [178], concentrated primar-

ily on improving energy-efficiency for battery-powered devices, allowing developers

and operators of the system to specify target battery lifetimes and quality of service

(QoS) requirements for applications. More recently attention has focused to operat-

ing system level approaches in the context of servers. Meisner et al [165] explore the

use of low- and high-power operating states with fast transition times to achieve en-

ergy savings and promote energy proportional operation. However, they acknowledge

transition times between operating states is not sufficiently fast in current generation

hardware.

2.2.2 Virtualisation

Virtualisation is commonly used to reduce energy consumption of large-scale com-

puting, allowing consolidation of workloads onto a smaller number of servers, and the

subsequent powering down of idle servers.

2.2 Energy-efficiency mechanisms 20

Verma et al [244] provide one of the earliest works exploring the dynamic allocation

of resources in virtualised environments to optimise energy consumption and perfor-

mance. In doing so they present the pMapper framework, which controls not only the

placement of virtual machines across physical hosts, transitions hosts into low-power

states and applying DVFS to reduce energy consumption, and consolidates workloads

onto fewer hosts using live migration. The authors extend this work in [246], extend-

ing pMapper to also consider workload characteristics when allocating applications to

VMs.

Beloglazov et al [29] present a number of heuristic policies for the energy-aware

allocation of resources within Cloud systems, though their approach may be applied to

typical virtualised environments. The efficacy of the proposed heuristics are evaluated

in terms of energy consumption and Quality of Service (QoS) violations, by simulation

using the CloudSim [46] toolkit. The proposed heuristics now form the basis for the

resource allocation, VM migration and consolidation strategies in Openstack Neat [27].

2.2.3 Datacentre

The static dynamic capacity provisioning of servers within data centres for energy

efficiency has formed the basis of many studies in the literature. Such approaches

may assume servers to be homogeneous or heterogeneous, may consider performance

and/or thermal issues, and may be analytical or simulation-based. In this section we

focus on works closely related to the work carried out within this thesis, and for a de-

tailed taxonomy of these works we direct the reader to [28].

Ranganathan et al [195] explore the energy efficient management of groups of

servers in a high-density blade enclosure setting, demonstrating - through simulation

and prototyping - energy savings while maintaining comparable levels of performance.

DVFS is applied to reduce CPU power consumption, while at an ensemble level deci-

sions are made whether to power down particular blades within the enclosure.

Moore et al [172] investigate temperature-aware workload placement within data

centre environments. A number of heuristics are proposed, including unform job

placement throughout the datacentre, favouring servers located in cooler areas of the

2.2 Energy-efficiency mechanisms 21

datacentre, and extending a previous work [211] to reduce the formation of ‘hot spot’

areas within the datacentre. The developed approaches are evaluated in simulation

using a computational fluid dynamics (CFD) model representing a datacenter, demon-

strating the potential for energy savings.

Adnan et al [2] demonstrate the energy savings possible when considering slack

scheduling in a MapReduce cluster with user-specified deadlines. In their approach,

a minimum active set of servers is maintained to satisfy the offered workload, with

tasks dynamically deferred to occupy predicted periods of low utilisation. Simula-

tion and experimental results are presented, demonstrating savings of between 20%

and 40% compared to a conventional “follow the workload” resource provisioning ap-

proach [144].

Tiwari et al [233] demonstrate the energy savings possible through Application-

aware Dynamic Voltage-Frequency Scaling (DVFS) within an HPC environment. The

authors explore the effect of reduced frequency on both power and performance, not-

ing that DVFS has the potential to lead to sub-optimal performance (16% penalty). A

system called Green Queue is proposed, an application-aware analysis and runtime

framework, which enacts CPU clock frequency changes in response to observed load.

An inter-node approach reduces the CPU clock frequency for inactive nodes, while

the intra-node approach exploits period of application execution dominated by com-

munication, where computational work is stalled while a node awaits required data.

Performance evaluation is conducted on a 1024-core Intel Sandy bridge-based super-

computer at the San Diego Supercomputer Center (SDSC), reducing the performance

penalty of DVFS from 16% to 2.4%. Energy savings are shown to vary based on offered

workload, with mean savings of 10.6% and 17.4% across application runs for the intra-

node and inter-node techniques respectively.

Furthermore, a number of studies have sought to mitigate the energy consumption

associated with data transfer. For example, Chen et al [54] achieve savings by trading

off transfer costs and the computational expense of data compression.

2.2 Energy-efficiency mechanisms 22

Energy proportionality

A number of works have sought to achieve energy-proportional energy characteristics

by leveraging low-power sleep states, dynamic provisioning and scheduling of groups

of heterogeneous servers.

Krioukov et al [133] introduce NapSAC, combining low-power, computationally

constrained systems with normal servers, and demonstrate potential energy savings

of 63% compared to a cluster provisioned for double of peak load, and 27% for a static

cluster right-sized for peak load.

Wong et al [254] propose Knightshift, an architecture combining a highly per-

formance primary server with a low-power computationally-constrained node (the

Knight). The authors further offer a discussion of potential implementations, with the

Knight node either embedded on the motherboard of the primary server, contained

within the rack case (e.g. as a harddrive module), or an ‘ensemble’ approach where

the Knight node is external to the primary server. The authors evaluate their proposed

approach for published SPECpower results indicating potential energy savings of up to

75%.

Tolia et al [235] take a similar approach to that of [133], but also focus on the energy

proportionality of cooling, dynamically adjusting fan control to minimise energy con-

sumption while satisfying thermal constraints. Similar efforts have also been applied

to achieving energy-efficient storage subsystems [262].

Data centre operation under power budget constraints

A number of works at the datacentre-level have considered server operation subject to

power budget constraints. Approaches discussed here include power capping, power

shifting and power routing.

Lefurgy et al [138] were first to propose the notion of ‘power capping’. Power cap-

ping encapsulates mechanisms which seek to control the peak power consumption of

high-density servers, by periodically selecting the operating state whose performance

capabilities are greatest, yet still reside within a fixed power budget. The ability to con-

strain the peak energy consumption of a server is desirable because it allows datacentre

2.2 Energy-efficiency mechanisms 23

operators to more closely provision power and cooling infrastructures to match typical

requirements.

Cochran et al [60] combine DVFS and thread packing on multi-core processors to

maximise performance subject to budgetary constraints. The authors evaluate the ef-

ficacy of their approach for quad-core Intel i7 processors using the PARSEC parallel

benchmarks [34] both with and without longitudinal power measurement, meeting

power constraints 96% and 82% of the time respectively. However, it is unclear how

readily such an approach might be applied to other architectures.

Felter et al [86] explores ‘power shifting’, an approach whereby a server’s operating

adheres to a power budget, and a system power manager divides this budget between

the various subsystems (e.g. CPU, memory). This allocation is informed by knowledge

of the workload, and seeks to maximise performance while observing to the specified

budgetary constraint.

Pelley et al [185] adopt a similar approach at the rack level within a datacentre,

allocating power budgets to racks subject to the energy requirements and in response

to the workload allocated to servers within each rack. This dynamic allocation of power

is made possible through a novel topology for power distribution, where secondary

power feeds serve multiple PDUs (power distribution units), minimising the need for

reserve power capacity.

2.2.4 Network

Much prior literature places an emphasis on energy saving through consolidation and

powering down of servers, with network infrastructure often considered to have a fixed

energy cost, with idle power of the current generation of network devices is shown to

be as high as 95% [52]. Hlavacs et al [105] further evaluate consumer and enterprise

switch hardware and find the load-dependent component of their power consumption

to be insignificant. However, more recently works have sought to augment network

operation to achieve energy savings. Bolla et al [36] present a survey of recent efforts

to promote energy efficient operation of network hardware.

Nedevschi et al [176] propose three schemes to reduce the energy consumption

2.2 Energy-efficiency mechanisms 24

of network hardware. The authors first motivate the need for energy-efficiency sleep

modes, such that energy consumption may be minimised during periods of inactiv-

ity. Secondly, the paper explores the use of Dynamic Voltage Scaling (DVS) within net-

work hardware to promote closer to energy proportional characteristics under variable

load levels. Finally, the authors highlight the need for coordination between network

nodes, such that offered workload may be consolidated to fewer network devices, al-

lowing others to gain further benefits from available sleep modes. The work indicates

potential savings of 50% for networks whose utilisation is low (10-20%).

Lee et al [137] offer a detailed investigation of energy efficiency issues in content

dissemination strategies and go further to demonstrate by way of trace-driven simu-

lation the potential benefits of content-centric networking (CCN) [114] for energy effi-

ciency.

The introduction of Software-Defined Networking (SDN) offers interesting possi-

bilities for new works reducing energy consumption. Tu et al [237] present the first

work in this area, exploring the possibility to reduce energy consumption by control-

ling the flow path of traffic in an SDN network. Two policies are proposed, a 0-1 Integer

programming model and a greedy algorithm, leading to a 30-40% reduction in energy

cost.

2.2.5 Federated / multi-site environments

We now discuss works which consider energy-efficient operation of large-scale systems

beyond a single datacentre. These approaches typically leverage high-level knowledge

of data centres in a heterogeneous multi-site context, distributing work to sites to re-

duce energy consumption and environmental impact while maintaining satisfactory

levels of performance.

Stewart et al [223] discuss renewable-aware datacentre management, promoting

the use of intermittent renewable power source (e.g. wind turbines and solar power) to

power datacentres, with workload distribution mechanisms aware of the availability of

renewable power.

Pierson [187] highlights the importance in systems of not simply reducing the raw

2.2 Energy-efficiency mechanisms 25

energy consumption of large systems, but rather the ecological impact of the energy

source (governed by the means of electricity production). We address this requirement

within our work by modeling the carbon impact of the energy source for a given cluster

(see Chapter 4).

Energy efficiency is of increasing importance as we approach extreme-scale com-

puting. The importance of energy efficiency at exascale is first introduced by

Bergman et al [30], leading to a number of works in this area [14, 47, 252]. Wilde et

al [252] emphasise the need for a holistic approach, highlighting the importance of

energy efficiency at infrastructure, hardware, software and application levels and in-

troducing specific optimisations which may be made at each of these four levels.

Auweter et al [14] extend this work, exploring energy aware scheduling on the Super-

MUC HPC system, using execution time and energy consumption prediction to inform

frequency scaling on a per-application level. Reported energy savings of 6% appear

modest, but translate to an annual cost saving ofe200,000.

2.3 Directly Related Work 26

2.3 Directly Related Work

Here we describe works in the literature which are directly related to the work car-

ried out as part of this thesis. Section 2.3.1 presents works related to our investigation

into energy efficient content distribution in BitTorrent in Chapter 3. Section 2.3.2 ex-

plores various approaches to evaluating energy consumption in large-scale systems,

and motivates our choice of trace-driven simulation as the basis of works in Chap-

ters 4, 5, 6 and 7. Section 2.3.3 presents previous works in energy-aware and energy

efficient resource allocation in high-throughput and high-performance computing en-

vironments, related to our investigation in Chapter 5. Section 2.3.4 outlines previous

work in job reallocation and abandonment policies in high-throughput computing en-

vironments, forming the basis for our investigation of miscreant task executions in

Chapter 6. Finally, Section 2.3.5 explores work directly related to our investigation of

energy-efficient checkpointing in Chapter 7.

2.3.1 Energy efficient content distribution with BitTorrent

Early research considering BitTorrent energy efficiency focused primarily on file shar-

ing using devices with limited battery and computational power [126].

Anastasi et al [5] propose a scheme allowing multiple peers within a typical LAN

environment to delegate the task of downloading to a designated proxy server which

takes part in the BitTorrent protocol on their behalf. Meanwhile these peers "behind"

the proxy can be switched off without interrupting the download. Upon completion of

the download, the requested files are transferred back to the peers.

Blackburn and Christensen [35] introduce a wake-up semantic to the BitTorrent

protocol, allowing peers to sleep while remaining active in the system. Centralised

control is assumed whereby these peers may be sent a packet and woken up remotely.

Andrew et al [8] propose a system to balance the power consumption of servers

and peers involved in a peer-to-peer download. This approach assumes centralised

control over all peers, enabling these peers to be powered on and off to maximise the

download rate of a subset of awake peers.

2.3 Directly Related Work 27

Chen et al [53] explore the impact of two seeding strategies proposed in the Bit-

Torrent specification in the presence of varying levels of freeloading. Mathematical

models of both approaches are developed, and validated using a discrete-event simu-

lation.

Hlavacs et al [106] consider the application of BitTorrent in a residential setting,

extending the analytical model presented in [191] to determine the optimal number of

seeders to reduce global energy consumption of the BitTorrent swarm. The results of

this analytical model is found to closely follow that of an associated simulation model.

Performance Evaluation

A number of approaches to the evaluation of BitTorrent are proposed in the literature.

Deaconescu et al [69] propose a virtualised testing environment for BitTorrent ap-

plications, offering greater control over the conditions under which experiments are

conducted. However, the need for large computational resources to host these virtu-

alised experiments will be prohibitive to many, does not allow for energy consumption

measurement, and prohibits evaluation at scale. Consequently we do not consider the

virtualised testing approach in our work.

An alternative is the use of simulation. A number of efforts extend well-established

packet-level network simulators to model the behaviour of a BitTorrent network. Kat-

saros et al [123] extend the OMNeT++ [242] discrete event simulation environment to

model BitTorrent protocol. Furthermore, Evangelista et al [79] also extend OMNeT++

in developing EBitSim. Souza et al [217] extend ns-3 [101] in VODSim to add BitTorrent

functionality with an emphasis on the evaluation of video-on-demand (VoD) applica-

tions. TorrentSim [17] is a Java-based simulation environment for BitTorrent systems,

based on Simmcast [18], and due to ease of extension and operating system indepen-

dence was selected as the basis for our work.

2.3.2 Evaluation of energy consumption in large-scale systems

Throughout our work we employ a trace-driven simulation approach to evaluating the

performance and energy consumption of operating policies within high-throughput

2.3 Directly Related Work 28

computing environments. In this subsection, we discuss approaches to evaluating

the energy consumption of large-scale distributed systems, classifying works based on

their adopted approaches - namely simulation, experimental testbed and emulation -

and provide a survey of simulation approaches applicable to our research area.

Simulation

A number of Grid and Cluster level simulators exist, including SimGrid [139], Grid-

Sim [45], and OptorSim [24] though these focus more at the resource selection process

both within clusters and between clusters and lack the modelling of energy. More re-

cently Cloud simulators have been proposed which are capable of modelling the trade-

off between not only cost and Quality of Service, but also energy consumption. These

include CloudSim [46], GreenCloud [129], SiCoGrid [167] and MDCSim [143]. However,

these do not allow modelling of multi-use clusters with interactive user workloads, nor

do they support checkpointing.

In Table 2.1 we provide an overview of currently available simulation environments

for the modelling of grid and cloud systems. We select the following criteria against

which we evaluate the capabilities of each simulation environment.

Energy model Does the simulation framework enable the modeling of energy con-

sumption by default?

Performance / SLAs Does the simulation framework support the collection of perfor-

mance metrics and/or Service Level Agreement violations?

Multi-use / Interactive users Does the simulation framework model compute re-

sources as being dedicated (solely for the purpose of the computational work-

load running on the system) or does it also support interactive users to these

machines?

Can use real workload traces Does the simulation framework support the use of real

workload traces (such as those we introduce in Section 4.3.1)?

Fault tolerance / checkpointing Does the simulation framework include in-built

modeling of fault tolerance approaches such as checkpointing and migration?

2.3 Directly Related Work 29

Language Which implementation language(s) is the simulation framework based

upon?

On-demand provisioning Does the simulation framework support the on-demand

provisioning of compute resources during the execution of a simulation run, or

must the simulated environment be statically defined prior to the simulation run

commencing?

Virtualisation Does the simulation framework support the modelling of virtualised

compute resources, where multiple virtual machines may run on a single phys-

ical resource? Such a modeling capability allows for reasoning over virtual ma-

chine migration and consolidation decisions.

Heterogeneous resource models Does the simulation framework support the repre-

sentation of heterogeneous compute resources, both in terms of their perfor-

mance and energy consumption (where supported)?

Underlying framework Does the simulation framework extend other more general

simulation frameworks?

Software license Under which software license is the simulation framework released?

Publicly available Is the source code for the simulation framework currently freely

and readily available online?

Latest release (as of 02/09/2014) Used as a measure of activity of ongoing develop-

ment, the latest release date for the simulation framework at the time of thesis

submission.

We observe a number of commonalities between the capabilities of the simula-

tion frameworks we consider. We observe that all simulation frameworks support the

modelling of performance/SLAs, with the exception of OptorSim. Similarly, all simu-

lation frameworks except MDCSim support the modelling of heterogeneous compute

resources. We observe that the implementation language upon which the simulation

frameworks are based is dominated by Java. We favour Java as a choice for implemen-

tation language because of the simplified deployment of Java applications across an

2.3 Directly Related Work 30

HTCondor pool comprising multiple platforms, and due to our own familiarity with

the language. Table 2.1 illustrates that our simulation framework HTC-Sim exhibits

novelty in its ability to model multi-use cluster and the presence of interactive users,

and is one of few which incorporates real workloads and fault tolerance mechanisms.

We find few simulation frameworks support the modelling of virtualised resources,

something we also see as an important area of future development for HTC-Sim (as

discussed in Section 4.5).

Furthermore, a number of works provide simulation support for fault tolerance

mechanisms relevant to Chapter 7 of this thesis.

Zhou et al [263] propose an extension to the CloudSim [46] framework to support

simulation of fault tolerance mechanisms but its codebase has not been made publicly

available.

Vieira et al [247] propose ChkSim, a Java-based simulation environment for the

evaluation of checkpointing algorithms. The tool focuses on checkpointing ap-

proaches for workloads comprising groups of dependent processes communicating

with one another across the network, equivalent to an MPI HPC workload. ChkSim

focuses on the number of unused checkpoints as its key metric of checkpoint perfor-

mance; however it does not assess the impact of checkpointing schemes on energy

consumption and may not easily be adapted to model a high-throughput environment

and interactive user workloads.

Experimental testbeds

Experimental testbeds, comprising a number of physical and virtual machines, are fre-

quently considered for the evaluation of large-scale systems. Practitioners may opt

to use one of a number of existing experimental testbeds, or build their own private

testbed. A key consideration in selecting a testbed is the trade-off between the cap-

ital investment to acquire the required hardware infrastructure and operational ex-

penditure of using an external service. In the context of using testbeds for scientific

experimentation, project scale and duration are significant factors. However, when

considering the use of testbeds for the evaluation of energy efficiency, the domain is

2.3 Directly Related Work 31

Ta
bl

e
2.

1:
C

om
p

ar
is

on
of

si
m

u
la

ti
on

fr
am

ew
or

ks

C
lo

u
dS

im
[4

6]
G

re
en

C
lo

u
d

[1
30

]
H

T
C

-S
im

M
D

C
Si

m
[1

43
]

O
p

to
rS

im
[2

4]
Si

C
oG

ri
d

[1
67

]
Si

m
G

ri
d

[1
39

]
G

ri
dS

im
[4

5]

E
n

er
gy

m
od

el
–

–
–

–

Pe
rf

or
m

an
ce

/
SL

A
s

–

M
u

lt
i-

u
se

/
In

-
te

ra
ct

iv
e

u
se

rs
–

–
–

–
–

–
–

C
an

u
se

re
al

w
or

kl
oa

d
tr

ac
es

–
–

–
–

–

Fa
u

lt
to

le
ra

n
ce

/
ch

ec
kp

oi
n

ti
n

g
–

–
–

–
–

La
n

gu
ag

e
Ja

va
C

++
Ja

va
Ja

va
Ja

va
H

as
ke

ll
C

Ja
va

O
n

-d
em

an
d

p
ro

vi
si

on
in

g
?a

V
ir

tu
al

is
at

io
n

–
–

–
–

–
–

H
et

er
og

en
eo

u
s

re
so

u
rc

e
m

od
el

s
?

U
n

de
rl

yi
n

g
fr

am
ew

or
k

Si
m

Ja
va

[1
07

]
<=

2.
0,

n
ow

cu
st

om
co

re
N

S-
2

–
C

SI
M

[2
09

]
–

Pa
rs

ec
[1

40
]

an
d

D
is

kS
im

[4
4]

–
–

So
ft

w
ar

e
lic

en
se

LG
PL

G
PL

–
–

E
U

D
at

ag
ri

d
–

LG
PL

G
PL

Pu
bl

ic
ly

av
ai

l-
ab

le
–

b
–

–

La
te

st
re

le
as

e
(a

s
of

02
/0

9/
20

14
)

02
/0

5/
20

13
19

/1
2/

20
13

–
–

24
/1

0/
20

06
–

02
/0

6/
20

14
25

/1
1/

20
10

a
(?

)
In

fo
rm

at
io

n
w

as
n

ot
ob

ta
in

ab
le

on
ei

th
er

of
a)

th
e

re
fe

re
n

ce
(o

r
as

so
ci

at
ed

)p
u

bl
ic

at
io

n
s

fo
r

th
e

si
m

u
la

ti
on

to
ol

,n
or

b)
on

th
e

h
om

ep
ag

e
fo

r
th

e
to

ol
.

b
A

p
u

bl
ic

at
io

n
fo

r
H

T
C

-S
im

is
cu

rr
en

tl
y

u
n

de
r

p
re

p
ar

at
io

n
fo

r
th

e
Jo

u
rn

al
of

O
p

en
R

es
ea

rc
h

So
ft

w
ar

e,
an

d
w

ill
be

m
ad

e
p

u
bl

ic
ly

av
ai

la
bl

e
fo

llo
w

in
g

th
e

re
vi

ew
p

ro
ce

ss
.

2.3 Directly Related Work 32

dominated by private testbeds, with very few public infrastructures reporting energy

metrics. One exception is BonFIRE [37, 124], a scientific testbed distributed across

seven sites in Europe. A number of these sites operate managed power distribution

units (PDUs) within the data centres and expose end-user energy consumption to its

users. A number of frameworks supporting private testbeds emphasise the evaluation

of energy consumption, e.g. Enacloud [141] and Openstack Neat [27].

Emulation

A further approach considered in a number of works is the emulation of large-scale

systems. In an emulation approach, performance evaluation is carried against the con-

crete implementation of the system under test, rather than a simulated implementa-

tion. Such an approach boasts a number of key benefits, alleviating the need for an

abstract model for the system required in simulation or analytical approaches, and

allowing the same code used for experimentation to be deployed into a production

environment. Naicken et al [175] observed significant inconsistencies between results

produced by multiple simulation frameworks modelling the same distributed environ-

ment, and attribute this variability to inconsistencies between abstract models and im-

plementations, making the ability to tightly couple experimental and production code

highly desirable. An emulation approach has been used in the context of peer-to-peer

(P2P) [80] systems and networking [104], but few have accounted for the energy con-

sumption of systems in emulation approaches, e.g. [48]. A significant constraint on

emulation-based experiments is that of scale, with emulations frequently shown to be

capable of evaluating systems with orders of magnitude fewer entities. In our context

of large-scale high throughput computing systems, many of the operating decisions

and policies we propose may only be evaluated meaningfully at scale so we do not

pursue an emulation approach further.

Grid workload traces

When evaluating the impact of operating policies on energy consumption and perfor-

mance within large-scale computing environments, it is highly desirable to possess

trace workloads from production environments. A number of workload traces from

2.3 Directly Related Work 33

grid systems are available in the literature, most prominently through initiatives such

as The Grid Workloads Archive [10, 112] and Parallel Workloads Archive [1, 84]. When

considering operating policies dealing with failures and the volatile nature of non-

dedicated resources, it is also necessary to acquire traces of machine failures. While

a number of initiatives exist to aggregate such datasets, including the USENIX com-

puter failure data repository (CFDR) [206, 207] and Failure Trace Archive [81, 118], all

existing trace focus on machine failure traces for HPC and datacentre systems. We

acknowledge a gap in the area for a trace of failures for workstations in an office envi-

ronment.

2.3.3 Resource Allocation

Minartz et al [170] proposed switching off nodes within a high-performance cluster to

save energy. We go further in this work to show how different policies over how jobs are

distributed around a high-throughput heterogeneous cluster can be more energy effi-

cient. Minartz et al goes further to model the power consumption of individual com-

ponents within a system based on the computation performed. This could be adapted

to work with our system.

Verma et al [245] explore the impact of dynamic consolidation and the use of low-

power operating states in the placement of HPC applications within a virtualised envi-

ronment. Terzopoulos et al [228] investigate the use of Dynamic Voltage Scaling tech-

niques to reduce energy consumption in a heterogeneous cluster to conform to power

budgets imposed by infrastructure.

Niemi et al [180] demonstrated that running multiple jobs on the same node within

a high-performance cluster was more energy efficient. We expect such to be the same

here for our work. Though at present we lack the knowledge about execution load for

our workload to determine if this would work well.

Ponciano et al [189] evaluate strategies for energy-aware resource provisioning

and job allocation within opportunistic grids, transitioning worker nodes into energy-

saving sleep modes during idle periods. Zikos et al [264] model a cluster within a com-

putational grid as an open queueing network, and evaluate the impact of resource al-

2.3 Directly Related Work 34

location strategies on performance and energy consumption. The authors model the

heterogeneous nature of clusters, though they model jobs as being nonpreemptable

(i.e. once they commence execution, they cannot be suspended or abandoned until

completion) which is unlikely given the potential for resource failures, and particu-

larly in our context of multi-use clusters where jobs may be preempted by interactive

users. The scheduling approach considered by Zikos et al also differs from ours; in

their model jobs may be queued on compute resource prior to execution, where under

our model, jobs are only allocated to idle resources. The proposed resource allocation

strategies consider queue length at each node and the performance of the nodes; en-

ergy consumption is considered but only as a secondary optimisation criteria in the

event of multiple servers existing with empty queues and identical performance. Poli-

cies are evaluated by simulation for various levels of system load, and the authors ac-

knowledge the trade-off between energy consumption and performance, and the sig-

nificance of system load on the effectiveness of each resource allocation policy.

Faria et al [83] explore network and energy-aware resource allocation strategies for

opportunistic grids. The authors extend the Workqueue (WQ) [62] scheduling strategy

to consider network traffic, distance between input files and the execution node, as

well as the current state of the execution node. Their proposed scheduling strategy is

similar to our resource allocation policy targeting the most energy-efficient computers

(referred to in Chapter 5 as S2), though rather than using the energy consumption of

the execute node in the selection process, the full energy cost of transferring files to and

from the execute node are considered. However, resources are considered to be het-

erogeneous in performance (and resultant execution time required to execute a given

task), and in our scenario where bandwidth between nodes and the time to wake re-

sources is considered to be uniform, these policies will be equivalent. The authors con-

struct a testing environment comprising 30 workstations across three sub-networks, as

the basis for their experimental evaluation. They further simulate this environment us-

ing GridSim [45] and GreenCloud [129] for three sample workloads with input file sizes

of 10MB, 100MB and 1GB respectively. In the 10MB and 100MB cases their proposed

strategy was shown to make little improvement compared to the HTCondor default

2.3 Directly Related Work 35

policy (referred to in Chapter 5 as S1), though in the third case with large 1GB input

sizes, an improvement of 10.5% is observed as data transfer begins to dominate the

cost of resource allocation.

Finally, a number of resource allocations applied in practice have been docu-

mented by the administrators of high-throughput computing systems. A detailed dis-

cussion of these approaches may be found in Chapter 5.2.

2.3.4 Reducing the number of miscreant tasks executions in a multi-

use cluster

Here we discuss work directly related to Chapter 6 of this thesis. The issue of task fail-

ures is a general one, not specific to our own cluster. [200, 208, 260]. Lingrand et al [145]

analyse logs of over 33 million jobs submitted to the EGEE European production grid

environment between September 2005 and June 2007 and find 19% of jobs failed, with

35% not completing normal execution. The most common and default policy for han-

dling task failures in an unreliable environment is resubmission.

Berten and Jeannot [31] performed a numerical analysis of resubmissions in a

fault prone Grid environment. Their approach studies the effect of bounded and

unbounded reallocation polices (equivalent to X0 and N1(n) as outlined in Chap-

ter 5). The authors consider global and local resubmission schemes; under the global

scheme, failing jobs are reallocated to the main scheduler, while under the local

scheme, failing jobs are resubmitted to the compute resource to which it was originally

allocated. Throughout our work we consider task reallocations to the main scheduler

(global rescheduling). However, energy consumption is not considered and tasks are

assumed not to be faulty, where evidence exists across multiple classes of system to

suggest software failures dominate hardware failures [148].

Hwang and Keselman [110] present an architecture in which extra tasks are run

alongside the main task in order to more closely identify the state of the main task.

This we see as complementary to our work and could be used to help aid ‘good’ and

‘bad’ task detection.

Haider et al [95] provide a literature review for the different fault tolerance mecha-

2.3 Directly Related Work 36

nisms provided by different distributed systems along with an argument for the need

for such techniques.

Estimates of task execution times can be used as a criteria for selecting when to

abandon a task. However, the use of estimates, provided by users at submission, have

been widely criticised by the scheduling community for their inaccuracy [15, 16, 218].

Niu et al [181] analyse the traces of four large-scale systems from the Parallel Workloads

Archive [1] and find only 17% of jobs completed within 90-110% of their estimated

time.

Furthermore, many papers reporting the majority of task taking less than 30% of

their requested allocation [55, 58, 251]. This may be due to tasks misconfiguration

causing immediate termination [173] but is often due to wide variation in execution

times [120] – especially if the cluster is heterogeneous – or since tasks are often termi-

nated at the end of their estimated time interval users ‘pad’ their estimate to increase

the chance of completing.

2.3.5 Energy efficient checkpointing

Here we discuss work directly related to Chapter 7 of this thesis. For a comprehensive

survey of fault tolerance mechanisms and their applications in Grid and HPC environ-

ments, refer to the survey by Egwutuoha et al [74].

Checkpointing in real-time systems

Previous works in energy-aware checkpointing have primarily focused on real-time

systems [166, 240, 261] subject to strict energy and deadline constraints.

Zhang et al [261] propose an adaptive checkpointing scheme to maximise the prob-

ability of satisfying a task’s deadline in the presence of k faults, specified by a pre-

defined fault tolerance requirement. Energy consumption is then introduced as a sec-

ondary optimisation criteria, with Dynamic Voltage Scaling (DVS) employed to main-

tain a processor in low power state, transitioning to higher frequency operating modes

when required to satisfy a task’s deadline.

Melhem et al [166] propose a similar approach, employing DVS in the absence of

2.3 Directly Related Work 37

failures to leverage ‘slack’ time between a task’s deadline and expected completion

time, transitioning a processor into a less performant but more energy efficient op-

erating state.

Unsal et al [240] evaluate the energy characteristics of an Application-Level Fault

Tolerance (ALFT) scheme, where redundancy and recovery logic is incorporated at the

application level, rather than being provided at the system or hardware level and pro-

pose a task scheduling heuristic reducing energy consumption by up to 40%.

In contrast, our scenario of a high-throughput computing environment is not sub-

ject to the same budgetary constraints as real-time systems. HTC systems tend to place

an emphasis on overall system throughput rather than the completion time for individ-

ual tasks, instead adopting a best effort policy to execution completion, and often do

not consider deadline constraints in during resource allocation. However, these ap-

proaches may be considered complementary to our own.

Checkpointing in HPC

More recently, research has sought to understand the overheads and energy implica-

tions of fault tolerance mechanisms, including checkpointing, in anticipation of exas-

cale High-Performance Computing (HPC). Elnozahy et al [76] present a comprehensive

survey of checkpointing and fault tolerance approaches in HPC systems. Bouguerra et

al [39] investigate the impact of combined proactive and preventative checkpointing

schemes in HPC systems, achieving up to a 30% increase in computational efficiency

with negligible increase in overheads, but without consideration for its impact on en-

ergy consumption.

At exascale, increased frequency of faults are anticipated and energy consumption

is a key issue [47]. To this end, Diouri et al explore the energy consumption impact

of uncoordinated and coordinated checkpointing protocols on an MPI HPC work-

load [75], while Mills et al demonstrate energy savings by applying Dynamic Voltage

and Frequency Scaling (DVFS) during checkpointing [168].

The potential performance impact of checkpointing is particularly great in large

distributed-memory HPC systems. In these systems, all compute nodes are required

2.3 Directly Related Work 38

to quiesce while a snapshot of application state across all nodes is taken. Here the

time taken to checkpoint, and thus the duration nodes must quiesce, is significant,

with a number of works seeking to minimise this. Ferreira et al [87] propose one such

approach, employing hash-based incremental checkpointing to reduce the overheads

incurred by traditional coordinated checkpointing approaches.

Further works focus on energy and scalability issues relating to persisting check-

point images to stable storage. Saito et al [201] consider energy saving when persist-

ing checkpoint images, employing profile-based I/O optimisation to reduce the energy

consumption of checkpointing to NAND flash memory by ª40-67%.

We consider the application of DVS [240, 261] and DVFS [168] to reduce the energy

consumption of checkpoint operations to be complementary to our approaches.

Checkpointing in HTC systems

The application of checkpointing in High-Throughput Computing environments and

Fine-Grained Cycle Sharing (FGCS) systems is explored extensively in [38, 182, 197],

though without consideration for its implications for energy consumption.

Aupy et al [13] investigate energy-aware checkpointing strategies in the context of

arbitrarily divisible tasks. While divisible tasks encompasses a number of common ap-

plications including BLAST sequencing and parallel video processing [255], such tasks

represents only a proportion of our workload, and HTC systems do not typically have

control over the division of batched tasks.

Chapter 3

Energy efficient content distribution

with BitTorrent

Summary

In this chapter, energy efficiency considerations are investigated in a decen-

tralised context, using BitTorrent. We provide mechanisms to facilitate en-

ergy efficiency and energy proportionality, and propose an energy-efficient

content distribution system employing these mechanisms to minimise en-

ergy consumption and reduce cost. Our preliminary investigation highlights

the challenges and issues in enacting energy saving operating policies in an

environment where decision-making is decentralised.

3.1 Introduction

BitTorrent [61] is a peer-to-peer (P2P) file sharing protocol, accounting for approxi-

mately 17.9% [190] of overall Internet bandwidth use. Compared to traditional client-

server approaches, BitTorrent relies less on the distributor’s centralised infrastruc-

ture and bandwidth, offering a scalable content distribution solution with reduced

provider-side power consumption and cost. This scalability makes BitTorrent particu-

larly resilient to flash crowds [113], vast numbers of users accessing content simultane-

ously, a behaviour often observed for new and popular content. BitTorrent is employed

not only in residential settings [106], but also within datacentres for the distribution of

software updates [135] and in Infrastructure as a Service cloud computing environ-

ments [136].

In this chapter we investigate provider-side mechanisms to promote energy-

efficient and energy-proportional operation of a BitTorrent based content distribution

system. Our approach is complementary to the proxy scheme proposed in [5], and

alleviates the need for centralised peer control imposed in [8] and [35]. We consider

situations where such centralised control cannot be guaranteed, and present mecha-

3.2 BitTorrent 41

nisms which do not require alterations to client logic. These relaxed conditions make

our approach more broadly applicable as well as simplifying deployment.

3.2 BitTorrent

When a downloader (peer) initiates a download via BitTorrent, they first obtain a tor-

rent file, a file containing metadata for the requested content. This metadata includes

an endpoint to a BitTorrent tracker node. The tracker is essential to the operation of

any BitTorrent system. The tracker maintains records of all peers uploading or down-

loading particular content (known collectively as the swarm), and coordinates content

distribution and enables peer discovery. The tracker component must remain online

at all times in order for newly arriving peers to be able to connect.

Once the peer has established a connection with the tracker, the tracker responds

with a peer list containing the details of a random subset of the other peers transferring

the requested content. The peer may then connect to, and obtain content from, these

peers. Additionally, the peer may elect to obtain up-to-date peer lists from the tracker

periodically according to an announce interval specified by the tracker.

Files in BitTorrent are split into multiple pieces, allowing peers to share pieces of

the file they hold while obtaining the pieces they require. BitTorrent peers’ ability to

download and upload simultaneously benefits performance and makes BitTorrent sig-

nificantly more scalable than client-server file distribution approaches.

BitTorrent peers may belong to one of two states; leeching or seeding. Peers actively

downloading in the system but who do not currently hold a full copy of the file are re-

ferred to as leechers. Once a peer has obtained all the pieces of their download, they

may either depart from the system or remain active as a seed. Seeds remain active par-

ticipants in the system, altruistically sharing upload bandwidth to distribute content

to other peers.

3.3 System Models and Objectives 42

3.3 System Models and Objectives

In our model we represent peer power consumption as nameplate power consump-

tion figures, values specified by the manufacturer of the computer hardware. Selecting

readily available power consumption values provides sufficient accuracy for our sys-

tem to make valuable energy savings while minimising the overhead associated with

collecting the information. We also maintain details of the download and upload ca-

pacity of individual peers. These may be bandwidth figures obtained out of band or

taken from real-time observations of the running system.

We model a seed pool as a group of servers under centralised control, heteroge-

neous in terms of power consumption and upload capacity. The upload capacity of

these servers is assumed to be considerably greater than that of typical peers. Mem-

bership is assumed to be dynamic, with servers arriving to and departing from the pool

periodically. Where members of the seed pool may be considered internal architecture

across one or more data centre facilities, we may assume physical access for detailed

in-situ power profiling. Multiple linear regression models calibrated for each resource

will provide accurate estimates based on real-time resource utilisation measurements,

including CPU, memory and disk activity. Software agents instrumenting each ma-

chine communicate this utilisation data to the tracker.

Our model considers tracker and seed instances to belong to one of two distinct

states; sleep or active. An active resource is fully powered up and is able to execute op-

erations and serve requests from the system. A resource may be placed in a sleep state,

where the machine is no longer able to serve requests and consumes significantly less

power. While asleep, system state is stored in memory allowing the machine to transi-

tion into an active state quickly. We model the time taken to transition between these

two states, during which the resources consume power but are unable to contribute to

the system.

Content distribution networks are typically large shared infrastructures, dis-

tributed across multiple data centre facilities nationally or globally. Hence, it is imper-

ative that our system model adequately represents the differences between data centre

3.3 System Models and Objectives 43

facilities and global variation in the cost and cleanliness of their power sources. Facil-

ity modeling includes the Power Usage Effectiveness (PUE) [21] rating, a metric repre-

senting the proportion of facility overheads (for example, power, cooling and lighting

infrastructure) in terms of the power consumption of the IT equipment. We account

for variations in the price and ecological impact of energy supply in our model, repre-

senting these in pence and kg CO2 per kWh respectively.

We consider modeling of network devices outside the data centre facility as beyond

of the scope for this research. Peer-to-peer approaches have greater total bandwidth

requirements than client-server approaches due to peers communicating with one an-

other. The impact of this communication overhead on power consumption is diffi-

cult to assess. Despite significant recent improvements in energy-efficiency of hard-

ware [199], typical network hardware is found to be energy-disproportional [151]. This

power characteristic results in a narrow dynamic power range, limiting the potential

impact of variable traffic workload on power consumption. Furthermore, these net-

work devices must remain online at all times and are outside of the administrative con-

trol of content providers. Existing research has compared client-server and peer-to-

peer approaches, finding peer-to-peer to demonstrate greater network-related power

consumption but lower overall power consumption in a communication-intensive

scenario such as file distribution [177].

It is unrealistic for an organisation to minimise its power consumption without first

considering the trade-offs between energy efficiency, cost and reliability. In an inter-

organisational scenario such as software patch distribution in an office environment

or large-scale deployment across a cluster [135], stakeholders of the system will most

likely be concerned with minimising the aggregate energy consumption and cost of

a system. Conversely, in situations where peers are external to the organisation (e.g.

video on demand or public content distribution), stakeholders are likely to prioritise

provider-side energy efficiency and cost over those of the peers. Our approach must

remain flexible in order to satisfy the various optimisation goals of the stakeholder.

3.4 Approach 44

3.4 Approach

In this section we outline three key approaches with potential to reduce the energy

consumption of BitTorrent systems. The impact of these approaches should be both

equitable and proportional, such that energy-efficient peers are not penalised exces-

sively in terms of download performance, and be beneficial to the swarm as a whole.

We do not currently envisage the download performance offered to the peers would

serve as a sufficiently significant driver to motivate energy-inefficient machine pro-

curement. Decisions made by the system are informed by comprehensive measures of

system performance collected by the tracker, and are subject to the optimisation goals

of the policy currently being enforced by the service provider, and the current state of

the system.

3.4.1 Energy Proportional Tracker Migration

Energy Proportional Tracker Migration leverages heterogeneous hardware to promote

energy proportionality of the tracker component. During periods of low utilisation the

tracker will reside on a computationally constrained but energy-efficient machine, au-

tonomically migrating to a more performant (but more costly in terms of power) server

during periods of increased load. This aims to minimise the load-independent compo-

nent of our system’s overall power consumption and achieve near energy proportional

operation. Our approach differs from those in the literature by explicitly considering

the characteristics of the BitTorrent workload.

Existing research has demonstrated the ability to compose a number of non energy-

proportional servers, combining power saving mechanisms to deliver an energy-

proportional aggregate system [234] [132]. We acknowledge the heterogeneous nature

of typical real-world data centres (often caused by machine failures, and upgrades, etc)

[100] and contribute mechanisms which specifically leverage hardware heterogeneity

to achieve aggregate energy proportionality.

3.4 Approach 45

3.4.2 Elastic Capacity Provisioning

In Elastic Capacity Provisioning, we propose a variation of typical BitTorrent use,

whereby a content distributor operates a pool of specialised seeds. It is the role of these

seeds to share content to other peers, ensuring satisfactory levels of performance, en-

ergy consumption and cost. Instances are provisioned dynamically in response to real-

time service demand. We consider the heterogeneous nature of this pool of specialised

seeds when periodically recalculating and provisioning the minimum active set of seed

resources to achieve desired performance, cost and energy optimisations.

Traditionally, BitTorrent seeds operate according to a strategy where seeder upload

capacity is allocated proportionally to those peers with higher download rates, opti-

mistic that those peers may themselves become seeds more quickly and serve other

peers. We propose a scheme whereby upload bandwidth is allocated on a combina-

tion of observed download rates and peer energy efficiency. Peers who are particularly

energy-inefficient relative to the rest of the swarm will be provided with a larger pro-

portion of the seeder’s upload capacity, enabling these peers to complete their down-

load and depart from the system more quickly, reducing their power consumption. In

situations where upload capacity is limited among members of the swarm, and such

actions threaten the overall health of the swarm, the traditional strategy is observed to

prevent starvation.

3.4.3 Peer Connectivity Shaping

Peer Connectivity Shaping augments the peer lists returned by the tracker, giving some

peers preferential treatment by providing them with the details of a larger peer set,

or of peers with greater available upload bandwidth. This aims to promote greater

connectivity between the peer and the swarm, lowering the peer’s download time and

consequently reduces its energy consumption.

Once a peer list has been received, a client typically selects a random subset of

peers with which to connect to in the first instance. Peers are unaware of the upload

capacity of the peers when they select which peers to connect to, so it is important

when a peer requests its initial peer list that the list comprises a smaller proportion

3.4 Approach 46

of peers with slow upload rates. Subsequent peer lists may include a wider range of

peer upload capabilities, as BitTorrent’s "tit-for-tat" mechanism will favour peers with

higher upload rates and ensure the peer receives fair download rates. In the case of

a particularly energy-inefficient peer, it may be more beneficial to provide small peer

lists to increase download performance at the expense of increasing the peer’s connec-

tivity with the swarm.

The interval between a peer’s requests to the tracker may also be optimised to im-

prove performance and lower energy consumption and cost. In highly dynamic sys-

tems where peers and seeds are arriving and departing frequently, it may be preferable

to lower the interval between peer requests in order for them to remain responsive to

the changing state of the system. Increased requests to the tracker will place the tracker

under greater load so there exists a trade-off between increasing performance for peers

without incurring greater power consumption on the tracker.

3.5 Experimentation 47

3.5 Experimentation

To evaluate the efficacy of our approach we have developed a simulation environment

based on TorrentSim [17]. TorrentSim was chosen as the basis for our work due to ease

of extension and operating system independence. In order to evaluate our proposed

approaches, we extend the underlying simulation framework in a number of key areas.

Dynamic provisioning of nodes throughout execution The TorrentSim simulation

environment, and the underlying Simmcast [18] framework, support only static

provisioning of nodes. The number and capability of nodes must be specified

in configuration files prior to the start of a simulation run, and they are fixed

throughout the simulation’s execution. We obtain the source code for Simm-

cast and extend its API to expose the operations required to add and remove

nodes while the simulation is running, and make the requistite changes to the

TorrentSim to allow peers to be provisioned and de-provisioned dynamically

throughout the execution of the simulation.

We employ the Moving Window Average (MWA) approach to dynamic provision-

ing presented in [132], with a window size n of 5 minutes.

Pseudocode for the algorithm responsible for enacting provisioning deci-

sions [132] is presented below.

for server_type in server_types

start_time = server_type.startup_time

Predict and start servers

pred = predict_load (now + start_time)

clust = make_cluster(pred)

- current_cluster

- nodes waking up in time

start server_type servers in clust

The pseudocode for the algorithm responsible for de-provisioning servers [132]

is presented below.

3.5 Experimentation 48

for server_type in rev(server_types):

start_time = server_type.startup_time

max_clust = empty_cluster

for t in range(1, start_time)

pred = predict_load(now + t)

temp_clust = make_cluster(pred)

max_clust = max (max_clust, temp_clust)

temp_clust = current_cluster - max_clust

turn off servers in temp_clust

Our extensions to the TorrentSim framework have been designed such that they

are as modular as possible as possible, allowing alternative scaling algorithms to

be plugged easily.

Power consumption modelling We represent peer power consumption as manufac-

turer specified nameplate power consumption figures, as explained in Sec-

tion 3.3. As shown in the state transition diagram in Figure 4.2, resources are

modelled as being in one of three states based on the Advanced Configuration

and Power Interface Specification (ACPI) specification [103], an open standard

describing device configuration power management mechanisms for the oper-

ating systems. The states we consider are as follows:

• Active: actively participating in the BitTorrent system, either as a leech or

seed. This equates to ACPI state S0.

• Sleep: computer state stored in RAM which remains powered. All other

components are powered down. This allows for quick system resume with-

out the need to restart the operating system. ACPI state S3.

These values are used in conjunction with the ammount of time nodes spend in

each operating state, to calculate total energy consumption. Total energy con-

3.5 Experimentation 49

sumption is calculated as follows:

n
X

c=0

m
X

p=0
tc,p Ec,p (3.1)

where n is the number of peers, m is the number of power states, tc,p is the time

spent by peer c in state p (as in Figure 3.1) and Ec,p is the energy consumed by

peer c in state p.

ActiveSleep

Wake

Sleep

Fig. 3.1: State transition diagram for a compute resource

The representations of the tracker and peers - both seeds or leeches - were up-

dated to include power consumptino values for each of these operating states.

Correct calculation of performance metrics for long-running simulations In many

areas of the TorrentSim [17] simulation environment, the double Java type was

frequently used to hold statistical information related to performance character-

istics of the simulated environment. We observe for long-running simulations

that values being stored would exceed the maximum value for this datatype of

(2° 2°52) · 21023, hence were susceptible to overflow. We address this issue by

making use of BigDecimal to store statistical information.

Augmenting the BitTorrent tracker component We augment the BitTorrent tracker

component by providing a finer granularity of performance metrics. As stan-

dard, the BitTorrent tracker does not record or expose statistics on the number

of (and type of) requests it has received from peers in a given time period. We

extend the BitTorrent tracker such that this information is readily available pro-

grammatically, and also written to a log file to allow for additional analysis once

the simulation run has completed.

3.5 Experimentation 50

Performance and power measurement collection We extend the simulation to add

a Monitor component which runs periodically (by default, once per second)

and records a variety of performance and power measurement figures for offline

analysis. Information collected by the monitor includes the number and type of

peers active within the system, and their average power consumption and band-

width utilisation for each peer.

3.6 Results 51

3.6 Results

In the evaluation of the Energy Proportional Tracker Migration approach we consider

two normalised tracker workload traces shown in Figures 3.2 and 3.3. Workload traces

were obtained through the execution of our simulation environment, in the presence

of our extended performance measurement collection described in Section 3.5. These

workloads were selected as we found them to be representative examples of typical

BitTorrent operation.

Workload traces WL1 and WL2 represent tracker requests during the arrival and ser-

vice of 100 and 200 peers respectively. While our simulation envrionment is capable of

simulating larger numbers of peers, we selected 100 and 200 based on indicative figures

from the literature of the scale of typical usage of BitTorrent in a datacentre environ-

ment [92]. In each case three seeds are active in the system, and all peers depart from

the system upon completing their download.

Workload WL1 is characterised by larger peer inter-arrival times and greater avail-

ability, resulting in smaller mean peer service time. Conversely, in WL2 peer inter-

arrival times are much smaller and peer download rates are constrained by limited

availability and greater competition for available upload capacity. The request rate at

a given period is largely dependant on the number of peers and seeds active in the sys-

tem. Observed increases in request rate over time indicate the arrival of new peers,

while decreases signify peers’ completion and subsequent departure from the system.

The efficacy of our provisioning approach is evaluated for two groups of servers.

The first group is homogeneous in terms of both performance and power consump-

tion, while the second comprises servers from two heterogeneous classes of server.

Table 3.1 outlines the performance and power characteristics of the classes of server

we consider in this work.

Type Performance Wake time Power Consumption
(ops/sec) (seconds) Active Sleep

Low Performance 200 30 60W 2W
High Performance 500 120 180W 5W

Table 3.1: Computer Types

3.6 Results 52

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

R
e
q
u
e
st

 r
a
te

Time (t)

Fig. 3.2: BitTorrent tracker workload trace WL1.

0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

Time (t)

R
e
q
u
e
st

 r
a
te

Fig. 3.3: BitTorrent tracker workload trace WL2.

3.6 Results 53

In Figure 3.4 we present relative energy savings for our approach when compared to

a group of servers right-sized to satisfy the peak request rate observed over the duration

of the traces. In each case we find increasing the number of servers is beneficial in

reducing energy consumption, allowing for finer grained provisioning of resources to

satisfy the offered workload.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Number of servers (n)

E
n
e
rg

y
sa

vi
n
g
s

(%
)

WL
1
 − Homogeneous

WL
1
 − Heterogeneous

WL
2
 − Homogeneous

WL
2
 − Heterogeneous

Fig. 3.4: Comparison of energy savings for two workload traces with homogeneous and

heterogeneous groups of servers of size n.

Our results for Energy Proportional Tracker Migration demonstrate the potential

for considerable energy savings and reduction in the load-independent portion of ag-

gregate power consumption, compared to a system provisioned to meet peak demand.

However, due to variability introduced by distributed decision making in BitTorrent,

the Peer Connectivity Shaping approach was found to have little impact on the energy

consumption of the system.

3.7 Conclusions and Further Work 54

3.7 Conclusions and Further Work

In this chapter we have presented a preliminary investigation into energy saving poli-

cies within a BitTorrent system. From this preliminary investigation we learn a num-

ber of key lessons in terms of the context of this thesis. The lack of control observed

in environments where decision-making is decentralised severely limits our ability to

enact energy-efficient policies effectively. This is exacerbated by issues of trust; a fun-

damental issue with decentralised systems is the need to trust the energy consumption

reported by the peers, but where there is an inherent incentive to be dishonest in or-

der to receive better levels of service, and no simple mechanism to verify such claims,

there exists the opportunity for peers to provide a pessimistic view of their own energy

consumption in exchange for preferential download performance.

Though we find the application of energy saving schemes within public BitTorrent

networks to be limited, we envisage scope for further work within organisational set-

ting. Gadea et al [135] consider the use of BitTorrent for distributing codebases among

datacentres of thousands of servers at Twitter. In this scenario, where explicit con-

trol over the provisioning of servers may be assumed, more convincing results may be

sought.

Within the remainder of this thesis we will consider more centralised systems,

where we are able to control each of the individual units contributing to the overall

energy profile of the system.

3.7.1 Further Work

In the area of energy-efficiency of peer-to-peer networks there are a number of inter-

esting areas of further work to be explored, though these are not explored in this thesis.

Federation This paper considers the use of BitTorrent as a content distribution mech-

anism in a single management domain. An interesting area of future research is

to extend our approach to facilitate energy-efficient use of BitTorrent in a fed-

erated network of interconnected content distribution networks. Such a feder-

ated approach would allow organisations to share resources, further reducing the

3.7 Conclusions and Further Work 55

need to over-provision to meet peak demand. A common challenge in peer-to-

peer systems is accountability [238]. Service Level Agreements (SLAs) between

these organisations may be enforced on a combination of utility, cost and energy

efficiency. Audit and accountability information may be used to facilitate billing

for service between organisations. Of particular interest is the ability to reconcile

the conflicting optimisation goals of multiple service providers on shared infras-

tructure, and energy-aware incentive mechanisms in a federated context.

Internet-based media streaming BitTorrent and other peer-to-peer (P2P) solutions

are increasingly being considered to handle the enormous bandwidth require-

ments in the context of on-demand media streaming [147]. This context differs

from ours, with more stringent requirements on end-user Quality of Experience

(QoE). A number of works have explored the feasibility of a BitTorrent-like system

for this purpose [63, 248], but without consideration for the impact on energy

consumption.

Chapter 4

Trace-driven simulation for energy

consumption in High Throughput

Computing systems

Summary

This chapter presents the approach we adopt to trace-driven simulation for

energy consumption in high-throughput computing systems employed in

subsequent chapters. We present a generalised model of resources and jobs

within an HTC environment, detail our power modelling approach, and ap-

ply this to our case study of the Newcastle University HTCondor pool.

We will present details of HTC-Sim for simulating High Throughput Comput-

ing systems comprising both dedicated resources and resources shared with

interactive users. We shall present the core model of the simulation along

with discussion of the trace logs required and the methods needed to produce

such logs. Though we focus on the modelling of our HTCondor system, our

simulation base and system model is easily generalisable to other HTC sys-

tems.

We evaluate the impact of running the simulation software both in terms of

memory footprint and execution time and show, through the use of synthetic

trace logs that the simulation software scales linearly in both memory and

execution time as the number of jobs to simulate increases.

4.1 Introduction

Modern computational power allows researchers to perform work hitherto unimagin-

able. This is often achieved through the processing of vast quantities of data (Big Data),

performing large scale simulations or ensembles of smaller simulations. However, our

desire to solve such problems has now far-outstripped the computational power of a

single computer. Parallel computing, where multiple processing units are employed

in solving a single piece of work, is a common solution to such problems. Where this

4.1 Introduction 58

work may be sub-divided into separate jobs that can be run independently of each

other we refer to this as an ‘embarrassingly parallel’ or ‘pleasingly parallel’ problem

and solve it using High Throughput Computing (HTC). Many HTC systems exist, such

as HTCondor [146] and BOINC [6], with these systems being used to help solve research

problems from small scale up to grand research challenges.

Traditionally HTC systems were provisioned as either dedicated resources or as a

shared facility (often referred to as a Desktop Grid) with resources powered up all the

time either servicing jobs or sitting idle. The performability and reliability of such sys-

tems is generally well understood [117]. With IT operations facing increased scrutiny

for their energy consumption and a strong desire to reduce the impact of these sys-

tems, HTC systems would appear to be a prime candidate for such savings.

Aggressive power management policies, over the resources which constitute an

HTC system, are often proposed, though these policies could have significant impact

not only on the energy consumption but also performance, reliability and availability

of resources for HTC users. Placing idle resources into a sleep state too rapidly could

lead to HTC resource starvation, while weak policies may offer little energy savings.

It is therefore highly desirable to determine the ‘best’ set of energy conservation

policies which can be applied to both the HTC system and the underlying hardware.

Controlling such factors as when idle resources are sent to sleep, when to wake up re-

sources, the selection of the resource to use in order to minimise energy consumption

or how to deal with jobs which fail to complete. This is particularly important for Desk-

top Grids, with priority for interactive users, as job eviction does not imply that the job

cannot complete with more time on a different resource.

One solution to determining an optimal policy set is to test policy changes on the

live system. This has three significant drawbacks: running the system under the new

policy for a significant amount of time to ensure statistical relevance; detailed logging

to determine energy consumption and monitoring of the high-throughput architec-

ture is required; and a danger that changes could have unpredicted (negative) con-

sequences. This leads to making minor modifications to the policy set where we are

confident that the impact on users will be low; significant changes being considered

4.1 Introduction 59

too dangerous.

Two alternatives exist: a test environment or a simulation. Test environments re-

move the need for site-wide monitoring and do not affect the production system, how-

ever time is required to evaluate changes and we need to justify how results would map

to the whole system. Instead we present here HTC-Sim, a Java based trace-driven sim-

ulation we have been developing as part of our work in energy saving for HTC systems.

The simulation system allows for the quantifiable, and quick, evaluation of different

policies against the same workload and interactive user patterns.

WOL

Z
ZZ

High-Throughput
Users

Interactive Users

High-Throughput
Management

Z
ZZ

Policy

Cluster Policy

Cluster Policy

Fig. 4.1: Model of an HTC system and multi-use environment

The simulation system allows the modelling of energy consumption and perfor-

mance characteristics of the HTC system. Thus it can be seen as a powerful tool for

administrators to evaluate new policies as well as the impact of changes to the infras-

tructure itself.

The overall model for HTC-Sim is shown in Figure 4.1, where two types of user can

interact with the system – HTC users and interactive users. These are handled through

historical trace logs for both user types, allowing us to replay system behaviour for the

period over which the traces were collected. Interactive user trace logs contain the lo-

gin and logout time along with the resource used – it is assumed that this is a fixed

interaction. However, for the HTC workload only the job submission time and the ex-

ecution time are considered – the execution start time and resource used may change

due to the active policy set. Resources within the system are grouped into clusters, each

representing a set of homogeneous resources under the same policy set. In this way we

4.2 System Model 60

can model both sets of resources purchased together or resources co-located and act-

ing under identical policies. The HTC system has its own policy set. We consider the

resources within our system to feature a Wake-on-LAN (WOL) capability such that the

system may power up these resources on demand.

The remainder of this chapter is structured as follows. In Section 4.2 we provide de-

tails of the simulation model and the policy decisions of high-throughput systems we

plan to model in our system. We present a case study of using our simulation with the

trace logs obtained from our HTCondor cluster in Section 4.3. Performance evaluation

of the HTC-Sim is presented in Section 4.4, evaluating the performance of our simu-

lation framework in terms of execution time and memory consumption. Conclusions

and future plans for extending HTC-Sim are presented in Section 4.5.

4.2 System Model

We introduce our generic model of the entities and resources within a HTC system

along with our metrics for user impact, energy, cost and environmental implication.

4.2.1 Compute resources

We model compute resources as being either dedicated - whether local or cloud in-

frastructure - or multi-use cluster machines shared with interactive users. We model

a number of characteristics for machines, namely architecture type, operating system,

performance measures (e.g. CPU speed, number of cores, memory) and energy pro-

file. We further allow users of the simulation to specify custom attributes for machines

which are specific to the environment which they are modelling.

We adopt the SPECpower [219] model for energy consumption within a system, as

discussed in Chapter 2.1.1. Here discrete values for CPU load are equated with specific

energy consumption levels. This allows the energy consumption of a resource to be

derived from the current CPU load, if known. As shown in the state transition diagram

in Figure 4.2, resources are modelled as being in one of three states based on the Ad-

vanced Configuration and Power Interface Specification (ACPI) specification [103], an

open standard describing device configuration power management mechanisms for

4.2 System Model 61

the operating systems. The states we consider are as follows:

• Active: in use either by an interactive user or a high-throughput job. This equates

to ACPI state S0. We consider resources to belong to the active state if they are in

‘User‘, ‘HTC‘ or ‘HTC+User‘ states in Figure 4.2. If CPU load is known then energy

consumption can be derived from this figure.

• Idle: powered up but not actively processing work for interactive user or high-

throughput job, with lower energy consumption than in active state. Also S0.

Equates to approximately 5-10% CPU load.

• Sleep: computer state stored in RAM which remains powered. All other compo-

nents are powered down. This allows for quick system resume without the need

to restart the operating system. ACPI state S3. The CPU is inactive consuming

only a base level of energy.

Idle

HTC

Sleep
Wake

Sleep

Task
allocation

Task
de-allocation

User
Interactive
user arrival

Interactive
user departure

HTC + User

Task allocation

Task
de-allocation

Interactive
user arrival

Interactive
user departure

Fig. 4.2: State transition diagram for a compute resource

4.2.2 Interactive user sessions

We model interactive user sessions as a tuple hsi ,c,u,ei i where si and ei are the login

and logout timestamps respectively, c is the name of the computer, and u is a hash of

the interactive users identity. Hashing of the user identifier provides anonymity to the

user, while allowing us to correlate multiple sessions from a particular user.

4.2 System Model 62

4.2.3 Cluster

We group resources into ‘clusters’ defined as a homogeneous group of machines1,

whose specifications are identical, provisioned at the same time, co-located in the

same physical space, and governed by the same operating policies. The Power Us-

age Effectiveness (PUE) [21] of the cluster can also be taken into account here. We

model the changing behaviour of cluster machines over time. Factors include: times

of scheduled reboots, whether HTC jobs are currently permitted, whether machines

are currently available for use by interactive users, whether HTC jobs are allowed to

run on a machine currently occupied by an interactive user, how long must a resource

remain idle before transitioning into a low power state, and how long after a resource

enters the idle state does it become available to run HTC jobs.

We are further able to model ‘special’ events through the course of the simulation

where the policies enacted on the cluster may vary. Examples of this include clusters

being closed for upgrades, different policies for different days of the week, or bank

holidays.

4.2.4 HTC Job

The HTC workload comprises of jobs which may be part of a batch. We define a job by

the tuple h j ,b, q,d ,h,e, f ,u,di, where:

• j is the identifier of a job (or batch of jobs)

• b is the identifier of a job within a batch (if present)

• q is the time the job was submitted into the system

• d was the job duration observed in the original system

• h is the hash of the user who submitted the job

1Though we acknowledge the heterogeneous nature of real-world clusters [100] (often a consequence
of manufacturing variation, machine failures and upgrades, etc), the variation in energy profile of ma-
chines with a group are smaller than the variation between classes of machine (see Table 4.1) and a
homogeneous cluster model has been shown to be sufficient for our work. A cluster exhibiting sys-
tem significant variation between machines may easily be modeled as two distinct clusters within our
framework.

4.2 System Model 63

• e is the HTC result state of running the job (either ‘success’ or ‘terminated’)

• if a job was terminated (result state e equals ‘terminated’) then f represents the

time that the job termination was submitted.

• u, d represent the data transfer to and from the resource which ran the job.

Although most HTC systems can provide much more information on the jobs

which were run these are the core elements currently used within the simulation.

Each job will transition through a number of states as depicted in Figure 4.3. Jobs

arriving into the system will be initially queued, though if possible they will be allo-

cated immediately to a resource and enter the running state. In the ideal case the run-

ning job will finish without any further state transitions. However, if an interactive user

takes possession of a resource then the job will enter a suspend state where execution

is temporarily suspended – in the hope that the user will leave soon afterward – after

which the job can resume running. If the suspension time becomes too great then the

job will be evicted back to the queue. If checkpointing is being used then jobs will be

checkpointed at intervals defined by policy (for a full discussion of checkpointing, see

Chapter 7). Jobs may be terminated at any time in which case they end up in the final

‘Job Removed’ state.

Job Running Job FinishedJob Queued Allocation

Checkpointing
Job Removed

Suspended

Eviction

Eviction

Interactive
user arrival

Interactive
user departure

Completion

Removal

Eviction

Interactive
user arrival

Removal

Removal

Removal

Fig. 4.3: State transition diagram for a job within an HTC system

4.2 System Model 64

4.2.5 Policy decisions - HTC

A number of common policy decisions exist within HTC systems. We discuss those

which have already been built into our simulation model here:

Resource allocation: Given a set of available resources, the HTC system must select

the most appropriate resources to optimise the required metrics. These may in-

clude random allocation, lowest energy consumption, least chance of eviction,

or fastest resource. Further discussion of these policies can be found in [159, 161]

and Chapter 5 of this thesis.

Job resubmission: In an system where jobs can be evicted through activities outside of

its own control (reboots and interactive users) the decision of whether to try and

re-submit a job which has previously been evicted needs to be made. This is non-

trivial as a job which has been evicted many times may indicate that it is ‘broken’

and will never complete or might just indicate that the job has been unfortunate

in its previous allocation to resources [163]. Job resubmission strategies to pro-

mote the successful completion of good tasks within HTC systems are discussed

in detail in Chapter 6 of this thesis.

Suspension: Suspending jobs offers great potential for ‘saving’ the effort already ex-

erted on a job. However, if the suspension timeout is too short then this benefit

can be lost, whilst if the timeout is too long then a significant penalty is imposed

on the time a job takes to complete [161]. Suspension policies in HTC systems is

discussed in Chapter 5 of this thesis.

Reboots (deferral): Many Desktop Grid installations have nightly reboot policies.

Given that the best time for running HTC workloads tends to be at night the abil-

ity for HTC jobs to defer these reboots can significantly improve the chance of

nightly jobs to completing [161]. The impact of machine reboots and their po-

tential deferral are discussed in Chapter 5 of this thesis.

Checkpointing: Checkpointing can save both time and energy by allowing jobs which

are evicted to resume from the last checkpoint. However, as the process of check-

4.2 System Model 65

pointing consumes both time and energy a careful balance is required to min-

imise energy consumption [89, 91]. The impact of checkpointing in HTC systems

is discussed in Chapter 7 of this thesis.

4.2.6 Policy decisions - Infrastructure

A number of policy decisions can be made for the underlying infrastructure [161], these

include:

Time before HTC usage: Once a computer becomes idle it is a potential target for HTC

work. However, in busy clusters a logout could be quickly followed by a login

causing a job eviction. Therefore allowing some time between user logouts and

HTC use is desirable [161] (see Section 5).

Time to sleep: Energy is saved by sending resources to sleep as soon as they become

idle. However, this increases the time for HTC jobs as the resources need to re-

turn from the sleeping state first. This is exacerbated if resources are required to

be idle for a set amount of time before they can be used for HTC work.

Can HTC wake up computers: If the HTC system can not wake up resources then this

can lead to resource starvation once the resources have gone to sleep. Likewise

if they can wake up computers then this leads to potentially more energy usage.

Allow HTC usage: At busy times of day it may be desirable to disable HTC workload

on specific clusters.

4.2.7 Metrics

When evaluating proposed policies, a number of metrics are of particular interest, pro-

viding insight into the performance, energy consumption and cost of operation. Below

we outline the range of metrics currently supported by HTC-Sim.

Performance overhead: is measured as mean average job overhead - defined as the

time difference between the job entering and departing the system, and the ac-

tual job execution time (d in our job tuple in Section 4.2.4). Overheads may in-

4.2 System Model 66

clude suspension, checkpointing or delays incurred while awaiting resource al-

location.

Energy consumption: reporting fine grained energy consumption results, at per-

computer, cluster and system levels. Providing a breakdown of energy consump-

tion for each state, e.g. sleep, idle, HTC and/or interactive user. Total energy

consumption is calculated as follows:

n
X

c=0

m
X

p=0
tc,p Ec,p (4.1)

where n is the number of computers, m is the number of power states, tc,p is

the time spent by computer c in state p (as in Figure 4.2) and Ec,p is the energy

consumed by computer c in state p.

In the case of resources based in data centres / machine rooms, we utilise the

Power Usage Effectiveness (PUE) [21] value for the environment, describing the

ratio of power consumed by compute resources to the power consumed by the

cooling and lighting infrastructure to support the resources. It is important to

note that PUE values may not legitimately be applied to desktop machines based

on users’ clusters due to the multi-use nature of the environment in which the

machines reside, and variations introduced by user occupancy.

Good jobs terminated: Policies governing the resubmission of evicted jobs may lead

to good jobs being terminated.

Data transfer: Data transfer is often a significant overhead. This is particularly evi-

dent for jobs with large datasets, or when using checkpointing. The simulation

models the bandwidth available between nodes, imposing time delays on data

ingress/egress. Estimated data transfer delays may then be used to inform re-

source allocation and other decisions. The iperf [216] bandwidth measurement

tool was used to ascertain the peak bandwidth available between cluster ma-

chines and an average value of 94.75 MBits/s used as an approximate in our sim-

ulation.

4.2 System Model 67

May 21 May 22 May 23 May 24 May 25 May 26 May 27 May 28
0

100

200

300

Date

D
ow

nl
oa

d
Th

ro
ug

hp
ut

(M
Bi

ts
/s

ec
)

May 21 May 22 May 23 May 24 May 25 May 26 May 27 May 28
0

50

100

150

200

Date

U
pl

oa
d

Th
ro

ug
hp

ut
(M

Bi
ts

/s
ec

)

Fig. 4.4: Bandwidth measurements for EC2 upload and download throughput

In [162] we further evaluate the data transfer overheads of file transfers to cloud

instances based in the Amazon EC2 (US East Northern Virginia Region) data-

centre. The results of this experimentation is shown in Figure 4.4, capturing the

network bandwidth every thirty minutes between Monday May 20th 2013 and

Tuesday May 28th 2013 based on the GMT time zone. There is a clear day and

night pattern to this data, although there are a number of outlying points. Band-

width potentials appear to be greatest during the early hours of each day (GMT)

with the upload speeds showing the greatest variation. A full analysis and mod-

elling of this variation in bandwidth forms the basis for further investigation; in

our works we take average bandwidth values from our test period for our sim-

ulations, those being an upload speed of 90.08 MBits/s (11,811 bytes/ms) and

download speed of 174.88 MBits/s (22,925 bytes/ms). It should be noted that the

largest data transfer observed in the data set was 903 MB with our transfer exper-

iments running for five minutes reaching up to 9.4 GB of data transfer. It should

also be noted that these are maximum bandwidth potentials for the connections;

real use is likely to be less, thus these give a lower estimate on data transfer times.

Cluster utilisation and throughput: Policies such as fault tolerance and replication

have the potential for significant impact on throughput and overall cluster utili-

sation. We report utilisation both in terms of the HTC workload in isolation, and

also including interactive user load, and report measures of average and peak

4.3 Case Study of HTCondor 68

throughput.

Cost and environmental impact: It is insufficient to evaluate energy consumption

and performance of policies without also considering their implications for cost.

We model electricity cost per kWh, and a carbon emissions charge for each kilo-

gram of CO2 produced from energy [71] (currently £16 per metric tonne in the

UK). These figures may be specified at a system- or cluster-specific level to re-

flect the costs associated with the users’ infrastructure, and any cost differences

in federated and cloud contexts. Thus, the total operating cost C for set of re-

sources r is calculated as:

C (r) =
X

r=0
ur §pr +

ur

1000er
§ tr (4.2)

where ur is the energy consumed by resource r (measured in kWh), pr is the

energy price per kWh for resource r , er is the emissions factor for resource r , and

t is the current tax rate per metric tonne of CO2 for resource r .

We have in previous works extended this energy model to account for additional

costs including the hardware and network infrastructure [162].

Logging: The simulation employs a multi-level logging approach. Within the config-

uration file the logging level is specified. Detailed logging is available during de-

velopment and debugging, while lower levels of logging may be selected to min-

imise output size for large sets of simulation runs.

4.3 Case Study of HTCondor

In this section we validate our simulation environment by modelling the HTCondor

deployment at Newcastle University and use the simulation environment to explore

a set of simple resource selection policies. We also discuss the process of obtaining

interactive user and HTCondor workload trace data across a twelve month period to

drive the simulation.

4.3 Case Study of HTCondor 69

4.3.1 Newcastle University HTCondor pool

In 2010 the Newcastle University’s HTCondor pool comprised ª1400 desktop comput-

ers spread through 35 clusters on campus. The opening hours of these clusters var-

ied, with some respecting office hours, and others available for use 24 hours a day.

Clusters may belong to a particular department within the University and serve a par-

ticular subset of users, or may be part of a common area such as the University Li-

brary or Students’ Union building. Computers within the clusters are replaced on

a four-year rolling programme with computers falling into one of three broad cate-

gories as outlined in Table 4.1. In this work we lack resource utilisation information

for the HTC worker nodes, so adopt a power model employing easily obtained man-

ufacturer ‘nameplate’ power consumption values for each of the operating states as

outlined in Section 4.2.1. These nameplate values are typically estimated by manufac-

turers as the sum of the worst case power draw of all components in the system [171],

so may be considered a worst-case estimate of energy consumption.

The University has a policy to minimise energy consumption on all computational

infrastructure which has been in place for a number of years. Hence the ‘Normal’ com-

puters have been chosen to be energy efficient. ‘High End’ computers are provisioned

for courses requiring large computational and/or rendering requirements such as CAD

or video editing, and as such they have higher energy requirements. ‘Legacy’ comput-

ers pre-date the policy of purchasing energy efficient computers and are also the oldest

equipment within the infrastructure. All computers within a cluster are provisioned at

the same time and will contain equivalent computing resources.

These computer clusters are provisioned for the needs of the primary (interactive)

users of the system. Students generally demand Windows-based machines so the pro-

Type Cores Speed Power Consumption
Active Idle Sleep

Normal 2 ª3Ghz 57W 40W 2W
High End 4 ª3Ghz 114W 67W 3W
Legacy 2 ª2Ghz 100-180W 50-80W 4W

Table 4.1: Computer Types

4.3 Case Study of HTCondor 70

portion of resources capable of checkpointing (i.e. Linux) is limited. At Newcastle Uni-

versity, Linux-based machines constitute only ª5% of resources available to HTCon-

dor.

All cluster machines within the pool reboot between 3am and 5am each day to in-

stall new software, perform updates and install patches. The reboot also helps to clear

any temporary faults which may be present on the machine.

4.3.2 HTCondor-specifics

We extend our generalised simulation environment to model the operation of an HT-

Condor environment. The operation of HTCondor is modelled around the description

of core components presented in [229]. HTCondor uses ClassAds [215] to define jobs.

A ClassAd is a attribute-value pair document containing all information about a given

job. A ClassAd can contain any number of element pairs, our system producing over

50, however, there are only currently nine elements we require for our simulations. Ta-

ble 4.2 maps these to characteristics of a job which we identify in Section 4.2.4. Note

that JobStatus can have values here of ’4’ for completed jobs and ’3’ for terminated

jobs. Note also that the computation for d neglects the fact that jobs can accumulate

time through suspensions which would be included here. This can easily be removed

by subtracting CumulativeSuspensionTime.

Job characteristic Tuple term HTCondor parameter or expression

Job identifier j ClusterId
Batch identifier b ProcId
Submission time q QDate
Job duration d EnteredCurrentStatus

-JobCurrentStartDate
Owner h Owner
Result state e JobStatus
Data transfer in u BytesSent
Data transfer out d BytesRecvd

Table 4.2: Job Characteristics to HTCondor mappings

HTCondor provides powerful resource matching through the ‘Matchmaker’ which

takes in two ClassAd pairs namely Requirements and Rank. Requirements is used to

4.3 Case Study of HTCondor 71

indicate characteristics which must be present on a resource for successful matching,

such as type of operating system and minimum memory, whilst rank indicates how

to order all those resources which match the requirements – with the top-raking re-

source being used. As our main intention here is comparison of energy consumption

and overheads, and Requirements and Rank were almost completely unused in our

log [158], we have ignored this information here. However, it would not be difficult to

extend the resource allocation code to take this into account.

4.3.3 Preparing User logs

Interactive logins on resources at Newcastle University are handled through a cen-

tral Managed Desktop Service (MDS). Extracting the user logins and user logouts from

2010, we are able to construct an amalgamated user trace log. Unfortunately the MDS

provides login and logout data separately and each file can contain duplicate records

– both identical in time and separated by a few milliseconds. This is a consequence

of the login to the resource and the mounting of remote user file-space. Further to

this the records are not generated in chronological order. We have developed a tool

which is able to remove the duplicates, match logins to logouts and order the trace log.

A further complication arises in the case where a computer crashes or is powered off

manually during a logged in session. In this case there will be no corresponding logout.

As this accounted for less than 0.1% of the trace log these were ignored.

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Date

N
u

m
b

e
r

o
f

u
se

r
lo

g
in

s
p

e
r

d
a

y
(T

h
o

u
sa

n
d

s)

Fig. 4.5: Newcastle University Interactive user activity trace for 2010

4.3 Case Study of HTCondor 72

Figure 4.5 illustrates the user profile from 2010, representing 1,229,820 user logins.

It is easy to see the weekly cycle of computer usage, with lower usage at the weekends,

along with term patterns indicating when the easter and summer breaks occurred. We

currently do not possess resource utilisation information from user sessions therefore

assume 100% resource utilisation of the computers whilst users are active.

4.3.4 Preparing HTCondor logs

HTCondor collects historical logs of jobs which have either completed or been termi-

nated. This can be extracted with the condor_history -long command. However,

this history may only contain the previous n jobs (where n is configurable in HTCon-

dor) and the jobs are ordered by completion rather than submission time. In order to

overcome the former a regular capture of the history can be performed, however, this

may lead to duplicates. To solve this and the ordering of records we have produced

a tool which orders jobs by submission time and removes duplicates. The simulation

itself is then able to read the processed HTCondor log directly through an HTCondor

translator.

Figure 4.6 illustrates the number of jobs submitted each day during 2010. In total

561,851 jobs were submitted, with a mean job submission rate of 1,454 jobs per day.

There is no clearly visible pattern to this trace log.

Furthermore, since December 2012 we have extend our data collection to include

Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec
1

10

100

1000

10000

100000

Date

N
u
m

b
e
r

o
f
S

u
b
m

is
si

o
n
s

Fig. 4.6: Newcastle University HTCondor workload trace for 2010

4.3 Case Study of HTCondor 73

event logs which include additional information including periodic memory and disk

utilisation information throughout a jobs execution, and complete logs for resource re-

allocation, suspension and checkpointing. This fine-grained event logging is typically

only provided to the submitting user of a job, but centralised collection of this data

may be enabled by including the following options in an HTCondor configuration.

EVENT_LOG = /some/file/path

EVENT_LOG_USE_XML = True

EVENT_LOG_MAX_SIZE = 52428800

EVENT_LOG_MAX_ROTATIONS = 3

The HTCondor log files comprising our dataset were collected using Condor v6.6,

but our simulation remains compatible with current versions of HTCondor (currently

v8.3.0).

To facilitate the sharing of HTCondor traces across organisational boundaries, we

provide tooling support to automatically sanitise logs obtained from running systems,

removing sensitive or personally identifiable information. Fields such as job owner

and executable name are replaced with hashes to facilitate more detailed analysis of

workload traces.

Figure 4.7 shows the proportion of cluster time used by interactive users, HTC

workload and time spent in an idle state for our HTC pool in 2010. We may observe

that the offered workload to our system in 2010 results in very low system utilisation

(12%).

Figure 4.8 shows the probability that a job of length x hours will complete given that

it is submitted during hour y of the day. Probabilities are obtained through simulation

based on our Newcastle University trace logs for interactive users, and knowledge of

computer reboots. Note that this is assuming that no other jobs are running at the

time and should th erefore be considered as an overestimate of the probability. As

all computers are rebooted at 3am this leads to the diagonal cut-off within the heat

map going from a 50% chance of completion to 0% in the lower right hand side of the

figure. There is only one hour slot under which a 24 hour job can complete - when

started immediately after a computer reboot at 3am. The highest chance of short jobs

4.3 Case Study of HTCondor 74

0

10

20

30

40

50

60

70

80

90

100

P
ro

p
o
rt

io
n
 o

f
cl

u
st

e
r

tim
e
 (

%
)

B
A

N
K

B
A

R
N

B
E

C
K

B
R

A
E

B
R

IG

C
H

A
R

T

D
E

N
E

E
L
D

O
N

F
A

Y
O

L

F
E

L
L

G
A

T
E

G
IL

L

G
L
O

B
E

H
U

L
L

IS
A

A
C

L
A

K
E

L
A

W
N

L
IN

N

L
O

C
H

M
O

S
S

N
A

IA
D

N
E

R
E

ID

N
ID

D

O
R

A
C

L
E

P
A

R
K

P
E

T
H

P
O

N
D

P
O

O
L

S
ID

E

T
A

R
N

T
E

E
S

T
R

E
E

T
U

R
F

T
Y

N
E

W
E

A
R

W
O

O
D

Y
A

R
D

Time for HTCondor
Time for User
Time for Idle

Fig. 4.7: Proportion of cluster time used by interactive users and HTCondor

completing successfully falls between 3am and 8am. By using Figure 4.8 along with

largest prior execution time for an evicted job we can determine with some degree

of confidence the chances that the job will complete at the time of submission. The

prediction of task completion time for our institutional workload is explored in greater

detail by Bradley et al [41].

Job length (hours)

H
o
u
r

o
f
d
a
y

0 5 10 15 20

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 4.8: Heat map showing the probability of successful job completion given job du-
ration and submission time

Figure 4.9 shows the percentage of jobs each day which required y hours of execu-

tion time – ignoring any time wasted through evictions. Note that this does not include

4.4 Performance Evaluation 75

jobs which failed to terminate as these jobs do not have a meaningful execution time.

Most ‘good’ jobs have an execution time less than three hours. However, there are a

number of anomalies. Thus it is not safe to assume any job which has received over y

hours of service will automatically be a ‘bad’ job.

Day of Year

P
e
rc

e
n
ta

g
e
 o

f
jo

b
s

co
m

p
le

tin
g
 in

 h
o
u
r

b
in

s

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

14
13
12
11
10
9
8
7
6
5
4
3
2
1

0

0.2

0.4

0.6

0.8

1

Fig. 4.9: Breakdown of Job durations per day

4.4 Performance Evaluation

Here we evaluate the performance of our simulation software and justify its applica-

bility to arbitrary sized HTC data sets. We do so using the resource allocation poli-

cies outlined in Chapter 5. We evaluate this in terms of the wall-clock time to run the

simulation and the maximum memory footprint. The timing for a simulation and the

memory footprint will be a direct consequence of the policy set being evaluated. For

example a simulation such as S6 which holds a sliding window of prior user logins will

require more memory to maintain this set along with more time to process the set than

a simulation based solely on random resource selection. We therefore present figures

here for simulations based on policy S1.

Each simulation was run on a machine with an Intel Core i7 860 2.80GHz proces-

sor with 4GB RAM and 500GB 7,200RPM Western Digital Blue hard drive, running the

Fedora 19 operating system. Results are based on ten simulation runs using different

machines to reduce random effects.

4.4 Performance Evaluation 76

0

200

400

600

800

1000

1200

0.5 1 2 3 4 5 6

Number of jobs (Million)

M
e

m
o

ry
 u

til
is

a
tio

n
 (

M
B

)

Fig. 4.10: HTC-Sim performance analysis: Maximum memory footprint

Running our real historical trace log of HTCondor workload requires an average

of 3:03 minutes. Running the simulation without the HTCondor requires 2:06 minutes,

whist running without interactive users (representing a dedicated cluster) requires 1:13

minutes. Note that you cannot just sum these two times to give the overall simula-

tion time due to simulation book-keeping and the processing of cluster events such as

computer reboots and clusters opening and closing. The memory footprint for these

simulations are 802MB, 750MB and 795MB respectively. The higher memory footprint

from the HTCondor only simulation most likely a consequence of the larger ClassAds

log file.

In order to evaluate the scalability of our simulation software we investigate the ex-

ecution time and memory footprint when running larger (synthetic) workloads [161]

– over ten times our real workload (ªsix million jobs). Figures 4.10 and 4.11 show the

memory footprint and execution times respectively for both our original simulation

and synthetic trace logs. In both cases the memory consumption and execution time

increases linearly with workload indicating the simulation scales well with workload.

The only exception to this is the execution time for the largest synthetic workload.

However, as this requires a memory footprint close to the normal Java memory allo-

cation this is likely to be a consequence of aggressive garbage collection.

4.5 Conclusions and Further Work 77

0

100

200

300

400

500

600

700

800

0.5 1 2 3 4 5 6

Number of jobs (Million)

E
xe

cu
tio

n
 t

im
e

 (
S

e
co

n
d

s)

Fig. 4.11: HTC-Sim performance analysis: Execution time

4.5 Conclusions and Further Work

In this chapter we have introduced HTC-Sim, a trace-driven simulation framework for

the simulation of High Throughput Computing systems comprising both dedicated

resources and resources shared with interactive users. We outline our generalisable

model of HTC systems and apply these to HTCondor [146], forming the basis of the

remainder of this thesis. We evaluate the impact of running HTC-Sim both in terms

of memory footprint and execution time, both for our own institutional trace data and

larger synthetic trace logs derived in [161]. We show the simulation scales linearly in

both memory consumption and execution time as the size of the workload trace in-

creases.

4.5.1 Further Work

As part of ongoing research in the field of energy efficient high throughput computing,

we are working to extend the capabilities of the HTC-Sim framework in a number of

key areas:

Workflow and MPI workload support Computational grids may be used to execute

jobs belonging to one of a number of categories [192]; Bag-of-task, Message

4.5 Conclusions and Further Work 78

Passing Interface (MPI), and Workflow. In this work we consider a Bag-of-task

workload [59], comprising multiple independent tasks with no communication

among each other. In contrast, MPI workloads are needed to communicate with

one another throughout execution, so there is a need for a number of resources

to be made available at the same time. In further work we shall extend our sim-

ulation to; a) support MPI workloads spanning multiple compute nodes, b) in-

corporate support for Workflow workloads, e.g. by modeling the functioning of

the Directed Acyclic Graph Manager (DAGMan) [227], the meta-scheduler used

by HTCondor to handle the dependencies between Workflow jobs. This would

allow the extension of existing DAG-based application mapping techniques [97–

99] to be evaluated for energy consumption in the context of multi-use clusters.

An overview of the workflow support of grid systems including HTCondor is avi-

lable in [257].

Extended HTC system support Of particular interest is the ability to evaluate policies

for a wider range of HTC systems, and for workload traces available in the liter-

ature [1, 10, 84, 112]. To this end we are currently adding a workload translator

to support the use of workload traces in Grid Workload Format (GWF) [111], and

those in formats of other HTC systems e.g. BOINC.

Network modelling As discussed in Section 4.2.7, we model the bandwidth between

nodes in our system as the basis for data transfer delay calculation and decision

making within our simulation. However, we do not currently support model-

ing of bandwidth sharing or the ability to report network contention between

nodes. This is increasingly desirable when considering data-intensive workloads

and will form the basis of further work.

Multi-tenancy In our current simulation model we assume a given resource is capable

of executing a single task at a time. Modern grid systems commonly comprise

multi-core systems, and with not all workloads supporting multi-core operation,

there is significant scope for the conslidation of workloads.

4.5 Conclusions and Further Work 79

The inclusion of multi-tenancy also introduces a further policy decision, govern-

ing the batching of jobs during quiet periods. Kamitsos et al [121] explore deter-

mining the optimal time to delay applications under low load to reduce energy

consumption, with considerations for temperature and reliability. While they

deal with web workloads, we envisage a similar appropach to work in the con-

text of high-throughput computing environments.

Resource failure modeling Multi-use clusters such as our own are often underrepre-

sented in the public grid [1, 10, 84, 112] and failure [81, 118, 206, 207] datasets.

We indent do address this by instating monitoring and data collection among our

institutional clusters, such that we may posess failure traces which may be incor-

porated into the simulation environment. Similarly, we consider the integration

of statistical models of resource failures into our simulation model.

Dynamic Voltage and Frequency Scaling (DVFS) Dynamic Voltage and Frequency

Scaling (DVFS) is commonly used within the literature to reduce energy con-

sumption in HTC and HPC systems [168, 240, 261]. To date we consider many of

these works to be complementary to our own but have been unable to evaluate

them. We shall extend our model of our compute resources to facilitate DVFS.

Chapter 5

Resource Allocation

Summary

In this chapter we demonstrate the energy and performance impact of re-

source allocation strategies in high-throughput computing systems in the

context of multi-use clusters. Such strategies govern the power manage-

ment of the underlying resources, as well as resource selection and the use

of suspension strategies to promote successful execution. We extend our

simulation model previously introduced in Chapter 4, and demonstrate that

these policies could save 55% of the currently used energy for our high-

throughput jobs over our current cluster policies without affecting the high-

throughput users’ experience.

5.1 Introduction

In this chapter we investigate the impact of resource allocation strategies on energy

consumption policies, identifying policies capable of directing high-throughput jobs

to more energy efficient computers, reduce the amount of time that is wasted before a

job starts execution and reduce the chances of a job being evicted. This will reduce the

time between job submission and completion with the further advantage of decreas-

ing energy consumption. We also investigate policies to reduce the amount of time a

computer is idle awaiting either an interactive user or a high-throughput job.

The rest of this chapter is structured as follows. In Section 5.2 we discuss existing

examples of policy that are currently, or have previously been, enacted in various pro-

duction environments within academic institutions. Section 5.3 discusses a number of

policies that have been identified, this includes ones that we have implemented in our

production environment, and also those we wish to evaluate before implementation.

In Section 5.4 we describe the results of our experimentation, before concluding and

5.2 Existing Examples of Policy 82

motivating future work in Section 5.5.

5.2 Existing Examples of Policy

Historically many institutions, like Newcastle University, allowed their computer labs

to remain powered up at all times. With the increasing requirements for institutions to

save energy this waste of power was identified as an early target for savings. The initial

policy was to place the computer into a shutdown (ACPI S5) state. This has the disad-

vantage that these computers are no longer available to HTCondor (see Section 4.3.2)

leading to high-throughput starvation.

The base Condor system allows for the definition of policies which describe how

jobs will run and under what circumstances jobs will be evicted from computers. These

policies can affect the amount of time a computer needs to remain idle before it can

be used by Condor and which computers should be used, having a direct effect on the

responsiveness of the Condor cluster and also on the power consumed by the cluster.

These policies have not been used in the past to provide energy efficiency, however,

newer versions of Condor now take such things into account. Condor now includes

the ability to send computers to sleep and then wake them up, via Rooster [49], as and

when needed [51]. This policy system does require that Condor take control of the

power-management of the cluster. If Condor has exclusive use of the computers this

is not a problem, though it may cause contention if pre-existing power management

tools are in use [157, 213].

There are a number of different operating policies employed at UK HE institutions,

for example:

Cardiff University has taken an approach in which computers will send themselves

to sleep after a set time (normally cluster closure time) if there is no Condor job

running on the resource. Powering themselves down as soon as there are no jobs

left to service. Any Condor job arriving after this time will be unable to use the

computer until it is re-started. This can lead to backlogs of Condor jobs if sub-

mitted after the computers have entered an offline state.

5.3 Policy 83

Liverpool University have implemented a more advanced policy. Computers still go

to sleep when they have no work to service without informing Condor. However,

a script run at regular intervals looks for computers which have ‘disappeared’,

due to going to sleep (without informing Condor), and inserts a ‘fake’ resource

description so that Condor thinks of it as being asleep allowing Rooster to wake

it up as necessary [213]. This relies on having a pre-defined list of known com-

puters and leads to intervals when Condor ‘looses’ computers, as it is unaware

that a computer is sleeping but available for execution.

University College London uses a thin-client system for its open access computers

though runs the client on a full-spec computer. This allows them to exploit

the unused computing power of the computers as part of their high-throughput

computing system. Though in itself this doesn’t reduce power consumption the

ability to use computers for multiple purposes simultaneously helps them cut

down on capital expense and maintenance.

In previous work McGough et al [157] proposed a model in which computers send

the ‘fake’ sleep notification themselves just before entering the sleep state, along with a

script, run at regular intervals, to catch ‘lost’ computers (ones marked as being awake,

but with no update for a pre-defined amount of time), which have failed to send the

‘fake’ sleep notification. This has the advantage of not requiring a list of known com-

puters and reduces the time that Condor is unaware that a computer is sleeping.

5.3 Policy

In this section we discuss a number of polices which can be applied to a multi-use

cluster similar to the one at Newcastle University. These may be broadly categorised

into cluster management, selection of computers to use and job management.

5.3.1 Cluster management

Power management of computers covering when the computer can be awake (active

or idle) and when the computer can sleep. The four power management policies are:

5.3 Policy 84

P1 Computers are permanently awake. This was the default policy used by most high-

throughput computing installations before power saving. This policy can lead to

large amounts of wasted energy when a computer is idle, though as computers

are always available it minimises overheads.

P2 Computers are on during cluster opening times or powered off otherwise with no

ability to wake up. If the computer is servicing jobs at cluster close time it re-

mains active until this and any subsequent jobs are completed.

P3(n) Computers sleep after n minutes of inactivity with no wakeup for high-

throughput jobs. Initially we used a value of one hour as the resume time from

shutdown was significant. However, the reliable sleep feature of Microsoft Win-

dows 7 has made this process almost instantaneous so smaller values may now

be feasible without causing significant inconvenient to interactive users. How-

ever, at present we still adopt the one hour time interval.

P4(n) Computers sleep after n minutes of inactivity with HTCondor being made

aware of their availability. This policy is an extension of policy P3, which addi-

tionally allows Rooster to wake up computers when needed to prevent resource

starvation for high-throughput jobs.

P5(m,n) Computers sleep after m minutes of inactivity with sleeping computers be-

ing advertised every n minutes. When a computer goes to sleep no information

is sent to Condor. A service runs every n minutes checking for sleeping comput-

ers, posting a ‘fake’ advertisement for them. This policy is originally proposed by

Smith [213] and is included here for comparison.

5.3.2 Selecting computers to use

These policies allow us to determine which computer to select for job execution.

S1 HTCondor default: note that this devolves into a random selection policy favouring

powered up computers.

5.3 Policy 85

S2 Target the most energy efficient computers. Energy consumption for each com-

puter is defined along with a Power Usage Effectiveness (PUE) – the ratio of total

amount of power used by a computer facility to the power delivered to comput-

ing equipment. This allows us to order the computers by PUE £ energy, targeting

jobs as appropriate. It is important to note that in this instance we use PUE as a

relative measure of energy efficiency against which resource selection decisions

may be made, rather than an absolute measure.

This process is an approximation to the efficiency of a job, as different comput-

ers will handle different computational tasks with different degrees of efficiency.

One computer may be most efficient on memory intensive jobs whilst another

may be more efficient on floating point dominant jobs. However, this policy

aims only to steer jobs towards the more energy efficient computers based on

our benchmarking.

5.3.3 Job management

These policies allow us to alter the behaviour of Condor in terms of when to allow jobs

to start running and when to cease attempting to process a job:

M1(n) A computer may not be used until it has been idle for n minutes. This Condor

default is intended to prevent computers that are frequently used from being

matched.

C1(n) Detection of ‘miscreant’ jobs. Condor attempts to run jobs to completion, this

includes re-submitting evicted job due to computer crash, reboot or user prece-

dence. If this happens n times we mark the job as ‘miscreant’. Selection of the

value n needs to be made carefully: too small a value will create false positives

whilst large values will waste time and energy.

Although a miscreant job may not be broken it may not complete, continuing to

consume resources. We may then choose to terminate these jobs. Care needs

to be taken as such jobs may be performing good computational work through

some other out of bounds mechanism.

5.3 Policy 86

Policies to detect and mitigate the impact of ‘miscreant’ jobs are explored in fur-

ther detail in Chapter 6.

C2(m,n) Provision of dedicated computing resources. Extending the repeatedly

evicted policy C1(n). Once a job has been evicted n times it is allowed to con-

tinue execution on a dedicated set of m computers. This would throttle the prob-

lem of long running jobs never completing due to repeated eviction though we

would still need to monitor these jobs for non-completion.

C3(m,n, t) Timeout for dedicated computers. If there are more miscreant jobs than

dedicated computers then policy C2(m,n) then all dedicated computers are

blocked with jobs and the policy degrades to C1(n). However, if we select a time

interval t over which we assume the job will not complete and can therefore be

safely killed we regain the ability for the dedicated resources to allow long run-

ning ‘good’ tasks to complete.

5.3.4 New Proposed Policy

We wish to evaluate a number of proposed policies in terms of how much power they

might save and the potential impact on the high-throughput users. Some of the poli-

cies may also have an impact on the interactive users of the cluster. It is not possi-

ble to determine those effects here, though by using the simulation we can evaluate

the impact on high-throughput users and power consumption enabling us to evaluate

whether such a policy would lead to a large enough advantage that it was worth consid-

ering the policy and potential impact on the interactive users. These can be grouped

into cluster management and computer selection.

M2 High-throughput jobs defer nightly reboots. Allow high-throughput jobs to run

through the night and thus for longer than 24 hours. This policy addresses the

same issue as policy C2.

M3 High-throughput jobs use computers at the same time as interactive users. Desk-

top computers are now more powerful. All computers at Newcastle University

are at least dual core with many quad core. From observation the interactive

5.3 Policy 87

load is often far less than the available computing power. Although some appli-

cations are capable of exploiting multi-core (e.g. CAD and MATLAB [154]) many

are only capable of exploiting a single core leading to under-utilisation, which

can be exploited through HTCondor.

In this case rather than jobs being evicted when an interactive user logs in an

eviction can be triggered when the load placed on the computer exceeds the re-

quirements of both the interactive user and the high-throughput job. Our trace

of interactive uses of the computers does not include information on the load the

user placed on the computer and we therefore assume for these simulations that

the load of both high-throughput jobs and the interactive user does not exceed

the capability of the computer.

An evaluation of the potential energy savings and reduction in overhead time

needs to be performed in order to determine if this policy could provide enough

of an improvement to warrant live evaluation over the real cluster.

S3(i) Targeting less used computers. Our interactive user workload traces demon-

strate that computers placed in locations frequented by students tend to have

short durations between interactive users and are many users each day. In con-

trast, computers in less popular locations typically observe much greater inter-

user durations, and are used by far fewer users. Computer usage can also be

affected by the ‘opening hours’. It would be beneficial to select less used com-

puters, thus reducing the chance of job eviction and hence less wasted power on

incomplete execution.

It is not possible to know a-priori which computers will be unused in the near

future, also this information would be seasonally affected. However, we can look

for general trends in the usage patterns of computers from historical evidence

and use this to help select the computers least likely to have a log in. We can

favour computers based on their current state – an idle computer with greater

chance of a login is used above a computer which is asleep but has a lower chance

of login – or selecting the computer with the lest chance of login irrespective of

current state. We define the following 14 options for computer ordering:

5.3 Policy 88

• [1, 5, 8, 12] : Largest individual average interval: logout – login

• [2, 6, 9, 13] : Largest individual minimum interval: logout – login

• [2, 6, 9, 13] : Largest individual maximum interval: logout – login

• [4, 11] : Smallest number of interactive users

Where options (1, 2, 3, 8, 9, 10) assume the computer will not be rebooted each

night, while (5, 6, 7, 12, 13, 14) assume the computers will be rebooted. Options

(1, 2, 3, 4, 5, 6, 7) assume that the current state will be taken into account (idle

computers before sleeping computers) whilst options (8, 9, 10, 11, 12, 13, 14) will

use computers irrespective of whether the computer is idle or sleeping.

S4 Targeting clusters closed for public use. Each computer within the university is

part of a cluster with each cluster having pre-defined opening and closing hours.

Here we propose selecting computers in clusters which have the greatest amount

of time remaining before the cluster is re-opened, thus minimising the chances

of the jobs being evicted through by interactive users.

S5(i) Target less used clusters. Similar to policy S3(i) this policy targets the least used

computers. Though differs by the fact that it is simpler to implement. Clusters

can be selected based on the following criteria:

1. Largest individual average interval: logout - login

2. Largest individual maximum interval: logout - login

3. Smallest number of interactive users.

4. Smallest total interactive user duration

5. Smallest mean interactive user duration

6. Number of interactive users.

HTCondor contains the ability to suspend jobs when an interactive user logs into

the computer. This allows the job to resume if the user logs out of the computer

quickly after. If this interval is short enough then this will prevent the eviction of

the job and allow it to continue, thus saving energy and overhead. If the interval

5.3 Policy 89

is long then this will increase the overhead though save on energy. We extend the

notion of suspensions here to allow more fine-grained control over when a job

should be suspended and when a job should be evicted.

S6(¢) A policy observing the number of interactive user arrivals to each cluster across

a sliding window of ¢ minutes, with arriving jobs allocated to resources ordered

by availability. This policy may be expressed as:

min
c2C

n

|Ec,t ,¢|
o

(5.1)

where Ec,t ,¢ is the set of interactive user sessions starting in cluster c during the

time frame [t °¢, t), C is the set of all clusters and t is the current time. Contrary

to the resource selection proposed thus far, S6 does not rely on prior knowledge

of interactive user arrivals.

Policy S6 was first introduced in [90] as an extension to the resource selection

policies first explored in [161].

H(initial, subsequent) Allow a job to be suspended given the initial policy is satisfied

for the first suspension and the subsequent policy is satisfied for all future sus-

pensions, otherwise the job is evicted.

The initial polices can be defined as:

• None : Jobs will be immediately evicted.

• t : Allow the job to be suspended for up to t minutes. After this time the

job should be evicted. This is the default Condor policy. A small value of t

allows jobs to remain active if there is a brief use by an interactive user.

• p : Allow the job to be suspended for up to p % of its current execution time.

This allows jobs which have received little execution to be evicted quickly as

this gives the best chance of keeping the overheads low. Whilst tasks which

have received significant amounts of service are suspended for longer as

their is greater impact if these are evicted.

5.3 Policy 90

The subsequent suspension policy determines if the job can be re-suspended:

• None : Jobs will be terminated when the second user attempts to log in.

• n : If the job has not been suspended n times already it will be suspended,

Otherwise it will be evicted. This helps prevent jobs which are allocated

to high turnover computers from receiving short burst of execution thus

leading to high overheads.

• T : If the total time the job has been suspended is less than T then the job is

suspended, otherwise it is evicted. This helps prevent jobs from spending

significant amounts of time suspended and not completing.

• P : If the proportion of time that the job has been suspended is less

than a given threshold P then the job can be suspended, otherwise it is

evicted. This helps prevent tasks which are only achieving a small amount

of progress through suspensions.

In all cases if the job can be suspended then the maximum time interval for sus-

pension in initial is used.

5.3.5 Policy Combinations

The polices described above are not mutually exclusive. Most can be used in combi-

nation with each other. Table 5.1 indicates the groupings of polices which cannot be

used in combination with each other. Policies in different policy groups can always be

combined with each other.

Policy Group name Combinable policies Non-combinable polices

Power P1, P2, P3, P4, P5
Selection S1, S2, S3, S4, S5

Management M1, M2, M3, H
Job Termination C1, C2, C3

Table 5.1: Resource Allocation : Policy Combinations

5.4 Simulations and Results 91

5.4 Simulations and Results

In this section we evaluate the previously described policies in order to assess an opti-

mal set of policies for our cluster. These tests could easily be performed on other clus-

ters and we believe that the general conclusions from this work will be applicable to

other similar clusters. These tests are grouped into baseline tests, power management

tests, computer selection tests and cluster change tests. As the simulations presented

here, apart from the default policy for selection of computer to run on, are entirely

trace-driven only a single run of the simulation is considered. For simulations based

around the default selection policy S1 (HTCondor default, random selection favouring

powered up computers.) the average of 10 simulation results are reported.

5.4.1 Baseline Evaluation

We first perform a simulation aimed at providing baseline energy consumption and

performance figures against which each other policy will be evaluated. In this simula-

tion power policy P4(n) (Computers sleep after n minutes of inactivity with HTCondor

being made aware of their availability.) was used and only interactive users were sim-

ulated. This simulation generated 120.7MWh of active power consumption, 33.8MWh

idle time consumption and 28.5MWh of energy consumption for sleep time. The en-

ergy consumption for Condor is then calculated separately from this. If we add in the

execution of HTCondor jobs this adds ª120.9MWh of energy consumed for these jobs

along with an average overhead of ª13.33 minutes.

In the remainder of this section we test each of the proposed polices in isolation

against our default policy, to determine the effectiveness of each. We then combine

the ‘best’ policies and evaluating these for both real and synthetic workloads.

5.4.2 Power management policies

Here we evaluate power management policies P1 (Computers are permanently

awake.), P2 (Computers are on during cluster opening times or powered off other-

wise with no ability to wake up.), P3(n) (Computers sleep after n minutes of inactivity

5.4 Simulations and Results 92

0

20

40

60

80

100

120

140

P1 P2
P3

(1
5)

P3
(3

0)
P3

(4
5)

P3
(6

0)
P3

(6
0/

15
)

P4
(1

5)
P4

(3
0)

P4
(4

5)
P4

(6
0)

P4
(6

0/
15

)
P5

(1
5;

 1
5)

P5
(3

0;
 1

5)
P5

(4
5;

 1
5)

P5
(6

0;
 1

5)
P5

(6
0/

15
; 1

5)
P5

(1
5;

 3
0)

P5
(3

0;
 3

0)
P5

(4
5;

 3
0)

P5
(6

0;
 3

0)
P5

(6
0/

15
; 3

0)
P5

(1
5;

 4
5)

P5
(3

0;
 4

5)
P5

(4
5;

 4
5)

P5
(6

0;
 4

5)
P5

(6
0/

15
; 4

5)
P5

(1
5;

 6
0)

P5
(3

0;
 6

0)
P5

(4
5;

 6
0)

P5
(6

0;
 6

0)
P5

(6
0/

15
; 6

0)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

Fig. 5.1: The impact of Power Management policies on energy consumed

10

100

1000

10000

10000

P1 P2
P3

(1
5)

P3
(3

0)
P3

(4
5)

P3
(6

0)
P3

(6
0/

15
)

P4
(1

5)
P4

(3
0)

P4
(4

5)
P4

(6
0)

P4
(6

0/
15

)
P5

(1
5;

 1
5)

P5
(3

0;
 1

5)
P5

(4
5;

 1
5)

P5
(6

0;
 1

5)
P5

(6
0/

15
; 1

5)
P5

(1
5;

 3
0)

P5
(3

0;
 3

0)
P5

(4
5;

 3
0)

P5
(6

0;
 3

0)
P5

(6
0/

15
; 3

0)
P5

(1
5;

 4
5)

P5
(3

0;
 4

5)
P5

(4
5;

 4
5)

P5
(6

0;
 4

5)
P5

(6
0/

15
; 4

5)
P5

(1
5;

 6
0)

P5
(3

0;
 6

0)
P5

(4
5;

 6
0)

P5
(6

0;
 6

0)
P5

(6
0/

15
; 6

0)

O
ve

rh
ea

d
(m

in
ut

es
)

Fig. 5.2: The impact of Power Management policies vs. overheads

with no wakeup for high-throughput jobs.), P4(n) (Computers sleep after n minutes of

inactivity with HTCondor being made aware of their availability.) and P5(m,n) (Com-

puters sleep after m minutes of inactivity with sleeping computers being advertised

5.4 Simulations and Results 93

10

100

1000

P1 P2
P3

(1
5)

P3
(3

0)
P3

(4
5)

P3
(6

0)
P3

(6
0/

15
)

P4
(1

5)
P4

(3
0)

P4
(4

5)
P4

(6
0)

P4
(6

0/
15

)
P5

(1
5;

 1
5)

P5
(3

0;
 1

5)
P5

(4
5;

 1
5)

P5
(6

0;
 1

5)
P5

(6
0/

15
; 1

5)
P5

(1
5;

 3
0)

P5
(3

0;
 3

0)
P5

(4
5;

 3
0)

P5
(6

0;
 3

0)
P5

(6
0/

15
; 3

0)
P5

(1
5;

 4
5)

P5
(3

0;
 4

5)
P5

(4
5;

 4
5)

P5
(6

0;
 4

5)
P5

(6
0/

15
; 4

5)
P5

(1
5;

 6
0)

P5
(3

0;
 6

0)
P5

(4
5;

 6
0)

P5
(6

0;
 6

0)
P5

(6
0/

15
; 6

0)

Id
le

 e
ne

rg
y

co
ns

um
pt

io
n

(M
W

h)

Fig. 5.3: The impact of Power Management policies on energy consumed

every n minutes.). All tests were performed with selection policy S1 (HTCondor de-

fault, random selection favouring powered up computers.). The amount of time before

computers were allowed to go was also varied for policies P3, P4 and P5, taking values

of 15, 30, 45 and 60 minutes. The current policy of 60 minutes during open hours and

15 minutes outside was also evaluated (60;15). Figures 5.1 and 5.2 illustrate the results

from these simulations. Policies P2 and P5(15,15) would appear to have the ‘best’ en-

ergy consumption result (Figure 5.1) however when the average overhead (Figure 5.2)

is taken into account these policies clearly starve high-throughput users of their re-

sources. Policy P5(15,15) would seem to be a consequence of computers going offline

at the same time as the sweep happening thus leading to computers being absent for

longer. The remaining polices show little significant statistical difference even from P1.

Thus indicating that these policies have little impact on the high-throughput users. Al-

though the policy of changing the time clusters are powered down has no impact on

the high-throughput use of the cluster, Figure 5.3 illustrates that this has a marked im-

pact on the energy consumed by idle computers. As this policy can be combined with

the other policies this would make sense to adopt and have a low (ª 15 minute) value

5.4 Simulations and Results 94

such that energy consumption due to idle resources may be reduced.

5.4.3 Computer Selection policies

Here we evaluate the selection policies S1 (HTCondor default, random selection

favouring powered up computers.), S2 (Target the most energy efficient computers.),

S3(i) (Targeting less used computers.), S4 (Targeting clusters closed for public use.)

and S5(i) (Target less used clusters.) under power policy P4(60;15). Figures 5.4 and

5.5 shows the result of these simulations. All polices apart from S4 and S5 reduce the

overall energy consumed, with S2 and S5 showing the best improvement. All polices

apart from S3(1-7) produce no significant change to the overheads for jobs. Thus se-

lection policies S2 and S5 would appear the best choice. We observe that policy S6 is

capable of achieving savings comparable with S5 which assumes perfect knowledge,

with sliding window size having little impact on results. Although policies S3(1-7) se-

lect computers with the greatest chance of being unused for the duration of the job

execution the resources are selected by initial state first – idle over sleeping. Hence an

idle computer with little chance of remaining idle during the job’s duration will be se-

lected over a sleeping computer which would most likely be idle for the job’s duration.

5.4.4 Management Policies

Policies M1(n) (A computer may not be used until it has been idle for n minutes.), M2

(High-throughput jobs defer nightly reboots.), M3 (High-throughput jobs use com-

puters at the same time as interactive users.) and H(initial, subsequent) (Hierarchical

policies.) are evaluated here with default selection policy S1 (HTCondor default, ran-

dom selection favouring powered up computers.) and power policy P4(60;15). Fig-

ures 5.4 and 5.5 illustrates these results for policies M1, M2 and M3. Policy M1 has

little perceivable impact on the power or overhead of jobs. However, this policy does

have an impact on the overall energy consumed by the whole system by increasing,

by a factor of 10, the amount of energy consumed by idle computers by reducing the

energy for sleeping computers when the value of n is low. This is a consequence of HT-

Condor waking up computers for short running jobs which then leaves the computer

5.4 Simulations and Results 95

0

20

40

60

80

100

120

140

S1 S2
S3

(1
)

S3
(2

)
S3

(3
)

S3
(4

)
S3

(5
)

S3
(6

)
S3

(7
)

S3
(8

)
S3

(9
)

S3
(1

0)
S3

(1
1)

S3
(1

2)
S3

(1
3)

S3
(1

4) S4
S5

(1
)

S5
(2

)
S5

(3
)

S5
(4

)
S5

(5
)

S5
(6

)
S6

(3
0)

S6
(6

0)
S6

(1
20

)
S6

(2
40

)
S6

(3
60

)

En
er

gy
 c

on
su

m
ed

 (M
W

h)

Fig. 5.4: The impact of Computer Selection policies on energy consumed

10

100

1000

S1 S2
S3

(1
)

S3
(2

)
S3

(3
)

S3
(4

)
S3

(5
)

S3
(6

)
S3

(7
)

S3
(8

)
S3

(9
)

S3
(1

0)
S3

(1
1)

S3
(1

2)
S3

(1
3)

S3
(1

4) S4
S5

(1
)

S5
(2

)
S5

(3
)

S5
(4

)
S5

(5
)

S5
(6

)
S6

(3
0)

S6
(6

0)
S6

(1
20

)
S6

(2
40

)
S6

(3
60

)

O
ve

rh
ea

d
(m

in
ut

es
)

Fig. 5.5: The impact of Computer Selection policies on overheads

5.4 Simulations and Results 96

0

20

40

60

80

100

120

140

M
1(

5)

M
1(

10
)

M
1(

15
)

M
2

M
3(

N
P)

M
3(

P)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

Fig. 5.6: The impact of Management policies on energy consumed

idle. Whilst for larger values of n these short jobs accumulate up and run continuously.

There is a slight energy advantage in using n = 10 and should be selected. Policy M2

(jobs prevent reboots) provides an advantage for both energy consumed and overheads

and should be used.

Policy M3 (High-throughput jobs use computers at the same time as interactive

users.) is depicted for both the case where we assume that no energy charge is allo-

cated to the HTCondor job (M3(NP)) and the case where we assume that there is an

energy charge for using the computer (M3(P)). As we do not know the power consump-

tion of the HTCondor job we assume the worst case – the HTCondor job is consuming

all the processing power. Using the SPECpower [219] power evaluation software we

have benchmarked one of the high-end computers at 117W active and 65W idle. Thus

in the worst case scenario HTCondor would consume 52W. Although this policy de-

creases the overall energy consumed it has a negative impact on the overhead. This is

a consequence of ‘bad’ jobs not being evicted when users log in allowing ‘good’ jobs a

chance of execution.

Figures 5.8, 5.9, 5.10 and 5.11 exemplify policy H(initial, subsequent) (Hierarchical

policies.). For the case of maximum suspension time (Figures 5.8 and 5.9) the ‘best’

policy appears to be H(t , None). With all other policies increasing both energy con-

5.4 Simulations and Results 97

0

5

10

15

20

25

30

M
1(

5)

M
1(

10
)

M
1(

15
)

M
2

M
3(

NP
)

M
3(

P)

O
ve

rh
ea

d
(m

in
ut

es
)

Fig. 5.7: The impact of Management polices on overheads

sumed and overhead. Likewise for percentage of execution time (Figures 5.10 and 5.11)

there appears to be no benefit in using any policy over H(p, None). In fact there ap-

pears to be little benefit in using the suspension policy as it increases both energy con-

sumed and overhead over the baseline.

It should be noted that all of the polices in this set can be combined with each other.

However, the policies which show the ‘best’ chance of improvement are M1(10) and

M2.

5.4.5 Cluster termination policies

Here we evaluate polices C1(n) (Detection of ‘miscreant’ jobs.), C2(n) (Provision of

dedicated computing resources.) and C3(m,n, t) (Timeout for dedicated computers.).

Figures 5.12 and 5.13 illustrate the energy consumption and overheads for these poli-

cies. Note that Figure 5.13 only shows the lower retry values to help distinguish the

different policies. Policy C1 leads to significant numbers of good jobs being killed (de-

fined as a job which originally completed successfully now being terminated) – Figure

5.14. Addition of dedicated resources (C2) leads to fewer good jobs being killed but

can lead to bottlenecks for job overheads if the number of retries are low and excessive

energy consumption if retries are high. By the inclusion of a time limit on dedicated

5.4 Simulations and Results 98

10 20 30 40 50 60
121

121.5

122

122.5

123

123.5

Suspension time t (minutes)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

H(t, None)
H(t, n=2)
H(t, n=10)
H(t, T=10)
H(t, T=110)
H(t, P=10)
H(t, P=90)

Fig. 5.8: The impact of Suspension time on energy consumed

10 20 30 40 50 60
13.5

14

14.5

15

15.5

16

16.5

Suspension time t (minutes)

O
ve

rh
ea

d
(m

in
ut

es
)

H(t, None)
H(t, n=2)
H(t, n=10)
H(t, T=10)
H(t, T=110)
H(t, P=10)
H(t, P=90)

Fig. 5.9: The impact of Suspension time on overheads

resource usage we can bring the energy usage down, by keeping the retires low and

preventing ‘bad’ jobs from running indefinitely on the dedicated resources, allowing

us to still maintain good overheads and low numbers of good jobs killed. The policy

5.4 Simulations and Results 99

10 20 30 40 50 60 70 80 90
122.5

123

123.5

124

124.5

125

Suspension time p (% of execution time)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

H(p,None)
H(p, n=1)
H(p, n=9)
H(p, T=10)
H(p, T=90)
H(p, P=10)
H(p, P=90)

Fig. 5.10: The impact of Suspension percentage on energy consumed

10 20 30 40 50 60 70 80 90
14

16

18

20

22

24

26

28

30

32

Suspension time p (% of execution time)

O
ve

rh
ea

d
(m

in
ut

es
)

H(p,None)
H(p, n=1)
H(p, n=9)
H(p, T=10)
H(p, T=90)
H(p, P=10)
H(p, P=90)

Fig. 5.11: The impact of Suspension percentage on overhead

C3(40;6;60) gives a good combination as it gives no good job kills.

5.4 Simulations and Results 100

0 5 10 15 20 25 30
40

50

60

70

80

90

100

Number of retries (n)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

C1(n)
C2(10)
C2(20)
C2(30)
C2(40)
C3(10,n,12)
C3(10,n,24)
C3(20,n,12)
C3(20,n,24)
C3(30,n,12)
C3(30,n,24)
C3(40,n,12)
C3(40,n,24)
C3(40,n,60)

Fig. 5.12: The impact of Job Termination policies on energy consumed

0 2 4 6 8 10 12 14

10

100

1000

10000

Number of retries (n)

O
ve

rh
ea

d
(m

in
ut

es
)

C1(n)
C2(10)
C2(20)
C2(30)
C2(40)
C3(10,n,12)
C3(10,n,24)
C3(20,n,12)
C3(20,n,24)
C3(30,n,12)
C3(30,n,24)
C3(40,n,12)
C3(40,n,24)
C3(40,n,60)

Fig. 5.13: The impact of Job Termination policies on overheads

5.4.6 Combined polices with synthetic jobs

Here we evaluate the ‘best’ policies identified above against larger (synthetic) work-

loads [161] derived from our workload trace from 2010 – over ten times our real work-

5.4 Simulations and Results 101

0 5 10 15 20 25 30
100

101

102

103

104

105

Number of retries (n)

G
oo

d
jo

bs
 k

ille
d

C1(n)
C2(10)
C2(20)
C2(30)
C2(40)
C3(10,n,12)
C3(10,n,24)
C3(20,n,12)
C3(20,n,24)
C3(30,n,12)
C3(30,n,24)
C3(40,n,12)
C3(40,n,24)
C3(40,n,60)

Fig. 5.14: The impact of Job Termination policies on ‘good’ jobs killed

load (ªsix million jobs). We have identified three power polices (P3(15), P4(15)

and P5(15,15) along with the selection polices (S2, S5(2)), the management polices

(M1(10) and M2) and the job termination policy (C3(40,6,60)). As the management

polices are not mutually exclusive we use both simultaneously here. Thus the four pol-

icy combinations are:

com-1 {M1; M2; P4; S2; C3(40;6;60) }

com-2 {M1 ; M2; P5; S2; C3(40;6;60) }

com-3 {M1 ; M2; P4; S5(2); C3(40;6;60) }

com-4 {M1 ; M2; P5; S5(2); C3(40;6;60) }

Figures 5.15 and 5.16 illustrate the effectiveness of these policies over different

workloads. Note that termination policy C3(40;6;60) prevented any good jobs from

being terminated. Although this is not guaranteed, the simulated workloads here ex-

hibited this property.

All four policy sets scale consistently with increased workload with policy set com-

2 showing slightly worse performance in almost all cases. The power increase in all

5.5 Conclusion 102

cases is sub-linear – i.e. doubling the number of jobs does not double the energy con-

sumed. However, overheads do increase in a greater than linear manner. Suggesting

that a more stringent policy set for removing bad jobs would be beneficial for higher

workloads.

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

1000

Total number of jobs (million)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

Com−1
Com−2
Com−3
Com−4

Fig. 5.15: The impact of Combined policies on energy consumed

5.5 Conclusion

The selection of an optimal set of policies for energy consumption across a multi-use

cluster is complicated. Many policies have a significant impact on the power con-

sumed, though also have a (detrimental) impact on the usability of the cluster for high-

throughput users.

Power management polices P4 (Computers sleep after n minutes of inactivity with

HTCondor being made aware of their availability.) and P5 (Computers sleep after m

minutes of inactivity with sleeping computers being advertised every n minutes.) ap-

pear to be the most optimal polices to select. Whilst selection policy S2 (Target the

5.5 Conclusion 103

0 1 2 3 4 5 6 7
1

10

100

1000

10000

100000

Total number of jobs (million)

O
ve

rh
ea

d
(m

in
ut

es
)

Com−1
Com−2
Com−3
Com−4

Fig. 5.16: The impact of Combined policies on overhead

most energy efficient computers.) has the greater impact on overhead and power con-

sumption, with S5(2) being a close second. We anticipate for the interactive user us-

age and HTC workload observed by our system, that merging these policies could offer

both advantages, though computing this ordering may be difficult. Though we obtain

our greatest energy savings with policies P3 (Computers sleep after n minutes of in-

activity with no wakeup for high-throughput jobs.) and P2 (Computers are on during

cluster opening times or powered off otherwise with no ability to wake up.), we do not

consider this policy as a good choice due to the significant resource starvation for high

throughput jobs as evidenced in Figure 5.2.

Management policy M1(n) (A computer may not be used until it has been idle for n

minutes.) appears to have little effect, though this could be masked since a significant

proportion of time the cluster is closed to interactive users where M1(0) applies. Pol-

icy M2 (High-throughput jobs defer nightly reboots.) has a significant impact in both

power saving and job overhead, though M3 (High-throughput jobs use computers at

the same time as interactive users.) fails to provide a good reduction in energy and

5.5 Conclusion 104

increases overheads markedly. This is due to bad jobs continuing to run on resources

blocking other jobs and wasting energy. The combination of this policy with a timeout

interval similar to that of C3(m,n, t) (Timeout for dedicated computers.) could make

this policy more attractive. Unfortunately suspension policy H (Hierarchical policies.)

fails to deliver any significant benefit.

Changing polices for the cluster (dedicated resources for evictees, postponing re-

boots and allowing jobs to run on the same computers as interactive users) each show

the potential to save power and reduce overheads for users. The best effect is likely to

come from a combination of these policies. These policies have been combined and

evaluated over larger (synthetic) workloads showing that they remain similar in bene-

fit.

The main advantage with these polices comes as they are not mutually exclusive.

Combinations of these polices can be produced increasing the overall energy savings

without a significant impact on users of the high-throughput resources. The most sig-

nificant energy saving that can be made is simply allowing computers to go to sleep

when not needed. We have shown that changes to the cluster policy can further re-

duce energy consumption without significantly affecting the high-throughput users.

For the Newcastle HTCondor pool and the offered workload we consider throughout

this work, this can lead to an energy saving of ~65MWh, ~55% of the energy currently

consumed by the high-throughput system. We anticipate workload size to be a sig-

nificant factor affecting the generalisability of the energy savings we observe for the

Newcastle HTCondor pool to other systems.

5.5.1 Further Work

Scheduling of parallel workloads Our workload trace does not currently contain par-

allel tasks but resource allocation in the context of parallel and mixed workloads

is of significant interest in future work, evaluating the impact of previously pro-

posed strategies such as dynamic partitioning [156] and gang scheduling [152]

on the energy consumption of an HTC system.

Scheduling strategies Throughout the work presented in this chapter we model the

5.5 Conclusion 105

resource allocation process around the HTCondor [146] matchmaking [193] pro-

cess. This process is an adaptation of a First In, First Out (FIFO) queueing dis-

cipline employed by numerous grid scheduling systems in FCFS (First Come,

First Served) based algorithms. In future work we may explore a number of al-

ternatives, e.g. Shortest Job First (SJF), data locality-aware scheduling [26], fair

scheduling [72] and proportional-share resource allocation [85].

Under a Shortest Job First scheduling strategy [96], the workload is prioritised

based on the size of the job and also the selected printer’s anticipated service rate

for the job. Though an accurate estimate of task execution may not be known a

priori [16], in the event of batch submissions and jobs who have previously been

allocated to a resource, a lower bound on execution time may be inferred.

Harchol-Balter et al suggest a rule of thumb for the partitioning of jobs into prior-

ity groupings [96], namely a lower cut-off such that 1
2 of the workload is smaller,

and an upper cutoff, above which 0.5-1% fall. Correct parameterisation of these

cutoffs is required to correctly prioritise short-running tasks while preventing

starvation of larger tasks.

Advanced Reservations and Backfilling strategies Some grid applications have par-

ticularly large resource requirements and require simultaneous access to these

resources. The notion of ‘advanced reservations’ have been shown to be benefi-

cial for such applications [214]. This in turn necessitates Backfilling strategies to

make use of the idle time on notes surrounding these reservations.

Deadline- and priority-aware strategies Jobs modeled within our system do not

presently have user-specified deadlines or priority values, and these are not cur-

rently considered by our resource allocation strategies. Though resource alloca-

tion strategies would still strive to reduce overall average task makespan for the

offered workload, particular emphasis would be placed on jobs of high priority

or those which may exceed specified deadline. Furthermore, we intend to inves-

tigate policies considering contention between HTC users, promoting fair distri-

bution of compute resources among HTC users, subject ot the aftorementioned

5.5 Conclusion 106

deadline and priority constraints.

Matthew Forshaw
Text

Chapter 6

Reducing the number of miscreant

tasks executions in a multi-use cluster

Summary

Exploiting computational resources within an organisation for more than

their primary task offers great benefits – making better use of capital expen-

diture and provides a pool of computational power. This can be achieved

through the deployment of a cycle stealing distributed system, where tasks ex-

ecute during the idle time on computers. However, if a task has not completed

when a computer returns to its primary function the task will be preempted,

wasting time (and energy), and is often reallocated to a new resource in an

attempt to complete. This becomes exacerbated when tasks are incapable

of completing due to excessive execution time or faulty hardware / software,

leading to a situation where tasks are perpetually reallocated between com-

puters – wasting time and energy. In this chapter we investigate techniques

to increase the chance of ‘good’ tasks completing whilst curtailing the execu-

tion of ‘bad’ tasks. We demonstrate, by extending the simulation presented in

Chapter 4, that we could have reduce the energy consumption of the Newcas-

tle University cycle stealing system in 2010 by approximately 50%.

6.1 Introduction

A key issue when using cycle stealing systems such as HTCondor [146], particularly

within a multi-use cluster setting such as our own, that of ensuring that all ‘good’ tasks

complete. We define a ‘good’ task as one which given enough time on a dedicated

resource would run to a natural completion. Computers within the cluster can appear

and disappear arbitrarily, the computers may be heterogeneous (or broken) making it

difficult for tasks to execute correctly, or computers may have to preempt tasks in order

to return to their primary role. Thus, if a task fails to complete on a given resource we

6.1 Introduction 109

cannot assume that it is a ‘bad’ task.

To alleviate the effects of the system on task execution, an approach is adopted in

which tasks that do not reach a natural completion are reallocated to a new resource.

This leads to potential wasted energy from tasks repeatedly allocated to resources ei-

ther because the task will never complete or the resource is incapable of satisfying task

requirements (e.g. appropriate environment or a sufficiently long period for execu-

tion). This can be alleviated by limiting the number of resubmissions, though if the

value is too low ‘good’ tasks, unfortunate in their allocation, will fail to complete whilst

if the value is too high ‘bad’ tasks will waste time and energy. We define a ‘miscreant’

task as one which exhibits multiple reallocation attempts and seek to minimise energy

consumption by reducing the number of reallocations of ‘bad’ tasks whilst increas-

ing the chance that ‘good’ tasks are reallocated to resources capable of servicing their

needs. It should be noted that miscreant does not imply ‘good’ or ‘bad’, just that a task

has required multiple reallocations.

Traditionally this has led to a trade-off between the number of failed ‘good’ tasks

and overheads on task execution, with each organisation selecting a local optimal – an

open question which received significant discussion at Condor Week 2012 [230]. How-

ever, due to energy conservation – now a more important criteria – this has become

a three-way problem. Reducing reallocation attempts reduces energy consumption

through removal of ‘bad’ executions, though increases ‘good’ tasks failures.

Tasks can be allocated to resources whilst they are idle or sleeping (through Wake

on LAN) executing until the resource is required for its primary purpose (interactive

user, system maintenance or reboot). This would suggest that the ‘best’ option is to

have tasks shorter than the intervals between primary use and/or only run task during

expected long periods of primary inactivity (e.g. overnight). However, such a policy

would require unrealistically short execution times and would incur significant delays

in task execution.

In this chapter we investigate a number of policies for curtailing ‘bad’ executions

whilst still minimising the number of ‘good’ task terminations and the average task

overhead – allowing us to minimise energy consumption.

6.2 Task Deallocation 110

The rest of the chapter is set out as follows. In Section 6.2 we discuss the job char-

acteristics and circumstances under which a task may be deallocated in an HTC sys-

tem. Section 6.3 extends our analysis of our Newcastle University 2010 trace datasets

presented in Chapter 4, focusing on resource reliability and the impact of task deallo-

cation on energy consumption and makespan. Section 6.4 describes policies aimed at

identifying which miscreant tasks should be re-run and which should be terminated.

Section 6.5 presents the simulated results for these different polices, before concluding

in Section 6.6.

6.2 Task Deallocation

Tasks may become deallocated from the resource they were previously allocated to for

several reasons:

Task preemption: Condor has decided to deallocate the task. Condor [51] identifies

four preemption cases: i) Higher priority task is identified which will start once

this task has been preempted; ii) Policy of the resource – this can include an

interactive user logging in or a pre-defined time during when tasks can’t run;

iii) Resource ranking – the resource determines a more appropriate task to ex-

ecute (e.g. a maths department owned computer preempts non-maths tasks for

maths tasks); iv) Condor is shutting down – during shut-down Condor will pre-

empt running tasks. Many managed clusters have a regular shutdown policy al-

lowing updates and resetting. These preemptions will mark a task as miscreant

though none indicate the tasks is ‘bad’.

Hardware / Software failures If a resource becomes unreachable by the system for an

appropriate interval it will be deemed no longer part of the pool. This can be for

a myriad of reasons including hardware failure, Operating System failure, catas-

trophic software failure (including the running task) or network failure. Note that

these may be transient in nature. Again none of these issues implies that the run-

ning task was ‘bad’.

6.2 Task Deallocation 111

Although the above indicate under what circumstances a task is deallocated from

a resource they don’t distinguish whether the task could complete on a subsequent

execution. In all cases the task is deallocated before it has reached its own natural exit

point. The reason for this can be:

Execution time longer than time available: The time between allocation and deallo-

cation, tr , is less than the task execution time. If tr is small the task is likely to

complete on a new allocation, whilst if tr is close to the maximum time available

then it is most likely to be deallocated again. Note that the task may be ‘good’ but

require more time than the system can provide.

Code has malfunctioned: The code crashes but does not terminate (infinite loop,

awaiting user interaction) remaining active until deallocated. Re-running the

task is unlikely to change this scenario. Reducing the chance of a re-run here is

highly desirable.

Hardware / Software malfunction: A fault in the environment causes the task to fail to

terminate (e.g. broken library, CPU failure). Reallocating to a different resource

is likely to allow the task to complete.

Task requirements not satisfied: Although many failures in task requirements would

prevent the task from starting or fail upon starting, there are circumstances

where an apparent code malfunction would occur. However, in this case allo-

cation to a new computational resource could resolve these requirements.

This problem becomes exacerbated by the fact that it is not possible to distinguish

easily these cases from each other. A piece of code which malfunctions and is deallo-

cated after only a few minutes exhibits the same properties as a ‘good’ task which is

also evicted after only a few minutes. Hence the use of the term ‘miscreant’ indicating

that, although not definitively ‘bad’ tasks, the task is behaving in a manner which is

not desirable. An assumption could be taken in which any task failing to complete on

the first attempt is abandoned by the system; however, this will lead to a significant

number of ‘good’ tasks being terminated, though this will reduce energy consumption

6.2 Task Deallocation 112

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

900

Number of evictions

C
um

ul
at

iv
e

w
as

te
d

se
co

nd
s

(m
illi

on
s)

Good Jobs
Bad Jobs

Fig. 6.1: Graph of total wasted time against evictions

and the overheads on those tasks which complete, as ‘bad’ tasks will not be consum-

ing resources. Alternatively allowing miscreant tasks to be re-run an arbitrary number

of times allows ‘bad’ tasks to consume significant amounts of energy and increase the

overheads for all tasks due to bad tasks consuming resources. Historically, this prob-

lem has only been considered in terms of the metrics of overhead and number of ‘good’

tasks being terminated with the administrators of HTC system deployments selecting

a value for the number of retries which keeps the number of ‘good’ tasks terminated

to an acceptable level and keeps the overheads to a reasonable level. Although it is

desirable to obtain the right balance for these metrics there is little penalty for not get-

ting the balance right. Including energy as the third metric thus imposes a significant

penalty for wasting computational resources.

6.2.1 Definitions

There exists a clear need for precise definitions of what constitutes ‘good’, ‘bad’ and

‘miscreant’ tasks. These are provided below.

‘Good’ tasks We define a ‘good’ task as one which given enough time on a dedicated

resource would run to a natural completion.

6.3 Analysis of the Newcastle Condor System 113

‘Bad’ tasks We define a ‘bad’ task as one which is subsequently removed by the sub-

mitter of the job, or the system administrator.

‘Miscreant’ tasks We define a ‘miscreant’ task as one which exhibits multiple reallo-

cation attempts. This task may be a ‘good’ task which has been unfortunate in

its resource allocation, or may be a ‘bad’ task which will never reach a natural

completion.

6.3 Analysis of the Newcastle Condor System

Here we further our analysis of the Newcastle University HTCondor pool presented

in Section 4.3.1, with an emphasis on wasted execution. Here we investigate the two

implicit policy assumptions made by many high-throughput cluster managers. In gen-

eral it is assumed that a (fairly low) value for reallocations will allow the vast majority of

‘good’ tasks to be completed and that choosing a small enough task duration will allow

the majority of ‘good’ tasks to complete without reallocation.

Newcastle University has been running a largely unmanaged HTCondor pool since

October 2005 [157]. We analyse the tasks from 2010 in order to exemplify the ef-

fects of miscreant tasks on the cluster and to address the two assumptions. In total

561,851 tasks were submitted through HTCondor consuming 1,684,940,087 seconds

(ª53 years), of which 1,218,729,685 (ª39 years) was wasted. This wasted time com-

prised 851,989,414 seconds (ª27 years) for the 4,729 tasks which were subsequently

killed by the user – ‘bad’ tasks – and 366,740,271 seconds (ª12 years) wasted on the

557,121 tasks which did complete – ‘good’ tasks. Although it is not possible to deter-

mine, from our trace data, the time consumed by each unsuccessful allocation of a task

terminated by the user the total time for tasks with at least one deallocation is relatively

close to the total wasted time for killed tasks (849,725,325 seconds, ª27 years). Thus

indicating most ‘bad’ tasks accrued at least one reallocation. For ‘good’ tasks this is

only the wasted time, thus all of these tasks have accrued at least one reallocation.

Although a maximum number of reallocations can be specified in HTCondor this

property was not activated in the Newcastle cluster in 2010. Figure 6.1 shows the max-

6.3 Analysis of the Newcastle Condor System 114

��

���

����

�����

������

�������

������

�� ��� ���� ����� ������

��
�	
	

��
�

��
�

��

�

�������
�������

���
�

�

Fig. 6.2: Histogram of good task evictions

imum number of retries for ‘bad’ tasks was 1,946, whilst the maximum for ‘good’ tasks

was 360. The average number of retries for ‘good’ and ‘bad’ tasks was 1.20 and 44.89

respectively. Figure 6.1 also illustrates that the majority of wasted time is associated

with low eviction counts. It should be noted that HTCondor history does not explicitly

record the number of times a task ran on a resource but the number of times that the

task was allocated, thus resource state changes could cause a task to be deallocated

before execution starts. However, as we are interested here in the number of times a

task is allocated these rapid deallocations can simply be ignored as fortuitous in terms

of energy consumption. Thus to ensure all ‘good’ tasks are successful we need a max-

imum reallocation count of 360. Reducing wasted ‘bad’ task time to 395,373,483 sec-

onds (ª13 years). It should be noted that this does not take into account the effect that

changing the policy would have on the operation of the cluster or the way users would

interact with the cluster.

Figure 6.2 illustrates the number of ‘good’ and ‘bad’ deallocations. In both cases the

average number of deallocations is relatively low (1.38 and 44.89 respectively). In order

to ensure 95% ‘good’ task completion we need a reallocation maximum of three, whist

for 99% we need a threshold of 6 – this matches nicely with the intuitive value quoted by

many cluster managers. However, a maximum of six reallocations would mean 2,022

‘good’ tasks failures, though reducing wasted time on ‘bad’ tasks to 7,534,050 seconds

6.4 Policy for handling miscreant tasks 115

0 200 400 600 800 1000 1200 1400
0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

Idle time (minutes)

C
um

ul
at

iv
e

fre
e

se
co

nd
s

Fig. 6.3: Cumulative idle time

(ª87 days).

Figure 6.3 illustrates the idle intervals for computers, defined as the time between a

user logging off and the next user logging in. The average idle length is 371 minutes. A

task would need to be no longer than two minutes to ensure that 95% of idle intervals

are long enough, whilst it would have to be no longer than one minute to ensure that

99% of intervals are long enough. This is clearly unobtainable.

We can clearly reduce the wasted time in a cluster by reducing the number of re-

allocations at the expense of failing to complete ‘good’ tasks. Hence we need a better

approach in which ‘good’ tasks which have been unfortunate in their allocations are

reallocated whilst ‘bad’ tasks are curtailed.

6.4 Policy for handling miscreant tasks

We evaluate a number of policies to identify and handle miscreant tasks. These poli-

cies govern the circumstances under which deallocated tasks are abandoned or reallo-

cated. Policies are divided into three groups; those governing resource selection, those

determining the use of dedicated resources, and those used to identify miscreant tasks.

6.4 Policy for handling miscreant tasks 116

6.4.1 Baseline policy

X0: There is no limit on the number of times a task can be reallocated, with termina-

tion only occurring if the task is removed by the submitter or an administrator.

6.4.2 Computer selection policy

C1: Tasks are allocated to resources at random, favouring awake resources. This rep-

resents the HTCondor default policy.

C2: Targeting less used computers [160]. By selecting resources with longer idle times

between users reduces the chance that a task will be deallocated due to preemp-

tion.

C3: tasks are allocated to computers in clusters with the least amount of time used by

interactive users. This reduces the chances of task preemption and exploits the

less popular clusters around campus. Computers can be ranked using:

Rank(c) =
Ps2c

s si dl e /stot al

|c|

where c is the set of computers in a cluster, s is a computer in c, si dle is the total

idle time on computer s, and stot al is the total time for computer s.

A detailed evaluation of the impact of computer selection policies on energy con-

sumption and average task makespan is presented in Chapter 5.

6.4.3 Dedicated resources

D1(m,d): Tasks identified as miscreant are permitted to continue executing on a ded-

icated set of m computers. Tasks running on these dedicated resources are not

susceptible to interruption through interactive users arrival or reboots. A maxi-

mum execution duration d prevents the task from running indefinitely.

6.4 Policy for handling miscreant tasks 117

6.4.4 Miscreant task identification

Conventional n reallocation policies do not distinguish the causes of deallocation, thus

are poorly suited to the multi-use cluster context. Evictions due to the arrival of inter-

active users and planned machine reboots do not in any way imply a task to be mis-

creant. We propose two variations on N1 which discount these evictions from a task’s

reallocation count:

N1(n): Termination after n reallocations. If a user still believes that the task is good

they may resubmit it. This represents the HTCondor default policy for realloca-

tion.

N2(n): A task will be abandoned if it deallocated n times, ignoring deallocations due

to interactive users.

N3(n): A task will be abandoned if it is deallocated n times, ignoring deallocation due

to computer reboots.

We present a number of random policies to allow for comparison:

R1(p): a task is abandoned with probability p (0 ∑ p ∑ 1).

A deallocated task j is retried according to exponential function P (f) = (1 °

e°k f),0 ∑ k ∑ 1, where k is a scaling factor:

E1(f = n): Exponential decay on deallocation count n.

E2(f = t): Exponential decay on the total accrued time from all executions.

Tasks are subject to an upper bound t on their cumulative execution time, and are

abandoned if deallocated and over this bound. Furthermore, we investigate the impact

of discounting deallocations due to interactive users and reboots from a task’s accrued

execution time:

A1(t) Abandon if accrued time > t and task deallocated.

A2(t): Abandon if accrued time > t and task is deallocated, discounting deallocations

due to interactive users.

6.5 Simulation results 118

Policy Overheads Power Good tasks killed

X0 C1 20.03 minutes 137.54 MWh 0
X0 C2 15.05 minutes 123.58 MWh 0
X0 C3 15.77 minutes 117.43 MWh 0

Table 6.1: Miscreant tasks policies: Baseline Results

A3(t): Abandon if accrued time > t and tasks is deallocated, discounting deallocations

due to reboots.

I1(t): Abandon if individual time > t . Nightly reboots bound individual execution

times to 24 hours. We investigate the impact of lowering this threshold.

By leveraging historical information it is possible to more closely identify ‘bad’ tasks by

looking at the percentile values for different properties:

P1(n, p): Abandon if f (n) > p.

P2(t , p): Abandon if f (accr ued ti me) > p.

where p 2 [0,100] and function f (p) estimates the value y of the p-th percentile

using the linear interpolation, as presented in [232]:

y = f (p) = y1 +
p °x1

x2 °x1
(y2 ° y1) (6.1)

where (x1, y1) and (x2, y2) are data points such that y1 = f (x1) and y2 = f (x2) and

x1 < p < x2.

6.5 Simulation results

Table 6.1 depicts the results for running the baseline case of no abandonment policy

(X0) against the three resource selection policies (C1, C2, C3) with the two usage-based

selection policies C2 and C3 providing a better overhead for tasks though providing

alternative optimalities for energy or overhead between themselves. It should be noted

that as all of these policies have no limit on the number of reallocations of tasks this

leads to zero ‘good’ tasks being killed.

6.5 Simulation results 119

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

110

120

Number of retries (n)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

N1 C1
N1 C2
N1 C3
N2 C1
N2 C2
N2 C3
N3 C1
N3 C2
N3 C3

Fig. 6.4: The impact of Terminate after N allocations policy on Energy consumption

In the rest of this section we compare the energy, good tasks killed and overheads

for all policies. Although not illustrated here the cost for these polices can easily be

derived by multiplying energy by the cost per unit. In some cases the key has been

omitted from a graph for clarity; for these the key on the other graphs in the set can be

used.

Figures 6.4, 6.5 and 6.6 illustrate the differences between abandonment polices

N1(n) (Termination after n reallocations.), N2(n) (A task will be abandoned if it deal-

located n times, ignoring deallocations due to interactive users.) and N3(n) (A task

will be abandoned if it is deallocated n times, ignoring deallocation due to computer

reboots.) along with selection polices C1, C2 and C3. Policy C3 (Tasks are allocated to

computers in clusters with the least amount of time used by interactive users.) gives a

significant improvement for ‘good’ tasks terminated when the value of n is small. Se-

lection policy C2 (Targeting less used computers [160].) and C3 (Tasks are allocated

to computers in clusters with the least amount of time used by interactive users.) work

6.5 Simulation results 120

0 5 10 15 20 25 30
101

102

103

104

105

Number of retries (n)

N
um

be
r o

f g
oo

d
jo

bs
 k

ille
d

N1 C1
N1 C2
N1 C3
N2 C1
N2 C2
N2 C3
N3 C1
N3 C2
N3 C3

Fig. 6.5: The impact of Terminate after N allocations policy on Good tasks killed

well with this by keeping the energy levels and overheads low.

The individual time accrued policy I1(t) (Abandon if individual time > t) is ex-

plored in Figures 6.7, 6.8 and 6.9. This policy gives better energy performance and

overheads in comparison with N1(n) (Termination after n reallocations.). However,

this is at significant impact on the number of ‘good’ tasks which are terminated. It

should be noted that the steep step in energy in Figure 6.7 corresponds with an indi-

vidual execution time of 24 hours. This effectively allows the task to run indefinitely.

Exponential abandonment polices E1(f = n) (Exponential decay on deallocation

count n.) and E1(f = n) (Exponential decay on deallocation count n.) are shown in

Figures 6.10, 6.11 and 6.12. Note the scaling factors for these have been adjusted to

allow both data sets to be drawn on the same graph E1 needs to be scaled by 10°3 and

E2 by 10°10. Although for this policy energy and overheads fall as the growth factor

increases the number of good tasks terminated increases and from a high initial value

(ª4,500). Likewise for the random selection policy R1 (a task is abandoned with prob-

6.5 Simulation results 121

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Number of retries (n)

Av
er

ag
e

O
ve

rh
ea

ds
 o

n
al

l g
oo

d
jo

bs
 (m

in
s)

N1 C1
N1 C2
N1 C3
N2 C1
N2 C2
N2 C3
N3 C1
N3 C2
N3 C3

Fig. 6.6: The impact of Terminate after N allocations policy on Overheads

ability p (0 ∑ p ∑ 1)) – Figures 6.13, 6.14 and 6.15 the number of ‘good’ tasks killed is

high and increases despite offering good overheads and energy results.

The policy of dedicated resources D1(m,d) (Tasks identified as miscreant are per-

mitted to continue executing on a dedicated set of m computers) is explored in Figures

6.16, 6.17 and 6.18. There is a significant advantage here for energy in keeping the

number of retries (n) low, but the other factors (dedicated resources and maximum

dedicated time) have relatively small impact on the energy consumed. This is due to

the maximum run time increasing on the dedicated resources as a consequence of in-

creasing these factors. Only the maximum dedicated time has an impact on the num-

ber of good tasks killed. A dedicated maximum execution time of ª90 hours then al-

lows for zero ‘good’ task terminations with little effect on the overall overheads, though

the overheads are in general poor. Note that dedicated resources are assumed to use

the same energy as our top-end computers, with further savings possible by consoli-

dating multiple tasks onto a single dedicated resource.

6.5 Simulation results 122

0 5 10 15 20 25 30
40

50

60

70

80

90

100

110

120

130

140

Individual time (hours)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

I1 C1
I1 C2
I1 C3

Fig. 6.7: The impact of Individual policy on Energy

Accrued policy A1(t) (Abandon if accrued time > t and task deallocated), A2(t)

(Abandon if accrued time > t and task is deallocated, discounting deallocations due to

interactive users) and A3(t) (Abandon if accrued time > t and tasks is deallocated, dis-

counting deallocations due to reboots) are explored in Figures 6.19, 6.20 and 6.21. Low

accrued times offer lower energy consumption at the expense of ‘good’ tasks killed.

Apart from the combination ‘A3 C2’ there is no significant advantage in selecting an

accrued total over ª40 hours.

The percentile policies depicted in Figures 6.22, 6.23 and 6.24 show that the con-

sumed energy comes down to an equivalent level as the other polices, however, only

as the percentile tends to 100% do the number of ‘good’ tasks terminated reduce sig-

nificantly. In order to benefit from using policy P2 the percentile needs to be almost

exactly 100% giving little advantage over policy N1. Whilst policy P1 benefit as low as

90%.

6.5 Simulation results 123

0 5 10 15 20 25
100

101

102

103

104

105

Individual time (hours)

N
um

be
r o

f g
oo

d
jo

bs
 k

ille
d

I1 C1
I1 C2
I1 C3

Fig. 6.8: The impact of Individual policy on Good Jobs Killed

6.5 Simulation results 124

0 5 10 15 20 25 30
6

8

10

12

14

16

18

20

Individual time (hours)

O
ve

rh
ea

ds
 o

n
al

l g
oo

d
jo

bs
 (m

in
s)

I1 C1
I1 C2
I1 C3

Fig. 6.9: The impact of Individual policy on Overheads

6.5 Simulation results 125

0 5 10 15 20 25 30
80

90

100

110

120

130

140

Scaled Growth factor (k)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

E1 C1
E1 C2
E1 C3
E2 C1
E2 C2
E2 C3

Fig. 6.10: The impact of Exponential policy on Energy

6.5 Simulation results 126

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Scaled Growth factor (k)

N
um

be
r o

f g
oo

d
jo

bs
 k

ille
d

E1 C1
E1 C2
E1 C3
E2 C1
E2 C2
E2 C3

Fig. 6.11: The impact of Exponential policy on Good Jobs Killed

6.5 Simulation results 127

0 5 10 15 20 25 30
12

13

14

15

16

17

18

19

20

Scaled Growth factor (k)

Av
er

ag
e

O
ve

rh
ea

ds
 o

n
al

l g
oo

d
jo

bs
 (m

in
s)

E1 C1
E1 C2
E1 C3
E2 C1
E2 C2
E2 C3

Fig. 6.12: The impact of Exponential policy on Overheads

6.5 Simulation results 128

0 0.2 0.4 0.6 0.8 1
90

95

100

105

110

115

120

125

130

135

Probability of abandonment

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

R1 C1
R1 C2
R1 C3

Fig. 6.13: The impact of Random policy on Energy

6.5 Simulation results 129

0 0.2 0.4 0.6 0.8 1
103

104

105

Probability of abandonment

N
um

be
r o

f g
oo

d
jo

bs
 k

ille
d

R1 C1
R1 C2
R1 C3

Fig. 6.14: The impact of Random policy on Good Jobs Killed

6.5 Simulation results 130

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

Probability of abandonment

Av
er

ag
e

O
ve

rh
ea

ds
 o

n
al

l g
oo

d
jo

bs
 (m

in
s)

R1 C1
R1 C2
R1 C3

Fig. 6.15: The impact of Random policy on Overheads

6.5 Simulation results 131

20 40 60 80 100 120 140
87

88

89

90

91

92

93

94

95

96

Maximum execution duration (hours)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

Fig. 6.16: The impact of Dedicated policy on Energy

6.5 Simulation results 132

20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

16

Maximum execution duration (hours)

N
um

be
r o

f g
oo

d
jo

bs
 k

ille
d

m=10, n=10
m=10, n=20
m=10, n=30
m=20, n=10
m=20, n=20
m=20, n=30
m=30, n=10
m=30, n=20
m=30, n=30
m=40, n=10
m=40, n=20
m=40, n=30

Fig. 6.17: The impact of Dedicated policy on Good Jobs Killed

6.5 Simulation results 133

20 40 60 80 100 120 140
19

19.5

20

20.5

21

21.5

22

Maximum execution duration (hours)

Av
er

ag
e

O
ve

rh
ea

ds
 o

n
al

l g
oo

d
jo

bs
 (m

in
s)

Fig. 6.18: The impact of Dedicated policy on Overheads

6.5 Simulation results 134

0 20 40 60 80 100 120
30

40

50

60

70

80

90

100

110

120

Accrued time (hours)

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

A1 C1
A1 C2
A1 C3
A2 C1
A2 C2
A2 C3
A3 C1
A3 C2
A3 C3

Fig. 6.19: The impact of Accrued policy on Energy

6.5 Simulation results 135

0 20 40 60 80 100 120
100

101

102

103

104

105

Accrued time (hours)

N
um

be
r o

f g
oo

d
jo

bs
 k

ille
d

A1 C1
A1 C2
A1 C3
A2 C1
A2 C2
A2 C3
A3 C1
A3 C2
A3 C3

Fig. 6.20: The impact of Accrued policy on Good Jobs Killed

6.5 Simulation results 136

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

20

Accrued time (hours)

Av
er

ag
e

O
ve

rh
ea

d
on

 a
ll g

oo
d

jo
bs

 (m
in

s)

A1 C1
A1 C2
A1 C3
A2 C1
A2 C2
A2 C3
A3 C1
A3 C2
A3 C3

Fig. 6.21: The impact of Accrued policy on Overheads

6.5 Simulation results 137

70 75 80 85 90 95 100
20

40

60

80

100

120

140

Percentile

En
er

gy
 c

on
su

m
pt

io
n

(M
W

h)

P1 C1
P1 C2
P1 C3
P2 C1
P2 C2
P2 C3

Fig. 6.22: The impact of Percentile policy on Energy

6.5 Simulation results 138

70 75 80 85 90 95 100
0

1

2

3

4

5

6
x 104

Percentile

N
um

be
r o

f g
oo

d
jo

bs
 k

ille
d

Fig. 6.23: The impact of Percentile policy on Good Jobs Killed

6.6 Conclusion 139

70 75 80 85 90 95 100
0

2

4

6

8

10

12

14

16

18

20

Percentile

Av
er

ag
e

O
ve

rh
ea

ds
 o

n
al

l g
oo

d
jo

bs
 (m

in
s)

P1 C1
P1 C2
P1 C3
P2 C1
P2 C2
P2 C3

Fig. 6.24: The impact of Percentile policy on Overheads

6.6 Conclusion

In this work we demonstrate, through simulation, a number of policies which can be

used to reduce the effect of miscreant tasks in a multi-use cycle stealing cluster. Each

policy is capable of dramatically reducing the energy consumption for tasks in the sys-

tem – to around 1
2 of the original. This is largely attributed to reducing the amount

of effort wasted on tasks that will never complete, but also by ensuring that tasks are

placed onto computers which are less likely to be required for their primary task.

Although we are able to reduce the energy consumption significantly in all cases

this can often be to the detriment of the users of the high-throughput system. Choos-

ing a policy such as N2 (total deallocation count ignoring interactive user preemption)

allows a significant decrease in energy consumption without loosing a significant num-

ber of good tasks and a minor increase in average task overhead, albeit still significantly

6.6 Conclusion 140

less than the values for the baseline results. By using dedicated computers we are able

to reduce the number of good tasks lost to zero for a relatively small increase in energy

consumption.

The policy D(m,d) with a low value for reallocations and a value of ª90 for max-

imum dedicated resource time would appear to give a ‘good’ solution. However, this

policy could easily be adapted to incorporate the advantages of policy N2 or even the

individual or accrued polices. In fact most of the policies presented in this work could

be combined with each other to maximise the potential energy savings.

6.6.1 Future Work

One area of future work in the area of miscreant task detection is to extend the policies

presented in this chapter to support the detection of miscreant batches of tasks. Tasks

in historical workload traces may be grouped retrospectively based on data we cur-

rently hold about the job (e.g. executable name, submitting user). Our current dataset

does not contain a sufficient number of batches to allow for the evaluation of such

policies, but more recent datasets obtained in ongoing work (as discussed in Chap-

ter 8) should offer a good basis for this work. We will further evaluate these policies for

other public grid workoads [1, 10, 112].

Chapter 7

Energy efficient checkpointing in HTC

systems

Summary

Checkpointing is a fault-tolerance mechanism commonly used in High

Throughput Computing (HTC) environments to allow the execution of long-

running computational tasks on compute resources subject to hardware or

software failures as well as interruptions from resource owners and more

important tasks. Until recently many researchers have focused on the per-

formance gains achieved through checkpointing, but now with growing

scrutiny of the energy consumption of IT infrastructures it is increasingly

important to understand the energy impact of checkpointing within an HTC

environment.

In this chapter we extend our trace-driven simulation introduced in Chap-

ter 4, and use real-world datasets to demonstrate that existing checkpoint-

ing strategies are inadequate at maintaining an acceptable level of energy

consumption whilst retaining the performance gains expected with check-

pointing. Furthermore, we identify factors important in deciding whether

to exploit checkpointing within an HTC environment, and propose novel

strategies to curtail the energy consumption of checkpointing approaches

whist maintaining the performance benefits.

7.1 Introduction

The issues of performance and reliability in cluster computing have been studied ex-

tensively over many years [117], resulting in techniques to improve these properties.

The issue of cluster ‘performability’ is relatively well understood, though until recently

little consideration has been given to the energy impact of cluster performability.

High-throughput cycle stealing distributed systems such as HTCondor [146] and

7.1 Introduction 143

BOINC [6] allow organisations to leverage spare capacity on existing infrastructure to

undertake valuable computation. These High Throughput Computing (HTC) systems

are frequently used to execute large numbers of long-running computational tasks,

so are susceptible to interruption due to hardware and software failures. Furthermore,

like many organisations we leverage institutional ‘multi-use’ clusters comprised of stu-

dent and staff machines, where jobs may also be interrupted when an interactive user

starts to use a machine. Such interruptions lead to the tasks being evicted from the

resource, increasing task makespan and wasted energy.

The execution time of these long-running tasks often exceeds the mean time to fail-

ure (MTTF) of the resources on which they execute. Furthermore, running thousands

of jobs increases dramatically the chances of one of the computers failing during the

run. Consequently, failures of resources lead to significant wasted computation and

energy consumption. These overheads in turn lead to increased makespan (also re-

ferred in the literature as sojourn time) of tasks in the system.

Checkpointing is a fault-tolerance mechanism commonly used to increase relia-

bility and predictability by periodically storing snapshots of application state to sta-

ble storage. These snapshots may then be used to resume execution in the event of

a failure, reducing wasted execution time to that performed since the last checkpoint.

Checkpointing has previously been employed on HTC clusters with little consideration

for the energy consumption incurred by checkpointing overheads.

In this chapter we provide insights into the energy impact of checkpointing within

high-throughput computing environments, making the following key contributions:

• Evaluate the energy impact of the two checkpoint schemes previously proposed

in the literature [50, 183] for a real workload.

• Propose novel checkpoint policies for high-throughput computing environ-

ments and evaluate their performance for a real workload in terms of average

task makespan, energy consumption and checkpoint utilisation.

• Develop a trace-driven simulation environment as a basis for research into

energy-efficient fault tolerance approaches for HTC systems.

7.2 Checkpointing and Failure Model 144

The rest of this chapter is organised as follows. In Section 7.2 we introduce our

model for jobs executing within our system in the presence of failures, and state our

assumptions surrounding the checkpointing progress and our checkpointing energy

model. Section 7.3 describes a number of existing checkpointing strategies from the

literature, and we propose a number of novel energy- and failure-aware checkpoint

strategies. In Section 7.4 we evaluate the performance of the proposed checkpointing

policies in terms of their impact on energy consumption, average task makespan and

checkpoint utilisation. In Section 7.5 we discuss key considerations when adopting

checkpointing in HTC clusters. Finally, we conclude and motivate further work in the

area in Section 7.6.

7.2 Checkpointing and Failure Model

Choi et al [56] present a classification of two types of failures encountered on desk-

top grid environments: volatility failures including machine crashes and unavailabil-

ity due to network issues, and interference failures arising from the volunteer nature of

the resources. It is these interference failures which we consider throughout this work.

Furthermore, we consider resource volatility in the form of scheduled nightly reboots

for maintenance.

Figure 7.1 shows the state transition diagram for the execution of a single job in our

system in the presence of these failures. Jobs are submitted by users and join a queue

prior to being allocated on a resource. Once running, jobs are susceptible to interrup-

tion due to interactive users arriving on the resource. Jobs may be evicted immediately,

or suspended for a period of time, after which jobs are evicted if the interactive user has

not departed. Furthermore, jobs may be manually removed by their owner or a system

administrator while in any non-final state.

Jobs may also periodically checkpoint, during which time their execution is paused

while a snapshot of application state is taken. While High-Performance Computing

(HPC) workloads such as MPI-based parallel applications rely on low-latency inter-

connects and significant bandwdith between nodes, HTC jobs typically have minimal

network requirements so we expect the impact of checkpointing on the resident job to

7.3 Policies 145

Job Running Job FinishedJob Queued Allocation

Checkpointing
Job Removed

Suspended

Eviction

Eviction

Interactive
user arrival

Interactive
user departure

Completion

Removal

Eviction

Interactive
user arrival

Removal

Removal

Removal

Fig. 7.1: Job state transition diagram

be negligible. Therefore, we assume the transfer of a checkpoint image may occur once

the execution of a checkpointed job resumes.

Our checkpoint model differs from those presented in the literature as we assume

interruptions may occur during checkpointing operations and subsequent recoveries.

7.2.1 Power model

In this work we assume checkpoints are stored on the stable storage of the existing

servers provisioned to act as the central manager and submit nodes for HTCondor, so

are able to discount their energy consumption. Consequently we model the energy

cost of a checkpoint operation as the energy consumption of the compute resource

during the checkpoint operation.

7.3 Policies

In this section we introduce the checkpointing policies investigated throughout this

work. We divide these into policies to determine the interval between checkpoint eval-

uation events and policies determining whether a checkpoint operation should take

place for a given evaluation event. Furthermore, we propose a class of migration poli-

cies which proactively checkpoint in anticipation of failure events, and migrate tasks

7.3 Policies 146

to resources less susceptible to failure.

When devising checkpointing strategies we ensure they rely only upon readily

available system information and avoid expensive computation, such that they may

be easily implemented in a real HTC system. The policies outlined below make use

of system information exposed through the HTCondor ClassAd mechanism [193] and

other HTC systems, so we consider each of these policies to be realistic.

7.3.1 Baseline policies

The following checkpointing policies are proposed to form a baseline against which

the competitiveness of our proposed policies may be assessed.

None: This represents the policy enacted during 2010 in the Newcastle University HT-

Condor pool, where no jobs were checkpointed.

Opt: An optimal checkpointing strategy for best case comparison, whereby jobs are

checkpointed immediately prior to eviction within our simulation. The results

of this policy represent the greatest possible reduction in energy consumption

and makespan achievable using checkpointing mechanisms, assuming perfect

knowledge of future events. In order to provide a more realistic optimal policy

against which we base our comparisons, under the Opt scheme checkpoints are

only performed where current execution time of the job is greater than or equal

to the duration required for the checkpoint operation to complete. Otherwise, a

checkpoint is not taken, resulting in some loss of computation.

7.3.2 Checkpoint Interval

Here we present a number of policies determining the interval between checkpoint

operations for a job.

C(n): Each job is checkpointed every n minutes. Hourly checkpointing (C(60)) is fre-

quently considered in the literature and the HTCondor default strategy equates

to C(180) [50].

7.3 Policies 147

Multi(nopen , nclosed , t): This policy leverages easily obtained system knowledge, con-

sidering computer cluster open/closed state to be analogous to high and low

rates of user arrivals respectively. We define the time to the next checkpoint in-

terval for a job in cluster j at time ø as:

I j ,ø =

8

>

<

>

:

nopen if 9si , j , fi , j : si , j ° c j ∑ ø∑ fi , j ° c j

nclosed otherwise
(7.1)

where si , j is the ordered set of all start of open periods in cluster j , fi , j is the cor-

responding ordered set of all closed periods in cluster j and c j is a time interval

to mitigate the effect of checkpoints intervals selected close to a boundary being

allocated a bad checkpoint interval with respect to the next interval.

MinuteInHour(m, t ,R): In our analysis of our institutional workload, we observe a

large proportion of interruptions from interactive users occur close to hour

boundaries during office hours. This occurs due to the interactive users of the

system mostly comprising of taught students, with students arriving to and de-

parting from computers ahead of scheduled practical sessions and lectures. In

this policy we leverage this observation, setting checkpoint intervals such that

checkpoint operations are enacted prior to this period of increased interruptions

The next checkpointing interval i is derived using the following equation:

i =

8

>

<

>

:

m ° jmi n +R if jmi n < (m ° t)

60+ (m ° jmi n +R) otherwise
(7.2)

where jmi n(0 ∑ jmi n ∑ 59) is the number of minutes past the hour at which we are

computing the next checkpoint interval, threshold value t represents a minimum

job runtime before a job may be checkpointed and m is the number of minutes

past the hour at which we wish to perform a checkpoint.

In situations where large batches of jobs are submitted to the system at the same

time, this policy may result in a large number of checkpoints being taken simul-

taneously. In a real system this could impose significant load on the network

7.3 Policies 148

and storage nodes. In order to mitigate these potential effects, we introduce a

random component in the checkpoint interval R, where R is a random variable

uniformly distributed on [°r,r], measured in minutes. As the value of r increases

the system will become less susceptible to large numbers of simultaneous check-

points caused by batch arrivals, but limit the ability of the policy to leverage the

minute-in-hour period behaviour in checkpoint scheduling.

Ratio(p): In this policy we place an upper bound on the proportion of execution time

consumed through checkpointing operations. The checkpoint interval i for a

given job j is calculated as i j =
d j

p where d j is the estimated checkpoint duration

for job j, and p the maximum proportion of execution time to be occupied by

checkpointing.

StartDelay(n,d): Through preliminary investigation we observe a significant pro-

portion of wasted checkpoints occurred as a result of checkpointing of short-

running jobs. While execution time of tasks is not known a priori and user esti-

mates of task execution in grid have been shown to be inaccurate [15, 16, 218],

this policy aims to curtail this waste, applying a start delay d before which a

newly allocated task may not be checkpointed, after which tasks are check-

pointed every n minutes.

GeometricProgression(a,r): Here we propose a generalised backoff policy based on a

geometric progression, where the duration of the nth checkpoint interval for job

j is given by:

i n
j =

8

>

<

>

:

a if n = 0

ar n°1 if n ∏ 1
(7.3)

where a represents the initial checkpoint interval, r (r ∏ 0) represents the ‘com-

mon ratio’ for the sequence. The ‘Exponential backoff ’ policy proposed by Oliner

et al [183] is equivalent to the geometric progression policy where r = 2.

7.3 Policies 149

7.3.3 Defer checkpoint policies

At each checkpoint interval, a decision must be made whether to proceed with carrying

out a checkpoint operation, or defer to the next checkpoint interval. These decisions

may be static, or may be dynamic and informed by the state of the system or job.

ClosedCluster: A simple policy incorporating easily obtained information about the

institutional computer clusters, checkpoint operations are deferred when the

cluster running the job is closed for use by interactive users.

Interarrival(w,m, l ,d): A policy requiring a greater insight into the global state of the

HTC system, in this policy we observe the number of interactive user arrivals

in a sliding window of w minutes. The feasibility of a checkpoint operation is

evaluated every m minutes, with a checkpoint operation enacted if the number

of arrivals in the period ei from event set E is greater than threshold l and the job

has not previously been checkpointed in the last d minutes. This policy may be

expressed as follows:

8

>

>

<

>

>

:

(t ° c j) ∑ d if
Ø

Ø

Ø

n

ei

Ø

Ø

Ø

ei 2 E ^ t °w ∑ T (ei) ∑ t
o

Ø

Ø

Ø

∏ l

de f er otherwise

(7.4)

where current time is t , T (e) is the arrival time for interactive user event e, c j

represents the time job j was last checkpointed (or 0 for jobs who have not pre-

viously been checkpointed).

We consider two variations of this policy, one considering the number of arrivals

in the cluster of machines local to the job, and another considering the number

of interactive user arrivals to the whole system.

7.3.4 Proactive migration

In addition to enabling recovery from failures, checkpointing mechanisms may also be

used to support proactive migration of computational tasks to reduce makespan and

energy consumption.

7.4 Results 150

Scheduled: Tasks are migrated to avoid scheduled interruptions, e.g. all campus com-

puters at Newcastle University reboot daily between 3am and 5am to perform

routine maintenance and apply updates.

ClusterOpening: An event-driven checkpointing policy, where checkpoint operations

are scheduled immediately prior to a cluster transitioning from being closed to

open for use by interactive users.

7.4 Results

The impact on average task overhead and energy consumption for None and Opt poli-

cies on average task makespan and energy consumption is shown in Figures 7.2 and

7.3 respectively. All results presented are mean values obtained from fifty simulation

runs, with error bars signifying 95% confidence interval values.

0

2

4

6

8

10

12

14

N
O

N
E

O
P

T
(1

5
)

O
P

T
(3

0
)

O
P

T
(4

5
)

O
P

T
(6

0
)

O
P

T
(1

2
0

)

O
P

T
(1

8
0

)

O
P

T
(2

4
0

)

A
ve

ra
g
e
 t

a
sk

 o
ve

rh
e
a
d

 (
m

in
u

te
s)

Fig. 7.2: Average Task Overheads

7.4 Results 151

0

20

40

60

80

100

120

N
O

N
E

O
P

T
(1

5
)

O
P

T
(3

0
)

O
P

T
(4

5
)

O
P

T
(6

0
)

O
P

T
(1

2
0

)

O
P

T
(1

8
0

)

O
P

T
(2

4
0

)

E
n

e
rg

y
co

n
su

m
p

tio
n

 (
M

W
h

)

Task Execution
Overheads

Fig. 7.3: Energy Consumption

The HTCondor workload from 2010 with no checkpointing mechanism applied re-

sults in an average task overhead of 12.94 minutes and energy consumption of 112

MWh. In this scenario, task overheads result from time spent by newly arrived or

evicted jobs awaiting resources to become available. Under our optimal policy, which

assumes perfect knowledge of failures, overheads are reduced to 3.48 minutes, with

resulting energy consumption of 54.6 MWh. Here the time taken to generate check-

points is shown to have little impact on the efficacy of checkpointing in the presence

of optimal checkpoint interval selection.

7.4.1 Policy Results

We assess the impact of the proposed policies as the proportion of maximal benefit

from checkpoint approaches. We define our benefit function as follows:

Benefit = 1°
≥ vx ° vopt

vnone ° vopt

¥

(7.5)

where vx may refer to either average task makespan, energy consumption or check-

point utilisation for a given policy x, and vnone and vopt refer to the these values for

the None and Opt baseline policies respectively. We define checkpoint utilisation as

the proportion of completed checkpoint operations which are subsequently used for

recovery, indicating a given policy’s ability to identify situations where a checkpoint

7.4 Results 152

will be required.

Figure 7.4 show the impact of the policy on makespan, energy consumption and

checkpoint utilisation for our Fixed (periodic) checkpointing policy C(n). Results

are shown for checkpoint durations of one, two, three and four minutes respectively.

Checkpoint duration is taken to include both the generation of the checkpoint and

persisting this image to stable storage. We acknowledge that checkpoint duration is

heavily dependent on data transfer costs, and incorporate estimates of these costs in

our simulation, based on our investigation presented in Section 4.2.7. We observe this

policy has the potential to achieve energy and makespan savings which are as great as

60% of optimal when the policy is correctly parameterised. The optimal checkpoint

interval is shown to be dependent on the checkpoint duration for the workload, with

the optimal interval for one- and four-minute jobs centred around 30 and 55 minutes

respectively. In all cases, where a checkpoint interval shorter than 30 minutes are se-

lected performance degrades significantly, with the cost of checkpoint operations ex-

ceeding the possible savings, leading to worsening overall performance and energy

consumption. As the length of checkpoint intervals increase, the benefits of check-

pointing tends towards zero, representing no checkpointing of jobs. We observe only

a small proportion of successfully generated checkpoints are utilised under the Fixed

policy, with the time taken to generate checkpoints having negligible impact. Though

utilisation rises to approximately 15% for a checkpoint interval of 180 minutes, the

benefit of a job resuming from a checkpoint generated that far in the past would be

limited. When considering the checkpoint strategies previously considered in the lit-

erature, hourly checkpointing (C(60)) delivers good performance dependent on the

time required to generate checkpoints for jobs, but we show the HTCondor default of

C(180) [50] to have little benefit for our workload. The observable decline in check-

point utilisation for checkpoint intervals of approximately 130 minutes are an artefact

of the relatively short execution time of the jobs comprising our workload.

7.4 Results 153

0 20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpoint Interval (minutes)

P
ro

p
o

rt
io

n
 E

n
e

rg
y

sa
vi

n
g

1 min
2 min
3 min
4 min

20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpoint Interval (minutes)

P
ro

p
o

rt
io

n
 M

a
ke

sp
a

n
 s

a
vi

n
g

1 min
2 min
3 min
4 min

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

Checkpoint Interval (minutes)

C
h

e
ck

p
o

in
t

U
til

is
a

tio
n

 (
%

)

1 min
2 min
3 min
4 min

Fig. 7.4: The impact of Fixed checkpoint policy on energy consumption, overhead and

checkpoint utilisation

In Figure 7.5 we compare our Fixed periodic scheme (C(n)) with our Scheduled

proactive migration policy, both in isolation (SR) and in combination with our Closed-

Cluster defferal policy (CCSR). To aid readability we provide results for each policy for

7.4 Results 154

checkpoint durations of one and four minutes. When considering the ClosedCluster

policy with Scheduled reboot proactive migration (CCSR), we observe significant im-

provements in average task overhead and energy consumption, with the policy outper-

forming the Fixed periodic checkpointing scheme (C(n)) for all lengths of checkpoint

interval. Though the greatest proportional makespan and energy saving is only found

to rise from 0.6 for the Fixed periodic scheme (C(n)) to 0.7 for the CCSR scheme, this

improvement is observed across a much wider range of checkpoint intervals, making

these policies much less susceptible to poor performance due to sub-optimal check-

point interval selection. Furthermore, we observe a significant increase in the utilisa-

tion of checkpoints generated in all cases.

7.4 Results 155

0 20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpoint Interval (minutes)

P
ro

p
o

rt
io

n
 E

n
e

rg
y

sa
vi

n
g

1 min, Fixed
4 min, Fixed
1 min, SR
4 min, SR
1 min, CCSR
4 min, CCSR

20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpoint Interval (minutes)

P
ro

p
o

rt
io

n
 M

a
ke

sp
a

n
 s

a
vi

n
g

1 min, Fixed
4 min, Fixed
1 min, SR
4 min, SR
1 min, CCSR
4 min, CCSR

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

50

Checkpoint Interval (minutes)

C
h

e
ck

p
o

in
t

U
til

is
a

tio
n

 (
%

)

1 min, Fixed
4 min, Fixed
1 min, SR
4 min, SR
1 min, CCSR
4 min, CCSR

Fig. 7.5: The impact of ClosedCluster policy and Scheduled proactive migration on

energy consumption, overhead and checkpoint utilisation

In Figure 7.6 we present the results of our Geometric policy. Results are shown for

a 30 minute checkpoint interval, and varying common ratio parameter r . We find this

policy to provide benefits to energy and makespan for all values of r . The best selection

of parameter r is dependent on checkpoint duration, as r º 1 for 1 minute checkpoints,

7.4 Results 156

and r º 2 for 4 minute checkpoints. Furthermore, the selection of this common ratio

is dependent on the composition of the HTC workload, with a greater proportion of

shorter or longer jobs impacting on the best value to select. An interesting extension of

this policy would be to explore the selection of r based on the expected execution time

of the workload.

7.4 Results 157

1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Common ratio (r)

P
ro

p
o

rt
io

n
 E

n
e

rg
y

sa
vi

n
g

1 min
2 min
3 min
4 min

1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Common ratio (r)

P
ro

p
o

rt
io

n
 M

a
ke

sp
a

n
 s

a
vi

n
g

1 min
2 min
3 min
4 min

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

Common ratio (r)

C
h

e
ck

p
o

in
t

U
til

is
a

tio
n

 (
%

)

1 min
2 min
3 min
4 min

Fig. 7.6: The impact of Geometric policy on energy consumption, overhead and check-

point utilisation

Results of our MinuteInHour policy are shown in Figure 7.7. Using knowledge of

interactive user activity to inform the placement of checkpoint operations is found to

result in an º 20% improvement in energy and makespan saving where m = 55 com-

pared to the checkpoints carried out on the hour boundary. We introduce the random

7.4 Results 158

component r to prevent large numbers of checkpoints scheduled at the same time,

leading to network congestion and increased transfer delays. To exemplify the poten-

tial impact of such an adjustment, we show the results for a deliberately conservative

value of r = 5 minutes. Under this policy, energy and makespan savings are lessened,

particularly for the case of four minute checkpoints due to checkpoint operations be-

ing deferred towards the hour boundary, increasing their likelihood of interruption.

Utilisation remains largely unaffected by the choice of parameter m. In a real system

we anticipate a much smaller value of r to be adequate.

7.4 Results 159

5 10 15 20 25 30 35 40 45 50 55 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Minute in hour (m)

P
ro

p
o

rt
io

n
 E

n
e

rg
y

sa
vi

n
g

1 min, r=0
1 min, r=5
4 min, r=0
4 min, r=5

5 10 15 20 25 30 35 40 45 50 55 60
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Minute in hour (m)

P
ro

p
o

rt
io

n
 M

a
ke

sp
a

n
 s

a
vi

n
g

1 min, r=0
1 min, r=5
4 min, r=0
4 min, r=5

5 10 15 20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

Minute in hour (m)

C
h

e
ck

p
o

in
t

U
til

is
a

tio
n

 (
%

)

1 min, r=0
1 min, r=5
4 min, r=0
4 min, r=5

Fig. 7.7: The impact of MinuteInHour policy on energy consumption, overhead and

checkpoint utilisation

Figure 7.8 show the results for the Ratio policy. This policy makes use of estimates

of the time required to generate a checkpoint for a given job, and here we demonstrate

the policy’s ability to deliver equivalent benefits to jobs, irrespective of checkpoint du-

ration. We observe the greatest benefit for our workload where checkpointing is con-

7.4 Results 160

figured to take ª 4% of execution time. Beyond this point, benefits begin to curtail and

at ª 15%, the cost of checkpoint operations exceeds that of lost execution due to inter-

ruptions. When considering checkpoint utilisation under the Ratio policy, utilisation

falls as the proportion of execution time spent checkpointing (and thus the number of

checkpoint operations) increases.

7.4 Results 161

10
0

10
1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpointing proportion (%)

P
ro

p
o

rt
io

n
 E

n
e

rg
y

sa
vi

n
g

1 min
2 min
3 min
4 min

10
0

10
1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Checkpointing proportion (%)

P
ro

p
o

rt
io

n
 M

a
ke

sp
a

n
 s

a
vi

n
g

1 min
2 min
3 min
4 min

10
0

10
1

0

5

10

15

20

25

30

Checkpointing proportion (%)

C
h

e
ck

p
o

in
t

U
til

is
a

tio
n

 (
%

)

1 min
2 min
3 min
4 min

Fig. 7.8: The impact of Ratio policy on energy consumption, overhead and checkpoint

utilisation

Figure 7.9 show the results for our policy placing a delay on the start of checkpoint-

ing for a job. With the exception of C(60) for one minute checkpoints, we observe a

modest benefit to delaying the start of checkpointing during the first hour of a task’s

execution. Due to the relatively short execution time of the jobs comprising our work-

7.4 Results 162

load, results begin to decrease beyond a start delay of ª 90 minutes, due to the start

delay being longer than the execution time of the task. The observable drop in the

checkpoint utilisation graph centred at approximately 120 mins is also an artefact of

this interaction between task execution time and start delay.

20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Start delay (minutes)

P
ro

p
o

rt
io

n
 E

n
e

rg
y

sa
vi

n
g

1 min, C(60)
4 min C(60)
1 min, C(120)
4 min C(120)
1 min, C(180)
4 min C(180)

20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Start delay (minutes)

P
ro

p
o

rt
io

n
 M

a
ke

sp
a

n
 s

a
vi

n
g

1 min, C(60)
4 min C(60)
1 min, C(120)
4 min C(120)
1 min, C(180)
4 min C(180)

20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

Start delay (minutes)

C
h

e
ck

p
o

in
t

U
til

is
a

tio
n

 (
%

)

1 min, C(60)
4 min C(60)
1 min, C(120)
4 min C(120)
1 min, C(180)
4 min C(180)

Fig. 7.9: The impact of Start Delay policy on energy consumption, overhead and check-

point utilisation

7.4 Results 163

In Figure 7.10 we show results for our Interarrival policy determining the conditions

under which a scheduled checkpointing operation should proceed. Each of these re-

sults are shown for one minute checkpoint duration, and for sliding windows of length

one, ten and twenty minutes. We present results for two variations of the policy, one

which enacts checkpoints for a job based on the interactive user arrivals at the cluster

where the job is executing, and the other based on interactive user arrivals through-

out the entire system. The System-level checkpointing strategy is shown to provide

greater improvements to energy consumption and overhead when compared to the

Cluster-based approach, despite significantly lower checkpoint utilisation. The results

for policies using a one minute sliding window are shown to be more sensitive to se-

lection of interactive user arrival threshold (l) than those with longer window lengths.

In both cases the benefits are greatest for small values of l , but we do not find user ar-

rivals in such low quantities to be a sufficiently good predictor of task preemption for

our workload.

7.4 Results 164

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Interactive user arrival threshold (l)

P
ro

p
o

rt
io

n
 E

n
e

rg
y

sa
vi

n
g

System, w=1
System, w=10
System, w=20
Cluster, w=1
Cluster, w=10
Cluster, w=20

0 5 10 15 20 25 30
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Interactive user arrival threshold (l)

P
ro

p
o

rt
io

n
 M

a
ke

sp
a

n
 s

a
vi

n
g

System, w=1
System, w=10
System, w=20
Cluster, w=1
Cluster, w=10
Cluster, w=20

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Interactive user arrival threshold (l)

C
h

e
ck

p
o

in
t

U
til

is
a

tio
n

 (
%

)

System, w=1
System, w=10
System, w=20
Cluster, w=1
Cluster, w=10
Cluster, w=20

Fig. 7.10: The impact of Interarrival policy on energy consumption, overhead and

checkpoint utilisation

7.4.2 Summary

From the results of our preliminary investigation, we note that for periodic checkpoint-

ing schemes, checkpoint duration is often as important as the checkpointing interval

7.4 Results 165

chosen. This highlights the importance of a combined approach between checkpoint

scheduling policies and the efficiency of the checkpointing mechanisms themselves.

With checkpoint duration dominated by data transfer costs, significant gains may also

be sought by reducing the size of the resulting checkpoint snapshots.

Though we find checkpointing results in significant improvements to task over-

heads, for many policies including periodic checkpointing, the benefits rely on correct

parameterisation of policies. The exploration of approaches to adaptive checkpointing

policies with the ability to adapt parameters to the observed interactive user and HTC

workloads shall form the basis of ongoing work in this area.

Furthermore, a significant contributing factor in the significant potential for check-

pointing to reduce average makespan is the relatively low load observed in the Newcas-

tle University HTCondor cluster (approximately 12% for 2010 1). Consequently, evicted

jobs are reallocated quickly, incurring only a short delay while waiting for resource to

become available. We anticipate these makespan savings to be more modest for more

heavily utilised pools of resources.

A key finding of this work relates to the effectiveness of load-based measures to

govern the operation of a checkpointing scheme. While we found policies leverag-

ing knowledge of scheduled interruptions and periods where clusters will be closed

to interactive users, our threshold-based user interarrival policy was not found to offer

significant benefits. In a real world system where the collection of such detailed knowl-

edge is non-trivial, simple measures such as cluster opening times and the knowledge

of scheduled interruptions seem sufficient in achieving favourable results.

Finally, we acknowledge that the efficacy of each of the checkpointing strategies

presented here is dependent on the operating conditions. As many of the policies out-

lined in this chapter are not mutually exclusive, there is scope to yield further improve-

ments by combining these approaches and targeting the scenarios in which they oper-

ate most effectively.

1We present a full analysis of our institutional workload from 2010 in Chapter 4.

7.5 Discussion 166

7.5 Discussion

In this section, we outline the considerations the administrator of an HTC cluster

should make when deciding whether to employ a checkpointing mechanism within

their environment. In doing so, we highlight a number of areas of research interest,

both with respect to energy-efficient checkpointing generally, and also issues specific

to the application of these approaches in the context of multi-use clusters.

7.5.1 Operating policies

High Throughput Computing and Fine-Grained Cycle Sharing systems are typically

configured to operate conservatively, with the interactive user of a machine given pri-

ority over the HTC workload running on the machine. Historically there was significant

potential of interference from an HTC job, degrading performance and responsiveness

for interactive users of a system. However, now in multi-core systems, and with the

additional separation afforded by virtualisation technologies, the impact of HTC work-

loads on interactive users has been shown to be negligible [142]. Relaxing operational

constrains preventing HTC jobs from running on resources with interactive users not

only increases the capacity and throughput of the system, but also offers significant re-

duction in energy consumption. We demonstrate the energy and performance benefits

made possible when leveraging knowledge of scheduled interruptions and user activ-

ity, highlighting the benefit of communication between cluster and HTC system ad-

ministrators. Furthermore, we demonstrate the potential for checkpointing informing

the management decisions made at the cluster level. For example, nightly reboots may

be staggered to reduce the interference caused by many jobs checkpointing simultane-

ously, or reboots may be scheduled for shortly after clusters close to interactive users,

increasing resource availability.

7.5.2 Workload

The efficacy of checkpointing is largely dependent on cluster workload. Checkpointing

is most useful when the execution time of a large proportion of the workload exceeds

7.5 Discussion 167

typical resource mean time to failure or user inter-arrival durations, increasing the like-

lihood of interruption. Checkpointing in other situations is likely to have a detrimental

effect on energy consumption and makespan. Furthermore, some jobs do not support

checkpointing, or are unsuitable for checkpointing e.g. those with particularly large

application states.

7.5.3 User base

The Newcastle University HTC cluster supports a diverse user base, from experienced

system administrators and Computer Scientists interacting directly with the system, to

scientists leveraging its capabilities through user interfaces or submission mechanisms

provided to them. Consequently there is a need for checkpointing mechanisms to be

transparent and not require in-depth understanding of HTC or programming ability

for users to benefit. Furthermore it is essential that such checkpointing mechanisms

are capable of achieving energy savings in the absence of user knowledge.

7.5.4 Resource composition

Modern HTC clusters commonly comprise both volunteer and dedicated resources,

and increasingly leverage Cloud resources to handle peak loads and offer runtime en-

vironments not supported locally. The composition of a cluster is an important fac-

tor in determining whether checkpoint mechanisms should be employed. In clusters

solely relying on volunteer resources, checkpointing offers an attractive means to de-

liver favourable makespan and reduced energy consumption in the presence of inter-

ruptions. As the proportion of dedicated resources increase, similar benefits may be

sought by steering longer-running jobs to these more reliable resources. The implica-

tions of checkpointing on workloads running on Cloud resources has not previously

been investigated in the literature, but data transfer/storage and instance costs will

exacerbate the impact of any checkpoint overheads.

7.6 Conclusion 168

7.6 Conclusion

In this chapter we have shown existing checkpointing mechanisms to be inadequate

in reducing makespan while maintaining acceptable levels of energy consumption in

multi-use clusters with interactive user interruptions. Our experimentation demon-

strates that the naive application of checkpointing approaches has the potential to

negatively impact energy consumption. We go on to propose and evaluate novel

energy- and load-aware checkpointing strategies to curtail the energy consumption

of checkpointing approaches whist maintaining the performance benefits. We high-

light key considerations when adopting checkpointing in an HTC cluster and motivate

a number of areas of further research interest in energy-efficient checkpointing.

7.6.1 Further work

There are a number of areas where we intend to extend our work into energy-efficient

checkpointing in high-throughput computing systems.

Checkpoint replication

In this work we assume checkpoints are stored on the stable storage of the existing

servers provisioned to act as the central manager and submit nodes for HTCondor, an

assumption we wish to relax in further work.

Critical to the efficacy of checkpoint projects is the availability of application snap-

shots in the event a recovery is required. By using unreliable worker nodes to store

checkpoint images, replication is required to reduce the likelihood of a checkpoint

image being unavailable when required. Prior works have explored the decision of

selecting a location for checkpoint replicas both on dedicated resources and worker

nodes [150, 194].

Provisioning dedicated resources to act as checkpoint repositories is an approach

commonly found in the literature, but would incur a penalty on energy consumption

which may exceed the savings sought through the fault tolerance mechanism itself.

This energy penalty may be mitigated in a number of ways. Firstly, we consider dy-

7.6 Conclusion 169

namic consolidation of dedicated checkpointing repositories to meet offered work-

load. More promising is the potential to use existing computers within the HTC pool

- either idle or currently executing other work - as checkpoint repositories. The use

of non-dedicated checkpoint repositories has been proposed the literature [9, 67, 68],

though without consideration for potential energy savings.

Multi-version checkpointing schemes are often employed in scenarios where la-

tent errors (i.e. errors which remain undetected for a period of time) are present [149],

but we employ such a scheme to allow jobs to resume execution from previous check-

points, where the latest snapshot of application state was placed on a non-dedicated

checkpoint repository which is no longer available.

A challenge we foresee in the use of non-dedicated checkpoint repositories is that

of network transfer, particularly for large checkpoint images. Here we consider the

application of a BitTorrent-based system, similar to that proposed by Gadea et al [135],

to replicate checkpoint images among workers as an area of further interest.

Job redundancy

Job redundancy, in which multiple copies of each task are deployed increasing the

chance that at least one will complete in the first attempt, has been employed within

grids to reduce the impact of failures on task makespan [110] but few consider the im-

pact of job redundancy on energy consumption, with job duplication considered to be

too costly in terms of energy.

Jensen et al [119] propose a task duplication scheme to mitigate the impact of fail-

ures early in a task’s execution, whereby a job is submitted to multiple compute nodes

at the beginning of execution, and replicas are cancelled after a number of minutes.

However, the assumption that failures occur at the beginning of execution is question-

able, and certainly not sufficient in out multi-use cluster context with interruptions

from interactive users at any point during task execution.

Mills et al [169] propose ‘shadow computing’, a variant of typical job redundancy

whereby DVFS techniques are applied to execute replicas at lower processor speeds

(referred to as shadows). Consequently, replicas do not progress through execution as

7.6 Conclusion 170

quickly as the primary instance of the job, but nor do they consume as much energy in

doing so. In the event of a failure, a shadow continues execution of the job, perhaps at

an elevated processor speed. The authors develop an analytical model to evaluate the

approach and find shadow replication to provide energy savings of 15-30% compared

to traditional replication strategies.

Enokido et al [77] explore the application of redundant execution of workloads with

consideration for energy-efficiency. The paper investigates these strategies for a clus-

ter of nine servers, either homogeneous or heterogeneous in composition, in terms of

computational power and energy consumption. However, such policies have not yet

been explored in the context of multi-use clusters in the presence of user interruptions,

nor at the scale of typical computational grids.

Despite these initial efforts, task duplication has not been considered in the pres-

ence of checkpointing mechanisms. As a basis of ongoing work, we consider the ex-

ploration of job duplication schemes leveraging the following additional knowledge to

reduce the energy impact of their operation; a) knowledge of current HTC system load

b) likelihood of interruption from interactive users c) estimated job execution time.

Spot pricing

Amazon EC2 provides Spot instances [3] which offer compute resources at significantly

lower cost than typical EC2 instances. There exists a trade-off between cost, latency

incurred when current instance costs exceed the bid rate, and the ungraceful inter-

ruption of tasks running on the instance. Traditionally this has precluded Spot in-

stances from being used for long-running computation. In ongoing work we plan to

leverage our previous research into Checkpointing strategies for HTCondor, adapting

these for the spot instance environment to promote interruption tolerance and reduce

cost/wasted computation.

Checkpointing strategies for spot instances have been explored in the literature.

Voorsluys et al [249] explore the impact of price history and on-demand price based

bidding strategies in the presence of hourly checkpointing, but do not explore vary-

ing the checkpointing interval. Experimentation is carried out using the CloudSim [46]

7.6 Conclusion 171

simulation framework with spot price data obtained between July and October 2011,

and for a trace workload of 100,000 ‘embarrasingly parallel tasks’ from the LHC Grid at

CERN [1]. Results find higher bids to perform better both in terms of monetary cost

and reduced deadline violations. Significant benefits sought through the use of fault-

tolerance mechanisms (checkpoint and migration) but job duplication is shown to per-

form poorly in all cases. This study considers only the use of spot instances. It would

be interesting to investigate the use of spot pricing in addition to normal on-demand

cloud resources as well as local resources. Furthermore, the study does not consider

the combination of fault-tolerance approaches to achieve further improvements.

Yi [256] investigates checkpointing strategies for EC2 Spot Instances, exploring the

impact of checkpointing at hour boundaries and when the current spot price increases.

The authors demonstrate the ability to tolerate the failures incurred by out-of-bid sit-

uations while reducing costs in comparison with standard Cloud instances.

Khatua et al [127] extend the work of [256] proposing a checkpointing scheme

based on current spot history price. Their approach adopts two threshold bid values,

one for the spot instance (kept sufficiently high such that out-bit events are unlikely

to occur) and an application budget bid price used to determine when to checkpoint,

terminate and provision spot instances. The authors claim a 5.56% performance im-

provement over the Optimal policy presented in [256].

In the pursuit of this area of research, we are currently obtaining trace data of Spot

pricing for the last 12 months and have extended the HTC-Sim simulation framework

to consume pricing traces.

Chapter 8

Conclusions

Summary

In this chapter, we summarise the research work presented in this thesis, in-

vestigating the trade-off of energy consumption and performance in large-

scale distributed systems. We outline the contributions and limitations of

these works, and discuss open research problems in the field, motivating a

number of ongoing research efforts.

8.1 Thesis Summary

In this thesis we have explored the impact of operating policies on the energy efficiency

and performance of large scale distributed systems.

In this work we adopt a number of approaches to exert energy efficient operation

in large-scale computing environments. In Chapter 3 we explore energy-saving mech-

anisms in a decentralised BitTorrent environment which do not directly control re-

sources comprising the system. We find these approaches to have limited applicability

for energy reduction in decentralised systems, so in Chapter 4 we turn our attention

to systems with more centralised control, namely high-throughput computing (HTC)

environments. Here we define a generalised model of energy consumption in HTC

systems and detail works undertaken to develop a trace-driven simulation capturing

the behaviour of these systems. In Chapter 5 we explore resource allocation decisions

in HTC systems, assuming full control over the power management of the resources,

while in Chapters 6 and 7 we inform system behaviour to reduce energy consumption,

without relying on control over the power management of resources.

We adopt a trace-driven simulation approach to explore policies governing the op-

eration of large-scale distributed systems. Our simulation approach offers a number

of benefits over a measurement approach, allowing us to rapidly evaluate new pol-

8.2 Limitations 174

icy ideas and scheduling decisions in a controlled and repeatable manner, without the

need for a costly testing environment, and with isolation from variability introduced by

evaluations based on a live printing environment. As the workload observed in our en-

vironment is highly seasonal (as is commonplace in HTC systems [145]), trace-driven

simulation allows us to compare policies across various workloads. The simulation

environment, HTC-Sim, outlined in Chapter 4 is designed in such a way that policies

evaluated in simulation may then be easily deployed into a real production environ-

ment.

8.2 Limitations

The verification and validating of simulations is a well documented issue [128]. In our

original 2010 dataset we possess only input to the system (as trace logs), and limited

summary statistics of the operation of the system during the period, as obtained from

the running production environment. As discussed in Section 4.3.4, since Decem-

ber 2012 we have extended our data collection to include event logs which include

additional information including periodic memory and disk utilisation information

throughout job execution, and comprehensive logs for resource re-allocation, suspen-

sion and checkpointing. This information is useful in a number of key areas. Firstly,

by providing a greater insight into the performance and behaviours of the applications

running in our HTC system, we may exploit this information in our scheduling deci-

sions and operating policies. Secondly, it shall enable us to evaluate the intermediate

output of our simulation to establish consistency between the simulated results and

real world outcomes. While this strategy will offer greater confidence in the results for

the policies enacted on the real cluster, this approach offers little ability to guarantee

the validity of simulations for novel policies not enacted on the production environ-

ment. To offer greater confidence in the simulated results, we intend to extend the

works of McGough et al [157] to enact our policies within a live environment.

A further limitation of a trace-driven simulation approach is the generalisability of

results beyond the trace logs available. To this end, we are currently in discussion with

the Computer Sciences Department at University of Wisconsin-Madison, and are ac-

8.3 Future Research Directions 175

tively seeking contributions from other HTC system operators, to obtain further trace

logs for more heavily loaded systems to further validate our results.

Finally, an open challenge common to many of the policies proposed throughout

this thesis is determining the correct choice of parameters for a given configuration

and offered load. In some cases, policies achieve favourable performance and energy

consumption results for a broad range of parameter choices, while others are more

reliant on correct parameterisation, with sub-optimal parameter selection sometimes

leading to degradation of performance. In [159] we explore this challenge using Rein-

forcement Learning [226] to tune parameters of a resource allocation policy, and found

it capable of yielding energy reductions of 30% with no impact on task completion, or

up to 53% in situations where a modest overhead increase may be incurred. We see the

application of Reinforcement Learning and similar machine learning approaches to

other policy decisions within HTC environments as a key area of ongoing exploration.

8.3 Future Research Directions

Here we motivate a number of areas of future research, arising from lessons learnt

throughout the PhD.

8.3.1 Generalise operating policies to other environments

An area of key interest is the generalisability of our developed approaches to other op-

erating environments. As organisations strive to reduce the energy cost of their desk-

top IT estate, many now look towards centralising and consolidation of computational

power through virtualisation and thin client architectures. Though the adoption of thin

clients reduce energy consumption, they lack the computational power required for

serving HTC workloads, thus reducing the available capacity of HTC systems. In order

for organisations to continue offering HTC services, the purchase and provisioning of

dedicated resources is required. Cloud Computing [12] offers an alternative in which

organisations can offload the HTC work they are no longer capable of processing lo-

cally for the operational expense of pay-as-you-go Cloud charging. Using the Cloud for

excessive local demand has been proposed in the literature [66, 70, 153, 155, 241], how-

8.3 Future Research Directions 176

ever, this has largely been through bursting to the Cloud [4] when all local resources are

exhausted, with no consideration of the ‘bursty’ nature of HTC workload or other uses

of the local resources. Other approaches have looked at deployment of the entire work-

load to the Cloud [70]. Although this may lead to favourable makespan, this is unlikely

to offer the most cost effective solution due to the cost overheads and built-in profit

margins of Cloud providers. Likewise it may be more economical to utilise the Cloud

prior to full loading of the organisations resource pool due to the risk of tasks being

evicted from a resource, requiring re-computation on an alternative resource.

In previous work we have evaluated the viability of running institutional high-

throughput computing workloads on the Cloud, exploring a number of policy deci-

sions governing resource allocation decisions, cloud instance keep-alive, and the de-

layed deployment of jobs [162]. In future work we intend to investigate the economics

of running HTC jobs over both the local cluster and Cloud computers, investigating the

effect this will have both on the overall cost to the organisation (local costs and Cloud

costs) along with the effect these policies will have on the HTC users.

8.3.2 Combined with analytical approach

Throughout this thesis we have adopted a trace-driven simulation approach to inves-

tigating the trade-offs between performance and energy consumption of large-scale

systems. While trace-driven simulation approaches allow the practitioner to closely

model the behaviour of the target system, large-scale parameter sweep experimenta-

tion is computationally expensive and generalising results to other trace workloads is

non-trivial. Conversely, analytical models rely on making certain assumptions to ar-

rive at a tractable solution, but computation is inexpensive, and results more readily

generalisable.

In [41] we motivate the need for combined approach, with analytical approach to

the performance/energy trade-offs of large distributed systems. A Population Contin-

uous Time Markov Chain (PCTMC) model of our HTC system is presented, and once

fitted to the Newcastle Uni HTCondor trace data from 2010, and the PCTMC model is

solved using the Grouped PEPA Analyser (GPA) tool [221]. This approach is shown to

8.3 Future Research Directions 177

be capable of capturing the performance and energy consumption characteristics of

computational grid systems at scale.

One area of particular interest is the application of PCTMC models running along-

side a production HTC system environment, with model predictions used to inform

policy decisions on the running system.

8.3.3 Energy efficient printing

Printing is estimated to account for 10-16% of ICT related energy electricity consump-

tion within higher education [115], but to date printing has received less attention than

power saving techniques for desktop and server infrastructure. Contrary to server and

commodity hardware which has seen significant improvements in energy consump-

tion in recent years [199], this does not hold for printer hardware. Programmes such

as EPA EnergyStar [78] provide guidance for the energy efficient operation of print de-

vices, but to date the impact of these standards has not been evaluated for real-world

print workloads. With energy consumption of active printers considerably greater than

that of desktop machines, and printers reportedly only powered down 15-30% of the

time [116], there is clearly a demand for intelligent approaches to handling the energy

consumption of printers.

Prior efforts to promote sustainability in printing have primarily focused on in-

forming and altering user behaviour to reduce usage of consumables [93, 253]. Ciriza

et al [57] develop a statistical model for the optimisation of printer power consumption

by determining the optimal printer timeout period, though in doing so significantly in-

crease the number of shutdown and wake-up transitions, posing significant implica-

tions on long-term printer reliability. Stefanek et al [222] present energy consumption

data of a single centrally-managed shared printer within a University, though without

consideration for potential changes to their operating policies. Andreoli et al [7] em-

ploy a clustering approach to discover communities of users within a shared print en-

vironment. A survey and critical evaluation of life-cycle analysis of the environmental

impact of print resources is presented in [40]. Despite clear opportunities for signifi-

cant reductions in cost and environmental impact, few in the literature have consid-

8.3 Future Research Directions 178

ered energy-efficient management policies for shared printing.

As part of this ongoing work we have collected two extensive datasets of usage on

shared printer infrastructure, the largest corpus of print trace data currently available

for shared printing infrastructures, comprising 7,562,680 print jobs processed between

01/08/2004 and 13/12/2012 by the 189 centrally managed printers at Newcastle Univer-

sity. Datasets were obtained from the mining of historical account data and from in-

terrogating logs of a running departmental print server.

Predictive models of energy consumption [73] and energy-aware performance

benchmarks such as SPECpower [134] are well established in the context of server and

commodity hardware but similar efforts have not extended to printers. Here we pro-

pose a predictive model of full-system energy consumption of print devices. Figure 8.1

demonstrates one power trace obtained during preliminary testing of a Konica BizHub

C280 laser printer for warm-up, active-idle and printing modes. 1

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600

Time elapsed (seconds)

E
n
e
rg

y
co

n
su

m
p
tio

n
 (

W
)

A B C D E F G

Fig. 8.1: Energy consumption trace for Konica BizHub C280

In this area of future work we shall motivate the need for energy-aware printer man-

agement techniques governing device timeouts, batching of jobs, and printer selec-

1We can see in segment ‘A’ the printer transition from its off state where energy consumption is negli-
gible, to an active-idle state in segment ‘B’ where the printer consumes approximately 83.5W. The transi-
tion in ‘A’ takes approximately 67 seconds to complete, during which time there are significant increases
in energy consumption, with peak consumption reaching 1,413W. Due to this bursty power profile we
take a mean average value (1,002.5W) to represent the wakeup period in our model. Segment ‘C’ shows
the energy profile for printing a 45-page simplex text document in colour mode, taking 89 seconds to
complete Meanwhile, segment ‘D’ shows the printer again in an active-idle state consuming approxi-
mately 82.9W, but highlights the impact of periodic mechanical operations on the energy consumption
of the printer under this mode. Through further experimentation we find these operations to occur
shortly after jobs but not during longer periods of idle time. Segments ‘E’ and ‘F’ refer to further periods
of printing and idle time respectively. Finally, segment ‘G’ shows the energy consumption trace of the
printer transitioning once again into a low power state, incurring only a brief period of slightly increased
energy consumption.

8.3 Future Research Directions 179

tion. We will demonstrate through trace-driven simulation the impact of these policy

decisions at single-printer and ensemble levels for a large institutional print workload.

References

[1] http://www.cs.huji.ac.il/labs/parallel/workload/.

[2] Muhammad Abdullah Adnan, Ryo Sugihara, Yan Ma, and Rajesh K Gupta.
Energy-optimized dynamic deferral of workload for capacity provisioning in
data centers. In Green Computing Conference (IGCC), 2013 International, pages
1–10. IEEE, 2013.

[3] Amazon Web Services, Inc. Amazon Elastic Compute Cloud (Amazon EC2), 2014.
URL http://aws.amazon.com/ec2/.

[4] Brian Amedro, Françoise Baude, Denis Caromel, Christian Delbé, Imen Filali,
Fabrice Huet, Elton Mathias, and Oleg Smirnov. An efficient framework for run-
ning applications on clusters, grids, and clouds. Cloud Computing, pages 163–
178, 2010.

[5] Giuseppe Anastasi, Ilaria Giannetti, and Andrea Passarella. A bittorrent proxy
for green internet file sharing: Design and experimental evaluation. Comput.
Commun., 33:794–802, 2010. ISSN 0140-3664.

[6] David P Anderson. Boinc: A system for public-resource computing and storage.
In Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop
on, pages 4–10. IEEE, 2004.

[7] Jean-Marc Andreoli and Guillaume Bouchard. Probabilistic latent clustering of
device usage. In Advances in Intelligent Data Analysis VI, pages 1–11. Springer,
2005.

[8] Lachlan L. H. Andrew, Andrew Sucevic, and Thuy T. T. Nguyen. Balancing peer
and server energy consumption in large peer-to-peer file distribution systems.
In Online Conference on Green Communications (GreenCom), 2011 IEEE, 2011.

[9] Filipe Araujo, Patricio Domingues, Derrick Kondo, and Luis Moura Silva. Using
cliques of nodes to store desktop grid checkpoints. In Grid Computing, pages
25–36. Springer, 2008.

[10] The Grid Workloads Archive. http://gwa.ewi.tudelft.nl/, 2014.

[11] Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero, and Daniel
Ortega. Cotson: infrastructure for full system simulation. ACM SIGOPS Operat-
ing Systems Review, 43(1):52–61, 2009.

[12] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, April
2010. ISSN 0001-0782. doi: 10.1145/1721654.1721672.

[13] Guillaume Aupy, Anne Benoit, Rami G. Melhem, Paul Renaud-Goud, and Yves
Robert. Energy-aware checkpointing of divisible tasks with soft or hard dead-
lines. CoRR, abs/1302.3720, 2013.

http://www.cs.huji.ac.il/labs/parallel/workload/
http://aws.amazon.com/ec2/
http://gwa.ewi.tudelft.nl/

References 181

[14] Axel Auweter, Arndt Bode, Matthias Brehm, Luigi Brochard, Nicolay Hammer,
Herbert Huber, Raj Panda, Francois Thomas, and Torsten Wilde. A Case Study
of Energy Aware Scheduling on SuperMUC. In Supercomputing, pages 394–409.
Springer, 2014.

[15] Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy, and Allan Snavely. Are
user runtime estimates inherently inaccurate? In Job Scheduling Strategies for
Parallel Processing, pages 253–263. Springer, 2005.

[16] Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy, and Allan Snavely. Are
user runtime estimates inherently inaccurate? In DrorG. Feitelson, Larry
Rudolph, and Uwe Schwiegelshohn, editors, Job Scheduling Strategies for Paral-
lel Processing, volume 3277 of LNCS, pages 253–263. Springer Berlin Heidelberg,
2005. ISBN 978-3-540-25330-3. URL http://dx.doi.org/10.1007/11407522_14.

[17] Marinho P. Barcellos, Rodolfo B. Mansilha, and Francisco V. Brasileiro. Torrent-
lab: investigating bittorrent through simulation and live experiments. In Com-
puters and Communications, 2008. ISCC 2008. IEEE Symposium on, pages 507
–512, July 2008.

[18] Marinho P Barcellos, Rodolfo S Antunes, Hisham H Muhammad, and Ruthiano S
Munaretti. Beyond network simulators: Fostering novel distributed applications
and protocols through extendible design. Journal of Network and Computer Ap-
plications, 35(1):328–339, 2012.

[19] Luiz A. Barroso and Urs Holzle. The case for energy-proportional computing.
Computer, 40(12):33–37, 2007. ISSN 0018-9162. doi: 10.1109/MC.2007.443.

[20] Luiz André Barroso. The price of performance. Queue, 3(7):48–53, September
2005. ISSN 1542-7730. doi: 10.1145/1095408.1095420. URL http://doi.acm.org/
10.1145/1095408.1095420.

[21] Christian Belady, Andy Rawson, John Pfleuger, and Tahir Cader. Green grid data
center power efficiency metrics: Pue and dcie. Technical report, Technical re-
port, Green Grid, 2008.

[22] Christian Belady, Dan Azevedo, Michael Patterson, Jack Pouchet, and Roger Tip-
ley. Carbon usage effectiveness (CUE): a green grid data center sustainability
metric. White Paper, 32, 2010.

[23] Christian L. Belady. In the data center, power and cooling costs more than the it
equipment it supports. Electronics cooling, 13(1):24, 2007.

[24] William H. Bell, David G. Cameron, Luigi Capozza, A. Paul Millar, Kurt
Stockinger, and Floriano Zini. Optorsim - a grid simulator for studying dynamic
data replication strategies. International Journal of High Performance Comput-
ing Applications, 2003.

[25] Frank Bellosa. The benefits of event: driven energy accounting in power-
sensitive systems. In Proceedings of the 9th workshop on ACM SIGOPS European
workshop: beyond the PC: new challenges for the operating system, pages 37–42.
ACM, 2000.

[26] Frank Bellosa and Martin Steckermeier. The performance implications of lo-
cality information usage in shared-memory multiprocessors. Journal of Parallel
and Distributed Computing, 37(1):113–121, 1996.

[27] Anton Beloglazov and Rajkumar Buyya. OpenStack neat: A framework for
dynamic consolidation of virtual machines in OpenStack clouds–A blueprint.
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, 2012.

http://dx.doi.org/10.1007/11407522_14
http://doi.acm.org/10.1145/1095408.1095420
http://doi.acm.org/10.1145/1095408.1095420

References 182

[28] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, and Albert Zomaya. A
taxonomy and survey of energy-efficient data centers and cloud computing sys-
tems. Advances in Computers, 82(2):47–111, 2011.

[29] Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud com-
puting. Future Generation Computer Systems, 28(5):755 – 768, 2012. ISSN
0167-739X. doi: http://dx.doi.org/10.1016/j.future.2011.04.017. URL http://
www.sciencedirect.com/science/article/pii/S0167739X11000689. Special Sec-
tion: Energy efficiency in large-scale distributed systems.

[30] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, and Jon Hiller. Ex-
ascale computing study: Technology challenges in achieving exascale systems.
Defense Advanced Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Tech. Rep, 15, 2008.

[31] Vandy Berten and Emmanuel Jeannot. Modeling Resubmission in Unreliable
Grids: the Bottom-Up Approach. In Seventh International Workshop on Algo-
rithms, Models and Tools for Parallel Computing on Heterogeneous Networks -
heteroPar’09, Delft, Netherlands, 2009.

[32] Paulo Bertoldi and Bogdan Anatasiu. Electricity Consumption and Efficiency
Trends in European Union – Status Report 2009, 2009.

[33] CB Bhattacharya, Sankar Sen, and Daniel Korschun. Using corporate social re-
sponsibility to win the war for talent. MIT Sloan management review, 49, 2012.

[34] Christian Bienia and Kai Li. Parsec 2.0: A new benchmark suite for chip-
multiprocessors. In Proceedings of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation, 2009.

[35] Jeremy Blackburn and Ken Christensen. A Simulation Study of a New Green Bit-
Torrent. In Communications Workshops, 2009. ICC Workshops 2009. IEEE Inter-
national Conference on, pages 1–6, 2009.

[36] Raffaele Bolla, Roberto Bruschi, Franco Davoli, and Flavio Cucchietti. Energy
efficiency in the future internet: a survey of existing approaches and trends in
energy-aware fixed network infrastructures. Communications Surveys & Tutori-
als, IEEE, 13(2):223–244, 2011.

[37] BonFIRE Consortium. Bonfire (homepage), 2014. URL http://www.
bonfire-project.eu/.

[38] Mohamed-Slim Bouguerra, Derrick Kondo, and Denis Trystram. On the Schedul-
ing of Checkpoints in Desktop Grids. In Cluster, Cloud and Grid Computing (CC-
Grid), 2011 11th IEEE/ACM International Symposium on, CCGrid ’13, pages 305–
313, 2011. doi: 10.1109/CCGrid.2011.63.

[39] Mohamed-Slim Bouguerra, Ana Gainaru, Leonardo Bautista Gomez, Franck
Cappello, Satoshi Matsuoka, and Naoya Maruyama. Improving the comput-
ing efficiency of hpc systems using a combination of proactive and preventive
checkpointing. In Parallel Distributed Processing (IPDPS), 2013 IEEE 27th Inter-
national Symposium on, pages 501–512, May 2013. doi: 10.1109/IPDPS.2013.74.

[40] Justin Bousquin, Marcos Esterman, and Sandra Rothenberg. Life cycle analysis
in the printing industry: A review. In NIP, pages 709–715, 2011.

http://www.sciencedirect.com/science/article/pii/S0167739X11000689
http://www.sciencedirect.com/science/article/pii/S0167739X11000689
http://www.bonfire-project.eu/
http://www.bonfire-project.eu/

References 183

[41] Jeremy T. Bradley, Matthew Forshaw, Anton Stefanek, and Nigel Thomas. Time-
inhomogeneous population models of a cycle-stealing distributed system. In
29th Annual UK Performance Engineering Workshop (UKPEW) 2013, pages 8–13.
Loughborough University, 2013.

[42] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations, volume 28. ACM, 2000.

[43] Richard Brown. Report to congress on server and data center energy efficiency:
Public law 109-431. Lawrence Berkeley National Laboratory, 2008.

[44] John S Bucy, Jiri Schindler, Steven W Schlosser, and Gregory R Ganger. The
disksim simulation environment version 4.0 reference manual (cmu-pdl-08-
101). Parallel Data Laboratory, page 26, 2008.

[45] Rajkumar Buyya and Manzur Murshed. Gridsim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid com-
puting. Concurrency and Computation: Practice and Experience, 14(13):1175–
1220, 2002.

[46] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, CŽsar A. F. De Rose, and
Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41(1):23–50, 2011. ISSN 1097-024X. doi:
10.1002/spe.995. URL http://dx.doi.org/10.1002/spe.995.

[47] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc Snir.
Toward exascale resilience. Int. J. High Perform. Comput. Appl., 23(4):374–388,
November 2009. ISSN 1094-3420. doi: 10.1177/1094342009347767. URL http:
//dx.doi.org/10.1177/1094342009347767.

[48] Enrique V. Carrera, Eduardo Pinheiro, and Ricardo Bianchini. Conserving disk
energy in network servers. In Proceedings of the 17th annual international con-
ference on Supercomputing, pages 86–97. ACM, 2003.

[49] Center for High Throughput Computing, Computer Sciences Department,
University of Wisconsin-Madison, WI. HTCondor manual - Power Management.
http://research.cs.wisc.edu/htcondor/manual/v8.2/3_15Power_Management.
html.

[50] Center for High Throughput Computing, Computer Sciences Department, Uni-
versity of Wisconsin-Madison, WI. UW-Madison CS Dept. HTCondor Pool Poli-
cies, 2013. URL http://research.cs.wisc.edu/htcondor/uwcs/policy.html.

[51] Center for High Throughput Computing, Computer Sciences Department, Uni-
versity of Wisconsin-Madison, WI. HTCondor manual. http://www.cs.wisc.edu/
condor/manual/, 2014. Oct 2014, University of Wisconsin.

[52] Joseph Chabarek, Joel Sommers, Paul Barford, Cristian Estan, David Tsiang, and
Steve Wright. Power awareness in network design and routing. In INFOCOM
2008. The 27th Conference on Computer Communications. IEEE. IEEE, 2008.

[53] Xinuo Chen and Stephen A. Jarvis. Analysing BitTorrent’s seeding strategies. In
Computational Science and Engineering, 2009. CSE’09. International Conference
on, volume 2, pages 140–149. IEEE, 2009.

[54] Yanpei Chen, Archana Ganapathi, and Randy H. Katz. To compress or not to
compress-compute vs. IO tradeoffs for mapreduce energy efficiency. In Pro-
ceedings of the first ACM SIGCOMM workshop on Green networking, pages 23–28.
ACM, 2010.

http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/10.1177/1094342009347767
http://dx.doi.org/10.1177/1094342009347767
http://research.cs.wisc.edu/htcondor/manual/v8.2/3_15Power_Management.html
http://research.cs.wisc.edu/htcondor/manual/v8.2/3_15Power_Management.html
http://research.cs.wisc.edu/htcondor/uwcs/policy.html
http://www.cs.wisc.edu/condor/manual/
http://www.cs.wisc.edu/condor/manual/

References 184

[55] Su-Hui Chiang, Andrea C. Arpaci-Dusseau, and Mary K. Vernon. The impact of
more accurate requested runtimes on production job scheduling performance.
In Revised Papers from the 8th International Workshop on Job Scheduling Strate-
gies for Parallel Processing, JSSPP ’02, pages 103–127, London, UK, UK, 2002.
Springer-Verlag. ISBN 3-540-00172-7.

[56] SungJin Choi, MaengSoon Baik, ChongSun Hwang, JoonMin Gil, and Heon-
Chang Yu. Volunteer availability based fault tolerant scheduling mechanism in
desktop grid computing environment. In Network Computing and Applications,
2004. (NCA 2004). Proceedings. Third IEEE International Symposium on, NCA ’04,
pages 366–371, 2004. doi: 10.1109/NCA.2004.1347802.

[57] Victor Ciriza, Laurent Donini, Jean-Baptiste Durand, and Stéphane Girard. A
statistical model for optimizing power consumption of printers. In Presentation
during a joint meeting of the Statistical Society of Canada & the Société Française
de Statistique, in Otawa Congress Centre, 2008.

[58] Walfredo Cirne and Francine Berman. A comprehensive model of the supercom-
puter workload. In Proceedings of the Workload Characterization, 2001. WWC-4.
2001 IEEE International Workshop, WWC ’01, pages 140–148, Washington, DC,
USA, 2001. IEEE Computer Society. ISBN 0-7803-7315-4.

[59] Walfredo Cirne, Francisco Brasileiro, Jacques Sauvé, Nazareno Andrade, Daniel
Paranhos, Elizeu Santos-Neto, and Raissa Medeiros. Grid computing for bag of
tasks applications. In Proc. of the 3rd IFIP Conference on E-Commerce, E-Business
and EGovernment. Citeseer, 2003.

[60] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda. Pack & Cap:
adaptive DVFS and thread packing under power caps. In Proceedings of the 44th
annual IEEE/ACM international symposium on microarchitecture, pages 175–
185. ACM, 2011.

[61] Bram Cohen. Incentives build robustness in bittorrent, 2003.

[62] Daniel Paranhos Da Silva, Walfredo Cirne, and Francisco Vilar Brasileiro. Trading
cycles for information: Using replication to schedule bag-of-tasks applications
on computational grids. In Euro-Par 2003 Parallel Processing, pages 169–180.
Springer, 2003.

[63] Chris Dana, Danjue Li, David Harrison, and Chen-Nee Chuah. Bass: Bittorrent
assisted streaming system for video-on-demand. In Multimedia Signal Process-
ing, 2005 IEEE 7th Workshop on, pages 1–4. IEEE, 2005.

[64] John D. Davis, Suzanne Rivoire, Moises Goldszmidt, and Ehsan K Ardestani. Ac-
counting for variability in large-scale cluster power models. Exascale Evaluation
and Research Techniques Workshop (EXERT), 2011.

[65] John D. Davis, Suzanne Rivoire, Moises Goldszmidt, and Ehsan K Ardestani.
No hardware required: building and validating composable highly accurate os-
based power models. Technical report, Technical Report, Microsoft Research
Technical Report No. MSR-TR-2011-89, 2011.

[66] Marcos Dias de Assuncao, Alexandre di Costanzo, and Rajkumar Buyya. Evalu-
ating the cost-benefit of using cloud computing to extend the capacity of clus-
ters. In Proceedings of the 18th ACM international symposium on High perfor-
mance distributed computing, HPDC ’09, pages 141–150, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-587-1.

References 185

[67] Raphael Y. De Camargo, Renato Cerqueira, and Fabio Kon. Strategies for storage
of checkpointing data using non-dedicated repositories on grid systems. In Pro-
ceedings of the 3rd international workshop on Middleware for grid computing,
pages 1–6. ACM, 2005.

[68] Raphael Y de Camargo, Fabio Kon, and Renato Cerqueira. Strategies for check-
point storage on opportunistic grids. Distributed Systems Online, IEEE, 7(9):1–1,
2006.

[69] Răzvan Deaconescu, George Milescu, Bogdan Aurelian, Răzvan Rughiniş, and
Nicolae Ţăpuş. A Virtualized Infrastructure for Automated BitTorrent Perfor-
mance Testing and Evaluation. Internation Journal on Advances in Systems and
Measurements, 2(2&3):236–247, 2009.

[70] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Berriman, and John Good.
The cost of doing science on the cloud: the montage example. In Proceedings
of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 50:1–50:12,
Piscataway, NJ, USA, 2008. IEEE Press. ISBN 978-1-4244-2835-9.

[71] Department of Energy and Climate Change, UK Government. CRC Energy Effi-
ciency Scheme Order: Table of Conversion Factors 2013/14. 2014.

[72] Nikolaos D. Doulamis, Anastasios D. Doulamis, Emmanouel A. Varvarigos, and
Theodora A. Varvarigou. Fair scheduling algorithms in grids. Parallel and Dis-
tributed Systems, IEEE Transactions on, 18(11):1630–1648, 2007.

[73] Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha Ran-
ganathan. Full-system power analysis and modeling for server environments.
International Symposium on Computer Architecture-IEEE, 2006.

[74] Ifeanyi P. Egwutuoha, David Levy, Bran Selic, and Shiping Chen. A survey of
fault tolerance mechanisms and checkpoint/restart implementations for high
performance computing systems. The Journal of Supercomputing, 65(3):1302–
1326, 2013.

[75] Mehdi El Mehdi Diouri, Oliver Gluck, Laurent Lefevre, and Frank Cappello. En-
ergy considerations in checkpointing and fault tolerance protocols. In Depend-
able Systems and Networks Workshops (DSN-W), 2012 IEEE/IFIP 42nd Interna-
tional Conference on, DSN-W ’12, pages 1–6, 2012.

[76] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. John-
son. A survey of rollback-recovery protocols in message-passing systems. ACM
Computing Surveys (CSUR), 34(3):375–408, 2002.

[77] Tomoya Enokido, Ailixier Aikebaier, and Makoto Takizawa. Energy-efficient re-
dundant execution of processes in a fault-tolerant cluster of servers. Interna-
tional Journal of Parallel Programming, 42(5):798–819, 2014.

[78] EPA Energy Star. Energy Star®Program Requirements for Imaging Equipment,
June 2013.

[79] Pedro Evangelista, Marcelo Amaral, Charles Miers, Walter Goya, Marcos Simp-
licio, Tereza Carvalho, and Victor Souza. Ebitsim: An enhanced bittorrent sim-
ulation using omnet++ 4. In Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2011 IEEE 19th International Sympo-
sium on, pages 437–440. IEEE, 2011.

References 186

[80] Nathan S. Evans and Christian Grothoff. Beyond simulation: Large-scale dis-
tributed emulation of p2p protocols. In Proceedings of the 4th Conference on Cy-
ber Security Experimentation and Test, CSET’11, pages 4–4, Berkeley, CA, USA,
2011. USENIX Association. URL http://dl.acm.org/citation.cfm?id=2027999.
2028003.

[81] Failure Trace Archive (FTA). Failure Trace Archive (FTA) (Homepage). http://fta.
scem.uws.edu.au/, 2014.

[82] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning
for a warehouse-sized computer. In ACM SIGARCH Computer Architecture News,
volume 35, pages 13–23. ACM, 2007.

[83] Izaias Faria, Mario Dantas, Miriam A.M. Capretz, and Wilson Higashino. Net-
work and Energy-Aware Resource Selection Model for Opportunistic Grids. In
Convergence of Distributed Clouds, Grids and their Management (CDCGM) track
of Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
2014 IEEE 23rd International Workshop on, CDCGM ’14, 2014.

[84] Dror G. Feitelson, Dan Tsafrir, and David Krakov. Experience with using the Par-
allel Workloads Archive. J. Parallel & Distributed Comput., 74(10):2967–2982, Oct
2014. doi: 10.1016/j.jpdc.2014.06.013.

[85] Michal Feldman, Kevin Lai, and Li Zhang. The proportional-share allocation
market for computational resources. Parallel and Distributed Systems, IEEE
Transactions on, 20(8):1075–1088, 2009.

[86] Wes Felter, Karthick Rajamani, Tom Keller, and Cosmin Rusu. A performance-
conserving approach for reducing peak power consumption in server systems.
In Proceedings of the 19th annual international conference on Supercomputing,
pages 293–302. ACM, 2005.

[87] Kurt B. Ferreira, Rolf Riesen, Patrick Bridges, Dorian Arnold, and Ron Brightwell.
Accelerating incremental checkpointing for extreme-scale computing. Future
Generation Computer Systems, 30:66–77, 2014.

[88] Matthew Forshaw and Nigel Thomas. A novel approach to energy efficient con-
tent distribution with BitTorrent. In Computer Performance Engineering, Lecture
Notes in Computer Science (LNCS) 7587, pages 188–196. Springer-Verlag Berlin
Heidelberg, 2013.

[89] Matthew Forshaw, A. Stephen McGough, and Nigel Thomas. On energy-efficient
checkpointing in high-throughput cycle-stealing distributed systems. In 3rd In-
ternational Conference on Smart Grids and Green IT Systems (SMARTGREENS),
2014.

[90] Matthew Forshaw, Nigel Thomas, and A. Stephen McGough. Trace-driven simu-
lation for energy consumption in High Throughput Computing systems. In Dis-
tributed Simulation and Real Time Applications (DS-RT), 2014 IEEE/ACM 18th
International Symposium on, 2014.

[91] Matthew Forshaw, A. Stephen McGough, and Nigel Thomas. Energy-efficient
checkpointing in high-throughput cycle-stealing distributed systems. Electronic
Notes in Theoretical Computer Science, 310:65–90, 2015.

[92] Larry Gadea. Using bittorrent for fast website deploys. In CUSEC 2010, January
2010.

http://dl.acm.org/citation.cfm?id=2027999.2028003
http://dl.acm.org/citation.cfm?id=2027999.2028003
http://fta.scem.uws.edu.au/
http://fta.scem.uws.edu.au/

References 187

[93] Antonietta Grasso, Jutta Willamowski, Victor Ciriza, and Yves Hoppenot. The
personal assessment tool: a system providing environmental feedback to users
of shared printers for providing environmental feedback. In ICMLA, pages 704–
709. IEEE, 2010.

[94] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane Irwin, Narayanan
Vijaykrishnan, and Mahmut Kandemir. Using complete machine simulation for
software power estimation: The softwatt approach. In High-Performance Com-
puter Architecture, 2002. Proceedings. Eighth International Symposium on, pages
141–150. IEEE, 2002.

[95] Sajjad Haider, Naveed Riaz Ansari, Muhammad Akbar, Mohammad Raza Per-
wez, and Khawaja MoyeezUllah Ghori. Fault Tolerance in Distributed Paradigms.
2011.

[96] Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh Agrawal. Size-
based scheduling to improve web performance. ACM Trans. Comput. Syst., 21
(2):207–233, 2003. ISSN 0734-2071. doi: 10.1145/762483.762486. URL http://
doi.acm.org/10.1145/762483.762486.

[97] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, and Graham R. Nudd. Dynamic,
capability-driven scheduling of dag-based real-time jobs in heterogeneous clus-
ters. International Journal of High Performance Computing and Networking
(IJHPCN), 2(2/3/4):165–177, 2004.

[98] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, David Bacigalupo, Guang Tan,
and Graham R. Nudd. Mapping dag-based applications to multiclusters with
background workload. In Cluster Computing and the Grid, 2005. CCGrid 2005.
IEEE International Symposium on, volume 2, pages 855–862 Vol. 2, May 2005.
doi: 10.1109/CCGRID.2005.1558651.

[99] Ligang He, Stephen A. Jarvis, Daniel P. Spooner, and Graham R. Nudd. Perfor-
mance evaluation of scheduling applications with dag topologies on multiclus-
ters with independent local schedulers. In International Parallel & Distributed
Processing Symposium, 2006.

[100] Taliver Heath, Bruno Diniz, Enrique V. Carrera, Wagner Meira, Jr., and Ricardo
Bianchini. Energy conservation in heterogeneous server clusters. In Proceed-
ings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’05, pages 186–195, New York, NY, USA, 2005. ACM. ISBN
1-59593-080-9.

[101] Thomas R. Henderson, Mathieu Lacage, and George F. Riley. Network simula-
tions with the ns-3 simulator. SIGCOMM demonstration, 2008.

[102] Magnus K. Herrlin. Rack cooling effectiveness in data centers and telecom cen-
tral offices: The rack cooling index (rci). Transactions-American Society of Heat-
ing Refrigerating and Air conditioning Engineers, 111(2):725, 2005.

[103] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corporation,
Phoenix Technologies Ltd and Toshiba Corporation. ACPI Specification.
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf, 2010.

[104] Mike Hibler, Robert Ricci, Leigh Stoller, Jonathon Duerig, Shashi Guruprasad,
Tim Stack, Kirk Webb, and Jay Lepreau. Large-scale virtualization in the emulab
network testbed. In USENIX Annual Technical Conference, pages 113–128, 2008.

http://doi.acm.org/10.1145/762483.762486
http://doi.acm.org/10.1145/762483.762486
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf

References 188

[105] Helmut Hlavacs, Georges Da Costa, and Jean-Marc Pierson. Energy consump-
tion of residential and professional switches. In Computational Science and En-
gineering, 2009. CSE ’09. International Conference on, volume 1, pages 240–246,
Aug 2009. doi: 10.1109/CSE.2009.244.

[106] Helmut Hlavacs, Roman Weidlich, and Thomas Treutner. Energy efficient peer-
to-peer file sharing. The Journal of Supercomputing, 62(3):1167–1188, 2012. ISSN
0920-8542. doi: 10.1007/s11227-011-0602-8. URL http://dx.doi.org/10.1007/
s11227-011-0602-8.

[107] Fred Howell and Ross McNab. SimJava: A discrete event simulation library for
java. Simulation Series, 30:51–56, 1998.

[108] Chung-Hsing Hsu and Stephen W. Poole. Power signature analysis of the
SPECpower_ssj2008 benchmark. In Performance Analysis of Systems and Soft-
ware (ISPASS), 2011 IEEE International Symposium on, pages 227–236. IEEE,
2011.

[109] Chung-Hsing Hsu and Stephen W Poole. Revisiting server energy proportional-
ity. In Parallel Processing (ICPP), 2013 42nd International Conference on, pages
834–840, Oct 2013. doi: 10.1109/ICPP.2013.99.

[110] Soonwook Hwang and Carl Kesselman. A flexible framework for fault tolerance
in the grid. Journal of Grid Computing, 1:251–272, 2003. ISSN 1570-7873.

[111] Alexandru Iosup, Hui Li, Catalin Dumitrescu, Lex Wolters, and Dick Epema.
The Grid Workload Format. http://gwa.ewi.tudelft.nl/fileadmin/pds/
trace-archives/grid-workloads-archive/docs/TheGridWorkloadFormat_v001.
pdf, 2006.

[112] Alexandru Iosup, Hui Li, Mathieu Jan, Shanny Anoep, Catalin Dumitrescu, Lex
Wolters, and Dick HJ Epema. The grid workloads archive. Future Generation
Computer Systems, 24(7):672–686, 2008.

[113] Mikel Izal, Guillaume Urvoy-Keller, Ernst W Biersack, Pascal A Felber, Anwar
Al Hamra, and Luis Garces-Erice. Dissecting bittorrent: Five months in torrent’s
lifetime. In Passive and Active Network Measurement, pages 1–11. Springer, 2004.

[114] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H
Briggs, and Rebecca L Braynard. Networking named content. In Proceedings of
the 5th international conference on Emerging networking experiments and tech-
nologies, pages 1–12. ACM, 2009.

[115] Peter James and Lisa Hopkinson. Results of the 2008 susteit survey. Environmen-
tal management, 50(27):25, 2008.

[116] Peter James and Lisa Hopkinson. Energy efficient printing and imaging in further
and higher education. A Best Practice Review prepared for the Joint Information
Services Committee (JISC), 2008.

[117] Stephen A. Jarvis, Nigel Thomas, and Aad van Moorsel. Open issues in grid per-
formability. International Journal of Simulation and Process Modelling (IJSPM),
5(5):3–12, 2004.

[118] Bahman Javadi, Derrick Kondo, Alexandru Iosup, and Dick Epema. The Failure
Trace Archive: Enabling the comparison of failure measurements and models of
distributed systems. Journal of Parallel and Distributed Computing, 73(8):1208–
1223, 2013.

http://dx.doi.org/10.1007/s11227-011-0602-8
http://dx.doi.org/10.1007/s11227-011-0602-8
http://gwa.ewi.tudelft.nl/fileadmin/pds/trace-archives/grid-workloads-archive/docs/TheGridWorkloadFormat_v001.pdf
http://gwa.ewi.tudelft.nl/fileadmin/pds/trace-archives/grid-workloads-archive/docs/TheGridWorkloadFormat_v001.pdf
http://gwa.ewi.tudelft.nl/fileadmin/pds/trace-archives/grid-workloads-archive/docs/TheGridWorkloadFormat_v001.pdf

References 189

[119] Henrik Thostrup Jensen and Jesper Ryge Leth. Automatic job resubmission in
the nordugrid middleware. Technical report, Citeseer, 2004.

[120] James Patton Jones and Bill Nitzberg. Scheduling for parallel supercomputing: A
historical perspective of achievable utilization. In Proceedings of the Job Schedul-
ing Strategies for Parallel Processing, IPPS/SPDP ’99/JSSPP ’99, pages 1–16, Lon-
don, UK, UK, 1999. Springer-Verlag. ISBN 3-540-66676-1.

[121] Ioannis Kamitsos, Lachlan Andrew, Hongseok Kim, and Mung Chiang. Optimal
sleep patterns for serving delay-tolerant jobs. In Proceedings of the 1st Interna-
tional Conference on Energy-Efficient Computing and Networking, pages 31–40.
ACM, 2010.

[122] Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-aware ap-
plication design. ACM SIGMETRICS Performance Evaluation Review, 36(2):26–
31, 2008.

[123] Konstantinos Katsaros, Vasileios P Kemerlis, Charilaos Stais, and George Xy-
lomenos. A BitTorrent module for the OMNeT++ simulator. In Modeling, Analysis
& Simulation of Computer and Telecommunication Systems, 2009. MASCOTS’09.
IEEE International Symposium on, pages 1–10. IEEE, 2009.

[124] Konstantinos Kavoussanakis, Alastair Hume, Josep Martrat, Carmelo Ragusa,
Michael Gienger, Konrad Campowsky, Gregory Van Seghbroeck, Constantino
Vázquez, Celia Velayos, and Frédéric Gittler. Bonfire: the clouds and services
testbed. In Cloud Computing Technology and Science (CloudCom), 2013 IEEE
5th International Conference on, volume 2, pages 321–326. IEEE, 2013.

[125] Maria Kazandjieva, Brandon Heller, Philip Levis, and Christos Kozyrakis. En-
ergy dumpster diving. In Proc. 2nd Workshop on Power Aware Computing (Hot-
Power’09), pages 1–5, 2009.

[126] Imre Kelényi, Ákos Ludányi, and Jukka K. Nurminen. Energy-efficient bittorrent
downloads to mobile phones through memory-limited proxies. In Consumer
Communications and Networking Conference (CCNC), 2011 IEEE, pages 715–719,
2011.

[127] Sunirmal Khatua and Nandini Mukherjee. A Novel Checkpointing Scheme for
Amazon EC2 Spot Instances. In Cluster, Cloud and Grid Computing (CCGrid),
2013 13th IEEE/ACM International Symposium on, pages 180–181. IEEE, 2013.

[128] Jack P. C. Kleijnen. Verification and validation of simulation models. Eu-
ropean Journal of Operational Research, 82(1):145 – 162, 1995. ISSN 0377-
2217. doi: http://dx.doi.org/10.1016/0377-2217(94)00016-6. URL http://www.
sciencedirect.com/science/article/pii/0377221794000166.

[129] Dzmitry Kliazovich, Pascal Bouvry, Yury Audzevich, and Samee Ullah Khan.
Greencloud: A packet-level simulator of energy-aware cloud computing data
centers. In GLOBECOM, pages 1–5, 2010.

[130] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. Greencloud: a
packet-level simulator of energy-aware cloud computing data centers. The Jour-
nal of Supercomputing, 62(3):1263–1283, 2012.

[131] Ricardo Koller, Akshat Verma, and Anindya Neogi. Wattapp: an application
aware power meter for shared data centers. In Proceedings of the 7th interna-
tional conference on Autonomic computing, pages 31–40. ACM, 2010.

http://www.sciencedirect.com/science/article/pii/0377221794000166
http://www.sciencedirect.com/science/article/pii/0377221794000166

References 190

[132] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler,
and Randy H. Katz. Napsac: design and implementation of a power-proportional
web cluster. In Proceedings of the first ACM SIGCOMM workshop on Green net-
working, Green Networking ’10, pages 15–22, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0196-1.

[133] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler,
and Randy Katz. Napsac: Design and implementation of a power-proportional
web cluster. ACM SIGCOMM computer communication review, 41(1):102–108,
2011.

[134] Klaus-Dieter Lange. Identifying Shades of Green: The SPECpower Benchmarks.
IEEE Computer, 42(3):95–97, 2009.

[135] Larry Gadea and Matt Freels. Murder: Fast datacenter
code deploys using BitTorrent. https://blog.twitter.com/2010/
murder-fast-datacenter-code-deploys-using-bittorrent, 2010.

[136] Preston V Lee and Valentin Dinu. Bittorious: global controlled genomics data
publication, research and archiving via bittorrent extensions. BMC bioinformat-
ics, 15(1):6601, 2014.

[137] Uichin Lee, Ivica Rimac, Daniel Kilper, and Volker Hilt. Toward energy-efficient
content dissemination. Network, IEEE, 25(2):14–19, 2011.

[138] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. Power capping: a prelude to
power shifting. Cluster Computing, 11(2):183–195, 2008. ISSN 1386-7857. doi: 10.
1007/s10586-007-0045-4. URL http://dx.doi.org/10.1007/s10586-007-0045-4.

[139] Arnaud Legrand and Loris Marchal. Scheduling distributed applications: The
simgrid simulation framework. In In Proceedings of the Third IEEE International
Symposium on Cluster Computing and the Grid, pages 138–145, 2003.

[140] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators
for the real world. Technical report, Technical Report UU-CS-2001-27, Depart-
ment of Computer Science, Universiteit Utrecht, 2001.

[141] Bo Li, Jianxin Li, Jinpeng Huai, Tianyu Wo, Qin Li, and Liang Zhong. Enacloud:
An energy-saving application live placement approach for cloud computing en-
vironments. In Cloud Computing, 2009. CLOUD’09. IEEE International Confer-
ence on, pages 17–24. IEEE, 2009.

[142] Jiangtian Li, Amey Deshpande, Jagan Srinivasan, and Xiaosong Ma. Energy and
performance impact of aggressive volunteer computing with multi-core com-
puters. In Modeling, Analysis Simulation of Computer and Telecommunication
Systems, 2009. MASCOTS ’09. IEEE International Symposium on, MASCOTS ’09,
pages 1–10, 2009. doi: 10.1109/MASCOT.2009.5366968.

[143] Seung-Hwan Lim, Bikash Sharma, Gunwoo Nam, Eun Kyoung Kim, and Chita R
Das. Mdcsim: A multi-tier data center simulation, platform. In Cluster Comput-
ing and Workshops, 2009. CLUSTER ’09. IEEE International Conference on, pages
1–9, 2009. doi: 10.1109/CLUSTR.2009.5289159.

[144] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. Dy-
namic right-sizing for power-proportional data centers. IEEE/ACM Transactions
on Networking (TON), 21(5):1378–1391, 2013.

[145] Diane Lingrand and Johan Montagnat. Efficient resubmission strategies to de-
sign robust grid production environments. In e-Science (e-Science), 2010 IEEE
Sixth International Conference on, pages 198–205. IEEE, 2010.

https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent
https://blog.twitter.com/2010/murder-fast-datacenter-code-deploys-using-bittorrent
http://dx.doi.org/10.1007/s10586-007-0045-4

References 191

[146] Michael J Litzkow, Miron Livny, and Matt W Mutka. Condor-a hunter of idle
workstations. In 8th International Conference on Distributed Computing Sys-
tems, ICDCS ’88, pages 104–111, 1998.

[147] Yong Liu, Yang Guo, and Chao Liang. A survey on peer-to-peer video streaming
systems. Peer-to-peer Networking and Applications, 1(1):18–28, 2008.

[148] Charng-Da Lu. Scalable diskless checkpointing for large parallel systems. PhD
thesis, University of Illinois at Urbana-Champaign, 2005.

[149] Guoming Lu, Ziming Zheng, and Andrew A. Chien. When is multi-version check-
pointing needed? In Proceedings of the 3rd Workshop on Fault-tolerance for HPC
at extreme scale, pages 49–56. ACM, 2013.

[150] Andre Luckow and Bettina Schnor. Adaptive checkpoint replication for support-
ing the fault tolerance of applications in the grid. In Network Computing and Ap-
plications, 2008. NCA’08. Seventh IEEE International Symposium on, pages 299–
306. IEEE, 2008.

[151] Priya Mahadevan, Puneet Sharma, Sujata Banerjee, and Parthasarathy Ran-
ganathan. A power benchmarking framework for network devices. In Proceed-
ings of the 8th International IFIP-TC 6 Networking Conference, NETWORKING
’09, pages 795–808, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-
01398-0.

[152] S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in Multiprogrammed Paral-
lel Systems. SIGMETRICS ’88. ACM, New York, NY, USA, 1988. ISBN 0-89791-254-
3. doi: 10.1145/55595.55608. URL http://doi.acm.org/10.1145/55595.55608.

[153] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using clouds to elas-
tically extend site resources. In Cluster, Cloud and Grid Computing (CCGrid),
2010 10th IEEE/ACM International Conference on, pages 43 –52, may 2010. doi:
10.1109/CCGRID.2010.80.

[154] MathWorks. MATLAB. http://www.mathworks.co.uk/.

[155] Michael Mattess, Christian Vecchiola, and Rajkumar Buyya. Managing peak
loads by leasing cloud infrastructure services from a spot market. In Proceedings
of the 2010 IEEE 12th International Conference on High Performance Computing
and Communications, HPCC ’10, pages 180–188, Washington, DC, USA, 2010.
IEEE Computer Society. ISBN 978-0-7695-4214-0.

[156] Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic processor alloca-
tion policy for multiprogrammed shared-memory multiprocessors. ACM Trans-
actions on Computer Systems (TOCS), 11(2):146–178, 1993.

[157] A. S. McGough, Paul Robinson, Clive Gerrard, Paul Haldane, Sindre Hamlander,
Dave Sharples, Dan Swan, and Stuart Wheater. Intelligent power management
over large clusters. In International Conference on Green Computing and Com-
munications (GreenCom2010), 2010.

[158] A. Stephen McGough, Clive Gerrard, Paul Haldane, Dave Sharples, Dan Swan,
Paul Robinson, Sindre Hamlander, and Stuart Wheater. Intelligent Power
Management Over Large Clusters. In Green Computing and Communica-
tions (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l Conference on Cyber,
Physical and Social Computing (CPSCom), pages 88–95, 2010. doi: 10.1109/
GreenCom-CPSCom.2010.131.

http://doi.acm.org/10.1145/55595.55608
http://www.mathworks.co.uk/

References 192

[159] A. Stephen McGough, Matthew Forshaw, Gerrard Clive, Wheater Stuart, Allen
Ben, and Robinson Paul. Reduction of wasted energy in a volunteer comput-
ing system through reinforcement learning. Sustainable Computing, Informatics
and Systems, 2014. doi: 10.1016/j.suscom.2014.08.014.

[160] Andrew Stephen McGough, Clive Gerrard, Jonathan Noble, Paul Robinson, and
Stuart Wheater. Analysis of power-saving techniques over a large multi-use clus-
ter. In International Conference on Cloud and Green Computing (CGC2011),
2011.

[161] Andrew Stephen McGough, Matthew Forshaw, Clive Gerrard, Paul Robinson,
and Stuart Wheater. Analysis of power-saving techniques over a large multi-use
cluster with variable workload. Concurrency and Computation: Practice and Ex-
perience, 25(18):2501–2522, 2013. ISSN 1532-0634. URL http://dx.doi.org/10.
1002/cpe.3082.

[162] Andrew Stephen McGough, Matthew Forshaw, Clive Gerrard, Stuart Wheater,
Ben Allen, and Paul Robinson. Comparison of a cost-effective virtual cloud clus-
ter with an existing campus cluster. Future Generation Computer Systems, 2014.
ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.2014.07.002.

[163] A.S. McGough, M. Forshaw, C. Gerrard, and S. Wheater. Reducing the number of
miscreant tasks executions in a multi-use cluster. In Cloud and Green Computing
(CGC), 2012 Second International Conference on, pages 296–303, 2012. doi: 10.
1109/CGC.2012.111.

[164] David Meisner and Thomas F Wenisch. Peak power modeling for data cen-
ter servers with switched-mode power supplies. In Low-Power Electronics and
Design (ISLPED), 2010 ACM/IEEE International Symposium on, pages 319–324.
IEEE, 2010.

[165] David Meisner, Brian T Gold, and Thomas F Wenisch. PowerNap: eliminating
server idle power. ACM SIGARCH Computer Architecture News, 37(1):205–216,
2009.

[166] R. Melhem, D. Mosse, and E. Elnozahy. The interplay of power management and
fault recovery in real-time systems. Computers, IEEE Transactions on, 53(2):217–
231, 2004. ISSN 0018-9340. doi: 10.1109/TC.2004.1261830.

[167] Víctor Méndez and Felix García. Sicogrid: A complete grid simulator for schedul-
ing and algorithmical research, with emergent artificial intelligence data algo-
rithms.

[168] Bryan Mills, Ryan E. Grant, Kurt B. Ferreira, and Rolf Riesen. Evaluating energy
savings for checkpoint/restart. In Proceedings of the 1st International Workshop
on Energy Efficient Supercomputing, E2SC ’13, pages 6:1–6:8, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2504-2. doi: 10.1145/2536430.2536432. URL http:
//doi.acm.org/10.1145/2536430.2536432.

[169] Bryan Mills, Taieb Znati, and Rami Melhem. Shadow computing: An energy-
aware fault tolerant computing model. In Computing, Networking and Commu-
nications (ICNC), 2014 International Conference on, pages 73–77. IEEE, 2014.

[170] Timo Minartz, Julian Kunkel, and Thomas Ludwig. Simulation of power con-
sumption of energy efficient cluster hardware. Computer Science - Research and
Development, 25:165–175, 2010. ISSN 1865-2034.

[171] Jennifer Mitchell-Jackson, Jonathan G Koomey, Bruce Nordman, and Michele
Blazek. Data center power requirements: measurements from silicon valley. En-
ergy, 28(8):837–850, 2003.

http://dx.doi.org/10.1002/cpe.3082
http://dx.doi.org/10.1002/cpe.3082
http://doi.acm.org/10.1145/2536430.2536432
http://doi.acm.org/10.1145/2536430.2536432

References 193

[172] Justin D Moore, Jeffrey S Chase, Parthasarathy Ranganathan, and Ratnesh K
Sharma. Making Scheduling “Cool”: Temperature-Aware Workload Placement
in Data Centers. In USENIX annual technical conference, General Track, pages
61–75, 2005.

[173] A.W. Mu’alem and D.G. Feitelson. Utilization, predictability, workloads, and user
runtime estimates in scheduling the ibm sp2 with backfilling. Parallel and Dis-
tributed Systems, IEEE Transactions on, 12(6):529 –543, jun 2001. ISSN 1045-
9219.

[174] Matt W. Mutka and Miron Livny. The available capacity of a privately owned
workstation environment. Performance Evaluation, 12(4):269 – 284, 1991. ISSN
0166-5316. doi: http://dx.doi.org/10.1016/0166-5316(91)90005-N. URL http://
www.sciencedirect.com/science/article/pii/016653169190005N.

[175] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers.
The state of peer-to-peer simulators and simulations. SIGCOMM Comput. Com-
mun. Rev., 37(2):95–98, March 2007. ISSN 0146-4833. doi: 10.1145/1232919.
1232932. URL http://doi.acm.org/10.1145/1232919.1232932.

[176] Sergiu Nedevschi, Lucian Popa, Gianluca Iannaccone, Sylvia Ratnasamy, and
David Wetherall. Reducing network energy consumption via sleeping and rate-
adaptation. In NSDI, volume 8, pages 323–336, 2008.

[177] Sergiu Nedevschi, Sylvia Ratnasamy, and Jitendra Padhye. Hot data centers vs.
cool peers. In Proceedings of the 2008 conference on Power aware computing and
systems, HotPower’08, pages 8–8, Berkeley, CA, USA, 2008. USENIX Association.

[178] Rolf Neugebauer and Derek McAuley. Energy is just another resource: Energy
accounting and energy pricing in the Nemesis OS. In Hot Topics in Operating
Systems, 2001. Proceedings of the Eighth Workshop on, pages 67–72. IEEE, 2001.

[179] Thai Ha Nguyen, Matthew Forshaw, and Nigel Thomas. Operating policies for
energy efficient dynamic server allocation. In 30th Annual UK Performance En-
gineering Workshop (UKPEW 2014), 2014.

[180] Tapio Niemi, Jukka Kommeri, Kalle Happonen, Jukka Klem, and Ari-Pekka
Hameri. Improving energy-efficiency of grid computing clusters. In Advances
in Grid and Pervasive Computing, volume 5529 of LNCS, pages 110–118. 2009.

[181] Shuangcheng Niu, Jidong Zhai, Xiaosong Ma, Mingliang Liu, Yan Zhai, Wen-
guang Chen, and Weimin Zheng. Employing checkpoint to improve job schedul-
ing in large-scale systems. In Job Scheduling Strategies for Parallel Processing,
pages 36–55. Springer, 2013.

[182] Daniel Nurmi, John Brevik, and Richard Wolski. Minimizing the network over-
head of checkpointing in cycle-harvesting cluster environments. In Cluster Com-
puting, 2005. IEEE International, pages 1–10. IEEE, 2005.

[183] Adam J. Oliner, Larry Rudolph, and Ramendra K. Sahoo. Cooperative check-
pointing: A robust approach to large-scale systems reliability. In Proceedings of
the 20th Annual International Conference on Supercomputing, ICS ’06, pages 14–
23, New York, NY, USA, 2006. ACM. ISBN 1-59593-282-8. URL http://doi.acm.
org/10.1145/1183401.1183406.

[184] Steven Pelley, David Meisner, Thomas F Wenisch, and James W VanGilder. Un-
derstanding and abstracting total data center power. In Workshop on Energy-
Efficient Design, 2009.

http://www.sciencedirect.com/science/article/pii/016653169190005N
http://www.sciencedirect.com/science/article/pii/016653169190005N
http://doi.acm.org/10.1145/1232919.1232932
http://doi.acm.org/10.1145/1183401.1183406
http://doi.acm.org/10.1145/1183401.1183406

References 194

[185] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F Wenisch, and Jack
Underwood. Power routing: dynamic power provisioning in the data center. In
ACM Sigplan Notices, volume 45, pages 231–242. ACM, 2010.

[186] Cris Pettey. Gartner estimates ict industry accounts for 2 percent of global co2
emissions, 2007. URL http://www.gartner.com/newsroom/id/503867.

[187] Jean-Marc Pierson. Allocating resources greenly: reducing energy consumption
or reducing ecological impact? In Proceedings of the 1st International Conference
on Energy-Efficient Computing and Networking, pages 127–130. ACM, 2010.

[188] Meikel Poess, Raghunath Othayoth Nambiar, Kushagra Vaid, John M Stephens Jr,
Karl Huppler, and Evan Haines. Energy benchmarks: a detailed analysis. In Pro-
ceedings of the 1st International Conference on Energy-Efficient Computing and
Networking, pages 131–140. ACM, 2010.

[189] Lesandro Ponciano and Francisco Brasileiro. On the impact of energy-saving
strategies in opportunistic grids. In Grid Computing (GRID), 2010 11th IEEE/ACM
International Conference on, pages 282–289. IEEE, 2010.

[190] David Price. An estimate of infringing use of the internet. Technical report, En-
visional Ltd, 2011.

[191] Dongyu Qiu and Rayadurgam Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In ACM SIGCOMM Computer Communi-
cation Review, volume 34, pages 367–378. ACM, 2004.

[192] Mustafizur Rahman, Rajiv Ranjan, Rajkumar Buyya, and Boualem Benatallah. A
taxonomy and survey on autonomic management of applications in grid com-
puting environments. Concurrency and computation: practice and experience,
23(16):1990–2019, 2011.

[193] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed
resource management for high throughput computing. In High Performance
Distributed Computing, 1998. Proceedings. The Seventh International Sympo-
sium on, pages 140–146. IEEE, 1998.

[194] Kavitha Ranganathan and Ian Foster. Identifying dynamic replication strategies
for a high-performance data grid. In Grid Computing, GRID 2001, pages 75–86.
Springer, 2001.

[195] Parthasarathy Ranganathan, Phil Leech, David Irwin, and Jeffrey Chase.
Ensemble-level power management for dense blade servers. In ACM SIGARCH
Computer Architecture News, volume 34, pages 66–77. IEEE Computer Society,
2006.

[196] Sherief Reda and Abdullah N. Nowroz. Power modeling and characterization
of computing devices: A survey. Foundations and Trends in Electronic Design
Automation, 6(2):121–216, 2012.

[197] Xiaojuan Ren, Rudolf Eigenmann, and Saurabh Bagchi. Failure-aware Check-
pointing in Fine-grained Cycle Sharing Systems. In Proceedings of the 16th Inter-
national Symposium on High Performance Distributed Computing, HPDC ’07,
pages 33–42, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-673-8. doi:
10.1145/1272366.1272372. URL http://doi.acm.org/10.1145/1272366.1272372.

[198] Suzanne Rivoire, Parthasarathy Ranganathan, and Christos Kozyrakis. A com-
parison of high-level full-system power models. HotPower, 8:3–3, 2008.

http://www.gartner.com/newsroom/id/503867
http://doi.acm.org/10.1145/1272366.1272372

References 195

[199] Frederick Ryckbosch, Stijn Polfliet, and Lieven Eeckhout. Trends in Server En-
ergy Proportionality. Computer, 44(9):69 –72, 2011. ISSN 0018-9162.

[200] Ramendra K. Sahoo, Mark S. Squillante, Anand Sivasubramaniam, and Yanyong
Zhang. Failure data analysis of a large-scale heterogeneous server environment.
In Dependable Systems and Networks, 2004 International Conference on, pages
772–781. IEEE, 2004.

[201] Takafumi Saito, Kento Sato, Hitoshi Sato, and Satoshi Matsuoka. Energy-aware
I/O Optimization for Checkpoint and Restart on a NAND Flash Memory System.
In Proceedings of the 3rd Workshop on Fault-tolerance for HPC at Extreme Scale,
FTXS ’13, pages 41–48, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1983-6.
doi: 10.1145/2465813.2465822.

[202] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis
Ceze, and Dan Grossman. Enerj: Approximate data types for safe and general
low-power computation. In ACM SIGPLAN Notices, volume 46, pages 164–174.
ACM, 2011.

[203] Kiavash Satvat, Matthew Forshaw, Feng Hao, and Ehsan. Toreini. On the privacy
of private browsing - a forensic approach. In 8th DPM International Workshop
on Data Privacy Management. Royal Holloway, University of London, 2013.

[204] Kiavash Satvat, Matthew Forshaw, Feng Hao, and Ehsan Toreini. On the privacy
of private browsing - a forensic approach. Journal of Information Security and
Applications, 19(1):88–100, 2014.

[205] Richard Sawyer. Calculating total power requirements for data centers. American
Power Conversion, Tech. Rep, 70:80–90, 2004.

[206] Bianca Schroeder and Garth A. Gibson. The computer failure data repository
(CFDR). https://www.usenix.org/cfdr. Accessed: 2014-08-07.

[207] Bianca Schroeder and Garth A. Gibson. The computer failure data repository
(CFDR). In Workshop on Reliability Analysis of System Failure Data (RAF’07),
MSR Cambridge, UK, 2007.

[208] Bianca Schroeder and Garth A. Gibson. A large-scale study of failures in high-
performance computing systems. Dependable and Secure Computing, IEEE
Transactions on, 7(4):337–350, 2010.

[209] Herb Schwetman. CSIM: a C-based process-oriented simulation language. In
Proceedings of the 18th conference on Winter simulation, pages 387–396. ACM,
1986.

[210] Li Shang, Li-Shiuan Peh, and Niraj K Jha. Dynamic voltage scaling with links for
power optimization of interconnection networks. In High-Performance Com-
puter Architecture, 2003. HPCA-9 2003. Proceedings. The Ninth International
Symposium on, pages 91–102. IEEE, 2003.

[211] Ratnesh K Sharma, Cullen E Bash, Chandrakant D Patel, Richard J Friedrich, and
Jeffrey S Chase. Balance of power: Dynamic thermal management for internet
data centers. Internet Computing, IEEE, 9(1):42–49, 2005.

[212] Karan Singh, Major Bhadauria, and Sally A McKee. Real time power estimation
and thread scheduling via performance counters. ACM SIGARCH Computer Ar-
chitecture News, 37(2):46–55, 2009.

https://www.usenix.org/cfdr

References 196

[213] Ian C. Smith. Experiences with running matlab applications on a power-
saving condor pool. http://www.liv.ac.uk/csd/escience/condor/cardiff_condor.
pdf. Oct. 2009.

[214] Warren Smith, Ian Foster, and Valerie Taylor. Scheduling with advanced reser-
vations. In Parallel and Distributed Processing Symposium, 2000. IPDPS 2000.
Proceedings. 14th International, pages 127–132. IEEE, 2000.

[215] Marvin Solomon. The ClassAd Language Reference Manual. Computer Sciences
Department, University of Wisconsin, Madison, WI, Oct, 2003.

[216] Sourceforge project. The iperf project. http://iperf.sourceforge.net/.

[217] Leandro Souza, Ana Ripoll, X. Y. Yang, Porfidio Hernandez, and Fernando Cores.
Designing a video-on-demand system for a brazilian high speed network. In
Distributed Computing Systems Workshops, 2006. ICDCS Workshops 2006. 26th
IEEE International Conference on, pages 43–43. IEEE, 2006.

[218] Srividya Srinivasan, Rajkumar Kettimuthu, Vijay Subramani, and P Sadayappan.
Characterization of backfilling strategies for parallel job scheduling. In Paral-
lel Processing Workshops, 2002. Proceedings. International Conference on, pages
514–519. IEEE, 2002.

[219] Standard Performance Evaluation Corporation (SPEC). SPECpower_ssj2008.
http://www.spec.org/power_ssj2008/.

[220] Standard Performance Evaluation Corporation (SPEC). Spec virt sc2013 (home-
page), 2014. URL http://www.spec.org/virt_sc2013/.

[221] Anton Stefanek, Richard A Hayden, and Jeremy T. Bradley. Gpa-a tool for fluid
scalability analysis of massively parallel systems. In Quantitative Evaluation of
Systems (QEST), 2011 Eighth International Conference on, pages 147–148. IEEE,
2011.

[222] Anton Stefanek, Uli Harder, and Jeremy T. Bradley. Energy consumption in the
office. In Computer Performance Engineering, pages 224–236. Springer, 2013.

[223] Christopher Stewart and Kai Shen. Some joules are more precious than others:
Managing renewable energy in the datacenter. In Proceedings of the Workshop
on Power Aware Computing and Systems, 2009.

[224] Storage Performance Council (SPC). Storage performance council (spc) bench-
mark specifications, 2014. URL http://www.storageperformance.org/specs/.

[225] Robert F. Sullivan. Alternating cold and hot aisles provides more reliable cooling
for server farms. Uptime Institute, 2000.

[226] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. A Bradford book. Bradford Book, 1998. ISBN 9780262193986.

[227] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny. Condor: a
distributed job scheduler. In Beowulf cluster computing with Linux, pages 307–
350. MIT press, 2001.

[228] George Terzopoulos and Helen D. Karatza. Dynamic voltage scaling scheduling
on power-aware clusters under power constraints. In Distributed Simulation and
Real Time Applications (DS-RT), 2013 IEEE/ACM 17th International Symposium
on, pages 72–78. IEEE, 2013.

http://www.liv.ac.uk/csd/escience/condor/cardiff_condor.pdf
http://www.liv.ac.uk/csd/escience/condor/cardiff_condor.pdf
http://iperf.sourceforge.net/
http://www.spec.org/power_ssj2008/
http://www.spec.org/virt_sc2013/
http://www.storageperformance.org/specs/

References 197

[229] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in
practice: The condor experience. Concurrency and Computation: Practice and
Experience, 17(2-4):323–356, 2005.

[230] The Condor Project. Condor week 2012. http://research.cs.wisc.edu/condor/
CondorWeek2012/.

[231] The Green Grid. The Green Grid Opportunity: Decreasing datacenter and other
IT usage patterns. Technical report, Technical report, The Green Grid, 2008.

[232] The MathWorks, Inc. http://www.mathworks.co.uk/help/stats/prctile.html,
2015.

[233] Ananta Tiwari, Michael Laurenzano, Joshua Peraza, Laura Carrington, and Allan
Snavely. Green queue: Customized large-scale clock frequency scaling. In Cloud
and Green Computing (CGC), 2012 Second International Conference on, pages
260–267. IEEE, 2012.

[234] Niraj Tolia, Zhikui Wang, Manish Marwah, Cullen Bash, Parthasarathy Ran-
ganathan, and Xiaoyun Zhu. Delivering energy proportionality with non energy-
proportional systems: optimizing the ensemble. In Proceedings of the 2008 con-
ference on Power aware computing and systems, HotPower’08, pages 2–2, Berke-
ley, CA, USA, 2008. USENIX Association.

[235] Niraj Tolia, Zhikui Wang, Manish Marwah, Cullen Bash, Parthasarathy Ran-
ganathan, and Xiaoyun Zhu. Delivering energy proportionality with non energy-
proportional systems-optimizing the ensemble. HotPower, 8:2–2, 2008.

[236] Transaction Processing Performance Council (TPC). Transaction processing per-
formance council (tpc) tpc-energy (homepage), 2014. URL http://www.tpc.org/
tpc_energy/default.asp.

[237] Renlong Tu, Xin Wang, and Yue Yang. Energy-saving model for sdn data centers.
The Journal of Supercomputing, pages 1–19, 2014.

[238] Eduard Turcan and Ross L. Graham. Getting the most from accountability in
P2P. In 1st International Conference on Peer-to-Peer Computing (P2P’01), pages
95–96, 2001.

[239] UK Research Council End Use Energy Demand (EUED) Centres. EU Energy Ef-
ficiency target should be more ambitious and legally binding say leading energy
demand researchers. http://www.eued.ac.uk/, 2014.

[240] Osman S. Unsal, Israel Koren, and C. Mani Krishna. Towards energy-aware
software-based fault tolerance in real-time systems. In Low Power Electronics
and Design, 2002. ISLPED’02. Proceedings of the 2002 International Symposium
on, pages 124–129, 2002.

[241] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-optimal
scheduling in hybrid iaas clouds for deadline constrained workloads. In Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on, pages 228 –
235, July 2010. doi: 10.1109/CLOUD.2010.58.

[242] András Varga et al. The OMNeT++ discrete event simulation system. In Pro-
ceedings of the European Simulation Multiconference (ESM 2001), volume 9, page
185. sn, 2001.

[243] Georgios Varsamopoulos and Sandeep KS Gupta. Energy proportionality and the
future: Metrics and directions. In Parallel Processing Workshops (ICPPW), 2010
39th International Conference on, pages 461–467. IEEE, 2010.

http://research.cs.wisc.edu/condor/CondorWeek2012/
http://research.cs.wisc.edu/condor/CondorWeek2012/
http://www.mathworks.co.uk/help/stats/prctile.html
http://www.tpc.org/tpc_energy/default.asp
http://www.tpc.org/tpc_energy/default.asp
http://www.eued.ac.uk/

References 198

[244] Akshat Verma, Puneet Ahuja, and Anindya Neogi. pMapper: power and migra-
tion cost aware application placement in virtualized systems. In Middleware
2008, pages 243–264. Springer, 2008.

[245] Akshat Verma, Puneet Ahuja, and Anindya Neogi. Power-aware dynamic place-
ment of hpc applications. In Proceedings of the 22nd annual international con-
ference on Supercomputing, pages 175–184. ACM, 2008.

[246] Akshat Verma, Gargi Dasgupta, Tapan Kumar Nayak, Pradipta De, and Ravi
Kothari. Server workload analysis for power minimization using consolidation.
In Proceedings of the 2009 conference on USENIX Annual technical conference,
pages 28–28. USENIX Association, 2009.

[247] Gustavo M. D. Vieira and Luiz E. Buzato. Distributed checkpointing: Analysis
and benchmarks. In Proceedings of the 24th Brazilian Symposium on Computer
Networks, SBRC, volume 6, 2006.

[248] Angelos Vlavianos, Marios Iliofotou, and Michalis Faloutsos. Bitos: Enhancing
bittorrent for supporting streaming applications. In INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Proceedings, pages 1–6.
IEEE, 2006.

[249] William Voorsluys and Rajkumar Buyya. Reliable provisioning of spot instances
for compute-intensive applications. In Advanced Information Networking and
Applications (AINA), 2012 IEEE 26th International Conference on, pages 542–549.
IEEE, 2012.

[250] Lizhe Wang and Samee Ullah Khan. Review of performance metrics for green
data centers: a taxonomy study. The Journal of Supercomputing, 63(3):639–656,
2013. ISSN 0920-8542. doi: 10.1007/s11227-011-0704-3. URL http://dx.doi.org/
10.1007/s11227-011-0704-3.

[251] William A. Ward, Jr., Carrie L. Mahood, and John E. West. Scheduling jobs on par-
allel systems using a relaxed backfill strategy. In Revised Papers from the 8th In-
ternational Workshop on Job Scheduling Strategies for Parallel Processing, JSSPP
’02, pages 88–102, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-00172-7.

[252] Torsten Wilde, Axel Auweter, and Hayk Shoukourian. The 4 pillar framework for
energy efficient hpc data centers. Computer Science-Research and Development,
pages 1–11, 2013.

[253] Jutta K. Willamowski, Yves Hoppenot, and Antonietta Grasso. Promoting sus-
tainable print behavior. In CHI’13, pages 1437–1442. ACM, 2013.

[254] Daniel Wong and Murali Annavaram. Knightshift: Scaling the energy propor-
tionality wall through server-level heterogeneity. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 119–
130. IEEE Computer Society, 2012.

[255] Yang Yang and Henri Casanova. Umr: A multi-round algorithm for scheduling
divisible workloads. In Parallel and Distributed Processing Symposium, 2003.
Proceedings. International, pages 9–pp. IEEE, 2003.

[256] Sangho Yi, Artur Andrzejak, and Derrick Kondo. Monetary cost-aware check-
pointing and migration on Amazon cloud spot instances. Services Computing,
IEEE Transactions on, 5(4):512–524, 2012.

[257] Jia Yu and Rajkumar Buyya. A taxonomy of workflow management systems for
grid computing. Journal of Grid Computing, 3(3-4):171–200, 2005.

http://dx.doi.org/10.1007/s11227-011-0704-3
http://dx.doi.org/10.1007/s11227-011-0704-3

References 199

[258] John Zedlewski, Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Arvind Krishna-
murthy, and Randolph Y. Wang. Modeling hard-disk power consumption. In
FAST, volume 3, pages 217–230, 2003.

[259] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. ECOSystem: Man-
aging energy as a first class operating system resource. In ACM SIGPLAN Notices,
volume 37, pages 123–132. ACM, 2002.

[260] Yanyong Zhang, Mark S. Squillante, Anand Sivasubramaniam, and Ramendra K.
Sahoo. Performance implications of failures in large-scale cluster scheduling. In
Job Scheduling Strategies for Parallel Processing, pages 233–252. Springer, 2005.

[261] Ying Zhang and Krishnendu Chakrabarty. Energy-aware adaptive checkpoint-
ing in embedded real-time systems. In Design, Automation and Test in Europe
Conference and Exhibition, 2003, pages 918–923, 2003. doi: 10.1109/DATE.2003.
1253723.

[262] Wei Zheng, Ana P. Centeno, Frederic Chong, and Ricardo Bianchini. Logstore:
toward energy-proportional storage servers. In Proceedings of the 2012 ACM/IEEE
international symposium on Low power electronics and design, pages 273–278.
ACM, 2012.

[263] Ao Zhou, Shangguang Wang, Qibo Sun, Hua Zou, and Fangchun Yang. Ft-
cloudsim: A simulation tool for cloud service reliability enhancement mecha-
nisms. In Proceedings Demo & Poster Track of ACM/IFIP/USENIX International
Middleware Conference, MiddlewareDPT ’13, pages 2:1–2:2, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2549-3. URL http://doi.acm.org/10.1145/2541614.
2541616.

[264] Stylianos Zikos and Helen D Karatza. Performance and energy aware cluster-
level scheduling of compute-intensive jobs with unknown service times. Simu-
lation Modelling Practice and Theory, 19(1):239–250, 2011.

http://doi.acm.org/10.1145/2541614.2541616
http://doi.acm.org/10.1145/2541614.2541616

	Table of Contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Research Problem
	1.2 Contributions
	1.3 Thesis Structure
	1.4 Related Publications

	2 Background
	2.1 Energy characteristics
	2.1.1 Servers
	2.1.2 Data centres

	2.2 Energy-efficiency mechanisms
	2.2.1 Software
	2.2.2 Virtualisation
	2.2.3 Datacentre
	2.2.4 Network
	2.2.5 Federated / multi-site environments

	2.3 Directly Related Work
	2.3.1 Energy efficient content distribution with BitTorrent
	2.3.2 Evaluation of energy consumption in large-scale systems
	2.3.3 Resource Allocation
	2.3.4 Reducing the number of miscreant tasks executions in a multi-use cluster
	2.3.5 Energy efficient checkpointing

	3 Energy efficient content distribution with BitTorrent
	3.1 Introduction
	3.2 BitTorrent
	3.3 System Models and Objectives
	3.4 Approach
	3.4.1 Energy Proportional Tracker Migration
	3.4.2 Elastic Capacity Provisioning
	3.4.3 Peer Connectivity Shaping

	3.5 Experimentation
	3.6 Results
	3.7 Conclusions and Further Work
	3.7.1 Further Work

	4 Trace-driven simulation for energy consumption in High Throughput Computing systems
	4.1 Introduction
	4.2 System Model
	4.2.1 Compute resources
	4.2.2 Interactive user sessions
	4.2.3 Cluster
	4.2.4 HTC Job
	4.2.5 Policy decisions - HTC
	4.2.6 Policy decisions - Infrastructure
	4.2.7 Metrics

	4.3 Case Study of HTCondor
	4.3.1 Newcastle University HTCondor pool
	4.3.2 HTCondor-specifics
	4.3.3 Preparing User logs
	4.3.4 Preparing HTCondor logs

	4.4 Performance Evaluation
	4.5 Conclusions and Further Work
	4.5.1 Further Work

	5 Resource Allocation
	5.1 Introduction
	5.2 Existing Examples of Policy
	5.3 Policy
	5.3.1 Cluster management
	5.3.2 Selecting computers to use
	5.3.3 Job management
	5.3.4 New Proposed Policy
	5.3.5 Policy Combinations

	5.4 Simulations and Results
	5.4.1 Baseline Evaluation
	5.4.2 Power management policies
	5.4.3 Computer Selection policies
	5.4.4 Management Policies
	5.4.5 Cluster termination policies
	5.4.6 Combined polices with synthetic jobs

	5.5 Conclusion
	5.5.1 Further Work

	6 Reducing the number of miscreant tasks executions in a multi-use cluster
	6.1 Introduction
	6.2 Task Deallocation
	6.2.1 Definitions

	6.3 Analysis of the Newcastle Condor System
	6.4 Policy for handling miscreant tasks
	6.4.1 Baseline policy
	6.4.2 Computer selection policy
	6.4.3 Dedicated resources
	6.4.4 Miscreant task identification

	6.5 Simulation results
	6.6 Conclusion
	6.6.1 Future Work

	7 Energy efficient checkpointing in HTC systems
	7.1 Introduction
	7.2 Checkpointing and Failure Model
	7.2.1 Power model

	7.3 Policies
	7.3.1 Baseline policies
	7.3.2 Checkpoint Interval
	7.3.3 Defer checkpoint policies
	7.3.4 Proactive migration

	7.4 Results
	7.4.1 Policy Results
	7.4.2 Summary

	7.5 Discussion
	7.5.1 Operating policies
	7.5.2 Workload
	7.5.3 User base
	7.5.4 Resource composition

	7.6 Conclusion
	7.6.1 Further work

	8 Conclusions
	8.1 Thesis Summary
	8.2 Limitations
	8.3 Future Research Directions
	8.3.1 Generalise operating policies to other environments
	8.3.2 Combined with analytical approach
	8.3.3 Energy efficient printing

	References

