
A cloud server energy consumption measurement 

system for heterogeneous cloud environments 
  

Abstract: With the rapid development of cloud computing technologies and applications in recent years, the number and scale of cloud 

data centers have rapidly increased while the problem of energy consumption in cloud data centers has become more and more serious. 

Therefore, energy consumption management has gradually become one of the hot issues in the field of cloud computing. For this reason, 

this paper aims at building a power model of servers and investigates the energy-measurement system. We propose a distributed energy 

consumption measurement system (abbreviated as DEM) for heterogeneous cloud environments based on a multi-component power 

model. We investigate the mathematical relationship between the resource usage of the key components (CPU, memory and disk) and 

the system energy consumption. Then we give the power modeling method of each key component. DEM can not only estimate energy 

consumption of heterogeneous cluster environments (Linux and Windows NT), but also support various CPU power models. In addition, 

we also present a disk power model that uses several thresholds to distinguish between disk sequential and random read/write status, for 

achieving more accurate disk power calculation. Experiments are performed on a heterogeneous cluster with workload generated by 

PCMark and Sysbench. The results show that the proposed DEM system can not only achieve measure the energy consumption of 

heterogeneous cloud servers, but also have great accuracy on estimating cluster energy consumption. 
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1. Introduction  

Statistically, worldwide data center power consumption has increased from 700 billion degrees to 3300 billion 
degrees from 2000 to 2007. By 2020 the figure is estimated to increase by another 1 trillion degrees [1]. Only 8.5 percent 
of data center executives expect data center capacity to remain adequate by 2015. By 2020, data centers will be at least 
twice in scale compared with that in 2010, reaching 78 billion US dollars [2]. In 2012, total data center power consumption 
in China reached 66.45 billion kwh, accounting for 1.8% of the national industrial electricity consumption. This value is 
equal to the total annual electricity consumption in Tianjin, while the Three Gorges power generation but 78.3 billion 
kilowatt hours [3]. The domestic data center capacity may also increase by 5~8 times in the next 5 years. On the one 
hand, data center energy usage is inefficient. According to statistics from the Ministry of Industry and Information 
Technology, the average Power Usage Effectiveness (PUE) of data centers in our country is between 2.2 and 3.0, but the 
actual value is more than this. For businesses, data center electricity bills have become a big part of the expense. For 
example, the revenues of China Unicom in 2012 was 40.7 billion dollars while its profits reached only 1.2 billion dollars 
with an electricity cost of 1.7 billion dollars. Therefore, there is great room for improvement in data center energy 
consumption management. To improve PUE of data center, we first need to monitor the energy consumption of the 
current data center.  

In the previous study, existing methods of energy consumption can be summarized as follows [4]: Hardware-based 
direct measurement methods [5], Energy model-based methods, Virtualization Technology-based methods and 
simulation-based energy consumption estimation methods. The Hardware-based direct measurement method is mainly 
applied to traditional data centers. Energy model-based method is a mainstream method to calculate the energy 
consumption of cloud computing because of its high flexibility and fine granularity [27]. Currently, energy consumption 
measuring tools for heterogeneous cloud environments [24,25] are still uncommon, with most of the tools only focused 
on cluster resource utilization and network monitoring, like Ganglia [6] and Nagios [8]. The main research direction is 
using power model to estimate power consumption, and modeling CPU, memory and disk as three parts. The power 
model of each component can be characterized by a certain number of characteristic variables. Although the power 
model based on many characteristic variables has higher accuracy, it is difficult to directly obtain all the variables in 
actual operating systems. Therefore, a certain means of simplification is needed [4][11]. So when developing an actual 
energy monitoring system, we need to use the power model that both meets good accuracy and low complexity. 

For the above-mentioned requirements of energy monitoring system, we present an energy consumption monitoring 
tool based on the power model for heterogeneous cloud computing environment [23]. The tool is named Distributed 
Energy Meter (abbreviated as DEM). The main contributions of this paper include: 1) With an investigation into the disk 
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power behaviors in sequential I/O and random I/O, we propose an improved I/O-mode aware disk power model with 
multiple variables and thresholds. 2) We build a dynamic adjustable CPU power model that enables configuring the 
CPU power model as a power function model or a linear model. Moreover, the key parameters in the CPU power model 
can be trained and adjusted based on the configuration of the machine to make the energy consumption calculation 
more accurate. 3) DEM supports energy consumption monitoring in heterogeneous cloud environments (both on 
Windows and Linux servers). 4) We use an adaptive resource monitoring method that combines periodic push mode 
with event-driven push mode in the heterogeneous computing environment.  

Energy reduction have become the focus of researchers cloud computing and data center managers concerned: 
someone use energy consumption monitoring to overall optimize the management and deployment of cloud computing 
applications to reduce carbon dioxide emissions [33]; Adhinarayanan et al. [34] analyzes energy consumption for specific 
applications, such as visualization processes, to optimize the calculation process and deployment. For similar energy 
management issues in heterogeneous cloud computing environment, DEM can provide an effective solution. The 
problem of energy consumption and its optimization technology is very important. In addition to energy consumption 
in cloud computing, there are similar problems in related fields [28-32]. We can learn from their methods from these 
studies [28, 33]. 

The paper is organized as follows. The second section of this article mainly introduces the server power model and 
relevant research on cluster energy monitor system. The third section introduces the system power model adopted by 
DEM, and the fourth section gives the key technologies in the design and implementation of cloud server energy 
consumption measurement system, including system architecture, communication design, data design, implementation 
of Master and Slave nodes. The fifth section gives the related system verification and analysis and we conclude our 
study in section 6.  

2. Related Work  

At present, most existing cluster monitoring systems focus on resource utilization monitoring, especially for the 
performance monitoring of homogeneous clusters such as Hadoop and Spark. The challenge of energy consumption 
measurement system in heterogeneous cloud environment is the rationality of system architecture design and the 
accuracy of power model. We will introduce the related work from power model and energy consumption measurement 
system two part. 

2.1 Power Model  
For both stand-alone and cluster energy consumption measurement tools, the most important thing is the accuracy 

and adaptability of the built-in power model. The higher accuracy makes the result of software measurement more 
valuable, and the stronger adaptability makes the model match the more hardware models with the lowest possible 
complexity. 

Basmadjian et al [18] pointed out that for servers with local storage, CPU consumes about 37% of the energy, while 
memory, motherboard and disk consume 17%, 12% and 6% respectively. Therefore, we mainly address on the CPU, 
memory and disk these three major components. For CPU energy models, linear and non-linear estimation methods are 
commonly used. In previous study [18], linear model is used to estimate the energy consumption of the CPU. Whereas, 
Hsu et al [17] pointed out that the linear model has a better result for the early absence of Hyper-Threading and Turbo 
Boost technology modes. However, as CPU manufacturer technology advances, the error of the linear model becomes 
larger. Also in that paper, the author calculated the error of energy consumption estimation including the linear model, 
the polynomial model and the power function model by using the statistical and regression methods on more than 100 
data of the SPEC website. Results show that the power model has achieved good accuracy. In the study of CPU energy 
consumption performance under VM environment, there is also a gap between the model that expresses the power 
function model and the linear model [26].  

According to the formula proposed by Janzen et al [19], the power consumption of memory is closely related to the 
running state, operating voltage and many other constant parameters. Although the power consumption calculation 
model proposed in the literature is very accurate, it is difficult to be practical due to the challenge of obtaining those 
parameters form the current operating system. Literature et al [11] proposed a more concise energy consumption 
calculation formula, using the last layer cache miss rate (LLCM) to characterize the memory activity and thus to estimate 
the memory consumption. However, for this method, the value of the LLCM counter is equally difficult to obtain in the 
system. 

The working status of the disk device [20] can be described by the disk rotation rate, the average query distance, the 
average query time, etc. So the power model of disk can also described by similar data [21]: revolutions per minute 
(RPM), disk radius and buffer size, etc. Basmadjian also discuss the power model that based on read-write probability 
and idle probability[18]. However, there are still many challenges to obtain all variables of that model in practical use. 

2.2 Energy Measurement Tools 

2.2.1 CloudMonitor 

CloudMonitor is an energy monitoring tool based on the energy model [9], it advises the deployment of the cluster 
and requires no additional hardware support. The software uses a methodology based on work done by Bohra and 



Chaundary in the paper VMeter [10], which predicts energy consumption by monitoring the amount of hardware 
resources used on the computer, including the CPU, cache, RAM, Disk, and driver. The proposed power model is based 
on the linear relationship of the system subcomponents. The power model described as follows: 

𝑃{𝐶𝑃𝑈，𝑐𝑎𝑐ℎ𝑒} = 𝑎1 + 𝑎2𝑝𝐶𝑃𝑈 + 𝑎3𝑃𝑐𝑎𝑐ℎ𝑒                                                                                    (1) 

𝑃{𝐷𝑅𝐴𝑀，𝑑𝑖𝑠𝑘} = 𝑎4 + 𝑎5𝑝𝐷𝑅𝐴𝑀 + 𝑎6𝑃𝑑𝑖𝑠𝑘                                                                                  (2) 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝛼𝑃{𝐶𝑃𝑈，𝑐𝑎𝑐ℎ𝑒} + 𝛽𝑃{𝐷𝑅𝐴𝑀，𝑑𝑖𝑠𝑘}                                                                                  (3) 

α1and α4 are system idle power. α2, α3, α5 and α6 are weights. PCPU, P𝑐𝑎𝑐ℎ𝑒 , PDRAM and Pdisk are system events that 
produced by CPU. 𝑃{𝐶𝑃𝑈，𝑐𝑎𝑐ℎ𝑒} and 𝑃{𝐷𝑅𝐴𝑀，𝑑𝑖𝑠𝑘}represent {CPU，cache} and {disk，DRAM} two subsystems power. All 

weights including α and β are manually configured according to different workloads. 

2.2.2 Joulemeter 

Joulemeter [11] is a tool with multiple power models for measuring the power consumption of virtual machines, 
servers, desktops, laptops and individual processes. It provides visualized power distribution data that provides useful 
guidance for data center power budget settings for virtual machines and battery management for mobile phones. 

 Joulemeter decomposes system into various components to build the system power consumption model. Developers 
of Joulemeter collected a large amount of measured data for model learning. Joulemeter obtains the corresponding 
parameter information by measuring hardware resources (CPU, disk, memory, screen, etc.) usage. And then it takes 
those values into the corresponding term of the power consumption formula to estimate the current system power 
consumption. 

3. System Energy Model 

The build-in power consumption formula of EM basically includes three component power models: CPU model, 
memory model and disk model. At the present stage, the basic idea is to model the energy consumption of important 
components. The formula of overall energy consumption  is： 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑓𝑖𝑥 + 𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 + 𝐸𝑐𝑜𝑚𝑝                                                                                (4) 

𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 represents the energy consumption of disk and memory，𝐸𝑐𝑜𝑚𝑝 represents energy consumption of CPU. The 
energy consumption of other components (e.g., network communication energy consumption) in the cluster is mainly 
produced by network interface cards (NICs) and other external independent network switching equipment such as 
routers, switches. We do not separately estimate the power of networking activities as the power consumption of the 
external independent network switching equipment is difficult to obtain by software. Besides, the absolute value and 
fluctuation of NIC power consumption is small -- It was observed that the fluctuation of 1Gbps Ethernet card is 
negligible in the test [17]. Likewise, for other components, so we choose not to design their power consumption model 
specifically. The energy consumption of these components is included in 𝐸𝑓𝑖𝑥  as a static value.  

3.1 CPU Model 
The power of CPU is closely related to CPU performance status (P-states). The P-state is determined by activity status, 

execution of specific instructions, cache usage, and frequency thresholds. Using the above variables during a CPU run-
time to model CPU power consumption can achieve very high accuracy. However, the above theoretical modeling 
requires a complete understanding of the CPU hardware architecture and a large computational overhead. Many 
researchers choose to determine P-state by tracking CPU operation and sleep time. The operation and sleep time ratio 
can be presented by CPU utilization. So in the early studies [12][17], the CPU power consumption for a given frequency 
was generally calculated using the linear model shown in Equation (5): 

𝑃𝑐𝑝𝑢𝐿𝑖𝑛𝑒𝑎𝑟𝑀𝑜𝑑𝑒𝑙 = 𝑃𝑖𝑑𝑙𝑒
𝑐𝑝𝑢

+ (𝑃𝑝𝑒𝑎𝑘
𝑐𝑝𝑢

− 𝑃𝑖𝑑𝑙𝑒
𝑐𝑝𝑢

)𝑈                                                                            (5) 

Pidle
𝑐𝑝𝑢

 represent CPU idle power ，Ppeak
𝑐𝑝𝑢

 represent peak power  and 𝑈 is utilization of CPU. For recent years, CPU 

manufacturers add new technology like Hyper-threading and TurboBoost to CPU, making the recent CPU model has 
dynamic frequency and other new features. Simple linear model cannot suit to those CPU model. We do a power test 
for a server CPU model that has four physical cores with linear model: 

To make DEM easier to deploy and without more power experimentation under different CPU utilization prior, we 
choose to model only through the Pidle

𝑐𝑝𝑢
 and Ppeak

𝑐𝑝𝑢
 two endpoints. As Figure 1 shows, if only using two points, the linear 

model result will be lower than actual value. 
In Hsu et al and our previous study [12][17], polynomial model can be another choice. However, there are three 

shortcomings in practical application: 1) A polynomial model with at least three parameters cannot be fitted by only two 
endpoints. 2) Even if more experiments can be performed to obtain more intermediate values, multiple iterations are 
needed in the fitting process, which is likely to fall into the local optimal solution. 3) The polynomial model fitting results 
are also prone to over-fitting. 

The above literatures also mention the power function model can meet the accuracy requirements and with less 
complexity [12]: 

P𝑐𝑝𝑢𝑃𝑜𝑤𝑒𝑟𝑀𝑜𝑑𝑒𝑙 = 𝑃𝑖𝑑𝑙𝑒
𝑐𝑝𝑢

+ (𝑃𝑝𝑒𝑎𝑘
𝑐𝑝𝑢

− 𝑃𝑖𝑑𝑙𝑒
𝑐𝑝𝑢

)𝑈𝛽                                                                         (6) 



 where β is an exponential of the power function model. Using the two end-point values, we obtain the fitted β value 
and compare it with a linear model using a power function model: 

 

 

Figure 1. CPU linear model 

 

Figure 2.CPU power model   

Figure 2 shows that the fitted power function model has higher accuracy. As for the value of β, Hsu et al [17] pointed 
out that the exponential values of the power function models corresponding to CPU models at different periods are 
different. After counting the power consumption curves of 177 CPU models on the SPEC POWER website, and they 
point out that exponential value from 1 to start declining. Therefore, we use the β-adjustable power function model to 
model CPU. When the server is using an older CPU model, the value of β can be set to 1, which point the power function 
model of Equation (6) degenerates into a linear model. When there are many servers in the cluster with the same CPU 
type, deployment staff can perform energy consumption tests on one of them and adjust the values of Ppeak

𝑐𝑝𝑢
 and β so that 

the DEM can have well result. 

3.2 Memory Model 
Memory energy consumption is mainly generated by the operations of memory read/write and page swapping. 

Theoretically, the swap rate or the last level cache misses (LLCM) can describe memory activities more accurately [11]: 
𝑃𝑚𝑒𝑚 = 𝑃𝑖𝑑𝑙𝑒

𝑚𝑒𝑚 + 𝐶 ∙ 𝑁𝐿𝐿𝐶𝑀                                                                                                    (7) 

𝑁𝐿𝐿𝐶𝑀 represent LLCM, C is the constant to be trained. These metrics are difficult to obtain in a Host-OS and virtual 
machine environment. As an alternative, DEM uses the current amount of available memory to measure the current 
memory load. It is based on an idea that higher memory usage means more frequent page swapping in / out. The 
memory model is designed as the following: 

𝑃𝑚𝑒𝑚 = 𝑃𝑖𝑑𝑙𝑒
𝑚𝑒𝑚 + 𝐶𝑚 ∙ 𝑈𝑚𝑒𝑚                                                                                                   (8) 
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𝑈𝑚𝑒𝑚 is the current system memory footprint, and its unit is GB. 𝐶𝑚 is a fixed constant associated with memory 
configuration and can be obtained by training. 

3.3 Disk Model 
For frequently-executed I/O-intensive workload servers, disk energy consumption accounts for a large percentage 

of the total system energy consumption, so the accuracy of the disk power model is important. Disk energy consumption 
is mainly due to magnetic head read, write and rotation. Bostoen et al [35] proposed to consider two key disk operations: 
query and data transfer, they proposed a disk-dependent linear disk power model: 

E𝑑𝑖𝑠𝑘(𝑇) = 𝑃𝑑𝑖𝑠𝑘_𝑖𝑑𝑙𝑒𝑇𝑖𝑑𝑙𝑒 + (𝑃𝑑𝑖𝑠𝑘_𝑚𝑎𝑥 − 𝑃𝑑𝑖𝑠𝑘_𝑖𝑑𝑙𝑒)(𝑇𝑠𝑘 + 𝑇𝑡𝑓)                                                         (9) 

𝑇𝑖𝑑𝑙𝑒,𝑇𝑠𝑘 and T𝑡𝑓 represent the disk idle, query and transmission time. Although the model distinguishes the disk 
query and transfer operations, but did not reveal the difference between the two in generating energy consumption. 
Current operation system is also difficult to provide counters access to the corresponding query and transmission time. 

Kansal et al [11] proposed that using read and write bytes to estimate disk energy consumption. This model is 
essentially linear. 

𝐸𝐷𝑖𝑠𝑘,𝐴 = 𝛼𝑟𝑏 ∗ 𝑏𝑟,𝐴 + 𝛼𝑤,𝑏𝑏𝑤,𝐴                                                                                        (10) 

𝑏𝑟,𝐴 and 𝑏𝑤,𝐴 on behalf of the disk read and write the number of bytes. At the same time, through further experiments, 
they found that the difference in energy consumption of reading and writing unit bytes is very small. So 𝑏𝑖𝑜 is used to 
represent the sum of the number of read and write bytes, making equation 10 more simpler: 

𝐸𝐷𝑖𝑠𝑘(𝑇) = 𝛼𝑖𝑜𝑏𝑖𝑜 + 𝐶𝐷𝑖𝑠𝑘                                                                                             (11) 

We argue that the power consumption of disk is not only related to read or write bytes, but also associated with I/O 
mode. We run the experiment on an ordinary desktop machine disk Seagate ST31000340NS 1TB SCSI 7200RPM SATA-
II. IOmeter [16] was used to carry out the correlation parameter test. The transmission test block size in the test was set 
to 64KB. When the transport block size is set too small, it is likely to consume a large fraction of processor time, which 
consequently affects the system performance and increases the additional CPU power consumption. When the 
transferred data block is greater than 64KB, the operating system I/O subsystem will divide it into multiple 64KB data 
blocks. So considering the actual application scenarios we in the experiment set the I/Osize to 64KB. There are two modes 
for disk read and write: sequential read-write and random read-write. In this paper, both are investigated together with 
disk power,  s (I/O speed) and o (I/O operations). The abscissa values in Fig. 3, Fig. 4 and Fig. 5 are read and write 
ratios. 

By looking into Fig. 3, Fig. 4 Fig. 5, we can find the following key features of disk. 
Sequential I/O mode: 
• Disk I/O speed: in pure read and pure write, disk I/O speed is significant larger than that in mixed read-write 

situation. And in mixed read-write situation, I/O speed has little difference.  
• Disk I/O operations: the situation is similar to I/O speed. 
• Disk power consumption: significant power consumption at both ends, proportional to I/O throughout. 
• Random I/O mode: 
• Disk I/O speed: at different read-write ratios, the I/O speed does not differ much. 
• Disk I/O operations: similar to I/O speed, the value of I/O operations changes little in tests with different mixed 

read-write ratio. 
• Disk power consumption: roughly, it is proportional to I/O speed. 
We propose two thresholds to distinguish disk sequential I/O and random I/O modes using I/O operations per 

second and read/write speed: Hs and Ho.  
 

 

Figure 3. Disk I/O speed in sequential read-write and random read-write 
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Figure 4. Disk I/O operations in sequential read-write and random read-write 

 

Figure 5. Disk power in sequential read-write and random read-write 

Although the power consumption of a disk is very high in sequential read and write, but considering the actual 
production load, the disk will rarely be in such a single working state. So we also consider the case of mixed read and 
write. The data demonstrated in Fig. 6 is obtained from the disk power in Fig. 5 divided by the I/O speed in Fig. 3. The 
line chart in Fig. 6 shows noticeable difference of α value in two modes. αseq and αrndare average value units I/O speed’s 
power in each mode.    

 

Figure 6.Disk power of unit I/O speed 

Form the above results we can indicate that it is quite necessary to distinguish between different I/O modes: 
sequential I/O and random I/O. Therefore, we propose a power model based on multivariate thresholds and 
distinguishing I/O modes for mechanical disk (HDD) as follow: 

𝑃𝑑𝑖𝑠𝑘 = {
𝛼𝑠𝑒𝑞 ∙ 𝑠, 𝑖𝑓 𝑠 > 𝐻𝑠and 𝑜 > 𝐻𝑜

𝛼𝑟𝑛𝑑 ∙ 𝑠, otherwise
                                                                                  (12) 

𝑠 = 𝑠𝑟𝑒𝑎𝑑 + 𝑠𝑤𝑟𝑖𝑡𝑒                                                                                                      (13) 

𝑜 = 𝑜𝑟𝑒𝑎𝑑 + 𝑜𝑤𝑟𝑖𝑡𝑒                                                                                                     (14) 
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αseq and αrnd represent parameters corresponding to the two disk I/O modes: sequential I/O and random I/O. d 
denotes I/O speed (MB/s) and o denotes disk operations per second. In these two different modes, the tested disk 
showed a very large gap in performance regarding I/O speed and operations per second. For instance, in random I/O 
mode, even if the number of I/O operations per second is significantly lower than that in sequential read-write mode, 
the according disk power consumptions show little difference. We also observed that energy consumption of disk shows 
little difference in 100% read and 100% write in the same I/O mode. So there is no need to distinguish read and write 
for s and o. Hs and Ho are two thresholds parameters used for determining the current disk I/O mode. For a single disk 
or disk array (such as RAID0 / RAID1, etc.), data center managers can adjust the values of Hs and Hoaccording to the 
system storage performance to make the disk energy consumption estimation more accurate. 

4. DEM Design and Implementation  

4.1 DEM Design  
DEM use a typical Master-Slave architecture, as shown in Fig. 6. Master statistics and displays the energy 

consumption of the entire cluster, and checks CPU, memory and disk running state of every single slave. Each Slave 
runs on Windows or Linux operating system and measures and monitors the energy consumption of deployed cloud 
servers. At the same time Slaves monitor the CPU, memory, Disk usage, and applies the default utilization warning 
threshold to reporting whether the Master alarm is triggered. The communication between Master and Slave is based 
on TCP socket 

 

Figure 7.DEM architecture 

4.1.1 Slave Design  

As shown in Figure 7, the slave node mainly comprises six modules: hardware detection module, model matching 
module, resource monitoring module, power estimation module, data sending module and data persistence module. 

The hardware detection module detects the hardware of the local device to obtain the hardware model. The model 
matching module matches the same or the closest hardware model with energy consumption information according to 
the underlying hardware. The power estimation module uses the method based on component power models to 
calculate the energy consumption. The measured energy consumption information is sent to the data sending module 
and the persistence module for network communication and persistence. 

4.1.2 Master Design  

As shown in Figure 8, the master node of the DEM is mainly composed of 6 modules: network communication 
module (including two submodules of a periodic data receiving module and an event message interaction module), 
cluster maintenance module, data statistics module, data display module, persistence module and query module. 

The network communication module, as the core function module of the Master, is mainly responsible for handling 
the periodic data (energy consumption information and resource utilization) and event interaction transmitted by the 
slaves. Based on the information obtained by the event interaction module, the cluster maintenance module maintains 
a list of connected cluster nodes, a list of downed nodes and a list of cluster nodes that are overloaded with alarms. The 
data statistics module collects energy consumption information from the cluster to obtain information such as maximum 
power consumption and maximum CPU utilization. The statistical data will be put into RRD (Round Robin Database) 
database by the persistence module, meanwhile it records log information. The data display module displays the 
statistical energy consumption information or the resource utilization rate and obtains the historical energy 
consumption information of the cluster to the query module. 
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Figure 8.DEM-Slave architecture 

 

 

Figure 9.DEM-Master architecture 

4.1.3 Communication Design  

In DEM, we use two kinds of data packets: Static information data packet and dynamic information data packet: 
Static information data packets belong to the following categories: 
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 Slave Request Packet: Contains the operating system type, CPU model, memory model and size, disk model and 
size, startup time, and IP address of the current Slave node. 

 Master request reply packet: contains whether to allow the slave nodes to join using a boolean response 
information. 

 Master RRD Data Request Package: contains requests to specify the RRD history database for the Slave node. 
 Slave RRD response packet: contains RRD database information of the Slave node. 
 Slave alarm packet: contains specific alarm information (such as CPU load is too high) and IP address. 
Dynamic information data packets have only one class: 
 Real-time data packet: contains the energy consumption information (including detailed energy consumption 

information of each component) from the slave nodes at the corresponding time interval, resource utilization 
information of each component, and transmission time interval. 

At the same time, we propose a self-adaptive heterogeneous cluster energy consumption information monitoring 
method. Compared with the software or system mentioned in Section 2, this method combines the periodic push and 
the event-triggered push to obtain the slave node's data. The periodic push mode shown in Fig. 10 refers to that the slave 
node pushes the dynamic information data packet to the master node at a set interval. Fig. 11 shows the event-triggered 
push mode where the slave nodes send the corresponding static data packet to the master node after receiving a specific 
request or meeting certain trigger conditions (such as a high load alarm). 

 

Figure 10. periodic push 

 

Figure 11.event-triggered push 

By combining these two modes of communication, we can get a list of the methods of distributed monitoring. The 
third column in Table 1 shows the consistency between the master statistics and the actual data collected by the slave 
nodes. Adaptability indicates how well the method responds to the latest changes in the slave nodes. Overhead reveals 
the size of data to be transmitted during the monitoring process the number of packages. 

Table 1.Monitor method  
Method Explanation Consistency Adaptability Overhead 

P-Push periodic push Good Bad n-1 

E-Push event-triggered push Very good Good n 

 

4.2 DEM Implementation 
With the goal of cross-platform design, both Master and Slave in DEM systems are based on Qt implementations. 

The TCP / IP communication used by the network communication part is also implemented by qTcpSocket in the Qt 
library. This section mainly introduces the implementation of Slave, Master and communication. 

4.2.1 Slave Implementation  

 Hardware Detection Module: The hardware detection module of Slave has different implementations on 
different platforms. WMI (Windows Management Instrumentation) service is used on Windows, and on Linux, 
the raw data of the file about hardware information in the /proc virtual directory is read to obtain the hardware 
information. 

In the Windows version, we obtain static component information about systems, applications, and hardware devices 
provided by WMI based on the CIM standard, such as system type, CPU model, memory capacity and model number, 
disk capacity and model number. In the Linux version, slave reads /proc/stat, /proc/meminfo and /sys/block/sda/stat files to 
obtain CPU, memory and disk usage information.  
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 Model Matching Module: When the DEM cannot determine the Ppeak
𝑐𝑝𝑢

 value of the CPU model, it needs to 

approximate the peak energy consumption of the CPU using the thermal design power (TDP). Slave builds and 
maintains a comprehensive database of system component models. Component information and corresponding 
parameters are stored as database records. DEM uses the extensible markup language to construct the component 
database in order to promote the efficiency of string matching. DEM maintains two model databases: CPU 
database and disk database. Memory typically consumes not more than 28% of system total energy. Besides, 
different memory brands and models make little difference in energy consumption characteristics. Thus, we 
directly use the memory utilization to estimate memory energy consumption. EM records all models in 
ModelList.xml. The CPU model entries are stored within the <CpuModelList> tag. The sub-tags are the 
manufacturer (such as Intel or AMD) and the processor family (such as the Desktop or Server series). The Disk 
Model entry is stored within the <DiskModelList> tag. Each disk model is quoted in separate <Record> tags 

 

Figure 12. the match process of CPU entries 

Slave detects whether the current environment is running the first time. If the last-time hardware test results are 
saved, then slave directly reads all the parameters recorded in the PowerModel.xml. If slave is running at the first time 
in the current environment, it turns to read ModelList.xml and match the hardware entries. If an entry in the database 
matches the current hardware model, the relevant model parameters will be extracted; otherwise, the parameters need 
to be estimated. Estimation algorithm is simple: Find the most similar entries according to performance related metrics 
(such as CPU frequency). Take CPU matching process as an example, the detailed algorithm is shown in Figure 12. 

 Resource Monitoring Module: Resource utilization monitoring on Windows also uses the performance counters 
(PDH) in the NT kernel. Monitoring on Linux relies on reading the file information in the / proc file system to 
obtain the change information. 

Performance monitoring is implemented via a Windows NT build-in system tool. Windows NT has always been 
integrated with performance monitoring tool that provides information on the current operating system status. For a 
variety of object, it provides with hundreds of performance counters. Windows performance counters can be called from 
PDH function. Each performance counter has its own detection performance object including Processor, Process, 
Memory, Physical Disk, etc. Counters typically stored performance-related information about operating systems, 
applications, services and drivers. They are used to analyze system bottlenecks and optimize system or application 
performance. 

Linux monitoring needs to read the raw data of the kernel file information and calculates the difference between the 
raw data of the current moment and of the previous moment. Then it calculates the formula based on the utilization of 
different components to get the utilization value. 

4.2.2 Master Implementation  

 Network Communication Module: The network communication module consists of two sub-modules. The 
periodic data receiving module is responsible for processing data when the real-time energy consumption data 
of the cluster is collected. The event message interaction module processes the information triggered by events 
including adding, leaving and alarming of the slave. Considering the cluster network environment is relatively 
stable and the communication process will be transmitting RRD database within a larger content file, so we 
choose more stable and reliable TCP communication instead of UDP communication. 
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Figure 13. Master connection process 

The connection process shown in Fig. 13, Master first starts listening a port, Slave reads the configured network 
connection file to connect. If connection is successful, the Slave will first send a request with its own hardware 
information static packet. After the Master receives the request message, it determines whether to allow the Slave to join 
according to the setting criteria. The judgment information includes whether the number of connected Slave nodes has 
reached the maximum, whether the IP address of the Slave node is in the black list, or other information that does not 
meet the requirements of the software and hardware. After meeting the conditions to join the monitoring cluster, the 
slave periodically transmits the measured local energy consumption information to the master node. If receiving a 
Master request or triggering a monitoring alarm, the Slave node will also transmit the corresponding data to the Master 
node. 

 Data Statistics Module: The function of data statistics module is to calculate the dynamic information data packets 
transmitted by nodes. The calculated data includes the average system power consumption, average CPU power 
consumption, memory power consumption, and average disk speed of the current cluster. At the same time, the 
node with the highest power consumption in the current cluster is counted, and the node with the largest CPU, 
memory, and disk utilization is counted. 

 Persistence module: The Master uses the RRD (Round Robin Database) database, which operates using the 
RRDTool. RRD database has a fixed size that can be set, the data can be compressed by the aggregation operation, 
and it is suitable for monitoring the system data acquisition or log storage. At the same time, RRDTool is also a 
powerful drawing engine, and many tools such as MRTG can call RRDTool to plot. The various variables 
calculated in the data statistics module use the RRDTool to persist in the master node. The Master initiator can 
set a custom data aggregation parameter before the RRD database is initialized 

 Data display module: In addition to displaying the statistics data in the data statistics module, the query module 
can also obtain the historical information stored in the RRD. Using RRDTool to graph historical changes, cluster 
managers can collect the energy consumption performance of a cluster under a specific load more directly. 

5. System Validation  

This section presents our experiments to evaluate DEM, including CPU power estimation experiment, disk power 
estimation experiment and cluster power estimation experiments.  

5.1 Experiments Setup 

Table 2. CPU experiment parameter  
Parameter  Value  

𝐶m 0.3 W/GB 

𝛼seq 0.07 W/MB/s 

𝛼rnd 0.22 W/MB/s 

Ho 150 operation/s 

Hs 15.0 MB/s 

The machine used in CPU and disk power experiments is the Dell T110 II Tower Server, which is configured for Intel 
Xeon E3-1220 V2 @ 3.10Ghz, 8GB RAM, Seagate ST2000DM006 2TB 7200RPM SATA-III. The load generation software 
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is a related test suite in the PCMark 7 professional Edition v1.4.0. The external electric meter used in the test is Watts 
Up?pro, which can store and record the related data of energy. 

The parameters in Table 2 are obtained from the tower servers. The same experimental parameters are used in 
subsequent distributed experiments due to the universality of general DDR3 memory and SATA mechanical hard disks. 

Table 3. Machine config in cluster power estimation experiment 
Machine model  CPU Operating system  Ppeak

𝑐𝑝𝑢
 

ThinkPad X230 I5 3320M Ubuntu 17.04 21.47 

Lenovo Y50 I5 4200H Ubuntu 16.04 28.9 

Dell T110 E3 1220 V2 Windows server 2008 R2 38.63 

Dell R730 E5 2603 V3 *2 Windows server 2008 R2 17.71 

 

Table 3 shows the machines used in the power estimation experiment of the small cluster. There are 4 Slave nodes 
in total, including PCs, tower servers, and blade servers three different machine types. The experimental environment 
includes a heterogeneous system environment composed of Windows and Linux. As for the load-generate software, 
productivity suit is used on Windows systems with PCMark 7 and sysbench is used on Linux systems. 

5.2 CPU Power Model Experiment  
The benchmarking suite for CPU test is Computation Suite including three sub-tests: Video transcoding-downscaling, 

video transcoding-high quality and Image manipulation. By recording the CPU power consumption in running these 
three CPU-intensive applications, the accuracy of CPU power consumption model can be effectively detected. 

 

Figure 14. CPU power estimation of linear-power model 

Again, we compare the linear and power function models mentioned in Section 3.1. From Figure 14, we can see that 
the estimated value of power function model is higher than that of linear model. The reason is that the CPU power 
estimation relies on two fixed values 𝑃𝑖𝑑𝑙𝑒

𝑐𝑝𝑢
 and 𝑃𝑝𝑒𝑎𝑘

𝑐𝑝𝑢
, which is a straight line connecting two points for the linear model. 

However, the power function model has a "bump", while the actual CPU power consumption will have a "bulge" process 
as the utilization rate increasing [15]. As shown in Figure 1 in Section 3, the linear model is completely below the power 
function model and the actual value in the intermediate stage. Although more data can be used to further fit the linear 
model to make the estimation error lower, this increases the complexity of using the DEM system. So the power function 
model simplifies the complexity of the model while ensuring the accuracy rate. Under the complex CPU load test set 
shown in Figure 14, the average positive-negative relative error of the linear model is -6.24%, and the average relative 
error is 8.89%. The average positive and negative relative power error of power function model is 2.46%, and the average 
relative error is 6.46%. 

As we mentioned in Section 3.1, the power function is adjustable in value, and Hsu et al[17] found that the 
exponential value in the power function model is as close to 0.6. Thus, we started with 0.6 and experimented with 0.05 
intervals to find the best fit. 
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Figure 15. Exponential value experiment(Error bars shows standard deviation) 

As shown in Figure 15, the lowest average relative error is close to 6.46% when the exponential value is 0.75 or 0.8. 
For the tower server, the standard deviation of the power function model is lower while the exponential value is 0.8. But 
Hsu et al pointed out that the value of 0.75 is more in line with the trend of change and is more universal. So in the 
following experiments, we set the value of β to 0.75. 

5.3 Disk Power Model Experiment  
The disk experiment suite is named System Storage Suite including Windows Defender, implementing pictures. 

Because a part of the disk test imposes workload on CPU, a variation in power consumption can be seen Figure 16. At 
the same time, we investigate the errors in power estimation for our disk model as well as the refined model that 
proposed by Joulemeter (Formula 11): 

 

Figure 16. Disk power model experiment 

As shown in Figure 16, the disk model presented in this paper is more accurate than the linear model used in most 
literatures. The average relative error of the Joulemeter model is 8.76%, while the average relative error of the disk model 
presented in this paper is 6.7%. The reason why the error is high in the early stage is that CPU produced more energy 
during the Windows Defender scanning. 

5.4 Cluster Experiment  
In the cluster experiment, the load-generating test suite used on Windows system is productivity suit, including four 

groups of sub-test items:  text editing, web browsing and decrypting, System Storage - Windows defender and System 
storage-start applications. Linux systems use CPU performance testing, disk I/O testing, and scheduling performance 
testing in Sysbench. In this experiment, we also make a comparison with the CPU linear model. 
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Figure 17. Cluster experiment of DEM 

 

Figure 18. Standard error of power function model 

Based on the standard error graphs of different CPU computing models in Figure 18 and Figure 19, The average 
positive-negative error of power estimation of DEM system is + 1.21%, the average relative error is 2.39% and the 
maximum absolute error is 11.65% when the power function model is used.  When using linear model, the average 
positive-negative error of power estimation of DEM system is -3,93%, the average relative error is 4.02%, the maximum 
absolute error is 14.14%. 

At the same time, we can see from Figure 17 that due to the network transmission delay and master calculation time-
consuming, the energy data recorded by master node has a short lag compared with actual data. When the cluster load 
suddenly changed dramatically, it will cause a large error in a short time. When the cluster is in a relatively stable load 
state, the error of power estimation of the cluster by using the power function model is mostly within 5%. 

The hardware environment of cluster power estimation experiment includes PC, Tower server and blade server. 
Slave nodes contain heterogeneous operating system, and load generation project is a comprehensive. When the 
experimental environment complexity is higher than that of CloudMonitor, the average relative error of energy 
consumption estimated by DEM with power function model is 2.39%, which is better than 4.31% of CloudMonitor. At the 
same time, the impact of DEM-slave on the monitoring node itself is very small, CPU utilization is less than 5% in the 
process of use. 
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Figure 19. standard error of linear model 

6. Conclusion   

In this paper, we addressed the challenges in energy consumption measurement methods and the limitations of 
related systems. Then an energy estimation method based on multi-component energy consumption model is proposed 
and an implementation (DEM) is introduced. For the slave node, apart from adopting exponent-adjustable CPU power 
function, we propose an improved I/O-mode aware disk power model considering the difference in disk power 
behaviors between sequential I/O and random I/O. For the Master node, after analyzing and comparing periodic-push 
mode with event-triggered push mode, we choose to use a hybrid communication method that combines both periodic 
push and event-triggered push. The results show that the average relative error is only 2.39% under the mixed workload 
in heterogeneous cloud computing environment. The estimation accuracy is better than CloudMonitor and most other 
stand-alone power monitoring software.  

DEM enables users to well manage the cluster by measuring and monitoring energy consumption of the cluster. 
DEM not only has higher accuracy in real-time cluster power estimation, but also leverages RRD database to collect and 
manage historical data. DEM also supports heterogeneous cloud environment with highly scalable deployment. The 
current version DEM still has some limitations and weaknesses, such as data security challenges. There are some recent 
outstanding research results on Cloud Security [38, 39] and we will try to apply these results and deep learning 
techniques [36, 37] to our DEM in the future. We will also extend the display module of the Master and adjust CPU 
power model to being adaptive to VM environment. 
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