28 research outputs found

    Locomoção de humanoides robusta e versátil baseada em controlo analítico e física residual

    Get PDF
    Humanoid robots are made to resemble humans but their locomotion abilities are far from ours in terms of agility and versatility. When humans walk on complex terrains or face external disturbances, they combine a set of strategies, unconsciously and efficiently, to regain stability. This thesis tackles the problem of developing a robust omnidirectional walking framework, which is able to generate versatile and agile locomotion on complex terrains. We designed and developed model-based and model-free walk engines and formulated the controllers using different approaches including classical and optimal control schemes and validated their performance through simulations and experiments. These frameworks have hierarchical structures that are composed of several layers. These layers are composed of several modules that are connected together to fade the complexity and increase the flexibility of the proposed frameworks. Additionally, they can be easily and quickly deployed on different platforms. Besides, we believe that using machine learning on top of analytical approaches is a key to open doors for humanoid robots to step out of laboratories. We proposed a tight coupling between analytical control and deep reinforcement learning. We augmented our analytical controller with reinforcement learning modules to learn how to regulate the walk engine parameters (planners and controllers) adaptively and generate residuals to adjust the robot’s target joint positions (residual physics). The effectiveness of the proposed frameworks was demonstrated and evaluated across a set of challenging simulation scenarios. The robot was able to generalize what it learned in one scenario, by displaying human-like locomotion skills in unforeseen circumstances, even in the presence of noise and external pushes.Os robôs humanoides são feitos para se parecerem com humanos, mas suas habilidades de locomoção estão longe das nossas em termos de agilidade e versatilidade. Quando os humanos caminham em terrenos complexos ou enfrentam distúrbios externos combinam diferentes estratégias, de forma inconsciente e eficiente, para recuperar a estabilidade. Esta tese aborda o problema de desenvolver um sistema robusto para andar de forma omnidirecional, capaz de gerar uma locomoção para robôs humanoides versátil e ágil em terrenos complexos. Projetámos e desenvolvemos motores de locomoção sem modelos e baseados em modelos. Formulámos os controladores usando diferentes abordagens, incluindo esquemas de controlo clássicos e ideais, e validámos o seu desempenho por meio de simulações e experiências reais. Estes frameworks têm estruturas hierárquicas compostas por várias camadas. Essas camadas são compostas por vários módulos que são conectados entre si para diminuir a complexidade e aumentar a flexibilidade dos frameworks propostos. Adicionalmente, o sistema pode ser implementado em diferentes plataformas de forma fácil. Acreditamos que o uso de aprendizagem automática sobre abordagens analíticas é a chave para abrir as portas para robôs humanoides saírem dos laboratórios. Propusemos um forte acoplamento entre controlo analítico e aprendizagem profunda por reforço. Expandimos o nosso controlador analítico com módulos de aprendizagem por reforço para aprender como regular os parâmetros do motor de caminhada (planeadores e controladores) de forma adaptativa e gerar resíduos para ajustar as posições das juntas alvo do robô (física residual). A eficácia das estruturas propostas foi demonstrada e avaliada em um conjunto de cenários de simulação desafiadores. O robô foi capaz de generalizar o que aprendeu em um cenário, exibindo habilidades de locomoção humanas em circunstâncias imprevistas, mesmo na presença de ruído e impulsos externos.Programa Doutoral em Informátic

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Motion Planning and Control of Dynamic Humanoid Locomotion

    Get PDF
    Inspired by human, humanoid robots has the potential to become a general-purpose platform that lives along with human. Due to the technological advances in many field, such as actuation, sensing, control and intelligence, it finally enables humanoid robots to possess human comparable capabilities. However, humanoid locomotion is still a challenging research field. The large number of degree of freedom structure makes the system difficult to coordinate online. The presence of various contact constraints and the hybrid nature of locomotion tasks make the planning a harder problem to solve. Template model anchoring approach has been adopted to bridge the gap between simple model behavior and the whole-body motion of humanoid robot. Control policies are first developed for simple template models like Linear Inverted Pendulum Model (LIPM) or Spring Loaded Inverted Pendulum(SLIP), the result controlled behaviors are then been mapped to the whole-body motion of humanoid robot through optimization-based task-space control strategies. Whole-body humanoid control framework has been verified on various contact situations such as unknown uneven terrain, multi-contact scenarios and moving platform and shows its generality and versatility. For walking motion, existing Model Predictive Control approach based on LIPM has been extended to enable the robot to walk without any reference foot placement anchoring. It is kind of discrete version of \u201cwalking without thinking\u201d. As a result, the robot could achieve versatile locomotion modes such as automatic foot placement with single reference velocity command, reactive stepping under large external disturbances, guided walking with small constant external pushing forces, robust walking on unknown uneven terrain, reactive stepping in place when blocked by external barrier. As an extension of this proposed framework, also to increase the push recovery capability of the humanoid robot, two new configurations have been proposed to enable the robot to perform cross-step motions. For more dynamic hopping and running motion, SLIP model has been chosen as the template model. Different from traditional model-based analytical approach, a data-driven approach has been proposed to encode the dynamics of the this model. A deep neural network is trained offline with a large amount of simulation data based on the SLIP model to learn its dynamics. The trained network is applied online to generate reference foot placements for the humanoid robot. Simulations have been performed to evaluate the effectiveness of the proposed approach in generating bio-inspired and robust running motions. The method proposed based on 2D SLIP model can be generalized to 3D SLIP model and the extension has been briefly mentioned at the end

    Transfert de Mouvement Humain vers Robot Humanoïde

    Get PDF
    Le but de cette thèse est le transfert du mouvement humain vers un robot humanoïde en ligne. Dans une première partie, le mouvement humain, enregistré par un système de capture de mouvement, est analysé pour extraire des caractéristiques qui doivent être transférées vers le robot humanoïde. Dans un deuxième temps, le mouvement du robot qui comprend ces caractéristiques est calculé en utilisant la cinématique inverse avec priorité. L'ensemble des tâches avec leurs priorités est ainsi transféré. La méthode permet une reproduction du mouvement la plus fidèle possible, en ligne et pour le haut du corps. Finalement, nous étudions le problème du transfert mouvement des pieds. Pour cette étude, le mouvement des pieds est analysé pour extraire les trajectoires euclidiennes qui sont adaptées au robot. Les trajectoires du centre du masse qui garantit que le robot ne tombe pas sont calculées `a partir de la position des pieds et du modèle du pendule inverse. Il est ainsi possible réaliser une imitation complète incluant les mouvements du haut du corps ainsi que les mouvements des pieds. ABSTRACT : The aim of this thesis is to transfer human motion to a humanoid robot online. In the first part of this work, the human motion recorded by a motion capture system is analyzed to extract salient features that are to be transferred on the humanoid robot. We introduce the humanoid normalized model as the set of motion properties. In the second part of this work, the robot motion that includes the human motion features is computed using the inverse kinematics with priority. In order to transfer the motion properties a stack of tasks is predefined. Each motion property in the humanoid normalized model corresponds to one target in the stack of tasks. We propose a framework to transfer human motion online as close as possible to a human motion performance for the upper body. Finally, we study the problem of transfering feet motion. In this study, the motion of feet is analyzed to extract the Euclidean trajectories adapted to the robot. Moreover, the trajectory of the center of mass which ensures that the robot does not fall is calculated from the feet positions and the inverse pendulum model of the robot. Using this result, it is possible to achieve complete imitation of upper body movements and including feet motio

    Human Motion Transfer on Humanoid Robot

    Get PDF
    The aim of this thesis is to transfer human motion to a humanoid robot online. In the first part of this work, the human motion recorded by a motion capture system is analyzed to extract salient features that are to be transferred on the humanoid robot. We introduce the humanoid normalized model as the set of motion properties. In the second part of this work, the robot motion that includes the human motion features is computed using the inverse kinematics with priority. In order to transfer the motion properties a stack of tasks is predefined. Each motion property in the humanoid normalized model corresponds to one target in the stack of tasks. We propose a framework to transfer human motion online as close as possible to a human motion performance for the upper body. Finally, we study the problem of transfering feet motion. In this study, the motion of feet is analyzed to extract the Euclidean trajectories adapted to the robot. Moreover, the trajectory of the center of mass which ensures that the robot does not fall is calculated from the feet positions and the inverse pendulum model of the robot. Using this result, it is possible to achieve complete imitation of upper body movements and including feet motio

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Humanoid robot control of complex postural tasks based on learning from demostration

    Get PDF
    Mención Internacional en el título de doctorThis thesis addresses the problem of planning and controlling complex tasks in a humanoid robot from a postural point of view. It is motivated by the growth of robotics in our current society, where simple robots are being integrated. Its objective is to make an advancement in the development of complex behaviors in humanoid robots, in order to allow them to share our environment in the future. The work presents different contributions in the areas of humanoid robot postural control, behavior planning, non-linear control, learning from demonstration and reinforcement learning. First, as an introduction of the thesis, a group of methods and mathematical formulations are presented, describing concepts such as humanoid robot modelling, generation of locomotion trajectories and generation of whole-body trajectories. Next, the process of human learning is studied in order to develop a novel method of postural task transference between a human and a robot. It uses the demonstrated action goal as a metrics of comparison, which is codified using the reward associated to the task execution. As an evolution of the previous study, this process is generalized to a set of sequential behaviors, which are executed by the robot based on human demonstrations. Afterwards, the execution of postural movements using a robust control approach is proposed. This method allows to control the desired trajectory even with mismatches in the robot model. Finally, an architecture that encompasses all methods of postural planning and control is presented. It is complemented by an environment recognition module that identifies the free space in order to perform path planning and generate safe movements for the robot. The experimental justification of this thesis was developed using the humanoid robot HOAP-3. Tasks such as walking, standing up from a chair, dancing or opening a door have been implemented using the techniques proposed in this work.Esta tesis aborda el problema de la planificación y control de tareas complejas de un robot humanoide desde el punto de vista postural. Viene motivada por el auge de la robótica en la sociedad actual, donde ya se están incorporando robots sencillos y su objetivo es avanzar en el desarrollo de comportamientos complejos en robots humanoides, para que en el futuro sean capaces de compartir nuestro entorno. El trabajo presenta diferentes contribuciones en las áreas de control postural de robots humanoides, planificación de comportamientos, control no lineal, aprendizaje por demostración y aprendizaje por refuerzo. En primer lugar se desarrollan un conjunto de métodos y formulaciones matemáticas sobre los que se sustenta la tesis, describiendo conceptos de modelado de robots humanoides, generación de trayectorias de locomoción y generación de trayectorias del cuerpo completo. A continuación se estudia el proceso de aprendizaje humano, para desarrollar un novedoso método de transferencia de una tarea postural de un humano a un robot, usando como métrica de comparación el objetivo de la acción demostrada, que es codificada a través del refuerzo asociado a la ejecución de dicha tarea. Como evolución del trabajo anterior, se generaliza este proceso para la realización de un conjunto de comportamientos secuenciales, que son de nuevo realizados por el robot basándose en las demostraciones de un ser humano. Seguidamente se estudia la ejecución de movimientos posturales utilizando un método de control robusto ante imprecisiones en el modelado del robot. Para analizar, se presenta una arquitectura que aglutina los métodos de planificación y el control postural desarrollados en los capítulos anteriores. Esto se complementa con un módulo de reconocimiento del entorno y extracción del espacio libre para poder planificar y generar movimientos seguros en dicho entorno. La justificación experimental de la tesis se ha desarrollado con el robot humanoide HOAP-3. En este robot se han implementado tareas como caminar, levantarse de una silla, bailar o abrir una puerta. Todo ello haciendo uso de las técnicas propuestas en este trabajo.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Manuel Ángel Armada Rodríguez.- Secretario: Luis Santiago Garrido Bullón.- Vocal: Sylvain Calino

    Télé-opération Corps Complet de Robots Humanoïdes

    Get PDF
    This thesis aims to investigate systems and tools for teleoperating a humanoid robot. Robotteleoperation is crucial to send and control robots in environments that are dangerous or inaccessiblefor humans (e.g., disaster response scenarios, contaminated environments, or extraterrestrialsites). The term teleoperation most commonly refers to direct and continuous control of a robot.In this case, the human operator guides the motion of the robot with her/his own physical motionor through some physical input device. One of the main challenges is to control the robot in a waythat guarantees its dynamical balance while trying to follow the human references. In addition,the human operator needs some feedback about the state of the robot and its work site through remotesensors in order to comprehend the situation or feel physically present at the site, producingeffective robot behaviors. Complications arise when the communication network is non-ideal. Inthis case the commands from human to robot together with the feedback from robot to human canbe delayed. These delays can be very disturbing for the human operator, who cannot teleoperatetheir robot avatar in an effective way.Another crucial point to consider when setting up a teleoperation system is the large numberof parameters that have to be tuned to effectively control the teleoperated robots. Machinelearning approaches and stochastic optimizers can be used to automate the learning of some of theparameters.In this thesis, we proposed a teleoperation system that has been tested on the humanoid robotiCub. We used an inertial-technology-based motion capture suit as input device to control thehumanoid and a virtual reality headset connected to the robot cameras to get some visual feedback.We first translated the human movements into equivalent robot ones by developping a motionretargeting approach that achieves human-likeness while trying to ensure the feasibility of thetransferred motion. We then implemented a whole-body controller to enable the robot to trackthe retargeted human motion. The controller has been later optimized in simulation to achieve agood tracking of the whole-body reference movements, by recurring to a multi-objective stochasticoptimizer, which allowed us to find robust solutions working on the real robot in few trials.To teleoperate walking motions, we implemented a higher-level teleoperation mode in whichthe user can use a joystick to send reference commands to the robot. We integrated this setting inthe teleoperation system, which allows the user to switch between the two different modes.A major problem preventing the deployment of such systems in real applications is the presenceof communication delays between the human input and the feedback from the robot: evena few hundred milliseconds of delay can irremediably disturb the operator, let alone a few seconds.To overcome these delays, we introduced a system in which a humanoid robot executescommands before it actually receives them, so that the visual feedback appears to be synchronizedto the operator, whereas the robot executed the commands in the past. To do so, the robot continuouslypredicts future commands by querying a machine learning model that is trained on pasttrajectories and conditioned on the last received commands.Cette thèse vise à étudier des systèmes et des outils pour la télé-opération d’un robot humanoïde.La téléopération de robots est cruciale pour envoyer et contrôler les robots dans des environnementsdangereux ou inaccessibles pour les humains (par exemple, des scénarios d’interventionen cas de catastrophe, des environnements contaminés ou des sites extraterrestres). Le terme téléopérationdésigne le plus souvent le contrôle direct et continu d’un robot. Dans ce cas, l’opérateurhumain guide le mouvement du robot avec son propre mouvement physique ou via un dispositifde contrôle. L’un des principaux défis est de contrôler le robot de manière à garantir son équilibredynamique tout en essayant de suivre les références humaines. De plus, l’opérateur humain abesoin d’un retour d’information sur l’état du robot et de son site via des capteurs à distance afind’appréhender la situation ou de se sentir physiquement présent sur le site, produisant des comportementsde robot efficaces. Des complications surviennent lorsque le réseau de communicationn’est pas idéal. Dans ce cas, les commandes de l’homme au robot ainsi que la rétroaction du robotà l’homme peuvent être retardées. Ces délais peuvent être très gênants pour l’opérateur humain,qui ne peut pas télé-opérer efficacement son avatar robotique.Un autre point crucial à considérer lors de la mise en place d’un système de télé-opérationest le grand nombre de paramètres qui doivent être réglés pour contrôler efficacement les robotstélé-opérés. Des approches d’apprentissage automatique et des optimiseurs stochastiques peuventêtre utilisés pour automatiser l’apprentissage de certains paramètres.Dans cette thèse, nous avons proposé un système de télé-opération qui a été testé sur le robothumanoïde iCub. Nous avons utilisé une combinaison de capture de mouvement basée sur latechnologie inertielle comme périphérique de contrôle pour l’humanoïde et un casque de réalitévirtuelle connecté aux caméras du robot pour obtenir un retour visuel. Nous avons d’abord traduitles mouvements humains en mouvements robotiques équivalents en développant une approchede retargeting de mouvement qui atteint la ressemblance humaine tout en essayant d’assurer lafaisabilité du mouvement transféré. Nous avons ensuite implémenté un contrôleur du corps entierpour permettre au robot de suivre le mouvement humain reciblé. Le contrôleur a ensuite étéoptimisé en simulation pour obtenir un bon suivi des mouvements de référence du corps entier,en recourant à un optimiseur stochastique multi-objectifs, ce qui nous a permis de trouver dessolutions robustes fonctionnant sur le robot réel en quelques essais.Pour télé-opérer les mouvements de marche, nous avons implémenté un mode de télé-opérationde niveau supérieur dans lequel l’utilisateur peut utiliser un joystick pour envoyer des commandesde référence au robot. Nous avons intégré ce paramètre dans le système de télé-opération, ce quipermet à l’utilisateur de basculer entre les deux modes différents.Un problème majeur empêchant le déploiement de tels systèmes dans des applications réellesest la présence de retards de communication entre l’entrée humaine et le retour du robot: mêmequelques centaines de millisecondes de retard peuvent irrémédiablement perturber l’opérateur,encore plus quelques secondes. Pour surmonter ces retards, nous avons introduit un système danslequel un robot humanoïde exécute des commandes avant de les recevoir, de sorte que le retourvisuel semble être synchronisé avec l’opérateur, alors que le robot exécutait les commandes dansle passé. Pour ce faire, le robot prédit en permanence les commandes futures en interrogeant unmodèle d’apprentissage automatique formé sur les trajectoires passées et conditionné aux dernièrescommandes reçues

    Learning Motion Skills for a Humanoid Robot

    Get PDF
    This thesis investigates the learning of motion skills for humanoid robots. As groundwork, a humanoid robot with integrated fall management was developed as an experimental platform. Then, two different approaches for creating motion skills were investigated. First, one that is based on Cartesian quintic splines with optimized parameters. Second, a reinforcement learning-based approach that utilizes the first approach as a reference motion to guide the learning. Both approaches were tested on the developed robot and on further simulated robots to show their generalization. A special focus was set on the locomotion skill, but a standing-up and kick skill are also discussed. Diese Dissertation beschäftigt sich mit dem Lernen von Bewegungsfähigkeiten für humanoide Roboter. Als Grundlage wurde zunächst ein humanoider Roboter mit integriertem Fall Management entwickelt, welcher als Experimentalplatform dient. Dann wurden zwei verschiedene Ansätze für die Erstellung von Bewegungsfähigkeiten untersucht. Zu erst einer der kartesische quintische Splines mit optimierten Parametern nutzt. Danach wurde ein Ansatz basierend auf bestärkendem Lernen untersucht, welcher den ersten Ansatz als Referenzbewegung benutzt. Beide Ansätze wurden sowohl auf der entwickelten Roboterplatform, als auch auf weiteren simulierten Robotern getestet um die Generalisierbarkeit zu zeigen. Ein besonderer Fokus wurde auf die Fähigkeit des Gehens gelegt, aber auch Aufsteh- und Schussfähigkeiten werden diskutiert
    corecore