13,872 research outputs found

    Time-delayed feedback control of unstable periodic orbits near a subcritical Hopf bifurcation

    Full text link
    We show that Pyragas delayed feedback control can stabilize an unstable periodic orbit (UPO) that arises from a generic subcritical Hopf bifurcation of a stable equilibrium in an n-dimensional dynamical system. This extends results of Fiedler et al. [PRL 98, 114101 (2007)], who demonstrated that such feedback control can stabilize the UPO associated with a two-dimensional subcritical Hopf normal form. Pyragas feedback requires an appropriate choice of a feedback gain matrix for stabilization, as well as knowledge of the period of the targeted UPO. We apply feedback in the directions tangent to the two-dimensional center manifold. We parameterize the feedback gain by a modulus and a phase angle, and give explicit formulae for choosing these two parameters given the period of the UPO in a neighborhood of the bifurcation point. We show, first heuristically, and then rigorously by a center manifold reduction for delay differential equations, that the stabilization mechanism involves a highly degenerate Hopf bifurcation problem that is induced by the time-delayed feedback. When the feedback gain modulus reaches a threshold for stabilization, both of the genericity assumptions associated with a two-dimensional Hopf bifurcation are violated: the eigenvalues of the linearized problem do not cross the imaginary axis as the bifurcation parameter is varied, and the real part of the cubic coefficient of the normal form vanishes. Our analysis of this degenerate bifurcation problem reveals two qualitatively distinct cases when unfolded in a two-parameter plane. In each case, Pyragas-type feedback successfully stabilizes the branch of small-amplitude UPOs in a neighborhood of the original bifurcation point, provided that the phase angle satisfies a certain restriction.Comment: 35 pages, 19 figure

    A delay differential model of ENSO variability: Parametric instability and the distribution of extremes

    Get PDF
    We consider a delay differential equation (DDE) model for El-Nino Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform stability analyses of the model in the three-dimensional space of its physically relevant parameters. Our results illustrate the role of these three parameters: strength of seasonal forcing bb, atmosphere-ocean coupling Îş\kappa, and propagation period Ď„\tau of oceanic waves across the Tropical Pacific. Two regimes of variability, stable and unstable, are separated by a sharp neutral curve in the (b,Ď„)(b,\tau) plane at constant Îş\kappa. The detailed structure of the neutral curve becomes very irregular and possibly fractal, while individual trajectories within the unstable region become highly complex and possibly chaotic, as the atmosphere-ocean coupling Îş\kappa increases. In the unstable regime, spontaneous transitions occur in the mean ``temperature'' ({\it i.e.}, thermocline depth), period, and extreme annual values, for purely periodic, seasonal forcing. The model reproduces the Devil's bleachers characterizing other ENSO models, such as nonlinear, coupled systems of partial differential equations; some of the features of this behavior have been documented in general circulation models, as well as in observations. We expect, therefore, similar behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.Comment: 22 pages, 9 figure

    Switching to nonhyperbolic cycles from codimension two bifurcations of equilibria of delay differential equations

    Get PDF
    In this paper we perform the parameter-dependent center manifold reduction near the generalized Hopf (Bautin), fold-Hopf, Hopf-Hopf and transcritical-Hopf bifurcations in delay differential equations (DDEs). This allows us to initialize the continuation of codimension one equilibria and cycle bifurcations emanating from these codimension two bifurcation points. The normal form coefficients are derived in the functional analytic perturbation framework for dual semigroups (sun-star calculus) using a normalization technique based on the Fredholm alternative. The obtained expressions give explicit formulas which have been implemented in the freely available numerical software package DDE-BifTool. While our theoretical results are proven to apply more generally, the software implementation and examples focus on DDEs with finitely many discrete delays. Together with the continuation capabilities of DDE-BifTool, this provides a powerful tool to study the dynamics near equilibria of such DDEs. The effectiveness is demonstrated on various models

    Asymptotic methods for delay equations.

    Get PDF
    Asymptotic methods for singularly perturbed delay differential equations are in many ways more challenging to implement than for ordinary differential equations. In this paper, four examples of delayed systems which occur in practical models are considered: the delayed recruitment equation, relaxation oscillations in stem cell control, the delayed logistic equation, and density wave oscillations in boilers, the last of these being a problem of concern in engineering two-phase flows. The ways in which asymptotic methods can be used vary from the straightforward to the perverse, and illustrate the general technical difficulties that delay equations provide for the central technique of the applied mathematician. © Springer 2006

    On Norm-Based Estimations for Domains of Attraction in Nonlinear Time-Delay Systems

    Get PDF
    For nonlinear time-delay systems, domains of attraction are rarely studied despite their importance for technological applications. The present paper provides methodological hints for the determination of an upper bound on the radius of attraction by numerical means. Thereby, the respective Banach space for initial functions has to be selected and primary initial functions have to be chosen. The latter are used in time-forward simulations to determine a first upper bound on the radius of attraction. Thereafter, this upper bound is refined by secondary initial functions, which result a posteriori from the preceding simulations. Additionally, a bifurcation analysis should be undertaken. This analysis results in a possible improvement of the previous estimation. An example of a time-delayed swing equation demonstrates the various aspects.Comment: 33 pages, 8 figures, "This is a pre-print of an article published in 'Nonlinear Dynamics'. The final authenticated version is available online at https://doi.org/10.1007/s11071-020-05620-8

    Boolean Delay Equations: A simple way of looking at complex systems

    Full text link
    Boolean Delay Equations (BDEs) are semi-discrete dynamical models with Boolean-valued variables that evolve in continuous time. Systems of BDEs can be classified into conservative or dissipative, in a manner that parallels the classification of ordinary or partial differential equations. Solutions to certain conservative BDEs exhibit growth of complexity in time. They represent therewith metaphors for biological evolution or human history. Dissipative BDEs are structurally stable and exhibit multiple equilibria and limit cycles, as well as more complex, fractal solution sets, such as Devil's staircases and ``fractal sunbursts``. All known solutions of dissipative BDEs have stationary variance. BDE systems of this type, both free and forced, have been used as highly idealized models of climate change on interannual, interdecadal and paleoclimatic time scales. BDEs are also being used as flexible, highly efficient models of colliding cascades in earthquake modeling and prediction, as well as in genetics. In this paper we review the theory of systems of BDEs and illustrate their applications to climatic and solid earth problems. The former have used small systems of BDEs, while the latter have used large networks of BDEs. We moreover introduce BDEs with an infinite number of variables distributed in space (``partial BDEs``) and discuss connections with other types of dynamical systems, including cellular automata and Boolean networks. This research-and-review paper concludes with a set of open questions.Comment: Latex, 67 pages with 15 eps figures. Revised version, in particular the discussion on partial BDEs is updated and enlarge

    Zero-Hopf bifurcation in the Van der Pol oscillator with delayed position and velocity feedback

    Full text link
    In this paper, we consider the traditional Van der Pol Oscillator with a forcing dependent on a delay in feedback. The delay is taken to be a nonlinear function of both position and velocity which gives rise to many different types of bifurcations. In particular, we study the Zero-Hopf bifurcation that takes place at certain parameter values using methods of centre manifold reduction of DDEs and normal form theory. We present numerical simulations that have been accurately predicted by the phase portraits in the Zero-Hopf bifurcation to confirm our numerical results and provide a physical understanding of the oscillator with the delay in feedback
    • …
    corecore