3,721 research outputs found

    The design, management and testing of a solar vehicle's energy strategy

    Get PDF
    In recent years the interest in implementing solar energy on vehicles (electrical and hybrid) has grown significantly [1]. There are currently limitations in this sector, such as the low energy density (efficiency of conversion) of this source, but it is still a renewable resource and as such, there is a growing interest [1]. A “smart” energy strategy implemented on a solar/electrical vehicle, in order to increase its energy harvesting volume, could enhance the growth of this sector. A tracking algorithm for a solar vehicle’s MPPT (Maximum Power Point Tracker) can be designed to source solar energy very effectively and to increase the speed of finding (tracking) this optimal sourcing point (solar panel voltage and current). Even though there are many different MPPT algorithms, it was decided that most of them were designed for stationary MPPT applications and the dynamics of implementing a MPPT on a vehicle create some unique scenarios. These include: Shadow flicker. This is rhythmic, rapid moving shadows across a solar panel, such as shadows from a line of trees: Rapid changes in solar panel orientation due to the road surface/relief; Rapid changes in panel temperature due to the location of the vehicle. The aim of the research can be divided into three outcomes: 1 Creating a “Smart” energy strategy/control, 2 Implement the new control system on a solar vehicle’s MPPT, and 3 Harvesting maximum energy from solar panels using the new energy strategy. The term “smart” is used to indicate the ability of the MPPT algorithm to be updated and improved based on previous results. A MPPT and scaled solar vehicle is designed and manufactured in order to test the MPPT algorithm. The purpose of using a self-developed experimental setup is to have more control over the system variables as well as having the maximum freedom in setting up the system parameters

    Introductory Chapter: Artificial Neural Networks

    Get PDF

    Solar Tracking System based on Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    Fotovoltaik panellerin güç toplama verimliliğini artırmak için genellikle güneş takip sistemleri (GTS) ile entegre edilmelidir. Bu çalışmada, uyarlamalı sinirsel bulanık çıkarım uygulaması ile GTS sunulmuştur. GTS, zenit ve azimut açılarını kontrol eden iki motora sahip çift eksenli olarak tasarlanmıştır. Bu motorların hızının kontrol edilmesi için ANFIS’in tasarlanmasından sonra bulanık mantık kontrolörünün giriş-çıkış ilişkisini öğrenmek için yapay sinir ağı eğitilmiştir. Pozisyon hatası ve hatanın değişimi modellerin girişi olarak alınmıştır. Motora uygulanan gerilim modellerin çıkışı olarak alınmıştır. ANFIS modelde, deneysel verilerden doğrudan üretilen kurallar kümesine sahip yapay sinir ağının öğrenme yeteneği ile bulanık çıkarım modeli birleştirilir. Sonuç olarak, elde edilen sonuçlar GTS için amaçlanan kontrol yaklaşımının doğru cevap ve takip etme etkinliğini doğrular.Solar tracking systems (STS) should usually be integrated with photovoltaic (PV) panel so that the photovoltaic panels can increase power collection efficiency. In this paper, STS with implementation of adaptive neuro-fuzzy inference system (ANFIS) is presented. STS designed as dual axis has two motors that control azimuth angle and zenith angle. After designing an ANFIS for controlling these motors' speed, a Neural Network is trained to learn the input–output relationship of fuzzy logic controller. Position error and error variation were taken as model’s inputs. Applied voltage to the motor was taken as model's output. The ANFIS model is combined modeling function of fuzzy inference with the learning ability of artificial neural network that has set of rules generated directly from the experimental data. Finally, the obtained results confirm the tracking efficiency and correct response of the proposed control approach for STS

    Intelligent Navigation for a Solar Powered Unmanned Underwater Vehicle

    Get PDF
    In this paper, an intelligent navigation system for an unmanned underwater vehicle powered by renewable energy and designed for shadow water inspection in missions of a long duration is proposed. The system is composed of an underwater vehicle, which tows a surface vehicle. The surface vehicle is a small boat with photovoltaic panels, a methanol fuel cell and communication equipment, which provides energy and communication to the underwater vehicle. The underwater vehicle has sensors to monitor the underwater environment such as sidescan sonar and a video camera in a flexible configuration and sensors to measure the physical and chemical parameters of water quality on predefined paths for long distances. The underwater vehicle implements a biologically inspired neural architecture for autonomous intelligent navigation. Navigation is carried out by integrating a kinematic adaptive neuro‐controller for trajectory tracking and an obstacle avoidance adaptive neuro‐  controller. The autonomous underwater vehicle is capable of operating during long periods of observation and monitoring. This autonomous vehicle is a good tool for observing large areas of sea, since it operates for long periods of time due to the contribution of renewable energy. It correlates all sensor data for time and geodetic position. This vehicle has been used for monitoring the Mar Menor lagoon.Supported by the Coastal Monitoring System for the Mar Menor (CMS‐  463.01.08_CLUSTER) project founded by the Regional Government of Murcia, by the SICUVA project (Control and Navigation System for AUV Oceanographic Monitoring Missions. REF: 15357/PI/10) founded by the Seneca Foundation of Regional Government of Murcia and by the DIVISAMOS project (Design of an Autonomous Underwater Vehicle for Inspections and oceanographic mission‐UPCT: DPI‐ 2009‐14744‐C03‐02) founded by the Spanish Ministry of Science and Innovation from Spain

    Power Quality Enhancement in Hybrid Photovoltaic-Battery System based on three–Level Inverter associated with DC bus Voltage Control

    Get PDF
    This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab /SimPowerSystems environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.Peer reviewedFinal Published versio

    Performance Analysis Of Hybrid Ai-Based Technique For Maximum Power Point Tracking In Solar Energy System Applications

    Get PDF
    Demand is increasing for a system based on renewable energy sources that can be employed to both fulfill rising electricity needs and mitigate climate change. Solar energy is the most prominent renewable energy option. However, only 30%-40% of the solar irradiance or sunlight intensity is converted into electrical energy by the solar panel system, which is low compared to other sources. This is because the solar power system\u27s output curve for power versus voltage has just one Global Maximum Power Point (GMPP) and several local Maximum Power Points (MPPs). For a long time, substantial research in Artificial Intelligence (AI) has been undertaken to build algorithms that can track the MPP more efficiently to acquire the most output from a Photovoltaic (PV) panel system because traditional Maximum Power Point Tracking (MPPT) techniques such as Incremental Conductance (INC) and Perturb and Observe (P&Q) are unable to track the GMPP under varying weather conditions. Literature (K. Y. Yap et al., 2020) has shown that most AIbased MPPT algorithms have a faster convergence time, reduced steady-state oscillation, and higher efficiency but need a lot of processing and are expensive to implement. However, hybrid MPPT has been shown to have a good performance-to-complexity ratio. It incorporates the benefits of traditional and AI-based MPPT methodologies but choosing the appropriate hybrid MPPT techniques is still a challenge since each has advantages and disadvantages. In this research work, we proposed a suitable hybrid AI-based MPPT technique that exhibited the right balance between performance and complexity when utilizing AI in MPPT for solar power system optimization. To achieve this, we looked at the basic concept of maximum power point tracking and compared some AI-based MPPT algorithms for GMPP estimation. After evaluating and comparing these approaches, the most practical and effective ones were chosen, modeled, and simulated in MATLAB Simulink to demonstrate the method\u27s correctness and dependability in estimating GMPP under various solar irradiation and PV cell temperature values. The AI-based MPPT techniques evaluated include Particle Swarm Optimization (PSO) trained Adaptive Neural Fuzzy Inference System (ANFIS) and PSO trained Neural Network (NN) MPPT. We compared these methods with Genetic Algorithm (GA)-trained ANFIS method. Simulation results demonstrated that the investigated technique could track the GMPP of the PV system and has a faster convergence time and more excellent stability. Lastly, we investigated the suitability of Buck, Boost, and Buck-Boost converter topologies for hybrid AI-based MPPT in solar energy systems under varying solar irradiance and temperature conditions. The simulation results provided valuable insights into the efficiency and performance of the different converter topologies in solar energy systems employing hybrid AI-based MPPT techniques. The Boost converter was identified as the optimal topology based on the results, surpassing the Buck and Buck-Boost converters in terms of efficiency and performance. Keywords—Maximum Power Point Tracking (MPPT), Genetic Algorithm, Adaptive Neural-Fuzzy Interference System (ANFIS), Particle Swarm Optimization (PSO

    Parallel Distributed Compensation-PID Controller Design for Maximum Power Point Tracking of Dynamic Loaded Photovoltaic System

    Get PDF
    Control issues come from the output voltage of PV installations and systems operating in a range of irradiance and temperature. By using a DC converter, such systems are able to maintain a constant output voltage despite fluctuations in the generated voltage and load. The design of a maximum power point tracking (MPPT) on DC converter controller is presented in this article for a system. Fractional Order-Proportional Integral Derivative (FO-PID) and Parallel Distributed Compensation-Proportional Integral Derivative (PDC-PID) controllers have been implemented to the system converter as a proposed control approach. Particle Swarm Optimization (PSO) is used as optimization technique for determining the optimal parameters of (FO-PID) and (PDC-PID) controllers for tracking the output voltage from trained Adaptive Neuro Fuzzy Inference System (ANFIS) that is corresponding to maximum power generated from (PV) module. The PV system with the dynamic load is modeled and simulated by using the MATLAB/Simulink environment. The system performance is displayed in the form of a family of curves under different operating conditions

    Human - computer interface for Doğuş unmanned sea vehicle

    Get PDF
    Unmanned vehicle systems are becoming increasingly prevalent on the land, in the sea, and in the air. Human-Computer interface design for these systems has a very important role in mission planning. The objective of this work is to design a unmanned sea vehicle and necessary software that can perform off-line path planning, vision management, communication, sensor control, and data management and monitoring of the unmanned sea vehicles
    corecore