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Abstract In this paper, an intelligent navigation system for
an unmanned underwater vehicle powered by renewable
energy and designed for shadow water inspection in
missions of a long duration is proposed. The system is
composed of an underwater vehicle, which tows a surface
vehicle. The surface vehicle is a small boat with
photovoltaic  panels, a methanol fuel «cell and
communication equipment, which provides energy and
communication to the underwater vehicle. The underwater
vehicle has
environment such as sidescan sonar and a video camera in

sensors to monitor the underwater
a flexible configuration and sensors to measure the
physical and chemical parameters of water quality on
predefined paths for long distances. The underwater
vehicle implements a biologically inspired neural
architecture for intelligent

Navigation is carried out by integrating a kinematic

autonomous navigation.
adaptive neuro-controller for trajectory tracking and an
obstacle avoidance adaptive neuro-
autonomous underwater vehicle is capable of operating
during long periods of observation and monitoring. This

controller. The

autonomous vehicle is a good tool for observing large areas
of sea, since it operates for long periods of time due to the
contribution of renewable energy. It correlates all sensor
data for time and geodetic position. This vehicle has been
used for monitoring the Mar Menor lagoon.
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1. Introduction
1.1 Autonomous Underwater Vehicles

The need for autonomous underwater robots has become
increasingly apparent as the world pays greater attention
to environmental and resource issues as well as scientific
and military tasks. Many autonomous underwater robots
have been developed to overcome scientific challenges
and the engineering problems caused by the unstructured
and hazardous underwater environment.

With continuous advances in control, navigation, artificial
intelligence, material science, computers, sensors and
communication, autonomous underwater vehicles
(AUVs) have become very attractive for
underwater tasks. Autonomy is one of the most critical
issues in developing AUVs. The design, development,
navigation and control process of an AUV is a complex

various

and expensive task. Various control architectures have
been studied to help increase the autonomy of AUVs

[1-9].
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There is a large amount of research underway to
investigate enabling technologies to allow further
development of autonomous underwater robot systems.
Control of AUVs in uncertain and non-structured
environments is a complex process involving nonlinear
dynamic behaviour. Various advanced underwater robot
control systems have been proposed, such as sliding
mode control (SMC) by Yoerger and Slotine in 1984 [3],
nonlinear control by Nakamura and Savant in 1992 [4],
adaptive control by Antonelli et al. in 2001 [5], neural
network control by Lorenz and Yuh in 1996 [6] and Porto
and Fogel in 1992 [7], fuzzy control by Smith et al. [8] and
visual servo control by Silpa-Anan et al. in 2001 [9].

1.2 Solar Powered Underwater Vehicle

The need for different data collection in situ, on different
scales in time and space, has promoted an effort to
develop different types of autonomous vehicles that
enable the collection of such data. These platforms have
capabilities of communication, durability,
mobility, capacity and autonomy. Within these different
platforms, are in addition to others, AUVs and
autonomous surface vehicles (ASVs) [10-18, 27].

varying

According to D. Blidber et al. [10], there are three main
limitations in autonomous underwater vehicles: energy,
navigation over a long period of time and long distances
and user communication with the platform. He argued
that the use of solar energy begins to overcome these
limitations by adding to the submarine's ability to
regenerate energy when needed, giving the ability to last
for weeks and months on mission, instead of hours. D.
Blidber et al. [11] discuss power management in different
situations and find an optimum combination of the size
needed to store energy and the travel
measurement and/or works to be undertaken by the
vehicle depending on the solar energy available in the
area. Special effort is made in the balance between
displacement (speed and distance) and tasks (duration
and frequency of measurements, number of sensors on
board). Their study raises a number of scenarios, where
the energy is distributed in different ways, according to
the needs of the mission in question, but it is possible to
select different settings for each scenario.

distance

The SAUV 1I vehicle, described in [12-15], is a solar
powered AUV designed for long endurance missions
such as monitoring, surveillance, or station keeping, with
bi-directional ~communication in real time and
underwater instrumentation. The SAUV II operates
continuously for several months using solar energy to
recharge its lithium ion batteries during daylight hours.

A new long duration solar

oceanographic and atmospheric
missions is presented in [16-17]. A fleet of three Ocean

powered ASV for

scientific research
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Atmosphere Sensor Integration System (OASIS) ASV
platforms has been developed under a grant from the
National Oceanic and Atmospheric Administration
(NOAA) to provide a low-cost, reusable, re-configurable,
long-duration, ocean observing capability to support on-
going research in key areas, such as carbon dioxide air-
sea flux and phytoplankton productivity. The OASIS ASV
platform is comprised of five major subsystems. The
structural subsystem includes the deck/hull components,
mast and internal mounts. The power subsystem contains
six 170-watt solar panels, an automated charge controller,
twelve 12-volt deep cycle gel cell marine batteries, DC-
DC converters, isolators, a power bus and a fuse bank.
The propulsion subsystem includes the rudder and
propeller control surfaces, as well as the motors, drivers
and controllers to operate them. The vehicle computer,
communications hardware, navigation sensors, adapters
and relay bank are among the components contained in
the onboard control subsystem. The payload subsystem
includes a suite of standard water and atmospheric
Sensors.

The AAS Endurance is an autonomous surface vehicle
and is detailed by H. Klinck et al. [18] as a project to be
developed in three years, driven by the Austrian Society
for Innovation in Computer Science, State University of
Austria and the Oregon State University. It is an
autonomous sailing boat, which uses sensors, actuators
and an intelligent control system to manage without
being driven. This autonomous marine vehicle has special
equipment for the study of marine mammals. It is
noteworthy that it has solar panels that generate up to
285W and a methanol fuel cell that supplies auxiliary
65W.

In this paper, an autonomous vehicle capable of operating
during long periods of time for observation and
monitoring is proposed. The integrates
photovoltaic panels and a methanol fuel cell, together
with neurobiologically inspired control architecture for
intelligent navigation. In this work, the autonomy of the
vehicle is evaluated in several scenarios, when the vehicle
is moving in mission and when the vehicle is not moving.
The energetic management module generates recharge
missions with a variable priority level depending on the
batteries’ level.

vehicle

1.3 Autonomous Navigation with Obstacle Avoidance using
Neural Networks

Trajectory generation with obstacle avoidance is a
fundamentally important issue in robotics. Real-time
collision-free trajectory generation becomes more difficult
when robots are in a dynamic, unstructured environment.
There are a lot of studies on trajectory generation for
robots using various approaches to the problem (e.g., [5,
19-23]). Some of the previous models (e.g., [21-22, 24]) use
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global methods to search for possible paths in the
workspace, which normally deal with static environments
only and are computationally expensive when the
environment is complex. Seshadri and Ghosh [1]
proposed a new path-planning model using an iterative
approach. However, this model is computationally
complicated, particularly in a complex environment. Li
and Bui [2] proposed a fluid model for robot path
planning in a static environment. Oriolo et al. [19]
proposed a model for real-time map building and
navigation for a mobile robot, where a global path
planning plus a local graph search algorithm and several
cost functions are used.

Several neural network models (e.g., [20-26]) were
proposed to generate real-time trajectories through
learning. Ritter et al. [22] proposed a Kohonen's self-
organizing mapping algorithm based neural network
model to learn the transformation from Cartesian
workspace to the robot manipulator joint space. Fujii et al.
[20] proposed a multilayer reinforcement learning based
model for path planning with a complicated collision
avoidance algorithm. However, generated trajectories
using learning based approaches are not optimal,
particularly during the initial learning phase.

However, mathematical models of neuronal systems are a
link between biology and engineering. Chang and
Gaudiano [29] introduced a neural network for obstacle
avoidance that is based on a model of classical and
operant conditioning.

In the classical conditioning paradigm, learning occurs by
repeated association with a Conditioned Stimulus (CS),
which normally has no particular significance for an
animal and with an Unconditioned Stimulus (UCS),
which has significance for an animal and always gives
rise to an Unconditioned Response (UCR). The response
that is elicited by the CS after classical conditioning is
known as the Conditioned Response (CR) [30-31]. Hence,
classical conditioning is the putative learning process that
enables animals to recognize informative stimuli in the
environment.

In the case of operant conditioning, an animal learns the
consequences of its actions. More specifically, the animal
learns to exhibit more frequently a behaviour that has led
to a reward in the past and to exhibit less frequently a
behaviour that led to punishment. In the field of neural
networks research, it is often suggested that neural
networks based on associative learning laws can model the
mechanisms of classical conditioning, while neural
networks based on reinforcement learning laws can model
the mechanisms of operant conditioning [29, 32]. The
reinforcement learning is used to acquire navigation skills
for autonomous vehicles and updates both the vehicle
model and optimal behaviour at the same time [24, 33-38].

www.intechopen.com

In this paper, the autonomous navigation system of the
underwater vehicle consisting of a Self-Organization
Direction Mapping Network (SODMN) and a Neural
Network for the Avoidance Behaviour (NNAB), both of
which are biologically inspired, is presented. The
SODMN is a kinematic adaptive neuro-controller and a
real-time, unsupervised neural network that learns to
control autonomous underwater and surface vehicles in a
nonstationary environment. The SODMN combines
associative learning and Vector Associative Map (VAM)
learning [24, 28, 36-38] to generate transformations
between spatial and velocity coordinates. The
transformations are learned in an unsupervised training
phase, during which the vehicle moves as a result of
randomly selected velocities of its actuators. The
controller learns the relationship between these velocities
and the resulting incremental movements. The NNB is a
neural network based on animal behaviour that learns to
control avoidance behaviours in autonomous vehicles
based on a form of animal learning known as operant
conditioning. Learning, which requires no supervision,
takes place as the vehicle moves around a cluttered
environment with obstacles.

The biologically inspired neural networks proposed in
this paper represent a simplified way to understand in
part the mechanisms that allow the brain to collect
sensory input to control adaptive behaviours in
autonomous navigation of animals. In this work, the
autonomy of the vehicle is evaluated in several scenarios

This paper is organized as follows. We first describe
(Section II) the experimental platform with the navigation
system, neural control system and the set of
oceanographic instruments installed on the AUV of the
Universidad Politécnica de Cartagena (UPCT), called
AEGIR. Section IIl addresses the power management
module, which generates recharge missions using the
solar panels and fuel cell. The autonomous navigation
system of the underwater vehicle is described in Section
IV. Section V addresses the experimental results of the
proposed control system for controlling avoidance and
approach behaviour in the AUV-UPCT. Finally, in Section
VI, conclusions based on the experimental results are
given.

2. Description of the Solar Powered - Autonomous
Underwater Vehicle (SOLAR-AEGIR)

The technical and functional main system requirements
of the Solar-AEGIR are:

e  Operate autonomously at sea in periods of time from
days to weeks.

e  Operate at depths up to 50m.

e Operate at speeds up to 4 knots.

e Recharge batteries from photovoltaic panels and
methanol fuel cell.
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e Continuous communication with a remote operator
via a wireless Internet connection.

e Autonomous navigation between two points over a
predefined trajectory.

e Capability to capture photos and videos of the
underwater environment through a video camera.

e Capability to identify obstacles through imaging
sonar.

e  Capability to obtain images of the seabed.

e  Absolute positioning of the vehicle through GPS and
geodetic reference of all data sensors.

Figure 1 shows a 3D drawing of the overall system. The
vehicle coordinate system has six velocity components of
motion (surge, sway, heave, derivate of roll, derivative of
pitch and derivative of yaw). The velocity vector in the
vehicle coordinate system is expressed as q=[uvwp qr]".
The global coordinate system OXYZ is a fixed coordinate
system. Translational and rotational movement in the
global reference frame are represented by x=[xy z ¢ 0
y]", which includes earth fixed positions and Euler
angles. The surface boat contains a GPRS modem, a GPS
receiver, two photovoltaic panels and a methanol fuel
cell. The underwater vehicle contains the control and
navigation units and the perception systems with sonars,
a video camera and a multi-parametric probe. The two
vehicles are connected with an underwater cable with
Ethernet CAT5e and six 18AWG cables for power, which
support up to 500kg of traction.

Velocities Orientation | ig§
u=surge g=roll

V= sway 6= pitch
w=heave y=yaw

Figure 1. 3D Drawing of Solar-AEGIR. The autonomous vehicle
is capable of operating during long periods of time for
observation and monitoring.

A block diagram with all the elements integrated in the
overall system is shown in Figure 2. The boat has two
BP340] multi-crystalline photovoltaic panels, which
together generate a maximum power of 80W. These
panels have 36 cells in a 4x9 matrix connected in series.
The panels are connected to the solar charge regulator SS-
MPPT-15L, which features a smart tracking algorithm
that maximizes the solar energy harvest from the PV
system. The boat includes two LiFePOs batteries with
PCM (protection circuit module). The PCM manages the
internal cells and provides overcharge and discharge
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protection. A methanol fuel cell, EFOY Pro2200, is
included to produce energy when the panels do not
generate enough energy. This fuel cell has 90W of
nominal power and a charging capacity of 2160Wh/day.
A GPS receptor for marine application is included in the
boat. For communication, the boat integrates an eWON
2005CD, this a wireless VPN
connection with the remote operator station.

device establishes

Solar Panels

Surface Boat

Fuel Cell

Imaging Sonar

Underwater
vehicle

Sensor
Body hull
—

- ;

MU
Head hul
‘ Side Scan Sonar ‘ ‘ Acoustic Altimeter |

Figure 2. Block diagram of all the elements integrated into the
Solar Powered - Autonomous Underwater Vehicle.

The underwater vehicle is waterproof to 300m, although
this capability is limited to 50m by the umbilical
connection with the surface boat. Its dimensions are 1600
x 600 x 635 mm (LxWxH) and its weight in air is 168kg.

The underwater vehicle has two hulls: the body hull
which incorporates the package of batteries, propellers,
CPU, an inclinometer and a pressure sensor and the head
hull, which includes the perception device (video camera,
imaging sonar, side scan sonar, acoustic altimeter and
positioning unit). The battery package is composed of
eight LiFePOu batteries with PCM providing 96Ah of
capacity. The vehicle has five propellers, two main
propellers, two vertical thrusters and one transversal
thruster. The hull body incorporates a Crossbow CXTA02
inclinometer, which measures the roll and pitch angles.
The pressure sensor is a piezoelectric sensor with a range
of up to 300m of depth. The video camera takes photos

www.intechopen.com



and videos; the sight angle can be varied by the head
motors. The head hull integrates three 5W led focuses,
each one of them with an equivalent halogen power of
35W. The inertial measurement unit (IMU) contains
accelerometers, gyroscopes and magnetometers in 3D,
with a signal processor, which provides real-time drift-
free 3D orientation as well as calibrated 3D acceleration,
3D rate of turn and 3D earth-magnetic field data. The
underwater vehicle integrates outside the hulls an
acoustic altimeter to provide an accurate height of the
seabed. Also, the vehicle incorporates obstacle avoidance
sonar characterized by a scan sector up to 360° and a
range setting from 2m to 75m. Also, the vehicle includes
side-scan sonar for a wide range of seabed survey and
inspection duties. Figure 3 shows the SOLAR-AEGIR at
Mar Menor lagoon in order to carry out evaluation tests
on the navigation system and power management for on-
going missions.

(a) (b)

Figure 3. Test of navigation on the Mar Menor lagoon.
(a) Underwater Submarine. (b) Surface boat.

3. Power Management of Underwater Vehicle

The energetic system of the vehicle has two circuits, one
for control and the other for powering the motors. All of
the energetic system works at 24V, although the power
circuit can be configured to 48V. The power
management module implemented is based on [36]. The
power management module takes measurements of the
main voltages and currents of the energetic system and
makes balances, estimations and predictions about the
energy consumption and autonomies of the missions.
The energetic system has three operation modes:
operation, continuous recharge and deep recharge. In
the operation mode the system is recharged only by
solar energy and all the elements are in operation. In the
continuous recharge mode the system recharges the
batteries from the solar panels and the fuel cell and all
the elements are in operation. In the deep recharge
mode the motors are stopped, the perception system is
disconnected and the system recharges from the solar
panels and the fuel cell.

The average consumption and energy inputs for the
vehicle are shown in Table 1. The energy for the vehicle is
shown in Table 2. In Table 3 a summary of the energy
balance in operation mode is shown, in this case the
vehicle is in operation and only the solar contribution is
connected. Table 4 shows the energy data of this mode; in
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this case the solar panels and the fuel cell are connected.
Table 5 shows the deep recharge mode, in this case the
motors are stopped and the solar and fuel cells are
connected and the batteries are charged.

Elements Values
Perception Czlrcult 18 A
Consumption
Control Clr'Cult 26A
Consumption
Power Circuit 0A
Consumption (Motors stopped)
Solar Contribution 23A
Fuel Cell Contribution 375A

Table 1. Consumption and energy inputs.

Elements Values at 24V
Batteries 120 Ah
Fuel Cell 3.100 Ah
Table 2. Energy in vehicle.
Elements Values at 24V
Total Consumption 94 A
Total Generation 23A
Batteries Contribution 71A
Operating time 5h

Table 3. Energy balance at operation mode.

Elements Values at 24V
Total Consumption 9,4 A
Total Generation 6,05 A
Batteries Contribution 3,35 A
Operating time 10,7h

Table 4. Energy balance at continuous recharge mode.

Elements Values at 24V
Total Consumption 2.6 A
Total Generation 6.05 A
Batteries Contribution -3.45 A
Operating Time unlimited

Table 5. Energy balance at deep recharge mode.

4. Autonomous Navigation System Based on a Biologically
Inspired Neural Architecture

The main goal of the navigation system is to achieve an
appropriate level of spatial location at all times, allowing
trajectory correction using a neural control algorithm to
process the corresponding corrections.

A global positioning (GPS) and a RF
communications system on the surface vehicle are
mounted for an automatic location. In deep waters, the
neural control system represents the most suitable system

system
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for avoiding obstacles and determines the spatial location
of the vehicle.

The relative position of the underwater vehicle to the
surface vehicle is given by an inertial navigation system
combined with the control algorithm and a calibration of
positioning bathymetric points of reference. In addition,
in case of loss of the expected location, a complementary
algorithm is included to allow the vehicle to search and
find the seafloor reference.

4.1 Neural Control System

Figure 4 illustrates our proposed neural architecture. The
trajectory tracking control without obstacles is
implemented by the SODMN and the avoidance
behaviour of obstacles is implemented by a neural
network of biological behaviour.

For dynamic positioning in path tracking a PID controller
was incorporated into the architecture of the control
system. It allows the error signal to be smoothed in the
reaching of objectives.

v,
PID_|F—>{ SODMN |—

T
Yy = Vv

n=[x7.20.0y]

{ Auv |

Ultrasound sensors
(Scan sonar)

-
= [pr sz/]

v, = right horizontal propeller velocity.

=[ v, =l 1
Vo =WV pirs Vol 5Vpy =LV purs Vpurl 5V
v=velocity;  p=propeller;

h=horizontal; v = vertical;

/= transversal; 7 = right; v,y =lefthorizontal propeller velocity.

1= left.

Figure 4. Neural architecture for reactive and adaptive
navigation of an AUV.

4.2 Trajectory Tracking Control

The Self-organization Direction Mapping Network
(SODMN) learns to control the robot through a sequence
of spontaneously generated random movements (shown
in Figure 5). The random movements enable the neural
network to learn the relationship between angular
velocities applied at the propellers and the incremental
displacement that ensues during a fixed time step. The
proposed SODMN combines associative learning and
Vector Associative Map (VAM) learning [28, 36] to
generate transformations between spatial coordinates and
coordinates of propellers’ velocities. The nature of the
proposed kinematic adaptive neuro-controller is that it
continuously calculates a vectorial difference between the
desired and actual velocities, the underwater robot can
move to arbitrary distances and angles even though
during the initial training phase it has only sampled a
small range of displacements.

Furthermore, the online error-correcting properties of the
proposed architecture endow the controller with many

Int J Adv Robotic Sy, 2013, Vol. 10, 185:2013

useful properties, such as the ability to reach targets in
spite of drastic changes in the robot’s parameters or other
perturbations.

At a given set of angular velocities the differential
relationship between underwater robot motions in spatial
coordinates and angular velocities of propellers is
expressed by linear mapping. This mapping varies with
the velocities of the propellers.

Sensed Position in Spatial

714 Desired Spatial Position
Coordinates n . X

Active > ¢, =[cf ]!
Inactive = ¢, =0
i Context Fiel

7 Direction
Mapping Cells

P Desired
velocities of
Ph propellers

Vit
Sensed angular
velocities of
propellers

V,M“ ry «ﬂ“a

Figure 5. Self-organization direction mapping network
(SODMN) for the trajectory tracking of an AUV robot.

The transformation of spatial directions to the propellers’
angular velocities is shown in Figure 5. The tracking
spatial error (e) is computed to obtain the desired spatial
direction vector (x¢) and the spatial direction vector
(DVs). The DVs is transformed by the direction mapping
network elements Vi to corresponding motor direction
vector (DVm). On the other hand, a set of tonically active
inhibitory cells, which receive broad-based inputs that
determine the context of motor action, was implemented
as a context field. The context field selects the Vi elements
based on the propellers’” angular velocities configuration.

A speed-control GO signal acts as a nonspecific
multiplicative gate and controls the movement’s overall
speed. The GO signal is an input from a decision centre in
the brain and starts at zero before movement and then
grows smoothly to a positive value as the movement
develops. During learning, the sensed angular velocities
of propellers are fed into the DVm and the GO signal is
inactive.

The activities of cells of the DVs are represented in the
neural network by quantities (Si, Sz, *++, Sm), while the
activities of the cells of the motor direction vector (DVm)
are represented by quantities (Ri, R, -+, Rx). The direction
mapping is formed with a field of cells with activities Vi.
Each Vix cell receives the complete set of spatial inputs Sj,
j=1, ..., m, but connects to only one Ri cell (see Figure 5).
The mechanism that is used to ensure weights converge

www.intechopen.com



to the correct linear mapping is similar to the VAM
learning construction [28]. The direction mapping cells
(VER™¥) compute a difference in activity between the
spatial and motor direction vectors via feedback from the
DVm. During learning, this difference drives the
adjustment of the weights. During performance, the
difference drives DVm activity to the value encoded in
the learned mapping.

A context field cell pauses when it recognizes a particular
velocity state (i.e., a velocity configuration) in its inputs
and thereby disinhibits its target cells. The target cells
(direction mapping cells) are completely shut off when
their context cells are inactive. This is shown in Figure 5.
Each context field cell projects to a set of direction
mapping cells, one for each velocity vector component.
Each velocity vector component has a set of direction
mapping cells associated with it, one for each context. A
cell is “on” for a compact region of the velocity space. It is
assumed for simplicity that only one context field cell
turns “on” at a time. In Figure 5, inactive cells in the
context field are shown as white disks. The centre context
field cell is “on” when the angular velocities are in the
centre region of the velocity space, in this three degree-of-
freedom example. The “on” context cell enables a subset
of direction mapping cells through the inhibition variable
ck, while the “off” context cells disable the other subsets.
When the k' context cell is "off" or inactive (modelled as
c=0) in its target cells, the entire input current to the soma
is shunted away such that there remains only activity in
the axon hillock, which decays to zero. When the k'
context cell is "on" or active, cx =1, its target cells (Vi)
receive normal input.

Learning is obtained by decreasing weights in proportion
to the product of the presynaptic and postsynaptic
activities [22, 24, 28, 36]. Therefore, the learning rule can
be obtained by using the gradient-descent algorithm. The
training is done by generating random movements and
by using the resulting angular velocities and observed
spatial velocities of the AUV robot as training vectors to
the direction-mapping network.

4.3 Obstacle Avoidance Adaptive Neuro-Controller

The obstacle avoidance adaptive neuro-controller is a
neural network that learns to control avoidance
behaviours in an AUV robot based on a form of animal
learning known as operant conditioning. Learning, which
requires no supervision, takes place as the robot moves
around a cluttered environment with obstacles. The
neural network for avoidance behaviours (NNAB)
requires no knowledge of the geometry of the robot or of
the quality, number, or configuration of the robot’s
sensors (shown in Figure 6). Our implementation is based
on the Grossberg’s conditioning circuit, which follows
closely that of Grossberg & Levine [30, 31] and Chang &
Gaudiano [29].
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In this model the sensory cues (both conditioned stimuli
(CS) and unconditioned stimuli (UCS)) are stored in Short
Term Memory (STM) within the population labelled Sr,
which includes competitive interactions, to ensure that
the most salient cues are contrast enhanced and stored in
the STM while less salient cues are suppressed.

The population Sris modelled as a recurrent competitive
field in a simplified discrete-time version, which removes
the inherent noise and efficiently normalizes and
contrast-enhances the ultrasound sensors activations. In
the present model the CS nodes correspond to activation
from the robot's sonar sensors. In the network, I
represents a sensor value, which codes proximal objects
with large values and distal objects with small values.
The drive node (D) corresponds to  the
Reward/Punishment component of operant conditioning
(an animal/robot learns the consequences of its own
actions).

Conditioned stimuli (CS) are represented by ultrasound sensors (Scan sonar)

Angular Velocity Map

Angular velocity
of avoidance

D ¥ | Sensed Angular
Survival (7}.)/ T velocity

Figure 6. Neural network for the avoidance behaviour (NNAB).

Learning can only occur when the drive node is active.
Activation of the drive node (D) is determined by the
weighted sum of all the CS inputs, plus the UCS input,
which is presumed to have a large, fixed connection
strength, plus a homeostatic signal corresponding to a
sort of “survival instinct” (Ty), which is active at all times
and is a threshold that controls how easily the drive node
is activated. The drive node is active when the robot
collides with an obstacle, which could be detected
through a collision sensor, or when any one of the sonar
sensors indicates that an obstacle is closer than the
sensor’s minimum range. Then the unconditioned
stimulus (USC) in this case corresponds to a collision
detected by the robot. The activation of the drive node
and of the sensory nodes converges upon the population
of polyvalent cells (P). Polyvalent cells require the
convergence of two types of inputs in order to become
active. In particular each polyvalent cell receives input
from only one sensory node and all polyvalent cells also
receive input from the drive node (D).

Finally, the neurons (xmj) represent the response
(conditioned or unconditioned) and are thus connected to
the motor system. The motor population consists of nodes
(i.e., neurons) encoding the desired angular velocities of

Francisco Garcia-Cérdova and Antonio Guerrero-Gonzélez:
Intelligent Navigation for a Solar Powered Unmanned Underwater Vehicle



8

avoidance, i.e., the activity of a given node corresponds to
a particular desired angular velocity for the AUV robot.
When driving the robot, activation is distributed as a
Gaussian centred on the desired angular velocity of
avoidance. The use of a Gaussian leads to smooth
transitions in angular velocity, even with few nodes.

The output of the angular velocity population is
decomposed by SODMN into the angular velocities of the
left and right horizontal thrusters. A gain term can be
used to specify the maximum possible velocity. In NNAB
the proximity sensors initially do not propagate activity
to the motor population because the initial weights are
small or zero.

The robot is trained by allowing it to make random
movements in a cluttered environment. Specifically, we
systematically activate each node in the angular velocity
map for a short time, causing the robot to cover a certain
distance and rotate through a certain angle depending on
which node is activated. Whenever, the robot collides
with an obstacle during one of these movements, or
comes very close to it, the nodes corresponding to the
largest (closest) proximity sensor measurements just prior
to the collision will be active.

Before a collision occurs and before any learning has
taken place, the CS node sends activation to its
corresponding polyvalent cells. However, the connection
from the CS node to the drive node is very weak, so that
the drive node does not activate. Hence the polyvalent
cell only receives one kind of input and it does not
become active.

When the same CS node is on at the time of a collision,
the UCS causes the drive node to become active. The
drive node sends its activation to all polyvalent cells;
however, only the polyvalent cell corresponding to the
active CS turns on, because it is the only one receiving
both kinds of input. At this point, the activation of the
drive node allows two kinds of learning to take place
simultaneously: the learning that couples sensory nodes
(sonar sensors) with the drive node (the collision) and the
learning that inhibits the movements of the angular
velocity pattern that existed just before the collision.

The first type of learning follows an associative learning
law with decay. This learning enables the most active
sensory nodes to accrue strength in their connections to
the drive node, so that eventually the sensory nodes will
be able to activate the drive signal on their own and thus
to activate the polyvalent cells (P) and ultimately a motor
response. The primary purpose of this learning scheme is
to ensure that learning occurs only for those CS nodes
that were active within some time window prior to the
collision (UCS).
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The second type of learning, which is also of an
associative type but inhibitory in nature, is used to map
the sensor activations on the angular velocity map. This
learning takes place between the polyvalent cells and the
cells that actually generate the robot’s movements,
whereby simultaneous activation of the pre- and post-
synaptic cells leads to an increasingly large negative (i.e.,
inhibitory) weight. By using an inhibitory learning law,
the polyvalent cells corresponding to the active sensory
nodes acquire negative connection weights that learn to
generate a pattern of inhibition matching the angular
velocity profile active at the time of collision.

Once learning has occurred, the activation of the angular
velocity map is given by two components (see Figure 7).
An excitatory component, which is generated directly by
the sensory system, reflects the angular velocity required
to reach a given target in the absence of obstacles. For
simplicity here we assume that the angular velocity is
proportional to the angle between the robot’s current
heading and the target. A second, inhibitory component,
generated by the conditioning model in response to
sensed obstacles, moves the robot away from the
obstacles as a result of the activation of sensory signals in
the conditioning circuit.

Angular velocity map

. Excitatory (target)

" Summation

Activity

Neurons

(@)

Angular velocity map
.""~...Excitatory (target)

Summation

Activity

5 10 15 20
Neurons

(b)
Figure 7. Positive Gaussian distribution represents the angular
velocity without obstacle and negative distribution represents
activation from the conditioning circuit. The summation
represents the angular velocity that will be used to drive the
robot. Notice how the maximum peak of the excitatory Gaussian

is shifted by the inhibitory Gaussian.

When an excitatory Gaussian is combined with an
inhibitory Gaussian at a slightly shifted position, the
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resulting net pattern of activity exhibits a maximum
peak that is shifted from the excitatory Gaussian in a
direction away from the peak of the inhibitory
Gaussian. In Figure 7, we superimpose a positive
Gaussian centred over the middle of the map and a
negative Gaussian to the right. The net pattern of
activation shows a positive peak that is shifted to the
left of centre. Imagine now that the positive Gaussian
represents the angular velocity at which the robot must
move to reach a target (straight ahead) and that the
negative Gaussian represents an obstacle to the right of
the robot. In this case, the two Gaussians interact,
causing the robot to turn to the left, avoiding the
obstacle. Hence, the presence of an obstacle to the right
causes the robot to shift to the left and vice-versa (see
Figure 7b).

5. Experimental Results

High-level control algorithms (SODMN and NNAB) are
written in VC++ and run with a sampling time of 10ms on
an embedded CPU (Matrix MXC-6101-D) with an Intel
core i7™ 620LE to 2.0 GHz and chipset QMb57. The lower
level control layer is in charge of the execution of the
high-level velocity commands. It consists of a distributed
control system based on CANOPEN nodes with a master
based on NI CRIO.

The first tests of navigation on the surface and
immersion were performed in a pool. The robot was
immersed in a 15m deep controlled pool in the
industrial area of Fuente Alamo, Murcia-Spain. These
tests confirmed the manoeuvrability of the vehicle and
the response sensitivity of the controls in remote mode.
Navigation tests verified directional stability, turns and
immersions. In all cases we were able to verify the
correct response to requests from the vehicle operator.
The test was developed for about an hour, at which time
the battery charge did not show signs of exhaustion and
for a period of 120 hours where the solar panels and fuel
cell worked to keep the batteries charged. It could also
verify the accuracy of the measurement of the total
displacement of the submerged vehicle, a fact that is
essential to being able to properly ballast in each future
operation.

Importantly, the AUV must be trained in remotely
operated vehicle (ROV) mode so that the algorithm learns
the manoeuvres of avoidance behaviour and recovery of
the path in unexpected situations, in order to implement
the procedures in autonomous navigation mode
(unmanned AUV). In this first test we have been able to
verify the feasibility of the control system. Figure 8 shows
the early stages of the navigation tests.

The proposed neural network model is capable of
generating an optimal trajectory for underwater
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vehicles in an arbitrarily varying environment. The
state space is the Cartesian workspace of the
underwater robot. Figure 9 shows the performance of a
trajectory-tracking controller implemented like a
SODMN. These tests were carried out in Fuente
Alamo-swimming pool in a 3D workspace without any
obstacles, with an initial position (Po) at (x, y, z) = (1, 1,
1)m and an initial orientation as shown in figures as
(po, B0, wo). Note that the depth was recorded as
positive (Z). The approach behaviours and the tracking
of a trajectory by the AUV robot with respect to the
reference trajectory are shown in Figure 9. The desired
trajectory is a sine wave with an initial position of Pao
(2, 3, 5)m and a final position of (20, 6, 4)m.

(b)

Figure 8. Navigation trials at the Mar Menor Lagoon. (a) Surface
navigation and successful underwater operation tests. (b) AUV
powered by solar energies and fuel cell, operating during long
periods of time in order to carry out observation and monitoring.

In our model of NNAB, the range sensors initially do not
propagate activity to the motor population because the
initial weights are small or zero. The robot is trained by
allowing it to make random movements in a cluttered
environment. The goal of the training phase is to give
each CS node the opportunity to sample several
movements that lead to collisions.
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Figure 9. Tracking control of a desired trajectory. (a) The tracking
performance of the AUV. (b) Tracking error. (c) Tracking velocity.
(d) Tracking orientation.
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In practice we found that it is sufficient for each CS
node to be active during only a handful of collisions,
when using nodes in the angular velocity map. In order
to generate a wide range of movements, during the
training phase we turn on each node in the angular map
for a brief time until a collision is registered, then switch
to a new angular map node and repeat the process. We
can achieve good avoidance behaviour in this way with
only a few collisions for each node. Figure 10(a)
illustrates the learning process. We obtained this curve
in the following way: starting with all the weights in the
network set to zero, we turn on one node in the angular
map and let the robot collide with an obstacle,
generating a small amount of learning, then turn on
another node and so on. At regular intervals during the
training phase we temporarily disable learning and
allow the robot to move from a new starting position for
a total of 500 steps through the algorithm and measure
in how many of the 500 steps the robot detected a
collision. On the first trial, before any learning has taken
place, as soon as the robot collides it remains stuck
against the obstacle, so the number of collisions is very
close to 500. By the time we have trained through 50
collisions (total: meaning that each of the sensory nodes,
on average, has sampled fewer than ten collisions. The
signal of the avoidance sonar is discomposed in ten
sensory nodes) the robot is able to navigate with
virtually no collisions.

The inhibitory weights developed by the neural
network are depicted in Figure 10(b). The adaptive
connections between the sensory nodes and the
angular velocity map develop in such a way that
angular velocities that make the robot turn to the right
(nodes close to 20) are inhibited when the sensors
located at the right side of the robot are active (sensory
nodes 6 and 10). Similar yet opposite inhibitory
weights develop for left turns when obstacles are
sensed at the left side. In the middle of the figure
(nearly straight-forward movements with obstacles
located straight ahead), a Gaussian-like inhibitory
curve accounts for the fact that in such cases turns to
either the left or the right are needed to avoid
collisions.

To carry out these tests of obstacle avoidance the Mar
Menor coastal Lagoon was chosen. The Mar Menor is a
hyper saline coastal lagoon located in the Region of
Murcia (Spain) in the South Western Mediterranean Sea.
Its special ecological and natural characteristics make
the lagoon a unique natural water body, being the
largest lagoon in Europe. Its General characteristics are:
6-10m max. depth, 135km? area, 2.5m mean depth and
42-49 P.S.U. salinity. Figure 11 shows the Mar Menor
Lagoon.
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Figure 10. Results of the learning process of NNAB. (a) Learning
in the AUV, measured as the number of collisions in steps as a
function of the total number of collisions experienced during
training. Min and Max refer to the best and worst learning
curves out of a set of five training trials. (b) Adaptive
connections between the sensory nodes and the angular velocity
map developed by the AUV for the obstacle avoidance
behaviour.

ar Menor Lagoon

Figure 11. Location of the study zone. Aerial view of the Mar
Menor lagoon, in Murcia, Spain.

Figure 12 shows the NNAB’s performance with the
presence of several obstacles. The underwater robot starts
from the initial position Po=(10,30,1)m and reaches a
desired position (goal). During the movements, whenever
the underwater robot is approaching an obstacle (boat),
the inhibitory profile from the conditioning circuit
(NNAB) changes the selected angular velocity and makes
the underwater robot turn away from the obstacle. The
presence of multiple obstacles at different positions in the
underwater robot’s sensory field causes a complex
pattern of activation that steers the underwater robot
between obstacles.
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Figure 12. Obstacle avoidance trajectory with a goal of (50,35,1)m
in (a) and of (50,20,1)m in (b).

6. Conclusion

The aim of this work was to design a Solar Unmanned
Underwater Vehicle for long-term operations, for
which two aspects were particularly important: energy
and navigation. The energetic aspect is addressed by
including photovoltaic panels, a fuel cell and a module
manager to monitor the power status of the vehicle
and the navigation aspect is addressed by creating a
multi-sensory architecture and multi-network on the
basis of cortical areas involved in motion planning,
trajectory and the task. In this article, we have
implemented a neurobiologically
architecture for the navigation system of a solar
powered Unmanned Underwater Vehicle. This neural
architecture allows trajectory tracking and obstacle
avoidance behaviours online

inspired neural

in unstructured and
unknown environments. A biologically inspired neural
spatial reaching tracking has been
developed. This neural network is implemented as a
kinematical adaptive neuro-controller. The avoidance
behaviours of obstacles were implemented by a neural
network that is based on a form of animal learning
known as operant conditioning.

network for

Francisco Garcia-Cérdova and Antonio Guerrero-Gonzélez:
Intelligent Navigation for a Solar Powered Unmanned Underwater Vehicle



The efficacy of the proposed neural architecture has been
successfully demonstrated in experimental results for the
trajectory tracking and reaching, as well as avoidance
behaviours of the underwater robot. Tests carried out
confirm the validity of the platform for its use as a
multitasking vehicle for oceanographic research and
missions. Due to the ability to carry out operations under
remote control and when autonomous, the AUV-UPCT is
suitable for a wide variety of missions foreseen for the
future.
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