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ABSTRACT 

Performance Analysis of Hybrid AI-based Technique for Maximum Power Point 

Tracking in Solar Energy System Applications 

(May 2023) 

Adeyemi Taylor, M.S. EE, Prairie View A&M University

    Chair of Advisory Committee: Dr. Sarhan Musa  

Demand is increasing for a system based on renewable energy sources that can be 

employed to both fulfill rising electricity needs and mitigate climate change. Solar energy 

is the most prominent renewable energy option. However, only 30%-40% of the solar 

irradiance or sunlight intensity is converted into electrical energy by the solar panel system, 

which is low compared to other sources. This is because the solar power system's output 

curve for power versus voltage has just one Global Maximum Power Point (GMPP) and 

several local Maximum Power Points (MPPs). For a long time, substantial research in 

Artificial Intelligence (AI) has been undertaken to build algorithms that can track the MPP 

more efficiently to acquire the most output from a Photovoltaic (PV) panel system because 

traditional Maximum Power Point Tracking (MPPT) techniques such as Incremental 

Conductance (INC) and Perturb and Observe (P&Q) are unable to track the GMPP under 

varying weather conditions. Literature (K. Y. Yap et al., 2020) has shown that most AI-

based MPPT algorithms have a faster convergence time, reduced steady-state oscillation, 

and higher efficiency but need a lot of processing and are expensive to implement. 

However, hybrid MPPT has been shown to have a good performance-to-complexity ratio. 

It incorporates the benefits of traditional and AI-based MPPT methodologies but choosing 

iii 



 

 

 

the appropriate hybrid MPPT techniques is still a challenge since each has advantages and 

disadvantages. In this research work, we proposed a suitable hybrid AI-based MPPT 

technique that exhibited the right balance between performance and complexity when 

utilizing AI in MPPT for solar power system optimization. To achieve this, we looked at 

the basic concept of maximum power point tracking and compared some AI-based MPPT 

algorithms for GMPP estimation. After evaluating and comparing these approaches, the 

most practical and effective ones were chosen, modeled, and simulated in MATLAB 

Simulink to demonstrate the method's correctness and dependability in estimating GMPP 

under various solar irradiation and PV cell temperature values. The AI-based MPPT 

techniques evaluated include Particle Swarm Optimization (PSO) trained Adaptive Neural 

Fuzzy Inference System (ANFIS) and PSO trained Neural Network (NN) MPPT. We 

compared these methods with Genetic Algorithm (GA)-trained ANFIS method. Simulation 

results demonstrated that the investigated technique could track the GMPP of the PV 

system and has a faster convergence time and more excellent stability. Lastly, we 

investigated the suitability of Buck, Boost, and Buck-Boost converter topologies for hybrid 

AI-based MPPT in solar energy systems under varying solar irradiance and temperature 

conditions. The simulation results provided valuable insights into the efficiency and 

performance of the different converter topologies in solar energy systems employing 

hybrid AI-based MPPT techniques. The Boost converter was identified as the optimal 

topology based on the results, surpassing the Buck and Buck-Boost converters in terms of 

efficiency and performance. 

Keywords—Maximum Power Point Tracking (MPPT), Genetic Algorithm, Adaptive 

Neural-Fuzzy Interference System (ANFIS), Particle Swarm Optimization (PSO) 
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GLOSSARY 

Terms Definitions 
Adaptive Neural Fuzzy Inference System A system that combines fuzzy logic and 
(ANFIS) neural networks for modeling complex 

relationships and decision-making. 
Artificial Intelligence (AI) Computer systems designed to perform 

activities that typically necessitate human 
cognitive abilities, such as learning, 
problem-solving, and decision-making. 

Boost Converter A DC-DC converter that increases the 
input voltage to a higher output voltage. 

Buck Converter A DC-DC converter that decreases the 
input voltage to a lower output voltage. 

Buck-Boost Converter A DC-DC converter that can either 
increase or decrease the input voltage as 
required. 

Cuckoo Search (CS) An optimization algorithm inspired by the 
breeding behavior of cuckoo birds that 
helps solve complex problems. 

DC-DC converter An electronic device that converts direct 
current (DC) voltage from one level to 
another. 

Flower Pollination Algorithm (FPA) A nature-inspired optimization algorithm 
based on the pollination process of 
flowering plants. 

Fuzzy Logic Controller (FLC) A control system that uses fuzzy logic to 
make decisions based on approximate 
reasoning. 

Global Maximum Power Point (GMPP) The highest power output point on the 
power-voltage curve of a solar panel under 
varying conditions. 

Hill Climbing (HC) Algorithm An optimization algorithm that iteratively 
searches for the best solution by making 
small changes to the current solution. 

Incremental Conductance (IC) An MPPT algorithm that compares a solar 
panel's incremental and instantaneous 
conductance to find the maximum power 
point. 

Least Squares Estimator (LSE) A statistical method used to find the best-
fitting line or curve through data points by 
minimizing the sum of squared errors. 

Maximum Power Point Tracking (MPPT) A technique that optimizes the power 
output of solar panels by finding and 
operating at their maximum power point. 
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Maximum Power Points (MPPs) Points on the power-voltage curve where 
the solar panel generates maximum 
electrical power. 

Neural Network (NN) A computing system inspired by the human 
brain, designed to learn patterns, and make 
decisions. 

Open Circuit Voltage The voltage across a solar cell's output 
terminals when no current is flowing. 

Partial Shading Conditions (PSCs) Uneven sunlight on a solar panel causing 
reduced performance and multiple 
maximum power points. 

Particle Swarm Optimization (PSO) A computational method inspired by the 
social behavior of birds or fish that helps 
solve optimization problems. 

Perturb and Observe (PO) An MPPT algorithm that adjusts the 
operating point of a solar panel to find the 
maximum power point. 

Photovoltaic (PV) A technology that converts sunlight into 
electricity using solar cells. 

Proportional-Integral (PI) controller A control mechanism that adjusts the 
output based on the error between the 
desired and actual values, considering both 
the present and past errors. 

Renewable Energy Sources (RES) Natural energy sources that can be 
replenished, such as solar, wind, and 
hydropower. 

Response Time System's duration to react to an input or 
change in conditions. 

Salp Swarm Optimization A nature-inspired optimization algorithm 
based on the swimming behavior of salps, 
a type of marine organism. 

Short Circuit Current The current that flows when a solar cell's 
output terminals are directly connected, 
providing no resistance. 

Slew Rate The rate at which the output of a system 
can changes in response to an input signal. 

Solar irradiance The amount of sunlight energy reaching a 
specific Earth area, usually measured in 
watts per square meter (W/m²). 
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CHAPTER 1 

1. INTRODUCTION 
1.1 Motivation 

The present civilized world is currently facing several serious challenges, the most 

significant of which are global energy shortages and threats posed by climate change. 

The principal causes of the matter are the limited reserves of fossil fuels and the release 

of gases that contribute to global warming. It is increasingly recognized that the best 

solution to these issues is to switch to Renewable Energy Sources (RES) such as solar, 

wind, and tidal power. Solar energy systems are one of the RES that is regarded as a 

viable source for a solution to the issue since solar energy can be obtained in an 

abundant supply and is free of charge. 

Solar photovoltaic cells, often called PV cells, use a power electronics 

converter to convert solar energy into regulated electrical energy [1]. These solar PV 

cells have linear and nonlinear features, but their efficiency is relatively poor [2]. Under 

altered environmental conditions, such as partially shaded, solar cells' characteristics 

become more complicated. Because of these problems, researchers need to maximize 

the amount of electricity that can be extracted from solar PV cells even though 

atmospheric conditions vary. Maximum Power Point Tracking (MPPT) is a technique 

that optimizes the power output of solar panels by finding and operating at their 

maximum power point. The power transfer efficiency from the solar cell varies with 

factors such as sunlight, shade, solar panel temperature, and the electrical 

characteristics of the load. MPPT aims to mitigate this issue [3].  

This dissertation follows the style of IEEE journal on Power and Energy Systems. 
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1.2 Problem Statement 

Since the Maximum Power Point (MPP) of solar panels changes depending on the 

environment, it is important to keep them running close to the maximum point to get 

the most power out of them. The MPP can be monitored in various ways, both 

conventional and unconventional. Because of their accessibility and simplicity, 

traditional approaches (such as Perturb and Observe (PO) [4] and Incremental 

Conductance (IC) [5]) have seen widespread usage. Because the disturbance persists 

even when the system works at MPP, both the PO and IC approaches lead to power 

oscillations around the MPP. The duty cycle step might be decreased to mitigate the 

issue. However, because weather patterns change, the program will follow the MPP 

more slowly, which will cause more power loss. In addition, the MPP may differ from 

the one reached by using conventional methods. Since there is often more than one 

optimum on the P-V curve when partial shading is present, these algorithms do their 

searches on a point-by-point basis. 

Throughout the previous decade, several studies on alternative MPPT 

techniques have been reported using fuzzy logic [6], PSO [7], artificial neural networks 

[8], and other techniques. Despite promising theoretical conclusions, their intricacy and 

associated knowledge requirements make practical application challenging. Hybrid 

approaches are the most effective overall because they mix and integrate two or more 

classic and non-traditional algorithms, which helps to balance out genuine concerns [9] 

mutually. Researchers still have trouble choosing the best hybrid solutions because the 

output of a solar energy system depends on things like how hard it is to set up and how 

fast it can track changes in the solar irradiance.  

15 



 
 

 

  

 

 

 

 

 

 

 

 

1.3 Contribution 

As a result, the evaluation and classification of high-performing MPPT techniques 

based on three distinct categories, namely, traditional methods, techniques based on 

artificial intelligence, and hybrid techniques, is the primary emphasis of this study. The 

contribution of this dissertation is as follows: 

 Modeled and implemented a Genetic Algorithm (GA) trained Adaptive Neuro-

Fuzzy Inference System (ANFIS) for GMPP estimation and evaluated its 

accuracy and reliability under a range of solar irradiance and PV cell 

temperature values. 

 Compared various high-performing AI-based MPPT algorithms for GMPP 

estimation and evaluated their performance under different solar irradiance and 

cell temperature conditions. 

 Evaluated hybrid AI-based MPPT techniques that provide an optimal balance 

between performance and complexity, merging the advantages of traditional 

and AI-based MPPT methods. 

 Investigated and analyzed the suitability of Buck, Boost, and Buck-Boost 

converter topologies for hybrid AI-based MPPT in solar energy systems. 

 Provided insights into the importance of carefully selecting the converter 

topology and AI-based MPPT algorithm to optimize system performance and 

maximize power output in solar energy systems. 

1.4 Outline of the Dissertation  
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This dissertation proposal comprises five chapters and is framed as follows: the first 

chapter introduces solar energy technology and the motivation behind this work. Then 

the chapter further presents a brief overview on MPTT and how it finds application in 

tracking maximum power from the PV system. Chapter 2 presents a broad review of 

the different MPPT techniques under three categories, their areas of applications, 

benefits, and drawbacks. Some relevant research works were also reviewed under these 

MPPT categories. Chapter 3 investigates a method for estimation of GMPP using 

Hybrid AI-based MPPT algorithm for photovoltaic system under varying weather 

conditions. This investigated method was modeled and simulated in Matlab to 

demonstrate the technique’s correctness and dependability in estimating GMPP. 

Chapter 4 presents an evaluation of the investigated hybrid method with other best 

performing AI based techniques for MPPT optimization. Chapter 5 investigates the 

suitability of Buck, Boost, and Buck-Boost converter topologies for hybrid AI-based 

MPPT in solar energy systems under varying solar irradiance and temperature 

conditions. Chapter 6 concludes the dissertation by highlighting future research 

recommendations and opportunities. 
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CHAPTER 2 

2. FUNDAMENTAL CONCEPTS AND LITERATURE REVIEW 

2.1 Different MPPT Techniques 

The output power of a photovoltaic module depends on the solar irradiation and the 

temperature of the solar cells. Consequently, to optimize the efficiency of the 

renewable energy system, it is required to monitor the maximum power point of the PV 

array. A PV array has a unique operating point that can provide the most significant 

power to the load. This unique operating point is termed Maximum Power Point (MPP). 

To run a PV array at its MPP, the PV system must incorporate a maximum power point 

tracking (MPPT) controller since the angle of this point varies nonlinearly with solar 

irradiation and cell temperature. Numerous MPPT algorithms have been created and 

widely adopted [10]. The most common control method consists of acting 

automatically on the duty cycle to set the solar energy generator's output to its ideal 

level, regardless of fluctuations in meteorological circumstances or unexpected 

changes in demand. Maximum power point (MPP) occurs when the derivative of PV 

power by voltage (dPpv/dVpv) is equal to zero. To obtain the maximum power point of 

operation, the generator voltage Vpv is adjusted so that it rises when the slope dPpv/dVpv 

is positive and falls when it is negative. Figure 2.1 depicts a control scheme allowing 

the continuous extraction of the peak power. Vopt is the maximum power voltage, while 

K is proportional gain. Power fluctuation between two active sites is DPpv, while 

voltage variation is DVpv. Overall, the MPPT procedure primarily decreases the PV 

system's cost and enhances its overall efficiency [11]. Since the first usage of 

photovoltaic (PV) systems as off-grid and grid-connected systems, several researchers 
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have suggested and developed various techniques to collect the most significant amount 

of electricity from PV panels. As a result, there has been a fast advancement in the 

methodologies. Due to this, many academics have classified MPPT approaches 

depending on their modernity. Based on their level of modernity, MPPT approaches 

may be divided into three groups: classical techniques, artificial intelligence 

techniques, and hybrid techniques. Since photovoltaic (PV) systems began, 

conventional approaches have utilized fundamental algorithms such as P&O and INC. 

AI techniques are current methods that use diverse methodologies and need significant 

calculations. The hybrid methodology may be divided into methods combining two 

conventional ways [12], two AI methods [13], and a mixture of the traditional and AI 

methods [14]. 

Figure 2.1 MPPT Control Scheme 

Many conventional MPPT methods, with or without PSC, have been used to trace the 

one-of-a-kind MPP under uniform conditions. The most well-known traditional 

methods are called "perturb and observe," "incremental conductance," "constant 

voltage," and "hill climbing," respectively. 

2.1.1 Traditional Methods 
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2.1.1.1 Perturb-and-Observe Technique 

The Perturb-and-Observe (P&O) approach takes the measured PV voltage, current, and 

output power. It utilizes these to choose whether to raise or lower the voltage by 

adjusting the duty ratio of the DC-DC converter. This continues until the maximum 

power point is tracked. On the PV characteristic, the concept that underpins this method 

is shown in Figure. 2.2. The reasoning behind the P&O is to mess with the PV output 

voltage and then see how much power shifts. If PV power captured increases, the 

perturbation choice should continue in the same direction whether PV voltage rises or 

falls until MPP is observed; however, the voltage increment (V) should be reversed if 

output power declines. When the dP/dV ratio equals zero, the power that can be 

harvested is at its highest [15]. The P&O technique's flowchart is seen in Figure 2.3 

below. It has been shown that the P&O approach is practical when the insolation does 

not change drastically over a short period. On the other hand, the P&O technique cannot 

rapidly determine where the most significant power spots are located. Additionally, this 

algorithm may track in the other direction in quickly shifting irradiance levels. 

Figure 2.2 Perturb & Observe P-V Characteristics Modified From [15]. 
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Figure 2.3 Flow Chart of Perturb and Observe 

2.1.1.2 Incremental Conductance 

Finding the derivative of the PV output power with respect to the output voltage, or 

dP/dV [17], is the primary goal of the incremental conductance method. When the 

dP/dV of a PV system approaches zero, the system can generate its maximum output 

power. Based on the incremental power and voltage output from the PV system, the 

controller determines dP/dV. The controller will gradually increase or decrease the PV 

voltage until dP/dV approaches zero, at which point the PV array will produce its 

maximum amount of energy. The InC process is depicted in the flowchart shown in 

Figure 2.4 flowchart. It can more quickly and correctly follow the MPP because it uses 

the distinct qualities of both the PV array's output PV curve and its I-V curve. For the 
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IncCond MPPT method, the MPP is followed when dP/dV = 0 based on the P-V 

characteristic slope, as shown in Eqn. 2.1 below. 

 
 

 
𝐼 𝑉   (2.1)

 
 0 

 by rearranging the Eqn. 2.1, we get:                             (2.2) 
 

PV voltage and current increment are denoted by dV and dI. Figure 2.5 [18] shows the 

MPP being followed and captured when the condition 
 

 
 
is met. For a given 

P-V curve, the operating point will be to the left of the MPP if   
 

  and 

right of the MPP if   
 

 . 

This algorithm's speed in power tracking is its key benefit over the P&O 

technique. However, employing a derivative algorithm causes the outcome to be 

unstable. Furthermore, low sunlight conditions make the differentiation process more 

challenging, leading to poor outcomes. 

Figure 2.4 Flow Chart of Incremental Conductance 
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4. 

Figure 2.5. Incremental Conductance P-V Characteristics 

2.1.1.3 Constant Voltage 

Two types of constant voltage regulation exist: the output voltage is held at a fixed 

value regardless of the input voltage, and the output voltage is held at a fixed ratio to 

the open circuit voltage as measured. It involves temporarily cutting off power flow 

and measuring the open-circuit voltage with no current flowing through it. Once the 

open-circuit voltage Voc has been determined, the controller may begin operation with 

the voltage set to a predetermined ratio, such as 0.76. This is the maximum practical 

power calculated in advance, either via empirical testing or theoretical modeling [19]. 

By controlling the array voltage and making it coincide with the fixed reference voltage 

Vref = kVoc, the array's operating point may be maintained close to MPP. Vref is set as 

a ratio to Voc, although its value may be adjusted to achieve maximum performance 
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considering other criteria besides the MPP. The approach allows possible future 

improvement since, among other things, the ratio of MPP voltage to Voc is nearly 

constant. Although its efficacy is modest in comparison to other active MPPT systems, 

its implementation is simple, and its installation costs are inexpensive. Figure 2.6 [20] 

depicts the block architecture of a CV controller, where V PV is merely monitored to 

supply the duty cycle of the DC-DC converter via the PI regulator to track the MPP. 

Figure 2.6 Block Architecture for CV Controller. 

2.1.1.4 Hill Climbing Technique 

This technique's operation resembles that of the P&O approach. Instead of adjusting 

the PV panel's current or voltage, this technique updates the panel's operating point by 

changing the duty cycle [21]. If raising the duty cycle results in more output power, the 

duty cycle will be extended further; otherwise, the duty cycle will be lowered [22]. The 

HC approach is appealing because it eliminates the need for a proportional-integral (PI) 

action when altering the power converter's duty cycle [23]. The duty cycle is regularly 

adjusted, always going toward higher output power and with a fixed step size. 

Fluctuations around the MPP dramatically impact the efficiency of PV systems, and 

this approach is no exception since the duty cycle feeds the power converter directly. 

2.1.2 Artificial Intelligence Methods 
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Slow tracking speed and poor efficiency under quick irradiance change and shade 

circumstances are only two of the many problems with conventional MPPT systems. If 

the GMPP arises after the LMPP during the search operation, under shading 

circumstances, traditional MPPT methods will only target the LPP's first peak and then 

center their calculations there [24]. The use of AI techniques has been offered as a 

means of addressing these concerns. Artificial intelligence techniques may lessen 

disturbances in the vicinity of MPP. These techniques have proven effective in various 

settings, both with and without shielding from the sun [25]. Many methods have been 

developed for monitoring the MPP of PV systems, most of which are based on 

optimization concepts. We narrowed our emphasis to the methods with the highest 

reported performance for this analysis. These techniques formed the basis for our 

proposed method, including ANN, FLC, PSO, and GA.  

2.1.2.1 Artificial Neural Network Technique 

ANNs aim to make algorithms as close as possible to the human brain regarding how 

they interpret data. An essential step in this direction is the development of highly 

parallelized networks, with neurons serving as the primary nonlinear building blocks. 

Each model's parallel network is trained to address a unique challenge [26]. A variable 

outside the ANN itself determines the activations of the neurons in the input layer of 

an ANN. As a rule, networks have three distinct levels: input, hidden, and output. The 

input layer takes in information from the outside world, while the output layer delivers 

that data to the intended recipient. In Figure 2.7 [27], we see an overview of the ANN 

framework. There might be several layers between the input and output stages that are 

only sometimes visible. Any combination of open-circuit voltage (VOC), short-circuit. 
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Figure 2.7 Framework of ANN. 

current (ISC), irradiance (G), and temperature (Tj) may be used as input variables in 

photovoltaic systems. 

Mainly, ANNs may discover complicated nonlinear correlations between 

dependent and independent variables without a precise mathematical model. Many 

MPPT controllers using ANN have been created [28] to solve the problems 

encountered by earlier versions of the typical ANN techniques. To solve this nonlinear 

problem, the authors of [29] suggest an ANN-fitted MPPT that maximizes efficiency. 

The suggested ANN-MPPT is compared to more standard approaches like the P&O 

technique. Regarding efficiency and reducing oscillations around the MPP output, the 

analytical findings reveal that the ANN-MPPT-based technique excels over the 

conventional P & O MPPT. 

K. H. Chao et al., suggest [31] an Extension Neural Network-based MPPT 

approach (ENN). The proposed ENN MPPT algorithm can automatically adjust the 

step size. Compared to more traditional fixed step size P&O and INC approaches, the 

offered strategy can effectively improve both the dynamic response and steady-state 

performance of PV systems simultaneously. The simulation results demonstrate the 
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efficiency of the proposed MPPT method utilizing the PSIM circuit-based model. The 

proposed ENN MPPT algorithm may also be easily implemented due to its low 

dependence on predefined data and straightforward learning procedures. According to 

Ming-Fa Tsai et al., a new MPPT method [31] is proposed using a neural network 

compensator based on the power versus voltage slope. A neural network insulates PV 

systems from the unpredictability of solar irradiation, ambient temperature, and load 

electrical characteristics. The duty cycle of a dc/dc converter may be controlled using 

a PI controller. The modeling and experimental findings have shown that the suggested 

MPPT controller works well when exposed to a certain level of solar irradiation and a 

specific group of partial shade. Based on a small number of power measurements from 

the PV system, Chiu YH et al., offer an ANN MPPT-based technique [32] for quickly 

identifying GMPP under changeable shading circumstances. Voltage and current 

sensors alone were employed in the process; hence no external sensors were required. 

The suggested solution does not need any new hardware and is not very sensitive to 

changes in system parameters, making it very budget friendly. According to the 

simulation findings, there is a compromise between the amount of power-voltage 

characteristic scansions, the ANN's size, and its forecast accuracy. 

2.1.2.2 Fuzzy Logic Controllers 

Recent years have seen an uptick in the usage of Fuzzy Logic Controllers (FLC) for 

locating the MPP [33, 34, 35]. FLC finds the optimal temperature and light intensity at 

which to operate at peak efficiency. In this situation, the fuzzy logic controller takes in 

power (DPpv) and voltage (DVpv) as inputs [36, 37]. The result is a shift in the 

reference voltage (DVpv, ref). It requires little effort to set up guidelines that will lead 

to convergence on the ideal solution. These regulations are conditional upon power and 
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voltage changes (DPpv and DVpv, respectively). The operating point is raised if the 

power input (Ppv) is raised. On the other hand, if the power level (Ppv) dropped, the 

voltage level (Vpv, ref) should also have dropped. Based on these guidelines, the MPPT 

algorithm measures the solar power and voltage variations, then suggests a voltage 

reference DVpv, ref variation based on Eq. (2.3). 

Δ𝑃  𝑃 𝑘   𝑃 𝑘  1
pv 𝑉 𝑘   𝑉 𝑘  1  (2.3)
𝑉 𝑘   𝑉 𝑘  1  Δ𝑉 𝑘  

Where Ppv(k) is the power output of the photovoltaic generator at time k, Vpv(k) is the 

voltage output at time k, and Vpv, ref(k) is the voltage output at the moment of 

reference. If a significant rise in voltage Vpv also results in a large increase in power 

Ppv, the controller will keep pushing the reference voltage Vpv, ref, up by a significant 

amount (V to W or W to X). When a considerable rise in voltage Vpv results in a drop 

in power Ppv, the controller will reduce the reference voltage Vpv, ref to quickly boost 

power Ppv. Optimal stabilization begins when a decrease in voltage Vpv results in a 

minimal rise in power Ppv. A sample Ppv (Vpv) track for a fixed irradiance and 

temperature is shown in Figure 2.8. The same rules trace the maximum power point 

when irradiance and temperature vary. 
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Figure 2.8 Operation Plot for FLC. 

2.1.2.3 Particle Swarm Optimization Technique 

Particle swarm optimization (PSO) has excellent promise among EA methods because 

of its low-overhead design, straightforward applicability, and quick calculation speed 

[39]. As a result, PSO is now one of the most often utilized approaches in the MPPT 

sector [40]. Search optimization is at the heart of PSO's design; thus, it can find the 

MPP for any given P-V curve, regardless of the conditions in which the curve is 

operated. The PSO approach may be formulated as in Eq.2.4 [40]: 

𝑥  𝑥  𝑣  (2.4) 

Where vi stands for the velocity factor determined by 

𝑣  𝜔𝑣  𝑐 𝑟 𝑃best  𝑥  𝑐 𝑟 𝐺best 𝑥  (2.5) 

The inertia weight w, acceleration constants c1 and c2, and best local and best overall 

locations Pbest and Gbest are entered into Eq. 2.5 (27). The algorithm then sends the 

determined duty cycles to the power converter [40]. The optimization procedure begins 

with initializing a solution vector of voltage samples. In the first iteration, these voltage 

samples (represented by xi in Eq. (2.5)) are treated as starting particles and must obey. 
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Consequently, everything moves to its optimal location in its immediate neighborhood, 

Pbest. One of these atoms or molecules is the best Gbest in the whole world. It is the most 

cost-effective means of improving health and fitness. A new location for the voltage is 

obtained once the velocity, which acts as a disturbance to the voltage, has been 

calculated. As the iteration process repeats, the particles eventually settle in the optimal 

location for the whole system. The Gbest position is approached as the particles come to 

the MPP. This is mirrored by a decrease in the Pbest and Gbest components in the velocity 

term. After some time, the voltage position is almost constant, and the velocity is 

reduced to zero. Once this occurs, the PV system's maximum power point (MPP) is 

reached. The PSO procedure's flowchart is shown in Figure 2.9 [41]. 

Figure 2.9. Flow Chart of PSO Technique. 
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2.1.2.4 Genetic Algorithm Technique 

Natural selection is the mechanism that causes biological evolution, and the genetic 

algorithm solves optimization problems with or without constraints. Using iterative 

modifications, the genetic algorithm improves upon a pool of potential answers. The 

genetic algorithm chooses parents randomly from the existing population and then 

utilizes their offspring to create the next generation. Through natural selection, a 

population "evolves" toward a better answer over time. The use of the genetic algorithm 

to address a wide range of optimization issues could have been served better by 

conventional optimization methods, such as those with a discontinuous, non-

differentiable, stochastic, or highly nonlinear objective function [42, 43]. The MPPT 

method is based on the GA Genetic Algorithm (GA), a system for optimization inspired 

by the principles of evolution. This process determines the best possible configuration 

of parameters using the "survival of the fittest" concept. In a GA's search method, 

selection, crossover, and mutation are the three fundamental operators at play. The term 

"selection" refers to a process wherein fitter genetic material from the current 

generation's population is preserved for use in the future generation's population. The 

crossover operator joins together two sets of DNA to create novel genetic material. To 

solve this problem, the algorithm was adopted by resetting the initial population every 

time the algorithm detected a change in irradiance or cell temperature. This mutation 

operator preserves genetic diversity from one generation of the population to the next 

and aims to achieve some stochastic dissimilarity of GA to get an earlier convergence. 

Accordingly, if both of the following criteria, provided in Eq. (2.6) and Eq. (2.7), are 

true, the GA is reset. 
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|V(K+1)-V(K)| < ∆V (2.6)

          |[Ppv(k+1)- Ppv(k)]/ Ppv(k)|>∆P (2.7) 

The position of chromosomes is proportional to the output voltage during 

iteration (k). Where k is the current measurement, and k + 1 is the subsequent 

measurement. The process of GA is shown in Figure 2.10 [44]. 

Figure 2.10. Flow Chart of Genetic Algorithm. 

2.1.3 Hybrid MPPT Methods 

Two conventional approaches [6], two AI approaches [7], and a traditional approach 

combined with AI [8] are all ways that the hybrid approach has been shown in the 

literature. The combined effects of these methods have improved tracking performance 

above that of individual algorithms. Conventional hybridization combines two 

approaches to overcome the shortcomings of single standard MPPT techniques. Several 
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studies have proposed traditional hybrid tracking approaches to increase tracking 

speed, efficiency, and accuracy. Combined features of a P&O and an INC are suggested 

in [45]. The proposed solution is predicated on automatically changeable step sizes, 

with larger ones used. In comparison, the power increases, and much smaller step sizes 

are used when the power is nearing MPP. The simulated validation of the suggested 

technique shows reduced steady-state oscillation around MPP and reduced tracking 

time for MPP compared to the standard P&O method. 

The intelligent/conventional hybrid technique uses both methodologies' 

strengths to improve tracking. To follow the GMPP, a mismatch insolation MPPT 

approach based on a synthetic bee colony and hill climbing is presented in [46]. The 

HC algorithm is utilized to detect the presence of mismatched insolation conditions on 

the PV array in their suggested technique. They categorize the P-V curve shading type 

in the first step to locate the GMPP and its environs. One of the two methods is 

employed to monitor the GMPP based on the P-V curve's shading pattern. To identify 

mismatch insolation circumstances, the battery's charging current is measured in two 

successive perturbations while the HC algorithm follows the MPP under uniform 

insolation conditions. The suggested approach analyzes the power electronic circuit's I 

charge against D features to determine the shading pattern of the P-V curve and locate 

the GMPP. The recommended device uses a single current sensor, drastically cutting 

upfront costs. According to the findings of the experiments, the minimum tracking 

speed of the proposed GMPPT approach is determined to be 4 seconds. In addition, the 

suggested GMPPT method accurately follows the GMPP across all PSCs while 

minimizing the total cost of ownership for all sensors. 
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The fourth kind of hybrid method combines two different types of intelligent 

algorithms. There are several suggested hybrid soft computational approaches. The 

main objective is to enhance tracking effectiveness. It is presented in [47] that the MPP 

be tracked in partially shaded environments using a polar coordinated fuzzy logic 

controller implemented on an artificial neural network. The proposed technique 

employs ANN to immediately acquire the optimal MPP voltage and power. The global 

MPP voltage then serves as a reference for the FL controller to provide the ideal control 

signal for driving the power converter. The FL control was implemented using the polar 

information to keep the PV system's operating voltage at its perfect point. The results 

demonstrate that the ANN is accurate enough to map between a partly shaded state and 

the optimum voltage and power of the PV array. In [48], an MPPT strategy that 

combines the Adaptive Neuro-Fuzzy Inference System (ANFIS) and the proportional-

integral (PI) controller is presented. In this study, we suggest training the network using 

results from analyzing the efficiency of various configurations of PV arrays. The 

ANFIS also uses a hybrid learning technique that combines the Least Squares Estimator 

(LSE) with the gradient approach. The simulation results show that the suggested 

method can swiftly and efficiently follow the actual maximum power without 

fluctuations around the GMPP, even when the sun is partially shaded. Also, the 

recommended approach is resistant to the erratic shifts in irradiance that occur during 

partial shadowing. 

2.1.4 Mathematical Formulation for Solar Panel Array 

When a thin wafer of semiconductor material (Silicon or Germanium) is prepared with 

a P-N junction, the result is a solar cell. When the photon energy of the incident 

irradiation is more than the band-gab energy of the semiconductor, electricity is created 
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when the solar cell is exposed to sunlight [49]. It is the photovoltaic effect that gives 

this phenomenon its name. PV modules are made up of solar cells connected in series 

and parallel to provide the required amount of electricity. The formulation of the solar 

array may benefit from inferring the electrical model of a PV array from that of a single 

PV cell circuit. Single-diode and dual-diode circuit models have been presented for 

precise formulation in [50]. These models serve as a proving ground for several 

research described in the [51], and they may be used to mimic the behavior of solar 

panel arrays using Matlab/Simulink. In most cases, the current drawn from a PV 

module may be stated as in Eq. (2.8), where Ipv is the photo current and Io is the 

exponential function of the current drawn by the diode at saturation. 

𝐼𝑅
𝐼  𝐼  𝐼 exp 

𝑞 𝑉  
𝐼𝑅 / 𝑅  (2.8)𝑁 𝐾𝑇𝐴 

 1 𝑉  

Where, 
q = Electron charge (1.6x10-19 Coulombs) 
K =Boltzmann constant (1.38x10-23 Nm/K) 
T =PV Module temperature in Kelvin
𝐼  =Reverse saturation current of a diode 
A =Diode ideality constant of diode
𝐼 =Light generated current of PV cell in Ampere 
Rs=Series Resistance of PV cell 
Rsh = Shunt Resistance of PV cell 
Ns = Number of PV modules connected in series 
I = Output current of PV cell in Ampere 

2.1.4.1 Single Diode Circuit 

According to this model, depicted in Figure 2.11, a PV module is described as a current 

source and a diode in parallel, with minimal series and shunt resistances [52]. An 

illustration of the I-V relationship is shown in Figure 2.12, from which the resulting 

Eq. (2.8) may be: 

(2.9) 
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𝐼  𝐼  𝐼 exp 

𝑞 𝑉  

𝑁 𝐾𝑇𝐴 
 1 

Figure 2.11 Single Diode Model 

This model usually contains three free variables (IPV, Io, and A). The following 

formula is used to calculate Ipv from the manufacturer's datasheet: 

𝐼  𝐺 𝐼  𝛼Δ𝑇  (2.10) 

In this equation, G is the amount of light hitting a specific area in kilowatt-hours 

per square meter, Isc is the short circuit current at Standard Temperature Conditions, 

and T is the difference between the module's and STC's temperatures. It is the current 

temperature coefficient from the datasheet. 

Saturation Current (Io) may be written as: 

| | ∗

𝑒
  𝐺 𝐼  𝛼Δ𝑇  (2.11)𝐼   | |

𝐺𝐼 /𝐼   1
 

𝑒
 

∗
 

By solving for MPP, we may determine the value of the unknown parameter 

"A." (Vm and Im) 

𝐼  𝐼 𝐼
𝑒

𝐼  
𝑒  

 

𝐼  
(2.12) 
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2.1.4.1 Double Diode Circuit 

In the simpler two-diode model, depicted in Figure 2.12 [53], a photocurrent source is 

connected in parallel with two perfect diodes that lack both series and shunt resistances. 

Consequently, less time is needed to run the simulation, and just four estimates of 

parameters may be made using the datasheet. Studying the mathematical modeling of 

a PV module in STC and non-STC circumstances are made much easier by the drastic 

shortening of simulation times. 

Using Figure 3 as a reference, the following expression describes the I-V characteristic 

of the Two diode model: 

Figure 2.12. Double Diode Model. 

exp  
𝑞 𝑉  

exp  
𝑞 𝑉  

𝐼 𝐼 𝐼   1 𝐼   1  (2.12)
𝑁 𝐾𝑇𝐴  𝑁 𝐾𝑇𝐴  
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CHAPTER 3 

3. SIMULATION BASED ESTIMATION OF GMPP USING ANFIS 
TECHNIQUE FOR PHOTOVOLTAIC SYSTEM UNDER VARYING 

WEATHER CONDITIONS 

3.1 Introduction 

Renewable energy source-based systems are now used to address rising electricity 

demands while also reducing global warming. Solar energy is the most preferred 

renewable energy source because of its straightforward construction. However, 

compared to other energy sources, the solar panel system only converts 30–40% of 

solar irradiation into electricity [54]. For a long time, substantial research in Artificial 

Intelligence has been undertaken to build many algorithms that can track the Maximum 

Power Point with efficiency.  

Solar power system output power changes in response to rapidly changing 

environmental circumstances [55]. Even according to a computational model of solar 

cells, changes in the exterior environment fundamentally swing photovoltaic cell yield 

power [56]. Adjustment in photovoltaic cell surface temperature and surrounding light 

power are the two most essential elements that produce visible changes in their output 

characteristics. Furthermore, external environmental factors that affect the output 

power of photovoltaic cells, like daylight power, the surrounding temperature, and load 

circumstance, may result in even lower productivity. As a result, using Maximum 

Power Point Tracking (MPPT) in photovoltaic power generation can improve the solar 

energy conversion utilization ratio [57]. The PV system's efficiency can be improved 

using power electronic devices and a maximum power point controller. The MPPT 

38 



 
 

 

 

 

 

  

 

 

Controller extracts the most available power from a solar module. Using Artificial 

Intelligence (AI)-based MPPT algorithms for DC-DC converters can significantly 

improve the efficiency of a solar system. The combination of several AI optimization 

approaches with MPPT aims to fix and correct the constraints of traditional MPPT 

techniques, including Hill-Climbing (HC), Perturb and Observe (P&O), and 

Incremental Conductance (IC). One of these disadvantages is the old approaches' 

inability to follow the Global Maximum Power Point (GMPP) when the irradiation 

changes suddenly owing to MPPT failure [58]. The most fundamental prerequisite of a 

PV power framework is to maximize the energy generated by solar cells [59]. The 

photovoltaic output can be regulated using AI-based MPPT approaches by monitoring 

the continuous outer temperature and light power change to control solar production. 

The system adapts to the continuous outer climate to make the solar cell's output reach 

global maximum power point. Seasonal and other natural elements have been 

demonstrated to have less impact on the yield power of PV sources, allowing for more 

efficient use of PV energy and improved electricity transition ratio when computational 

intelligence technique is employed [60]. 

3.2 Working Concept of MPPT 

Photovoltaic systems come in various designs related to electrical converter systems, 

outer grids, or other electric loads [61]. MPPT considers the intensity of solar 

irradiation falling on the solar panels, The PV cells surface temperature, and the load's 

electrical feature regardless of the solar power's ultimate destination. The load feature 

that offers the most efficient power transfer changes when these variables change. 

When the load characteristic changes, the system's efficiency is tuned to maintain the 

maximum possible power transfer efficiency. The MPP is the name given to this load 
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feature. The technique of searching this point and maintaining the load feature there is 

known as MPPT. MPPT handles the difficulty of determining the optimal load to offer 

to the cells to get the highest operational power out. When a solar panel is linked 

directly to a load, the operating factor of the panel is seldom at maximum power. The 

panel's electrical resistance is what determines the active end of the solar cell. The 

operational point can, thus, be changed closer to peak power by adjusting the 

impedance detected by the panel. Because panels are DC devices, DC-DC converters 

convert the impedance of one circuit (the source) to the impedance of the other circuit. 

The panel detects an impedance change when the duty ratio of the DC-DC converter is 

changed. The operational point will be at the peak power transfer point at a given 

impedance (i.e., duty ratio). With changes in atmospheric variables like irradiance and 

temperature, the panel's I-V curve can change dramatically. As a result, it is impossible 

to fix the duty ratio with such constantly changing working conditions. Thus, MPPT 

solutions with AI capability is employed to test cell voltages and currents regularly and 

modify the duty cycle depending on the situation. 

3.3 Performing MPPT Method Based on AI Algorithm 

Recent AI-based MPPT techniques are usually more advanced and efficient, but they 

require a lot of data, are incredibly complex, and expensive. It is crucial to balance 

performance and cost or complexity when using intelligent MPPT in a specific 

application. Operation quantities like following proficiency, speed, responsiveness, 

dependability, and cost characterize MPPT techniques [62]. There are many different 

types of MPPT techniques. Hybrid MPPT techniques are a group of techniques that 

combine two or more optimized MPPT techniques [63]. Out of the several MPPT 

techniques available in literature [64], this study focuses on performing members such 
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as Flower Pollination Algorithm (FPA) Cuckoo Search (CS), Particle Swarm 

Optimization (PSO), etc. of the Swarm intelligence (SI) algorithm family. SI is the 

most popular AI-based MPPT family, owing to its algorithms' fast performance and 

high accuracy, inspired by biological Swarm Intelligence (SI). 

3.3.1 Flower Pollination Algorithm (FPA) 

FPA is regarded as a cutting-edge population-based optimization technique. This 

technique is based on the pollination behavior of flowers. The main goal of flower 

pollination, according to biological evolution, is the survival of the fittest. In addition 

to the fittest, optimal reproduction of plants in terms of numbers should be considered 

a plant species' optimizing process [65]. 

3.3.2 Particle Swarm Optimization (PSO) 

The PSO is the most widely used SI optimization algorithm, first proposed by 

Pavlyukevich, Ilya [66], and has rapidly developed in the last 20 years. It is based on 

the behavior of flocks of birds. Its benefits include ease of implementation and quick 

convergence, and it can be used to find the optimal global solution in a nonlinear, 

discontinuous, and non-differentiable curve. This algorithm employs several 

cooperative particles in an n-dimensional space. Each particle has its Pi (randomly 

distributed) and Vi (Vi = 0 in initiation) position and velocity. The best position of a 

particle so far, Pbest, and the best place of all particles so far, Gbest, influence its position. 

3.3.2 Cuckoo Search 

Yang and Deb [67] were the first to propose the Cuckoo Search (CS) algorithm. The 

CS calculation is a Meta-Heuristic (MH) technique propelled by cuckoo bird generation 

conduct. Cuckoos are parasitic organic entities that lay their eggs in the homes of 

different birds rather than building their own. To observe the host home up-and-comer, 
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cuckoo birds will fly arbitrarily starting with one home then onto the next. The cuckoo 

will then, at that point, select the best home where their eggs will have the most obvious 

opportunity with regards to incubating and creating another age of cuckoos. Cuckoo 

birds will put forth a few attempts to build the incubating opportunity to decisively lay 

their eggs in a decent position and incidentally dropping the host bird eggs outside the 

home in specific conditions. Nonetheless, it is possible that the host bird discovers the 

alien eggs and abandons its nest. The cuckoo's eggs will not hatch in this case. The CS 

optimization algorithm is based on this natural behavior. When estimating GMPP, most 

AI-based MPPT algorithms have shown to manage efficiently the issue of high 

convergence time and imbalance seen in traditional MPPT methods. The Fuzzy Logic 

Controller (FLC) based MPPT technique, for example, is regarded as a powerful 

tracking technique because it does not require any mathematical calculations or 

algorithms to calculate the global maximum power point. The main disadvantage of 

FLC is the drift problem caused by changing temperature and irradiance [68]. Aside 

from FLC, Artificial Neural Network (ANN) is another helpful way for resolving 

nonlinear systems because it generates output using real-time numerical data, resulting 

in little undulation at MPP than FLC-based MPPT [69]. Unfortunately, the ANN has a 

problem with extensive training data as input, and slow training of that important data 

is a significant problem [70]. To address the issues with FLC and ANN, Y. Sedghi et 

al., [71] and K. Amara et al., [72] proposed an AI technique called Adaptive Neuro-

Fuzzy Inference System (ANFIS), which combines ANN and FLC. Although this 

method had a faster convergence time when compared to non-AI-based MPPT 

techniques, as presented in H. D. Tafti et al., [73], data tuning to obtain accurate data 

for the ANFIS model remains a challenge.  
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To address this challenge, this work proposes and implements a modified 

Genetic Algorithm trained ANFIS MPPT technique in the MATLAB/Simulink 

environment while estimating GMPP in PV systems under varying irradiance, 

temperature, and load conditions. We compared the proposed method to other AI-based 

MPPT techniques that perform well, such as CS, FPA, and PSO. Furthermore, this 

study compares MPPT techniques based on convergence time, MPPT efficiency, and 

steady-state oscillation, demonstrating the superiority of the GA-trained ANFIS 

method over CS, FPA, and PSO. Likewise, the comparison analysis was carried out 

under both fixed and variable solar irradiance conditions. It was discovered that the 

proposed GA-trained ANFIS outperforms under both solar irradiance conditions when 

estimating GMPP. 

3.4 Overview of Proposed Method 

Unlike traditional MPPT, GA-based MPPT can search GMPP rather than being stuck 

in the local MPP. GA is a general AI-based optimization method that can be used to 

solve a variety of problems. It is widely used in MPPT to modify a population of 

individual solutions to compute the voltage reference of a PV panel. GA has small 

oscillations, a fast convergence speed, and fast dynamics in general when using the 

voltage-step selection GA algorithm [73]. GA is initialized in the MPPT optimization 

process by starting the initial parent population as an array: 

𝑋   𝑝𝑎𝑟𝑒𝑛𝑡  𝑝𝑎𝑟𝑒𝑛𝑡  𝑝𝑎𝑟𝑒𝑛𝑡  … … … .𝑝𝑎𝑟𝑒𝑛𝑡  (6) 

Where n denotes the population size, and (i=1, 2, …., n) represents the 

initial voltage values when the algorithm optimizes. The generated output power of the 

solar power system is the objective function . The objective function performs the 
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evaluation of fitness values for each position. After that, they are used to evolve the 

population and improve population fitness over time. Because of sudden changes in 

load, solar irradiance, or temperature, the algorithm must be reinitialized specifically 

for MPPT applications. As a result, once the conditions in (7) and (8) have been met, 

the GA-based MPPT technique is reinitialized. 

|𝑉 𝑘  1   𝑉 𝑘 |  ∆𝑉  (7) 

    
| 

 
|  ∆𝑃  (8) 

Where k denotes the current measurement and k+1 denotes the next 

measurement iteration. It is a concept based on chromosome evolution. To begin, the 

initial population is binary encoded and converted to real numbers, and their fitness 

values for each chromosome are assessed. The genetic operations of selection, 

crossover, and mutation are carried out to achieve the best possible result, specifically 

power output maximization. Since GA is based on a significant variation, radial basis 

function, it is used to learn temperature and irradiance data patterns. After dataset 

training, the algorithm accurately predicts MPP. As a result, the proposed method is 

justified. On the other hand, the ANFIS method is a sophisticated decision-making 

system that employs a multilayer mechanism and combines fuzzy logic systems (FLC) 

and artificial neural networks (ANN). The ANFIS technique is more adaptable and 

appealing due to FLC's ability to integrate the numerical quantity and ANN to train the 

mathematical value. It is worth noting that ANFIS has demonstrated good proof in 

modeling various activities and a superior learning capability that allows many systems 

to be updated. It has an advantage over fuzzy logic controllers (FLC) in that it can take 

out rules from quantitative data and has a base from which to extract rules extensively. 
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3.5 Simulation, Result and Discussion 

In Matlab/Simulink, the block diagram of the setup built as shown in Figure 3.1 consist 

of four main sections namely PV module configuration, a DC/DC Boost converter, 

proposed GA-Trained MPPT model + PWM drive and load section. 

PV PANEL 
DC-DC 

CONVERTER 
LOAD 

GA-
TRAINED 

ANFIS MPPT  

Figure 13. Block Diagram of MATLAB/Simulink Setup. 

The PV module is connected to the load via the direct current to direct current 

boost converter to accomplish maximum power tracking of the PV system by 

controlling the system transition. Although the panel's current output is non-linear, and 

the DC/DC circuit is similarly non-linear, both can be considered linear within a 

minimal time interval.  At the point when the resistance of the DC/DC circuit rises to 

that of the PV cell, the PV cell can acquire its MPPT if the exchanging conductance of 

the DC/DC converter circuit is changed. Figure 3.2 shows a block schematic of MPPT 

electronic equipment with GA-trained ANFIS-based control. In the GA-trained ANFIS 

based control approach, values of Solar irradiance (G) and temperature (T) were used 

as input values and then fed into the trained model. The output was compared with the  
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Figure 3.2 Block diagram of GA-trained ANFIS MPPT Method Figure 14 Block diagram of GA-trained ANFIS MPPT Method 

measured panel values and provided into the PID as a control parameter in regulating 

the duty cycle of the DC/DC converter to make the best choices for the system. 

Table 3.1 shows the simulations conditions for the three scenarios. The selected 

characteristics of the PV system have been summarized in Table II to create the 

Simulink model for the GA-trained ANFIS based MPPT. The system is simulated 

under three scenarios: 

TABLE 3.1: SIMULATION CONDITIONS 

Scenarios Irradiance Temperature Load 

1 Constant Constant Variable 

2 Variable Constant Constant 

3 Constant Variable Constant 

In all the scenarios, the simulation time was set at 1 second and irradiance 

values of 200 Watt per meter square, 400 Watt per meter square, 600 Watt per meter 

square, 800 Watt per meter square and 1000 Watt per meter square. Temperature values 
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of 15 degree Celsius and 25 degrees Celsius while using resistive loads of R1, R2 and 

R3 equals 20 ohms, 30 ohms and 40 ohms respectively. 

TABLE 3.2 PARAMETERS OF THE PV SYSTEM 

Parameters Numerical Units 

Maximum Power 250 W 

Open Circuit Voltage 37.3 V 

Short Circuit Current 8.66 A 

Voltage @ MPP 30.7 V 

Current @ MPP 8.15 A 

Reference Temperature 25°C 

Figure 3.3 indicates that the suggested technique can follow GMPP in 0.003 

seconds and even remain stable when there is a sharp shift in load at time intervals of 

0.3 and 0.6 seconds. With an efficiency of 99.2 percent in predicting GMPP, the result 

exhibits little or no fluctuation. In addition, in scenario 2, Figure 3.4, the suggested 

technique could track GMPP at various levels of change in solar irradiation while being 

always stable. The impact of temperature change on the maximum power of the PV 

system and Load Power in scenario 3 is substantially smaller than the impact of 

irradiance variation as shown in Figure 3.5. Figure 3.6 shows that the approach 

successfully tracked the GMPP at the PV system's reference temperature without 

oscillation. When comparing the findings in Figure 3.6 to the results in Figures 3.7, 3.8, 

and 3.9 for FPA, PSO, and CS, it is evident that the GA-ANFIS technique performed 

better the others in terms of time series and stability in monitoring GMPP. In addition, 

when comparing this approach to the convergence time result reported in M. R. Javed 

et al., [74], GA-trained ANFIS surpasses the ANFIS method. 
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Figure 15. Scope Shot of Scenario 1 

Figure 16. Scope Shot of Scenario 2 

48 



 
 

         

 

 

 

250 

200 

150 

100 

50 

0 

250 

200 

150 

100 

50 

0 

f-- · 

-

>--.,._ 

-

X 0.097687 
I v 210.849 
• 
I 

X 0.07398 
Y 70.1695 

f- - ,-

0 0.1 0.2 

300 

250 

200 

150 

100 

50 

300 

250 

200 

150 

100 

50 

-

-

---!-

- !-

- I-f-

---~ 

0.1 

--

0.2 

I 

I 

0.3 

-1-

0.3 

I 

I 
1--PV_Power 1-

I 

-

--

--

1--Load_Power ~ 
I 

-

-

- --
0.4 0.5 0.6 0.7 0.8 0.9 

1--PV_Power 

• 
X 0.902211 
Y 249.271 

·-

-

- - - ,--Load_Power [-
! 

X 0.899301 
-f- -- - - -- Y 250.803 - -

0.4 0.5 0.6 0.7 0.8 0.9 

Figure 17. Scope Shot of Scenario 3 at 15°C.  

Figure 18. Scope Shot of Scenario 3 at 25°C. 
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Figure 20. Scope Shot of FPA based on Scenario. 
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CHAPTER 4 

4. EVALUATION OF HYBRID AI-BASED TECHNIQUES FOR MPPT 
OPTIMIZATION 

4.1 Introduction 

In renewable energy research, solar is one of the essential energy sources. In solar 

energy research, much attention is given to developing photo-voltaic cells, and there is 

also research in the fuel cell. Still, solar energy is the cheapest in the sense that once 

the technology is well developed, it is maintenance-free. Nevertheless, unlike 

conventional power generation plants which can operate unceasingly, solar energy 

exposes a fluctuating generation profile since its output power varies with respect to 

temperature of the solar cell and Sunlight intensity. As a result, MPPT is applied to 

determine the most optimum power spots on the PV solar panel, enabling the DC-DC 

converter generates the highest amount of electricity possible, regardless of how much 

sunlight there is. MPPT on PV solar panels is being optimized using various Artificial 

Intelligence (AI) technologies [1]. Hybrid MPPT incorporates elements from both 

artificial intelligence (AI) and more conventional methods. In [75], the most recent 

advancements in AI-based MPPT techniques in solar power systems were discussed in 

detail including several hybrids AI-based MPPT methods. A hybrid technique based 

on perturb and observe (P&O) Artificial Neural Network (PO-ANN) and Incremental 

conductance (INC) Artificial Neural Network (INC-ANN) were developed, and 

comparative evaluations were done [76]. As a result, an auto encoder (SAE) was trained 

using a deep learning network using building blocks as an autoencoder to extract the 

most power from the PV panel. To monitor the Maximum Power Point (MPP) in a 

stand-alone solar system, Adaptive Neuro-Fuzzy Inference System (ANFIS) was 
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shown to be beneficial [77]. As part of the demonstration, the incremental conductance 

approach, the constant voltage method, and the ANFIS-reference model method were 

all evaluated to see which performed the best. The authors of [78] developed a modified 

MPPT approach for solar systems in rapidly changing partial shading scenarios. In this 

approach, genetic and firefly algorithms were integrated into a novel method involving 

a Differential Evolution (DE). As a result of its cheap cost and ease of implementation, 

Perturb and Observe (P&O) is a popular MPPT approach. For the MPPT, Fuzzy Logic 

(FL) is another general approach that significantly improves reaction speed and 

minimizes variation around the maximum power point. A new MPPT approach based 

on FL control and the P&O algorithm was provided in this study [79]. The suggested 

technique includes the benefits of the P&O-MPPT to account for slow and quick 

variations in solar irradiation and the decreased processing time for the FL-MPPT to 

solve complicated engineering issues when the membership functions are few. In [80], 

another hybrid MPPT for PV systems based on a single sensor and adaptive step-size 

was presented. Methods such as the suggested MPPT approach, which combines open-

circuit voltage with an adaptive step-size tracking mechanism, are fast and precise. The 

MPP tracking was accurate and rapid, according to their simulated findings. Compared 

to the traditional P&O and INC methods, the technique provides exceptional steady-

state and dynamic performance. Using a unique combination of PSO and Salp Swarm 

Optimization models, this work [81] provided a new technique for tracking the 

maximum power point and achieving greater efficiency for battery charging. A buck-

boost converter was used to feed a load with the highest amount of power possible from 

the PV array. The standard 'Perturb & Observe' technique was combined with a 'Current 

Sweep' method in [82] to provide a hybrid approach to MPPT logic control. A counter 
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was introduced even though the 'Perturb & Observe' method was in the hybrid 

methodology. Each time the voltage was checked, the counter was increased. The logic 

component is activated when the counter reaches a certain value. Thus, making it 

impossible for the logic's "Perturb and Observe" component to end up at the local 

maximum power point instead of the global maximum power point. Other hybrid AI-

based MPPT techniques have been proposed to date [75]. We selected some known 

performing AI-based MPPT techniques and hybrid them in this work. After that, we 

evaluated these hybrid techniques for oscillation around the maximum and tracking 

time. The selected MPPT techniques evaluated here includes PSO trained ANFIS and 

PSO trained NN MPPT. Lastly, we compared these methods with our proposed AI-

based technique, GA-trained ANFIS method from previous work [83]. 

4.2 Overview of Selected Hybrid MPPT Techniques 

There are a wide variety of MPPT methods available. Hybrid Approaches that integrate 

two or more improved MPPT techniques into a single method have been reported in 

the literature [84, 85], but we discussed in this research two of the best seen. 

4.2.1 Adaptive Neuro-fuzzy Inference System (ANFIS) 

ANN and FLC are brought together in ANFIS. The benefit of ANN and FLC are 

combined in this method. Here, the FLC-based MPPT is powered by the ANN trained 

to determine the ideal MPP. When it comes to intelligent power management and solar 

power systems, ANFIS and fuzzy logic is suitable since they are versatile and adaptive 

[86]. It is used to simulate a fuzzy approach for learning all the information about a 

dataset. It is a method of transforming a large dataset into a single output from several 

inputs. ANFIS creates a fuzzy inference system by combining datasets from different 
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sources. Increasing the solar power system's conversion efficiency has been shown 

[87]. 

4.2.2 Particle Swarm Optimization (PSO) 

The PSO is an excellent choice in terms of structure, implementation, and calculation 

speed. It can locate the MPP for any P-V curve independent of environmental 

fluctuations and track the PV system when the PSO search space and convergence time 

are lowered. It is also utilized to minimize the steady-state oscillation to almost nil. In 

an n-dimensional space, this technique involves several cooperating particles. In the 

initiation position, the particle's Vi (Vi = 0) and Pi (randomly distributed) are both set 

to 0. Pbest, the particle's current position, and Gbest, the best possible position for all 

particles currently, affect its current location. 

4.2.3 Neural Network 

A neural network (NN) is a kind of artificial intelligence technique. In the NN MPPT, 

solar temperature and irradiance are the inputs. The duty ratio of the DC-DC converter 

is the goal of the neural network. For any change in solar temperature and irradiance 

value, neural networks provide a specific duty ratio value to get maximum power. The 

network is built using a particular algorithm during training [88]. Duties and ANN are 

trained for various sun irradiance values and temperatures. Adjusting the layer weights 

to get the desired values is what neural network training entails. Adjustments in weights 

are made to ensure that the goal values are tracked with little error throughout training. 

4.2.4 Genetic Algorithm (GA) 

GA is a general AI-based optimization method that can be used to solve a variety of 

problems. It is widely used in MPPT to modify a population of individual solutions to 

compute the voltage reference of a PV panel. GA has small oscillations, a fast 
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convergence speed, and fast dynamics in general when using the voltage-step selection 

GA algorithm [83,89]. It is a concept based on chromosome evolution. To begin, the 

initial population is binary encoded and converted to real numbers, and their fitness 

values for each chromosome are assessed. The genetic operations of selection, 

crossover, and mutation are carried out to achieve the best possible result, specifically 

power output maximization. Since GA is based on a significant variation, radial basis 

function, it is used to learn temperature and irradiance data patterns. 

4.3 Simulation, Result and Discussion 

In MATLAB/Simulink, the block diagram of the setup built as shown in Figure 4.1, 

consisting of four main sections namely PV module configuration, a DC/DC Boost 

converter, proposed GA-Trained MPPT model + PWM drive and load section. 

PV PANEL 
DC-DC 

CONVERTER 
LOAD 

HYBRID AI-
BASED MPPT 

METHODS 

Figure 22. Block diagram of MATLAB/Simulink Setup - Hybrid. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

The PV module is connected to the load via the direct current to direct current 

boost converter to accomplish maximum power tracking of the PV system by 

controlling the system transitions. Although the panel's current output is non-linear, 

and the DC/DC circuit is similarly non-linear, both can be considered linear within a 

minimal time interval. At the point when the resistance of the DC/DC circuit rises to 
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that of the PV cell, the PV cell can acquire its MPPT if the exchanging conductance of 

the DC/DC converter circuit is changed. 

In all the hybrid techniques evaluated, values of Solar irradiance (G) and 

temperature (T) were used as input values and then fed into the selected methods. The 

output was compared with the measured panel values and provided into the PID as a 

control parameter in regulating the duty cycle of the DC/DC converter to make the best 

choices for the system. In all the techniques, the simulation time was set at 1 second 

and irradiance value and temperature values were kept constant at 1000 Watt per meter 

square and 25 degrees Celsius respectively while using also, a constant resistive load 

of 40 ohms. Table 4.1 shows the values of the DC/DC Boost converters used in the 

simulation’s setups. 

TABLE 4.1 PARAMETERS OF THE DC/DC BOOST CONVERTER 

Parameters Numerical Units 

Inductor 3m H 

Capacitor 100µ F 

Diode (Bias Voltage) 0. 8 V 

MOSFET (Internal Resistance) 1m Ω 

Figure 4.2 indicates that the suggested technique can track MPP in 0.002 

seconds and even remain stable when there is a sharp shift in load at time intervals of 

0.3 and 0.6 seconds. With an efficiency of over 100 percent, the result exhibits no 

fluctuation around the maximum as shown in Figure 4.3. 
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Value Time 

Max 2.563e+02 2.160e-03 

Min 3.330e-20 O.OOOe+OO 

Peak to Peak 2.563e+02 

Mean 2.388e+02 

Median 2.413e+02 

RMS 2.392e+02 
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Figure 23. Signal Statistics for GA-ANFIS MPPT 

Figure 24 Scope Shot of GA-ANFIS MPPT 

In addition, Figure 4.4, the PSO-ANFIS was able to track MPP in 0.074 even 

with an efficiency of 100 percent as seen in Figure 4.5. 
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Value Time 

Max 2.533e+02 0.074 

Min 3.329e-20 0.000e+00 

Peak to Peak 2.533e+02 

Mean 2.330e+02 

Median 2.407e+02 

RMS 2.349e+02 
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Figure 25. Signal Statistics for PSO-ANFIS MPPT 

Figure 26. Scope Shot of PSO-ANFIS MPPT 
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Value Time 

Max 2.460e+02 0.305 

Min 0.000e+00 0.000e+00 

Peak to Peak 2.460e+02 

Mean 2.322e+02 

Median 2.433e+02 

RMS 2.354e+02 
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It is obvious from the signal statistics of Figure 4.2, Figure 4.4, and Figure 4.6 that our 

proposed method still performs better in terms of MPP and tracking time. Although, as 

shown in Figure 4.7, the PSO-NN presented a stable power output. 

Figure 27. Signal Statistics for PSO-N 

Figure 28. Scope Shot of PSO-NN 
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CHAPTER 5 

5. PERFORMANCE ANALYSIS OF SOLAR ENERGY SYSTEM WITH 
DIFFERENT DC-DC CONVERTER TOPOLOGIES FOR HYBRID AI-BASED 

MPPT 

5.1 Introduction 

The utilization of solar energy is a promising alternative to traditional fossil fuels, and 

photovoltaic (PV) systems have emerged as a popular method to harness this renewable 

energy source [90]. To ensure that PV systems operate at their maximum efficiency 

and power output, maximum power point tracking (MPPT) algorithms must be 

employed [91]. These algorithms adjust the impedance seen by the solar array to 

maintain the PV system operating near the peak power point of the panel, even under 

varying conditions, such as changes in solar irradiance, temperature, and humidity. This 

results in maximum power output and increases solar energy system efficiency. The 

choice of DC-DC converter topology is crucial to the performance of MPPT algorithms 

in PV systems. Numerous converter topologies, such as Boost, Buck, and Buck-Boost, 

have been proposed in the last two decades to increase the output voltage of PV panels 

[92]. Additionally, hybrid AI-based MPPT algorithms have been proposed to enhance 

the accuracy and efficiency of MPPT techniques in changing environmental conditions 

[93]. These algorithms utilize artificial intelligence (AI) techniques, such as neural 

networks and fuzzy logic, to optimize the PV system's output. The primary objective 

of this research effort is to simulate and analyze the performance of a solar energy 

system with different DC-DC converter topologies for hybrid AI-based MPPT. This 

research will investigate the suitability of various converter topologies, including 

Boost, Buck, and Buck-Boost, for different hybrid AI-based MPPT algorithms. A 
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MATLAB Simulink environment will be employed to analyze the impact of varying 

solar irradiance and temperature on the solar energy system's performance. 

Furthermore, three AI-based MPPT algorithms, such as GA-trained ANFIS, PSO-

trained NN, and PSO-trained ANFIS MPPTs, will be assessed to determine the most 

suitable DC-DC converter topology for each algorithm. The value of this research is in 

its contribution to developing and implementing solar energy systems, promoting 

sustainable energy solutions, and expanding renewable energy sources. This work 

presented a literature review on the PV system, MPPT techniques, and DC-DC 

converters. The research methodology, including the simulation models and parameters 

employed, will be presented. The results of the simulation and analysis of different DC-

DC converter topologies for hybrid AI-based MPPT algorithm's performance will also 

be discussed. 

5.2 Overview of Related Concepts 

5.2.1 Solar Energy Systems 

Solar energy systems offer a promising and eco-friendly alternative to traditional fossil 

fuels, with the benefit of being cost-effective. The reduction in the cost of photovoltaic 

(PV) panels and advancements in solar technology have resulted in a rapid increase in 

the use of solar energy systems in recent years [94]. Not only are they sustainable and 

renewable, but they also enhance energy efficiency and reduce greenhouse gas 

emissions. According to [92], solar energy systems have several advantages over 

conventional energy sources, such as zero fuel costs, low maintenance requirements, 

long lifespan, and the ability to be installed in remote and off-grid locations. Also, 

integrating photovoltaic/thermal hybrid solar technology can increase solar energy 

systems' overall energy output and efficiency [95]. However, the adoption of solar 
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energy systems is not without challenges. Environmental factors like temperature and 

solar irradiance can affect the efficiency of PV panels, and the initial installation cost 

may be too high for low-income communities, limiting their adoption. [96] highlighted 

the need for proper planning and policy support to maximize the benefits of solar 

energy systems in developing countries. To address these issues and enhance the 

performance of solar energy systems, researchers have been investigating various 

technologies like MPPT algorithms and DC-DC converters [97]. These technologies 

can help optimize the output of solar energy systems, making them more efficient and 

cost-effective. It is crucial to choose the proper MPPT technique for the performance 

of PV systems [98] and select an appropriate DC-DC converter topology for the MPPT 

algorithm [99]. 

5.2.2 Hybrid AI-based MPPT 

For photovoltaic (PV) systems operating in various climatic circumstances, hybrid AI-

based maximum power point tracking (MPPT) solutions have been proposed to 

increase MPPT's accuracy and effectiveness. [100,101]. These techniques combine 

conventional MPPT algorithms with artificial intelligence (AI) techniques, such as 

neural networks, fuzzy logic, genetic algorithms, and particle swarm optimization, to 

optimize the performance of the PV system [102,103]. AI-based MPPT algorithms 

have been shown to reduce steady-state errors, improve convergence speed, and 

enhance the tracking efficiency of the PV system. Several studies have investigated the 

effectiveness of AI-based MPPT algorithms in PV systems. For instance, [104] 

proposed a hybrid MPPT algorithm that combines a fuzzy logic controller with the IC 

method. The algorithm outperformed conventional MPPT techniques regarding 

accuracy and efficiency under varying environmental conditions. 
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Similarly, [105] developed an adaptive MPPT algorithm that uses a neural 

network to predict the optimal operating voltage of the PV system. The algorithm was 

shown to improve the tracking accuracy and efficiency of the PV system under partial 

shading conditions. Another approach to AI-based MPPT is to use machine learning 

techniques to train the MPPT algorithm. In this regard, a hybrid MPPT algorithm that 

combines a genetic algorithm with an artificial neural network (ANN) was presented 

[106]. The algorithm was trained using a dataset of PV system parameters to optimize 

the performance of the PV system under varying conditions. A survey of recent MPPT 

techniques for PV systems, including conventional and AI-based methods, was 

conducted in [107]. The study found that AI-based MPPT techniques generally 

outperformed traditional approaches regarding efficiency and accuracy. 

Overall, MPPT techniques are essential for maximizing PV systems' power 

output and efficiency. While conventional methods are simple and widely used, AI-

based techniques have shown great promise in improving the accuracy and efficiency 

of MPPT under varying environmental conditions. 

5.2.3 DC-DC Converter Topologies 

In photovoltaic (PV) systems, DC-DC converters are essential in interfacing the PV 

panel with the load or grid while maintaining the optimal operating point [108]. 

Particularly in the context of Maximum Power Point Tracking (MPPT), these 

converters regulate the output voltage and current from the solar panels to optimize 

power transfer to the load or battery [109]. Three general DC-DC converter topologies 

are employed in MPPT systems: Boost, Buck, and Buck-Boost converters [110]. 
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Boost Converters are utilized when the desired output voltage exceeds the 

input voltage [108]. They comprise an inductor, a capacitor, a diode, and a switch, 

typically a MOSFET [108], represented in Figure 5.1.  

Figure 29 Circuit Diagram for A Boost Converter 

These converters are often implemented in MPPT systems when the voltage 

generated by the solar panel is insufficient for charging the battery or supplying power 

to the load [110]. By increasing the voltage, boost converters ensure the system 

operates at the maximum power point [110]. 

Conversely, Buck Converters are used when the output voltage needed is 

below the given input voltage. [108]. The primary circuit diagram consists of an 

inductor, a capacitor, a diode, and a switch, usually a MOSFET [108], as shown in 

Figure 5.2. 

Figure 30. Circuit Diagram for A Buck Converter 
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They are frequently employed in MPPT systems when the solar panel voltage 

surpasses the required voltage for charging the battery or powering the load [110]. By 

reducing the voltage, the buck converter ensures the system functions at its optimal 

power output. [110]. 

The Buck-Boost Converter is a hybrid topology that combines the 

functionalities of both boost and buck converters, enabling it to either increase or 

decrease the input voltage as required [108]. This converter is particularly 

advantageous in MPPT systems where the solar panel voltage can exhibit significant 

fluctuations due to varying sunlight conditions [110]. The buck-boost converter as 

depicted in Figure 5.3, ensures that the system operates at the maximum power point 

by adjusting the output voltage to meet the requirements of the load or battery, 

irrespective of whether the solar panel voltage is higher or lower than the desired 

voltage [110]. 

Figure 31. Circuit Diagram for A Buck-Boost Converter 

Figure 5.4 and 5.5 shows a typical example of an input-output voltage plot for Buck 

and Boost Converters and Buck-Boost converters, respectively. 
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Figure 32. Input-Output Voltage Plot for Boost and Buck Converters 

Figure 33. Input-Output Voltage Plot for A Buck-Boost Converter 

In Figure 5.4, the boost converter has a voltage gain of 2, meaning that the 

output voltage is twice the input voltage, while the buck converter has a voltage gain 
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of 0.5, meaning that the output voltage is half the input voltage. In Figure 5.5, the buck-

boost converter has separate regions for stepping up and down the voltage. For input 

voltages less than 5 V, the output voltage is 1.5 times the input voltage (step-up), while 

for input voltages greater than or equal to 5 V, the output voltage is 0.8 times the input 

voltage (step-down). The dashed line represents the point at which the input voltage 

equals the output voltage. These values are arbitrary and simplified for illustration 

purposes. In practice, the voltage gains for each type of converter vary depending on 

factors like component values, converter efficiency, and load requirements. 

5.3 Solar Energy System Modelling 

5.3.1 System Components and Parameters 

In modeling and simulating a solar energy system, it is necessary to establish the 

governing equations for each of its four components: solar panels, Maximum Power 

Point Tracking (MPPT) algorithm, DC-DC converters, and loads or batteries. 

Solar panels have specific parameters, including the number of cells, open-circuit 

voltage (Voc), short-circuit current (Isc), and temperature coefficients. The MPPT 

algorithm typically employs AI-based techniques like fuzzy logic controllers or neural 

networks [111]. DC-DC converters such as boost, buck, and buck-boost converters 

have their respective parameters, and loads or batteries have specific voltage and 

current requirements. 

5.3.1.1 Photovoltaic (PV) Module 

The single-diode model is the commonly used mathematical representation of a 

photovoltaic (PV) module [112]. This model considers the nonlinear I-V characteristics 

of the solar panel and consists of a current source, a diode, a series resistance (Rs), and 
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a shunt resistance (Rsh). The equation representing the single-diode model is as 

follows: 

𝐼 𝐼 𝐼 𝐼  (1) 

where: 

 I is the output current of the PV module. 
 𝐼  is the photogenerated current, which depends on solar irradiance and 

temperature. 
 𝐼  is the diode current. 
 𝐼  is the shunt current. 

The diode current (𝐼 ) can be expressed as: 

𝐼  𝐼 ∗ exp V  Rs ∗ I / n ∗ Vt   1    (2)  

where: 

 𝐼  is the diode saturation current, which depends on temperature. 
 V is the output voltage of the PV module. 
 𝑛 is the diode ideality factor (typically between 1 and 2) 
 Rs is the series resistance of the photovoltaic module. 
 Vt is the thermal voltage, given by Vt  k∗ T/q (k is Boltzmann's constant, T 

is the cell temperature in Kelvin, and 𝑞 is the electron charge) 

The shunt current (Ish) can be expressed as: 

𝐼  V  Rs ∗ I /Rsh  (3) 

Where Rsh is the shunt resistance of photovoltaic module. Substituting Id and Ish into 

the initial equation, we get the complete single-diode model equation: 

𝐼  𝐼𝑝ℎ  10 ∗ exp V  Rs ∗ I / n ∗ Vt   1 V  Rs ∗ I /Rsh  (4) 

5.3.1.2 DC-DC Converter Parameters 

The boost, buck, and buck-boost converters have various parameters that influence 

their performance, such as inductor and capacitor values and switching frequencies 
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[113]. The mathematical formulation for these parameters is based on the desired 

output voltage, input voltage, and load conditions. 

Boost Converter: 

In the Boost converter, the output voltage is higher than the input voltage, and 

the duty cycle of the switching signal is determined by Equation (5). The inductor and 

capacitor values are calculated by Equations (6) and (7), respectively.  

Duty cycle 𝐷    Vout - Vin) / Vout (5) 
Inductor value L Vin ∗ D / ΔIL ∗ fs  (6) 
Capacitor (Cout) 𝐷  ∗ Iout / ΔVout∗ fs  (7) 

where: 

 Vout is the output voltage. 
 Vin is the input voltage. 
 ΔIL is the inductor current ripple. 
 𝑓𝑠 is the switching frequency. 
 Iout is the output current. 
 ΔVout is the output voltage ripple. 
 Cout is Output Capacitor. 

The inductor current ripple, switching frequency, output current, and output 

voltage ripple are all factors that affect the component values. 

Buck Converter: 

In the Buck converter, the output voltage is lower than the input voltage, and 

the duty cycle is determined by Equation (8). The inductor and capacitor values are 

calculated by Equations (9) and (10), respectively. 

Duty cycle 𝐷   Vout/Vin (8) 
Inductor value L Vin ∗ 𝐷∗ 1  D / ΔIL ∗ fs  (9) 
Capacitor (Cout) Iout∗ 1 𝐷 / ΔVout∗ fs  (10) 

Also, the inductor and capacitor values also depend on the same factors as in a Boost 

converter, but the equations have a different form. 
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Buck-Boost Converter: 

In the Buck-Boost converter, the output voltage can be higher or lower than 

the input voltage, depending on the duty cycle. The duty cycle is determined by 

Equation (11), and the inductor and capacitor values are calculated by Equations (12) 

and (13), respectively. 

Duty cycle (D) 1- (Vin / Vout) (11) 
Inductor value L Vin∗Vout / Vout+Vin ∗ ΔIL ∗ fs                               (12) 
Capacitor (Cout) lout ∗ D)/ ΔVout ∗ fs  (13) 

The inductor and capacitor values depend on factors such as the input and 

output voltages, switching frequency, and output current.  

Overall, the duty cycle equation (Equations (5), (8), and (11)) determines the 

fraction of time that the switch in the converter is on versus off. By adjusting the duty 

cycle, the output voltage and current levels can be controlled. Whereas the inductor 

equation (Equations (6), (9), and (12)) determines the value of the inductor needed for 

the converter to function correctly. The inductor value determines the rate of change of 

current and is responsible for storing energy during the on-time of the switch and 

releasing energy during the off-time. The capacitor equation (Equations (7), (10), and 

(13)) determines the value of the output capacitor needed to filter the output voltage 

ripple. The capacitor value determines the energy storage capacity and influences the 

output voltage ripple. 

5.3.1.3 AI-based MPPT 

The fundamental equations and concepts for each of the four algorithms used in 

modeling the AI-based hybrid MPPT techniques for optimizing solar energy systems 

are presented below. These algorithms include Fuzzy Logic Control (FLC), Particle 

Swarm Optimization (PSO), Artificial Neural Network (ANN), and Genetic Algorithm 
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(GA). Each algorithm was modeled using corresponding equations in the solar energy 

system optimization context. In addition to the equations, modeling these algorithms in 

MATLAB involves several steps, including initialization, iteration, and termination. 

i. Fuzzy Logic Control (FLC) 

FLC is a control strategy that uses linguistic variables and fuzzy sets to model 

and solve complex problems [113]. It adjusts the duty cycle based on input variables 

such as the change in power (ΔP) and voltage (ΔV). 

Fuzzification: define membership functions for input variables ΔP and ΔV: 

μ_A(x) = (x - a) / (b - a), for a ≤ x ≤ b (14) 

μ_A(x) = (c - x) / (c - b), for b ≤ x ≤ c (15) 

 x: input variable (ΔP or ΔV) 
 a, b, c: parameters defining the shape of the membership function. 

Equations (14) and (15) are used to define the membership functions in fuzzy 

logic control. A membership function is a mathematical function that maps input values 

to fuzzy sets. Equation (14) defines the membership function for an input variable x 

within the range of a to b. It linearly maps the input value x to a fuzzy set with a 

membership value that varies from 0 to 1. Parameter a represents the lower limit of the 

fuzzy set, while b represents the upper limit. 

Equation (15) defines the membership function for an input variable x within 

the range of b to c. Like Equation (14), it linearly maps the input value x to a fuzzy set 

with a membership value that varies from 0 to 1. Parameter b represents the lower limit 

of the fuzzy set, while c represents the upper limit. However, in this case, the mapping 

is inverted compared to Equation (14), resulting in a fuzzy set that is high near c and 

low near b. These membership functions are used to determine the degree of activation 
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of each rule in the fuzzy logic controller based on the input values. This is then used to 

determine the output value using the centroid method in Equation (16). 

Defuzzification: Compute the output value ΔD using centroid method: 

ΔD = Σ(μ_Bi(x) * x) / Σ(μ_Bi(x)) (16) 

 μ_Bi(x): membership function value of the output variable (ΔD) for each rule i 
 x: output variable (ΔD) 

ii. Particle Swarm Optimization (PSO)  

PSO is a population-based optimization algorithm inspired by the social 

behavior of birds flocking or fish schooling [114]. PSO optimizes the duty cycle to 

maximize the power output. 

Update the position (D) and velocity (v) of each particle i: 

v_i(k+1) = w*v_i(k)+c1*rand () *(p_best_i(k)-D_i(k))+c2 * rand()*(g_best(k) -D_i(k))  (17) 

D_i(k+1) = D_i(k) + v_i(k+1)  (18) 

 i: index of the particle 
 k: current iteration 
 w: inertia weight 
 c1, c2: acceleration constants 
 rand (): random number between 0 and 1 
 p_best_i(k): personal best position of particle i 
 g_best(k): global best position of the swarm 

Equation (17) and (18) describe the update rules for the position and velocity 

of each particle in the particle swarm optimization (PSO) algorithm. In PSO, a swarm 

of particles is initialized with random positions and velocities in the search space. Each 

particle represents a candidate solution to the optimization problem, and its position in 

the search space corresponds to a particular duty cycle value. 

In equation (17), the velocity of each particle is updated based on its current 

velocity, its best position found so far (p_best), and the best position found by the 
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swarm (g_best). The inertia weight w controls the trade-off between the particle's 

current velocity and its previous velocity. The parameters c1 and c2 are the acceleration 

constants that control the influence of the personal best position and the global best 

position on the particle's movement. The function rand() generates a random number 

between 0 and 1, and the update equation computes the new velocity of the particle at 

the next iteration. Whereas Equation (18) is the update rule for the position of each 

particle in the PSO algorithm. It is used to calculate the new duty cycle value for each 

particle in the swarm based on its previous position and velocity. The new duty cycle 

value is then evaluated to determine if it is a better solution than the particle's current 

best position (p_best) and the swarm's global best position (g_best). The equation 

calculates the new duty cycle value (D_i(k+1)) by adding the velocity of the particle 

(v_i(k+1)) to its current position (D_i(k)). This new duty cycle value will then be used 

in the next iteration of the algorithm. The velocity of each particle is updated based on 

the inertia weight (w), acceleration constants (c1 and c2), and random values generated 

by the algorithm (rand()). 

In the context of MPPT, let V be the voltage, I be the current, and P be the 

power at a given point in time. Let V_MPPT, I_MPPT, and P_MPPT be the optimal 

voltage, current, and power at the maximum power point, respectively. Then, using the 

PSO algorithm equations (17) and (18),  the voltage and current values can be updated 

as follows: 

V_i(k+1) = w * V_i(k) + c1 * rand() * (V_pbest_i - V_i(k)) + c2 * rand() * (V_gbest - V_i(k)) (17a) 

I_i(k+1) = w * I_i(k) + c1 * rand() * (I_pbest_i - I_i(k)) + c2 * rand() * (I_gbest - I_i(k)). (17b) 

where V_pbest_i and I_pbest_i are the personal best voltage and current values for 

particle i, V_gbest and I_gbest are the global best voltage and current values for the 
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entire swarm, respectively, and rand() is a random number between 0 and 1. Using 

these updated values, the updated power can be calculated as: 

P_i(k+1) = V_i(k+1) * I_i(k+1)  (18a) 

Finally, the power values for all particles in the swarm are compared to determine the 

optimal voltage and current values for MPPT: 

if (P_i(k+1) > P_pbest_i): 

P_pbest_i = P_i(k+1) 
(18b) 

V_pbest_i = V_i(k+1) 

I_pbest_i = I_i(k+1) 

if (P_pbest_i > P_gbest): 

P_gbest = P_pbest_i  
(18c) 

V_gbest = V_pbest_i 

I_gbest = I_pbest_i 

Where P_pbest_i, V_pbest_i, and I_pbest_i are the personal best power, voltage, and 

current values for particle i, P_gbest, V_gbest, and I_gbest are the global best power, 

voltage, and current values for the entire swarm, respectively. 

iii. Artificial Neural Network (ANN) 

ANNs are computational frameworks that draw inspiration from the organization and 

functionality of biological neural networks [115]. In solar energy systems, ANNs are 

employed to model the associations between input variables, such as solar irradiance 

and temperature, and output variables, like power output. Feedforward equation for the 

ANN with input x, weights w, biases b, and activation function f: y = f(w * x + b) 

    (19)  
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 x: input variable (solar irradiance, temperature) 
 w: weights of the neural network connections 
 b: biases of the neurons 
 f: activation function (sigmoid) 

Equation (19) represents the core equation used in ANNs to predict the output 

variable based on the input variables and the learned parameters of the network. The 

input variable x is multiplied by the weights of the neural network connections 

(represented by w). Then the biases of the neurons (represented by b) are added to the 

product. This result is then passed through an activation function represented by f. The 

output of the activation function is denoted by y. The weights and biases of the neural 

network are the parameters that the algorithm learns during the training phase. The 

algorithm iteratively adjusts the weights and biases to minimize the difference between 

the actual and predicted outputs.  

The predicted output value generated by the ANN, represented by ŷ, can be 

compared to the actual output value y using the mean squared error (MSE) in Equation 

(20). The MSE represents the average squared difference between the predicted and 

actual output values in a dataset, normalized by the total number of data points. By 

minimizing the MSE by adjusting the weights and biases of the ANN, the network can 

learn to make more accurate predictions of the output variable. This process is known 

as training the network, and it can improve the model's accuracy when applied to new 

data. 

Mean Squared Error (MSE): 

  MSE  =  Σ (y - ŷ)^2 / N (20) 

 y: actual output value (target) 
 ŷ: predicted output value generated by the ANN 
 N: total number of data points in the dataset 
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 Σ: summation symbol 

iv. Genetic Algorithm (GA) 

GAs are evolutionary optimization algorithms that use principles of natural 

selection and genetics to find the optimal solution [116]. GA optimizes the duty cycle 

to maximize the power output. 

Fitness function F for each duty cycle value D: 

F(D) = P_in(D) = V_in(D) * I_in(D)  (21) 

 D: duty cycle value 
 P_in(D): input power for the given duty cycle value D 
 V_in(D): input voltage for the given duty cycle value D 
 I_in(D): input current for the given duty cycle value D. 

5.4 Implementation, Results and Analysis 

A simulated solar energy system using MATLAB Simulink was built. This 

environment as depicted in Figure 5.6 allowed for analyzing the performance of the 

Buck, Boost, and Buck-Boost converter topologies under fixed and varying solar 

irradiance and temperature conditions.  

PV PANEL 
DC-DC 

CONVERTE 
R 

LOAD 

HYBRID AI-
BASED MPPT 

METHODS 

Figure 34 Block Diagram of MATLAB/Simulink Setup 

The three AI-based MPPT algorithms - GA-trained ANFIS (Genetic Algorithm trained 

Adaptive Neuro-Fuzzy Inference System), PSO-trained NN (Particle Swarm 

Optimization trained Neural Network), and PSO-trained ANFIS were modeled as 
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Definition 

GA/PSO 

shown in the block diagram in Figure 5.7 and integrated into the solar energy system 

model. The implementation steps in Figure 5.7 for each Algorithm are similar, with 

minor differences in the optimization techniques and model structures. 

Figure 35 Implementation Steps for Algorithm Setup 

In defining the optimization problem, the goal was to optimize the parameters 

of the three hybrid AI-based MPPT algorithms to enhance the solar energy system's 

performance. The input variables were solar irradiance and temperature, while the 

output variable was the MPPT's duty cycle. The objective function aimed to minimize 

the error between the predicted and actual outputs. In creating the models for the GA 

ANFIS and PSO-ANFIS, MATLAB's Fuzzy Logic Toolbox was utilized to design 

initial ANFIS models with membership functions and rule bases. In contrast, 

MATLAB's Neural Network Toolbox was employed for the PSO-NN model to create 

an initial neural network with a suitable architecture. Each model was saved in a format 
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suitable for further processing. In preparing the optimization algorithms for the GA-

ANFIS model, Genetic Algorithm (GA) was set up using MATLAB's Global 

Optimization Toolbox. For the PSO-ANFIS and PSO-NN models, custom MATLAB 

functions were written to set up the Particle Swarm Optimization (PSO) algorithm. 

Essential parameters were defined, such as population, crossover and mutation rates 

for GA, inertia weight, cognitive coefficients, and maximum iterations for PSO. 

In encoding the models, custom MATLAB functions were also developed to 

convert the model parameters of the GA-ANFIS, PSO-ANFIS, and PSO-NN models 

into formats that could be used as input for their respective optimization algorithms, 

including defining fitness functions for each Algorithm to evaluate the performance of 

the corresponding model for each Algorithm to obtain the performance metric. The 

Genetic Algorithm for GA-ANFIS and the Particle Swarm Optimization for PSO-

ANFIS and PSO-NN were executed using the custom MATLAB functions and 

toolboxes, incorporating the defined fitness functions and optimization parameters.  

The optimization algorithms refined the solutions representing the model 

parameters. After the optimization algorithms converged, the best solutions were 

decoded back into the optimized model parameters for GA-ANFIS, PSO-ANFIS, and 

PSO-NN. The models are then updated with these new parameters, resulting in 

optimized hybrid AI-based MPPT algorithms for the solar energy system. After 

successfully developing the optimized GA-ANFIS, PSO-ANFIS, and PSO-NN hybrid 

AI-based MPPT algorithms for the solar energy system, the models were paired with 

the appropriate DC-DC converter topology. 

In all the techniques and DC-DC converter topologies, the simulation time 

was set at 1 second of simulation time and irradiance value was varied and temperature 
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At Constant Boost Converter Buck Converter Buck-Boost Converter 

lrrad lance & 
Power 

~ rformance 
Power 

~rformance 
Power 

Performance Temperature PV Power PV Power PV Power 

(W) 
Output 

Rat io ("I (W) 
Output 

Rat io ("I (W) 
Output 

Rat io ("I 
(W) (W) (W) 

GA-ANFIS MPPT 250 250 100 225 225 100 2.50 240 96 

PSO-ANFIS M PPT 247 243 98 223 223 100 245 236 96 

PSO-NN MPPT 248 249 100 223 223 100 147 137 93 

values were kept constant at 25 degrees Celsius respectively while using also, a 

constant resistive load of 40 ohms. 

Table 5.1, 5.2, and 5.3 summarizes the simulation results obtained for GA-

ANFIS, PSO-ANFIS, and PSO-NN based on Boost, Buck, and Buck-Boost converter 

topologies. The simulation results in Tables 5.3, 5.4, and 5.5 provide valuable insights 

into the efficiency and performance of the different converter topologies in solar energy 

systems employing hybrid AI-based MPPT techniques. For the results in Table 5.1, the 

solar irradiance and temperature were kept constant while varying the load at the output 

of the converters. The Performance ratio values given in Table 5.1 is the ratio of the 

actual output power seen at the load point of the PV system to the PV power (that is, 

power generated by the solar panel) if the system operates at its maximum rated power 

output under standard test conditions. The performance ratio measures the performance 

of the solar PV system relative to the MPPT technique and the type of DC/DC converter 

topology used. 

TABLE 5.1: POWER OUTPUT & PERFORMANCE VALUES AT CONSTANT 
IRRADIANCE 

The results shown in Table 5.2 were also obtained while varying the load and solar 

irradiance, but the temperature value was kept constant. 
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At Varying Boost Converter Buck Converter Buck-Boost Converter 

lrradlance & Power Output (W) Power Output (W) Power Output (W) 

Constant 

Temperature GA-ANFIS PSO-ANFIS PSO-NN GA•ANFIS PSO-ANFIS PSO-NN GA-ANFIS PSO-ANFIS PSO-NN 

200 48 45 14 16 16 17 45 43 28 

400 96 94 59 53 60 62 92 93 102 

600 145 144 131 135 133 133 142 139 124 

800 198 203 193 201 200 202 191 188 131 

1000 253 243 249 225 223 223 240 236 137 

TABLE 5.2: POWER OUTPUT VALUES AT VARYING IRRADIANCE 

Table 5.3 shows the various response times and slew rates for converter 

topologies with corresponding hybrid AI-based MPPT techniques under varying solar 

irradiance and load conditions.   

The response time and slew rate are used to characterize the performance of 

the systems, as they describe the speed at which a system can respond to rapid changes 

in input signals [117]. The response time in the simulation measures the time it takes 

for the voltage transition to occur to a higher level based on the changes from both the 

input and output of the system. A lower time indicates a faster response and determines 

the system's ability to accurately capture and display fast-changing signals. The Slew 

rate, on the other hand, measures the maximum speed at which the system's output 

voltage can change with respect to time. It is usually expressed in units of volts per 

millisecond (V/ms) [118]. A higher slew rate indicates the system can handle faster 

input signal changes. 
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varying 
Boost Converter Buck Converter 

Buck-Boost 
lrradiance & Converter 

Constant Response Slew Rate Response Slew Rate Respons.e Slew Rate 

Temperature Time (s) (V/ms) Time (s) (V/ms) Time (s) (V/ms) 

GA-ANFIS MPPT 0.2 620 0.2 530 0.2 410 

PSO-ANFIS MPPT 0.4 290 0.6 280 0.6 263 

PSO-NN MPPT 0.6 270 0.6 280 0.4 213 

TABLE 5.3: RESPONSE TIME AND SLEW RATE VALUES 

According to the results, the Boost converter emerged as a superior topology 

compared to the Buck and Buck-Boost converters for several reasons: 

i. Improved efficiency: The Boost converter demonstrated higher efficiency 

in the simulations, primarily due to its voltage step-up capability and ability to 

minimize energy losses in the system. This characteristic is crucial in maximizing the 

solar energy system's power output and overall performance.  

ii. Adaptability to varying conditions: The Boost converter's ability to 

maintain a consistent output voltage, despite fluctuating solar irradiance and 

temperature conditions contributed to its enhanced performance with hybrid AI-based 

MPPT techniques. This adaptability ensures the system operates close to the maximum 

power point, optimizing energy conversion and power output. 

iii. Compatibility with hybrid AI-based MPPT algorithms: The Boost 

converter's performance characteristics, such as its voltage regulation capabilities, 

make it highly compatible with the hybrid AI-based MPPT algorithms tested in the 

simulations. This compatibility allows the AI algorithms to optimize power extraction 

and adapt more quickly to changing solar conditions, enhancing the system's 

performance. 
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The simulation results underscore the benefits of employing a Boost converter 

topology in solar energy systems utilizing hybrid AI-based MPPT techniques. 

Nevertheless, it is crucial to emphasize that the converter selection must be customized 

to the specific needs and limitations of the solar energy system being considered, as 

various factors may impact the ideal choice of the converter. 
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CHAPTER 6 

6. CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusions 

In this dissertation, we have presented, implemented, and analyzed AI-based MPPT 

techniques for solar energy applications. Existing AI-based Maximum Power Point 

Tracking (MPPT) methods use sensory data, such as solar irradiance, input voltage, 

and current measurements, to predict and estimate the Global Maximum Power Point 

(GMPP) along the non-linear P-V curve, overcoming the limitations of traditional 

MPPT techniques. Under varying environmental conditions, solar irradiance and cell 

temperature are critical meteorological parameters that directly influence a solar power 

system's Maximum Power Points (MPPs). 

We have discussed the fundamental concepts of MPPT and compared various 

high-performing AI-based MPPT algorithms for GMPP estimation. Following this 

analysis, we investigated a Genetic Algorithm (GA) trained Adaptive Neuro-Fuzzy 

Inference System (ANFIS). This approach was modeled and simulated using Simulink, 

showcasing its accuracy and reliability in estimating GMPP under a range of solar 

irradiance and PV cell temperature values. Although AI-based MPPT algorithms offer 

faster convergence times, reduced steady-state oscillations, and higher efficiency, they 

require significant processing power and can be challenging to implement.  

Hybrid AI-based MPPT techniques provide an optimal balance between 

performance and complexity, merging the advantages of traditional and AI-based 

MPPT methods. However, selecting the appropriate hybrid MPPT technique is 

challenging due to the pros and cons of each method. We evaluated PSO-trained 
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ANFIS and NN MPPT techniques to verify the proposed approach's performance and 

compared them with the GA-trained ANFIS method. The simulation findings revealed 

that the GA-ANFIS approach displayed remarkable tracking speed and stability. 

Additionally, we investigated the suitability of Buck, Boost, and Buck-Boost 

converter topologies for hybrid AI-based MPPT in solar energy systems under varying 

solar irradiance and temperature conditions. Through extensive analysis and 

simulations in MATLAB Simulink, we assessed the performance of three AI-based 

MPPT algorithms: GA-trained ANFIS, PSO-trained NN, and PSO-trained ANFIS 

MPPTs, determining the most appropriate DC-DC converter topology for each 

algorithm. 

The research findings underscored converter topology's influence on solar 

energy systems' performance using hybrid AI-based MPPT algorithms. While the 

Boost converter offers benefits in specific scenarios, such as voltage step-up capability 

and high efficiency, the choice of an ideal converter topology ultimately depends on 

the individual requirements and constraints of the solar energy system under 

consideration. This work is a valuable reference for future research in solar power 

generation, emphasizing the importance of carefully selecting the converter topology 

and AI-based MPPT algorithm to optimize system performance and maximize power 

output. 

6.2 Further Research Recommendations 

Based on the findings of this research, several avenues for future research have been 

identified to advance further the field of AI-based MPPT techniques for solar energy 

applications: 
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i. Environmental factors: Investigate the impact of factors such as dust 

accumulation or module degradation on AI-based MPPT algorithm 

performance and develop strategies to mitigate these effects for optimal 

power output. 

ii. Scalability and adaptability: Examine the scalability of AI-based MPPT 

techniques for large-scale solar power plants, assess their suitability for 

commercial applications, and explore adaptability to different system sizes 

and configurations. 

iii. Integration with innovative grid technologies: Investigate integrating AI-

based MPPT algorithms with smart grid technologies to optimize power 

generation, distribution, and utilization, enabling a more dynamic and 

efficient renewable energy infrastructure. 

iv. Hybrid renewable energy systems: Explore the application of AI-based 

MPPT algorithms in hybrid systems that combine solar power with other 

renewable energy sources, such as wind or hydro, to improve overall system 

performance, stability, and reliability. 

v. Energy consumption and computational requirements: Assess the energy 

usage and computational demands of AI-based MPPT techniques, 

identifying strategies to reduce energy consumption and complexity without 

sacrificing performance. 

vi. Solar-powered devices and vehicles: Examine the potential of AI-based 

MPPT algorithms for improving the performance of solar-powered electric 

vehicles or portable devices, promoting the broader adoption of clean 

energy technologies across various sectors. 
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These recommendations provide a roadmap for future research, offering 

potential directions for expanding the knowledge and understanding of AI-based MPPT 

techniques in solar energy applications. By addressing these areas, researchers can 

contribute to developing more efficient, reliable, and sustainable solar energy systems, 

fostering the widespread adoption of renewable energy solutions. 
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