27 research outputs found

    Pose angular-aiding for maneuvering target tracking

    Full text link

    Overview of contextual tracking approaches in information fusion

    Get PDF
    Proceedings of: Geospatial InfoFusion III. 2-3 May 2013 Baltimore, Maryland, United States.Many information fusion solutions work well in the intended scenarios; but the applications, supporting data, and capabilities change over varying contexts. One example is weather data for electro-optical target trackers of which standards have evolved over decades. The operating conditions of: technology changes, sensor/target variations, and the contextual environment can inhibit performance if not included in the initial systems design. In this paper, we seek to define and categorize different types of contextual information. We describe five contextual information categories that support target tracking: (1) domain knowledge from a user to aid the information fusion process through selection, cueing, and analysis, (2) environment-to-hardware processing for sensor management, (3) known distribution of entities for situation/threat assessment, (4) historical traffic behavior for situation awareness patterns of life (POL), and (5) road information for target tracking and identification. Appropriate characterization and representation of contextual information is needed for future high-level information fusion systems design to take advantage of the large data content available for a priori knowledge target tracking algorithm construction, implementation, and application.Publicad

    Target maneuver discrimination using ISAR image in interception

    Get PDF

    Investigation of bandwidth utilisation methods to optimise performance in passive bistatic radar

    Get PDF
    This thesis reports on research into the field of multiband Passive Bistatic Radar (PBR). The work is based on the premise that it is possible to improve on the PBR range resolution by exploiting the full broadcasted bandwidth from transmitters of opportunity. This work comprises both Frequency Modulated (FM) radio and Digital Video Broadcast - Terrestrial (DVB-T) waveforms. The work shows how the exploitation of the available frequency scattered bandwidth broadcasted from single broadcast towers can be achieved by coherently by combining each of the individual channels/bands, and that the range resolution is improved accordingly. The major contributions of this thesis may be divided into the following parts: Hardware (HW) design and development, algorithm development, simulations, real target data analysis, and finally non-cooperative target recognition and High Range Resolution (HRR) considerations. The work comprises simple PBR performance predictions for various strong transmitters of opportunity in the southeastern parts of Norway. Hardware for data recording was designed, produced and made working. The mathematics for coherently combining non-adjacent single channels/bands in the range correlation was developed. The range resolution performance of the algorithm was supported by theoretical simulations using pseudo random generated signals, as well as simulations using real recorded FM radio and DVB-T signals from nearby strong transmitters. For FM radio and DVB-T airliners and for DVB-T also a propeller aircraft were analyzed. The theoretical claims were supported by the real life target analysis, as the range resolution was improved as predicted for all targets. For the DVB-T waveform, an analysis of the HRR profiles showed that two targets of different type was manually classified as targets of different type. This work has fully closed the circle from idea, HW design, development and testing, theoretical algorithm development and simulations, and finally real world performance analysis as well as target analysis

    Optimization of Automatic Target Recognition with a Reject Option Using Fusion and Correlated Sensor Data

    Get PDF
    This dissertation examines the optimization of automatic target recognition (ATR) systems when a rejection option is included. First, a comprehensive review of the literature inclusive of ATR assessment, fusion, correlated sensor data, and classifier rejection is presented. An optimization framework for the fusion of multiple sensors is then developed. This framework identifies preferred fusion rules and sensors along with rejection and receiver operating characteristic (ROC) curve thresholds without the use of explicit misclassification costs as required by a Bayes\u27 loss function. This optimization framework is the first to integrate both vertical warfighter output label analysis and horizontal engineering confusion matrix analysis. In addition, optimization is performed for the true positive rate, which incorporates the time required by classification systems. The mathematical programming framework is used to assess different fusion methods and to characterize correlation effects both within and across sensors. A synthetic classifier fusion-testing environment is developed by controlling the correlation levels of generated multivariate Gaussian data. This synthetic environment is used to demonstrate the utility of the optimization framework and to assess the performance of fusion algorithms as correlation varies. The mathematical programming framework is then applied to collected radar data. This radar fusion experiment optimizes Boolean and neural network fusion rules across four levels of sensor correlation. Comparisons are presented for the maximum true positive rate and the percentage of feasible thresholds to assess system robustness. Empirical evidence suggests ATR performance may improve by reducing the correlation within and across polarimetric radar sensors. Sensitivity analysis shows ATR performance is affected by the number of forced looks, prior probabilities, the maximum allowable rejection level, and the acceptable error rates

    An Algorithm for Automatic Target Recognition Using Passive Radar and an EKF for Estimating Aircraft Orientation

    Get PDF
    Rather than emitting pulses, passive radar systems rely on illuminators of opportunity, such as TV and FM radio, to illuminate potential targets. These systems are attractive since they allow receivers to operate without emitting energy, rendering them covert. Until recently, most of the research regarding passive radar has focused on detecting and tracking targets. This dissertation focuses on extending the capabilities of passive radar systems to include automatic target recognition. The target recognition algorithm described in this dissertation uses the radar cross section (RCS) of potential targets, collected over a short period of time, as the key information for target recognition. To make the simulated RCS as accurate as possible, the received signal model accounts for aircraft position and orientation, propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates the target's orientation (and uncertainty in the estimate) from velocity measurements obtained from the passive radar tracker. Coupling the aircraft orientation and state with the known antenna locations permits computation of the incident and observed azimuth and elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target classes as a function of these angles. Thus, the approximated incident and observed angles allow the appropriate RCS to be extracted from a database of FISC results. Using this process, the RCS of each aircraft in the target class is simulated as though each is executing the same maneuver as the target detected by the system. Two additional scaling processes are required to transform the RCS into a power profile (magnitude only) simulating the signal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction System (AREPS) code to account for propagation losses that occur as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of the illuminated aircraft with those of the potential targets. To improve the robustness of the result, the algorithm jointly optimizes over feasible orientation profiles and target types via dynamic programming.Ph.D.Committee Chair: Lanterman, Aaron; Committee Member: McLaughlin, Steve; Committee Member: Richards, Mark; Committee Member: Serban, Nicoleta; Committee Member: Verriest, Eri

    Radar Target Classification using Recursive Knowledge-Based Methods

    Get PDF

    Subspace-based methodologies for the non-cooperative identification of aircraft by means of a synthetic database of radar signatures

    Get PDF
    Una de las principales preocupaciones dentro del mundo de la aviación es la identificación rápida, eficaz y fiable de cualquier objeto observado que se encuentre a cualquier distancia y bajo cualquier condición atmosférica. Gracias a los avances en tecnología radar, esto se ha conseguido. De hecho, los radares son los sensores más adecuados para el reconocimiento de blancos en vuelo ya que pueden operar en cualquier condición. El reconocimiento de blancos mediante radar es hoy un hecho, existiendo sistemas IFF (Identification Friend or Foe) capaces de comunicarse con una aeronave haciendo posible que ella misma se identifique por sí sola. Sin embargo, esta necesidad de comunicación directa puede ser un inconveniente en ciertos momentos. Así, aparecen las técnicas no cooperativas o NCTI (Non-Cooperative Target Identification), que no establecen ninguna comunicación con el blanco y normalmente hacen uso de radares de alta resolución. Éstos ven los blancos como compuestos por diversos puntos que dispersan la energía emitida por el radar, generando así una imagen de la reflectividad de un blanco, lo que se ha llamado su firma radar. Comparando dicha firma radar con una base de datos de firmas radar de blancos conocidos es posible establecer, mediante una serie de algoritmos de identificación, el tipo de blanco iluminado por el radar. Uno de los temas más cuestionados es cómo poblar y actualizar esta base de datos de firmas radar. De manera ideal, la base de datos debería de contener medidas de blancos reales en vuelo; desafortunadamente, la principal desventaja de esta estrategia radica en la dificultad de obtener firmas radar de aviones neutrales o enemigos. Por esta razón, esta tesis propone utilizar firmas radar de blancos ideales, generadas mediante simulaciones electromagnéticas, como base de datos. Con el avance de las herramientas de predicción electromagnética es posible obtener de manera rápida y a bajo coste firmas radar de cualquier blanco deseado y en cualquier orientación. De este modo, el principal objetivo de esta tesis yace en el desarrollo de algoritmos eficientes de identificación de aeronaves en vuelo de manera no cooperativa, con altas tasas de acierto y empleando una base de datos de blancos obtenida mediante simulación electromagnética. El escenario propuesto consiste en la comparación de firmas radar reales obtenidas en una campaña de medidas con una base de datos compuesta por firmas radar simuladas, con ello se pretende por un lado, simular un escenario más realista, en el que las firmas de los blancos recogidas por el radar no tienen porqué tener la misma calidad que aquellas de la base de datos y por otro, comprobar que la identificación de un avión real mediante simulaciones es posible

    Feature Papers of Drones - Volume I

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 1–8 are devoted to the developments of drone design, where new concepts and modeling strategies as well as effective designs that improve drone stability and autonomy are introduced. Articles 9–16 focus on the communication aspects of drones as effective strategies for smooth deployment and efficient functioning are required. Therefore, several developments that aim to optimize performance and security are presented. In this regard, one of the most directly related topics is drone swarms, not only in terms of communication but also human-swarm interaction and their applications for science missions, surveillance, and disaster rescue operations. To conclude with the volume I related to drone improvements, articles 17–23 discusses the advancements associated with autonomous navigation, obstacle avoidance, and enhanced flight plannin

    Computational Algorithms for Improved Synthetic Aperture Radar Image Focusing

    Get PDF
    High-resolution radar imaging is an area undergoing rapid technological and scientific development. Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) are imaging radars with an ever-increasing number of applications for both civilian and military users. The advancements in phased array radar and digital computing technologies move the trend of this technology towards higher spatial resolution and more advanced imaging modalities. Signal processing algorithm development plays a key role in making full use of these technological developments.In SAR and ISAR imaging, the image reconstruction process is based on using the relative motion between the radar and the scene. An important part of the signal processing chain is the estimation and compensation of this relative motion. The increased spatial resolution and number of receive channels cause the approximations used to derive conventional algorithms for image reconstruction and motion compensation to break down. This leads to limited applicability and performance limitations in non-ideal operating conditions.This thesis presents novel research in the areas of data-driven motion compensation and image reconstruction in non-cooperative ISAR and Multichannel Synthetic Aperture Radar (MSAR) imaging. To overcome the limitations of conventional algorithms, this thesis proposes novel algorithms leading to increased estimation performance and image quality. Because a real-time imaging capability is important in many applications, special emphasis is placed on the computational aspects of the algorithms.For non-cooperative ISAR imaging, the thesis proposes improvements to the range alignment, time window selection, autofocus, time-frequency-based image reconstruction and cross-range scaling procedures. These algorithms are combined into a computationally efficient non-cooperative ISAR imaging algorithm based on mathematical optimization. The improvements are experimentally validated to reduce the computational burden and significantly increase the image quality under complex target motion dynamics.Time domain algorithms offer a non-approximated and general way for image reconstruction in both ISAR and MSAR. Previously, their use has been limited by the available computing power. In this thesis, a contrast optimization approach for time domain ISAR imaging is proposed. The algorithm is demonstrated to produce improved imaging performance under the most challenging motion compensation scenarios. The thesis also presents fast time domain algorithms for MSAR. Numerical simulations confirm that the proposed algorithms offer a reasonable compromise between computational speed and image quality metrics
    corecore