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SUMMARY

Rather than emitting pulses, passive radar systems rely on “illuminators of op-

portunity,” such as TV and FM radio, to illuminate potential targets. These systems are

particularly attractive since they allow receivers to operate without emitting energy, ren-

dering them covert. In addition, the fact that they do not require dedicated transmitters

often translates into significant cost savings. Thanks to their potential for low-cost covert

operation, passive radar has begun garnering increasing attention from both the media and

the scientific community. Until recently, most of the research regarding passive radar has

focused on detecting and tracking targets. Given the advances in these areas, the time

is right for research that focuses on extending the capabilities of passive radar systems to

include automatic target recognition. That is the goal of this dissertation.

The target recognition algorithm described in this dissertation uses the radar cross

section (RCS) of potential targets, collected over a short period of time (for example, 60

seconds), as the key information for target recognition. To make the simulated RCS as ac-

curate as possible, the received signal model accounts for aircraft position and orientation,

propagation losses, and antenna gain patterns. An extended Kalman filter (EKF) estimates

the target’s orientation (and uncertainty in the estimate) from velocity measurements ob-

tained from the passive radar tracker. Coupling the aircraft orientation and state with the

known antenna locations permits computation of the incident and observed azimuth and

elevation angles. The Fast Illinois Solver Code (FISC) simulates the RCS of potential target

classes as a function of these angles. Thus, the approximated incident and observed angles

allow the appropriate RCS to be extracted from a database of FISC results. Using this

process, the RCS of each aircraft in the target class is simulated as though each is executing

the same maneuver as the target detected by the system. Two additional scaling processes

are required to transform the RCS into a power profile (magnitude only) simulating the sig-

nal in the receiver. First, the RCS is scaled by the Advanced Refractive Effects Prediction
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System (AREPS) code to account for propagation losses that occur as functions of altitude

and range. Then, the Numerical Electromagnetic Code (NEC2) computes the antenna gain

pattern, further scaling the RCS. A Rician likelihood model compares the scaled RCS of

the illuminated aircraft with those of the potential targets. To improve the robustness of

the result, the algorithm jointly optimizes over feasible orientation profiles and target types

via dynamic programming.

The primary contribution of this research is the development of a robust ATR procedure

that can be used to covertly identify aircraft executing maneuvers ranging from straight-and-

level trajectories to dog-fighting trajectories. Simulations indicate that the ATR algorithm

performs extremely well at the highest anticipated noise levels when the aircraft being

tracked executes predictable straight-and-level or banked turn trajectories. Even when the

aircraft under track executes dog-fighting style trajectories, the algorithm’s probability of

error is still quite good. This is not meant to suggest that the algorithm would be perfect

(or nearly so) in practice, as even the best models fail to account for all effects seen in the

real world. However, the simulations suggest that the ATR algorithm has a great deal of

potential for reliable performance if imported into a real system. Furthermore, the algorithm

could be applied (with superficial changes) to low-frequency active radar systems.

The second major contribution of this research is the development of an EKF that

estimates aircraft orientation from velocity measurements. This EKF plays a role in the

ATR algorithm discussed in the previous paragraph, but also has the potential to be used

in other applications. Although this dissertation applies the EKF to passive radar velocity

measurements generated by state-of-the-art passive radar trackers, there is no reason it

cannot be applied to measurements generated by other trackers, as well. The measurements

and their error models would simply need to change to accommodate a different tracker

and/or source.

The final contribution of this work is the derivation of closed-form approximations for

the relative entropy and Chernoff information between two Rician distributions. Although

a wide variety of problems are well-modeled by the Rician distribution, the Gaussian dis-

tribution is frequently used in its place because of mathematical convenience.
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CHAPTER I

BACKGROUND

1.1 Automatic Target Recognition

Automatic target recognition (ATR) systems have been deployed to identify everything from

land mines to aircraft, using data collected from infrared (IR), hyperspectral, laser radar

(LADAR), and radar sensors, to name a few. Though the target classes and sensors may

vary from one application to the next, the goal of this work remains the same; automatic

target recognition systems attempt to automatically categorize targets into one of a set of

classes.

For example, recent research [50] demonstrated that super-resolution techniques could

greatly improve the performance of vehicle recognition schemes utilizing IR data. Another

notable body of work [39] focused on extracting invariant features from the IR images to

identify vehicles. Hyperspectral imagery is also frequently used to robustly detect and

identify small targets, including mines and vehicles [10, 44]. Both synthetic aperture radar

(SAR) and LADAR images have also been employed to identify vehicles, such as automobiles

and tanks [45, 49, 46, 11, 6]. High-resolution range (HRR) profiles, which may be thought of

as one-dimensional radar “images,” have been explored for identifying vehicles and aircraft

[30, 40].

Some sensors, such as infrared cameras, produce “images” that are readily interpreted

by a human operator. Other sensors produce data that must go through some kind of signal

processing to transform the data into an “image” form amenable to human interpretation.

For instance, in synthetic aperture radar or magnetic resonance imaging, the raw data is

nonsensical to human eyes; Fourier transform operations are needed to form images from

such data for human analysis. When considering automatic target recognition, as performed

by a computer, there is a question as to whether such an image-forming pre-processing step

is necessary. Two schools of thought are prevalent in the literature. The first body of
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literature assumes a traditional image-forming process and develops algorithms to work on

those images. This approach has the advantage that the system designers may be better

able to employ their visual intuition in creating algorithms. The second school of thought

attempts ATR directly on the “unprocessed” data, in the hopes of avoiding a potential loss

of information during the image formation stage. It also might sometimes be the case that

a computer might have an easier time recognizing targets in the unprocessed data than it

will in the processed data, although the opposite is true for humans.

This dissertation develops ATR algorithms for “passive radar” systems, which are de-

scribed in detail in the next section. Some researchers [34, 33] have argued that low-

frequency radar (i.e., using very high frequency (VHF) sources) is particularly well-suited

for ATR, because the longer wavelengths are less susceptible to wild fluctuations as the

target moves. Although there has been some work on exploring the possibility of forming

images with passive radar data [12], the limited amount of data available from most pas-

sive radar systems, as well as the challenge of the underlying multidimensional autofocus

problems, renders image formation from passive radar extremely difficult. For this reason,

passive radar sources naturally lend themselves to the direct approach to ATR. Rather

than basing recognition on images that are difficult to create, the recognition algorithms in

this dissertation use the returned signal power (magnitude only) as the primary feature for

identification.

1.2 Passive Radar

One potential ATR source that is the subject of burgeoning interest in both the media

and scientific community [41, 26, 25, 52] is passive radar. Rather than emitting energy,

passive radar sources rely on “illuminators of opportunity,” such as TV and FM radio, to

illuminate potential targets. While a traditional radar system contains both a transmitter

and receiver, which may be co-located, a passive radar system requires only a receiver that

is configured to exploit the desired illuminator(s) of opportunity. This enables passive radar

systems to reap a number of benefits. Most notably, the fact passive radar systems do not

emit energy renders them covert. This is a great strategic advantage if employed by the
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military. Furthermore, because much of the cost of traditional radar systems is associated

with the transmitter, passive radar systems are usually significantly less expensive to build

and maintain.

Additionally, many illuminators of opportunity employ low frequencies. Although pas-

sive radar systems do not inherently require low frequencies, the allocation of bandwidth

for commercial TV and FM radio implies that passive radar systems operate at lower fre-

quencies than traditional microwave radar. As a fortunate though unintended consequence,

the low-frequency signals exploited by passive radar are well-suited for ATR [34, 33, 13].

In addition to being less susceptible to inclement weather, the longer wavelengths result in

target radar cross sections that vary “slowly” with small changes in the target state vec-

tor. Herman noted that the variation in radar cross section (RCS), as characterized by the

number of nulls encountered as a target’s aspect changes, is proportional to the electrical

length of the target [28, 27]. At FM-band frequencies (100 MHz), a fighter-sized aircraft is

approximately five wavelengths long. In contrast, at the X-band frequencies used by many

traditional radars (10 GHz), the same aircraft would be 500 wavelengths long, making the

ATR system very sensitive to small changes in target orientation. Although using a fre-

quency in which the target is 500 wavelengths long would provide more variability amongst

the target types, it may also require that the orientation be precisely known to achieve

good results. Using the low-frequency source strikes a suitable balance; the RCS varies

sufficiently from one aircraft class to another to allow for target discrimination, and it is

not so sensitive to small changes in orientation that errors in the estimated orientation will

break the ATR algorithm.

Despite its numerous benefits, passive radar was once deemed impractical. In the mid-

1980s, Griffiths and Long [25] attempted to extract range information from backscattered

television signals. Plagued by the low signal-to-noise ratio resulting from the available

equipment and the range ambiguity inherent in the sync pulses of an analog TV signal, their

results did not seem encouraging. A decade later, interest in passive radar was resurrected

when Howland [29] successfully tracked targets by abandoning any attempt to directly

measure range in favor of the velocity information contained in the Doppler-shifted TV
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carrier and the angle-of-arrival information derived from a simple two-antenna array. Exotic

track initialization algorithms, combined with an extended Kalman filter, fuse the Doppler

and angle-of-arrival information into Cartesian coordinate tracks. Around that same time,

Baltes and van Keuk [7] developed an algorithm for tracking multiple maneuvering targets

with a network of passive radar sensors.

Interest in passive radar systems has since been spurred on by the successes of Lockheed

Martin Mission Systems’ Silent Sentry, which is capable of exploiting both analog TV and

FM radio signals, and John Sahr’s Manastash Ridge Radar [47, 48], which is used for upper

atmospheric radio science. Recent analysis of the ambiguity functions of illuminators of

opportunity [42, 23] has only bolstered the case for passive radar’s feasibility. Ongoing

research continues to demonstrate the potential of passive radar for tracking everything

from aircraft to tornados [22].

In fact, now that target detection and tracking via passive radar have received so much

attention, the focus of current research is beginning to shift to target imaging and iden-

tification. Some notable work regarding target imaging via passive radar has come from

researchers at the University of Illinois, including Munson, Wu, Ye, Moulin, and Bresler

[38, 51]. Herman and Moulin also demonstrated the potential for ATR using passive radar

under the feature-based paradigm [27]. They proposed using a particle filter to simultane-

ously track and classify targets, in which the target’s radar cross section (RCS) is one of

the key features.

1.3 Research Contributions

The research presented in this dissertation is in the same vein as Herman’s work, but at-

tempts to solve the same problem with a much simpler algorithm. Rather than employing

particle filters, which are difficult to implement and require a great deal of computational

horsepower, the proposed algorithm is relatively easy to add to existing systems and imple-

ment in real time.

As described in prior publications [18, 17, 21, 19, 20], this approach uses the radar cross

section (RCS) of potential targets as the key information for target recognition. The passive
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radar measurements are collected for a short period of time (for example, 60 seconds), and

processed in a batch. To make the simulated RCS as accurate as possible, the received

signal model accounts for aircraft position and orientation, propagation losses, and antenna

gain patterns. An EKF estimates the target’s orientation (and uncertainty in the estimate)

from velocity measurements obtained from the passive radar tracker during the time range

of interest. Coupling the aircraft orientation and state with the known antenna locations

permits computation of the incident and observed azimuth and elevation angles during this

same time span. This is depicted in Figure 1.

Figure 1: Computing the incident and observed azimuths and elevations on the aircraft

The Fast Illinois Solver Code (FISC) [4] simulates the RCS of potential target classes

as a function of these angles. Thus, the approximated incident and observed angles allow

the appropriate RCS to be extracted from a database of FISC results. Using this process,

the RCS profile of each aircraft in the target class is simulated as though each is executing

the same maneuver as the target detected by the system. Two additional scaling processes

are required to transform the RCS profile into a power profile (magnitude only) simulating

the signal in the receiver. First, the RCS profile is scaled by the Advanced Refractive

Effects Prediction System (AREPS) [1] code to account for propagation losses that occur
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as functions of altitude and range. Then, the Numerical Electromagnetic Code (NEC2)

[2] computes the antenna gain pattern, further scaling the RCS. A Rician likelihood model

compares the scaled RCS profile of the illuminated aircraft (spanning the entire time range

of interest) with those of the potential targets. To improve the robustness of the result, the

algorithm jointly optimizes over feasible orientation profiles and target types. The ATR

algorithms also permit exploitation of multiple transmitters, possibly employing different

polarizations.

The contributions of this research are numerous. The primary contribution is the de-

velopment of an ATR procedure for quickly and covertly identifying aircraft that could

operate in real time and be easily incorporated into existing passive radar systems. Sec-

ondary contributions include the development of an EKF for estimating aircraft orientation

from velocity measurements, and closed-form approximations of the relative entropy and

Chernoff information between two Rician distributions.

1.4 Organization of Dissertation

The body of the dissertation begins with the derivation of a coordinated flight model and its

development into an EKF in Chapter 2. Chapter 3 then describes a simple ATR algorithm

that uses the basic coordinated flight model (rather than the orientation-estimating EKF).

Results using this simple ATR algorithm are given in Chapter 4. Since this simple algorithm

is revealed to lack robustness, further development is required. Chapter 5 estimates the

performance of the algorithm from Chapter 3 under both Neyman-Pearson and Bayesian

frameworks. It concludes with a demonstration of how these performance estimates can be

utilized to estimate the length of time a target must be tracked to identify it with a desired

probability of error. Since the ATR algorithm processes a segment of data collected during

a time span of interest, this application of the Chernoff information is particularly relevant.

A more robust ATR algorithm is developed in Chapter 6. This algorithm jointly estimates

the aircraft orientation and type. Engineering decisions in the deployment of this system,

such as the length of time to consider when estimating the orientation, are based on results

from Chapter 5. The more robust algorithm does indeed perform well, as is demonstrated
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in Chapter 6. Its robustness to modeling errors (both in the RCS database and atmospheric

attenuation database) is explored in Chapter 7. Conclusions are then provided in Chapter

8.
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CHAPTER II

ESTIMATING AIRCRAFT ORIENTATION FROM

VELOCITY ESTIMATES

Aircraft RCS is highly aspect dependent. It follows that for an RCS-based recognition

scheme to be successful, the incident and observed aspect angles on the aircraft must be

well characterized. This poses a challenge. The aspect angles are functions of the target

location, relative to the antenna locations, and the target orientation. Although passive

radar tracking algorithms, such as the one developed by Howland [29], are capable of pro-

viding position and velocity estimates, nothing has yet been published that estimates target

orientation. This chapter attempts to fill this void by developing a coordinated flight model

to estimate aircraft orientation from velocity estimates. The limitations of the model are

discussed in Section 2.2. In response to these limitations, the coordinated flight model from

Section 2.1 is developed into an EKF in Section 2.3.

2.1 A Coordinated Flight Model

The conventions used for orientation are depicted in Figure 2. As is fairly standard, yaw,

the first element of the orientation vector, is defined to be the rotation about the vector

coming out the top of the aircraft, pitch, the second element, is the rotation about the

vector extending out the wing of the aircraft, and the third element, roll, is the rotation

about the vector in the direction of the aircraft’s nose [16].

2.1.1 Estimating Yaw

Using the coordinated flight model, the yaw is modeled as a function of the aircraft motion

in the px-py plane1, and is expressed by

1In this chapter, the cartesian position coordinates are referred to as px, py, and pz. This is done to avoid
confusion between the px axis and state of the extended Kalman filter in Section 2.3, x.
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Figure 2: Coordinate convention used to compute aircraft yaw, pitch, and roll

ψ = arctan

(

vY

vX

)

, (1)

where vX and vY are the px and py components of the velocity vector. Under this convention,

yaw is defined relative to a cartesian coordinate system on the earth’s surface. (Because of

the earth’s curvature, this cartesian system is an approximation.) Thus, an aircraft flying

down the x-axis of the coordinate system is said to have a yaw of zero degrees, while one

flying down the y-axis is said to have a yaw of 90 degrees.

2.1.2 Estimating Pitch

As should be clear from Figure 2, the aircraft’s pitch describes the angle between the total

velocity vector and the velocity vector in the px-py plane, and can be thought of as the angle

at which the aircraft is changing altitude. Let (vX , vY , vZ) denote the aircraft’s velocity.

The pitch is then approximated under the coordinated flight model as

θ = arctan





vZ
√

v2
X + v2

Y



 . (2)

As long as the sampling rate of the aircraft’s position is on the order of seconds, this

linear approximation of the pitch is sufficiently accurate for these purposes.
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2.1.3 Estimating Roll

Estimating the aircraft’s roll is more difficult, as rotation about the vector extending through

the aircraft’s nose in the direction of motion can be performed by high-performance aircraft

without any deviation in the flight path or velocity profile. Thus, the uncertainty associ-

ated with the estimate of the aircraft’s roll is much higher than for the aircraft’s yaw and

pitch. Even so, the coordinated flight model assumes that the targets execute coordinated

maneuvers, and that non-zero roll is only likely when the aircraft is executing a banked

turn. Otherwise, the model dictates that the aircraft’s roll is approximated as zero.

Since the coordinated flight model only estimates non-zero roll angles during banked

turns, it is natural to begin the derivation of the roll angle by examining the free body

diagram of an aircraft undergoing a banked turn with radius R. The three main forces

acting on the aircraft in this plane are depicted in the free body diagram shown in Figure

3. For the sake of this example, the aircraft is flying directly out of the page along the +x-

axis. The lift, L, acts orthogonally to the top of the aircraft, the weight, W , pulls directly

towards the ground, and the centrifugal force, FC , pushes out along the vector originating

at the center of the turn.

3.

Figure 3: Free body diagram of an aircraft executing a constant-altitude banked turn

The coordinated flight model, by definition, assumes that the aircraft isn’t slipping at
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all in the px-py plane while turning. Thus, it follows that

∑

Fy = 0. (3)

Since the only forces acting in the py-dimension are the lift and centrifugal force, it follows

that

LY = FC . (4)

The centrifugal force is derived from Newton’s Second Law, in which W
g is substituted for

mass and |v|2

R is substituted for acceleration. Here W is the weight and g is the gravitational

constant. The y-component of lift is related to the total lift through a simple trigonometric

relation. Substitution of these expressions into (4) results in

L sin(φ) =
W |v|2

Rg
. (5)

Solving (5) for the roll angle yields

φ = arcsin

(

W |v|2

LRg

)

. (6)

Since the aircraft is also assumed to be executing a constant-altitude maneuver in this

example, it follows that

∑

Fz = 0. (7)

Since the lift and weight are the only two forces acting in the pz-dimension,

LZ = W. (8)

LZ can be written as a function of lift and roll angle. This relation is substituted into (8),

resulting in

L cos(φ) = W, (9)

which can be solved for the roll angle, giving
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φ = arccos

(

W

L

)

. (10)

Both weight and lift vary with aircraft type, which is unknown [31]. For this reason, it is

advantageous to derive an equation for the roll angle that is independent of weight and lift.

Fortunately, this can be accomplished by combining (6) and (10) to give

φ = arctan

(

|v|2

Rg

)

. (11)

Aircraft velocity is easily computed from the estimated flight path, and the force of

gravity is a known constant. Thus, the only remaining unknown in (11) is the radius of

the turn. Computing the radius of turn would be relatively simple if aircraft always flew

in perfect circles and began the turns instantaneously. However, this is not the case. A

more realistic model dictates gradual transition into and out of banked turns. This gradual

transition can be thought of as moving from a turn with a radius of curvature approaching

infinity to a turn with a particular finite radius, or similarly, moving from a turn with a

finite radius to one with a radius approaching infinity. Thus, the transition made by an

aircraft into or out of a banked turn is essentially just a curve with a uniformly changing

degree of curvature. This type of curve is known as a spiral curve.

The radius of curvature at any point along a spiral curve can be found using the method

of osculating circles. In this method, a “circular arc drawn tangent to the spiral at point P

has a radius r equal to the radius of curvature of the spiral at the point of tangency” [37].

The circular arc is known as an osculating circle, whose radius of curvature is given by

R(t) =
[ẋ(t)2 + ẏ(t)2]3/2

ẋ(t)ÿ(t) − ẍ(t)ẏ(t)
, (12)

where x(t) and y(t) are the px and py positions as functions of time. Using this method,

the radius of curvature is found for every position in the flight path. The resulting radius

function is then substituted into (11) to compute roll as a function of time.

The sign of the roll angle must also be considered. Because the expression for roll given

by (11) is a function of the magnitude of the velocity, the radius of acceleration, and the
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pull of gravity, it always results in a positive roll angle. From Figure 2, it is clear that

positive roll angles are associated with rolls in which the aircraft’s right wing is down. If

the aircraft is flying in a clockwise manner, then the roll angle should be positive, given

the current convention. Conversely, counter-clockwise flight should result in negative roll

angles.

A minor change is required to extend the expression in (11) to the general case in which

the aircraft’s pitch may be non-zero. In particular, the assumption that the sum of forces

in the z-direction is equal to zero no longer applies.

Equations 4 through 6 provide a method for computing roll angles that is not dependent

upon maintaining a constant altitude. However, the equations are dependent upon aircraft

weight and lift, parameters which vary from one aircraft to another. Since aircraft type

is not known, a method for computing the roll angle that is not dependent upon aircraft

weight and lift is still desirable.

One solution to this dilemma is to select a new coordinate system in which the aircraft

is not changing altitude. This is accomplished by multiplying each state by a coordinate

rotation matrix that puts all of the aircraft motion at that instant along the new px-axis.

Equation 11 then applies, with two minor changes. First, the radius of curvature must

now reflect the curvature in the new px-py plane, denoted by RXY . Then, the norm of the

velocity must be scaled by the cosine of the pitch to produce the norm of the velocity in

the new px-py plane. Thus, the general equation for the aircraft roll is

φ = arctan

(

|v|2 cos(θ)

RXY g

)

. (13)

2.2 Limitations of the Coordinated Flight Model

The coordinated flight model developed in Section 2.1 has two major limitations. First, the

coordinated flight model is bound by the assumption that the aircraft nose points in the

direction of motion. In reality, aircraft engaged in ascent or descent maneuvers are not likely

to have their noses pointed directly along the velocity vector. Furthermore, aircraft are also

affected by “crabbing,” a condition commonly occurring in conjunction with high wind or
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severe weather in which there is a slight difference between the direction of the aircraft’s

nose and the direction of the aircraft’s motion. In this case, the aircraft yaw predicted by

the coordinated flight model is also biased. The more serious limitation of the coordinated

flight model is that it only provides a state estimate, and makes no attempt to model the

uncertainty associated with each element of the state.

2.3 An EKF for Estimating Aircraft Orientation from Ve-

locity Estimates

This section combats the limitations of the coordinated flight model by developing it into an

EKF for estimating aircraft orientation from velocity estimates. Consider the two distinct

types of error present in this problem. Measurement error, as the name implies, is the error

on the velocity measurements received from the passive radar tracker. Modeling error is also

present, and can be thought of as the error that would occur even if the measurements were

perfectly known. The coordinated flight model treats the measurements as though they are

perfectly known and provides no estimate of the uncertainty resulting from modeling error.

The EKF, in contrast, blends both types of error to create its estimates of the target’s state

and covariance. Furthermore, the EKF accounts for “crabbing” and other modeling errors

with the process noise. In doing so, the EKF sidesteps both limitations of the coordinated

flight model.

2.3.1 The EKF Model

This development of an EKF that estimates the aircraft orientation from velocity estimates

begins with the assumption that the best state model is a straight-and-level constant-

velocity trajectory, described by

xk = xk−1 + qk, (14)

where qk is the process noise term, modeled as a zero-mean Gaussian random variable with

covariance Qk. The state at time tk, denoted as xk, is a vector consisting of the target’s

yaw, pitch and roll.

The measurement model is then described by
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zk = hk(xk) + sk, (15)

where zk is the measurement vector at time k consisting of the x, y, and z components of

the target’s velocity, hk(xk) is a nonlinear mapping of the state into the measurement space,

and sk is the measurement noise term, modeled as a zero-mean Gaussian random variable

with covariance Sk.

The standard EKF equations are given next, to clarify notation. The state, xk−1|k−1

and its covariance, Pk−1|k−1, are extrapolated from time tk−1 to time tk with

xk|k−1 = Fkxk−1|k−1 (16)

and

Pk|k−1 = FkPk−1|k−1F
T
k + Qk. (17)

Given the state model, it follows that Fk = I. Thus, the time-update equations for this

EKF reduce to

xk|k−1 = xk−1|k−1 (18)

and

Pk|k−1 = Pk−1|k−1 + Qk. (19)

As is standard practice [5], the process noise, Qk, is selected to tune the filter to the

application.

The measurement update is performed using

Kk = Pk|k−1Hk

(

HkPk|k−1H
T
k + Sk

)−1
, (20)

xk|k = xk|k−1 + Kk

(

zk − hk(xk|k−1)
)

, (21)
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and

Pk|k = (I − KkHk)Pk|k−1, (22)

where Sk is the measurement covariance and Hk is the linearization of the nonlinear mapping

hk(xk|k−1).
2 This completes one update cycle in the EKF.

Although EKFs are quite common, initializing them is often something of an art. One

advantage of this EKF is that the initialization procedure flows very naturally from its

development. No exotic algorithms are required. Rather, the state vector of this EKF is

simply initialized using the coordinated flight model.

2.3.2 Solving for h and H

Solving for hk(xk|k−1) and Hk is far from trivial. First, it is necessary to solve for the x,

y, and z components of the target’s velocity, which comprise the measurement, in terms of

the yaw, pitch, and roll, which comprise the state. To make this problem mathematically

tractable, the radius of curvature is computed from the measurements off-line via (12), and

is treated as noiseless in this derivation. Note that it is not necessary to wait until the

entire trajectory has been collected to compute RXY . Rather, it is only necessary to wait

for two measurements, thus allowing for updated velocity and acceleration measurements,

to compute RXY . For example, RXY (t) can be computed using measurements through time

t + 2∆t, where ∆t is the time between measurements. Note that hereafter we will drop the

subscript XY from RXY for notational compactness.

Solving (1) for vY results in

vY = vX tan(ψ). (23)

Similarly, solving (2) for vZ results in

2As is often the practice when implementing EKFs, the covariance is inflated following the measurement
update step to account for imperfections resulting from the linear approximations underlying the EKF
derivation. Determining whether this is necessary and how much inflation is required are questions typically
addressed through analysis of multiple sets of training data. Our training data is admittedly limited. One
path for future work is to re-tune the filter using a more extensive set of training data.
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vZ =
√

v2
X + v2

Y tan(θ). (24)

From (23), it follows that

v2
X + v2

Y = v2
X + v2

X tan2(ψ), (25)

which reduces to

v2
X + v2

Y = v2
X sec2(ψ), (26)

Using this result reduces (24) to

vZ = vX sec(ψ) tan(θ). (27)

Equation 13 is then rewritten for |v|2, resulting in

|v|2 = Rg sec(θ) tan(|φ|). (28)

From (26) and (27), |v|2 is also given by

|v|2 = v2
X sec2(ψ) + (vX sec(ψ) tan(θ))2 , (29)

which reduces to

|v|2 = v2
X sec2(ψ) sec2(θ). (30)

Substituting (30) into (28) and solving for vX results in

vX = cos(ψ)
√

Rg cos(θ) tan(|φ|). (31)

This is then substituted back into (23) and (24) to solve for vY and vZ in terms of ψ, θ, φ,

and R. Thus, the set of equations that map the state vector into the measurement space is

summarized by
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h(x) =













vX

vY

vZ













=













cos(ψ)
√

Rg cos(θ) tan(|φ|)

sin(ψ)
√

Rg cos(θ) tan(|φ|)

tan(θ)
√

Rg cos(θ) tan(|φ|)













. (32)

The linearization of this nonlinear mapping, used in (20) and (22), is described by

H =













∂vX

∂ψ
∂vX

∂θ
∂vX

∂φ

∂vY

∂ψ
∂vY

∂θ
∂vY

∂φ

∂vZ

∂ψ
∂vZ

∂θ
∂vZ

∂φ













, (33)

where the partial derivatives are given by

∂vX

∂ψ
= − sin(ψ)

√

Rg cos(θ) tan(|φ|), (34)

∂vY

∂ψ
= cos(ψ)

√

Rg cos(θ) tan(|φ|), (35)

∂vZ

∂ψ
= 0, (36)

∂vX

∂θ
=

−1

2
cos(ψ) sin(θ)

√

Rg sec(θ) tan(|φ|), (37)

∂vY

∂θ
=

−1

2
sin(ψ) sin(θ)

√

Rg sec(θ) tan(|φ|), (38)

∂vZ

∂θ
=

−1

2
tan(θ) sin(θ)

√

Rg sec(θ) tan(|φ|) + sec2(θ)
√

Rg cos(θ) tan(|φ|), (39)

∂vX

∂φ
=

cos(ψ)

2 cos2(|φ|)

√

Rg cos(θ)

tan(|φ|)
, (40)

∂vY

∂φ
=

sin(ψ)

2 cos2(|φ|)

√

Rg cos(θ)

tan(|φ|)
, (41)

and
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∂vZ

∂φ
=

tan(θ)

2 cos2(|φ|)

√

Rg cos(θ)

tan(|φ|)
. (42)

2.3.3 Numerical Issues

Although the H matrix computed in Section 2.3.2 applies, in theory, to any target trajec-

tory, it presents a numerical problem when the target follows a straight, constant-velocity

trajectory in the px-py plane. In such a case, the radius of curvature goes to infinity while

the roll angle goes to zero. Thus, the product of R and tan(|φ|) found in eight of the nine

elements of H is numerically unstable.

One solution is to switch to an entirely new state vector when this condition occurs.

Consider the equations mapping the state vector into the measurement space, summarized

in (32). The
√

Rg cos(θ) tan(|φ|) term found in each of the mappings is equivalent, through

(13), to |vXY |. Since the velocities are treated as “measurements” by the EKF that estimates

orientation, |vXY | is ideally suited to join the yaw and pitch in comprising the new state

vector. Note that vXY is in no way approximating the roll. A new set of mapping equations

are required to transform this new state vector into the measurement space.

This solution poses two challenges. First, criteria for selecting the appropriate state

model must be selected. Once this has been done, it is necessary to chose a method for

initializing the new state after the state model has changed. Neither task is insurmountable.

For example, Howland [29] tackles a similar problem through the creation of a maneuver

threshold. Maneuvers, or flight that is not straight-and-level, are only assumed to occur

when a chosen maneuver parameter exceeds this maneuver threshold. When this occurs,

the maneuver state model described in Section 2.3.2 is used. If the parameter is below

the threshold, constant-velocity flight is assumed and the alternate state model, incorpo-

rating |vXY | instead of φ, is used. Furthermore, the relation between |vXY | and φ leads

to natural initialization procedures when a model switch occurs. When switching from the

non-maneuver model to the maneuver model, φ is assumed to be transitioning away from

zero, so zero is a natural initial value. When switching from the maneuver model to the

non-maneuver model, the |vXY | state is initialized using the most recent measurement.
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2.3.4 Solving for h and H under the Non-Maneuvering Model

If the non-maneuvering model is selected, the nonlinear mapping of the state vector into

the measurement space must change to reflect the new state vector. The new nonlinear

mapping is given by

h(x) =













vX

vY

vZ













=













|vXY | cos(ψ)

|vXY | sin(ψ)

|vXY | tan(θ)













, (43)

and its linearization matrix, H, is given by

H =













∂vX

∂ψ
∂vX

∂θ
∂vX

∂|vXY |

∂vY

∂ψ
∂vY

∂θ
∂vY

∂|vXY |

∂vZ

∂ψ
∂vZ

∂θ
∂vZ

∂|vXY |













, (44)

or,

H =













− sin(ψ) 0 cos(ψ)

cos(ψ) 0 sin(ψ)

0 sec2(θ) tan(θ)













. (45)

2.3.5 Results

Four trajectories are used to demonstrate the EKF’s performance. The first is a straight-

and-level maneuver in which the aircraft flies directly away from the sensor with a yaw of

150o. This flight path is then rotated by ninety degrees to create the second straight-and-

level maneuver. In this case, the aircraft flies broadside to the sensor with a yaw of 240o.

The third trajectory consists of a constant-altitude circular banked turn, and the fourth was

recorded on-board a maneuvering F-15 at Edwards Air Force Base.3 (A 3-D view of the

Edwards trajectory appears in Figure 4 with times labeled.) In all cases, Howland’s EKF

that estimates positions and velocities feeds “measurements” to the EKF that estimates

3The F-15C trajectory was obtained from the Joint Helmet Cuing System, Mission JH-16, conducted by
the 445th Flight Test Squadron at Edwards Air Force Base in May 2000. Thanks to Major Larkin Hastriter
and Lt. Col. Adam MacDonald for their assistance in obtaining this aircraft flight path.
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Figure 4: 3-D view of Edwards trajectory

orientation. Using Howland’s EKF to generate measurements is appropriate for the passive

radar application described here, but could be replaced by some other means of generating

velocity measurements to apply the technique to a different application.

Figure 5a shows the yaw of the aircraft executing the straight-and-level maneuver, as well

as 1 − σ error bars obtained from the covariance matrix. Similar results involving aircraft

pitch are shown in Figure 5b. Since the roll is assumed to be zero and is not estimated by

the model when no acceleration is detected, it is neglected here. Note that the uncertainties

in yaw and pitch are fairly small and stem almost entirely from the measurement noise.

This is also the case in the second straight-and-level maneuver. The estimated pitch and

roll for this trajectory are shown in Figure 6.

The uncertainties associated with the orientation estimates become much larger when

the aircraft accelerates due to limitations in the coordinated flight model reflected in the

increased process noise. This is the case in the last two trajectories. The estimated yaw,

pitch, and roll, along with the error bounds, are shown in Figures 7 through 9 for the

banked turn trajectory. Since the acceleration is even larger in the Edwards trajectory, the

error bars also grow. This is reflected in Figures 10 through 12. Although the estimated

orientations are not always near the true values, the true values are usually within a standard

deviation of the estimates.
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This EKF will be used in Chapter 6 to develop a more robust recognition algorithm.

In particular, the algorithm will jointly estimate aircraft type and orientation, from within

a feasible set. The feasible set is determined by adding 1 − σ error bars from the EKF’s

estimated covariance to the estimated states.

Before moving on, two issues should be noted. The practices of tuning the process noise

and inflating the measurement covariance frequently arise when designing EKFs, yet they

are rarely addressed in EKF literature. As is typically the case, this EKF has been tuned for

a particular application using the training set of aircraft data at our disposal. One avenue

for future work is to obtain more extensive databases of aircraft data and re-tune the EKF.
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Figure 5: Orientation predicted by the EKF for straight-and-level trajectory #1: a) Yaw
(left), b) Pitch (right)
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Figure 6: Orientation predicted by the EKF for straight-and-level trajectory #2: a) Yaw
(left), b) Pitch (right)
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Figure 7: Yaw predicted by the EKF: banked turn trajectory
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Figure 8: Pitch predicted by the EKF: banked turn trajectory
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Figure 9: Roll predicted by the EKF: banked turn trajectory
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Figure 10: Yaw predicted by the EKF: Edwards trajectory
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Figure 11: Pitch predicted by the EKF: Edwards trajectory
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Figure 12: Roll predicted by the EKF: Edwards trajectory
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CHAPTER III

A SIMPLE PASSIVE RADAR ATR ALGORITHM BASED

ON A COORDINATED FLIGHT MODEL

Sections 2.1 through 2.3 describe two methods for estimating the aircraft orientation from

velocity measurements. Once the aircraft orientation has been estimated, it is appended

to the existing trajectory, creating a supplemented flight profile that covers the aircraft’s

maneuver during the entire time span of interest. Together with the system geometry, this

supplemented flight profile provides all the information necessary to extract the appropriate

RCS for each aircraft in the target library from the database.

3.1 Modeling RCS from a Low-Frequency, Passive Source

Passive radar is garnering increasing attention from the scientific community, but even so,

very few systems are currently operational. As such, there is no “typical” set of specifi-

cations for passive radar systems. To ensure that this research is not based on unrealistic

specifications, a passive radar demonstration system currently being developed by NATO is

modeled. The relevant parameters for the potential transmitters and receiver are shown in

Table 1. This in no way implies that the work only applies to the NATO system. It merely

reflects the difficulty of obtaining detailed specifications for more well-known systems, such

as Lockheed Martin’s Silent Sentry.

Modeling the power profile arriving at the receiving antenna is a multi-step process.

The supplemented flight profile, containing aircraft position and orientation for the entire

time range of interest, is used to determine the incident and observed angles. The incident

and observed angles are then used to access a database of FISC results,1 which are available

1In the interest of limiting the number of necessary FISC runs, both transmitters are modeled as operating
at 100 MHz. The error induced through this assumption is much smaller than the difference between the
power profiles (magnitude only) that are used to identify aircraft, so it is deemed negligible. More anaylsis
on this topic is provided in Section 7.2.
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Table 1: Transmitter and receiver parameters.
Vertically Polarized Horizontally Polarized

Parameter Transmitter Transmitter Receiver

Latitude (N) 52o 01’ 00” 51o 31’ 00” 52o 06’ 36”

Longitude (E) 05o 03’ 00” 03o 53’ 00” 04o 19’ 26”

Altitude (m ASL) 375 103 100

Frequency (MHz) 104 96 –

Peak Power (kW) 100 100 –

Direction Omni-Directional Omni-Directional 320o

Polarization Vertical Horizontal Vertical

for each aircraft model in the target library. Note that the type and number of targets in

the target library has been limited by the availability (and price) of FISC-compatible target

CAD models. The models used in this study were obtained from Digimation [3], a subsidiary

of Viewpoint, and, when necessary, were made compatible with FISC using GeomFix by

MATIS, Inc. A set of signal profiles (magnitude only) are created when data is extracted

from the RCS database. Additional scaling is required to make these signal profiles represent

the power signals arriving at the receiver due to the illuminated targets. Some significant

factors that must be considered are propagation losses between the aircraft and antennas,

and antenna gain. The propagation losses, which include effects due to multipath, are

modeled using AREPS. As is likely to be the case for most passive radar applications, the

transmitting antenna exploited by the NATO system is modeled as being omni-directional

in azimuth. Thus, the only antenna gain pattern modeled here corresponds to the receiver

and is accomplished with NEC2. To cut down on the length of time required to execute

the simulation, databases are also created for AREPS and NEC2. The overall result of this

process is a power profile that is scaled to account for propagation losses and antenna gain.

The necessity of the FISC database, as well as its limitations, are worth mentioning.

Ideally, the simulation process described here would run FISC for every new set of incident

and observed angles. However, the lengthy run-time and massive memory requirements of

FISC render this option unfeasible. A more attractive option is the creation of a database

of FISC results, in which aircraft RCS is sampled sufficiently to meet the Nyquist sampling

criterion. In particular, the angular sampling of the RCS should satisfy,
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∆θ ≤
c

(2f0)(size)
, (46)

where c is the speed of light, f0 is the radar frequency, and size is the longest dimension

of the aircraft [36]. The minimum angular sampling required for each aircraft when the

frequency is 100 MHz is shown in Table 2.

Table 2: Minimum angular sampling required for each aircraft in target class.
Aircraft Longest Dimension (m) Minimum Spacing (deg)

F-15 19.3 4.5

Falcon-20 17.1 5.0

Falcon-100 13.7 6.2

T-38 14.0 6.2

Thus, using an angular spacing of 4o, a database of FISC runs can be created that is

sufficiently full to represent the RCS of each aircraft type in the study, without aliasing.

This database can be quickly accessed and allows for the creation of a power profile for

virtually any desired flight path. Sampling every 4o in both azimuth and elevation around

the aircraft is admittedly overkill, since the points become very closely spaced near ±90o.

However, this route was chosen because it was simple to model and implement. Future work

could explore more intelligent methods for sampling the azimuths and elevations, thereby

reducing the size of the RCS database.

3.2 Modeling the Power Arriving at the Receiver

Two changes differentiate this process from that used to find the precomputed RCS of

known targets in the target class. First, when simulating the RCS of detected targets,

the simulation is run with the real aircraft orientations in place of the estimated ones.

These power profiles are then corrupted with additive white Gaussian noise, which acts

independently on the real and imaginary parts of the signal. This noise model is quite

common in modeling passive radar systems [27]. Along these lines, the simulated received

profile is expressed as
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PSIM = (
√

PR + wR)2 + w2
I , (47)

where PR is the real component of the power profile prior to being corrupted by noise, and

w is zero-mean additive white Gaussian noise, which has real and imaginary components,

wR and wI [27]. The noise power is computed (in Watts) using,

PN =
kT0NF

CPI
, (48)

where k is Boltzmann’s constant, T0 is temperature in Kelvin, NF is the unitless noise

figure, and CPI is the coherent processing interval of the system [8]. To match the NATO

system, the CPI is set equal to 0.5 seconds, and T0 is set equal to 290 K.

Selection of the noise figure, NF , is more difficult. If the noise figure is only expected

to account for thermal noise and out-of-band interference, then a conservative estimate of

the noise figure in a city environment might be 30 dB [24]. Because this number includes

out-of-band interference, which is typically quite high in an urban enviroment due to the

abundance of other emitters, this noise figure is significantly larger than the 2-4 dB normally

witnessed with active radar. In the absence of data regarding the noise power of the NATO

system, it is reasonable to use 30 dB as an approximation. The noise figures used in this

study are given in Table 3, along with the corresponding noise power. Note that some of

the larger noise figures shown the Table 3 are not expected to occur in a real setting; they

are merely included to demonstrate the breaking point of the algorithm.

3.3 Noise Power Due to Direct Path Interference

The noise figure accounts for thermal noise and out-of-band interference, but until now the

issue of transmitter interference has not been addressed. Typically, this direct path inter-

ference manifests itself as a spike in the cross-ambiguity function. Since the transmitter’s

power and location are known, and since the direct path interference spike occurs along the

axis with zero velocity, this spike can usually be identified and removed. The more treach-

erous effect of transmitter interference is that is can raise the “thumbtack” noise floor of
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Table 3: Noise figure and noise power.
Noise Figure (dB) Noise Power (dBW)

30 -171

35 -166

40 -161

45 -156

50 -151

55 -146

60 -141

65 -136

70 -131

75 -126

80 -121

85 -116

90 -111

95 -106

100 -101

the ambiguity function, potentially masking the target spike. To be thorough, this should

also be considered when computing the noise figure.

If the ambiguity function is normalized such that the direct path spike has unit height,

then the average pedestal height, or sideband power, is given by

Ppedestal =
1

B × CPI
, (49)

where B is the signal bandwidth, and CPI is the coherent processing interval [43]. To match

the NATO system, values of 45 kHz and 0.5 seconds are used for B and CPI, respectively.

If propagation losses and antenna gain are neglected, the pedestal power is 44 dBW below

the direct-path spike. Since the NATO transmitter power is 50 dBW, the sideband power

is 6 dBW. Propagation losses and antenna gain play a significant role, lowering the pedestal

power by 95 dBW. The electronics in the receiver of the NATO system also mitigate the

problem by suppressing the direct path signal by 70 dBW, which reduces the sideband

power to -159 dBW. More sophisticated filters could be implemented to further reduce the

noise figure, but using the specifications of the system being modeled, the effective noise

figure falls between 40 and 45 dB. Thus, the effects due to transmitter interference are far
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more significant than those due to thermal noise and out-of-band interference.

3.4 Target Recognition

The simulation process is repeated for each member of the target class, resulting in a set of

simulated power profiles corresponding to the detected targets. The automatic target rec-

ognizer compares these noisy received profiles to the library of precomputed power profiles.

Equation 47 leads to a Rician likelihood model [27], whose probability density function is

given by

px(x) =
x

σ2
w

e
−

(

x2+s2

2σ2
w

)

I0

[

xs

σ2
w

]

, (50)

where I0() is a modified Bessel function of the first kind.

To apply the Rician density to the simulated and truth profiles, associate x with the

square root of the measured power of the detected target, and s with the square root of

the precomputed power. The noise power, which equals the noise variance, is then equated

with σ2
w. Since each measurement is assumed to be an independent sample from a process,

the data loglikelihood is

ln(px(x̄)) =
n

∑

i=1

ln

(

xi

σ2
w

)

+ ln

(

I0

[

xisi

σ2
w

])

−

(

x2
i + s2

i

2σ2
w

)

, (51)

where n is the number of measurements collected during the time span of interest. (Section

5.2.5 provides a method for gauging how long the time span of interest should be to ensure

that the probability of error is below a desired level.)

Since the first term in (51) does not vary with the precomputed power profiles, it can be

neglected when computing the likelihood scores for each aircraft in the target class. Thus,

each aircraft in the target class is scored with

L(x̄) =
n

∑

i=1

ln

(

I0

[

xisi

σ2
w

])

−

(

x2
i + s2

i

2σ2
w

)

. (52)

A maximum-likelihood scheme determines the winner [17].
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CHAPTER IV

RESULTS USING THE SIMPLE ATR ALGORITHM

BASED ON A COORDINATED FLIGHT MODEL

The method described in Chapter 3 is applied to scenarios of increasing complexity. The

locations of the aircraft maneuvers relative to the transmitters and receiver are shown in

Figure 13. Note that the transmitters shown in Figure 13 correspond to the real transmit-

ters modeled in Section 3.1, and will heretoafter be referred to as the horizontally polar-

ized transmitter and vertically polarized transmitter. The first scenario involves a simple

straight-and-level trajectory in which the aircraft fly directly away from the receiver. This

trajectory is then rotated by ninety degrees so that the aircraft fly broadside to the receiver.

The third trajectory is a constant-altitude circular banked turn. Although aircraft are not

likely to exercise this trajectory in practice, it is included in the study as a trajectory of

intermediate difficulty. Finally, a flight profile recorded on-board a maneuvering F-15 at

Edwards Air Force Base1 is used to provide a more realistic test of the algorithm. The

Edwards trajectory came complete with measured aircraft orientation, allowing a unique

opportunity to quantify the performance degradation induced from having to estimate air-

craft orientation. First, the algorithm is executed with the real aircraft orientation angles

used in place of the ones estimated by the coordinated flight model. This serves as a baseline

for comparison. Next, the simulation is run using the estimated aircraft orientation angles.

Finally, a test is conducted in which the aircraft position is errantly estimated to be 300 m

north and 300 m west of its actual location 2. This gauges performance degradation due to

errors in the position estimates.

The target library contains four aircraft. The F-15 and T-38A are both fighter aircraft,

1The F-15C trajectory was obtained from the Joint Helmet Cuing System, Mission JH-16, conducted by
the 445th Flight Test Squadron at Edwards Air Force Base in May 2000.

2These errors are consistent with those estimated by Howland’s passive radar tracker [29] under similar
settings.
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Figure 13: Trajectory laydowns

while the Falcon-20 and Falcon-100 are both commercial. The same library is used for all

scenarios. To test each scenario, 400 Monte Carlo trials with different noisy “truth” profiles

are given to the algorithm along with position and velocity measurements. A quarter of the

profiles corresponds to each of the four aircraft being present. The trials are then repeated

at noise figures ranging from 30 to 100, in increments of 5 dB. While the anticipated noise

figures do not exceed 45 dB, the algorithm is tested under more stressing conditions to

determine its breaking point.

4.1 Results Using a Vertically Polarized Transmitter

Simulations are conducted in which both horizontally and vertically polarized transmit-

ters are exploited. This section focuses on the results obtained when the illuminator of

opportunity is vertically polarized.
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4.1.1 Straight-and-Level Trajectory #1

The aircraft in the first straight-and-level trajectory travel at a speeds of 200 m/s and

altitudes of 8 km. The magnitudes of the power profiles resulting from this trajectory are

shown in Figure 14a for all four targets. Since the targets are flying directly away from

the receiver, exposing only a small range of aspect angles, these profiles are similar for all

four targets. Thus, despite the simplicity of the trajectory, this is a reasonably difficult

recognition problem. Even so, the algorithm performs extremely well at the anticipated

noise levels. Figure 14b displays the probability of error as a function of noise figure for all

four aircraft in the target library. Recognition errors are only noted once the noise figure

hits 55 dB. This does not suggest that such an algorithm, if implemented in a real passive

radar system, would perform without error at expected noise levels; real-world scenarios

will always contain effects not modeled in even the best of simulations. It does suggest,

however, that the algorithm has a great deal of potential for excellent performance.
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Figure 14: Straight-and-level trajectory #1: a) Magnitude of power profile (left), b) Prob-
ability of error vs. noise figure (right)

Also note that for noise figures greater than 70 dB, the probability of error averaged

over all four aircraft types is roughly 75%. This result should be intuitive. Once the noise

figure is that large, the noise swamps the target signal. The algorithm has little upon which

to base its recognition and its cumulative odds of a correct match are reduced to one in

four. The less intuitive result is that the probability of error for each individual aircraft is
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something other than 75% and approaches a constant value that doesn’t change significantly

as the noise level increases. For example, the probability of error when the true target is a

Falcon-20 remains between 50% and 60% for noise figures greater than 70 dB. However, this

behavior is also attributed to noise swamping the underlying signal. When the noise figure

is 100 dB, as shown in Figure 15, it is roughly 40 dB larger than the underlying signal.

Under these conditions, the underlying signal has virtually no impact on the recognition

outcome, and the ATR algorithm is always biased towards certain aircraft.
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Figure 15: Straight-and-level trajectory #1, magnitude of power profile with a noise figure
of 100 dB

To provide further insight into the recognition errors committed by the algorithm, a

confusion matrix is shown in Table 4 for the case in which the noise figure is 65 dB. The

aircraft listed across the top row correspond to the aircraft identified by the algorithm, while

the aircraft listed in the leftmost column correspond to those that are actually present. For

example, when the F-15 is actually present, it is correctly identified in 51 of 100 Monte

Carlo trials, and is incorrectly identified as being a T-38 in 41 trials and a Falcon-100 in 8

trials. The confusion matrix reveals that in this scenario, the F-15 and T-38 are most likely

to be swapped by the algorithm. Furthermore, if the algorithm incorrectly identifies either

of the commercial aircraft, it is most likely to have swapped them.
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Table 4: Confusion matrix for straight-and-level trajectory #1 with noise figure = 65 dB
Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 51 41 0 8

T-38A 40 53 0 7

Falcon-20 0 0 90 10

Falcon-100 6 3 12 79

4.1.2 Straight-and-Level Trajectory #2

The straight-and-level trajectory is then rotated ninety degrees so that the aircraft fly

broadside to the receiver, exposing a much wider range of aspect angles. This angular

diversity is evident when examining the power profiles, shown in Figure 16a. The probability

of error for each aircraft is plotted in Figure 16b. Thanks to the increased diversity in the

profile shapes, the algorithm is able to correctly identify the aircraft in all the Monte Carlo

trials with noise figures less than 70 dB. When errors begin to be made, the F-15 is the

least likely to be confused with another aircraft. The confusion matrix for a noise figure of

75 dB, shown in Table 5, makes this very clear.
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Figure 16: Straight-and-level trajectory #2: a) Magnitude of power profile (left), b) Prob-
ability of error vs. noise figure (right)
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Table 5: Confusion matrix for straight-and-level trajectory #2 with noise figure = 65 dB
Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 90 0 1 9

T-38A 0 63 17 20

Falcon-20 0 16 71 13

Falcon-100 1 20 24 55

4.1.3 Banked Turn Trajectory

Aircraft executing the banked turn trajectory fly at speeds of 100 m/s and altitudes of 8 km.

The power profiles resulting from this trajectory are presented in Figure 17a. Probability of

error curves are shown in Figure 17b. Two factors conspire to make this a more challenging

test of the recognition algorithm than the previous trajectory. First, a somewhat smaller

range of angles is presented to the receiver. Additionally, the algorithm must estimate the

aircraft’s changing yaw, pitch, and roll. Even so, the results are still quite encouraging. The

recognition algorithm makes no mistakes in the Monte Carlo trials until the noise figure

reaches 65 dB, well above the expected maximum noise figure of 45 dB. At that point, the

recognition errors mainly consist of swapping the two fighters. This is clear from Table 6.
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Figure 17: Banked turn trajectory: a) Magnitude of power profile (left), b) Probability of
error vs. noise figure (right)
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Table 6: Confusion matrix for banked turn trajectory with noise figure = 65 dB
Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 75 25 0 0

T-38A 14 83 0 3

Falcon-20 1 0 97 2

Falcon-100 1 0 0 99

4.1.4 Edwards Trajectory, with True Orientation Angles

The Edwards trajectory, recorded on-board a maneuvering F-15 at Edwards Air Force

Base, provides a significantly more stressing test of the recognition algorithm. Unlike the

first three trajectories, this trajectory is not idealized. Although the coordinated flight

model is still a suitable model, nothing guarantees that the aircraft will actually maintain

strictly coordinated flight throughout the entire maneuver. Since errors in the estimated

orientation are more likely than before, this section establishes a performance baseline

by providing the algorithm with the true aircraft orientation. Power profiles (magnitude

only) and probability of error plots are shown in Figure 18. When provided with the true

orientations, the recognition algorithm is able to correctly identify aircraft in all Monte

Carlo trials with noise figures below 70 dB.

A confusion matrix corresponding to a noise figure of 75 dB is given in Table 7. This

time, the recognition mistakes are more evenly distributed amongst the aircraft types. When

an aircraft is misidentified, it is fairly likely to be misidentified as any of the other aircraft;

swapping mistakes are less common than using some of the other trajectories.

Table 7: Confusion matrix for Edwards trajectory (using true orientation angles) with noise
figure = 75 dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 76 6 11 7

T-38A 13 52 17 18

Falcon-20 21 21 45 13

Falcon-100 19 21 18 42
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Figure 18: Edwards trajectory: a) Magnitude of power profile (left), b) Probability of error
vs. noise figure (right)

4.1.5 Edwards Trajectory, with Approximated Orientation Angles

The simulations from Section 4.1.4 are repeated with the coordinated flight model back

in the loop. Now that the algorithm must estimate the orientation, serious errors are

made. Power profiles and probability of error plots are shown in Figure 19. The F-15 and

Falcon-20 profiles, when computed from the approximated orientations, are more similar

to the true Falcon-100 profile than to the F-15 and Falcon-20 profiles. Thus, these aircraft

are incorrectly labeled as Falcon-100s. The confusion matrix in Table 8 demonstrates this

problem. The trend only stops for noise figures above 50 dB, when the noise begins to

swamp the signal and the probability of error of all aircraft tends towards 75 %. Clearly,

further work is needed to make this algorithm more robust.

Table 8: Confusion matrix for Edwards trajectory (using approximated orientation angles)
with noise figure = 45 dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 0 0 0 100

T-38A 0 100 0 0

Falcon-20 0 0 0 100

Falcon-100 0 0 0 100
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Figure 19: Edwards trajectory with approximated orientation: a) Magnitude of power
profile (left), b) Probability of error vs. noise figure (right)

4.1.6 Edwards Trajectory, with Approximated Orientation Angles and Errors

in the Position Estimates

The tests in Section 4.1.5 are then repeated with biased position measurements provided

to the algorithm. Since the coordinated flight model operates on velocity, not position,

estimates, the estimated orientations are unchanged. However, the incident and observed

angles used to compile the expected magnitudes of the power profiles, shown in Figure 20a,

are affected by the biased position measurements. Despite this change, the probabilities of

error shown in Figure 20b are similar to those in Section 4.1.5. In fact, the confusion matrices

are identical to those in Section 4.1.5 for noise figures below 50 dB. The incorrect orientation

estimates appear to have a much more dramatic effect on the results than somewhat biased

position estimates. Note that this trend may change if the position estimates from the

passive radar tracker were substantially worse.

4.2 Results Using a Horizontally Polarized Transmitter

The Monte Carlo trials from Section 4.1 are then repeated using the horizontally polar-

ized transmitter shown in Figure 13. This section is not intended to provide insight into

the algorithm’s performance as a function of antenna polarization. Rather, it lays the

groundwork for Chapter 6, which exploits echoes from both transmitters when making a
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Figure 20: Edwards trajectory with approximated orientation: a) Magnitude of power
profile (left), b) Probability of error vs. noise figure (right)

recognition decision. Transmitters of both horizontal and vertical polarizations are used

because such circumstances will be quite common when implementing such algorithms in

real-world settings.

4.2.1 Straight-and-Level Trajectory #1

The trajectory described in Section 4.1.1 is repeated using the horizontally polarized trans-

mitter. The power profiles appear in Figure 21a, while the probability of error curves appear

in Figure 21b. In this case, the algorithm begins making recognition mistakes when the

noise figure reaches 50 dB. The confusion matrix shown in Table 9 reveals that mistakes at

this noise level are limited to swapping the T-38A and Falcon-20. Again, a noise figure of

50 dB is above the anticipated noise level of a real system, indicating that the algorithm

has great potential.

Table 9: Confusion matrix for straight-and-level trajectory #1 with noise figure = 50 dB
Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 100 0 0 0

T-38A 0 91 9 0

Falcon-20 0 9 91 0

Falcon-100 0 0 0 100
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Figure 21: Straight-and-level trajectory #1: a) Magnitude of power profile (left), b) Prob-
ability of error vs. noise figure (right)

4.2.2 Straight-and-Level Trajectory #2

The power profiles for the second straight-and-level maneuver are shown in Figure 22a,

and the power profiles are shown in Figure 22b. As before, the recognition algorithm’s

performance improves when a wider range of aspect angles are presented to the receiver.

The results are still excellent at the anticipated noise figure of 45 dB. This time, the algo-

rithm’s mistakes are more evenly distributed amongst all aircraft classes, as is clear from

the confusion matrix in Table 10.
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Figure 22: Straight-and-level trajectory #2: a) Magnitude of power profile (left), b) Prob-
ability of error vs. noise figure (right)
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Table 10: Confusion matrix for straight-and-level trajectory #2 with noise figure = 60 dB
Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 80 8 1 11

T-38A 12 68 12 8

Falcon-20 3 17 57 23

Falcon-100 11 12 21 56

4.2.3 Banked Turn Trajectory

The algorithm performance is also quite good when the aircraft execute the banked turn

maneuver. The power profiles appear in Figure 23a, while the probability of error curves

are shown in Figure 23b. Once again, the algorithm’s performance is very encouraging at

the anticipated noise levels. As in the second straight-and-level trajectory, the classification

errors are fairly evenly distributed over the four aircraft classes. This is clear from the

confusion matrix in Table 11.
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Figure 23: Banked turn trajectory: a) Magnitude of power profile (left), b) Probability of
error vs. noise figure (right)

Table 11: Confusion matrix for banked turn trajectory with noise figure = 65 dB
Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 78 10 3 9

T-38A 15 52 8 25

Falcon-20 4 7 70 19

Falcon-100 8 18 17 57
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4.2.4 Edwards Trajectory, with True Orientation Angles

The magnitudes of the power profiles resulting when aircraft execute the Edwards trajectory

are shown in Figure 24a. The corresponding probability of error curves, obtained when

the true orientations are provided to the algorithm, are shown in Figure 24b. Since a wide

variety of aspect angles are presented to the receiver and estimation of the orientation angles

is unnecessary, the recognition algorithm does extremely well. Even at a noise figure of 65

dB, 20 dB above the maximum level expected in a real system, the algorithm correctly

identifies the aircraft in roughly 70% of the Monte Carlo trials. This is clear from the

confusion matrix in Table 12.
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Figure 24: Edwards trajectory: a) Magnitude of power profile (left), b) Probability of error
vs. noise figure (right)

Table 12: Confusion matrix for Edwards trajectory (using true orientation angles) with
noise figure = 65 dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 88 1 10 1

T-38A 1 68 8 23

Falcon-20 10 10 67 13

Falcon-100 3 23 12 62
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4.2.5 Edwards Trajectory, with Approximated Orientation Angles

As in the case with the vertically polarized transmitter, the recognition performance de-

grades rapidly when aircraft execute the Edwards trajectory and the orientation angles are

estimated. Because of errors in the estimated orientation angles, the algorithm identifies all

the aircraft as Falcon-100s, until the noise figure is so large that the noise begins to swamp

the signal. The magnitudes of the power profiles for this case are shown in Figure 25a, and

the probability of error curves are shown in Figure 25b. A confusion matrix, shown in Table

13, confirms that the algorithm incorrectly identifies the aircraft as Falcon-100s.
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Figure 25: Edwards trajectory with approximated orientation: a) Magnitude of power
profile (left), b) Probability of error vs. noise figure (right)

Table 13: Confusion matrix for Edwards trajectory (using approximated orientation angles)
with noise figure = 50 dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 0 0 0 100

T-38A 0 0 0 100

Falcon-20 0 0 0 100

Falcon-100 0 0 0 100

4.2.6 Edwards Trajectory, with Approximated Orientation Angles and Errors

in the Position Estimates

Operating on biased position estimates has little effect on the algorithm that is already

having such a difficult time identifying the aircraft. As in Section 4.1, the biased position
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estimates are more of a second-order problem and contribute less to the algorithm’s problems

than the incorrect orientation estimates. The magnitudes of the power profiles are shown

in Figure 26a, and the probability of error curves are provided in Figure 26b.
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Figure 26: Edwards trajectory with approximated orientation: a) Magnitude of power
profile (left), b) Probability of error vs. noise figure (right)

4.3 Summary of Results

This chapter demonstrates that the recognition algorithm has great potential, particularly

if the aircraft is not executing a complicated maneuver. Since this sort of technology is

frequently envisioned in use with tracking algorithms that covertly follow aircraft in transit,

rather than in dog-fighting situations, this algorithm is probably sufficiently reliable for the

vast majority of realistic scenarios. Even so, a more robust algorithm will be developed and

tested in Chapter 6. The more robust algorithm will jointly estimate the aircraft’s type and

orientation (from a feasible set determined by the EKF’s state and covariance). It will also

exploit multiple transmitters, to reduce the uncertainty regarding the aircraft orientation.

In doing so, the more robust algorithm will be able to avoid the failings of this algorithm

when attempting to identify aircraft executing complicated maneuvers.

45



CHAPTER V

ESTIMATING ATR PERFORMANCE VIA RELATIVE

ENTROPY AND CHERNOFF INFORMATION

The Rician distribution describes a random variable z, where z is related to independent

identically distributed Normal random variables, x and y by,

z =
√

(x + b)2 + y2. (53)

This model, which reduces to a Rayleigh distribution if b = 0, arises in a number of en-

gineering problems, from fading multipath channels in communications to modeling the

radar cross section of aircraft using low-frequency radar. However, since the Rician pdf is

not mathematically convenient, scenarios that ought to be modeled with Rician densities

are often modeled with Normal densities [35], leading to increased modeling error.

This is particularly true when computing the relative entropy and Chernoff information

for scenarios that are best described by Rician densities. These information measures have

great utility in a number of hypothesis-testing problems. For example, Stein’s Lemma [14]

reveals that in the Neyman-Pearson framework, a bound on the probability of a Type II

error (i.e. the probability that the target modeled with q(x) will be misidentified as the

target modeled with p(x)), βp||q, is approximately

βp||q ≈ e−D(p(x)||q(x)), (54)

where D (p(x)||q(x)) is the relative entropy between densities p(x) and q(x). Thus, the

existence of a closed-form approximation of the relative entropy between two Ricians would

make it possible to approximate the probability of Type II error in the Neyman-Pearson

framework. Section 5.1 derives a closed-form approximation and shows its superiority to

the usual Normal approximation.
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If the problem is set in a Bayesian framework, rather than a Neyman-Pearson framework,

the Chernoff information could be used to bound the probability of error, PE . In particular,

the probability of error in a Bayesian hypothesis testing problem is approximated as

PE ≈ e−C(p(x),q(x)), (55)

where C (p(x), q(x)) is the Chernoff information [14]. Section 5.2 derives a closed-form

approximation and compares its accuracy with that of the usual Normal approximation.

5.1 Estimating Performance Under the Neyman-Pearson

Framework Via the Relative Entropy

5.1.1 Derivation of the Relative Entropy Between Two Rician Densities

The relative entropy between two Rician probability density functions, p(x) and q(x), is

given by

D (p(x)||q(x)) =

∫ ∞

0
p(x) ln

(

p(x)

q(x)

)

dx, (56)

where p(x) is defined as

p(x) =
x

σ2
e

−(x2+s2p)

2σ2 I0

[xsp

σ2

]

, (57)

and q(x) is defined as

q(x) =
x

σ2
e

−(x2+s2q)

2σ2 I0

[xsq

σ2

]

. (58)

Substituting (57) and (58) into (56) reveals that the relative entropy between two Rician

densities with the same σ2 is

D(p(x)||q(x)) =

∫ ∞

0

x

σ2
e

−(x2+s2p)

2σ2 I0

(xsp

σ2

)

{

s2
q − s2

p

2σ2
+ ln

[

I0

(xsp

σ2

)]

− ln
[

I0

(xsq

σ2

)]

}

dx.

(59)

This is then broken into three integrals. If p(x) is substituted back in for ease of notation,

then this becomes
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D (p(x)||q(x)) =

(

s2
q − s2

p

2σ2

)

∫ ∞

0
p(x)dx+

∫ ∞

0
p(x) ln

[

I0

(xsp

σ2

)]

dx−

∫ ∞

0
p(x) ln

[

I0

(xsq

σ2

)]

dx,

(60)

which reduces to

D(p(x)||q(x)) =

(

s2
q − s2

p

2σ2

)

+

∫ ∞

0
p(x) ln

[

I0

(xsp

σ2

)]

dx−

∫ ∞

0
p(x) ln

[

I0

(xsq

σ2

)]

dx. (61)

The approximations presented in Sections 5.1.2 and 5.1.3 are suggested as a means of

evaluating the two remaining integrals.

5.1.2 A Normal Approximation for the Relative Entropy Between Two Rician

Densities

The relative entropy between two Normal distributions, p(x) and q(x), is given by

D (p(x)||q(x)) = ln

(

vp

vq

)

+
1

2v2
q

[

v2
p + (µp − µq)

2
]

−
1

2
, (62)

where p(x) ∼ N(µp, vp) and q(x) ∼ N(µq, vq) [32]. If the means and variances of the two

Normal densities are set to match the means and variances of the Rician densities, then

(62) approximates the relative entropy between two Rician distributions.

The mean of a Rician density is given by

E[x] =

√

πσ2

2
e

−s2

4σ2

[(

1 +
s2

2σ2

)

I0

(

s2

4σ2

)

+

(

s2

2σ2

)

I1

(

s2

4σ2

)]

, (63)

and the variance is

var(x) = s2 + 2σ2 − E2[x]. (64)

Thus, the means of the Normal densities should be set such that

µp =

√

πσ2
p

2
e

−s2p

4σ2
p

[(

1 +
s2
p

2σ2
p

)

I0

(

s2
p

4σ2
p

)

+

(

s2
p

2σ2
p

)

I1

(

s2
p

4σ2
p

)]

, (65)

and
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µq =

√

πσ2
q

2
e

−s2q

4σ2
q

[(

1 +
s2
q

2σ2
q

)

I0

(

s2
q

4σ2
q

)

+

(

s2
q

2σ2
q

)

I1

(

s2
q

4σ2
q

)]

. (66)

The variances should then be set such that

v2
p = s2

p + 2σ2
p − µ2

p, (67)

and

v2
q = s2

q + 2σ2
q − µ2

q . (68)

5.1.3 Derivation of a Closed-Form Approximation for the Relative Entropy

Between Two Rician Densities

The proposed closed-form approximation uses the Laplace method [15] to evaluate the

integrals in (61). Begin with the second integral. Applying the Laplace method transforms

∫ ∞

0

x

σ2
e

−(x2+s2p)

2σ2 I0

(xsp

σ2

)

ln
[

I0

(xsq

σ2

)]

dx, (69)

into

∫ ∞

0
e

{

ln
(

x

σ2

)

−
(x2+s2p)

2σ2 +ln
[

I0
(

xsp

σ2

)]

+ln
{

ln
[

I0
(

xsq

σ2

)]}

}

dx. (70)

Now define hpq(x) such that

hpq(x) = ln
( x

σ2

)

−
(x2 + s2

p)

2σ2
+ ln

[

I0

(xsp

σ2

)]

+ ln
{

ln
[

I0

(xsq

σ2

)]}

, (71)

reducing the integral in (70) to

∫ ∞

0
ehpq(x)dx. (72)

Taking the Taylor Series expansion of hpq(x) around the value of x that maximizes

hpq(x),1 x̂, results in

1Much like the normal density, the Rician density is unimodal with exactly one global maximum and no
global minima (except at ±∞). Since hpq(x) is merely a scaled version of a Rician density, it is clear that x̂

maximizes (rather than minimizes) hpq(x).
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hpq(x) ≈ hpq(x̂) +
1

2
h′′

pq(x̂)(x − x̂)2. (73)

Thus, (72) is approximated by

∫ ∞

0
ehpq(x̂)+ 1

2
h′′

pq(x̂)(x−x̂)2dx, (74)

which reduces to

ehpq(x̂)

∫ ∞

0
e

h′′
pq(x̂)(x−x̂)2

2 dx. (75)

This is manipulated into the form of a Normal density as

ehpq(x̂)

√

−2π

h′′
pq(x̂)

∫ ∞

−∞

1
√

−2π
h′′

pq(x̂)

e

−(x−x̂)2

2 1
h′′

pq(x̂) dx, (76)

or

ehpq(x̂)

√

−2π

h′′
pq(x̂)

. (77)

This is the closed-form approximation of the third integral in (61). Similarly, the second

integral in (61) reduces to

ehpp(x̂)

√

−2π

h′′
pp(x̂)

. (78)

The closed-form approximation for the relative entropy between two Ricians is then given

by,

D (p(x)||q(x)) ≈
s2
q − s2

p

2σ2
+ ehpp(x̂)

√

−2π

h′′
pp(x̂)

− ehpq(x̂)

√

−2π

h′′
pq(x̂)

. (79)

All that remains to finish this closed-form approximation is to find expressions for x̂ and

h′′
pq(x̂). The first derivative of hpq(x) is

h′
pq(x) =

1

x
−

x

σ2
+

( sp

σ2

)

(

I1

(xsp

σ2

)

I0

(xsp

σ2

)

)

+
( sq

σ2

)

(

I1

(xsq

σ2

)

I0

(xsq

σ2

)

ln
[

I0

(xsq

σ2

)]

)

. (80)

Setting this equal to zero and using the approximation Ip(z) ≈ z results in
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2

x
−

x

σ2
+

sp

σ2
= 0. (81)

This has a solution for x̂ of

x̂ ≈
1

2

(

sp +
√

s2
p + 8σ2

)

. (82)

Taking the derivative of (80) produces the expression

h′′
pq(x) = −1

x − 1
σ2 +
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σ2

)2

(
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)
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(
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)
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. . .
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1
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)
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)
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(
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(
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. . .
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(
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)

I2
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[

I0

(xsq

σ2
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)

. (83)

for the second derivative. In summary, the closed-form approximation of the relative entropy

is obtained by substituting (82) and (83) into (79).

To compare the Normal approximation with the closed-form approximation, the sq pa-

rameter is swept over a range of values while the sp and σ2 parameters are held constant.

Figure 27 shows the resulting relative entropy and probability of a Type II error when

sp = 10, σ2 = 4, and sq is swept from 0 to 20. The closed-form approximation derived using

the Laplace method, however, produces results that are nearly identical to the numerically

approximated results. The Normal approximation is clearly not as accurate as the closed-

form solution for the smaller values of sq. The difference becomes even more apparent if we

reduce sp to 5 and sweep sq from 0 to 10. This case is shown in Figure 28.

5.1.4 Applying the Closed-Form Approximation for the Relative Entropy to

the ATR Algorithm

The relative entropy is used to estimate the probability of a Type II error, β, for each aircraft

pairing. These are compared to the Monte Carlo runs from Chapter 4. Several trends are

compared, including the lowest noise level at which the algorithm makes classification errors,

the noise level at which the algorithm’s odds of success are reduced to one in four, and the

most likely aircraft to be swapped.
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Figure 27: sp = 10, σ2 = 4, and sq sweeps from 0 to 20: top: D(p(x)||q(x)), bottom: βp||q
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Figure 28: sp = 5, σ2 = 4, and sq sweeps from 0 to 10: top: D(p(x)||q(x)), bottom: βp||q

Results for the straight-and-level trajectories using the vertically polarized transmitter

from Section 3.1 appear in Figures 29 and 30. The agreement between the predictions made

using the relative entropy and the results observed in the Monte Carlo trials from Sections

4.1.1 and 4.1.2 is quite good. Table 14 summarizes the comparison for the first straight-and-

level trajectory. The relative entropy predictions are slightly optimistic regarding the noise

figure at which the algorithm makes its first classification error. However, they provide

reliable indicators of the noise level at which the algorithm breaks down, as well as the

aircraft that are most likely to be swapped. For example, the relative entropy predicts that
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if an aircraft is misidentified as being an F-15, it is likeliest to be a T-38A. The Monte Carlo

trials corroborate with this result. Similar data is shown for the second straight-and-level

trajectory in Table 15. Once again, the relative entropy predictions provide an excellent

indicator of the Monte Carlo results, without the need for conducting computationally

expensive Monte Carlo trials.

Table 14: Comparison of relative entropy predictions and Monte Carlo results: Straight-
and-level trajectory #1, using the vertically polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 55 60

Noise Figure at which
Algorithm Breaks 80 80

Most Likely Aircraft to be
Misidentified as the F-15 T-38A T-38A

Most Likely Aircraft to be
Misidentified as the T-38A F-15 F-15

Most Likely Aircraft to be
Misidentified as the Falcon-20 Falcon-100 Falcon-100

Most Likely Aircraft to be
Misidentified as the Falcon-100 all all

Table 15: Comparison of relative entropy predictions and Monte Carlo results: Straight-
and-level trajectory #2, using the vertically polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 70 75

Noise Figure at which
Algorithm Breaks 90 90

Most Likely Aircraft to be
Misidentified as the F-15 all all

Most Likely Aircraft to be
Misidentified as the T-38A Falcon-20 and Falcon-100 Falcon-20 and Falcon-100

Most Likely Aircraft to be
Misidentified as the Falcon-20 Falcon-100 and T-38A Falcon-100 and T-38A

Most Likely Aircraft to be
Misidentified as the Falcon-100 Falcon-20 and T-38A Falcon-20 and T-38A
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Figure 29: Probability of a type II error for straight-and-level trajectory #1 (vert. pol.
transmitter)
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Figure 30: Probability of a type II error for straight-and-level trajectory #2 (vert. pol.
transmitter)
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Figure 31 shows the results when the banked turn trajectory is used. A comparison

between the relative entropy predictions and Monte Carlo trials is shown in Table 16. As

with the last two trajectories, the relative entropy predictions are excellent indicators of the

Monte Carlo results.

Figures 32 through 34 show the results for the Edwards trajectory with real orientation

angles, approximated orientation angles, and approximated orientation angles with incor-

rect position estimates, respectively. The corresponding comparisons between the relative

entropy predictions and Monte Carlo results appear in Tables 17 through 19. Although

the relative entropy predictions agree well with the Monte Carlo results obtained when

the true orientation angles are provided to the algorithm, they are significantly different

once approximated orientation angles are used. The reason is simple. The relative entropy

predictions are based upon the assumption that the correct orientation angles are used in

the ATR algorithm. Thus, the relative entropy predictions derived in this chapter do not

account for the possibility that incorrect orientation angles are fed from the coordinated

flight model to the ATR algorithm, causing a breakdown in performance. Such differences

are only noticeable when the approximated orientation angles differ significantly from the

truth, as in the case of the Edwards trajectory.

Table 16: Comparison of relative entropy predictions and Monte Carlo results: Banked
turn trajectory, using the vertically polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 65 65

Noise Figure at which
Algorithm Breaks 80 80

Most Likely Aircraft to be
Misidentified as the F-15 T-38A T-38A

Most Likely Aircraft to be
Misidentified as the T-38A F-15 F-15

Most Likely Aircraft to be
Misidentified as the Falcon-20 all all

Most Likely Aircraft to be
Misidentified as the Falcon-100 all all
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Figure 31: Probability of a type II error for banked turn trajectory (vert. pol. transmitter)
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Figure 32: Probability of a type II error for Edwards trajectory with true orientation (vert.
pol. transmitter)
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Figure 33: Probability of a type II error for Edwards trajectory with approximated orien-
tation (vert. pol. transmitter)
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Figure 34: Probability of a type II error for Edwards trajectory with approximated orien-
tation and biased position estimates (vert. pol. transmitter)
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Table 17: Comparison of relative entropy predictions and Monte Carlo results: Edwards
trajectory with true orientations, using the vertically polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 70 70

Noise Figure at which
Algorithm Breaks 90 90

Most Likely Aircraft to be
Misidentified as the F-15 all all

Most Likely Aircraft to be
Misidentified as the T-38A Falcon-20 and Falcon-100 Falcon-20 and Falcon-100

Most Likely Aircraft to be
Misidentified as the Falcon-20 Falcon-100 and T-38A Falcon-100 and T-38A

Most Likely Aircraft to be
Misidentified as the Falcon-100 Falcon-20 and T-38A Falcon-20 and T-38A

Table 18: Comparison of relative entropy predictions and Monte Carlo results: Edwards
trajectory with approximated orientations, using th vertically polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 5 70

Noise Figure at which
Algorithm Breaks 5 80

Most Likely Aircraft to be
Misidentified as the F-15 T-38A all

Most Likely Aircraft to be
Misidentified as the T-38A Falcon-20 and Falcon-100 all

Most Likely Aircraft to be
Misidentified as the Falcon-20 F-15 all

Most Likely Aircraft to be
Misidentified as the Falcon-100 Falcon-20 and F-15 all
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Table 19: Comparison of relative entropy predictions and Monte Carlo results: Edwards
trajectory with approximated orientations and biased position measurements, using the
vertically polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 5 70

Noise Figure at which
Algorithm Breaks 5 80

Most Likely Aircraft to be
Misidentified as the F-15 T-38A all

Most Likely Aircraft to be
Misidentified as the T-38A Falcon-20 and Falcon-100 all

Most Likely Aircraft to be
Misidentified as the Falcon-20 F-15 all

Most Likely Aircraft to be
Misidentified as the Falcon-100 Falcon-20 and F-15 all

The comparison is then repeated with the horizontally polarized transmitter from Sec-

tion 3.1. Figures 35 through 40 show the results predicted by the relative entropy method.

Comparisons between these results and the Monte Carlo results from Section 4.2 are pro-

vided in Tables 20 through 25. With the exception of the last two cases, in which the

aircraft orientation is estimated for the Edwards trajectory, the trends observed from the

relative entropy match those from the Monte Carlo trials.
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Figure 35: Probability of a type II error for straight-and-level trajectory #1 (hor. pol.
transmitter)

Table 20: Comparison of relative entropy predictions and Monte Carlo results: straight-
and-level trajectory #1, using the horizontally polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 50 55

Noise Figure at which
Algorithm Breaks 70 70

Most Likely Aircraft to be
Misidentified as the F-15 all all

Most Likely Aircraft to be
Misidentified as the T-38A Falcon-20 Falcon-20

Most Likely Aircraft to be
Misidentified as the Falcon-20 T-38A T-38A

Most Likely Aircraft to be
Misidentified as the Falcon-100 F-15 F-15
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Figure 36: Probability of a type II error for straight-and-level trajectory #2 (hor. pol.
transmitter)

Table 21: Comparison of relative entropy predictions and Monte Carlo results: straight-
and-level trajectory #2, using the horizontally polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 55 60

Noise Figure at which
Algorithm Breaks 70 70

Most Likely Aircraft to be
Misidentified as the F-15 all all

Most Likely Aircraft to be
Misidentified as the T-38A all all

Most Likely Aircraft to be
Misidentified as the Falcon-20 Falcon-100 Falcon-100

Most Likely Aircraft to be
Misidentified as the Falcon-100 Falcon-20 Falcon-20
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Figure 37: Probability of a type II error for banked turn trajectory (hor. pol. transmitter)

Table 22: Comparison of relative entropy predictions and Monte Carlo results: Banked
turn trajectory, using the horizontally polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 60 65

Noise Figure at which
Algorithm Breaks 75 75

Most Likely Aircraft to be
Misidentified as the F-15 all all

Most Likely Aircraft to be
Misidentified as the T-38A Falcon-100 Falcon-100

Most Likely Aircraft to be
Misidentified as the Falcon-20 Falcon-100 Falcon-100

Most Likely Aircraft to be
Misidentified as the Falcon-100 T-38A and Falcon-20 T-38A and Falcon-20
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Figure 38: Probability of a type II error for Edwards trajectory with true orientation (hor.
pol. transmitter)

Table 23: Comparison of relative entropy predictions and Monte Carlo results: Edwards
trajectory with true orientation, using the horizontally polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 60 65

Noise Figure at which
Algorithm Breaks 75 75

Most Likely Aircraft to be
Misidentified as the F-15 Falcon-20 Falcon-20

Most Likely Aircraft to be
Misidentified as the T-38A Falcon-100 Falcon-100

Most Likely Aircraft to be
Misidentified as the Falcon-20 all all

Most Likely Aircraft to be
Misidentified as the Falcon-100 T-38A and Falcon-20 T-38A and Falcon-20
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Figure 39: Probability of a type II error for Edwards trajectory with approximated orien-
tation (hor. pol. transmitter)

Table 24: Comparison of relative entropy predictions and Monte Carlo results: Edwards
trajectory with approximated orientation, using the horizontally polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 5 65

Noise Figure at which
Algorithm Breaks 5 75

Most Likely Aircraft to be
Misidentified as the F-15 all all

Most Likely Aircraft to be
Misidentified as the T-38A F-15 Falcon-100

Most Likely Aircraft to be
Misidentified as the Falcon-20 all all

Most Likely Aircraft to be
Misidentified as the Falcon-100 all T-38A

64



30 40 50 60 70 80 90 100
0

20

40

60

80

100

Noise Figure (dB)

β

Prob. that Target is Misidentified as F−15

β
F−15 | T−38

β
F−15 | Falcon−20

β
F−15 | Falcon−100

30 40 50 60 70 80 90 100
0

20

40

60

80

100

Noise Figure (dB)

β

Prob. that Target is Misidentified as T−38

β
T−38 | F−15

β
T−38 | Falcon−20

β
T−38 | Falcon−100

30 40 50 60 70 80 90 100
0

20

40

60

80

100

Noise Figure (dB)

β

Prob. that Target is Misidentified as Falcon−20

β
Falcon−20 | F−15

β
Falcon−20 | T−38

β
Falcon−20 | Falcon−100

30 40 50 60 70 80 90 100
0

20

40

60

80

100

Noise Figure (dB)

β

Prob. that Target is Misidentified as Falcon−100

β
Falcon−100 | F−15

β
Falcon−100 | T−38

β
Falcon−100 | Falcon−20

Figure 40: Probability of a type II error for Edwards trajectory with approximated orien-
tation and biased position estimates (hor. pol. transmitter)

Table 25: Comparison of relative entropy predictions and Monte Carlo results: Edwards
trajectory with approximated orientation and biased position measurements, using the hor-
izontally polarized transmitter.

Monte Carlo Results Relative Entropy Predictions

Noise Figure at which
1st Mistake is Made 5 65

Noise Figure at which
Algorithm Breaks 5 75

Most Likely Aircraft to be
Misidentified as the F-15 all all

Most Likely Aircraft to be
Misidentified as the T-38A F-15 Falcon-100

Most Likely Aircraft to be
Misidentified as the Falcon-20 all all

Most Likely Aircraft to be
Misidentified as the Falcon-100 all T-38A
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5.2 Estimating Performance Under the Bayesian Frame-

work Via the Chernoff Information

5.2.1 Derivation of the Chernoff Information Between Two Rician Densities

The Chernoff information between two densities, p(x) and q(x) is given by

C (p(x), q(x)) = −min0≤λ≤1 {µ(λ)} , (84)

where µ(λ) is

µ(λ) = ln

[∫

x
q(x)λp(x)1−λdx

]

. (85)

Substituting (57) and (58) into (85) results in

µ(λ) = ln







∫ ∞

0

[

x

σ2
e

−(x2+s2q)

2σ2 I0

(xsq

σ2

)

]λ [

x

σ2
e

−(x2+s2p)

2σ2 I0

(xsp
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]1−λ

dx







. (86)

Sections 5.2.2 and 5.2.3 seek to evaluate this expression.

5.2.2 A Normal Approximation for the Chernoff Information Between Two

Rician Densities

The Chernoff information between Rician densities is often approximated by the Chernoff

information between two Normal distributions with different means and variances. This is

accomplished by substituting p(x) ∼ N(µp, vp) and q(x) ∼ N(µq, vq) into (85), resulting in

µ(λ) = ln
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. (87)

Expanding this results in,

µ(λ) = ln







∫ ∞
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, (88)

which reduces to

µ(λ) =
λ

2
ln

{

v2
p

v2
q

}

+ ln
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. (89)
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Now focus on the power of the exponential term. Completing the square transforms

(x − µp)
2v2

q (λ − 1) − (x − µq)
2v2

pλ

2v2
pv

2
q

(90)

into
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Substituting this expression back into (89) results in

µ(λ) =
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Now, the integral in (92) is rewritten as
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Scaling appropriately reduces this integral to a Normal pdf, resulting in

1

2
ln

[

v2
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v2
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q (λ − 1)

]

. (94)

Thus, µ(λ) reduces to
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The Normal approximation is completed by setting µp, µq, v2
p, and v2

q as suggested in

(65) through (68), and substituting the resulting µ(λ) into (84).
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5.2.3 Derivation of a Closed-Form Approximation for the Chernoff Informa-

tion Between Two Rician Densities

The Bessel functions in (86) render an analytic evaluation of the integral quite difficult.

However, an approximation can be made by applying the Laplace method to the integral.

Doing so transforms (86) into

µ(λ) = ln

{

e
λ(s2p−s2q)

2σ2

∫ ∞

0
e
ln
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[
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dx

}

, (96)

which is equivalent to

µ(λ) = ln

[

e
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2σ2
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, (97)

where
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Identifying a Gaussian form lets us approximate µ(λ) as

µ(λ) ≈
λ(s2

p − s2
q)

2σ2
+ h(x̂, λ) +

1

2
ln

(

−2π

h′′(x̂, λ)

)

, (99)

where x̂ is the value of x found by setting the derivative of h(x, λ) equal to zero.2 This

results in two solutions. However, it is trivial to show that, given the limits of integration

of the Rician density, the only valid solution is

x̂ =
1

2
λ(sq − sp) +

1

2
sp +

1
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√

λ2(s2
q + s2
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The second derivative of h(x, λ) is given by
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. . . . (101)

2Much like the normal density, the Rician density is unimodal with exactly one global maximum and no
global minima (except at ±∞). Since h(x, λ) is merely a scaled version of a Rician density, it is clear that
x̂ maximizes (rather than minimizes) h(x, λ).
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Thus, the probability of error in a binary Bayesian hypothesis test is approximated by

PE ≈ e
−min0≤λ≤1

[

λ(s2p−s2q)

2σ2 +h(x̂,λ)+ 1
2

ln
(

−2π

h′′(x̂,λ)

)

]

. (103)

To compare the Normal approximation from Section 5.2.2 to the closed-form approxi-

mation developed in this section, the sq parameter is swept over a range of values while the

sp and σ2 parameters are held constant. Figure 41 shows the values of µ and the probability

of error that result if sp is set to 10, σ2 is set to 4, and sq is swept from 0 to 20. The closed-

form approximation derived in this section matches the numerically approximated result

with higher accuracy than does the Normal approximation, which deviates significantly for

small values of sq. This result is typical. The Normal approximation breaks down for small

values of sq, relative to sp and σ2.
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Figure 41: Comparison of methods for computing µ and PE , if sp = 10, σ2 = 4, and sq is
swept from 0 to 20

69



5.2.4 Applying the the Closed-Form Approximation for the Chernoff Informa-

tion to the ATR Algorithm

The Chernoff information is then applied to the ATR runs to approximate the probability

of error for each possible aircraft pairing. The predictions obtained from the Chernoff

information are compared to the Monte Carlo results from Chapter 4. As is the case with

the relative entropy, the Chernoff information assumes that the true orientation angles

are used by the ATR algorithm. Thus, it is not surprising that the Chernoff information

predictions are a good match with the Monte Carlo trials as long as the orientation angles

estimated by the coordinated flight model are close to the truth.

The probability of error curves predicted by the Chernoff information for the straight-

and-level maneuvers (using the vertically polarized transmitter from Section 3.1) are shown

in Figures 42 and 43. These results are then compared to those from Chapter 4 in Tables

26 and 27. Since the coordinated flight model has no trouble estimating the orientations

when the aircraft execute straight-and-level maneuvers, the Monte Carlo trials corroborate

the Chernoff information predictions quite well.

Figure 44 shows the probability of error curves predicted by the Chernoff information

when the aircraft execute the banked turn trajectory. A comparison is made in Table 28 to

the Monte Carlo results from Section 4.1.3. Even though the coordinated flight model must

estimate a non-zero roll angle, its predictions are still very close to the truth. Thus, the

predictions from the Chernoff information are corroborated by Monte Carlo results. Note

that both the Monte Carlo trials and Chernoff information predictions indicate a near tie

between the pairs of aircraft least likely to be confused by the algorithm.

The probability of error curves predicted by the Chernoff information for the Edwards

trajectory, with true orientation angles, approximated orientation angles, and approximated

orientation angles with biased position measurements, are shown in Figures 45 through 47,

respectively. Tables 29 through 31 compare the predictions to the Monte Carlo results. As

in Section 5.1.4, the predictions are a good match for the Monte Carlo data, as long as the

estimated orientation angles are similar to the truth. When the estimated orientation angles

are significantly different from the truth, the performance predictions are overly optimistic.
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Figure 42: Predicted probability of error in straight-and-level trajectory #1 (vert. pol.
transmitter)

Table 26: Comparison of Chernoff information predictions and Monte Carlo results:
straight-and-level trajectory #1, using the vertically polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 55 55

Noise Figure at which
Algorithm Breaks 80 75

Most Likely Aircraft
to be Swapped F-15 and T-38A F-15 and T-38A

Leas Likely Aircraft
to be Swapped Falcon-20 and T-38A Falcon-20 and T-38A
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Figure 43: Predicted probability of error in straight-and-level trajectory #2 (vert. pol.
transmitter)

Table 27: Comparison of Chernoff information predictions and Monte Carlo results:
straight-and-level trajectory #2, using the vertically polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 70 70

Noise Figure at which
Algorithm Breaks 90 85

Most Likely Aircraft
to be Swapped Falcon-20 and Falcon-100 Falcon-20 and Falcon-100

Leas Likely Aircraft F-15 and Falcon-20, F-15 and Falcon-20,
to be Swapped F-15 and T-38A F-15 and T-38A
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Figure 44: Predicted probability of error in banked turn trajectory (vert. pol. transmitter)

Table 28: Comparison of Chernoff information predictions and Monte Carlo results: Banked
turn trajectory, using the vertically polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 65 60

Noise Figure at which
Algorithm Breaks 80 75

Most Likely Aircraft
to be Swapped F-15 and T-38A F-15 and T-38A

Leas Likely Aircraft F-15 and Falcon-20, F-15 and Falcon-20,
to be Swapped Falcon-20 and T-38A Falcon-20 and T-38A
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Figure 45: Predicted probability of error in Edwards trajectory with true orientation (vert.
pol. transmitter)

Table 29: Comparison of Chernoff information predictions and Monte Carlo results: Ed-
wards trajectory with true orientation, using the vertically polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 70 70

Noise Figure at which
Algorithm Breaks 90 80

Most Likely Aircraft
to be Swapped T-38A and Falcon-100 T-38A and Falcon-100

Leas Likely Aircraft
to be Swapped F-15 and T-38A F-15 and T-38A
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Figure 46: Predicted probability of error in Edwards trajectory with approximated orien-
tation (vert. pol. transmitter)

Table 30: Comparison of Chernoff information predictions and Monte Carlo results: Ed-
wards trajectory with approximated orientation, using the vertically polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 5 70

Noise Figure at which
Algorithm Breaks 5 80

Most Likely Aircraft
to be Swapped all all

Leas Likely Aircraft
to be Swapped all all
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Figure 47: Predicted probability of error in Edwards trajectory with approximated orien-
tation and biased position estimates (vert. pol. transmitter)

Table 31: Comparison of Chernoff information predictions and Monte Carlo results: Ed-
wards trajectory with approximated orientation and biased position measurements, using
the vertically polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 5 70

Noise Figure at which
Algorithm Breaks 5 80

Most Likely Aircraft
to be Swapped all all

Leas Likely Aircraft
to be Swapped all all
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The Chernoff information is then used to predict the ATR algorithm’s performance when

the horizontally polarized transmitter from Section 3.1 is used. Although the trends are

slightly different than they were when the vertically polarized transmitter was exploited,

the Chernoff information predictions still match the Monte Carlo results with a high level

of accuracy. Results for the first straight-and-level trajectory are shown in Figure 48 and

Table 32. Similar results appear in Figure 49 and Table 33 for the second straight-and-level

trajectory. Figure 50 and Table 34 correspond to the case in which the aircraft execute the

banked turn trajectory. Finally, results using the Edwards trajectory with true orientation

angles, approximated orientation angles, and approximated orientation angles with biased

position measurements appear in Figures 51 through 53 and Tables 35 through 37.

As before, the only cases with discrepancies are those in which the aircraft execute

the Edwards maneuver and the orientation angles are estimated. In these two cases, the

orientation estimates from the coordinated flight model are not sufficiently close to the truth

to result in predictable performance in the ATR algorithm.

Once again, it should be noted that the only reason for using both horizontally and

vertically polarized antennas is to provide a baseline for the work in Chapter 6. It is not

intended to suggest that one polarization provides better results than the other, and the

reader should also bear in mind that the transmitters are at different locations.
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Figure 48: Predicted probability of error in straight-and-level trajectory #1 (hor. pol.
transmitter)

Table 32: Comparison of Chernoff information predictions and Monte Carlo results:
straight-and-level trajectory #1, using the horizontally polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 50 50

Noise Figure at which
Algorithm Breaks 70 70

Most Likely Aircraft
to be Swapped T-38A and Falcon-20 T-38A and Falcon-20

Leas Likely Aircraft
to be Swapped Falcon-20 and Falcon-100 Falcon-20 and Falcon-100
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Figure 49: Predicted probability of error in straight-and-level trajectory #2 (hor. pol.
transmitter)

Table 33: Comparison of Chernoff information predictions and Monte Carlo results:
straight-and-level trajectory #2, using the horizontally polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 55 55

Noise Figure at which
Algorithm Breaks 70 70

Most Likely Aircraft
to be Swapped Falcon-20 and Falcon-100 Falcon-20 and Falcon-100

Leas Likely Aircraft
to be Swapped F-15 and Falcon-20 F-15 and Falcon-20
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Figure 50: Predicted probability of error in banked turn trajectory (hor. pol. transmitter)

Table 34: Comparison of Chernoff information predictions and Monte Carlo results: Banked
turn trajectory, using the horizontally polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 60 60

Noise Figure at which
Algorithm Breaks 75 75

Most Likely Aircraft
to be Swapped T-38A and Falcon-100 T-38A and Falcon-100

Leas Likely Aircraft
to be Swapped F-15 and Falcon-20 F-15 and Falcon-20
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Figure 51: Predicted probability of error in Edwards trajectory with true orientation (hor.
pol. transmitter)

Table 35: Comparison of Chernoff information predictions and Monte Carlo results: Ed-
wards trajectory with true orientation, using the horizontally polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 60 60

Noise Figure at which
Algorithm Breaks 75 75

Most Likely Aircraft
to be Swapped T-38A and Falcon-100 T-38A and Falcon-100

Leas Likely Aircraft
to be Swapped F-15 and Falcon-100 F-15 and Falcon-100
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Figure 52: Predicted probability of error in Edwards trajectory with approximated orien-
tation (hor. pol. transmitter)

Table 36: Comparison of Chernoff information predictions and Monte Carlo results: Ed-
wards trajectory with approximated orientation, using the horizontally polarized transmit-
ter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 5 60

Noise Figure at which
Algorithm Breaks 5 80

Most Likely Aircraft
to be Swapped all T-38A and Falcon-100

Leas Likely Aircraft
to be Swapped all F-15 and Falcon-100

82



30 40 50 60 70 80 90 100
0

20

40

60

80

100

Noise Figure (dB)

P
ro

ba
bi

lit
y 

of
 E

rr
or

, P
E

P
E
 Vs. Noise Figure:  Edwards Trajectory with 

Approx. Orientation and Wrong Positions

P
E, F−15,T−38

P
E, F−15,Falcon−20

P
E, F−15,Falcon−100

P
E, T−38,Falcon−20

P
E, T−38,Falcon−100

P
E, Falcon−20,Falcon−100

Figure 53: Predicted probability of error in Edwards trajectory with approximated orien-
tation and biased position estimates (hor. pol. transmitter)

Table 37: Comparison of Chernoff information predictions and Monte Carlo results: Ed-
wards trajectory with approximated orientation and biased position measurements, using
the horizontally polarized transmitter.

Monte Carlo Results Chernoff Information Predictions

Noise Figure at which
1st Mistake is Made 5 60

Noise Figure at which
Algorithm Breaks 5 80

Most Likely Aircraft
to be Swapped all T-38A and Falcon-100

Leas Likely Aircraft
to be Swapped all F-15 and Falcon-100
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5.2.5 An Application of the Chernoff Information

Section 5.2.4 demonstrates that the approximation of the algorithm’s performance using the

Chernoff information is very similar to the performance obtained using Monte Carlo trials,

as long as the estimated orientation angles are close to the truth. As such, the Chernoff

information can confidently be used to address questions that would be cumbersome to

address via Monte Carlo trials. For example, a useful piece of information is the length of

time that the aircraft must be tracked in order to identify it with a desired probability of

error. The number of Monte Carlo trials required to address this question is staggering,

as a complete set of trials would be required for each period of time tested. However, this

problem is easily addressed using the Chernoff information. Note that a noise figure of 45

dB is used in this section, as that is the maximum noise figure anticipated in a real system.

Figure 54 shows the probability of error as a function of the length of time that the

target is tracked while executing the first straight-and-level trajectory, using the vertically

polarized transmitter. Similar results are given in Figures 55 through 56 for the second

straight-and-level trajectory and the banked turn trajectory, respectively.
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Figure 54: Probability of error vs. time: Straight-and-level trajectory #1, vertically polar-
ized transmitter
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Figure 55: Probability of error vs. time: Straight-and-level trajectory #2, vertically polar-
ized transmitter
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Figure 56: Probability of error vs. time: Banked turn trajectory, vertically polarized
transmitter
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Several points are worth stating. Consider the first straight-and-level trajectory. The

most difficult comparison for the ATR algorithm is between the F-15 and T-38. This

matches the result from Section 5.2.4. Another noteworthy point is that the probability of

switching any pair of aircraft drops below 5% 22.5 seconds after the start of the trajectory.

Using the second straight-and-level trajectory, the ATR algorithm can correctly distinguish

between all pairs of aircraft with a probability of error below 5% within 4 seconds, instead

of 22.5. This improvement is attributed to the broader range of aspect angles that are

presented to the receiver in the second straight-and-level maneuver. The ATR algorithm

performance improves further still against aircraft executing the banked turn maneuver. In

this case, the algorithm is able to correctly distinguish between all possible pairs of aircraft

with a probability of error below 5% within 1 second of tracking.

These tests are then repeated using the horizontally polarized transmitter from Section

3.1. As in Section 4.2, the results are somewhat worse than when the vertically polarized

transmitter is exploited. The probability of error curves are shown for the three trajectories

in Figures 57 through 59. Now, the radar must maintain a track for 27.5 seconds in order

to correctly discern between each pair of targets executing the first straight-and-level ma-

neuver. This drops to 12.5 seconds when the aircraft executes the second straight-and-level

trajectory, and 7 seconds when it executes the banked turn maneuver.

Although the ATR performance is expected to degrade somewhat when all aircraft are

considered, rather than when they are taken two at a time, two major conclusions can be

taken from this work. First, regardless of the transmitter’s polarization, if the radars in

this study have tracked the aircraft for at least 28 seconds and the estimated orientation

angles are good, then the probability of error in the ATR algorithm should be fairly low

at the maximum anticipated noise level. Furthermore, depending on the trajectory and

its orientation relative to the sensors, the length of time required to achieve this level of

performance may be much smaller. Thus, tracking for 28 seconds constitutes a worst-case

scenario, in which the noise level is extremely high and the aircraft is presenting a very

small range of aspect angles to the receiver.
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Figure 57: Probability of error vs. time: Straight-and-level trajectory #1, horizontally
polarized transmitter
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Figure 58: Probability of error vs. time: Straight-and-level trajectory #2, horizontally
polarized transmitter
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Figure 59: Probability of error vs. time: Banked turn trajectory, horizontally polarized
transmitter
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CHAPTER VI

A PASSIVE RADAR ATR ALGORITHM THAT

EXPLORES THE SPACE OF ORIENTATIONS

6.1 Motivation

The ATR algorithm described in Chapter 3 performs quite well when aircraft travel in

straight-and-level trajectories, or in banked turns with large radii of curvature. Since these

two types of trajectories comprise the vast majority of trajectories likely to be witnessed

by a passive radar algorithm when attempting to identify targets, the ATR algorithm’s

occasional failings when aircraft execute dog-fighting style maneuvers may not be of major

concern in most likely scenarios.

Even so, modifications can make the simple ATR algorithm from Chapter 3 more robust.

Since the algorithm’s errors (at the anticipated noise levels of a real system) occur when the

aircraft execute dog-fighting style maneuvers and are attributed to the error in the estimated

roll angle of the aircraft, a better method for estimating the aircraft roll is needed.

6.2 Revisions to the ATR Algorithm

In response to these problems, the EKF that estimates aircraft orientation from velocity

measurements is implemented in place of the simple coordinated flight model. The major

advantage of this approach is that it provides not only an estimated state, but also a

covariance. The revised ATR algorithm then uses the one-sigma error bars on the states

(yaw, pitch, and roll) obtained from the covariance matrices to determine what set of

orientations are feasible for a given maneuver. The feasible yaw, pitch, and roll sets are

then sampled every two degrees,1 beginning at the estimated state and working out until

the one-sigma error bars are reached. All possible combinations of these sampled angles

1In this case, two degrees appears to provide a good tradeoff between computational complexity and
accuracy.
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are taken at each of the radar’s dwell times. The total number of combinations depends

on the size of the covariance, but it is not unusual to have one feasible yaw, three feasible

pitch values, and five feasible rolls. Each of the combinations is compared to the profile

collected by the receiver, using the scoring function in (51). The scores are computed for

each aircraft in the target library, so that the orientation and aircraft type can be jointly

estimated.

Once each combination of the sampled set of feasible orientations and aircraft types has

been assigned a score, the set can be collectively thought of as comprising a trellis structure.

The number of nodes in this trellis at time tk is determined by the size of the covariance

matrix of the EKF. The connections from each node at time tk to time tk+1 are limited

such that each of the orientation angles cannot change by more than two degrees;2 this

constraint is intended to prevent unrealistic orientation profiles, which may score well, from

dominating the process. Having structured the problem of jointly estimating the target type

and orientation as a trellis where each node has an assigned score, dynamic programming

provides a logical solution for finding the optimal path through the trellis [9]. In doing so,

it finds the optimal set of orientation angles for a particular aircraft type. The scores of

each node along the optimal path are summed to find the total score for the aircraft type.

This is repeated for all aircraft in the target library. The one with the largest overall score

is deemed the winner.

This problem formulation extends quite naturally to multiple transmitters. If only one

transmitter is available, the score of each node in the trellis is based only on that transmit-

ter. When the passive radar system can exploit multiple transmitters, the scores for each

transmitter are summed at each node in the trellis. Thus, the dynamic programming algo-

rithm finds the optimal set of orientations for each aircraft type, given data from multiple

transmitters.

2This constraint seems reasonable given the real flight data that is available. Of course, it should be
proportional to the time between measurements.
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6.3 Results

Although a variety of maneuvers are tested in Chapter 4 using the simple ATR algorithm,

it is unnecessary to repeat all of the results when using the revised ATR algorithm. The

EKF results for the straight-and-level trajectories in Section 2.3 reveal that the estimated

states are almost identical to the results of the simple coordinated flight model. Since the

covariance matrices in these cases are sufficiently small that only the estimated state need be

considered feasible, the results of the revised algorithm are identical to those of the simple

algorithm. Thus, repeating those results here would be an exercise in tedium. Furthermore,

although Section 2.3 reveals that the covariance matrices corresponding to the banked turn

trajectory are large enough to encompass a few sets of feasible angles, it also reveals that

the simple coordinated flight model is able to correctly estimate the orientation. Since the

revised algorithm assigns the highest scores to the cases with the correct orientation (in this

case), the identification results for this test remain unchanged. As such, there is no need to

repeat them in this section. In short, the only maneuver with new and interesting results

using the revised algorithm is also the only maneuver that gives the simple ATR algorithm

trouble. Thus, in the interest of brevity, only the results from the Edwards maneuver are

shown in this section.

The revised ATR algorithm from Section 6.2 is compared to the simple one from Chapter

3 under three different cases. First, the algorithms are compared under the assumption that

the passive radar system only exploits the vertically polarized transmitter from Section 3.1.

The second case is identical to the first, but assumes that the passive radar system only

exploits the horizontally polarized transmitter from Section 3.1. The final case compares the

algorithms assuming that both transmitters from Section 3.1 are simultaneously exploited

by the passive radar system. Expanding the simple ATR algorithm to exploit multiple

transmitters is straightforward. Rather than summing likelihoods from all transmitters

at each node in the trellis (like the revised ATR algorithm), the simple one sums the

likelihoods from all transmitters at the end of the scenario. These multiple transmitter

results are neglected in Chapter 4 merely because the performance is no better than that

obtained using a single transmitter, (in this case).
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Figure 60 shows the probability of error curves obtained when the passive radar system

exploits only the horizontally polarized transmitter. Since the simple ATR algorithm’s odds

of a correct identification are reduced to chance by the time the noise figure is 80 dB (using

this maneuver and averaging over all four aircraft types), the noise figure is now only swept

between 30 and 80 dB. Note that the curves corresponding to the simple ATR algorithm

are derived from subsets of the data used to create Figure 25b. The catastrophic misiden-

tifications of the simple ATR algorithm at realistic noise levels (in which all aircraft are

identified as the Falcon-100) no longer occur when the revised ATR algorithm is employed.

Using the simple ATR algorithm, the aircraft are all identified as the Falcon-100. Thus, the

Falcon-100 is the only aircraft whose probability of error does not improve using the revised

algorithm. At extremely high noise levels, the revised algorithm has a tendancy to identify

all aircraft as the F-15. However, the difference between the best and worst loglikelihoods

at these high noise levels is approximately 0.1% (as opposed to 350% at a noise figure of

30 dB). Thus, in any given trial with an unrealistically high noise figure, the revised ATR

algorithm only favors the F-15 by a narrow margin. Confusion matrices at a noise figure of

40 dB are given in Tables 38 and 39, for the simple and revised ATR algorithms, respec-

tively. Although performance is not perfect when the revised ATR algorithm is used, it is

significantly better than that which is obtained using the simple ATR algorithm. This is

especially true for the realistic noise figures of 30 and 40 dB.

Similar results are shown in Figure 61 when the vertically polarized transmitter is ex-

ploited. The curves corresponding to the simple ATR algorithm are derived from subsets

of the data used to create Figure 19b. Once again, the revised ATR algorithm significantly

outperforms the simple one and avoids making catastrophic misidentifications at realistic

noise levels. As before, the loglikelihoods computed by the revised algorithm for unreal-

istically large noise figures differ by less than 0.1% amongst the four aircraft types. The

confusion matrices shown in Tables 40 and 41 verify that the revised algorithm is much

more reliable at realistic noise levels. When both transmitters are used, the revised ATR

algorithm outperforms the simple one by an even greater margin. Probability of error curves

for this case are shown in Figure 62; confusion matrices are given in Tables 42 and 43.
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Figure 60: Probability of error vs. noise figure: Edwards trajectory using both revised and
simple ATR algorithms, with the horizontally polarized transmitter

Table 38: Confusion matrix: Simple ATR algorithm, horizontally polarized transmitter,
noise figure = 40 dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 0 0 0 100

T-38A 0 0 0 100

Falcon-20 0 0 0 100

Falcon-100 0 0 0 100

Table 39: Confusion matrix: revised ATR algorithm, horizontally polarized transmitter,
noise figure = 40 dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 46 1 43 64

T-38A 0 99 0 1

Falcon-20 0 18 68 14

Falcon-100 1 43 14 42
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Figure 61: Probability of error vs. noise figure: Edwards trajectory using both revised and
simple ATR algorithms, with the vertically polarized transmitter

Table 40: Confusion matrix: Simple ATR algorithm, vertically polarized transmitter, noise
figure = 40 dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 0 0 0 100

T-38A 0 100 0 0

Falcon-20 0 0 0 100

Falcon-100 0 0 0 100

Table 41: Confusion matrix: Revised ATR algorithm, vertically polarized transmitter,
noise figure = 40 dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 100 0 0 0

T-38A 0 100 0 0

Falcon-20 0 0 100 0

Falcon-100 0 0 21 79
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Figure 62: Probability of error vs. noise figure: Edwards trajectory using both revised and
simple ATR algorithms, using both transmitters

Table 42: Confusion matrix: Simple ATR algorithm, both transmitter, noise figure = 40
dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 0 0 0 100

T-38A 0 100 0 0

Falcon-20 0 0 0 100

Falcon-100 0 0 0 100

Table 43: Confusion matrix: Revised ATR algorithm, both transmitters, noise figure = 40
dB

Aircraft F-15 T-38A Falcon-20 Falcon-100

F-15 100 0 0 0

T-38A 0 100 0 0

Falcon-20 0 0 99 1

Falcon-100 0 0 16 84
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The reason that the revised ATR algorithm outperforms the simple one is quite clear.

The simple ATR algorithm incorporates the coordinated flight model from Section 2.1 with-

out accounting for the possibility that the estimated orientations are incorrect. Although

this is a reasonable assumption for simple maneuvers, such as straight-and-level flight or

banked turns with slowly-varying radii of curvature, it leads to inaccurate orientation es-

timates when the aircraft executes dog-fighting style maneuvers. Of the three elements of

orientation, the roll is the most likely to be incorrectly estimated by the coordinated flight

model. Figure 63 shows the true roll, as well as the roll estimated by the coordinated flight

model, the roll estimated by the EKF, and the roll (associated with the true aircraft) com-

puted by the revised ATR algorithm when the noise figure is 30 dB. The roll computed by

the revised ATR algorithm is closer to the truth than the roll estimated by the coordinated

flight model. Since this translates into more accurately estimated power profiles, it is not

surprising that the loglikelihoods computed under the revised algorithm more frequently

select the correct aircraft.
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Figure 63: Comparison of aircraft roll profiles computed using coordinated flight model,
EKF, and revised ATR algorithm
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When the revised algorithm jointly estimates the orientations and aircraft type, the rolls

associated with the aircraft not being tracked are typically farther from truth than those

associated with the correct aircraft. An example is shown in Figure 64. Since the F-15

is being tracked by the passive radar system, its estimated roll profile matches the truth

better than that of the Falcon-100.
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Figure 64: Comparison of aircraft roll profiles of the F-15 and Falcon-100 when the F-15
is the true target

To provide a more concise comparison of the two ATR algorithms, the probability of

error curves, averaged over all four aircraft, are shown in Figure 65 for the case in which the

horizontally polarized transmitter is exploited. Similar results are presented in Figure 66 for

the case in which the passive radar system only exploits the vertically polarized transmitter

from Section 3.1. Finally, Figure 67 provides the averaged probability of error curves for the

case in which both transmitters are used. For a realistic noise figure of 40 dB, the revised

algorithm correctly identifies aircraft 96% of the time, while the simple algorithm only does

so in 37.5% of the Monte Carlo trials. Regardless of the transmitter selection, the revised

ATR algorithm is clearly a great deal more robust than the simple one.
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Figure 65: Probability of error vs. noise figure: Edwards trajectory using both revised and
simple ATR algorithms, with the horizontally polarized transmitter
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Figure 66: Probability of error vs. noise figure: Edwards trajectory using both revised and
simple ATR algorithms, with the vertically polarized transmitter
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Figure 67: Probability of error vs. noise figure: Edwards trajectory using both revised and
simple ATR algorithms, with both transmitters

A comparison of the revised ATR algorithm with the simple one would not be complete

without noting the run times of each. The simple ATR algorithm typically executes in

roughly one-tenth of the total flight time, while the revised ATR algorithm tends to need

roughly twice the total flight time. For example, the 70 second Edwards trajectory has a

run time of roughly seven seconds using the simple algorithm, and 140 seconds using the

revised one. This run time difference is not insurmountable, as most of the run time needed

for the revised ATR algorithm is spent in the dynamic programming portion of the code.

Since this is an iterative process, it is coded using “for” loops. MATLAB, which runs most

quickly when code is vectorized, is notorious for lengthy run times when “for” loops are

used. Rewriting the dynamic programming portion of the code in C and linking it in with

the rest of the MATLAB code would most likely reduce the run time by at least an order of

magnitude. Furthermore, were the revised ATR algorithm ever imported into a real passive

radar system, it is likely that the designer would rewrite the algorithm using optimized code

in a lower-level language, further speeding run time. In short, although the revised ATR

algorithm’s current implementation in MATLAB has a significantly longer run time than

the simple one, it is still highly likely that it could be made to run in real-time.
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CHAPTER VII

ROBUSTNESS EXPERIMENTS

The process used to model the power (magnitude only) at the passive radar receiver, de-

scribed in Chapter 3, uses a number of state-of-the-art models including AREPS and FISC.

The use of such models begs the question: how much fidelity is really necessary for the ATR

algorithm to perform well? Experiments documented in this chapter attempt to address

this question.

7.1 Sensitivity of the ATR Algorithm to the AREPS Database

This section investigates the impact on the new ATR algorithm from Chapter 6 if the

magnitudes of the power profiles for each aircraft in the target library are computed without

incorporating the AREPS model. Instead, the propagation losses are assumed to be constant

over the entire scenario. Three sets of tests are conducted. The first set considers the impact

of this assumption if the constant propagation loss is reasonably estimated to be the mean

propagation loss from AREPS. The next two sets of tests assess the impact if the constant

propagation loss is 6 dB too low, or 6 dB too high. In all cases, the profiles used to generate

the noisy test data are unaltered; they are still intended to be as realistic as possible, so

they still include the propagation losses modeled by AREPS, rather than the more simplistic

constant propagation loss model.

Insight is gained by comparing these three sets of tests using the Edwards maneuver and

a noise figure of 40 dB, which is quite reasonable given the noise figure analysis in Section 3.1.

When propagation losses from AREPS are included in the precomputed power profiles, the

algorithm is correct in 95.75% of the Monte Carlo runs. When the propagation loss is treated

as a constant and the constant is equal to the mean of the AREPS propagation loss profile

(indicating a good estimate), the algorithm’s performance only suffers slightly; the algorithm

is correct in 95.5% of the trials, which equates to one more error than was previously
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observed. The reason for the similar performance is straightforward. The propagation

losses observed during the encounter, over the path from either transmitter to the aircraft

to the receiver, vary by only ±0.75 dB. Using the constant has almost no effect on the shape

of the power profile (magnitude only) that arrives at the receiver. However, if the constant is

not accurately estimated, the ATR algorithm’s performance declines sharply. For example,

if the assumed propagation losses are 6 dB too low, the algorithm’s probability of a correct

identification drops from 95.5% to 44.5%. If the assumed losses are 6 dB too high, the

probability of a correct identification drops to 35.75%.

If the true propagation losses are fairly constant throughout the scenario, then using

an accurately selected constant propagation loss may not have a large impact on the ATR

result. However, it can lead to dramatic decreases in performance if the assumed propaga-

tion loss differs from truth by a few dB. The geographical location of the aircraft, as well

as its altitude, should also factor into a decision to replace AREPS by a constant propaga-

tion model. The aircraft in this particular maneuver fly at an altitude of 8000 meters over

relatively flat terrain. Were the test repeated at a lower altitude over more jagged terrain,

multipath effects might cause the propagation losses modeled by AREPS to play a much

more significant role in defining the shape of the power profile.

7.2 Sensitivity of the ATR Algorithm to the FISC Database

One drawback of the ATR approach developed in Chapters 3 and 6 is that FISC databases

must be created for each aircraft in the target library, at the frequencies of each exploited

transmitter. Although this processing is done once up front and does not need to be recom-

puted every time an aircraft is tracked, a user of the algorithm may still wish to limit the

size of the FISC database. With that in mind, this section addresses the question of whether

or not separate FISC databases are necessary for each transmitter if the transmitters have

reasonably close operating frequencies.

The two transmitters used in Chapters 4 and 6, for example, operate at 96 MHz and 104

MHz. This section briefly addresses how similar the radar cross sections are at these two

frequencies, as modeled by FISC. Examples are given in Figures 68 and 69; these show the
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absolute value of the difference between the HV and VV radar cross sections of the F-15,

taken at 96 and 104 MHz, for incident and observed azimuths between zero and 360 degrees

with incident and observed elevations of zero degrees. The similarities are striking. The

magnitudes of the HV radar cross sections computed by FISC at the two frequencies have a

mean difference of 0.51 dBsm with a standard deviation of 0.41 dBsm. The difference in the

magnitudes of the VV radar cross sections is slightly larger, with a mean of 1.20 dBsm and a

standard deviation of 1.03 dBsm. Since the power profiles in Sections 4.1 and 4.2 frequently

vary by as much as 30 dB, modeling signals from both transmitters as though they came

from a 100 MHz transmitter is not likely to impact the ATR algorithm’s outcome.

Figure 68: Difference in magnitude of HV RCS for the F-15, collected at 96 MHz and 104
MHz
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Figure 69: Difference in magnitude of VV RCS for the F-15, collected at 96 MHz and 104
MHz
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CHAPTER VIII

CONCLUSIONS

8.1 Contributions

The contributions of this research are three-fold. The most notable contribution is the

development of a robust ATR procedure, described in Chapter 6, that can be used to

covertly identify aircraft executing maneuvers ranging from straight-and-level trajectories

to dog-fighting trajectories. At the anticipated noise figure of 40 dB, the ATR algorithm

never makes a mistake if the aircraft being tracked execute predictable straight-and-level

or banked turn trajectories. Even when the aircraft under track execute dog-fighting style

trajectories, the algorithm’s probability of error is less than 5%. This is not meant to suggest

that the algorithm would be perfect (or nearly so) in practice, as even the best models fail

to account for all effects seen in the real world. However, the simulations suggest that

the ATR algorithm has a great deal of potential for reliable performance if imported into

a real system. Furthermore, the algorithm could be applied (with superficial changes) to

low-frequency active radar systems.

The second major contribution of this research is the development of an EKF that

estimates aircraft orientation from velocity measurements. This EKF plays a role in the

ATR algorithm discussed in the previous paragraph, but has the potential to be used in

other applications, as well. Although this dissertation applies the EKF to passive radar

velocity measurements generated by a tracker such as the one described by Howland [29],

there is no reason it cannot be applied to measurements generated by other trackers. The

measurements and their error models would simply need to change to accommodate a

different tracker and/or source.

The final contribution of this work is the derivation of closed-form approximations for

the relative entropy and Chernoff information between two Rician distributions. Although a
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wide variety of problems are well-modeled by the Rician distribution, the Gaussian distribu-

tion has been frequently used in its place because of mathematical convenience. Perhaps the

development of a closed-form approximation for the relative entropy and Chernoff informa-

tion between two Rician distributions will cause this practice of substituting the Gaussian

distribution for the Rician distribution to eventually wane in popularity.

8.2 Future Work

The work presented in this dissertation encapsulates the academic portion of the problem.

The ability to covertly identify aircraft has been transformed from a mere idea into a full-

fledged, robust ATR algorithm that shows significant promise against aircraft executing a

wide variety of maneuvers. The simulations used to test the ATR algorithm use the best

RCS-modeling software currently available and account for propagation losses and antenna

gain, rendering them of higher fidelity than many of the passive radar simulations used to

generate results in the open literature.

The nature of next step, which falls outside the scope of this research, has more of an

engineering flavor than an academic one. One such course of future work involves actually

testing the ATR algorithm against a wider variety of real targets using a fully developed

passive radar system. Such systems will likely be available in the next few years, making this

task feasible. Another avenue for future work could explore the process noise tuning and

covariance inflation used by the EKF from Section 2.3 that estimates aircraft orientation.

These issues have been addressed in Section 2.3 using the limited amount of aircraft data

available. If more position/orientation ground truth data becomes available in the future,

(for this application or for another one), these practical implementation issues could be

revisited. A third area for future work is hinted at by the results in Section 7.1, in which

a constant propagation loss is used instead of results from AREPS. The ATR algorithm

only performs well if the constant propagation loss is close to the mean losses estimated

by AREPS. If the assumed constant is too high or too low, the algorithm’s performance

significantly degrades. The work in this dissertation has assumed that the receiver is well-

calibrated. If this is not the case, performance degradation like that in Section 7.1 may
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occur. A fourth avenue for future work could address this issue by jointly estimating this

scaling factor, along with the aircraft orientation and type. A final suggested topic for future

work would thoroughly explore the sensitivity of FISC to changes in frequency, as well as the

aircraft CAD models. Although this final topic is expansive enough to constitute an entire

thesis, the closed-form approximations of the relative entropy and/or Chernoff information

from Chapter 5 could be implemented as a good starting point.
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