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Abstract

The topic of this thesis is target classification of radar tracks from a 2D
mechanically scanning coastal surveillance radar. The measurements pro-
vided by the radar are position data and therefore the classification is mainly
based on kinematic data, which is deduced from the position. The target
classes used in this work are classes, which are normal for coastal surveil-
lance e.g. ships, helicopters, birds etc. The classifier must be recursive as all
data of a track is not present at any given moment. If all data were avail-
able, it would be too late to classify the track, as the track would have been
terminated. Therefore, an update of the classification results must be made
for each measurement of the target. The data for this work are collected
throughout the PhD and are both collected from radars and other sensors
such as GPS. The thesis has tree main contributions.

The first contribution of the thesis focus on using the kinematic and tem-
poral information of the radar target. This is compared to only using the
kinematics. The classifier uses geographical information such as if a target is
over land or sea. The strength of the signal returned from the target is also
used, referred to as intensity below. It is shown that by using the temporal
information in the kinematics a better classification result can be achieved
compared to not using the temporal information. We use Gaussian mixtures
models (GMM) and recursive Bayes classifier as the classifier.

The second contribution of the thesis shows how to utilize the uncertainty
in the position measurement. As radars have high uncertainty in the mea-
sured position compared to e.g. GPS, the deduced kinematics will also have
high uncertainty. If this uncertainty is not handled in some way, misclassi-
fication or rapid changes in the classification results may occur. It is shown
that by using the position uncertainty, a more robust classification can be
made i.e. the probability for a target does not change as rapidly compared to
where the uncertainty is not used. However, the computational load is very
high when using the uncertainty and in general classification accuracy is not
as good as when the uncertainty is not used. This work also uses GMM and
recursive Bayes classifier.

The third contribution utilizes the work from the first and second con-
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tribution described above by using the temporal information and implicitly
including the uncertainty in the kinematic data. This is done by using a num-
ber of position measurements to create a feature vector. The feature vector
consists of deduced kinematics from the position measurements. By using a
Random Forest as the classifier, the features which do not contribute much to
the classification rate will be weighted lower than features which contribute
more. This implicitly includes the uncertainty in the deduced kinematic as
each feature is not weighted equally in the classification results. Because the
position measurements of stationary targets fluctuate, the targets can have
high estimated speed. Therefore, an alpha beta filter has been used to clas-
sify into two classes which are stationary or moving, while the Random For-
est classifies the moving targets from each other.



Resumé

Emnet for denne afhandling er målklassifikation af radarmål fra en 2D meka-
nisk scannende kystovervågningsradar. Målingerne fra radaren er positions
data, og derfor er klassifikationen baseret på kinematisk data, som er udledt
fra positionerne. Klasserne som målene vil blive klassificeret som, er typiske
klasser for kystovervågning af for eksempel skibe, helikoptere, fugle og så
videre. Endvidere skal klassifikationen foregå rekursivt, da en klassifikation
af et mål er ligegyldigt, hvis først målet er forsvundet fra radarens søgeom-
råde. Derfor skal sandsynligheden opdateres for hver måling. Data for dette
arbejde er opsamlet igennem PhD studiet og er fra vidt forskellige sensorer
såsom GPS og radar. Afhandlingen har tre hovedbidrag.

Det første bidrag for afhandlingen fokuserer på udnyttelsen af den tem-
porale information af kinematisk data. Resultaterne er sammenholdt med
kun at benytte den kinematiske data til klassifikationen. Geografisk data blev
også brugt til at klassificere målene. De geografiske data blev brugt til at sige
om målet er over land eller vand. Yderligere blev styrken af det modtag-
ne signal brugt. Dette bliver senere omtalt som "intensitet". Vi viser at ved
at bruge den temporale information i det kinematiske data, kan en bedre
klassifikation af mål fortages, i forhold til hvis vi ikke bruger den tempora-
le information. Vi bruger Gaussisk mixturemodeller samt en rekursiv Bayes
klassifikationsmodel til at fortage klassifikationen.

Det andet bidrag omhandler hvordan positionsusikkerheden i positions
målinger kan udnyttes. Da positionsmålingerne fra en radar har meget større
usikkerhed i forhold til for eksempel GPS, har de afledte kinematiske data og-
så stor usikkerhed. Hvis der ikke tages højde for denne usikkerheed kan det
lede til misklassifikation eller meget hurtige ændringer i sandsynlighederne
for de forskellige klasser. I det andet bidrag er det vist, at indarbejdning af
usikkerheden i klassifikationsmodellen giver en mere robust klassifikation.
Det vil sige at sandsynligheden ændrer sig ikke så hurtigt, som når man ik-
ke indarbejder usikkerheden. Problemet er, at klassifikationen bliver meget
beregningstung når usikkerheden indarbejdes, samt at den generelle klassi-
fikationsrate bliver en del lavere i forhold til når usikkerheden ikke bruges.
Lige som i det første bidrag, bliver der brugt Gaussisk mixturemodeller samt

v



en rekursiv Bayes klassifikationsmodel. Det skal bemærkes, at dette bidrag
ikke bruger den temporale information i kinematikken.

Det tredje bidrag bruger erfaringerne fra de to første bidrag ved at bruge
den temporale information samt indirekte bruger usikkerheden i positions-
målingerne. Metoden til dette er at bruge en række positionsmålinger til at
lave en elementvektor, som består af afledte kinematik fra disse positionsmå-
linger. Ved at benytte klassifikationsmetoden Random Forest vil features med
en høj usikkerhed, ikke blive brugt. Dette indarbejder implicit usikkerhed i
målingerne, sådan at hver feature ikke får lige stor vægt i klassifikationen.
Da stationære mål kan have høj estimeret hastighed på grund af fluktue-
rende positionsmålinger, beskrevet senere, bliver et alpha beta tracking filter
brugt, sådan at det klassificerer stillestående/bevægende mål, hvorefter Ran-
dom Forest så klassificerer de ikke stillestående mål i de forskellige klasser.
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Introduction

In this thesis introduction an overview of the work and contributions are
presented. The introduction starts with a short description of the overall
problem statement, the sensors and data used in this work. This is done in
section 1. In section 2, the hypotheses for this work is stated. State-of-the-art
techniques and methods are described in section 3. The contribution of the
work is stated in section 4 and finally in section 5, the conclusion and future
work is described. The collection of the papers are shown in Part II.

1 Problem statement

In this section, the outline of the thesis is described. The problem statement
that motivated this work is that the amount of information coming from a
modern 2D coastal surveillance radar is very high and it is difficult to get
a surveillance overview of a given area without a great deal of information
overload. We define 2D radar as a radar which only measures the range and
azimuth to the target. The focus of this work is on automatic classification
of radar tracks such that a better surveillance overview can be achieved. In
section 1.1, the definition and motivation of the work is described. In section
1.2, a description of simple radar theory is given. The radar used in this work
is described in section 1.3. In section 1.4, a description of the other sensors
used for this work is presented. Finally in section 1.5, the data and the classes
are described.

1.1 Problem description

Radars have typically been used as the primary sensors for coastal surveil-
lance. The radars are used for collision detection and prevention, intrusion
detection, and general safety in harbors and near harbor areas [1]. This re-
quires that even small targets can be detected in rough weather conditions
like rain, fog, darkness and at a great distance. Under these conditions, sen-
sors such as cameras are of little use. Surveillance radars which can detect
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small targets are currently in a high demand.2 However, with the increase of
detectability of small targets comes an increase in false alarm rates, as small
target such as birds, wakes from ferries etc. are detected. An image of a
surveillance area, as seen from the radar observers perspective, is shown in
Fig. 1. The scenario shows a rigid inflatable boat (RIB) which is marked with
the red arrow. Most of the other tracks are birds. The circles are tracks and
the angles of the lines from the circles indicates headings, and the lengths are
proportional to the speeds of the tracks. As it can be seen from this image, it
is nearly impossible to spot the RIB. This makes threat assessment difficult, as
it is difficult to get a surveillance overview. There can be several approaches
to reducing the number of tracks observed. One approach is to reduce the
sensitivity of the radar. However, this approach also reduces the probability
of detecting small but important tracks such as the RIB in Fig. 1. This re-
duces the situational awareness. Another approach is to make very simple
classification based on the geographical location and direction of the targets.
This approach has some disadvantages such as the direction and geographi-
cal location of targets are unique to each radar site. Additional, the weather
condition can also make it difficult as wind speed and direction can change
e.g. sailing boats typically sailing paths. By this approach, suspicious behav-
ior can be disguised by simply moving in these geographical locations. This
work takes the approach that classification of each track is necessary to limit
the number of tracks, such that only the most important tracks are presented
to the observer. This requires that the classifier must classify tracks on-line in
a recursive manner. In this work, on-line is defined as incrementally updat-
ing the current probabilities of the classes upon receiving new information.
It is therefore necessary to have a recursive classification approach. The clas-
sification must use a probabilistic approach so that an observer can choose
a sensitivity of publishing tracks. Instead of only using position, which is
unique for every site a radar can be placed, we use kinematic information
derived from the position measurement i.e. speed, acceleration etc. which is
independent of the geographical radar site.

To clarify what classification means in this work, we use the definition
in [2] to describe the order from detection to fully identified target. By this
definition, five stages exist in uniquely identifying a target. First a target
must be detected, then it must be discriminated from other targets before the
target can be classified, then recognized and lastly identified. We use the def-
inition from [3] to describe the classification, recognition and identification.
The definitions are:
Classification: "Recognition that the echo on a radar display is that of an air-
craft, ship, motor vehicle, bird, person, rain, chaff, clear-air turbulence, land
clutter, sea clutter, bare mountains, forested areas, meteors, aurora, ionized

2This is a statement from Terma A/S.
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1. Problem statement

Fig. 1: The figure shows a typically screen dump from a radar scenario. The circles are tracks
and the line from each circle is the track heading and estimated speed. The red arrow pointing
on a rigid inflatable boat (RIB). Many of the moving tracks are birds. As it can been seen it
is difficult to get a surveillance overview, as there are many bird tracks. The blue circle is the
location of the radar. The yellow and red colors are the backscatter from the environments (later
known as video) and the green dots are the video which is above a threshold and symbolize a
measurement (later known as a plot)
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media, or other natural phenomena. A trained and experienced radar opera-
tor with the right type of radar should be able to sort these broad classes of
target echoes from one other." [3, p. 370] 3

Recognition: "This includes recognizing a fighter aircraft from a multi-engine
bomber aircraft, a cargo ship from a tanker, a tracked military vehicle from a
truck, chaff rather than a ship, a buried rock instead of a mine; or a surface-
to-air missile site from a dump site." [3, p. 370]
Identification: "This involves determining the particular class to which a
target belongs among the many possible classes. For example, if the radar
believes it is detecting an aircraft, is it an F-18, F-22, MIG-31, B-2, A-6, Rafale-
2000, or something else? If the target is a ship, does it belong to the Aegis
destroyer Class DDG-51, Aegis cruiser CG-41 Kara, Sovermeney, or so forth,
or is the echo that of a chaff decoy? If it is a bird, is it a starling, mallard, or
what else?" [3, p. 370]

The purpose of this work is to do classification of targets e.g. does the
target belong to a ship, a bird etc.

1.2 Radar theory

In this section, a short description of the general radar theory will be pre-
sented. The section starts with the most simple radar systems and then con-
tinues with a short description of the most common radar types.

Simple radar systems

This section is primary based on [3]. The term radar is an acronym of radio
detection and ranging. The transceiver of the radar emitters an electromag-
netic pulse (EM pulse) through an antenna. This EM pulse travels through
the air until it meets an object, here some of the pulse will be reflected from
the surface of the object and some will be absorbed. The reflected EM pulse
will then travel back to the antenna and will be received by the radar system.
The duration the EM pulse take from leaving the radar until it returns ∆tr
will give the distance r to the object by r = ∆trc

2 where c is the speed of light
and c ≈ 3× 108m/s, see Fig. 2. For a radar with the same antenna used for
transmit and receive, the received power pr can be calculated as

pr =
pt A2

e σrcs

4πλ2r4 , (1)

where pt is the transmitted power from the radar, Ae is the receive effective
area, σrcs is the radar cross section (RCS), which is the "size" of the target and
λ is the wavelength of the transmitted signal. The RCS depends on the angle

3The name clutter is a common name used for unwanted backscatter from targets. This can
be from rain, sea, buildings, birds, etc.
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1. Problem statement

Fig. 2: A figure showing a radar transmitting a signal and receiving the backscatter signal. The
signal is transmitted from the transmitter and into the air. The reflection from a target is reflected
back to the receiver. From [3]

Table 1: Typically values of RCS for different targets. The values are taken from eihter [3] or [4]

Target type RCS [m2]
Small, single engine aircraft 1
Helicopter 3
Jumbo jet 100
Small open boat 0.5-5
Small metal ships 10-100
Birds up to 1

to the target, the frequency used and many other parameters. It is in general
difficult to calculate the RCS of a real target. However general examples
are given in Table 1. As it can be seen from (1) the range to the target is
a very important factor for the received power. By increasing the detection
range by a factor 2 requires increase of transmitted power by a factor of 16.
The receiver cannot detect echoes from the backscatter before the transmitted
pulse is finished. If the length of the pulse is increased an integration of
the pulse length can be made, which increase the effective energy such that
the radar can detect the target. However, a longer pulse decreases the area
of surveillance close to the radar. Therefore, a compromise must be made
between how far the radar can see and how close to the radar a target can
be seen. The pulses are repeated and the repetition time is called tpr. The
faster the repetition time, the faster updates from the radar. However, for
fast repetition rates, a smaller amount of time is available to transmit the
power i.e. less energy. For fast repetition rates combined with high transmit
power, a range ambiguity problem can occur. This can be seen in Fig. 3. The
range ambiguity is a problem if the range to a target is larger than ctpr

2 as the
transmitted pulses cannot be distinguished from each other.

The resolution in range for the radar is given by (2)

∆R =
c∆tc

2
. (2)
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Pt, 1 Pt, 2

tpr

Pr

Δt?
Δt?

Fig. 3: The range ambiguous problem can be seen here. Is he received backscatter pulse Pr from
the Pt, 1 or from Pt, 2?

As it can be seen the smaller pulse length the better resolution. Again a com-
promise must be made between the transmitted power i.e. the length of the
pulse, and the resolution. To compensate for this problem, pulse compres-
sion can be used. That is, we change the pulse to a known sequence e.g. a
chirp. By knowing the transmitted chirp, a cross correlation can be made of
the received signal such that the chirp length ∆tc can be large while main-
taining a high range resolution. By using the pulse compression the range
resolution is now given by

∆R =
c

2Bt
, (3)

where Bt is the sampling bandwidth assuming that the bandwidth of the
chirp uses all the sampling bandwidth. To overcome the range ambiguity
problem, different carrier frequencies in the chirp can be used, such that it is
possible to know which successive chirp the backscatter originated from.
The main types of radars are:

• Passive

• Monostatic

• Bistatic

• MIMO

• SAR

The passive radar does not have a transmitter but instead utilize other trans-
mitting units such as digital video broadcasting - terrestrial (DVB-T) trans-
mitter [5, 6]. The monostatic radar has a transceiver, which transmits and
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1. Problem statement

Fig. 4: Figure of a first order MTI filter. The two backscatter from two successive pulses are
shown in (a) and (b). In (c) the subtraction is shown. The image is from [3, p. 110].

receives the EM pulse. The bistatic radar is where the transmitter and the
receiver are separated physically from each other by a fixed distance. All
of these radars have an azimuth resolution given by the antenna beam. The
azimuth resolution is given by the antenna beam, and the antenna beam is
described by the effective size of the antenna and the carrier frequency given
by

ΦB ≈ 65
λ

La
, (4)

where La is the length of the antenna. To separate two small targets at a great
distance an antenna with a significant size is required4. Multiple input mul-
tiple output (MIMO) radars are an expansion of bistatic i.e. a combination of
more than two static radars are used. The azimuth resolution is given by the
distance between the different radars. As an alternative to the above men-
tion radars, the synthetic aperture radar (SAR) has been invented. The SAR
radar simulates a bigger antenna by moving the antenna along the target.
The SAR radar requires that the targets are stationary or a Doppler compen-
sation of the target much be made. The resolution of a very common dataset,
MSTAR [7], used for SAR recognition is 0.3 meters (1 foot) [8].

As much clutter is stationary, moving target identification (MTI) filter can
be used to suppress stationary targets. An MTI filter exploits the fact that
more pulses hit the target. A first order MTI filter subtracts two successive
complex pulses. This can be seen in Fig. 4. The transfer function of an MTI
filter can be seen in Fig. 5 As it can be seen, a first order filter has two main
problems. The first is that the frequency response is not a brick wall filter
i.e. the change in gain per frequency is low. This can be changed by using

4The antenna must also be very large to give an estimate of the size of the target. For a
distance of 20 km and an antenna size of 21 foot and 10 GHz the resolution is about 106 meters.
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Fig. 5: A sketch of the transfer function for a first order MTI filter.

Table 2: The typically bands for radars used for surveillance purposes [3]

Band Frequency [GHz]
UHF 0.3 - 1.0
L l - 2
S 2 - 4
X 8 - 12
Ku 12 -18

a higher order MTI filter. This requires longer dwell time i.e. for scanning
radars a longer scanning time. A first order MTI filter has a zero in the
transfer function for every multiple n × fp where fp = 1

tpr
and n ∈ N. A

solution to this can be using staggered pulse repetition frequencies5, which
change the tpr for each pulse. Instead of using an MTI filter the Doppler
information from the target can also be used. The Doppler frequencies fd is
given as

fd =
2Vr

λ
, (5)

where Vr is the radial velocity.
There are at least two ways of making a scanning radar: a mechanically

scanning antenna and an active electronic scanning antenna. The azimuth
resolution is given by how exact it is possible to measure or calculate where
the main antenna beam is. In this work two different terms for resolution
is used. The cell resolution, which corresponds to the pixels resolution in
a normal image and the actual resolution which is the radars capability to
discriminate targets.

The typically carrier radio bands for radars can be seen in Table 2. With
a low carrier frequency, a smaller bandwidth of the chirp is possible. This
means lower range and azimuth resolution. However, the advantages of us-
ing a lower carrier frequency is that the EM chirp can curve around the hori-
zon and it is easier to produce power to transmit i.e. it is cheaper to see things

5Staggered is a common word, in radar, to describe a sequence of different pulse repetition
frequencies.
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at larger distance. This holds even though the wavelength is squared in (1).

1.3 The radars used in this work

This section is based on [9–11] and internal knowledge at Terma A/S. The
radars used for this work are SCANTER radars from Terma A/S. The SCAN-
TER 5000 and 6000 are two series in the Terma radar portfolio. The radars are
primarily used as coastal surveillance (CS), vessel traffic service (VTS), ship-
borne radar system (SRS) and surface movement radars (SMR). The SCAN-
TER 5000 and 6000 uses pulse compression and has a peak power of either 50
W or 200 W. The amplifier is a solid-state power amplifier (SSPA) with duty
cycle of maximum 20 %. The SCANTER 4000 radars have also been used
in this work. This radar is used in wind farm area surveillance (WFAS), as
primary surveillance radar (PSR) and SRS. The radar is a pulse compression
radar with a travelling wave tube (TWT) amplifier which delivers 6 kW or 12
kW peak power with a duty cycle of 5 %. All of the radars are X-Band radars
with the possibility to use multiple carrier frequencies. The range resolution
are 3 meters after the pulse compression. However, to remove time sidelobes
from the pulse compression, a window function is used which makes the
actual range resolution 12 meters while the radar cell resolution remains at
3 meters. All of the radars deliver normal processed video (NR)6. Further,
some of the radars also have MTI video available. MTI makes it possible to
reduce the number of stationary target. This is especially useful if a radar ob-
server only wants to see moving target. The MTI filter is a seven order filter
with staggered pulse repetition frequencies. The radars have an embedded
tracker [12]. The tracker informs the radar observer with speed, position and
the plot of the target. A plot consists of a number of different metadata about
the associated measurement. The plot includes as a minimum: measured
position, position uncertainty and a time stamp of the observation. The plot
can also contain the intensity in the backscatter from NR and MTI channel.
The intensity is related to the RCS of the target σrcs used in (1). In Fig. 6 the
position and uncertainty of a target is shown . The target consist of backscat-
ter which expands multiple radars cells i.e. the blue cells. Each cell has an
intensity, like a grayscale BMP image, and the position estimate is a weighted
average of the intensity and the position of the cell. The calculation of the
position is done as

µ =
1

∑p e(r̂p)
∑
p

r̂pe(r̂p), (6)

where r̂p = [rp, φp]T is the pth range, azimuth cell respectively, e(r̂p) is the
intensity in that radar cell, and µ = [µr, µφ]T , which is the estimated mean in

6Video is a common word for describing the processed backscatter from the transmitted
pulse [3]
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Fig. 6: The blue color cells are the backscatter from the target which is above a threshold i.e. there
must be a target. The green dot is the calculated center of mass i.e. the measured position of
the target, the red ring around the cells is the estimated ellipsoid, which corresponds to an
uncertainty of the position.

range and azimuth respectively. The variance of the position i.e. the uncer-
tainty, is given by

σ̂2 =
1

∑p e(r̂p)
∑
p
(r̂p − µr)

2e(r̂p), (7)

where σ̂2 = [σ2
r , σ2

φ]
T are the variance of the range and the variance in az-

imuth respectively. The covariance of the range and azimuth is

σ2
r,φ =

1
∑p e(r̂p)

∑
p
(rp − µr)(φp − µφ)e(r̂p), (8)

and the full covariance matrix for the position

ΣP =

[
σ2

r σ2
r,φ

σ2
r,φ σ2

φ

]
. (9)

The intensity is defined as the highest value of all the cells in a target

I = argmax
p

(
e(r̂p)

)
. (10)

Because of adaptive preprocessing in the radar, the radar cells intensity can
change from scan to scan as the gain through the radar system was unavail-
able.

12



1. Problem statement

The radar has an adaptive preprocessing step consisting of a constant
false alarm rate (CFAR) regulation and a sea clutter discriminator (SCD). The
CFAR process is adjusting video level such that only a specific number of
video cells are allowed every second i.e. a high number of returns will likely
decrease the video level. The SCD also adjust the video level. However, the
SCD includes the history of the area of up to two scans back in time.

The antennas used are either horizontal polarized, which reduces sea clut-
ter or circular polarized which reduces the clutter from rain [3]. The length
of the antennas are from 12’ to 21’. These antennas are mechanically rotating
and uses a slotted waveguide as the radiating element. The antennas rotation
rate is given by the desired detection range. In general, the rotation speeds
are from 20 to 60 RPM i.e. the update rates are from 0.33 to 1 Hz. The rota-
tional speed of the antenna is set such that approximately eight chirps will
hit a given area at each scan.

The limitations of the radars used in this work are that the radars only
have 2D information namely slant range7 and azimuth to the target i.e. we
do not have any height information of the target. Further, because of the
relative few hits on the target of the chirps sent from the radar at each scan
it is not possible to get informative Doppler information of the target. As
mentioned above the intensity is related to the RCS. However, because of the
adaptive processing the intensity may vary from scan to scan and from radar
to radar. The intensity also depends on the antenna used. In general, for
the radars used in this work, the intensity has high deviation from scan to
scan and radar to radar. As this work is for coastal surveillance purpose, the
range to a target can be up to 20 km as the radar horizon is typically longer
than 20 km, which means that nearly every target will look as a point target
in azimuth because of the antenna beam size. At best case, i.e. by using a 21’
antenna, the azimuth resolution will be ≈ 100m. This means that only the
largest ships will be larger then the azimuth resolution. The azimuthal extent
can therefore not be used to estimate a targets size as nearly every target will
be point targets. It is possible to use the range resolution however, the range
resolution is not high enough to use as high resolution range profiles (HRR-
P) described in section 3. This is because a target smaller than 12 meters will
be seen as a point target in range. The video the radar delivers is optimized
for human viewing and the preprocessing in the radar is optimized for target
separation and not for target classification. As targets typically accelerate or
decelerate and the antenna speed depends on the mode of the radar i.e. if
the radar is set to view objects at great distance, the RPM is lower than if it
is set to view targets at a short distance. Therefore the sampling rate of the
targets is not deterministic and equidistant. In general, very few features are

7The slant range is the actual distance from the radar to the target and can be different from
the ground range.
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available for target classification. Because of this we limit the features to:

• Kinematic data, such as speed, acceleration, normal acceleration etc.
These features are derived from the estimated position and as the po-
sition estimate has a relative high uncertainty the kinematic data will
also have a high degree of uncertainty.

• Radar specific features, such as intensity for NR and MTI. The intensity
is different from radar to radar and can vary with range and weather
condition. Therefore intensity should be used carefully.

• Geographic features such as whether the target is over land, sea, road
etc. The feature for land and sea is estimated from maps, which can
have errors or missing areas. As an example, some of the harbor in
Aarhus, Denmark is not in the map material we use. The estimate
of a road also has high uncertainty, as there also can be errors in the
geographical position of the roads.

For most of the work done in this thesis, the main feature is speed. This is
because, as it can be seen latter in Fig. 8, the speed appears to be the most
distinct feature for the different targets.

1.4 Other sensor used in this work

Besides the radar data, other sources and sensors have been used to collect
the data. The sensors are GPS loggers, automatic dependent surveillance –
broadcast (ADS-B) [13] and automatic identification system (AIS) [14]. ADS-
B is a broadcast system used in commercial and private aircraft. The ADS-B
system broadcast the position of the aircraft with regular intervals together
with a unique number which identifies the aircraft. The AIS system is a
broadcast system for ships above 300 tons [15]. The AIS sends at non regular
intervals vessel position and a unique ID called Maritime Mobile Service
Identity (MMSI). The update times depend on how fast and large the ships
are. It has been shown in [16] that it is possible to tamper/make mistakes
with the AIS signal, which can make the use of AIS tracks difficult. This
is also possible for ADS-B [17]. However, in this work we assume that the
dataset of AIS and ADS-B are without errors. Because of the different sensors
used to gather the training data, a forward and backward Kalman filtering,
known as fixed interval smoothing [18], was used to derive the best estimate
of the position data. In [19] a compression of a normal forward Kalman filter
and fixed interval smoothing is done on a spring damped system. It is shown
that the fixed interval smoothing has a better performance than the forward
Kalman filter. The fixed interval smoothing was done to make the position
uncertainty in the training data negligible and thereby make it possible to
use the data from the different sensors. However, it is not possible to do the
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fixed interval smoothing on the test data as this requires knowledge of both
past and future data.

1.5 Target classes and data

Two data collection periods were used in this work, one at the first part of
this work i.e. 2013 and a second at the summer 2015. The first collection
of data was made by viewing a lot of prerecorded video from Terma A/S
radars. All of the tracks were manually classified and the tracks and plots
were extracted. The data format was amended such that all of the necessary
metadata about the tracks was included. The manually classified data was
split into two sets, a training dataset, and a validation dataset [20]. For the
test set, some real world scenarios are used [20] 8. Multiple test sets are
used through this work. The scenarios primarily contain unlabeled data,
however some controlled tracks are present in the scenarios. For some of
the tracks, we have a qualified guess of the target class. The sizes of the
training and validation set can be seen in Table 3. The validation set is used
to get a confusion matrix and adjust the hyper-parameters in the classifiers.
The test is used only once to show the real performance of the classifier. By
only using the confusion matrix it can be difficult to show the real world
performance, where tracks will be suppressed depending on the probability
i.e. the confidence of the classification. This is because the confusion matrix
does not show the probability of the classified tracks but only the class with
the highest probability. We therefore show some scenarios where the tracks in
these scenarios are colored depending on the classifiers output of the class. If
the probability of the class is below a certain threshold, the tracks are colored
gray. Different classes have been used throughout this work however, some
common classes have been used. These are: Birds, large ship, rigid inflatable
boat (RIB), stationary sea targets (wind turbines and sea buoys). In addition
to these classes, commercial aircraft and helicopters are also used in most of
the work.

There are two different scenarios. The first scenario is the Egaa scenario.
This scenario has a RIB sailing back and forth at the Aarhus bay area, Den-
mark. Additionally a large number of birds as well as stationary sea targets
are present. The second scenario, Horns Rev, is a wind farm scenario where
two wind farms are present and a vast amount of birds. Additional, a com-
mercial aircraft, a general aviation aircraft and some vessels are also present
in the scenario. The scenarios can be seen in Fig. 7

The second data collection was in the summer 2015 and was from a radar
at the geographical location of Terma A/S headquarters. The surveillance
area was Aarhus bay area. The data was recorded over two weekends. More

8A scenario is defined as an image of all the tracks in a given time period from a real radar
recording.
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(a) The Egaa scenario, this scenario includes the following clases:
birds (B), sea vessels (A) and stationary targets (C).

(b) The Hornsrev scenario, this scenario includes targets like birds
(B), aircrafts (D), sea vessels (A) and stationary targets (C).

Fig. 7: Here an overview of the two scenarios is shown. The best guess on the targets are shown
with an arrow or without. If the letter is followed by an arrow this means that it is a specific
track and if no arrow is following the letter is means that multiple tracks of this class exists in
the area. The best guess is limited to; sea vessels (A), birds (B), stationary targets (C), aircraft
(D).. In Fig. 7a the Egaa scenario is shown, in Fig. 7b the Hornsrev scenario is shown.
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Table 3: The sizes of the training and validation set used for all papers except E. The size is the
number of updates (plots).

Classes Trainings size Test size
large boat 23130 2462
stationary sea 13662 7492
RIB 23470 720
helicopter 19143 205
commercial aircraft 6725 8840
birds 3289 262

Table 4: The table shows the number of training size which is used in paper E. The size of the
training set is the number of updates (plots).

class size
Birds 1441
Stationary sea 3402
Jetski/RIB 14720
Helicopter 24089
Commercial aircraft 7179
Large ship 3491
Small fast boat 61628
Small slow boat 77099
Small aircraft 2917

than 10,000 tracks were collected and over 2000 tracks were manually classi-
fied into the following categories: Commercial aircraft, jetski/RIB, small fast
boat, small slow boat, small aircraft, helicopter and high-speed ship. As no
ground truth was available, misclassification can occur. Some of the classes
have very similar properties such as helicopter and small aircraft. It is there-
fore possible that the training database for small aircraft contains helicopters.
This is due to the fact that helicopters only were classified as helicopters if
they at some point in the track was hovering. The size of the training set used
for paper E can be seen in Table 4.
The definition of the classes used in this work:
Birds: The class is primarily birds which are normally located at the sea
e.g. seagulls. The training data is manually classified without ground truth
and knowledge about the tracks real class.
Stationary sea: The class contains wind turbines and sea buoys. The training
data is manually labelled without ground truth. A map has been used to
label the tracks from the radar.
Jetski/RIB: The class contains sea vessels, which are fast and small. These
vessels are characterized by having high acceleration and low turn radius.
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Some of the tracks are from a GPS others are manually labelled without any
ground truth.
Helicopter: The class contains targets, which can move over both sea and
land. The target can hover and fly up to 300 km/h. Some of the tracks are
from GPS logs; others are manually classified without any ground truth.
Commercial aircraft: This class contains commercial aircrafts, typically tur-
bofan engine, i.e. high speed. The data are from ADS-B sensors however,
some are also from radars. The data from the radars are manually classified
without ground truth.
Large ship: This class contains sea vessels such as cargo ships, and high-
speed ferries, the common features of these vessels are that the speed and
heading are constant and they have high intensity. However, the class has
high variance because of the differences in the speed range for the different
vessels. Some of the data are from AIS others are from radars. The radar
data are manually classified, some of it with assistance of AIS tracks, some
without ground truth.
Small fast boat: This class contains fast boats without the high acceleration
and turn rate as jetski/RIB. The data are manually classified without ground
truth.
Small slow boat: This class contains small slow moving boats. These are typ-
ically sailing boats, slow moving motor boats, fishing ships and towing ships
that do not have AIS transponder on-board. The training data are manually
labelled without ground truth.
Small aircraft: This class consists of small aircrafts. The speeds are much
slower than commercial turbofan aircraft. The training data are manually
labelled without ground truth. Some confusion between helicopters and this
class can occur, as it is possible that some helicopters, which do not hover,
are classified as this class.

The classes and their typical properties can be seen in Fig. 8. It is clear
that some outliers exist in the data. For example it is not possible for a small
fast boat to sail with a speed of 100 m/s. The data are shown with a boxplot,
where the 5 %, 25 %, 50 %, 75 % and 95 % percentile is shown. It can also be
seen that some classes are very similar in speed and acceleration. For example
large ships and helicopters overlap in speed. Radar intensity may assist in
classification, however this will require keeping track of system gain i.e. the
adaptive processing, to allow an RCS estimate. This was not implemented
at the time of this work. It can also be seen that stationary targets have a
fairly high speed. The reason for this is that wind turbine blades can move
from scan to scan, another reason is because of the uncertainty in the position
measurement since the target position will likely fluctuate from scan to scan.
The classes from the first and second collection periods which match each
other are merged to one class. The second collection of data is only used for
paper E.
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(a) Speed for the different classes (b) Acceleration for the different classes

(c) Intensity for the different classes

Class Sea Land
Jetski/RIB X
Small aircraft X X
Small fast boat X
Large boat X
Small slow boat X
Stationary sea X
Helicopter X X
Commercial aircraft X X
Bird X

(d) Possible terrain for the different classes

Fig. 8: An overview of the kinematic and terrain features for the different classes. The blue box
represents 25 % and 75 % percentile and the whiskers shows the 5 % and 95 % percentiles. The
red line represents the median of the data.
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2 Hypotheses

In this section the hypotheses for this work will be stated. We base our work
on two hypotheses:

• Based on a temporal behavioral analysis of radar track evolution, is it
possible to achieve high-accuracy radar track classification. The tempo-
ral behavior analysis can be based on e.g. kinematic parameters of the
targets such as speed or acceleration, or on the target appearance in the
radar image (size, extent, structure, aspect ratio) or geographical such
as location (land, water, road etc).

• Based on track classification, is it possible to remove or suppress un-
wanted tracks without affecting the main performance criteria such as
small target detection capability.

3 State-of-the-art in Radar Classification

In this section the state-of-the-art is described. The section describes in brief
different approaches to classifying radar targets. The approaches differ in
the amount of data and features available from the radar e.g. a SAR radar
delivers images with a spatial equidistant sampling and can best be compared
to aerial image performance whereas a 2D scanning radar only deliver range
and azimuth to the target.

The most promising classifier for images recognition is deep convolu-
tional neural network (Deep CNN). It has for example shown consistently
good results on imageNet [21]. As synthetic aperture radar (SAR) recordings
are nearly similar to optical images, a new research area of using Deep CNN
in SAR images has emerged. The following papers [22–24] all use Deep CNN
to classify SAR image targets. One of the major drawbacks of using Deep
CNN is the huge amount of training data that is required. Therefore, it is also
difficult to use Deep CNN in SAR, as the data are very limited. Other SAR
recognition approaches are using feature extraction and then different clas-
sifiers like for example k-nearest neighbors (KNN) [25]. Another approach
is to use high-resolution range profiles (HRR-P) extracted from SAR images.
In [26], support vector machine (SVM) is used to classify different fighter
aircrafts. The features are from HRR-P. It is shown that the SVM is better
than maximum likelihood (ML) and Fisher linear likelihood (FLL) classifiers.
In [27], they use information from HRR-P, inverse SAR (ISAR) and SAR to
make target classification. The classification is used to assist the tracking
of the targets as a better estimate of the kinematic performance when the
target type is known. In [28], HHR-P is used to estimate pose angles and
orientation for a target, which can help a kinematic classifier that uses an
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interacting multiple model (IMM) filter. In [29], feature extraction is done
by using Fourier-transformation. Feature reduction is done by using a lin-
ear discriminant analysis (LDA). Bayes classifier is used as the classification
algorithm.

When using radars that does not have high range resolution or nearly
optical imaging performance, such as SAR and ISAR, the Doppler informa-
tion can be used. In [30], they extract bispectrum features from a Doppler
surveillance radar. They use a Gaussian mixture model (GMM) as their clas-
sifier. The purpose of the classifier is to classify humans walk in a vegetation
cluttered environment. The results use real radar data to evaluate the per-
formance. In [31], a Doppler radar is used to classify human walk. The
classification is done by GMM and SVM. The feature is from the short time
Fourier transform (STFT) i.e. the spectrogram. Further, there are eight classes
where most of them are humans walking, however trucks and clutter are also
present as classes. The best performance is achieved with SVM with a predic-
tion accuracy of 95.97 % however, nearly the same performance is achieved
by the GMM at 95.69 % accuracy. In [32], micro-Doppler is used to classify
simulated radar data. The micro-Doppler according to [33] is defined as the
Doppler shift from a part of a target. This can be the Doppler shift from a
bird (target) wings (part). They use Gabor filtering as feature extraction and
compare SVM, KNN and Bayes linear classifier. The best results are achieved
with SVM. In [34–36], micro-Doppler is used to classify small rotary wings
like quad copters and radio controlled helicopters. In [37], they analyse the
micro-Doppler signature of different animals.

Almost all of the work described above does not utilize recursive classi-
fiers however, as we do not have all necessary information at the start of a
track, a recursive classifier is necessary. One of the most common approaches
is the hidden markov model (HMM), which is mostly used in speech recog-
nition [38, 39]. The problem of using HMM for target classification of radar
tracks is that the HMM requires a finite number of states possible i.e. human
speech has only a finite number of possible sounds. This is not applicable as
the speed is a continuous variable, which requires infinite many stages. The
speed can be discretized into a finite number of bins, which makes it possi-
ble to use HMM. In [40], a histogram of the Doppler information is used to
classify vehicles with HMM. Deep recursive neural networks (RNN) are also
emerging for example for speech recognition [41, 42]. Similar to the problem
with using deep CNN in SAR image, the required amount of training data,
which must be used in the deep RNN, is too high for the data collected in
this work. In [43], an introduction to Bayes classifier and the recursive ver-
sion is made. The recursive Bayes classifier is used through this work and is
explained in 4.1.

All of the work mentioned above have in common that more features are
available for the target classification compared to this works. When only the
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position data is available, the amount of related work done is very limited.
This can be where they use the position of tracks to detect anomaly behavior.
This has been done in [44, 45]. In [44], an estimated model of the main
shipping lanes is made by adaptive kernel density estimator (adaptive KDE)
and a GMM. It is shown that the adaptive KDE is better in modelling the
shipping lanes than GMM. In [45], KDE and particle filters are used to check
for anomalies in the path and kinematic of incoming AIS tracks. In [46], GPS
tracks are used to classify when a person is walking, biking, taking a bus etc.
Speed is not used as this will be too dependent on traffic and traffic lights.
Instead, the use of acceleration, direction, turning, are used as the features
because these are more independent on traffic and traffic lights. In [47], they
use a classifier to predict if a human is travelling by bus or car. The features
used are distance between stops, the number of stops etc.

The most common approach for target classification of radar tracks where
the primary data are position dependent features, is the joint tracking and
classification algorithms. The joint tracking and classification is used in
e.g. [48–52]. In [48], two approaches are used. One, where a multiple model
particle filter is used and one where a multiple model Kalman filter is used.
The features are only kinematic and it is a two class problem i.e. commer-
cial aircraft and military aircraft. The method show good performance. In
[49, 51], a particle filter is used. In [50], a comparison is performed of Kalman
filter used in either a probabilistic or transferable belief model (TBF) frame-
work. It is argued that TBF is best. In [52], an ESM sensor [53] and speed is
used to classify tracks with a multi model particle filter.

One of the problems of using kinematic filters like Kalman and IMM fil-
ters is that it is difficult to get a state-dependent filter i.e. a car driving 130
km/h on a highway with speed limit at 130 km/h, the likelihood for chang-
ing the speed becomes biased towards deceleration. Particles filters can solve
this. However, the computational load for a particle filter makes it inappro-
priate to use in an on-line and recursive classifier.

Very limited work has been done where the only information is position
i.e. kinematic and where machine learning techniques have been used i.e. fea-
ture extraction and different kinds of classifiers. In [54], they use GPS logs
to classify trucks from cars. Only kinematic data are used with SVM as the
classifier. The classifier is not recursive. In [55], a combination of HMM and
fuzzy logic is used to classify radar tracks. However, other features such as
RCS and Doppler information is also utilized. In [56], a decision tree is used.
In addition to kinematic data, Doppler and height information is also used
in the features. In common for most of the related work is that they solely
use simulated data. The exception is [54] but here other features are utilized
than the kinematic information.
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4. The Contributions for this work

4 The Contributions for this work

In this section we describe the contribution of this work. However, as the
same fundamental theory is used in most of the work, i.e. recursive Bayes
classifier and GMM, a short description is given here. All the code in this
work is written in Python 2.7.5. Multiple libraries have been used in this work
however, the primary libraries are Numpy 1.8.2, Matplotlib (Pylab) 1.5.1 and
Scipy 0.16.0. For Paper E, the library Scikit-learn 0.16.1 has also been used.
Most of the python parsers and the geographic information system (GIS)
were written by the author of this thesis. All of the classifier algorithms are
written by the author using the libraries mentioned above. The work has
been carried out on a Lenovo Thinkpad W520 with a Fedora 20 environment
with 8GB ram, core i7 2670QM 2.2GHz and Nvidia Quadro 1000M.

4.1 Recursive Bayes Classifier

The Bayes classifier is simply defined as

P(ci|Xn) =
P(Xn|ci)P(ci)

P(Xn)
, (11)

where ci is the ith class and Xn is the nth measurement. If Xn consists of
multiple features and these are mutually independent, it is possible to write
P(Xn) = ∏ f P(Xn( f )) where f is the f th component of the feature vec-
tor. If Xn is mutually independent of all previous and future measurements,
i.e. P(Xn|Xn̂) = P(Xn), ∀n, n̂, n̂ 6= n, for the recursive Bayes classifier, we can
write

P(ci|{Xn}) =
P(Xn|ci, {Xn−1})P(ci|{Xn−1})

P({Xn})
, (12)

where {Xn} = {Xn, Xn−1 · · ·X0}. If Xn is governed by a first order Markov
chain, i.e. Xn ↔ Xn−1 ↔ {Xn−2}∀n9, we can modify (12) to

P(ci|{Xn}) =
P(Xn|ci, Xn−1)P(ci|{Xn−1})

P(Xn|Xn−1)
, (13)

where P(Xn|Xn−1) = ∑i P(Xn|ci, Xn−1)P(ci|{Xn−1}). Equation (13) has been
used throughout this work. The advantage of using the recursive Bayes clas-
sifier is that the probabilities are updated at each measurement of the targets.

4.2 Gaussian Mixture Model

As GMM [57] has been used extensively in this work for modelling the prob-
ability density function (PDF) of the features, a short introduction to GMM,

9The notation a↔ b↔ c denotes a is statically independent of c if b is known.
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and the algorithms to fit the GMM i.e. Kmeans and EM-algorithm, is given.
GMM is a mixture model, which means that the GMM consist of multiple
Gaussian distributions with a weight on each Gaussian

P(X; µ, Σ) =
J

∑
j

ωjN (X; µj, Σj), (14)

where µ = {µj}, Σ = {Σj}, j is the jth mixture N is the Gaussian function,
ωj is the weight, µj the mean, Σj is the covariance of the jth mixture and J
is the number of mixtures in the GMM. Since a GMM is a PDF, it holds that
∑j ωj = 1 and ωj ∈ R, 0 ≤ ωj ≤ 1. The number of mixtures in the GMM
is the hyper parameter of the GMM. This must be chosen either by experi-
ments or expert knowledge. Some algorithms exist to choose the number of
mixtures e.g. Gmeans [58]. The Kmeans algorithm [57] is an algorithm to
find the mean µj for each of the mixtures. Kmeans is a specific case of the
more generalized expectation-maximization algorithm (EM) [57]. EM finds
both the mean and the covariance of each of the mixtures however, the EM al-
gorithm incurs a high computational load. Therefore, Kmeans is customarily
used to find the means, which are used to initialize the EM algorithm. The
problem of using Kmeans and EM algorithm is that it cannot be guaranteed
to be the global best fit, because the problem is not convex [59]. Multiple
runs of the algorithms with different starting points can help to find the best
fit.

Throughout the work, partial integration of a GMM (i.e. marginalization)
has been done. For a multivariate normal distribution, the derivation is done
in [60]. For GMMs, the result is shown here. If we have the following inverse
covariance matrix

Σ−1
j =

[
Aj Bj
Bj Cj

]
, (15)

and we want to marginalize the first feature out, the new covariance can be
calculated as

U−1
j = Cj − Bj A−1

j BT
j . (16)

From the above equation, we can condition a joint GMM as:

P(X(1)|X(2)) =
P(X(1), X(2))∫

P(X(1), X(2))dX(1)
. (17)

However, this can introduce a problem caused by the infinitely long tails of
Gaussian distributions. An observation far outside the largest value present
in the training data, will still be assigned a probability greater then zero. This
could be a problem because the underlying training data does not provide
support for the classification, which can lead to misclassification. In order
to truncate the tails of the Gaussians, we follow an approach similar to that
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4. The Contributions for this work

of [61], where the Gaussians are truncated during the training of the GMMs.
However, in our case, we propose to only truncate during classification. Par-
ticularly, during the training of the GMMs, the support of the training data
is found, i.e. the minimum and maximum values of each feature component
of the feature vector Xt

n is obtained, where superscript t is to emphasize that
this is the training data. Thus, for each feature f :

ξmin
f = min{Xt

n( f )}, ξmax
f = max{Xt

n( f )}. (18)

We assign zero probability if Xn is outside a confidence interval given by
the training data. That is, if there exist an f such that Xn( f ) > ξmax

f +

Ns std{(Xt
n( f )} or Xn( f ) < ξmin

f − Ns std{(Xt
n( f )}, then P (Xn|ci, Xn−1) = 0.

Here we use std{·} to denote the standard deviation of the feature set {·}
and Ns is a constant describing the distance that the features in the test data
is allowed to be away from the support of the training data.

A further development of the approach from paper A and B could be an
interpolation between different GMMs which are trained at different timesteps.
The idea is that we have a set of PDFs where each PDF in the set is corre-
sponding to a specific time since last update. We denote the speed Vn and ∆t
is a fixed set of times e.g. {1, 2, · · · 30}.

P(Vn|∆Vn, ci, ∆t) = {P(Vn|∆Vn, ci)}∆t, (19)

where ∆Vn = Vn − Vn−1. As our training data are filtered with a fixed in-
terval smoother, we can chose the sampling time and thereby achieve the
desired ∆t. We use the difference in speed Vn −Vn−1 as feature space. From
the training data we obtain a discrete set of ∆t’s. Then, by use of linear
interpolation, we can obtain a PDF for any ∆t ∈ R. This means we have
a set of predefined ∆t. We define ∆tmax = max({x ∈ ∆t|∆t < ∆tn}) and
∆tmin = min({x ∈ ∆t|∆t > ∆tn}). We also define Pmin = P(Vn|∆Vn, ci, ∆tmin)
and Pmax = P(Vn|∆Vn, ci, ∆tmax) we can now estimate the probability for a
measurement given the time since last update and the class by

Pk(Vn|∆Vn, ci, ∆tn) = (1− k)Pmin + kPmax, (20)

where
k =

∆tn

∆tmax − ∆tmin
− ∆tmin

∆tmax − ∆tmin
∈ [0; 1]. (21)

The time step between the GMMs may be chosen to be logarithmic such that
we have more GMMs at the small time steps, where we except most lookups
to occur and large distances between the time steps where few lookups are
expected, and where the changes are smaller. We can thereby reduce the
training time of the algorithm. Additionally, it is easy to change the linear
interpolation to a more advanced form such as polynomial interpolation. The
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Fig. 9: This figure shows an overview of the contribution of this work. The figure also shows
how the papers are linked, which features and theories that are used

proposed method does not exploit correlation between the time steps. This
has shown better performance than the proposed methods in paper A but
not as good as the deltaGMM proposed in paper B.

4.3 Paper contribution

The contribution of this work is based on five papers. In Fig. 9 the papers
are shown with the features, theory and the linkage between them. The first
two papers main contribution is utilization of the temporal information in
tracks 10. The main contribution of the next two papers, is how to utilize the
position uncertainty in the measurements.

Paper A - Modelling Temporal Variations by Polynomial Regression for
Classification of Radar Tracks

This paper is published at EURASIP, European Signal Processing Conference (EU-
SIPCO), 2014.
In this paper, we introduce a polynomial to describe the temporal informa-
tion. We fit a polynomial such that the variable in the polynomial is the
speed and the output is the typically acceleration given the speed. This is

10The temporal information is the information which comes from knowing something about
the past i.e. a car driving 130 km/h on a highway is not likely to accelerate much, but more
likely to decelerate. The temporal information is also information loss due to the time between
updates i.e. if a car has a speed of 130 km/h an hour ago it is nearly impossible to estimate the
current speed compared to if it was two seconds ago.
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used to estimate a variance of a Gaussian PDF. i.e. a large acceleration will
give a large variance. The output from the classifier is a weighted sum of the
Gaussian described above, and a GMM which has the prior knowledge of the
speed11. We also utilize other features such as geographical and radar spe-
cific features in both of the classifiers. We compare the results of the classifier
with a naive recursive Bayesian classifier (RGMM) which does not utilize the
temporal information. The results from this work shows that by exploiting
the temporal information a better estimate of the target class can be achieved.

Paper B - Recursive Bayesian Classification of Surveillance Radar Tracks
based on Kinematic with Temporal Dynamics and Static Features

This paper is published at IET, International Radar Conference, 2014.
We introduce a GMM only approach to utilize the temporal information
called the deltaGMM. The feature space [57] of the GMM is given by the
set {Vn, Vn−1, an, an−1, ∆tn}, where V is the speed, a the acceleration, n is the
update number and ∆tn is the time between n and n − 1. By introduction
the time in the feature space the temporal information will be used as in pa-
per A. By using a GMM for the temporal information we use the conditional
statistics which paper A does not use. In this paper we also utilize the other
features as in paper A. We compare the results with RGMM and show an
even better performance compared to the RGMM and polynomial approach
from paper A.

Paper C - Using Position Uncertainty in Recursive Automatic Target Clas-
sification of Radar Tracks

This paper is published at IEEE, International Radar Conference, 2015.
In the papers A and B the uncertainty in the position was not used. This re-
sulted in a very fluctuating probability from the classifier over the full length
of the track. Therefore, in this paper we introduce a probabilistic approach to
handle the uncertainty. We limit the work such that we do not use the tem-
poral information i.e. we take the basis in the RGMM classifier and we do
not utilize the geographically and radar specific features. From the position
and position uncertainty, we estimated the speed and the uncertainty in the
speed. We then choose a number of speeds that lie within the uncertainty of
the speed. We then use these speeds as an input in a GMM and weight the
output of the GMM with the probability for the speed given the uncertainty.
We show with both simulated and real data that by using the uncertainty, a
more robust classification can be achieved. The downside of this approach is
the high computational load and the disability to classifying correctly.

11In this context the prior knowledge is refereed to as the probability for a given speed and
class i.e. without the temporal information.
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Paper D - Exploiting Position Uncertainty in Recursive Radar Track Clas-
sification

This paper is submitted to EURASIP, Journal on Advances in Signal Processing.
From the paper C, it was clear that while the probability of the classifier does
not fluctuate, the performance of the classifier was not so good. Therefore,
in this paper we introduce other features also used in papers A and B. We
also introduce two new features, which are the estimated minimum height
of the target to be within line of sight, and a feature, which estimates if
the target is moving or stationary. We combined these features with the
classifier from the paper C. In this paper, we also show a more thorough
review of the mathematics of the classifier in paper C. The result show better
performance of the classifier, however the results are still not as good as when
using temporal information.

Paper E - A Recursive kinematic Random forest and alpha beta filter clas-
sifier for 2D radar tracks

This paper is submitted to EURASIP, Journal on Advances in Signal Processing. All
of the above mentioned papers utilize a GMM PDF and a probabilistic ap-
proach. We wanted to try another approach by using a random forest12. We
use the pseudo probability from the random forest13 with a weight function
where the weight is the amount of new information in the extracted feature
vector. We also use an alpha beta filter to determine if the target is stationary
or moving. The classifier shows better performance in the real world scenario
than all of the above mentioned classifiers.

4.4 Comparison of some of the classifiers

In this section, a small comparison of some of the proposed classifiers is
made. The data sizes used for training and testing are shown in Table 3.
It must be noted that the confusion matrix uses a small test data size. The
comparison is made with a confusion matrix [57] where each update of the
tracks is a sample in the confusion matrix. The confusion matrices are shown
in Table 5. As it can be seen, the deltaGMM has the best performance in
general. The random forest with alpha beta filter is the second best and
worst is the uncertainty classifier. It can be seen that the random forest is
nearly as good as the deltaGMM and it is believed that the random forest is
actually better in real world performance, see the papers B and E.

12We have chosen the random forest over e.g. SVM as we believe that the random forest has
better performance. Further the SVM is a native binary classifier and has a high training time
compared to the random forest.

13The pseudo probability is a number of trees which classify the target as the same class
divided with the total number of trees in the random forest.
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Table 5: The confusion matrices for some of the classifier proposed in this work. The confusion
matrix for deltaGMM is shown in Table 5a, the confusion matrix for the uncertainty with other
features is shown in Table 5b and the confusion matrix for the random forest with alpha beta
filter is shown in Table 5c.

(a) Confusion matrix of the best performing temporal classifier from the paper B

Predicted:
Actual: Birds RIBs Stationary sea targets Large ships Helicopters Commercial aircrafts
Birds 98.9 0.0 0.0 0.0 1.1 0.0
RIBs 0.0 39.9 41.8 18.3 0.0 0.0
Stationary sea targets 0.0 0.0 99.9 0.0 0.1 0.0
Large ships 6.6 36.4 0.1 56.9 0.0 0.0
Helicopters 0.0 0.0 0.0 0.0 100.0 0.0
Commercial aircrafts 0.0 0.0 0.1 0.0 0.0 99.9
Overall performance 82.6

(b) The confusion matrix of the classifier, which utilize the uncertainty and other features.

Predicted:
Actual: Birds RIBs Stationary sea targets Large ships Helicopters Commercial aircrafts
Birds 85.5 0.0 3.8 8.4 2.3 0.0
RIBs 17.9 1.7 19.2 61.3 0.0 0.0
Stationary sea targets 2.2 14.6 58.6 4.0 20.6 0.0
Large ships 3.4 0.2 0.4 91.2 0.8 3.9
Helicopters 6.8 0.0 2.0 62.0 5.9 23.4
Commercial aircrafts 1.0 0.1 3.5 1.7 0.7 93.0
Overall performance 56.0

(c) The confusion matrix of the random forest combined with the alpha beta filter.

Predicted:
Actual: Birds RIBs Stationary sea targets Large ships Helicopters Commercial aircrafts
Birds 67.9 9.2 0.0 21.0 1.9 0.0
RIBs 6.4 62.4 0.0 31.2 0.0 0.0
Stationary sea targets 0.5 0.0 99.5 0.0 0.0 0.0
Large ships 21.4 5.1 0.3 61.5 11.6 0.0
Helicopters 12.2 0.0 0.0 0.0 87.8 0.0
Commercial aircrafts 0.8 0.0 0.0 0.0 0.0 99.2
Overall performance 79.7
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5 Conclusion and Future Work

In this work, we use the position estimates from a target delivered by a 2D
scanning coastal surveillance radar. We use this position measurements to
estimate the class each track belongs to. The work started with two hypothe-
ses. The first hypothesis is, that if it is possible to achieve high-accuracy radar
track classification based on temporal behavioral analysis. The work in the
papers A and B shows that it is possible to classify radar tracks based on tem-
poral behavior. However, it can be discussed if the classification can achieve
a high accuracy. It is clearly possible to separate targets which have very
different kinematic constraints e.g. stationary sea targets and commercial air-
crafts, but it is more difficult to separate targets which have more common
kinematic constraints e.g. RIBs and birds. By using more information such as
geographical features e.g. land, sea, line of sight, an improvement of the clas-
sification result can be achieved. However, this can have the unfortunately
influence that the probability of the classes will increase faster than the true
confidence of the classification, which can result in rapid changes in probabil-
ity for the different classes. This is believed to be because of the uncertainty
in the features. In the papers C and D we try to deal with the rapidly chang-
ing probabilities by using the position uncertainty to achieve a more robust
estimate of the speed. In paper C, we show that it is possible to achieve a
more robust classification. We then, in paper D, combine more features and
show that the probability and the confidence of the classification still match.
However, as it can be seen in Table 5b, the classification results are not good
even though we use additional features. In the paper E, we try to use a ran-
dom forest classifier as random forest by itself sorts bad features14 out. We
then assume that the uncertainties in the features are minimized. The rea-
son for this is that the features which in general have high uncertainty with
a great overlap between the classes will not be weighted as much as other
features. Further, the random forest also includes the temporal information.
We show that the classification results are promising.

The first hypothesis is proven true. It is possible to use temporal behav-
ioral analysis to achieve radar target classification. However, high accuracy
classification can only be achieved when the targets has very distinct tempo-
ral behavioral i.e. stationary sea targets and commercial aircraft in this work.

The second hypothesis is, that it is possible to remove or suppress un-
wanted tracks without affecting the performance of the small target detection
capability. In this work, we defined unwanted targets to be birds and station-
ary sea targets, as these targets only confuse a surveillance images for a radar
observer. As it can be seen from the work it is possible without much perfor-

14Bad features are defined as features which do not improve the classification results or have
very little new information.
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mance degradation to suppress stationary targets. However, birds cannot be
suppressed without also suppress some other targets.

The second hypothesis can be true if the unwanted targets have distinct
temporal behavioral but, as the unwanted targets also includes birds in this
work it is not possible to suppress unwanted target without also suppressing
wanted targets.

As classification for 2D surveillance radars tracks are an unexplored area
for machine learning techniques, there is a lot of research still to be done.
From this work, a set of recommendations for future work will be listed.
However, this list is not exhaustive:

• As explained in the section 3, tracking classification is the most used
approach to do classification of radar tracks. The limitation of using
tracking filters such as IMM filters is that the parameters are not state-
dependent and therefore cannot reflect the temporal information. Some
research must be done to determine if it is possible to make the param-
eters in the IMM dependent on the state in the IMM e.g. by making a
linear interpolation of a set of parameters which are specified for a spe-
cific state in IMM15. A fast optimizing algorithm must also be found,
such that the different parameters for the IMM, including the state-
dependent ones, can be found for a given class.

• Another approach could be used where an IMM followed by a random
forest, such that the IMM is fitted to the class and the likelihood is the
input to the random forest. In this approach the IMM will hopefully
deal with the uncertainty in the measurement while the random forest
can do the actual classification.

• Another approach for the random forest is to use multiple random
forests where the number of measurements used to extract the feature
vector is different for each of the random forests. By using this method,
there is no need for a recursive update of the probability as the random
forest takes the complete set of available data at the given time step. Of
course, this is very memory-intensive, as tracks with different length
must be classified in a single scan, which will require that all of the
random forests are in the computer memory.

• A deep neural network could also be tested where the plots are used
as the input to the network. There are possible problems with this
approach, as this may lead to the measured positions are directly used
for the classification, and hence the classifier is not immune of different
radar positions. Therefore a feature vector may be required as in the
case of the random forest.

15When describing the state it is primarily the speed which must be dependent.
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The recommendations for the next step in this work is to make some fea-
ture engineering for the random forest such that the features will be immune
to uncertainty in the position. Additionally, features such as local wind di-
rection and local wind speed could be used to normalize the speed of the
target. However, this requires the knowledge of whether the target is air-
borne or a surface target. That is, a bird will fly much faster in tailwind than
headwind, whereas a ship will not be affected of the wind. Information on
ship lanes, and speed limitations in the lanes can also be used to improve
the classification. For the specific radars in this work, a gain through the
adaptive preprocessing could help to get an absolute intensity for the target,
which makes the intensity less uncertain.
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1. Introduction

Abstract

The sampling rate of a radar is often too low to reliably capture the acceleration of
moving targets such as birds. Moreover, the sampling rate depends upon the target’s
speed and heading and will therefore generally be time varying. When classifying
radar tracks using temporal features, too low or highly varying sampling rates there-
fore deteriorates the classifier’s performance. In this work, we propose to model the
temporal variations of the target’s speed by low-order polynomial regression and use
this to obtain the conditional statistics of the target’s speed at some future time given
its speed at the current time. When used in a classifier based on Gaussian mixture
models and with real radar data, it is shown that the inclusions of conditional statis-
tics describing the targets temporal variations, leads to a substantial improvement in
the overall classification performance.

1 Introduction

The aim of this work is to provide a better overview for a radar operator
and thereby enhanced situation awareness in mission critical environments.
This is done by real–time classification of radar tracks. A commercial state of
the art surveillance radar provides a huge amount of information and it can
therefore be difficult for a radar operator to keep up with the information, see
Fig. A.1. Integrated tracking in radars are becoming standard and in coastal
surveillance small targets are of great importance. Consequently the radar
and tracker must be sensitive enough to track these small targets. It will
therefore be likely that unwanted tracks, like birds, will be tracked aswell.
Suppression of such tracks requires real–time classification. Compared to
synthetic aperture radar (SAR) a 2D surveillance radar does not have height,
Doppler or radar imagery available in the classification process. Therefore a
method must be developed which uses other attributes like for example kine-
matic and geographic attributes. By exploiting the temporal development of
the kinematic data more information can be extracted from the data. Two
of the main problems with using the temporal feature is the low sampling
rate for a radar compared with the typically acceleration of target like birds
etc. The second problem is that the sampling rate is inconsistent because of
the targets movements and scan period is different for short and long range
profiles in the radar.

There are two main reasons for target classification. The first is improving
situation awareness for a radar operator by filtering or color coding tracks
according to their classes. The second reason is with the knowledge of the
target class the tracker parameters can be optimized and thereby resulting in
the joint classification and tracking approach [1].

An advanced knowledge–based radar tracker [2] converts the measured
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Fig. A.1: Radar scenario from Egaa Marina in Denmark showing a rigid inflatable boat (RIB)
sailing out and zigzagging back. A large quantity of bird tracks is observed. A is the RIB, B and
C are unknown vessels, D is an area with a number of sea buoys, and the rest of the tracks are
birds.

backscatter from the radar sweeps into a number of observation called plots.
These plots are then used for the actual tracking algorithm and the classifica-
tion algorithms gets the kinematic information from the tracker.

In the following the term classification is used to describe the broad iden-
tification of a track belonging to a given class of targets such as "large ship",
"rigid inflatable boats (RIBs)", "bird" etc.

A lot of work has been carried out for classification in SAR systems ( [3]
and [4]) but only very little has been done for 2D surveillance radars [5]. In [6]
the authors are using a tree–based approach with kinematic features from a
3D radar. In [1], the authors are using joint tracking and classification where
they have multiple tracking algorithms, one for each target classes and in [7]
kinematic and radar cross section (RCS) are used for joint classification and
tracking. In [8] the authors are using high range resolution (HRR) profiles to
classify ground moving targets.

In this work, we consider the situation where a radar and its tracker pro-
vide information about the target’s speed as well as the back scatter inten-
sity. We then propose to model changes in the target’s speed over time by
polynomial regression. In particular, a low order polynomial is fitted in a
least squares sense to training data acquired by commercial radars in real-
istic scenarios. Based on this model, we provide a closed-form expression
to an approximation of the conditional probability density function (pdf) of
the target’s speed at time t + ∆t given its speed at time t. This pdf consists
of a weighted sum between the target’s prior and a Gaussian kernel whose
standard deviation characterizes the uncertainty of the target’s speed. The
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optimal weight depends upon the target class and is numerically obtained
by solving a maximum likelihood estimation problem. We then use the naive
Bayesian classifier proposed in [5] for online classification of real radar data.
It is shown that a substantial improvement is possible when including the
statistics of the speed’s temporal variations. For comparison, we also pro-
pose to simply model these variations by a Gaussian mixture model (GMM)
using the framework of [5]. In this case, the proposed polynomial modelling
of velocity GMM (PMVGMM) based on polynomial regression shows a slight
improvement over the purely GMM based scheme.

2 Method

In this section, we first briefly introduce the naive Bayesian framework pro-
posed in [5], which we will base our classifier upon. For more details about
this framework, we refer the reader to [5]. Then, we present our main contri-
butions, i.e., a model of the conditional probability of a target’s speed, which
is given as a weighted sum of the target’s prior and a Gaussian kernel that in-
troduces uncertainty into the model and whose standard deviation depends
upon the time lag and target class.

2.1 Recursive naive Bayesian

The framework take the basis from [5] where a recursive update algorithm
is used. From [5] (B.2) is the update and smoothing equation which will
prevent the probability for a given class to reach zero.

Ps(cp|Xn, Xn−1) =
P(cp|Xn, Xn−1) + ε

∑Nc
y=1(P(cy|Xn, Xn−1) + ε)

, (A.1)

where Xn is the newest update from the radar, Nc is the number of classes.
cp is the given class and ε is some constant.

The recursive Bayesian update rule can be extended with more features,
using a naive approach by making the assumption that the features are mu-
tually independent.

2.2 Framework

The radar information is: normal radar intensity Inr and moving target in-
dication (MTI) intensity Imti. The information used for kinematic update
are: Speed over ground Vn and temporal dynamic e.g. how the target speed
evolve.

The Probability for a given class will then be provided by
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p(cp|Xn, Xn−1) =

P(Xn|cp, Xn−1)P(cp|Xn−1, Xn−2)

∑Nc
i=1 P(Xn|ci, Xn−1))P(ci|Xn−1, Xn−2)

,
(A.2)

where Xn = [Vn, Inr, Imti, ∆t]T . In (A.2),

P(Xn|cp, Xn−1) = P(Vn|Vn−1, ∆t, cp)P(Inr, Imti|cp), (A.3)

where P(Vn|Vn−1, ∆t, cp) denotes the kinematic PDF and P(Inr, Imti|cp) =
P(Inr|cp)P(Imti|cp) is the intensity PDF and they are both modelled as a
GMMs. It is assumed that the radar intensity features are mutually inde-
pendent.

2.3 The proposed PMVGMM method

The main problem with classifying with a temporal feature is that the sam-
pling rate is low in compare to moving targets e.g. between 10 to 40 scans
per minute, secondary is the radar does not have a constant sampling rate.
Therefore a method must be developed which can handle the slow and vary-
ing sampling rate.

Let us assume that the measurements are noise free. A measurement of a
target’s speed is obtained at time t, which will give a probability of one for
that particular speed (Fig. A.2, blue). After some time, say ∆t, the target may
have accelerated or de-accelerated and we are therefore less certain about
its speed. Thus, the PDF of the target’s speed, which was initially a delta
function at time t should reflect the uncertainty in the speed at time t +
∆t (red and green). Indeed, as more time passes the less is known about
the speed, and the PDF should tend to the targets prior PDF (black). We
model this uncertainty by convolving the probability of Vn (that is a delta
function) with a Gaussian kernel (A.4). We let the mean of the kernel be the
previous measurement Vn−1, and let the standard deviation depend upon
Vn, Vn−1, ∆t. By using the Gaussian kernel, it is assumed that the acceleration
and deceleration is equally distributed and therefore no skewness is present.
For example, in the case of the speed feature we propose the following PDF
Pu for modelling the uncertainty:

Pu(Vn|Vn−1, ∆t) =

1√
2πσ(Vn, Vn−1, ∆t)

exp
(
−(Vn −Vn−1)

2

2σ(Vn, Vn−1, ∆t)2

)
.

(A.4)

We require that τ � 1 implies σ � 1. With this, we therefore propose the
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Fig. A.2: A simple example, with synthetic data, K(Xn|Cp) is the conditional PDF that will be
model in the following.

following formula for the standard deviation:

σ(Vn, Vn−1, τ) =

∣∣∣∣ τ

Vn−1 −Vn

∫ Vn

Vn−1

Tacc(q)dq
∣∣∣∣ , (A.5)

where Tacc(q) is a fit of the acceleration given the speed described in section
2.3.

The standard deviation σ(Vn, Vn−1, τ) of the Gaussian kernel is then the
average acceleration from the last measurement to the new measurement
given the speed multiplied with the time since the last measurement. As time
increases from the last measurement the variance will also increase because
less is known about the speed. For τ → ∞ one cannot expect to have much
knowledge about the speed except for the prior information given by the
speed without temporal dynamics Pprior(Vn). The transition from Pu to Pprior
depends upon the class. We describe this dependency by an exponential
weighting function with time constant C. The resulting PDF is the weighted
sum of Pu and Pprior:

P(Vn|Vn−1, τ) = exp(−Cτ)Pu(Vn|Vn−1, ∆t)

+ (1− exp(−Cτ))Pprior(Vn),
(A.6)

where

Pprior =
N

∑
i=0

πiN (Vn; φi) (A.7)

and πi is the weighing factor of the ith Gaussian distribution. The kinematic
model (A.6) must be modelled for each target class and hence it depends on
the given class, that is P(Vn|Vn−1, τ, cp).
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Fig. A.3: An example of the polynomial fit using synthetic data

Finding the Tacc(q)

The function Tacc from (A.5) is found from training data based on real radar
measurements. Since radar data are noisy we have applied fixed interval
smoothing [9] in order to reduce the noise.1 A dataset {(Vn, ∆Vn)} which
consist of pairs of speeds and associated accelerations ∆Vn = Vn − Vn−1 are
divided into bins based on the first coordinate, i.e. Vn. Each bin contains
an equal amount of pairs see Fig. A.3 for an example. From this it is now
possible to calculate the acceleration RMS value for each speed bin.

AccRMS(i) =

√√√√ 1
N

N

∑
n=1

∆V2
n (i), (A.8)

where i is the speed bin number, N is the number of data points in each
bin and ∆Vn(i) is the nthacceleration in the ith speed bin. We fit a kth order
polynomial Tacc(q) to the bins using the center of each bin. The polynomial
thus provides the average acceleration given any speed Vn. See Fig. A.3.

In Fig. A.4 a subset of the class’s acceleration fit is shown. It is clearly
visible that the large ships does not accelerate much and the RIBs are a lot
more agile then the large ships.

Finding the time constant C

The time constant C that is used in the weighting which combines Pu and
Pprior can be obtained off-line for each class by maximizing the following

1Due to the filtering the training are less noisy than the test data and we are therefore able
to deduce the target’s acceleration based on the filtered speed training data. Due to the on-line
classification we cannot apply fixed interval smoothing on the test data in a similar manner
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(a) Large ship (b) RIBs

Fig. A.4: A sixth order acceleration fit for (a) Large ship (b) RIB

likelihood function:

L(C) =
N

∏
n=1

∏
τ

exp(−Cτ)Pu(Vn|Vn−1, ∆t)

+ (1− exp(−Cτ)) Pprior(Vn),

(A.9)

where σ is described in (A.5).
In Fig. A.5 shows the amount of information the algorithm uses from

the uncertainty and the prior given the time since last measurement. It is
cleat that is more difficult to predict the RIB as the prior information is used
quickly compared to the large ship. This is as expected because a large ship
will normally not change speed as often as RIBs will.

(a) Large ship (b) RIBs

Fig. A.5: A plot over the relative weight of the the uncertainty and the prior. The weight is given
by exp(−Cτ). (a) large ship, (b) RIB
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3 Results of experiments

In this section we present the performance of the algorithm. For comparison
the results for RGMM and DeltaGMM [5] are also shown. The database is
the same as described in [5] however in the Egaa marina scenario unwanted
tracks originating from returns associated with static land features are re-
moved. In table A.1 the matrix is shown for the PMVGMM. In table A.2 the
confusion matrix from the RGMM method is shown. This algorithm does
not use the temporal information. In table B.3 the DeltaGMM algorihm is
shown. This algorithm exploit the temporal feature by making a GMM of
the entire feature space. The bold font is the best performing algorithm for
that class. The matrices are shown in percentage. In Fig. A.7, A.6 and A.8
a scenario is shown where a RIB is sailing out from Egaa marina in Aarhus,
Denmark and zigzagging back. It is clear from both the confusion matrices
and the radar scenario that the PMVGMM algorithm is the best performing.
There is an improvement in the RIB track and the PMVGMM is keeping the
performance for the birds.

Fig. A.6: Egaa Marina scenario with colored tracks from the classification using the PMVGMM
method.

4 Discussion

From Table A.2 and A.1 the PMVGMM is classifying with an overall accuracy
of 12.9% better than the RGMM method and 1.3% better then DeltaGMM. The
large ships and wakes are classified better with the PMVGMM algorithm. We
believe this is because that the PMVGMM is requiring less training data then
the DeltaGMM and RGMM as large ships are sailing with a constant speed.
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Fig. A.7: Egaa Marina scenario with colored tracks from the classification using the RGMM
method.

Fig. A.8: Egaa Marina scenario with colored tracks from the classification using the DeltaGMM
method.

Therefore a large amount of different large ships must then be added to the
database to get the right PDF. Because PMVGMM does not depend as much
on the speed feature and more on the typical acceleration fewer types of large
ships can be used to train the class. For more agile targets like birds and RIBs
it is more difficult to predict the targets movements and therefore RGMM and
DeltaGMM is better at these targets. The radar scenario is shown in Fig. A.6,
Fig. A.7 and A.8. All of the classifiers has difficulty with classifying the RIB.
The RGMM and DeltaGMM is classifying a large part of the RIB track as
birds, however the PMVGMM is only classifying a small part as birds. False
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Predicted:
Actual: Large ships Birds Wakes RIBs Stationary sea targets
Large ships 85.4 3.9 0.8 9.6 0.2
Birds 16.8 79.0 0.8 0.8 2.7
Wakes 0.0 1.7 97.5 0.0 0.8
RIBs 51.4 2.6 0.4 36.7 8.9
Stationary sea targets 0.0 4.6 0.0 0.0 95.4
Overall performance 78.8

Table A.1: PMVGMM confusion matrix

Predicted:
Actual: Large ships Birds Wakes RIBs Stationary sea targets
Large ships 67.5 5.5 0.0 27.1 0.0
Birds 12.6 87.4 0.0 0.0 0.0
Wakes 0.0 72.3 27.7 0.0 0.0
RIBs 52.2 0.3 0.0 47.5 0.0
Stationary sea targets 0.0 0.0 0.0 0.6 99.4
Overall performance 65.9

Table A.2: RGMM confusion matrix

Predicted:
Actual: Large ships Birds Wakes RIBs Stationary sea targets
Large ships 58.9 7.3 0.3 33.5 0.0
Birds 0.0 85.5 14.5 0.0 0.0
Wakes 0.0 3.4 96.6 0.0 0.0
RIBs 51.5 1.2 0.0 47.2 0.0
Stationary sea targets 0.0 0.0 0.0 0.9 99.1
Overall performance 77.5

Table A.3: DeltAGMM confusion matrix

negative classification of e.g. RIBs as birds is not desirable, as this may cause
targets to be removed from the situations display when applying class filters
such as birds. All of the algorithms is classifying most of the birds correct.

5 Conclusion

In this paper we present an algorithm which uses a polynomial to predict the
acceleration given the speed for a target class. This is combined with a prior
GMM as time passes and less is known of the targets speed and position.
The results shows clearly that by exploiting the temporal information it is
possible to give a better estimate of which target class a tracks belongs to.
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1. Introduction

Abstract

In this paper, it is shown that kinematic and static features are very useful in on-line
classification of surveillance radar tracks based on real radar data. A simple classifier
called recursive Gaussian mixture model (RGMM) is constructed using a recursive
naive Bayesian approach combined with a multivariate GMM. The kinematic fea-
tures used in the RGMM classifier are speed and normal acceleration, the geographic
features are road, sea, land and the sensor features are intensities. It is then shown
that if the feature vector is augmented with information about the temporal dynam-
ics of the kinematic parameters, a substantial improvement in target classification
is achieved. The classifiers are tested with several target classes relevant for coastal
surveillance and different data sources such as radar and GPS. The proposed algo-
rithms are classifying with 86% accuracy with 10 target classes versus 78% for the
RGMM classifier.

1 Introduction

The overall aim of this work is to provide radar users with an enhanced
situational awareness by performing real-time target classification. Modern
surveillance radars provide an increasing amount of information and it can
be difficult for an operator to keep up with the amount of data coming from
the radar, see Fig. B.1. Integrated tracking is becoming standard for most
surveillance radars and in coastal surveillance small targets is of great im-
portance. Consequently, the radar and tracker must be sensitive to small
targets, and unwanted targets like birds will therefore be tracked, which is
not desirable. Suppression of unwanted targets requires classification.

In contrast to highly complex military radars, such as active electronically
scanned arrays (AESA) or synthetic aperture radars (SAR), radar imagery is
not available in 2D modern surveillance radars, and methods must be devel-
oped based on other attributes. The data available from SAR are most often
based on space-borne or air-borne radars, which are very different from sur-
face based surveillance radars in terms of performance and attributes. Classi-
fication of targets is of importance both directly and indirectly. Directly, target
classification provides a user with tracks augmented with a target class for
aid in setting automated alarms etc. Indirectly, a target class assists tracker
performance through the ability to adaptively change tracking parameters
for a given target class, the so-called joint target tracking and classification.

An advanced knowledge–based radar tracker [1] converts the radar return
signals to a number of observations (plots) and detects and tracks targets
from the plots by combining association logic with kinematic such as speed,
acceleration etc. By adding further logic and knowledge to the radar sensor,
the track data can be augmented to supply additional information to the track
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data user, thereby improving the situational awareness. In Fig. B.1, is shown
a radar scenario of a rigid inflatable boat (RIB) sailing in a straight line out
from Egaa Marina in Denmark and zigzagging back again. All other tracks
are birds with exception of two other vessels. As can be seen in the scenario
it can be difficult for an operator to focus on a small size vessel like a RIB
with so many bird tracks.

Fig. B.1: Radar scenario from Egaa Marina in Denmark showing a RIB sailing out and zigzagging
back. A large quantity of bird tracks is observed. A is the RIB, B and C are unknown vessels, D
is an area with a number of sea buoys, and the rest of the tracks are birds.

In the following the term classification is used to describe the broad iden-
tification of a track belonging to a given class of targets such as "RIB", "heli-
copter", "fixed-wing aircraft" etc.

A lot of work has been carried out for classification in SAR systems ( [2]
and [3]) but only very little has been done for 2D surveillance radars. In [4]
the authors are using a tree–based approach with kinematic features from a
3D radar. In [5], the authors are using joint tracking and classification where
they have multiple tracking algorithms, one for each target classes and in [6]
kinematic and radar cross section (RCS) are used for joint classification and
tracking. In [7] the authors are using high range resolution (HRR) profiles to
classify ground moving targets.

The contribution of this work is based on a 2D radar without Doppler,
RCS, HRR profile or height information. This work will rely on kinematic
information together with location specific features such as land, sea, and
road. In addition, normal radar and moving target indication (MTI) intensity
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from the sensor are used. Because of the requirement for on-line classification
a recursive Bayesian update approach is used. Two methods are presented,
a simple algorithm called RGMM and an advanced algorithm called Delt-
aGMM.

In 2.1 the update method for on-line classification will be explained to-
gether with the naive Bayesian approach. In 2.2 the Gmeans algorithm will
be briefly described. In 2.3 the features used for the classification are de-
scribed and in 2.4 a general setup for both algorithms is described together
with the missing feature problem. In 2.5 the RGMM algorithm will be ex-
plained together with the features used for the algorithm. Further in 2.6 the
DeltaGMM method will be described. The algorithm uses the same features
as the RGMM algorithm but also include a way to predict a the variations
over time of the targets kinematic behaviour, which we will refer to as the
targets temporal dynamic features.

2 Method

The algorithms use a naive Bayesian approach to combine multiple features
and a recursive update for on-line classification. The joint probability density
functions (PDFs) of the features are modelled by Gaussian mixture models
(GMMs). To make the training of the GMM more robust for varying data
sizes and classes a Gmeans approach has been used to select the number
of mixtures for each class. The framework consists of both kinematic and
geographic attributes. The two classification algorithms only differ in how
their kinematic models are constructed.

2.1 Recursive naive Bayesian

For off-line target classification it is common to use a Bayesian rule to convert
the probability P(Xn|Cp) of observation measurement Xn given the target
class Cp to the probability P(Cp|Xn) for the class given the measurement. For
an on-line classifier a recursive approach to the Bayesian rule can be used [8]:

P(Cp|Xn, Xn−1) =
P(Xn|Cp)P(Cp|Xn−1)

∑Nc−1
p=1 P(Xn|C′p)P(C′p|Xn−1)

, (B.1)

where Xn is the newest update from the radar, Nc is the number of classes
and Cp is the given class. If a class is unlikely for a long time the probability
for the given class will decrease and move towards zero. To avoid very small
target class probabilities a smoothing factor ε is introduced to ensure that the
probability never become zero i.e.,
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Ps(Cp|Xn, Xn−1) =
P(Cp|Xn, Xn−1) + ε

∑Nc
y=1(P(Cy|Xn, Xn−1) + ε)

. (B.2)

In the naive Bayesian approach, it assume that x1 . . . xt are mutually in-
dependent and it is therefore straight forward to extend the Bayesian update
with more features

P(C|x1 . . . xq) = P(C|x1) . . . P(C|xq). (B.3)

2.2 Gmeans

The Gaussian Mixture Model (GMM) is trained with Kmeans and the expectation-
–maximization (EM) algorithm [9]. The problem with these algorithms is that
the number of mixtures in the GMM is not known and therefore must be
found by an expert or by empirical trials. A way to get around this is to use
the Gmeans algorithm [10]. It is an iterative process, which splits the data
into two clusters, then tests the hypothesis that the original data set, pro-
jected to a one dimensional space, is Gaussian distributed. If the hypothesis
fail then keep the two clusters for next iteration. If the hypothesis is true then
keep the original data set. The statistical test is given by Anderson-–Darling
test [11]:

A2 = − 1
N

N

∑
i=1

[(2i− 1) (log(zi) + log(1− zN+1−i))]− N (B.4)

and then corrected with [12]

A2
∗ = A2

(
1 +

4
N
− 25

N2

)
(B.5)

where zi is the data projected to the one dimensional line expanded by the
means of the two clusters and then converted to a univariate normal distri-
bution with zero mean and a variance of one. N is the number of data points.
The hypothesis is rejected if A2

∗ > φ where φ is some constant.

2.3 Features

In this section the general setup will be described. This is the framework
which both the algorithms will use. There are three types of information
used; geographical, radar specific and a kinematic information. The algo-
rithms differ by the way in which they exploit the kinematic information..

The features used for the geographic and radar specific are

• Area (land/sea)
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• Route (road/not road)

• Radar intensity (normal radar (nr))

• Radar intensity (MTI radar (mti))

The features used for the kinematic are

• Speed (SOG)

• Normal acceleration (na)

• Temporal dynamics (Only used in DeltaGMM)

Xn will then be defined by

Xn =

[
ḡn
k̄n

]
(B.6)

where −→g n is the geographic and radar specific features and
−→
k n is the kine-

matic features.

2.4 Framework

In this section the framework for the two algorithms are shown. The update
equation for the new measurement is

P(Cp|Xn, Xn−1) =
K(
−→
k n|Cp)G(−→g n|Cp)P(Cp|Xn−1)

∑Nc
p=1 K(

−→
k n|C′p)G(−→g n|C′p)P(C′p|xn−1)

(B.7)

where K(
−→
k n|Cp) is the kinematic PDF of the kinematic feature and this will

differ in the two methods and G(−→g n|Cp) is the geographic and radar specific
PDFs and are defined by:

G(−→g n|Cp) = P(r|Cp)P(l|Cp)P(nr|Cp)P(mti|Cp), (B.8)

where r is road/not road, l is land/sea, nr is the intensity for normal radar
and mti is the intensity for MTI radar.

The classification is done by taking argmax of the probability given in
(B.7)

C = argmax
Cp

(
Ps(Cp|Xn, Xn−1)

)
(B.9)

The land/sea and road/not road have binary sample spaces and their
probability mass functions (PMFs) is modelled with Bernoulli distributions.

The intensity PDF is modelled as a GMM. The training database consists
of multiple data sources and some of them do not have the intensity features.
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By using the intensity feature only for some of the classes, the classes which
do not have this feature will be favored because the probability will generally
be less than one. Therefore a global intensity PDF is trained using all the
available intensities from all classes. This global PDF will then be used for
those classes that do not have intensity.

In classification from a radar, missing detections may occur, therefore a
measurement does not necessarily have all the features like for example in-
tensity. If the measurement does not have a feature, the feature will not be
used in this update. This can be done be setting the probability for the miss-
ing feature equal to one.

2.5 RGMM method

Fig. B.2: The relative feature space for birds, large ships and RIBs.

In the RGMM method given by (B.7) the PDF K(kn|Cp) models the kine-

matic feature space spanned by
−→
k n, i.e. speed over ground (sog) and the

normal acceleration (nacc), and is given by

K(
−→
k n|Cp) =

Nm

∑
i=1

πiN
(−→

k n; Σ
Cp
i , µ

Cp
i

)
, (B.10)

where Nm is the number of mixtures in the GMM and πi is the weight on the
given Gaussian distribution.

The feature space for birds, large ships and RIBs is presented in Fig. B.2.
As it can be seen there is significant overlap between the target classes.

60



2. Method

2.6 DeltaGMM method

A problem with a radar is that it does not have a consistent sampling rate.
In order to deal with this problem, we propose to model how a given targets
speed and normal acceleration will evolve over time, see Fig. B.4 for an ex-
ample. A bird will for example change its speed more frequently than a large
ship. In order to model such temporal dynamics we introduce the following
set of features:

{vi, ∆vτ
i , nai, ∆naτ

i , ∆tτ
i }, (B.11)

where i is the index of the measurements and τ is the measurement indexed
by i + τ, where τ ∈N0 and ∆ti ∈ R+,

∆vτ
i = vi+τ − vi

∆naiτ = nai+τ − nai
∆tτ

i = ti+τ − ti,
(B.12)

where ti denotes the time when measurement index by i was received. See
Fig. B.3 for an example.

The aim is to model the following PDF:

K(kn|∆t, Cp) =
P(v,∆v,na,∆na,∆t|Cp)

P(∆t|Cp)
(B.13)

which gives the likelihood of a measurement given the class and the time
since the last measurement. We find P(∆t|Cp) as follows

Fig. B.3: A visual interpretation of temporal dynamics of with synthetic data

P(∆t|Cp) =
∫∫ ∫∫

P(v, ∆v, na, ∆na, ∆t|Cp), dv, d∆v, dna, d∆na (B.14)

Finally, the PDF K(kn|∆t, Cp) (B.13) of the kinematics is modelled by a GMM,
that is:
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K(
−→
k n|Cp) =

∑Nm
i=1 πiN (

−→
k n; Σ

Cp
i , µ

Cp
i )

P(∆t|Cp)
. (B.15)

For illustrational purposes Figs. B.4 and B.5 show contour plots of trained
GMMs. It is clear from Fig. B.4 that it is more likely that a RIB will be
changing speed then a large ship. In Fig. B.5 a plot is shown with typical

Fig. B.4: A plot of the trained GMM with only change in speed and time. Red ellipse is a half
standard deviation and the blue is one standard deviation. The color transparency is how much
weight on the given Gaussian in the GMM. Top: Large ships. Bottom: RIBs
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acceleration given the speed. It is also clear that the RIB is more agile then
large ships The speed PDF can be seen in Fig. B.6. It is clear that large ships

Fig. B.5: A plot of the trained GMM with acceleration given speed. Red ellipse is a half standard
deviation and the blue is one standard deviation. The color transparency is how much weight
on the given Gaussian in the GMM. Top: Large ships. Bottom: RIBs

and RIBs can reach the same speed. However there are clearly differences in
the probability of the different speeds. Especially the large ships have some
significant peaks. This is partly due to a limited number of training data and
partly because large ships frequently will sail with a constant speed.
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Fig. B.6: The probability for relative speed for RIBs and large ships.

3 Results of experiments

In this section we present the performance of the two proposed classifiers in
a setup using real radar data.

OpenStreetMap [13] is used to determine if an object is over road or not.
To determine if an object is over sea or land the surface water body data
(SWBD) [14] is used. The target database for this work is built up from GPS
logs, recorded radar tracks, Automatic Identification System (AIS) reported
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from ships and Automatic Dependent Surveillance-Broadcast (ADS–B) used
for commercial aircraft. By using many different sources for data it is shown
that the algorithm is robust to variations in the sampling rate, i.e. time be-
tween measurements and precision in data. No simulated data have been
used. The database is split into two, one for training the GMMs and one for
testing. There is no overlap between the testing and training databases. The
sizes of the databases can be seen in table B.1.

Classes Trainings size Test size
Sea buoys 3407 5138
Wakes 1861 354
Cars 10305 2613
Large ships 23130 2462
person 6137 12909
RIBs 23470 720
Helicopters 19143 205
Wind turbines 10255 2354
Commercial aircrafts 6725 12229
Birds 3289 262

Table B.1: Size of the trainings database used for this work. The number is the total number of
seconds for each target type

The results from the RGMM method is shown as confusion matrices in
table B.2 and the results for the DeltaGMM method is shown in table B.3.
The matrix elements are probabilities. The bold font are best performing
algorithm for the classes

Predicted:
Actual: Large ships Commercial aircrafts Persons Sea buoys Birds Helicopters Wakes Wind turbines RIBs Cars
Large ships 0.632 0.000 0.000 0.000 0.023 0.000 0.000 0.000 0.344 0.000
Commercial aircrafts 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Persons 0.000 0.000 0.995 0.000 0.000 0.003 0.000 0.001 0.000 0.002
Sea buoys 0.000 0.000 0.000 0.982 0.000 0.000 0.000 0.000 0.018 0.000
Birds 0.191 0.000 0.000 0.000 0.481 0.000 0.000 0.000 0.328 0.000
Helicopters 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
Wakes 0.000 0.000 0.000 0.000 0.540 0.006 0.455 0.000 0.000 0.000
Wind turbines 0.000 0.000 0.000 0.355 0.000 0.000 0.000 0.527 0.119 0.000
RIBs 0.086 0.000 0.000 0.000 0.042 0.000 0.000 0.000 0.872 0.000
Cars 0.000 0.000 0.163 0.000 0.000 0.005 0.000 0.000 0.000 0.831
Overall performance: 0.778

Table B.2: Confusion matrix for the RGMM method

In Fig. B.7 a example of the Egaa Marina scenario is shown with colored
tracks which are from the classification using the RGMM method. In Fig. B.8
the same scenario is shown with the DeltaGMM method.

It is clear from Fig. B.8 that the DeltaGMM is better at classifying birds
than the RGMM algorithm. Nearly all of the birds are classified correct with
only a small penalty in the RIB classification
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Predicted:
Actual: Large ships Commercial aircrafts Persons Sea buoys Birds Helicopters Wakes Wind turbines RIBs Cars
Large ships 0.544 0.000 0.000 0.000 0.009 0.000 0.024 0.000 0.423 0.000
Commercial aircrafts 0.000 0.998 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000
Persons 0.005 0.000 0.987 0.000 0.000 0.000 0.000 0.002 0.000 0.006
Sea buoys 0.000 0.000 0.000 0.962 0.000 0.000 0.000 0.037 0.002 0.000
Birds 0.000 0.000 0.000 0.000 0.576 0.008 0.111 0.000 0.305 0.000
Helicopters 0.000 0.000 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.015
Wakes 0.000 0.000 0.000 0.000 0.008 0.011 0.980 0.000 0.000 0.000
Wind turbines 0.000 0.000 0.000 0.247 0.000 0.000 0.000 0.737 0.016 0.000
RIBs 0.006 0.000 0.000 0.000 0.015 0.006 0.000 0.017 0.957 0.000
Cars 0.002 0.000 0.124 0.000 0.000 0.000 0.000 0.003 0.000 0.870
Overall performance: 0.860

Table B.3: Confusion matrix for the DeltaGMM method

Fig. B.7: The radar image from Egaa Marina colored with the colors from the classification using
the RGMM method

4 Discussion

As it can be seen from table B.2 and table B.3 The DeltaGMM method is clas-
sifying with 8.2% better accuracy than the RGMM method. As can be seen
from the tables the DeltaGMM is better at classifying birds, wakes, wind
turbines, RIBs and cars target classes. However the RGMM method is clas-
sifying large ships, commercial aircrafts, persons, sea buoys and helicopters
better than the DeltaGMM algorithm. We suspect that this is because of a
limited training data set as a larger training set is required for DeltaGMM.
We are currently in the process of acquiring larger databases.

From table B.2 and B.3 it is interesting to observe that both algorithms
can separate targets that are very similar in speed and placement like sea
buoys and wind turbines. Both target types are placed in the sea and are
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Fig. B.8: The radar image from Egaa Marina colored with the colors from the classification using
the DeltaGMM method

stationary targets. For a Doppler radar it will be easy to separate the targets
because of the rotating blades on the wind turbine. However in this work
only MTI intensity is available. Another possibility is that the blades of the
wind turbines are rotating and the primary reflection will therefore change
its position in the radar plots, which will lead to a changing target speed.

Birds, large ships, wakes and RIBs are within the same speed range and it
is therefore helpful to exploit the temporal dynamics. This is incorporated in
the DeltaGMM algorithm. As can be seen in table B.2 and Fig. B.7, birds and
RIBs are often misclassified. This is because they have the same speed range
and both change directions very frequently. An improved classification is
obtained by the DeltaGMM method as can be seen in table B.3 and Fig. B.8.
In Fig. B.7 and Fig. B.8 the RGMM and DeltaGMM algorithm are shown
on a real world scenario with a RIB sailing from left to right in a straight
line and then zigzagging back. The scenario is the same as described in the
introduction. In Fig. B.7 the RGMM method is presented is clear that the
RIB are classified as a RIBs most of the time. However nearly all the bird
tracks (tracks with about the direction going from the lower left corn to the
upper right corner) are also classified as RIBs. In Fig. B.8 the DeltaGMM
method is shown. It is clear that the RIB is classified a little worse compared
to the RGMM method because more of the zigzag back is classified as a bird.
Nevertheless a lot more birds are now classified as birds and not RIBs.
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5 Conclusions

In this paper we presented two novel on-line classifying algorithms which
uses kinematic and location data for classifying real world coastal surveil-
lance radar data. The DeltaGMM algorithm are able to classify with 86%
accuracy and the simple RGMM with an accuracy of 78%.
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1. Introduction

Abstract

In this paper, we show how radar plot uncertainty can be included leading to a more
robust classification of targets observed by a rotating 2D radar. Targets far from the
radar will have a greater uncertainty in the position and therefore the estimated speed
of the targets will be more uncertain. The uncertainty is sensor dependent and will
therefore need to be taken into account when classifying based on training data from
multiple different sources. Including the uncertainty in the radar plot positions, leads
to an improved estimate of the probability of a target belonging to any given class in
a list of possible classes. We show results for two synthetically generated cases, where
we include the uncertainty and from a real world radar scenario.

1 Introduction

The aim of this work is to provide a more robust classification of radar tracks
and thereby increase the situational awareness for coastal surveillance radars.
In recent years, trackers are becoming standard part of radars used for coastal
surveillance, Vessel Traffic Services, surface movement radars at airports etc.
These radars must have a very high sensitivity such that small targets such
as e.g. rigid inflatable boats (RIBs) can be detected, leading to detection and
tracking of undesired targets such as birds, see Fig. C.1. Removal of such
tracks requires classification, with automated decision of which targets to
display. However it is important that such classification does not degrade the
situation awareness by misclassifying tracks or show overconfident probabil-
ity for a target class.

Radar measurement from a 2D rotating surveillance radar has a high un-
certainty in the position, especially in azimuth, therefore derived measure-
ments i.e. speed Vn in this work, has a high uncertainty. These uncertainties
must be included when using speed as a feature in target classification. Nor-
mally in classification these uncertainties are ignored because the sensor is
the same in both training and classification. If the sensor is not the same, a
small training set is used to adapt the training model to a new model which
fit the sensor ( [1], [2]). Some exceptions could be the k-nearest neighbor
(KNN) algorithm, where a weighting factor for the k-nearest could be given
from the uncertain [3]. The downside of the KNN approach is to estimate the
real PDF k must approach N where N is the training sample number. Further
KNN must hold every training sample in memory. We therefore choose to
make a parametric approach.

In our case, the model is trained from different sources, such as GPS, auto-
matic identification system (AIS), automatic dependent surveillance-broadcast
(ADS-B) and different radars. A fixed interval smoother [4] has been applied
to the training data before the data are used to train the classifier, such that
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Fig. C.1: The plot shows a real world scenario of a surveillance radar at the east coast of Den-
mark. The red colored track is a helicopter. The pink colored track is a small general aviation
aircraft of the type Grumman GA-7. The blue colored tracks are wind turbines. Some of the
wind turbines in the area furthest away from the radar are smeared together because of the az-
imuth resolution. The green colored tracks are unknown ships. The rest of the tracks (black) are
birds.

the uncertainty in these data is reduced. As for real-time classification, it is
not possible to apply fixed interval smoothing as the data is streamed in real-
time to the classifier. This creates a problem where the real-time data does not
fit the trained model. We could use the approach where we has a small set of
training data for each radar, antennea and target. However, it will be a huge
task to collect training data for all target classes for all possible surveillance
radars with different sensor characteristics. We therefore seek a general way
of making the classifier sensor independent. Furthermore, the uncertainty
can change from target to target, as an example, a large wind turbine with
huge blades can have different main scatter points at each scan of the radar,
whereas a medium ship will often only have one main scatter point. Addi-
tionally, the range to the target and weather conditions can have an impact
on the uncertainty, as a large range to the target will result in large uncer-
tainty in azimuth. The weather in coastal surveillance can have an impact on
sea clutter, which results in different amplitude characteristics because of the
radars preprocessing. We therefore propose to use a method, which includes
the uncertainty in the measurement for each probability update for the target.

In this work we use the term classification as a term which describe a
broad identification of a target, such as birds, helicopters, large ships.
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2 Method

One possible way to include uncertainty is given in [5] where a tracking
filter is applied. This tracking filter handles the uncertainty by mapping the
uncertainty from the feature space to the class space. In this work we take
a different approach where the uncertainty can be included to an on-line
Bayesian classifiers such as ( [6], [7]). We proposed to use the uncertainty
in the position to estimate the uncertainty in the speed, which we use as a
feature in the classifier. The uncertainty of the position is estimated from
the plot extend in range and azimuth. We include the uncertainty in the
position to find the probability distribution of all possible speeds, followed
by an estimation of the probability for jumping from one of the speeds to
another speed at the next scan of the radar. The plot association is done by
the radar tracker [8].

2.1 Calculation of the Speed Uncertainty

From the radar we get plots which have a position rn = [xn, yn]T and a
covariance Σ

p
n of the position where the subscript n is the update number and

the superscript p is to emphasize that it is the position covariance. We assume
that the position is a Gaussian distributed and the position is independent of
earlier and future uncertainties, where the latter assumption is valid when the
time between between the position is not used. We are interested in the speed
Vn estimate and the uncertainty of the speed. As a simple approximation, we
can calculate the velocity as a two point estimate from

vn =
rn − rn−1

τ
(C.1)

where τ is the time between the measurements i.e. τ = tn − tn−1. The result-
ing covariance of the velocity is then

Σv
n =

Σ
p
n + Σ

p
n−1

τ2 . (C.2)

The speed can be calculated as the magnitude of vn, that is V0 = ‖vn‖2. It is
computational expressive to calculate the variance of the magnitude of a vec-
tor with non-zero mean and different variance for the components. Instead
we propose to use the average of the eigenvalues of the speed covariance as
an estimate of a non-zero mean vector with dissimilar variance in both di-
mensions. For a two-component vector, the average of the eigenvalues can be
found as the trace of the matrix

σv
n u Tr (Σv

n)

2
. (C.3)
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Fig. C.2: An overview of how the measurement from the radar is used. Plot is the combined
information from the radar i.e. position and uncertainty. z is described in 2.1.

We propose to use a Rice distribution to model the probability distribution
of the speed. The distribution converges to a Rayleigh distribution when the
speed is low and converges to a Gaussian distribution when the speed is
high. The Rice distribution is given as

Pm(Vn|zn) =
V0

σv
n

exp
(
−(V2

n −V0)

2σv
n

)
I0

(
VnV0

σn2
n

)
, (C.4)

where I0 is the modified Bessel function of the first kind with zero order [9]
and zn = {xn, xn−1, yn, yn−1, Σp

n, Σp
n−1} is the set of two measurements (plots)

needed to deduce the speed and its covariance. The subscript m in Pm is to
emphasize that this is the measurement uncertainty PDF.

2.2 Classifying with Uncertainty

In the following we assume that the latest set of measurement zn is statis-
tically independent of the previous measurements. As the derived speed
depends on a set of two measurements, a simple way of ensuring statistical
independence is to group the plots pairwise, and only update the classifi-
cation for every other measurement. This will decouple the dependencies,
see Fig. C.2. Let us assume that we have received n-1 updates we can now
predict the probability of a given class conditioned on the latest speed as

P(c|Vn, {zn−1}) =
∫

Vn−1

P(c|Vn, Vn−1, {zn−2})

Pm(Vn−1|zn−1)dVn−1,
(C.5)

where {zn−1} is the set of paired measurement up until n-1 updates, zn−1 is
the current paired measurement and c is the class. We can use Bayes’ theorem
on the class dependent probability in order to get the probability of the class
given the speeds

P(c|Vn, Vn−1, {zn−2})) =
P(Vn|c, Vn−1)P(c|Vn−1, {zn−2})

∑c′ P(Vn|c′, Vn−1)P(c′|Vn−1, {zn−2})
.

(C.6)
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3. Simulations

We only have P(Vn, Vn−1|c) from the training of the classifier, and we need
P(Vn|c, Vn−1). This can be calculated as

P(Vn|c, Vn−1) =
P(Vn, Vn−1|c)

P(Vn−1|c)
, (C.7)

by exploiting the first order Markov chain assumption. We use a Gaussian
mixture model (GMM) to model P(Vn, Vn−1|c). The GMM is fitted to the
training data by the EM algorithm [10]. After receiving the nth update, we
can calculate the probability for the class as

P(c|zn) =
∫

Vn
P(c|Vn, {zn−1})Pm(Vn|zn)dVn. (C.8)

For each prediction step we have to store the latest P(c|Vn, {zn−1}) distribu-
tion as this must be used in the next prediction.

As P(Vn, Vn−1|c) is a GMM, the analytical expression for the distribution
P(c|Vn, {zn−1}) will contain an ever increasing number of mixtures for every
update. This is impractical from an implementation point of view, and in
principle possible to solve by fitting a new GMM with a specified number of
mixtures at each update. As this is very computationally demanding, we have
chosen to solve the equations numerically. We change the integral in (C.6)
and (C.8) to a sum. We normalize Pm such that ∑{V̂} Pm(V̂|zn−1) = 1, where
{V̂} is the set of speeds we sum over, this will ensure that the probability for
class given by (C.8) will sum to 1. P(c|Vn, {zn−1}) will be stored as a set of
data points from the distribution. In Fig. C.3 we have tried to illustrate this
process. In Fig. C.4 a typical example of the Pm and the GMM is shown. From
this it can be seen that Pm typically has a smaller variance then the GMM, it
is therefore natural to use the Pm to find the points to include in the sum.

3 Simulations

In this section, we will present the simulation results with synthetically gen-
erated data. The classes are a low-speed, a medium-speed and a high-speed
class. We use the feature space [Vn, Vn−1, t]T where Vn is the newest speed
derived from the plots, Vn−1 is the previous speed and t is the time between
the two speeds. We use a modified DeltaGMM approach explain in [6]. We
use the above mentioned features and using a Markov chain assumption, that
is P(Vn|Vn−1, c). The speed classes are trained on a large amount of noisy sig-
nal with a constant speed and fixed interval smoothing [4] has been applied.
The three classes trained GMMs is shown in table C.1. As it can be seen
from the table the GMMs has only one mixture for each class. It can also be
seen that the average speed from the low-speed class is around 4 m/s, the
medium-speed class is 7 m/s and the high-speed class has an average speed
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Fig. C.3: Here is shown an example of the probability calculation. The figure is only for the
calculation of the probability for one class i.e. a Bayesian update must be conducted after this
calculation. Pm is purple and the GMM is blue. We estimate three possible starting points in
speed ( indicated by red, black and green) from the predict step Zn−1. When we get a new
measurement,we can now calculate the probability from going from the predicted speed to the
actual speed Zn. By multiplying this with the GMM and summing over the three speeds we can
calculate the probability of the jump between the two measurement given that specific class.

Fig. C.4: A synthetic example of trained GMM PDF and the measurement PDF, the dashed line
is the mean of the measurement PDF
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4. Real world scenario results

Table C.1

class Mean vector Covariance

low-speed
[
4.03 4.03 5.5

]T

1.62 0.16 0.0
0.16 1.63 0.0
0.0 0.0 8.25


medium-speed

[
7.02 7.02 5.5

]T

1.66 0.16 0.0
0.16 1.67 0.0
0.0 0.0 8.25


high-speed

[
8.02 8.02 5.5

]T

1.66 0.16 0.0
0.16 1.67 0.0
0.0 0.0 8.25



around 8 m/s. Further it can be seen that the covariance is nearly the same
for all three classes. We have two cases in the simulation. In 3.1 the purpose
is to show how the classifier handles a target that switches from one class to
another class. The second case is in 3.2 where we show how the classifiers
handle a target with constant speed, but different uncertainty in the position
measurement.

3.1 Linearly Increase in Speed

The two Figs. C.5 and C.6 show the results of a linearly increasing speed.
This behaviour simulates that a target accelerates and thereby changes from

one class to another. The plot uncertainty is Σp
n =

[
1.0 0.1
0.1 1.0

]
.

3.2 Steady Speed with High Uncertainty

In Figs.C.7 and C.8 the speed is constant with a very high uncertainty in

the plots i.e. Σp
n =

[
30.0 3.0
3.0 30.0

]
. This simulates that we are very unsure

about the measured position. In Fig. C.9 the uncertainty in the plots are

Σp
n =

[
5 0.5

0.5 5

]
. This simulates that we are more confident in the position

of the plots. The speed is the same as in Figs. C.7 and C.8.

4 Real world scenario results

The goal for this work is not only to classify the targets correctly, but also
to provide a probability of classification which reflects our confidence in the
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Fig. C.5: Plot where the algorithm ignores the plot uncertainty. The blue color is the speed
measurement.

0 200 400 600 800
Updates

2

3

4

5

6

7

8

9

10

11

S
p
e
e
d
 [
m
/s
]

Speed and probabilities
Speed

0.0

0.2

0.4

0.6

0.8

1.0

p
ro
b
a
b
il
it
y

medspeed
highspeed
lowspeed

Fig. C.6: Plot where the algorithm includes the plot uncertainty. The blue color is the speed
measurement.
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Fig. C.7: Figure where a target has a steady speed. The measurement has high uncertainty
however, in this figure, the algorithm ignores the uncertainty.
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Fig. C.8: Plot showing the same as Fig C.7, but in this figure the algorithm includes the uncer-
tainty in the plots.
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Fig. C.9: Figure showing the same speed progress as Figs. C.7 and C.8 but with a lower uncer-
tainty in the plots. The algorithm includes the uncertainty

target class i.e. the confidence of the classification must be match in the prob-
ability. That is if we get a probability of one we must be completely sure that
it is the real class of the target. In Fig. C.10 a RIB’s track is shown where
C.10a is without using the uncertainty in the measurement and C.10b is with
the uncertainty. In Fig. C.11 a bird track is shown from the scenario shown
in the introduction, Fig. C.1. Figure is also with and without the uncertainty.
Further the whole scenario from C.1 is shown in C.12 where C.11a is without
using the uncertainty and C.11b is with using the uncertainty.

5 Discussion

From Fig. C.5 we can see that the when uncertainty is not included, there is
a long lag in changing classification result for an target that accelerates and
changes class. This is due the the fact, that the probability score of the initial
class has continued to increase monotonically, leading to an overconfidence
in the classification result. i.e. very high confidence on the class. In automatic
target classification, it is important that if the classifier has high confidence
the target must belong to the class. It can clearly be seen this is not the case
in Fig. C.5. A way to solve this is to use the uncertainty in the measurement
as described in 2. This can be seen in Fig. C.6, by using the uncertainty we
reduce the confidence in the derived speed and the classifier will not be as
sure of the class. In the figure, it is clear that the classifier is more correct
when comparing to table C.1. The classifier is changing class at around 5.6
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5. Discussion

(a) Without use of uncertainty

(b) With use of uncertainty

Fig. C.10: A Rib sailing outwards from a harbour and then zigzagging back. C.10a is without
uncertainty and C.10b is with uncertainty
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(a) Typically sea bird without using the uncertainty

(b) Typically sea bird with using the uncertainty

Fig. C.11: A typically bird track from a sea bird. This is a bird from the scenario in the in-
troduction Fig. C.1. Fig. C.11a is without using uncertainty and Fig. C.11b is with using the
uncertainty
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5. Discussion

(a) The scenario in the introduction classified without using the uncertainty

(b) The scenario in the introduction classified using the uncertainty

Fig. C.12: The radar scenario from the introduction rev classified with and without uncertainty.
Gray is unknown (if the probability is is below 97 % for a given class)
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m/s, which is nearly half way between low and medium speed class. Further
the classifier also change class around 8 m/s which also matches table C.1.

In Fig. C.7 a steady speed scenario is shown with large uncertainty in
plots from the radar. This figure is without using the uncertainty. From
the figure it is shown that the classifier which does not use the uncertainty
classifies this as low speed class, which the speed also indicates. However,
the uncertainty in the plots is big and we cannot be sure on the speed. This
can be seen in Fig. C.8 where the uncertainty is used. It is clear from the
figure that the classifier cannot choose a unique class that the measurement
belongs. The classifier finds a steady state estimate. In Fig. C.9 the same
scenario as Figs. C.7 and C.8 but with lower uncertainty in the radar plots it
can be seen that we can exclude the high-speed class, however the classifier
can still not choose between the low and medium speed classes.

As mention in the section 4 we are not interested in classifying correct but
more in the probability should match the confidence of the result. As it can be
seen from Fig. C.10 the result without using the uncertainty shifting between
classes and further the probability is sometimes 1.0 which means the classifier
must be 100 % certain for the class, but later the classifier change to other
class. If we see Fig. C.10b where we use the uncertainty the classifier does
not rapidly change from one class to other, and the probability never reaches
1.0 which mean the classifier is not to confident of the class. From Fig. C.12
it is clear that the uncertainty algorithm does not get a better classification
results than without uncertainty, however the confidence of the classification
match better with the probability as many of the tracks is coloured gray,
which is unsure on the class.

6 Conclusion

In a surveillance scenario the classifier output probability vector for the target
belonging to one amongst different classes must correctly reflect how confi-
dent the classification algorithm is in the target class assignment when used
to filter unwanted targets. By introducing the uncertainty in the classifier
algorithm, we have shown that it is possible to address the problem of hav-
ing high uncertainty in the test data for an algorithm while training on low
uncertainty data. We have also shown that by introducing the uncertainty we
can make the classifier more robust for misclassification as the probability
reflects the confidence of the classification.
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1. Introduction

Abstract

We present a Bayesian recursive classifier that includes sensor uncertainty about
the position measurements provided by a 2D scanning radar when classifying radar
tracks. Knowledge of the measurement uncertainty makes it possible to use different
sensors for training and testing. Thus, one can increase the training set by including
data from a variety of sensors (not only radars), and during tests it is possible to use
different radars and radars with different range to targets. We test our classifier in
real world coastal surveillance radar scenarios and show that the probability matches
better with the confidence of the classification.

1 Introduction

With an ever increasing need to monitor coastlines and shipping to avoid
collisions and detect illegal activities, the number of high performance radar
sensors installed grow continuously. Modern, high sensitivity 2D scanning
radars deliver large amounts of information, and there is a growing need to
classify detected targets in order to lower the burden placed on system oper-
ators. For example, radar systems monitoring the littoral zone could classify
targets as birds, large vessels, static surface target etc., allowing operators to
filter targets of interest.

As an example, a typically scenario of a coastal surveillance area is shown
in Fig. D.1, where a huge number of birds and wind turbines tracks are
observed, making observations of particular targets of interest difficult. By
filtering away tracks originating from e.g. birds, a reduced number of poten-
tial targets are required to be evaluated by an operator. For example it has
been shown in [1–5] that it is possible to classify tracks and thereby remove
unwanted tracks. As it was also shown in [1, 2] the probability for the targets
was highly fluctuating as seen in Fig. D.2 These large fluctuations in the prob-
ability of a target belonging to a given class, makes classification and filtering
difficult. As will be described in this paper, such fluctuations in classification
may occur, when a classifier is trained on training data with little position
uncertainty and subsequently used to classify data with significant measure-
ment position uncertainty. Fluctuations in data due to this uncertainty will
be interpreted as e.g. large variations in parameters of interest and will lead
to rapid changes in classification output. As the radar used for this work only
delivers position it is not possible to use the most normal approach for target
classification like e.g. Doppler and high resolution techniques [6]. In [6] it is
also proposed to use speed and acceleration. We believe that because of the
noise in the deduced acceleration it can not be used. We therefore only use
speed as this most be the most important features for classification, and as
speed is derived from positional measurements, an uncertainty in measuring
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Fig. D.1: A scenario of two wind farms in Denmark. The windfarms a encircled with a black
color. A commercial aircraft comming from left to right, coloured with red. A commercial
aircraft circling the two windfarms coloured with blue and some unknown sea vessels coloured
with green. The rest of the tracks originates from birds

a targets position will translate into an uncertainty in the speed feature used
for classification.

One solution is to train only on data acquired from the same sensor as
used subsequently to observe the targets of interest. This is typically done
in speech recognition [7, 8]. This method requires a huge amount of training
data, as there must be enough training data for each class with different radar
sensors, in changing weather conditions etc.

To make a balanced training data set, it is desired to use data from a
variety of sensors to ensure that all targets of interest are represented in the
training database. A classifier may subsequently be used to classify data
from different radar sensors, where different antennas, range to targets etc,
will result in different sizes of measurement uncertainty for the same target.

To overcome the problem of having a different sizes of measurement un-
certainty for the same target one could use parallel tracking filters such as
Kalman filters [9] or Interacting Multiple Model (IMM) [10] filters. The IMM
filter has be used in [11] to classify three different classes of simulated data.
However, training and running the parallel filters on real data is computa-
tionally challenging.

In this paper, we prose a method to classify radar tracks from a 2D scan-
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Fig. D.2: The top graph shows the measurement position of a stationary target and the bot-
tom graph shows the probability curve for the different target classes, this is classified using a
recursive Bayesian classifier.

ning radar without the use of Doppler information. The proposed classifier
use a probabilistic approach to incorporate the uncertainty in the position es-
timate while the training can be done on ground truth data. By this approach
we can utilize different sensors e.g. GPS to train the classifier and making it
possible for the classifier to handle different sensors when testing the classi-
fier. The classifier uses Gaussian mixture models (GMM) to model the classes
probability distribution functions (PDFs). We use the Bayesian classifier such
that the classifier is a recursive classifier i.e. the probability will change as
more knowledge of the target is collected over time. We use real world radar
data to show the performance of the classifier.

1.1 Preliminaries

The radars used are 2D scanning radars with either solid-state power am-
plifier (SSPA) or travelling-wave tube (TWT) amplifiers. The radars are fully
coherent radars with pulse compression and inbuilt tracker. The radar deliv-
ers both normal radar video and moving target video (MTI) [12]. The radars
observe targets in a polar coordinate system, with an azimuth resolution be-
tween 0.36◦ to 0.6◦ and a range resolution of 12 meters [13–15].

Apart from kinematic features derived from radar observations, in this
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Fig. D.3: An image of radar cells. We model the cell to be an ellipse in the Cartesian coordinate
system. The blue colored cells could be a target which cover these cells. Further the red star in the
middle is the estimated position rj and the green ellipsoid is the estimated position uncertainty
Σp

j is the estimated position and uncertainty described in (D.17), (D.18) and (D.19). Each radar
cell has a unique index i.

work we also use features such as backscatter intensity from the radar as
well as geodetic information such as whether a target is observed over land
or sea, presence of roads and whether or not a clear line of sight exist between
the radar and a target at a given height. The measurement from a radar
consist of a number of radar cells which will be wider at far range. Each of
the cells is a measurement of the backscatter and if the backscatter is above
a certain threshold a target may be present. A typical target will normally
occupy multiple radar cells, see Fig. D.3. The uncertainty originates from the
number of connected radar cells as it is hard to predict where the correct
center is. The number of cells and the intensity in each cell can differ from
scan to scan as a result of noise in the hardware, adaptive preprocessing and
movements of the target with respect to the radar [12].

2 Method

In this section, we present our classifier, which is an extension of our con-
ference contribution given in [16]. The overall goal is to obtain the class
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probability P(ci|Zn) for all the classes ci, i = 1, · · · , L, given the set of current
and past radar measurements {Zn} = Zn, Zn−1, · · · , Z1. Measurements from
a practical radar are generally contaminated by noise, e.g., due to being based
upon noisy radar return signals. The measurement do therefore not contain
accurate estimates of the true target position or true target speed. Indeed, the
2D scanning radar that we are considering in this work, outputs the position
of the target and the uncertainty of the position. The uncertainty is typically
range dependent and much larger than for example a GPS position. Further-
more, a time stamp of the measurement time is provided. When deriving the
class probabilities, the inherent uncertainty within the radar measurements
should be taken into account. Moreover, in order to use the classifier on-line,
we are interested in a recursive approach, which exploits previously esti-
mated class probabilities. We begin in Section 2.1 by deriving the classifier,
when we have only a single feature, i.e., the target’s speed. Then, in Section
2.2, we show how to model the uncertainty within this speed feature. In sec-
tion 3, we then include multiple features and in Section 4, we show how to
take the uncertainty into account in the classifier.

2.1 Recursive estimates of the conditional class probabilities

Let V̂n denote the true speed of the target at the measurement index n, and
let Vn denote the estimated speed. Moreover, let Vn = V̂n + ξn, where ξn is
the estimation error. Before we derive the classifier, some assumptions are
needed.
Assumptions:

(i) The estimation errors {ξi} are mutually independent i.e. P(ξi|ξ j) =
P(ξi), ∀j, i, i 6= j.

(ii) ci ↔ Vn ↔ Zn, ∀i, n.

(iii) Vn ↔ Zn ↔ Zk, ∀n, k, n 6= k.1

(iv) Vn ↔ (ci, Vn−1)↔ {Vn−2}, ∀i, n.

(v) Vn ↔ Vn−1 ↔ {Vn−2}, ∀n.

Assumption (i) implies that the measurement noise are mutually indepen-
dent and hence the uncertainties in the position estimates are also mutually
independent. This assumption can be justified by thinking of the backscatter
as being a function of orientation, distance and angle to the target combined
with the antenna beam and the adaptive preprocessing in the radar. As-
sumption (ii) implies that by knowing the speed of the target, the class is

1We use double sided arrows as in x ↔ y ↔ z to denote a Markov chain, which means that
x and z are conditionally independent given y.
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independent of all measurement. The reasoning for this is upon knowledge
of the speed, the remaining information in the measurement is the uncer-
tainty about the class then that already provided by the speed. For coastal
surveillance radars this can be justified as all targets will be point targets
because of the typical distance to the target and the large antenna beam. As-
sumption (iii) implies that by knowing the measurement Zn the remaining
information in speed Vn is the estimation error, which can be assumed inde-
pendent of the other measurement Zk. This assumption is a requirement to
make the classifier recursive. Assumption (iv) implies that the speed can be
modelled as a first order Markov chain. This is justified because of knowing
a targets speed and the class of the target it is possible to do a very accurate
predication of the next speed. Of course more information is present by also
using speed Vn−2 i.e. acceleration. However, by this assumption, less com-
putational load is needed. Assumption (v) implies that we can model the
speed without knowing the class as a first order Markov chain. This assump-
tion can be justified by implicit knowing that we have physical targets, which
cannot accelerate infinitely fast. It is therefore possible to obtain an accurate
prediction of the speed given the last speed.

We will now start by describing the probability for ci:

P(ci|{Zn}) =
∫
· · ·

∫
P(ci|{Vn}, {Zn})P({Vn}|{Zn})d{Vn}. (D.1)

By using assumption (iii), we can rewrite (D.1) as

P(ci|{Zn}) =
∫
· · ·

∫
P(ci|{Vn})P({Vn}|{Zn})d{Vn}. (D.2)

By using assumption (i), we can write

P({Vn}|{Zn}) =
n

∏
j=0

P(Vj|Zj). (D.3)

We can use Bayes theorem on P(ci|{Vn}) to get

P(ci|{Vn}) =
P({Vn}|ci)P(ci)

P({Vn})
. (D.4)

By using assumption (iv) we can rewrite P({Vn}|ci) to

P({Vn}|ci) =
n

∏
j=1

P(Vj|Vj−1, ci)P(V0|ci). (D.5)

Finally, we can write P(ci|{Zn}) as

P(ci|{Zn}) =
∫
· · ·

∫ ∏n
j=1 P(Vj|Vj−1, ci)P(V0|ci)P(ci)

P({Vn})

×
n

∏
j=0

P(Vj|Zj)dVn · · · dV0,
(D.6)
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and by using the assumption (v), we get

P({Vn}) =
n

∏
j=1

P(Vj|Vj−1)P(V0), (D.7)

and

P(ci|{Zn}) =
∫
· · ·

∫ ∏n
j=1 P(Vj|Vj−1, ci)P(V0|ci)P(ci)

∏n
j=1 P(Vj|Vj−1)P(V0)

×
n

∏
j=0

P(Vj|Zj)dVn · · · dV0.
(D.8)

As an example, assuming that we have two measurements, we show how the
calculation is done in a recursive way. When the first measurement arrives,
we calculate

P(ci, V0|Z0) =
P(V0|ci)

P(V0)
P(V0|Z0)P(ci), (D.9)

and we then marginalize V0 to get the probability for the class, i.e.,

P(ci|Z0) =
∫

P(ci, V0|Z0)dV0. (D.10)

Using the second measurement, we can calculate the probability for ci, where
we use the probability distribution from (D.9)

P(ci, V1|{Z1}) =
∫ P(V1|V0, ci)P(ci, V0|Z0)

P(V1|V0)P(V0)

× P(V1|Z1)dV0,
(D.11)

and we can now marginalize V1:

P(ci|{Z1}) =
∫

P(ci, V1|{Z1})dV1. (D.12)

In general, when we receive a measurement, we calculate

P(ci, Vn|{Zn}) =
∫ P(Vn|Vn−1, ci)P(ci, Vn−1|{Zn−1})

P(Vn|Vn−1)P(Vn−1)

× P(Vn|Zn)dVn−1,
(D.13)

where P(ci, Vn−1|{Zn−1}) is the probability distribution from the previous
update of the probability. In the next step, we marginalize the speed to get
the probability for the classes i.e.,

P(ci|{Zn}) =
∫

P(ci, Vn|{Zn})dVn, (D.14)

97



Paper D.

where P(Vn|Vn−1, ci) can be found from

P(Vn|Vn−1, ci) =
P(Vn, Vn−1|ci)

P(Vn−1|ci)
, (D.15)

where P(Vn−1|ci) =
∫

P(Vn, Vn−1|ci)dVn and P(Vn|Vn−1) can be found as

P(Vn|Vn−1) =
P(Vn, Vn−1)∫

P(Vn, Vn−1)dVn
, (D.16)

and where P(Vn, Vn−1) = ∑i P(Vn, Vn−1|ci)P(ci).
In the next section, we will explain how we deduce the speed feature

from the measurement and estimate the uncertainty in the speed from the
uncertainty in the position.

2.2 Modelling the uncertainty in the feature

The measurement for this work is from a 2D rotating surveillance radar and
consists of the range and azimuth to the target, the uncertainty of the position
and a time stamp. The range and azimuth is mapped internally in the radar
to latitude and longitude, which can be mapped to a Cartesian coordinate
system [17], see Fig. D.3. In a similar manner we can map the uncertainty
to Cartesian coordinates. The uncertainty in the measurements primarily
depends on the range and azimuth resolution together with the size of the
target, the orientation of the target, the adaptive preprocessing and thermal
noise. The position of the target is estimated as the center of mass from the
backscatter, see Fig. D.3, which can be calculated as

µ =
1

∑i e(r̂i)
∑

i
r̂ie(r̂i), (D.17)

where µ = [µr, µφ]T is the center of mass for range r and azimuth φ respec-
tively, r̂i is defined as the ith range-azimuth cell. Further e(r̂i) is the backscat-
ter intensity in the radar cell. The uncertainty is the weighted variance of the
backscatter. The uncertainty is given by the covariance matrix. The variance
for range and azimuth can be found as a weighted sum of the backscatter,
that is

σ2 =
1

∑i e(r̂i)
∑

i
r̂2

i e(r̂i)− µ2 (D.18)

and the covariance of range and azimuth can be found as

σ2
rφ =

1
∑i e(r̂i)

∑
i

riφie(r̂i)− µrµφ. (D.19)

The diagonal of the covariance matrix is given by the vector (D.18) and the
off-diagonal by the scalar (D.19)
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ρj-3 ρj-2 ρj-1 ρj

Vn-1,meas Vn,meas

Zn-1
Zn

Fig. D.4: A figure showing how the measurements (plots) are used from the radar. Here
ρj−3 · · · ρj is the plots from the radar.

We let rj be the Cartesian coordinate converted from the range azimuth
i.e. rj = [xj, yj]

T . We let Σ
p
j be the uncertainty converted from range az-

imuth to Cartesian coordinates, tj is the time stamp, and j is the measurement
number. These three variables together are called a plot and are denoted as
ρj = {rj, Σp

j , tj}. To estimate the speed we use a two point estimate. To satisfy
the assumption P(ξi|ξ j) = P(ξi), ∀j, i, i 6= j used to get (D.3) we define Zn
as shown in Fig. D.4, that is Zn = {ρj, ρj−1}, where j = 2n. The two point
estimate of the velocity is calculated as

Vn,meas =
r2n − r2n−1

∆tn
, (D.20)

where ∆tn = t2n − t2n−1. By assuming that the uncertainty in the position
is independent from measurement to measurement, the uncertainty of the
velocity can be represented by the two-dimensional covariance matrix

ΣV
n =

Σ
p
2n + Σ

p
2n−1

(∆tn)2 (D.21)

We can calculate the speed of the target as Vn,meas = ‖Vn,meas‖2. To calcu-
late the uncertainty (standard deviation) of the speed Vn,meas we average the
minor and major axes of the ellipsoid representing the covariance matrix ΣV

n ,
given by the average of the eigenvalues of ΣV

n . As the ΣV
n is a 2x2 matrix the

average of the eigenvalues can be calculated as the average of the trace of ΣV
n .

Thus, the uncertainty of the speed is

(σV
n )2 =

Tr(ΣV
n )

2
, (D.22)

which for this case just is the average of the diagonal in the matrix.
We will now shown that Σp

n is approximately Gaussian distribution. In
order to do that we use real radar position measurements of sea buoys. We
use sea buoys since they are stationary targets, and we are therefore able to
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get a good estimate of the true position by simply taking the average of all
the measurements. With knowledge of the true position, we can calculate the
Mahalanobis distance [18] between each measurement and the true position
of the target. The distribution of these Mahalanobis distances of the station-
ary target, will follow a chi-squared distribution with two degrees of freedom
if the uncertainty of the position is Gaussian distributed [19]. We have used
10 radar tracks from different sea buoys and calculated the true position by
averaging over around 600 measurements for each sea buoy. The probabil-
ity mass function is obtained empirically by using the normalized frequency
count (histogram) and is illustrated in Fig. D.5. Also shown in Fig. D.5 is the
exact chi-squared distribution with two degrees of freedom. As it can been
seen the match is relatively good for these radar measurements.

Fig. D.5: The distribution of the Mahalanobis distance for 10 different sea buoys. Both the true
chi-squared and the measured distribution is shown

The Rice distribution is the probability distribution of the magnitude of a
bivariate normal random variable, which fits well with our work. We there-
fore propose to use a Rice distribution [20] to model the speed distribution.
The Rice distribution asymptotically approach a Rayleigh distribution for low
speeds i.e. Vn,meas → 0, and a Gaussian distribution for large speeds. The Rice
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distribution is defined as:

P(Vn|Zn) =
Vn,meas

σV
n

exp

(
−(V2

n + V2
n,meas)

2(σV
n )2

)
I0

(
VnVn,meas

(σV
n )

2

)
, (D.23)

where I0 is the modified Bessel function of the first kind [20]. For the case
without uncertainty, P(Vn|Zn) is describes by delta function centred at Vn.

In the next section, we will describe how to include additional features.
These feature have negligible amount of the uncertainty and will therefore be
used as the ground truth.

3 Multiple features

As it was shown in [16] the kinematic features Vn, Vn−1, ∆t are not solely
capable of separating the different classes. Therefore we introduce the same
features as used in [1, 2], specifically whether a given target is observed over
land or sea as well as whether the target is observed near a road or not. In
addition to the position features, we also propose to use a feature related
to line-of-sight between the radar and the target and a static target feature
derived from an average position of the target. The radar specific features
are delivered from the radar sensor and the geographic features are derived
from the position of the measurement.

We denote by xn , {ln, Γn, IN
n , IM

n , Hn, ρn} the set additional features,
where ln ∈ {0, 1} indicates sea/land respectively, Γn ∈ {0, 1} indicates no
road/road, IN

n ∈ {0, 1, . . . , 255} indicates the normal intensity, IM
n ∈ {0, 1, . . . , 255}

describes the moving target indication intensity, Hn ∈ R+
0 is the line of sight

minimum height, and ρn ∈ R+
0 is a indicator of stationarity. The features

are described in further details below. To simplify the notation we denote
the jth feature in the set xn by xn(j) and the set {xn(j)} denotes the se-
quence of the jth feature from time 0, . . . , n. We assume that the features in
xn are mutually independent and {xn} satisfy the first-order Markov chain
xn ↔ xn−1 ↔ xn−2. With this we can apply Bayes rule to obtain

P(ci|{xn(j)}) = P(xn(j)|ci, xn−1(j))P(ci|{xn−1(j)})
P(xn(j)|xn−1(j))

, (D.24)

where

P(xn(j)|ci, xn−1(j)) =
P(xn(j), xn−1(j)|ci)

P(xn−1(j)|ci)
. (D.25)

It follows
P(ci|{xn}) = ∏

j
P(ci|{xn(j)}), ∀n, i. (D.26)
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We can now modify (D.14) such that this equation includes the features xn.
We assume that {xn} is independent of {Zn}, i.e. {xn} ⊥⊥ {Zn}, which allow
us to write

P(ci|{Zn}, {xn}) = P(ci|{Zn})P(ci|{xn}) (D.27)

In the following sections, the individual features, xn(j) will be described

3.1 Surface features

The surface features are two binary feature, ln and Γn, where ln takes the
value 1 when a target is observed on land and 0 when observed over sea.
Similarly, the feature Γn is 1 for targets when observed near a known road,
and 0 elsewhere.

3.2 Radar plot intensity

From the radar sensor we have radar specific features such as the plot inten-
sity from normal radar processing IN

n and moving target identification (MTI)
processing IM

n . With the radar for this work the intensity is the amplitude
of the backscattered signal from the target and it is related to the radar cross
section size and the distance to the target.

3.3 Line of sight

The line of sight feature is a feature based on the required minimum height
for a given target to be within the radar line-of-sight. We use this estimate as
the radar in this work does not have height information of the target i.e. as
the radar is a 2D radar. We therefore try to estimate the minimum height the
target must be in to be seen from the radars position. An illustration of the
problem can be seen in Fig. D.6. Due to the curvature of the Earth, a target
beyond the radar horizon (D) must have a minimum height above the terrain
to be visible. For the ideal spherical Earth, the minimum height Hn, for the
n’th update, can be estimated as

Hn = Rh −
√

D2 + R2
e , (D.28)

for definitions see D.6. The radar used for this work is an X-band radar
[12] and to compensate for standard atmospheric refraction the local radius
of the Earth is multiplied with a factor of 4/3 [12, p. 503]. In practice, a
digital terrain elevation model [21] is used to evaluate the minimum height
required at the target location for a clear line-of-sight to exist between the
radar antenna and the target. We show an example in Fig. D.7 of a surface
target obstructed by hilly terrain between the radar antenna and the target.
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Rh

D

H

Target
Re

Re

Fig. D.6: Schematic drawing of the earth. Rh is the radar height from the earth ellipsoid, Re is the
radius of the earth taking at the geographic location of the radar placement, D is the measured
distance to the target and H is the relative height we want to estimate.

It is clear this minimum height must be used cautiously, as the framework
does not support a full electromagnetic propagation model including e.g.
multipath effects and ducting [12, pp. 502–518] [12, pp. 239–240].

To use the estimated minimum height Hn, for the nth update, we define
a set of predefined heights for each target class, Ĥi, where the subscript i is
the ith class. If the predefined maximum height Ĥi of the target is lower than
the estimated minimum height for a clear line-of-sight, Hn the probability for
that class will be multiplied with ε, where ε < 1 2.

P(ci|Hn; Ĥi) =

{
ε, if Hn > Ĥi
1.0, else.

(D.29)

3.4 Position average

An average position feature is introduced to help in the separation of sta-
tionary and moving targets (such as wind turbines versus ships). Although
stationary, the measurement uncertainty introduces a large fluctuation in the
estimated speed of stationary targets. In Fig. D.8, it can be seen the estimated
speed is up to 30 m/s for a wind turbine. It is therefore clear that speed
alone cannot separate a stationary target from a moving target. We therefore
introduce a feature, which is the difference between the last position update

2The reason for multiplying the class probability by ε rather than zero is due to that Hn and
Ĥi are both estimates.
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(a) Example of target, which is over sea and
the radar, placed at land at a distance of about
25 km.

(b) Blue is height of the landscape with the
Earth curvature. Green is the straight line
from the radar to the target. The dash line is
the minimums height of the target to be within
line of sight

Fig. D.7: An example of line of sight. The distance from the radar to the target is approx. 25 km.
The map overview can be seen in Fig. D.7a. As it can be seen, the target cannot be seen if it is
surface target such as a RIB. From the Fig. D.7b, the target must be at least 57 meters above the
sea level to be seen.

and the position median from the last Ns scans. A non-moving target will
exhibit a small difference from the median compared to a moving object such
as a helicopter. By using the median we are more immune to outliers3. We
define the set of the previous Ns positions as {rn−1}Ns = {rn−1 . . . rn−Ns−1}.
The median can then be calculated as

Mp =

[
med({xn−1}N′s)
med({yn−1}N′s)

]
. (D.30)

3We define outliers as wrong plot/track association done internal in the radar.
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Fig. D.8: In this figure the speed and position for a wind turbines is shown.

We then calculate the magnitude of the difference from the new position rn
to M̂p as

ρn =

∣∣Mp − rn
∣∣

N′s
, (D.31)

where if n ≥ N′s then N′s = Ns otherwise Ns = n, and N′s is a normalization
constant.

4 Implementation of the classifier

Our training data is derived from multiple different sensors such as auto-
matic identification system (AIS), automatic dependent surveillance–broadcast
(ADS-B), GPS and radars with different measurement accuracy and sampling
frequencies. During training, the entire sequence of measurements is avail-
able. Therefore we can apply e.g. forward and backward Kalman filtering to
obtain an improved estimate of the track positions relative to that obtained by
e.g. a forward filtering only. This approach is known as fixed interval smooth-
ing [22]. Fixed interval smoothing reduces the uncertainty in the training data
and we therefore treat the data as if they have no uncertainty.

As explained in section 2 our recursive classifier at time n first computes
(D.13) and then uses (D.13) in (D.14) to get the class probability. In order to
compute (D.13), we therefore need to find P(Vn|Vn−1, ci), P(ci, Vn−1|{Zn−1}),
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P(Vn|Vn−1),P(Vn−1) and P(Vn|Zn). We first note that P(ci, Vn−1|{Zn−1}) is
known since it was found at time n − 1. Moreover, P(Vn|Zn) is explicitly
given by (D.23). In order to find the remaining terms, we will model the PDF
P(Vn, Vn−1|ci) using a Gaussian mixture model (GMM), i.e.

P(Vn, Vn−1|ci) = ∑
i

πiNi(Vn, Vn−1|ci), (D.32)

where πi is the weight for the i’th mixture, ∑i πi = 1 and N denotes the
normal distribution. We can then use Bayes rule to get the following PDF

P(Vn|Vn−1, ci) =
P(Vn, Vn−1|ci)

P(Vn−1|ci)
. (D.33)

P(Vn−1|ci), P(Vn|Vn−1) and P(Vn−1) are obtained from (D.32) by marginal-
ization via analytical integration. Thus, we have all the terms required to
calculate the class probability by using (D.14). It is important to note that
in (D.13), the product P(Vn, Vn−1|ci)P(ci, Vn−1|{Zn−1}) becomes increasingly
complex to calculate as time increases. To see this, we note that both terms in
the product are represented by GMMs. It follows that the product will also
be a GMM with a number of mixtures equal to the product of the number of
mixtures in each of the GMMs. Thus, in the next update step, this product
is further multiplied by a GMM, and the resulting GMM contains an expo-
nentially increasing number of mixtures. There are at least two approaches,
which can be used to handle this. The first is to fit a new GMM, with a
predefined number of mixtures, for each update of the probability. However,
this is not a good solution as it is computationally expensive as it requires
running Kmeans and the EM-algorithm [23] for each update. The second op-
tion, which we use, is to solve the equation numerically. This means that we
change the integrals in (D.13) and (D.14) to sums and thereby numerically
approximate the integrals. In this cases (D.13) is approximated by

P(ci, Vn|{Zn}) ≈ ∑
{V̂n−1}

P(Vn|V̂n−1, ci)P(ci, V̂n−1|{Zn−1})
P(Vn, V̂n−1)

P(Vn|Zn)∆V̂n−1,

(D.34)

and (D.14) is approximated by

P(ci|{Zn}) ≈ ∑
{V̂n}

P(ci, V̂n|{Zn})∆V̂n−1. (D.35)

Furthermore P(Vn|Zn) is normalized such that

∑
{V̂n}

P(V̂n|Zn)∆V̂n = 1. (D.36)
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The set {V̂n} contains a number of values (speeds) which we sum over. We
expect that P(Vn|Zn) has a smaller span in Vn then P(Vn, Vn−1|ci). It is there-
fore only necessary to have points where P(Vn|Zn) > 0. We therefore choose
to only define the set of {V̂n} where P(V̂n|Zn) > 0.

To reduce the computational load of each update of the probability, we can
reduce the number of points in the sum by sampling closer near the mean of
P(Vn|Zn) and then reduce sampling farther away from the mean. However,
to ensure that stationary targets are classified correct, we also sample speed
from zero and upwards if the mean of P(Vn|Zn) is below a threshold, in this
case 5 m/s. We use trapezoidal integration [24] as this has shown an adequate
accuracy for the approximations.

5 Simulation study

The data used in this work are recorded from real targets and have been
acquired using automatic identification system (AIS), automatic dependent
surveillance – broadcast (ADS-B), GPS loggers on cooperating targets and
radar.

In this section we presents the result of the classifier when using the
uncertainty, i.e. by setting P(Vn|Zn) to a delta function, and when using
the uncertainty in which case P(Vn|Zn) is given by (D.23). We model for
each class ci P(Vn, Vn−1|ci) used in (D.16), by a Gaussian mixture model
(GMM). The number of mixtures for the different classes is found by the
method of Gmeans [25] and the GMM is trained with Kmeans and the EM-
algorithm [23]. Further a boundary box is used in the GMM such that the
probability from the GMM is set to zero if the input to the GMM is higher
or lower then seen in the training. We also model P(xn, xn−1|ci) in (D.25)
by GMMs. When the uncertainty is included the number of points, i.e. the
size of the set {V̂n} in (D.34), (D.35) and (D.36), is set to minimum 91, as
this has shown good accuracy of the numerically integration while keeping
the computational load acceptable. The size of the training database and test
database is shown in Table D.1, and the number of mixtures for each class is
shown in Table D.2. Moreover, we used the heights defined in Table D.3 for
Ĥi in (D.29).

In Fig. D.9 the probability for a sea buoy is shown. In Fig. D.10 the prob-
ability is shown for the commercial aircraft circling the wind farms from the
wind farm scenario shown in Fig. D.1. In the figure, the probability is for the
classification without using the uncertainty in the plots and with using the
uncertainty.
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Table D.1: The size of the training and test database

Classes Trainings size Test size
large boat 23130 2462
stationary sea 13662 7492
RIB 23470 720
helicopter 19143 205
commercial aircraft 6725 8840
birds 3289 262

Table D.2: The number of mixtures in the GMM for P(Vn, Vn−1|ci)

Class name Number of mixtures
Large boat 11
Stationary sea 1
Small boat 13
Helicopter 9
Commercial aircraft 6
Birds 1

Table D.3: Predefined height of the different target classes

Target class predefined height [m]
Large ship 35.0
Stationary sea 200.0
Commercial aircraft 10000.0
Birds 100.0
RIB 2.0
Helicopter 1000.0

6 Discussion

As described in the introduction the probability of the classification, must
correspond to the confidence of the classification. In Fig. D.9 the classification
for the sea buoy is shown. Here it can be seen that when using uncertainty
the classifier is slower to achieve a high confidence that the target is a sea
buoy then when the classifier does not utilize the uncertainty. It can also be
seen that without the uncertainty the target is classified wrong the most of
the time. If we look at Fig. D.10 the probability for the commercial aircraft is
shown. When we utilize the uncertainty the classifier continues to believe that
the target is a commercial aircraft. We also see that when we do not utilize
the uncertainty in the classifier we have to restart the classifier as there are no
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Fig. D.9: The probability curve for a sea buoy.

classes which matches the target. This can be seen around the updates 40, 45,
150, 200 and 240. This is because there is no target in the training database,
which can both fly, as fast as around 100 m/s and as low as 40 m/s. From
the results shown in figures D.9 and D.10 we show that the classifier which
use the uncertainty is more robust and the probability matches better with
the confidence of the classification results.

7 Conclusion

In this work we presented a Bayesian recursive classifier, which uses the un-
certainty in position measurements to achieve a better match between the
probability for the target class and the confidence of the classification. We
showed that by exploiting the uncertainty in the position a more robust clas-
sification is made as more possible speeds are used in testing. To further
improve the classification, we introduced additional features such as surface
features (to indicate whether the target is on land or sea), radar plot inten-
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Fig. D.10: The probability development of the commercial aircraft from the Horns rev scenario
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sity, line of sight (this is useful since the radar has no height information),
and position averaging (to separate stationary targets from moving targets).
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1. Introduction

Abstract

In this work, we show that by using a recursive random forest together with an alpha
beta filter classifier it is possible to classify radar tracks from the tracks’ kinematic
data. The kinematic data is from a 2D scanning radar without Doppler or height
information. We use random forest as this classifier implicit handles the uncertainty
in the position measurements. As stationary targets can have an apparently high
speed because of the measurement uncertainty, we use an alpha beta filter classifier
to classify stationary targets from moving targets. We show an overall classification
rate from simulated data at 82.6 % and from real world data 79.7 %. Additional to
the confusion matrix we also show recordings of real world data.

1 Introduction

The increasing demand for protection and surveillance of the coastal areas
requires modern coastal surveillance radars. These radars are designed such
that small objects can be detected. Therefore, there is an increasing amount
of information for the radar observer. Moreover, the number of false and
unwanted objects increases as the demand for seeing small objects makes the
radar more sensitive. Generally, the false objects can be avoided by using
a reliable tracker. However, the tracker does not exclude unwanted objects.
The difference between false and unwanted objects are that false objects do
not originate from true objects but are mainly noise objects, whereas the un-
wanted objects originate from true objects but are unwanted in the surveil-
lance image. These objects depend on the purpose of the radar however, for
coastal surveillance radars the unwanted objects are normally birds, wakes
from large ships etc.

It has been shown in [1] that it is possible to classify tracks by using
a recursive classifier where a Gaussian mixture model (GMM) is used to
model the probability distribution function (PDF) of targets kinematic behav-
ior. However the classifier does not handle the uncertainty in the measure-
ments from the radar. In [2] the position uncertainty is used as an input to the
classifier. The classifier also use a GMM to model the PDF of the kinematic
behavior of the target. The problem with this is that it is very computationally
expensive. To obtain an easier way to handle uncertainty, joint target track-
ing and classification can be used, as shown in [3–5]. The problem with joint
target tracking and classification is that it is difficult to achieve a high degree
of freedom in the filters to separate the classes. For example a car driving
130 km/h on highway is not likely to accelerate but more likely to deceler-
ate. This is very hard to model with a tracking filter. A particle filter can be
used but this is computationally expensive. In [6] the authors are describing
a method to classify trucks and cars from GPS measurements. The classifier
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consists of a support vector machine (SVM) and the features are primarily
acceleration and deceleration. The classifier is non-recursive, which means
that the complete length of the tracks is required. The measurements from a
GPS device is generally more accurate than the position measurements then
a radar. In [7] a decision tree is used for a recursive classification of four
different target classes. The data are from a radar with height information.
The decision tree has the advantage that it in some way implicitly handles the
uncertainty. That is, features that do not separate the classes will not be used
as much as features, separating the classes. The disadvantage is that the clas-
sifier has a high variance of the classification results. In [8] the random forest
classifier is introduced. The random forest is a bagging classifier [9] where
multiple decision trees are used to reduce the variance of the classification
results. For this reason random forest is selected in this work.

In this work we introduce a classifier which uses position measurements
to classify radar tracks from a 2D scanning radar. The classifier consists of a
alpha beta filter [10] and a random forest classifier. The alpha beta filter is
classifying stationary or moving and the random forest classifies the moving
targets. The classify is recursive such that the classification results is being
updated for each scan of the radar. The classifier performance is shown by
using simulated track data and real world radar data.

In section 2.1 we will introduce the random forest classifier by describing
the training of a decision tree and then explain how this tree is used in the
random forest. In section 2.2 we will explain how we utilize the probability
estimates from the random forest in a recursive framework. In section 2.3
we introduce a alpha beta filter classifier, which classifies targets as either
stationary or moving. This is introduced because stationary targets can have
high speeds because of they fluctuate in the position because of measure-
ments uncertainty or the main scatter points is moving i.e. wind turbine. In
section 2.4 we combine the random forest and the alpha beta filter to our
proposed classifier. In 2.5 we describe, which features we use in the random
forest. The simulation study is shown in section 3 and in section 4 the real
world results are shown. We discuss the results in section 5 and conclude the
work in section 6.

2 Method

When using a random forest, a feature vector is needed. We define our
feature vector as a set of kinematic and geographic features. The feature
vector is derived from the radar position measurements. We define this set
of position measurements as

{Zn}k = {Zn · · · Zn−k}, (E.1)
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where Zn = [xn, yn]T , x and y is the position in a Cartesian coordinate system
with the origin at the location of the radar, n is the measurement number
index and k is the set size.

2.1 Random forest

In this section, we introduce the random forest classifier [8]. Random forest
is a bagging algorithm, which means that the random forest consists of a
number of weak classifiers [11], which has zero bias, but high variance of
the true value. The weak classifiers are decision tress. We start this section
by describing how to grow a decision tree and then move on to the random
forest.

A decision tree consists of a number of nodes e.g. (N1 · · ·N3) and a num-
ber of leafs e.g. (N4 · · ·N7). This is shown in Fig. E.1. A node is defined by
more then one class existing in the node data, whereas a leaf only have one
class. In every node a decision must be made such that we either go left or
right in the tree. The decision must always be true or false. A leaf is defined
as a node where all of the data in the node only consists of one class therefore
no more splits are required.

To train the tree we start with a feature vector F of size Ns × D where Ns
is the number of samples and D is the number of features i.e. dimensions in
the feature vector. We now want to split the data such that we make the best
separation of the classes by choosing the best feature and feature value. To
do this we need to find the best feature to split and the best value to split at.
To explain the algorithm we assume that there are only 2 classes so it forms
a binary classification problem and that the values of the feature belong to a
finite sample space. This is done to make the explanation easier.

We start by assuming that a split already has been made and we want to
evaluate how good the split is. For this, we use a normalized the entropy
measure to do that [11]. An alternative to the normalized entropy is the more
common Gini index [12] however, for this work the normalized entropy as
shown better results. We define the set of samples in the parent node as s1
and the number of samples in the set as |s1|. Similarly we define the set of
samples in the children as s2 and s3 and the number of samples as |s2| and
|s3|. Further we index the samples belonging to class ` by the superscript `
such as s`1, where ` ∈ {1, 2}. We can calculate the empirical entropy for the
children as

H(si) = −P(s1
i ) log2(P(s1

i ))− P(s2
i ) log2(P(s2

i )), i = {2, 3}, (E.2)

where P(s1
i ) = |s1

i |/|si| and P(s2
i ) = |s2

i |/|si|. It follows that P(s1
i ) = 1−

P(s2
i ). As the entropy does not take into account how many samples there
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N1

N2 N3

N4 N5 N6 N7

True False

True False True False

Fig. E.1: An example of a decision tree where N1 to N3 is nodes where a decision must be made.
An example could be is the ball blue (True or False)

are in each child we normalize the entropy as

Ĥ(si) =
|si|
|s1|

H(si), i = {2, 3}. (E.3)

We can now calculate the information gain from the split as

H̃ = H(s1)− (Ĥ(s2) + Ĥ(s3)). (E.4)

From (E.4) we now have a measure for how good a split is, and now able to
optimize each split of the data such that we choose the best feature to split
on and the best value of the feature. This is continued until all of the training
data is classified correct i.e. all end nodes are leafs. typically for a decision
tree, it is necessary to prune the tree back to avoid over fitting. However,
an advantage of using random forest is that it is not necessary to prune the
decision trees. The random forest is a bagging classifier [9]. This means that
the random forest consist of a number of trees Nt where each tree is trained
with a random part of the samples and a random part of the features. That
is, we draw a random subset of the training data and select a random subset
of the features. We then train each tree with these random subsets and we
assume that the trees are statically independent of each other. In general
the random forest is not a probabilistic classifier. However, by counting the
number of trees for each class and normalizing with the total number of trees
a empirical probability can be achieved.

P̂(ci|{Zn}k) = ψi/Nt, (E.5)

where ψi is the number of trees in the random forest which ended up in a
leaf for class i.
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In the next section we explain how we (E.5) obtained from the random
forest to achieve a recursive update of the probability for the class given all
the measurements.

2.2 Recursive update of the random forest probability

The empirical probabilities obtained from the random forest classifier are
obtained as the fraction of the number of trees which predicts ci divided with
the total number of trees. By this definition, the resolution of the probability
estimates is given by the number of trees in the random forest. To prevent
that a class is assigned a zero probability, we modify it in the following way:

P(ci|{Zn}k) = P̂(ci|{Zn}k)(1− 2/Nt) + 1/Nt, (E.6)

such that a probability never reaches zero and is restricted below 1.
Based upon the above, we have the probability for the class given the cur-

rent set of features P(ci|{Zn}k). However we want the probability given all
measurements, that is P(ci|{Zn}), where {Zn} = {Zn}n. We have, however,
not been able to find a simple way to recursively update P(ci|{Zn}) based on
the previous P(ci|{Zn−1}) and which works for all n. Instead we propose the
following recursive function f (ci|{Zn}), which is everywhere non-negative
and sum to one. Thus, f (ci|{Zn}) can be considered to be a probability
mass function (PMF), which we will use as an approximation for the true
P(ci|{Zn}). In particular, we define:

f ({Zn}k, ci) ,
P(ci|{Zn}k)

w

φn
f ({Zn−1}k, ci), (E.7)

where w is a weighting factor, P(ci|{Zn}k) is given by (E.6) and where φn is
the normalization constant such that ∑ci

f ({Zn}k = 1. The introduction of the
weighting by w is inspired by the weighted Bayesian classifier used in [13].
In particular, we choose w = 1/k since the features of the random forest is
given by a set of measurements where only one out of k measurements is
substituted at each update.

In the next section we describe our alpha beta tracking filter. This filter is
used to classify if a target is non moving or moving. The reason for applying
such a filter is to classify stationary targets, which have high apparent speed
due to measurement uncertainties.

2.3 Alpha beta filter

The alpha beta filter is a simple tracking filter [14]. By using the alpha beta
filter, we assume that we can describe the target movements with a first order
Markov chain. We have the state vector Xn = [x̂, ŷ]T and the measurement
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zn. The alpha beta filter is trying to predict zn given the speed vn−1 at time
n− 1 and the state Xn−1 as

Xn = Xn−1 + τvn−1, (E.8)

where τ is the time between zn−1 and zn. Assume the speed is constant
between n and n− 1 that is vn = vn−1. The error can be calculated as

rn = zn − Xn, (E.9)

with the residual we update the estimate of the vn and Xn as

Xn := Xn + αrn

vn := vn +
β

τ
rn,

(E.10)

where α and β are the constants in the alpha beta filter. To calculate the
probability for the class ci we use a multivariate normal distribution

Pαβ(zn|ci) =
1

2π
√
|Σn|

exp
(
−1

2
(Xn − zn)

TΣ−1
n (Xn − zn)

)
1

2π
√
|Σn|

exp
(
−1

2
rT

n Σ−1
n rn

)
,

(E.11)

where Σn is the covariance of the position, and the subscript αβ is to empha-
size that this is the probability for the alpha beta filter. The purpose of the
alpha beta filter is to separate non moving targets i.e. stationary targets from
moving targets. We therefore define two filters: a stationary filter Pαβ(cs|zn)
which have the parameters α = 0.1 and β = 0.0, which allows the position
part of the state to move slightly but force the speed to be constant at zero.
The possibility for a slight movement of the state is because of the possibility
for false starting measurements. We define the moving alpha beta filter as
Pαβ(cm|zn) with the parameters α = 1.0 and β = 1.0 i.e. we hold the speed
constant from update to update but allow both the movement and the speed
to change with the measured change. For this work we want the alpha beta
filter to classify if the target is stationary or non-stationary, we therefore re-
cursively update the probability of the alpha beta filter.

Pαβ(ci|{Zn}) =
Pαβ(Zn|ci, {Zn−1})Pαβ(ci|{Zn−1})

Pαβ(Zn|{Zn−1})
. (E.12)

To reduce the computational complexity we assume that the positions are
controlled by a first order Markov chain i.e. Zn ↔ Zn−1 ↔ {Zn−2}, ∀n.1

Pαβ(ci|{Zn}) =
Pαβ(Zn|ci, Zn−1)Pαβ(ci|{Zn−1})

Pαβ(Zn|Zn−1)
, (E.13)

1We denote the Markov chain by a↔ b↔ c, such that a is statistically independent of c if we
known b.
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In the next section we describe how we combine the random forest clas-
sifiers and the alpha beta filter classifier such that a classifier, which is a
combination of the two classifier are created.

2.4 Combining the alpha beta filter with random forest

In our work we let the alpha beta filter classify if the target is stationary or
non-stationary i.e. the alpha beta filter has two classes. The random forest
has a stationary class and multiple non-stationary classes. We define for the
random forest c0 to be the stationary class and c1···C to be the moving classes,
where C is the total number of classes. For the alpha beta filter we have the
two classes as cs and cm for stationary and non-stationary classes respectively.
We include the alpha beta filter as described in (E.14), (E.15).

P̂(c0|{Zn}) = f ({Zn}k, c0)Pαβ(cs|{zn}), (E.14)

P̂(ci|{Zn}) = f ({Zn}k, ci)Pαβ(cm|{zn}), i = 1 · · ·C (E.15)

We then normalize P̂(ci|{Zn}) as

Pc(ci|{Zn}) =
P̂(ci|{Zn})

ω̂
, (E.16)

where ω̂, is a constant such that ∑i Pc(ci|{Zn}) = 1. By including the alpha
beta filter in this manner, we ensure that the alpha beta filter, classifies if a
target is stationary or moving and let the random forest classify what type of
moving target it is.

In the next section we will describe the features we use for the random
forest feature vector, we will also describe how these are derived from the
position. We only utilize position dependent features such as speed, acceler-
ation etc.

2.5 Features

For the feature vector, we draw inspiration from [15] for some of the features.
In this work, we set the number of position measurements k in (E.1) to 10.
The number of measurements used in the feature vector is a compromise be-
tween the time it takes to get the number of measurements required for a full
feature vector and the amount of information contained in the feature vector.
Larger k requires more measurements i.e. more time before a classification
results is made whereas for smaller k the first classification result comes ear-
lier albeit with a greeter uncertainty due to the smaller amount of available
information. The features and their descriptions can be seen in Table E.1.
The set of measurements, {Zn}k, is a sub-set of the total set of measurements
containing the latest k measurements. The index i is used to represent the i’th
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element in the vector of measurements with length k with 0 ≤ i < k. Like-
wise we define the set of time stamps of the measurements as {tn}k with the
individual measurement being observed at time ti. We start by calculating
the vectorial distance between the measurements as:

δi = zi − zi−1, (E.17)

with the scalar distance given by

∆i = |zi − zi−1|, (E.18)

and the time difference between the measurements as

τi = ti − ti−1. (E.19)

The 2-point velocity estimate is

vi =
∆i
τi

, (E.20)

for 1 ≤ i < k and the 3-point acceleration estimate is

ai =
2(vi+1 − vi)

τi+1 + τi−1
, (E.21)

for 1 ≤ i < (k− 1). The normal acceleration a⊥i is given by the product of the
speed and angular velocity

a⊥i =

(
vi+1 + vi

2

)(
2

ti+1 − ti−1

)
cos−1

(
δi+1 · δi
∆i+1∆i

)
. (E.22)

The feature di is the shortest distance from the i′th measurement to the near-
est coastline where we use the SWBD database from [16] to determine if a
given location is over land or sea. Because of errors in the database a hard
threshold cannot be used for land and sea. We therefore assign a maximum
distance ξ to the coastline from the target. If the target is farther away then ξ
we assign ξ to the distance. the sign of the distance decide if it is over land or
sea. We set ξ = 700 meters to accomodate for errors in the SWBD database.

In the next section we will show some simulation results of the classifier.
We will also show some real world results of the classifier.

3 Simulation study

We start by showing the performance of the algorithm versus the number
of measurements k which the extracted features is from. The size of the
feature vector change by k and the table shown in Table E.1 for k = 10.
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Table E.1: The feature vector used. The number of measurement has been chosen to be k = 10

Feature Feature description
std(∆i) Empirical standard deviation of sample-to-sample distances
v1
... 2-point speed estimate
vk
mean(vi) Empirical mean of the speed
std(vi) Empiricial standard deviation of the speed
a1
... 2-point acceleration estimate
ak−1
mean(ai) Empirical mean of the acceleration
std(ai) Empirical standard deviation of the acceleration
mean(a⊥i ) Empirical mean of the normal acceleration
std(a⊥i ) Empirical standard deviation of the normal acceleration
|zk − z0| Total distance moved
d0
... Distance to coastline
dk
mean(di) Empirical mean of the distance to coast line
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The data we use are simulated data from a controlled random walk. The
controlled random walk consist of a three state transition matrix which has
a deceleration, steady state and acceleration state. Parameters for maximum
and minimum speed are incorporated which changes the probability in the
transition matrix if the speed is not within the boundary of the permitted
speed range. The data for different targets are generated such that they have
nearly the same support in speed and the main difference is the acceleration
support. The random walk creates position px

m and py
m which are extrapolated

from some smooths speeds V̂x
m and V̂y

m described later.

px
m = px

m−1 + ∆tV̂x
m + Σx

m (E.23)

py
m = py

m−1 + ∆tV̂y
m + Σy

m, (E.24)

where ∆t is the time between the updates for m and m− 1 and Σx
m and Σy

m
are position uncertainty drawn from a distribution.[

Σx
m

Σy
m

]
∼ N (0, Σe), (E.25)

where Σe is the position covariance and N denotes the normal distribution.
The smooth speeds are speeds Vx

m and Vy
m which are convolved with a moving

average filter h:

V̂x
m = h ∗Vx

m (E.26)

V̂y
m = h ∗Vy

m. (E.27)

The speeds are extrapolated from accelerations Ax
j (k) and Ay

j (k), where j
denotes the depending upon the state j. The speeds are given as[

Vx
m

Vy
m

]
=

[
Vx

m−1 + ∆tOx
j (k)

Vy
m−1 + ∆tOy

j (k),

]
(E.28)

where

Ox
j (k) ∼ N (µx,j, σ2

x,j) (E.29)

Oy
j (k) ∼ N (µy,j, σ

y
y,j) (E.30)

The parameters for the normal distribution µx,j,µy,j,σ2
x,j and σ2

y,j are given
from the function φj(V(k− 1), ci) defined as:

φj(V(k− 1), ci) =


ψj(1) if Vm−1 > ζmax,
ψj(2) if ζmin ≤ Vm−1 ≤ ζmax

ψj(3) else,

, (E.31)
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d a

PĴ,J

c

Fig. E.2: The state machine used for the data generation of the simulated data. The state machine
has three states, an accelerating a, decelerating d and a constant speed c state. The probability
for jumping between the states is controlled with Pĵ,j which is change depending on the speed.

Fig. E.3: An example of a simulated track

where ψj(1), ψj(2) and ψj(3) is the set of parameters {µy,jµx,j, σ2
y,j, σ2

x,j} used
in (E.30). The state machine consists of three states: deceleration (d), constant
(c) and acceleration (a) states, see Fig. E.2. The state transition probabilities
are given as:

Pĵ,j(V(k− 1), ci) =


Ψ ĵ,j(1) if Vm−1 > ζmax,

Ψ ĵ,j(2) if ζmin ≤ Vm−1 ≤ ζmax

Ψ ĵ,j(3) else,

, (E.32)

where ĵ is the previous state and Ψ ĵ,j is the transition probability. An example
of a track can be seen in Fig. E.3 The speed PDFs can be seen in Fig. E.4 and
the accelerations PDF can be seen in Fig. E.5. The performance of the classifier
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(a) Speed PDF of the the first class (b) Speed PDF of the the second class

(c) Speed PDF of the the third class (d) Speed PDF of the the fourth class

Fig. E.4: The speed PDFs of the four different classes

versus the number of measurement k can be seen in Fig. E.6. Further we
show the performance of the classifier vs. the number of trees Nt used in the
random forest, see Fig. E.7. The confusion matrix of the classification results
for the four classes can be seen in Table E.2, where we have used k = 10 and
Nt = 100.

4 Real world results

The data used for this work consist of Automatic Identification System (AIS),
which is a broadcast system used for large ships, Automatic Dependent
Surveillance-Broadcast (ADS-B) which is a broadcast system used for com-
mercial aircrafts, GPS logs and real world radar data. The classes for this
work is typically classes for coastal surveillance e.g. large ships, birds, small
boats etc.

We show a confusion matrix for real world data in Table E.3. As a confu-
sion matrix does not take into account how the probability develops over time
we also show some real world scenarios. For these scenarios extra classes are
used. The scenarios are images showing all tracks within a specific time pe-
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(a) Acceleration PDF for the first class (b) Acceleration PDF for the second class

(c) Acceleration PDF for the third class (d) Acceleration PDF for the fourth class

Fig. E.5: The acceleration PDF of the four classes

Fig. E.6: The overall performance of the algorithm given the number of measurement used in
the feature vector.
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Fig. E.7: The performance of the classifier for the synthetic generated data vs. the number of
trees used in the random forest.

Table E.2: The confusion matrix of the simulated data

Predicted:
Actual: type 1 type 2 type 3 type 4
type 1 95.2 4.8 0.0 0.0
type 2 16.7 72.1 11.2 0.0
type 3 1.0 35.6 63.3 0.0
type 4 0.0 0.0 0.0 99.9
Overall performance 82.6

Table E.3: The confusion matrix for real world data.

Predicted:
Actual: Birds RIBs Stationary sea targets Large ships Helicopters Commercial aircrafts
Birds 67.9 9.2 0.0 21.0 1.9 0.0
RIBs 6.4 62.4 0.0 31.2 0.0 0.0
Stationary sea targets 0.5 0.0 99.5 0.0 0.0 0.0
Large ships 21.4 5.1 0.3 61.5 11.6 0.0
Helicopters 12.2 0.0 0.0 0.0 87.8 0.0
Commercial aircrafts 0.8 0.0 0.0 0.0 0.0 99.2
Overall performance 79.7
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4. Real world results

Fig. E.8: The scenario where a RIB is salling out and zigzagging back again, a big amount of
birds is present

riod. The scenarios have both known and unknown targets. It is therefore not
possible to make a confusion matrix of the scenario however, it is possible to
have a good estimate of the performance of the classifier in real world situa-
tions. The scenarios are recorded with different radars and antennas, further
the sampling rate can be different for the different scenarios. We show two
scenarios from coastal surveillance applications. The first coastal surveillance
scenario is recorded in Denmark where a rigid inflatable boat (RIB) is sailing
from west to east and zigzagging back. Towards the north of the RIB there
are two unknown vessels, further there are some sea buoys present both to
the north of the RIB but also to the far south. The rest of the tracks are be-
lieved to be bird. See the scenario at Fig. E.8. The second scenario is also
from Denmark and shows two wind turbines farms. A commercial plane is
flying in from the west to the east and a small personal aircraft is circling
over first the wind farm to the north then the second wind farm and finally
leaving towards the east. Three vessels is present one to the east of the wind
farm in the north (above the other wind farm) the second vessel is sailing
through the wind farm in the south. The last vessel is sailing from west to
east under the south wind farm. The rest of the tracks are believed to be
birds, see Fig. E.9. As the majority of previously published results are based
on a joint tracking and classification approach, mostly on simulated data, it
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Fig. E.9: Hornsrev

is not directly possible to compare the obtained classification accuracy.
In the next section we will discus the results of the classifier.

5 Discussion

In Fig. E.6 the performance of the classification results for the simulated data
set is shown, where we vary the number of measurements k, in (E.1), used
to extract the features. The performance is calculated as the mean of the
diagonal in the confusion matrix. It is clear the more measurement (longer
feature vector) used the better the classification results. This is clear as more
information to the classifier gives better estimation of the class and therefore
it is more likely to classify correct. The downside of increasing the number
of measurements is that it takes longer time from a track is seen until the
first probability of the target is shown. For our results, the sampling rate
varies between 0.333 to 1 Hz. For 10 measurements this gives, a maximum
waiting time of 30 seconds, which we believe for the application in hand, is
acceptable. In Fig. E.7 the performance can seen when varying the number of
trees used in the random forest. The plot is made with k = 10. It can be seen
that the performance does not get better after around 170 trees. The increase
the number of trees take longer time to train the random forest and is more
computational expansive and memory requiring when using the classifier for
testing i.e. the purpose of the classifier is to run in real time. The performance
of k = 10 and nt = 100 can be seen in Table E.2. It is clear that type 2 and
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type 3 has the most confusion between them. This is also natural if we look
at the speed PDF’s and the acceleration PDF’s in Fig. E.4 and E.5 respectively
as these is very similar. In general the of diagonal numbers in the confusion
matrix is at the left side. This is due to the fact the large allowed acceleration
still contains smaller acceleration which therefore will be classified as a lower
class type.

For the real world scenarios we use k = 10 and nt = 170. As it can
be seen the confusion matrix in Table E.3 shows relative good performance.
Nearly all of the stationary sea targets and commercial aircrafts are classified
correct. The helicopters are confused with birds. This can be because of the
helicopters can move as slow as birds. The are some confusion between large
ships, birds and RIBs. All of these classes has kinematics which are close to
each other.

In Fig. E.8 one of the real coastal surveillance scenario is shown. The sce-
nario shows a RIB sailing out from a marina and zigzagging back again. The
RIB is classified as a small fast boat. The reason that it is not classified as a
jetski/RIB is that it sails more like a fast boat whereas jetski/RIB often makes
turns, accelerate and decelerate. The two slow moving vessels to the north
of the RIB is classified correctly. Some of the sea buoys are classified correct
as stationary targets. Only a few birds are classified correctly. In Fig. E.9
two wind farms can be seen and nearly all of the wind turbines is classified
as stationary, while a few are misclassified as small slow moving boats. The
commercial aircraft is between commercial aircraft and small aircraft, how-
ever the target is primary classified as commercial aircraft. The small aircraft
circling the two wind farms is classified correctly even though the aircraft is
flying below stall speed. This can be due to the strong winds, and therefore
the real airspeed is much larger. The one sea vessel that is sailing between
the wind turbines is misclassified as a bird, while the other sea vessels are
classified as small slow boats, small fast boats and helicopters. Unfortunately,
nearly all the birds are misclassified as either unknown or as helicopter. We
believe this is because that the training data do not contain any birds at that
distance and speeds (because of the wind). Further the radar used to record
this scenario is different from the radars used for the training data.

6 Conclusion

We have shown that it is possible to use a recursive approach to classify
radar tracks from kinematic data. We have also showed that it is possible to
use an alpha beta filter together with the random forest such that stationary
targets are classified as stationary. The study both use simulated data, which
is simulated to behave as real targets and real world data. We have shown
both scenario and confusion matrix to get an overview of the performance.

131



References

References

[1] L. W. Jochumsen, M. Pedersen, K. Hansen, S. H. Jensen, and J. Øster-
gaard, “Recursive bayesian classification of surveillance radar tracks
based on kinematic with temporal dynamics and static features,” in
Radar Conference (Radar), 2014 International. IEEE, 2014, pp. 1–6.

[2] L. W. Jochumsen, E. Nielsen, J. Østergaard, S. H. Jensen, and M. Ø. Ped-
ersen, “Using position uncertainty in recursive automatic target classifi-
cation of radar tracks.” IIEEE, 2015.

[3] D. H. Nguyen, J. H. Kay, B. J. Orchard, and R. H. Whiting, “Classifica-
tion and tracking of moving ground vehicles,” Lincoln Laboratory Journal,
vol. 13, no. 2, pp. 275–308, 2002.

[4] S. Challa and G. W. Pulford, “Joint target tracking and classification
using radar and ESM sensors,” Aerospace and Electronic Systems, IEEE
Transactions on, vol. 37, no. 3, pp. 1039–1055, 2001.

[5] D. Angelova and L. Mihaylova, “Joint target tracking and classifica-
tion with particle filtering and mixture kalman filtering using kinematic
radar information,” Digital Signal Processing, vol. 16, no. 2, pp. 180–204,
2006.

[6] Z. Sun and X. J. Ban, “Vehicle classification using GPS data,” Transporta-
tion Research Part C: Emerging Technologies, vol. 37, pp. 102–117, 2013.

[7] M. Garg and U. Singh, “C & R tree based air target classification using
kinematics,” in National Conference on Research Trends in Computer Science
and Technology (NCRTCST), IJCCT_Vol3Iss1/IJCCT_Paper_3, 2012.

[8] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[9] S. Theodoridis and K. Koutroumbas, Pattern Recognition, Fourth Edition,
4th ed. Academic Press, 2008.

[10] E. Brookner, Tracking and Kalman Filtering Made Easy. Wiley-Interscience,
1998.

[11] C. M. Bishop, Pattern recognition and machine learning. springer New
York, 2006, vol. 1.

[12] G. James, D. Witten, and T. Hastie, An Introduction to Statistical Learning:
With Applications in R. Taylor & Francis, 2014.

132



References

[13] L. Chen and S. Wang, “Automated feature weighting in naive bayes for
high-dimensional data classification,” in Proceedings of the 21st ACM in-
ternational conference on Information and knowledge management. ACM,
2012, pp. 1243–1252.

[14] J. A. Lawton, R. J. Jesionowski, and P. Zarchan, “Comparison of four fil-
tering options for a radar tracking problem,” Journal of guidance, control,
and dynamics, vol. 21, no. 4, pp. 618–623, 1998.

[15] N. Mohajerin, J. Histon, R. Dizaji, and S. Waslander, “Feature extraction
and radar track classification for detecting UAVs in civillian airspace,”
in Radar Conference, 2014 IEEE. IEEE, 2014, pp. 0674–0679.

[16] SWBD. [accessed 4 december 2014]. [Online]. Available: http:
//dds.cr.usgs.gov/srtm/version2_1/SWBD/

133

http://dds.cr.usgs.gov/srtm/version2_1/SWBD/
http://dds.cr.usgs.gov/srtm/version2_1/SWBD/


LA
R

S W
Ü

R
TZ JO

C
H

U
M

SEN
R

A
D

A
R

 TA
R

G
ET C

LA
SSIFIC

ATIO
N

 U
SIN

G
 R

EC
U

R
SIVE K

N
O

W
LED

G
E-B

A
SED

 M
ETH

O
D

S

ISSN (online): xxxx-xxxx
ISBN (online): xxx-xx-xxxx-xxx-x

SUMMARY

ISSN (online): 2246-1248
ISBN (online): 978-87-7112-545-0

The topic of this thesis is target classification of radar tracks from a 2D me-
chanically scanning coastal surveillance radar. The measurements provided 
by the radar are position data and therefore the classification is mainly based 
on kinematic data, which is deduced from the position. The target class-
es used in this work are classes, which are normal for coastal surveillance 
e.g.~ships, helicopters, birds etc. The classifier must be recursive as all data 
of a track is not present at any given moment. If all data were available, it 
would be too late to classify the track, as the track would have been terminat-
ed. Therefore, an update of the classification results must be made for each 
measurement of the target. The data for this work are collected throughout 
the PhD and are both collected from radars and other sensors such as GPS.
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