65,142 research outputs found

    Face recognition with the RGB-D sensor

    Get PDF
    Face recognition in unconstrained environments is still a challenge, because of the many variations of the facial appearance due to changes in head pose, lighting conditions, facial expression, age, etc. This work addresses the problem of face recognition in the presence of 2D facial appearance variations caused by 3D head rotations. It explores the advantages of the recently developed consumer-level RGB-D cameras (e.g. Kinect). These cameras provide color and depth images at the same rate. They are affordable and easy to use, but the depth images are noisy and in low resolution, unlike laser scanned depth images. The proposed approach to face recognition is able to deal with large head pose variations using RGB-D face images. The method uses the depth information to correct the pose of the face. It does not need to learn a generic face model or make complex 3D-2D registrations. It is simple and fast, yet able to deal with large pose variations and perform pose-invariant face recognition. Experiments on a public database show that the presented approach is effective and efficient under significant pose changes. Also, the idea is used to develop a face recognition software that is able to achieve real-time face recognition in the presence of large yaw rotations using the Kinect sensor. It is shown in real-time how this method improves recognition accuracy and confidence level. This study demonstrates that RGB-D sensors are a promising tool that can lead to the development of robust pose-invariant face recognition systems under large pose variations

    Unimodal Multi-Feature Fusion and one-dimensional Hidden Markov Models for Low-Resolution Face Recognition

    Get PDF
    The objective of low-resolution face recognition is to identify faces from small size or poor quality images with varying pose, illumination, expression, etc. In this work, we propose a robust low face recognition technique based on one-dimensional Hidden Markov Models. Features of each facial image are extracted using three steps: firstly, both Gabor filters and Histogram of Oriented Gradients (HOG) descriptor are calculated. Secondly, the size of these features is reduced using the Linear Discriminant Analysis (LDA) method in order to remove redundant information. Finally, the reduced features are combined using Canonical Correlation Analysis (CCA) method. Unlike existing techniques using HMMs, in which authors consider each state to represent one facial region (eyes, nose, mouth, etc), the proposed system employs 1D-HMMs without any prior knowledge about the localization of interest regions in the facial image. Performance of the proposed method will be measured using the AR database

    An efficient multiscale scheme using local zernike moments for face recognition

    Get PDF
    In this study, we propose a face recognition scheme using local Zernike moments (LZM), which can be used for both identification and verification. In this scheme, local patches around the landmarks are extracted from the complex components obtained by LZM transformation. Then, phase magnitude histograms are constructed within these patches to create descriptors for face images. An image pyramid is utilized to extract features at multiple scales, and the descriptors are constructed for each image in this pyramid. We used three different public datasets to examine the performance of the proposed method:Face Recognition Technology (FERET), Labeled Faces in the Wild (LFW), and Surveillance Cameras Face (SCface). The results revealed that the proposed method is robust against variations such as illumination, facial expression, and pose. Aside from this, it can be used for low-resolution face images acquired in uncontrolled environments or in the infrared spectrum. Experimental results show that our method outperforms state-of-the-art methods on FERET and SCface datasets.WOS:000437326800174Scopus - Affiliation ID: 60105072Science Citation Index ExpandedQ2 - Q3ArticleUluslararası işbirliği ile yapılmayan - HAYIRMayıs2018YÖK - 2017-1

    DICTIONARIES AND MANIFOLDS FOR FACE RECOGNITION ACROSS ILLUMINATION, AGING AND QUANTIZATION

    Get PDF
    During the past many decades, many face recognition algorithms have been proposed. The face recognition problem under controlled environment has been well studied and almost solved. However, in unconstrained environments, the performance of face recognition methods could still be significantly affected by factors such as illumination, pose, resolution, occlusion, aging, etc. In this thesis, we look into the problem of face recognition across these variations and quantization. We present a face recognition algorithm based on simultaneous sparse approximations under varying illumination and pose with dictionaries learned for each class. A novel test image is projected onto the span of the atoms in each learned dictionary. The resulting residual vectors are then used for classification. An image relighting technique based on pose-robust albedo estimation is used to generate multiple frontal images of the same person with variable lighting. As a result, the proposed algorithm has the ability to recognize human faces with high accuracy even when only a single or a very few images per person are provided for training. The efficiency of the proposed method is demonstrated using publicly available databases and it is shown that this method is efficient and can perform significantly better than many competitive face recognition algorithms. The problem of recognizing facial images across aging remains an open problem. We look into this problem by studying the growth in the facial shapes. Building on recent advances in landmark extraction, and statistical techniques for landmark-based shape analysis, we show that using well-defined shape spaces and its associated geometry, one can obtain significant performance improvements in face verification. Toward this end, we propose to model the facial shapes as points on a Grassmann manifold. The face verification problem is then formulated as a classification problem on this manifold. We then propose a relative craniofacial growth model which is based on the science of craniofacial anthropometry and integrate it with the Grassmann manifold and the SVM classifier. Experiments show that the proposed method is able to mitigate the variations caused by the aging progress and thus effectively improve the performance of open-set face verification across aging. In applications such as document understanding, only binary face images may be available as inputs to a face recognition algorithm. We investigate the effects of quantization on several classical face recognition algorithms. We study the performances of PCA and multiple exemplar discriminant analysis (MEDA) algorithms with quantized images and with binary images modified by distance and Box-Cox transforms. We propose a dictionary-based method for reconstructing the grey scale facial images from the quantized facial images. Two dictionaries with low mutual coherence are learned for the grey scale and quantized training images respectively using a modified KSVD method. A linear transform function between the sparse vectors of quantized images and the sparse vectors of grey scale images is estimated using the training data. In the testing stage, a grey scale image is reconstructed from the quantized image using the transform matrix and normalized dictionaries. The identities of the reconstructed grey scale images are then determined using the dictionary-based face recognition (DFR) algorithm. Experimental results show that the reconstructed images are similar to the original grey-scale images and the performance of face recognition on the quantized images is comparable to the performance on grey scale images. The online social network and social media is growing rapidly. It is interesting to study the impact of social network on computer vision algorithms. We address the problem of automated face recognition on a social network using a loopy belief propagation framework. The proposed approach propagates the identities of faces in photos across social graphs. We characterize its performance in terms of structural properties of the given social network. We propose a distance metric defined using face recognition results for detecting hidden connections. The performance of the proposed method is analyzed on graph structure networks, scalability, different degrees of nodes, labeling errors correction and hidden connections discovery. The result demonstrates that the constraints imposed by the social network have the potential to improve the performance of face recognition methods. The result also shows it is possible to discover hidden connections in a social network based on face recognition

    Robust single-sample face recognition by sparsity-driven sub-dictionary learning using deep features

    Get PDF
    Face recognition using a single reference image per subject is challenging, above all when referring to a large gallery of subjects. Furthermore, the problem hardness seriously increases when the images are acquired in unconstrained conditions. In this paper we address the challenging Single Sample Per Person (SSPP) problem considering large datasets of images acquired in the wild, thus possibly featuring illumination, pose, face expression, partial occlusions, and low-resolution hurdles. The proposed technique alternates a sparse dictionary learning technique based on the method of optimal direction and the iterative \u2113 0 -norm minimization algorithm called k-LIMAPS. It works on robust deep-learned features, provided that the image variability is extended by standard augmentation techniques. Experiments show the effectiveness of our method against the hardness introduced above: first, we report extensive experiments on the unconstrained LFW dataset when referring to large galleries up to 1680 subjects; second, we present experiments on very low-resolution test images up to 8 7 8 pixels; third, tests on the AR dataset are analyzed against specific disguises such as partial occlusions, facial expressions, and illumination problems. In all the three scenarios our method outperforms the state-of-the-art approaches adopting similar configurations

    On using gait to enhance frontal face extraction

    No full text
    Visual surveillance finds increasing deployment formonitoring urban environments. Operators need to be able to determine identity from surveillance images and often use face recognition for this purpose. In surveillance environments, it is necessary to handle pose variation of the human head, low frame rate, and low resolution input images. We describe the first use of gait to enable face acquisition and recognition, by analysis of 3-D head motion and gait trajectory, with super-resolution analysis. We use region- and distance-based refinement of head pose estimation. We develop a direct mapping to relate the 2-D image with a 3-D model. In gait trajectory analysis, we model the looming effect so as to obtain the correct face region. Based on head position and the gait trajectory, we can reconstruct high-quality frontal face images which are demonstrated to be suitable for face recognition. The contributions of this research include the construction of a 3-D model for pose estimation from planar imagery and the first use of gait information to enhance the face extraction process allowing for deployment in surveillance scenario

    Face recognition technologies for evidential evaluation of video traces

    Get PDF
    Human recognition from video traces is an important task in forensic investigations and evidence evaluations. Compared with other biometric traits, face is one of the most popularly used modalities for human recognition due to the fact that its collection is non-intrusive and requires less cooperation from the subjects. Moreover, face images taken at a long distance can still provide reasonable resolution, while most biometric modalities, such as iris and fingerprint, do not have this merit. In this chapter, we discuss automatic face recognition technologies for evidential evaluations of video traces. We first introduce the general concepts in both forensic and automatic face recognition , then analyse the difficulties in face recognition from videos . We summarise and categorise the approaches for handling different uncontrollable factors in difficult recognition conditions. Finally we discuss some challenges and trends in face recognition research in both forensics and biometrics . Given its merits tested in many deployed systems and great potential in other emerging applications, considerable research and development efforts are expected to be devoted in face recognition in the near future
    corecore