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Abstract 
 

FACE RECOGNITION WITH THE RGB-D SENSOR 

 

Cesare Ciaccio 

 

Face recognition in unconstrained environments is still a challenge, 
because of the many variations of the facial appearance due to changes in 
head pose, lighting conditions, facial expression, age, etc. This work 
addresses the problem of face recognition in the presence of 2D facial 
appearance variations caused by 3D head rotations. It explores the 
advantages of the recently developed consumer-level RGB-D cameras 
(e.g. Kinect). These cameras provide color and depth images at the same 
rate. They are affordable and easy to use, but the depth images are noisy 
and in low resolution, unlike laser scanned depth images. The proposed 
approach to face recognition is able to deal with large head pose variations 
using RGB-D face images. The method uses the depth information to 
correct the pose of the face. It does not need to learn a generic face model 
or make complex 3D-2D registrations. It is simple and fast, yet able to deal 
with large pose variations and perform pose-invariant face recognition. 
Experiments on a public database show that the presented approach is 
effective and efficient under significant pose changes. Also, the idea is used 
to develop a face recognition software that is able to achieve real-time face 
recognition in the presence of large yaw rotations using the Kinect sensor. 
It is shown in real-time how this method improves recognition accuracy and 
confidence level. This study demonstrates that RGB-D sensors are a 
promising tool that can lead to the development of robust pose-invariant 
face recognition systems under large pose variations. 
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Chapter 1. Introduction 
 

This chapter introduces the problem addressed in this work, gives a brief 

overview of previous approaches and explains the motivations behind this 

project. Most of the faces shown in this work are publicly available as part 

of the CurtinFace dataset [2] (figures 11, 12, 16, 17, 19, 20, 21, 22, 23, 36) 

or the Eurecom dataset [3] (figures 1, 2, 6, 14). The remaining images are 

publicly available on the Internet.  

1.1 Problem definition 
 

Figure 1. Problem statement – When both gallery image and probe are frontal, state-of–the-art 
algorithms can easily recognize faces. However, when the pose of the probe is not frontal, the 
identification becomes more challenging. 

Biometrics techniques have many practical applications in security-related 

fields like access control, identity management, video surveillance, law 

enforcement, homeland security, etc [4, 5, 6, 7]. They can also be useful to 
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improve human-machine interaction [8, 9, 10]. As one of these techniques, 

face recognition is an active field of research that received a great deal of 

attention in the last few decades [11, 12, 13]. The research community has 

made significant progress since the very first face recognition attempts 

about 50 years ago [14]. The first scientific publication dates back to 1971 

[15]. Several face recognition algorithms have been developed since then, 

and great performances have been achieved in experiments with controlled 

environments. However, face recognition in practical applications is still a 

challenge, because of the variations of the facial appearance that can be 

caused by head pose, lighting conditions, facial expression, aging, etc [16, 

17, 18, 19, 20, 21]. Among all the possible variations, probably the biggest 

challenge is represented by changes of the facial appearance in the 2-

dimensional space caused by 3-dimensional head rotations. To address 

this problem, several methods have been proposed and investigated [22-

32]. Face recognition with significant pose variations is the focus of this 

study. From now on, the assumption is that all the images under analysis 

were taken under the same uniform light conditions (no light variations), 

neutral face (no facial expressions) and within a relatively short temporal 

distance between them (no aging). Figure 1 gives a visual representation of 

the problem addressed in this work. The general structure of a face 

recognition system is fairly simple. There is always a set of face images 

stored in memory usually referred as the “gallery”. The gallery contains 

face-identity pairs, and it represents the “knowledge” of the system. When 
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the system is given a test image (or probe) to identify, it compares the probe 

to each image in the gallery, looking for the most similar face (nearest 

neighbor classifier). The identity of the most similar face is returned as the 

identity of the probe. If the probe and the gallery face images are both 

frontal, state-of-the-art algorithms are able to give almost perfect results. 

However, when the probe face is not frontal, the problem becomes more 

challenging, and the difficulty is proportional to the size of the rotation angle. 

1.2 RGB-D based face recognition  
 
Researchers in the field of face recognition have developed many methods 

to deal with head pose variations. These methods can be grouped in two 

big categories: 2D-based methods and 3D-based methods [33, 34].  

2D-based methods use only 2D images of the face. The common 

denominator of these methods is the attempt to learn the relationship 

between 2D face images in front view and 2D face images in side view, and 

then apply that knowledge to recognize side view test faces while the gallery 

contains only front view images [35-47]. Figure 2 shows the general idea. 

The set of faces on the left are used to learn the relationship between the 

2D frontal images and the 2D side view images. The mapping that is learned 

is then used to compare side view test faces to a front view gallery and infer  

the identity of the probes. Figure 3 gives a representation of the method 

presented in [47]. The algorithm projects the features extracted from the 

faces to a common latent space where the distance between the two  
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Figure 2. 2D-based approach – This type of method tries to learn a relationship between the frontal 
face and the side face. Then, that knowledge is used to recognize side view test faces while the 
gallery contains only front view images. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. 2D-based example – This image is shown in [47]. The method consists in projecting the 
feature vectors in a different subspace where the two versions of the face (side and frontal) are 
“close”. After the images are projected in the new space, the nearest neighbor classifier is used. 
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instances of the same face (front and side) is small. After the projection, the 

nearest neighbor classifier is used to infer the identity. These types of 

methods are best used with small rotation angles (up to 30 or 40 degrees), 

but have difficulty handling larger rotations.  

3D-based methods address the problem of face recognition using the 3D 

structure of the face [48]. Some of these methods try to infer the 3D 

structure of the face from 2D face images [49-54]. Most of the 3D-based 

methods use 3D information provided by depth images of the faces 

acquired with laser scanners (Figure 4). These devices use light rays to 

create a 3D map of the face. A depth map is an image whose pixel values 

represent distances from the camera. A depth map gives an approximation 

of the 3D structure of the objects. Some of these approaches require the 

3D depth map of both the gallery faces and the test faces [55-62]. Other 

approaches use the depth map of the gallery faces while the probe is just a 

2D image [63-68]. These approaches consist in learning a 3D face model 

and then adapt the 3D model to a given 2D face image. For example, the 

classic 3D face recognition method based on the 3D morphable model [69] 

learns a generic 3D face model from a number of subjects. This 3D model 

is used to estimate the 3D shape of the face from a single 2D face image 

by using a 3D to 2D registration process. The 3D shape inferred (described 

by two parameters) can be used to compare two faces images (Figure 5). 

However, the 3D to 2D registration is not simple. It is a time-consuming 

process because there are several parameters to adjust. This process also 
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needs a good initial estimation of the head pose in order to achieve 

acceptable results. These types of algorithms are complex and 

computationally expensive. Also, acquiring the depth images with a laser 

scanner is a long process (it takes several minutes per image) and the laser 

scanners are expensive and not easy to manage. 

The approach presented in this work explores the advantages of the 

recently developed consumer-level RGB-D cameras (e.g. Kinect – see 

Figure 6). RGB-D cameras could play a key role in solving real-world 

problems in the near future. They caught the attention of the research 

community after becoming more affordable and more commercially 

mainstream. Many publications appeared recently, and are spread over a 

variety of research fields like computer vision, robotics, human-computer 

interaction and others [70-78]. There are several papers that address the 

problem of face detection/tracking [79-86]. For an introduction about basics 

and underlying principles of RGB-D perception and more information about 

applications, see [87]. More recently, researchers have tried to assess the 

impact that these devices could have in the field of biometrics, in particular 

face recognition [2, 88, 89, 90]. The purpose of this study is to show that 

RGB-D sensors could have a major impact in the field of face recognition. 

RGB-D cameras provide color and depth images at the same rate. They are 

affordable and easy to use, but the depth images are noisy and low 

resolution, unlike laser scanned depth images (Figure 7). The proposed 

approach is able to handle large head pose variations using RGB-D face  
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Figure 4. Laser scanned face images – The image on the left1 shows an example of a high definition 
3D face image obtained with a laser scanner. The image on the right2 shows the acquisition process. 

 
 
 
 
 

 

Figure 5. 3D-based example – This figure is shown in [65]. It represents the face recognition method 
based on the well-known 3D morphable model. The process consists in learning a generic 3D face 
model from a number of subjects and then using this 3D model to estimate the 3D shape of a face 
from a single 2D image. The 3D shape inferred (in form of parameters) is used to compare two 
faces images.    

                                                           
1 www.clonesculptures.com/3dscanning 
2 www.youtube.com/watch?v=4XZfR1at-AQ 
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images. The method uses the depth information to correct the pose of the 

face. It does not need to learn a generic face model or make a complex 3D-

2D registration. It is simple and fast, yet able to deal with large pose 

variations and perform pose-invariant face recognition. Experiments on a 

public database confirm that the approach is effective and efficient. Also, 

the underlying idea is used to develop a face recognition system that is able 

to achieve real-time face recognition in the presence of large yaw rotations 

using the Kinect sensor. It is possible to show, in real-time, how the 

proposed method improves recognition accuracy and confidence level. A 

new scheme for pose correction and a new face representation based on 

integration of the covariance descriptor and the popular local binary patterns 

are also introduced. 
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Figure 6. Kinect RGB-D image – The Kinect sensor shown above3 is able to capture RGB and depth 
images at the same rate and resolution. 

 

 
Figure 74. Laser vs. RGB-D – Laser scanners can create accurate depth images (left), but the 
acquisition process is quite slow.  RGB-D cameras can acquire depth images at 30fps, but the depth 
images are noisy (right).  

                                                           
3 www.xbox.com/en-US/kinect 
4 www.kickstarter.com/projects/45699157/fuel3d-a-handheld-3d-scanner-for-less-than-1000 
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1.3 Previous works 
 
To the best of the author’s knowledge, there are only 4 previous works that 

address the problem of face recognition using RGB-D sensors [2, 88, 89, 

90]. These approaches are different from the one presented in this study. 

For example, in [88] only the depth images are used for face recognition. 

The method uses the point cloud for face identification. The color images 

are not used and the problem of pose variation is not addressed. Figure 8 

shows the registration process of the point clouds proposed in [88]. Both 

color and depth images are used for identification in [89]. This method 

computes an entropy measure for both RGB and depth images and 

combines them to improve face recognition. But, the faces are all in front 

view and there is no pose variation. Figure 9 gives a visual representation 

of the process. The work in [90] is quite different. A sequence of RGB-D 

images (video) is used to improve face identification over time. Figure 10 

gives a representation of the method. Only one of these previous works ([2]) 

considers pose variations, but the goal and experiment setup are very 

different. The gallery consists of 18 images per subject (Figure 11). For 

each subject, there are images with different poses, different expressions 

and different light conditions. The test images present two of these 

variations at the same time (Figure 12). The goal is to identify a face when 

there are two different variations at the same time. Also, the method in [2] 

requires a complex registration of each face to a 3D face model obtained 

from a laser scanner.  
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The approach presented in this document is different from the ones 

previously described. The major focus of this study is exploring the 

advantage of using RGB-D cameras for pose-invariant face recognition. 

The method proposed addresses the problem of pose-invariant face 

recognition using both color and depth images. Also, the gallery contains 

only one frontal RGB-D image for each subject and the probes consist of a 

single side view RGB-D image per subject.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Point cloud registration – This figure is shown in [88]. The method represented uses only 
the depth information for face recognition. It doesn’t not address the problem of pose variation 
and requires a registration of 3D point clouds. 
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Figure 9. Entropy-based method – This figure is shown in [89]. This method combines entropy 
measures of the color and depth images in order to improve face recognition. It also does not 
address the problem of pose variation. 

 
 
 
 
 

 
Figure 10. Video-based face recognition – This figure is shown in [90]. The method presented in [90] 
is completely different from the one proposed in this work because a sequence of face images in a 
time interval is used to improve the face recognition. 
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Figure 11. Gallery in [2] – The gallery contains 18 images for each subject. There are images with 
different pose, illumination and expression. In this study the gallery contains only one neutral front 
view image per subject.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Test images in [2] – The test images contain two variations at the same time. In this 
figure you can see pose and expression. The goal in [14] is recognizing a face that shows pose AND 
expression variations, while the images in the gallery present ONLY pose OR expression variation. 
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Chapter 2. Face representation 
 
Comparing two face images requires extracting features from those two 

images. These features are a numerical representation of the face. The 

representation used in this study is a combination of two different 

descriptors: one is the popular Local Binary Patterns (LBP) and the other is 

the covariance descriptor. This work investigates whether these two types 

of features can be complementary for face recognition and if a better 

representation can be obtained by integrating the two.  

2.1 Uniform Local Binary Patterns 

Figure 135. Uniform LBP – Each pixel is represented by 8 binary digits. The digits are calculated 
using the center pixel as threshold. Each image patch is represented by a histogram with 59 bins: 
58 bins for the “uniform” patterns (at most 2 transitions from 0 to 1 or 1 to 0) and 1 bin for the 
“non-uniform” patterns. 

 
Originally designed for texture description [91, 92], LBP [93] features are a 

well-known and popular method for face recognition [94, 95, 96, 97]. They 

                                                           
5 The face in the figure comes from http://en.wikipedia.org/wiki/Lenna 
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have been used extensively and give state-of-the-art results in many face 

recognition applications. Several variants of this descriptor have been 

proposed and investigated [98-104]. In this study, the Uniform LBP is used. 

Uniform LBP [105] is a variant of the original operator that reduces the 

length of the feature vector. Certain local binary patterns called “uniform” 

patterns are more descriptive than the “non-uniform” ones. The term 

“uniform” refers to the uniform appearance of the local binary patterns. 

Within uniform patterns, there are at most two bitwise transitions (e.g. 

1000000 is uniform, 01101111 is not uniform). These uniform patterns 

represent the majority of the 3x3 texture patterns. Also, the most frequent 

uniform binary patterns correspond to features such as edges and corners; 

this makes them the best matching patterns. Figure 13 shows the uniform 

LBP calculation process on a gray scale image. The LBP operator returns 

an 8-digit binary number for each pixel in the image. To create the binary 

descriptor for each image pixel, the operator compares the 3 x 3 

neighboring pixels to the value of the center. If the value of the neighboring 

pixel is greater than the value of the center, a “1” digit is assigned to that 

descriptor; otherwise, a “0” digit is assigned. Once all neighboring pixels are 

evaluated, an 8-digit binary code is created and assigned to the center pixel.  

When the LBP image is created, patches of this image can be described by 

a 2^8 bins histogram. If a pixel is represented by 8 digits, there are 256 

possible patterns but only 58 are uniform. To describe a patch, a 59 bins 

histogram is used: 58 bins for each one of the uniform patterns and 1 for 
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the non-uniform patterns. To compare histograms, the popular chi-squared 

distance is used. It is defined as: 

 

 

 

2.2 Covariance descriptor  

Figure 14. Covariance descriptor – Each pixel is described by multiple values and the descriptor is 
considered a realization of a random vector. The descriptor of a patch is the sample covariance 
matrix of the pixel descriptors contained in the patch. 

 
The formal definition of the covariance descriptor was first given in [106]. 

The covariance descriptor has been successfully used for pedestrian 

detection, object tracking, action recognition [107, 108] and facial 

recognition [109, 110, 111, 112]. The usage of covariance matrices as a 

region descriptor provides some advantages. One of them is that the 

representation proposes a natural way of fusing multiple features. Each 

pixel is described by multiple values and the descriptor is considered a 

realization of a random vector. The pixel location, intensity derivatives, and 

the edge orientation are computed as features for each pixel. This work 

𝑑(𝐻1, 𝐻2) =
1

2
∑
[𝐻1(𝑖) − 𝐻2 (𝑖)]

2

𝐻1(𝑖) + 𝐻2(𝑖)

𝑛

𝑖=1
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uses the same settings as in [106] to form the feature vector zi for each pixel 

(x, y), 

𝑧𝑖 = [𝑥 𝑦 |𝐼𝑥| |𝐼𝑦| √𝐼𝑥
2 + 𝐼𝑦

2 |𝐼𝑥𝑥| |𝐼𝑦𝑦| 𝑡𝑎𝑛−1
|𝐼𝑥|

|𝐼𝑦|
]

𝑇

 

Each region R is represented by a covariance matrix. If d is the 

dimensionality of the feature vectors zi, the region R is represented by the 

d×d sample covariance matrix of the feature vectors: 

𝐶𝑅 = 
1

𝑛 − 1
∑ (𝑧𝑖 − 𝝁)(𝑧𝑖 − 𝝁)

𝑇

𝑛

𝑖=1

 

where µ is the mean vector and n is the number of points in region R. 

Covariance matrices are symmetric and positive semi-definite, hence they 

reside in the Riemannian manifold [113]. The distances between two 

covariance matrices can be calculated in the Riemannian manifold. The 

distance between points is given by the length of the geodesic (the minimum 

length curve connecting two points on the manifold). It is defined as ([106]): 

 

 

 

where                                 are the generalized eigenvalues.  

To compute the covariance descriptor and the distance between 

covariance matrices, the code available at [114] is used.  

𝑑(𝐶1, 𝐶2) = √∑𝑙𝑛2𝜆𝑗(𝐶1, 𝐶2)

𝑘

𝑗=1

 

{𝜆𝑗(𝐶1, 𝐶2)}𝑗=1…𝑘 
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2.3 Integration scheme 

 
The covariance descriptor is very different from the classic LBP features. 

These two features cannot be concatenated directly because the 

covariance descriptor is a matrix while the LBP descriptor is a histogram. A 

probability-based integration scheme that combines the covariance 

descriptor with the LBP features is proposed. This method transforms the 

distances measured into probabilities, then multiplies them. Let 𝑑1 be the 

distance between a probe and a gallery face in the covariance space. Let 

𝑑2 be the distance in the LBP space. The new descriptor is defined as: 

𝑃(𝑑1, 𝑑2) = 𝐴 ∙ 𝑒
(
𝑑1
𝜆1
)
∙ 𝑒
(
𝑑2
𝜆2
)
 

 

where 𝜆1 and 𝜆2 are empirically adjusted parameters used to balance the 

inputs from the two different features. In the experiments, the values used 

are 𝜆1 = 1 and 𝜆2= 10. A is a constant to maintain a probability-based 

measure. The proposed integration scheme transforms the two distances 

into a probability. 
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Chapter 3. Pose-invariant face recognition 
 
This chapter starts with an overview of the approach and then describes the 

pre-processing method, the gallery creation process, the face alignment 

procedure and the patch selection. The following content is based on [1]. 

 

3.1 Method overview 
 
The goals are developing a face recognition algorithm that can handle large 

head pose changes and identifying the advantages of using the RGB-D face 

images. In the literature, the user’s head pose is often defined by three 

angles: yaw, pitch, and roll (see Figure 15). This scheme is borrowed from 

aeronautics, where the same three angles define the orientation of the 

aircraft. The coordinate system of reference is usually the Cartesian system 

with the origin being in the camera. In this work, the focus is on facial 

appearance changes caused by head pose variations only in the yaw 

direction. This means that the gallery contains one RGB-D face image in 

front view for each enrolled subject (that is yaw, pitch and roll equal to 0), 

while the probe faces have pitch equal to 0, roll equal to 0, and yaw in the 

range of -90 to 90 degrees. As discussed in the introduction, this is a 

challenging problem for traditional 2D-based face recognition. Traditionally, 

a pose correction approach would try to correct the pose of the probe by 

creating a front view face based on the side view and then match the newly 

generated face against the front view gallery images [115, 116, 117, 118]. 

The method described in this study uses the opposite approach. It uses the 
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RGB-D front view face images to create side view (yaw at -90 to 90 degrees) 

RGB face images (Figure 16 and 20); the test images are then matched 

against all the generated face images and the best match is considered for 

identification. 

  

 

 

 

 

 

 

 

 

 

 

Figure 156.  Head angles definition 

Figure 16. Rotation direction – Unlike traditional approaches, this method rotates the gallery face 
to the side and then match the probe against the newly generated image. 

                                                           
6 msdn.microsoft.com/en-us/library/jj130970.aspx 
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3.2 Face images pre-processing 
 

The first steps of the process are face detection and landmarks localization 

on the RGB-D images. There is an assumption that the RGB and depth 

images are aligned, because the RGB-D sensors have this capability. Face 

detection is performed on the color image only, using a recently developed 

technique [119]. The landmark points of interest in this work are the eye 

corners, the mouth corners and the nose tip, which can also be detected 

with the method presented in [119]. However, it is useful and easy to refine 

the nose tip position estimation using the depth image; it is the closest point 

to the RGB-D camera. The accuracy of the location of the nose tip is very 

important because the nose tip is used to estimate the position of the head 

center. The head center is crucial in the process of side view face 

generation. As stated before, the depth images provided by RGB-D 

cameras are noisy. Therefore, the depth images are filtered with a median 

filter and then a Gaussian filter. This filtering is important to improve the 

landmarks detection and the quality of the generated images. Also, the 

depth information is used to perform background subtraction on the RGB 

face images. Figure 17 illustrates the pre-processing steps. 
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Figure 17. Pre-processing of RGB-D face images – Face detection and landmarks localization are 
performed on the RGB image. The depth image is first smoothed and then used for nose tip position 
refinement and background subtraction.  
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3.3 Face synthesis 
 
From each RGB-D face image in the gallery, a set of face images with 

different pose angles is automatically generated by applying a 3D rotation 

to the RGB-D point cloud. In order to do this, the first step is computing the 

axis of rotation. The axis chosen is the vertical axis that passes by the center 

of the head. The center of the head is estimated as: 

 

(𝑥0, 𝑦0, 𝑧0) = (𝑛𝑡(𝑥), 𝑛𝑡(𝑦), 𝑛𝑡(𝑧) + 𝛿) 

 

                                                                            

 

                                                                                Figure 18. Nose tip 

 

where 𝑛𝑡  is the nose tip position (Figure 18), and δ is the distance between 

the vertical axis passing by the nose tip and the vertical axis passing by the 

center of the head (axis of rotation). In the experiments, the value used is 

𝛿 = 50 𝑚𝑚 and the results show that this setting works well for all the 

faces in the database. Each head is rotated around the Y axis of the 

coordinate system with the origin in the center of the head. This simple but 

effective approach to head rotation is illustrated in Figure 19, and it is 

presented in Algorithm 1 in detail. In the algorithm, T is the transformation 

given by: 
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[

𝑥′
𝑦′

𝑧′
1

] = 𝑇

(

 
 

𝑥
𝑦
𝑧
𝐶
𝜃)

 
 
= [

cos 𝜃 0 sin 𝜃 𝑥0
0 1 0 0

−sin 𝜃 0 cos 𝜃 𝑧0
0 0 1 1

] [

𝑥 − 𝑥0
𝑦

𝑧 − 𝑧0
1

] 

T rotates a 3D point (x, y, z) on the original face surface to a new location 

(x’, y’, z’) with a yaw angle θ. C=(x0, y0, z0) is the center of the head. In 

theory the rotation can be any combination of the yaw, pitch, and roll angles. 

In this study the focus is on the yaw rotation. A sample sequence of 

generated face images is shown in Figure 20. 

 

 

 

 

 

 

 

Figure 19. Face synthesis – On the left, the RGB-D point cloud is shown. The depth image represents 
the 3D shape of the face; the RGB image gives the color information of each 3D point. Each 3D 
point carries with it the color information when it is rotated. Because of numerical approximation, 
the generated side view image has holes, so interpolation is needed. 
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Table 1. Algorithm 

 

 

 

Figure 20. Sample sequence of generated gallery images – The test images are compared against 
all the gallery images generated with the method outlined in Table 1.  
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3.4 Face alignment 
 

Figure 21. Face alignment – Sample gallery faces aligned and resized according to eye corner and 
mouth corner positions. 

 

The face representation used (LBP and covariance features) requires face 

alignment. Before comparing two images, they need to be scaled to the 

same size and aligned according to specific key points. In this work, the eye 

corners and mouth corners are used to align the face images. Since there 

are times that the eye and mouth corners are not detected precisely 

(especially in the horizontal direction when the head rotations are large), the 

alignment step uses the vertical distance between the eyes and mouth. All 

the faces are aligned to have the same vertical distance between the eyes 

and mouth. Traditionally, the two eyes are used for face alignment, which is 
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not possible in this method because with head rotations close to 90 degrees 

one eye cannot be seen due to self-occlusion. After the alignment, each 

face is cropped and resized to 60x60 pixels to then perform face 

identification. 

 
 

3.5 Patch selection 
 

Figure 22. Patch selection – 10x10 overlapping patches are selected from the face. Corresponding 
patches from different images are pulled and compared. 

 

The matching step requires selecting overlapping patches from the face 

images. Corresponding patches from different images are pulled and 

features from within those two patches are compared. The distance 

between two face images (either d1 or d2 referred to in Chapter 2, Section 
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2.3) is the average of the distances of corresponding patches. The patch 

size used is 10x10. The patches overlap, and they are selected by shifting 

every 5 pixels. The number of patches that can be selected in each face 

image may be different because of different pose angles. Therefore, when 

comparing two face images, only the patches that contain face details in 

those images are considered (see Figure 22). 
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Chapter 4. Experiments 
 
This chapter presents the experiments conducted to evaluate the proposed 

approach. 

4.1 Dataset 

 
Figure 23. Sample subject from the CurtinFaces dataset. 

 

Since using RGB-D for face recognition represents a recent development 

in this field, there are no standard benchmark databases for RGB-D based 

face recognition experiments. For the experiments in this work the 

CurtinFaces database [2] is used which is publicly available. This dataset 

contains RGB-D face images of 52 subjects. For each subject there are 

several images acquired under different pose, illumination, facial 

expression, and disguise. In this study, only a subset of this database is 

used because only pose-invariant face recognition is addressed. Only the 

front view face images with neutral expressions and uniform illumination are 
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used as the content of the gallery. The faces with neutral expressions and 

uniform illumination but with yaw angles that are different from 0 degrees 

are used as test images. The dataset contains 6 different yaw angles (±30, 

±60, ±90). Figure 23 shows an example. 

 

4.2. Results 
 
The experimental results are shown in Tables 2, 3, and 4. Different 

experiments were conducted in order to get to the final method. 

 

4.2.1 Rotation direction 
 
As said in the previous chapter, the goal is to bring gallery images and test 

images to the same pose before performing face identification. In the first 

experiment, two different pose correction schemes are evaluated. One 

rotates the test face images to the front view (others->front), and then 

compares it to the gallery face images also in front view; the second scheme 

does the opposite, i.e. each gallery face image is rotated in order to obtain 

the same pose of the test image (front->others). For this experiment, LBP 

features only are used. As shown in Table 2, the second scheme is 

significantly better than the first, especially for large pose variations (60 and 

90 degrees). 

There are two possible explanations for this result. First, the front view of a 

face image carries more information about the identity, compared to other 

views with large angles. Rotating the front view face image simply results in 

a loss of information. On the other hand, when rotating the other views to 
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the front, missing information needs to be estimated. Also, estimating the 

center of the head in non-frontal poses is more difficult. When rotating the 

frontal face, the nose tip can be used to get a good estimate of the center 

of the head. Also, the nose tip in a front view can be estimated more 

accurately using the depth map. On a profile face, the nose tip detection is 

less accurate; also, there is no easy way to get a reasonable estimate of 

the head center. In the following experiments, the second scheme (front -> 

others) is adopted. 

 

 
Table 2. Rotation direction – Rotating the frontal gallery images to the pose of the probes gives 
better results than rotating the probes to front view. 

 

4.2.2 Rotation density 
 
When rotating the front view to the side view, it is necessary to know the 

exact pose angle of the side view. The exact estimation of the head pose 

from 2D images is a challenging problem. In the second experiment, it is 

shown that this problem can be mitigated by creating multiple face images 

with different pose angles, and then compare the probe face to all those 

synthesized gallery face images. The one with the highest match score will 

 30° 60° 90° 

LBP 

(others -> front) 
75.0% 59.3% 35.4% 

LBP 

(front -> others) 
76.9% 71.1% 57.6% 
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be used as the identification result. Table 3 shows the results for this 

experiment. Two schemes are compared. One rotates the gallery images 

to the estimated pose of the probes (only 30, 60, 90 degrees are present in 

the dataset). The other scheme generates 18 different poses varying the 

yaw angles from 5 to 90 degrees in 5 degrees increments, and then it 

compares the probe with each of the generated face images. Table 3 shows 

that the latter approach gives better results. 

 

 30° 60° 90° 

LBP 

(limited poses) 
76.9% 71.1% 57.6% 

LBP 

(dense poses) 
92.3% 73.0% 65.3% 

 
Table 3. Rotation density – Generating images at multiple pose angles gives better results than 
estimating the probe pose. 

 

4.2.3 Features comparison 
 
In the last experiment, the LBP and covariance features are compared, and 

the new face representation that integrates both descriptors is evaluated. 

The results presented in Table 4 demonstrate the effectiveness of the 

covariance descriptor in the context of face recognition. It can be observed 

that the covariance descriptor gives better results than LBP for pose angles 

of 60 and 90 degrees. Most importantly, the experiment shows that the new 
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representation that integrates the two features gives a higher accuracy in 

all poses. This demonstrates that the two features can be complementary 

to each other, and the combination of the two can improve the face 

recognition accuracy significantly. 

 

 

Table 4. Features comparison – The covariance features give better results than LBP. The 
integration of both features gives an even higher accuracy.  

 
  

 30° 60° 90° 

LBP 92.3% 73.0% 65.3% 

COV 92.3% 76.9% 69.2% 

LBP+COV 94.2% 84.6% 75.0% 
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Chapter 5. Face recognition with Kinect 
 

This chapter describes the face recognition software developed as part of 

this project. This software uses the Kinect sensor and its recently developed 

face tracking capabilities. 

5.1 Kinect face tracker 
 

Figure 24. Kinect face tracking – The Kinect is able to track human faces and follow head moves in 
real-time. It also fits a 3D triangular mesh to the depth map of the face and detects key points 
(eyes, nose, mouth, etc.) of the face using the color image. 

 

The Kinect RGB-D sensor has face tracking capabilities and is able to follow 

users’ head moves in real-time. It is also able to fit a 3D triangular mesh to 

the depth map of the face (Figure 24) and detect key points (eyes, nose, 

mouth) of the face using the color image. The Kinect face tracking engine  



 35 

Figure 257. Candide-3 model - This model specifies a set of 3D points (about 200) and triangles (the 
points are vertices of the triangles). 

 

 

 

 

Figure 26. SUs and AUs examples - This image is shown in [79]. The SUs adapt the face model to 
the shape of a particular face (a, b). The AUs adapt the model to the movements of the face (c, d, 
e). 

                                                           
7 www.icg.isy.liu.se/candide/ 
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analyzes the input from the Kinect camera, uses the color and depth images 

to compute the head pose and facial expressions, and makes that 

information available to an application in real-time. This enables users to 

create applications that can track human faces at a 30fps rate. The method 

used by the Kinect to perform real-time face tracking is similar to the one 

presented in [79]. The 3D model of the face used is based on the well-

known Candide-3 model [120] (Figure 25). This model specifies a set of 3D 

points (about 200) and triangles (the points are vertices of the triangles). 

The Candide-3 model is linearly deformable. The deformations are 

expressed in terms of parameters called Shape Units and Animation Units. 

The SUs define the unique characteristics of each user’s facial shape in 

their neutral position. (Figure 26, a and b). These parameters are specific 

for each face. SUs specify the displacement of each vertex from the 

standard positions in order to make the model fit a particular face. The AUs 

are deltas from the neutral shape that can be used to adapt the mesh to the 

movements of the face in the presence of face expressions (Figure 26, c, d 

and e). Each AU is expressed as a numeric weight varying between -1 and 

+1. The X, Y, and Z position of each vertex is based on a right-handed 

coordinate system with the origin located at the camera’s optical center (the 

sensor), Z pointed towards the user and Y pointed up (Figure 27). The 

user’s head pose is captured by the yaw, pitch and roll angles. The units 

used are meters for translations and degrees for angles. 
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Figure 278. Kinect coordinate system – The X, Y, and Z position of each vertex is based on a right-
handed coordinate system with the origin located at the camera’s optical center (the sensor), Z 
pointed towards the user and Y pointed up. 

 

 
Figure 28. Pose correction problem - Given the image on the left, the goal is to get an estimation of 
the image on the right using the face structure (in the form of the 3D mesh) and the color 
information. 

 
 
 

                                                           
8 msdn.microsoft.com/en-us/library/jj130970.aspx 
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5.2 Pose correction 

Figure 29. Pose correction method - The side view mesh is rotated to front view. Between the side 
view mesh and the frontal mesh there is a triangle-to-triangle correspondence. To obtain the 
texture information in the blank mesh, the 2D projections of the 3D triangles are warped using the 
barycentric coordinates technique. 

 

The face recognition system described in the next section uses the Kinect 

sensor and its recently developed face tracking capabilities. Inspired by the 

approach described in the previous chapters, this system uses the 3D mask 

provided by the Kinect to improve the performance of the face recognition 

algorithm by doing pose-correction on the user face.  

Figure 28 gives a representation of the pose correction problem. Suppose 

the target to identify is the face on the left. That face is not frontal, and 

therefore a traditional face recognition algorithm will fail, because it 

compares the side view face to front view gallery faces. Given the image on 

the left, the goal is getting an estimation of the image on the right using the 
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Figure 309 Barycentric coordinates – The position of a point is defined w.r.t. the triangle vertices 
They can be calculated as ratios of areas (e.g. t1=Area(A2,A3,P)/Area(A1,A2,A3) where (t1, t2, t3) 
are the barycentric coordinates of P in the triangle on the right). 

 

face structure (in the form of the 3D triangular mesh) and the texture 

information. The pose-corrected version of the face ideally looks similar to 

the image on the right, and this newly generated image is used to identify 

the face. The proposed pose correction method is simple but effective. The 

first step consists in creating a blank 3D mesh with the same parameters 

(SUs and AUs) of the mesh in the side view and then setting yaw, pitch and 

roll of the blank mesh to 0 (Figure 29). This is equivalent to rotating the 3D 

mesh of the side view face to front view. Once the frontal mesh is created, 

there is a triangle-to-triangle correspondence between the two 3D meshes. 

However, the 2D projections of the 3D triangles are different because of the 

rotated positions in the 3D space. To estimate the texture information in the 

blank mesh, the 2D projection of each triangle within the side view mesh is 

                                                           
9 mathworld.wolfram.com/ArealCoordinates.html 
   www.codeproject.com/Articles/625787/Pick-Selection-with-OpenGL-and-OpenCL  
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warped to the shape of the corresponding 2D triangle within the blank mesh 

using the barycentric coordinates technique. The barycentric coordinates 

define the position of a point w.r.t. the triangle vertices. They can be 

calculated as ratios of areas (see Figure 30). A backward warping is 

implemented with the following: 

-  compute the barycentric coordinates of a pixel in the blank mesh; 

-  retrieve the RGB value of the corresponding pixel in the side view image;  

-  assign the RGB value retrieved to the pixel in the blank mesh. 

Figure 31 shows the result of this pose correction process. Looking at the 

newly generated face image, only the right side of the face has been 

reconstructed. The left side of the face is generated by mirroring the right 

side (not shown in Figure 31). 

  

Figure 31. Face warping - The left side of the generated image will be replaced with a mirrored 
version of the right side before performing face recognition.  
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5.3 Face recognition demo 

Figure 32. Face recognition software interface – The system is working without pose correction (the 
check box is not checked, see red ellipse on the right). 

 

This section presents the face recognition software that was developed as 

part of this project. Figure 32 shows the graphical user interface. The 

system first performs face detection using the Kinect capabilities. The 

detected face is the portion shown in the white square. The same face is 

shown in the top left image. The image in the middle left is the pose- 

corrected face while the image at the bottom left is the best match found in 

the gallery.  Subjects need to be enrolled in the gallery to be identified. On 

the right there is the button to enroll subjects. There is also the radio button 

to select the type of features, and a check box to activate the pose 

correction. In Figure 32, the system is working without pose correction (the 

check box is not checked, see red ellipse on the right). The system shows 
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the identity under the white box in the original image. The percentage 

beside the identity is the confidence level of the decision. In this case the 

face recognition succeeds because the face is frontal. The system also 

shows the estimated distance of the face from the camera and the 

estimated yaw, pitch and roll angles. Figure 34 shows a situation where the 

system is still working without pose correction and recognition fails because 

of the large pose variations. Figure 35 shows the same situation after the 

pose correction box is checked. The system now uses the pose-corrected 

face for recognition and is able to pull the correct identity even though it 

shows a low confidence level. 

5.2.3 Confidence level 

As mentioned above, this face recognition software shows a confidence 

level next to the presumed identity (Figure 32, 34, 35). This paragraph 

explains how this confidence level is computed. In the software, to compare 

histograms of LBP features, the chi-squared distance is used. This distance 

is defined as: 

𝜒2(𝐻1, 𝐻2) =  
1

2
∑
[𝐻1(𝑖) − 𝐻2(𝑖)]

2

𝐻1(𝑖) + 𝐻2(𝑖)
𝑖

 

The chi-squared distance between two histograms with n bins is 

approximately distributed as a chi-square distribution with n-1 degrees of 

freedom. Given the distance between two histograms, the significance level 
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Figure 3310. Confidence level - The 𝜒2 distance between two histograms with n bins is approximately 
distributed as a 𝜒2 distribution with n-1 degrees of freedom. The significance level associated with 
the distance (yellow area) is considered as the confidence level of the decision. 

 

associated with the distance is considered as the confidence level of the 

decision. Figure 33 shows a typical chi-squared distribution function. The 

yellow area is the significance level associated with that distance and 

represents the probability that the two histograms belong to the same face. 

In the case under analysis there are 59 bins, so a chi-squared distribution 

with 58 degrees of freedom is considered. 

 

                                                           
10 www.medcalc.org/manual/chi-square-table.php 
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Figure 34. Face recognition failure - The recognition fails because of the pose variation. 

 

Figure 35. Face recognition success - Face recognition succeeds thanks to pose correction (see red 
ellipse on the right).   
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Chapter 6. Future works 
 
In the future, the presented method will be evaluated on other RGB-D face 

databases as they become available. Also, some improvements and 

extensions have been considered. For example, the method could be 

extended to deal with arbitrary 3D head pose variations. Sometimes the 

probe face may also present pitch and roll rotations (Figure 36). A method 

able to deal only with yaw rotation will likely fail. To improve performances, 

the method needs to be able to perform pose correction in the presence of 

an arbitrary value of the yaw, pitch and roll angles. In addition, the method 

could be extended to simultaneously perform face recognition and head 

pose estimation. The face recognition algorithm could be used to drive the  

  

Figure 36. Arbitrary pose - Sometimes probe faces present also pitch and roll rotations. A method 
able to deal only with yaw rotation will likely fail. To improve the performance the method needs 
to perform pose correction in presence of an arbitrary values of the yaw, pitch and roll angles. 
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pose estimation algorithm, and the face recognition results could be 

improved with a more accurate pose estimation. A minimization technique 

like gradient descent could be adopted, where the cost is represented by 

the distance between faces. Ultimately, the RGB-D sensor could be very 

helpful for face expression correction and light normalization.  Figure 37 

shows a preliminary result of expression correction with Kinect. 

 

Figure 37. Expression correction with Kinect  
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Chapter 7. Conclusion 
 

In this study the problem of face recognition in the presence of 2D facial 

appearance variations caused by 3D head rotations was addressed. The 

advantages of the recently developed consumer-level RGB-D cameras 

(e.g. Kinect) were explored. The proposed face recognition approach is able 

to deal with large head pose variations using RGB-D face images. The 

method uses the depth information to correct the pose of the face with a 

simple smoothing and 3D rotation of the point cloud; it is simple and fast, 

yet able to deal with large pose variations and perform pose-invariant face 

recognition. Experiments on a public database show that the approach is 

effective and efficient under significant pose changes. The method doesn’t 

need to learn any face models. Also, a new face representation that 

combines the covariance descriptor with the LBP features was presented, 

and the experiments showed that the new representation is effective in the 

context of face recognition. Finally, a face recognition software able to 

achieve real-time and accurate face recognition in the presence of large 

yaw rotations using the Kinect sensor was presented. The results of this 

study demonstrate that RGB-D sensors are a promising tool that can lead 

to the development of robust pose-invariant face recognition systems under 

large pose variations. 
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