13,709 research outputs found

    Optimality and uniqueness of the (4,10,1/6) spherical code

    Full text link
    Linear programming bounds provide an elegant method to prove optimality and uniqueness of an (n,N,t) spherical code. However, this method does not apply to the parameters (4,10,1/6). We use semidefinite programming bounds instead to show that the Petersen code, which consists of the midpoints of the edges of the regular simplex in dimension 4, is the unique (4,10,1/6) spherical code.Comment: 12 pages, (v2) several small changes and corrections suggested by referees, accepted in Journal of Combinatorial Theory, Series

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    Semidefinite programming, multivariate orthogonal polynomials, and codes in spherical caps

    Get PDF
    We apply the semidefinite programming approach developed in arxiv:math.MG/0608426 to obtain new upper bounds for codes in spherical caps. We compute new upper bounds for the one-sided kissing number in several dimensions where we in particular get a new tight bound in dimension 8. Furthermore we show how to use the SDP framework to get analytic bounds.Comment: 15 pages, (v2) referee comments and suggestions incorporate

    Lecture notes: Semidefinite programs and harmonic analysis

    Full text link
    Lecture notes for the tutorial at the workshop HPOPT 2008 - 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands.Comment: 31 page

    The invariants of the Clifford groups

    Get PDF
    The automorphism group of the Barnes-Wall lattice L_m in dimension 2^m (m not 3) is a subgroup of index 2 in a certain ``Clifford group'' C_m (an extraspecial group of order 2^(1+2m) extended by an orthogonal group). This group and its complex analogue CC_m have arisen in recent years in connection with the construction of orthogonal spreads, Kerdock sets, packings in Grassmannian spaces, quantum codes, Siegel modular forms and spherical designs. In this paper we give a simpler proof of Runge's 1996 result that the space of invariants for C_m of degree 2k is spanned by the complete weight enumerators of the codes obtained by tensoring binary self-dual codes of length 2k with the field GF(2^m); these are a basis if m >= k-1. We also give new constructions for L_m and C_m: let M be the Z[sqrt(2)]-lattice with Gram matrix [2, sqrt(2); sqrt(2), 2]. Then L_m is the rational part of the mth tensor power of M, and C_m is the automorphism group of this tensor power. Also, if C is a binary self-dual code not generated by vectors of weight 2, then C_m is precisely the automorphism group of the complete weight enumerator of the tensor product of C and GF(2^m). There are analogues of all these results for the complex group CC_m, with ``doubly-even self-dual code'' instead of ``self-dual code''.Comment: Latex, 24 pages. Many small improvement

    Numerical cubature using error-correcting codes

    Full text link
    We present a construction for improving numerical cubature formulas with equal weights and a convolution structure, in particular equal-weight product formulas, using linear error-correcting codes. The construction is most effective in low degree with extended BCH codes. Using it, we obtain several sequences of explicit, positive, interior cubature formulas with good asymptotics for each fixed degree tt as the dimension n→∞n \to \infty. Using a special quadrature formula for the interval [arXiv:math.PR/0408360], we obtain an equal-weight tt-cubature formula on the nn-cube with O(n^{\floor{t/2}}) points, which is within a constant of the Stroud lower bound. We also obtain tt-cubature formulas on the nn-sphere, nn-ball, and Gaussian Rn\R^n with O(nt−2)O(n^{t-2}) points when tt is odd. When μ\mu is spherically symmetric and t=5t=5, we obtain O(n2)O(n^2) points. For each t≥4t \ge 4, we also obtain explicit, positive, interior formulas for the nn-simplex with O(nt−1)O(n^{t-1}) points; for t=3t=3, we obtain O(n) points. These constructions asymptotically improve the non-constructive Tchakaloff bound. Some related results were recently found independently by Victoir, who also noted that the basic construction more directly uses orthogonal arrays.Comment: Dedicated to Wlodzimierz and Krystyna Kuperberg on the occasion of their 40th anniversary. This version has a major improvement for the n-cub

    Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes

    Full text link
    We have developed the formalism necessary to employ the discontinuous-Galerkin approach in general-relativistic hydrodynamics. The formalism is firstly presented in a general 4-dimensional setting and then specialized to the case of spherical symmetry within a 3+1 splitting of spacetime. As a direct application, we have constructed a one-dimensional code, EDGES, which has been used to asses the viability of these methods via a series of tests involving highly relativistic flows in strong gravity. Our results show that discontinuous Galerkin methods are able not only to handle strong relativistic shock waves but, at the same time, to attain very high orders of accuracy and exponential convergence rates in smooth regions of the flow. Given these promising prospects and their affinity with a pseudospectral solution of the Einstein equations, discontinuous Galerkin methods could represent a new paradigm for the accurate numerical modelling in relativistic astrophysics.Comment: 24 pages, 19 figures. Small changes; matches version to appear in PR
    • …
    corecore