5,867 research outputs found

    Logical limit laws for minor-closed classes of graphs

    Get PDF
    Let G\mathcal G be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all {\em connected} graphs in G\mathcal G on nn vertices, and the convergence law in MSO holds if we draw uniformly at random from all graphs in G\mathcal G on nn vertices. We also prove analogues of these results for the class of graphs embeddable on a fixed surface, provided we restrict attention to first order logic (FO). Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface SS. We also prove that the closure of the set of limiting probabilities is always the finite union of at least two disjoint intervals, and that it is the same for FO and MSO. For the classes of forests and planar graphs we are able to determine the closure of the set of limiting probabilities precisely. For planar graphs it consists of exactly 108 intervals, each of length 5106\approx 5\cdot 10^{-6}. Finally, we analyse examples of non-addable classes where the behaviour is quite different. For instance, the zero-one law does not hold for the random caterpillar on nn vertices, even in FO.Comment: minor changes; accepted for publication by JCT

    The Configuration Model for Partially Directed Graphs

    Full text link
    The configuration model was originally defined for undirected networks and has recently been extended to directed networks. Many empirical networks are however neither undirected nor completely directed, but instead usually partially directed meaning that certain edges are directed and others are undirected. In the paper we define a configuration model for such networks where nodes have in-, out-, and undirected degrees that may be dependent. We prove conditions under which the resulting degree distributions converge to the intended degree distributions. The new model is shown to better approximate several empirical networks compared to undirected and completely directed networks.Comment: 19 pages, 3 figures, 2 table

    The phase transition in inhomogeneous random graphs

    Full text link
    We introduce a very general model of an inhomogenous random graph with independence between the edges, which scales so that the number of edges is linear in the number of vertices. This scaling corresponds to the p=c/n scaling for G(n,p) used to study the phase transition; also, it seems to be a property of many large real-world graphs. Our model includes as special cases many models previously studied. We show that under one very weak assumption (that the expected number of edges is `what it should be'), many properties of the model can be determined, in particular the critical point of the phase transition, and the size of the giant component above the transition. We do this by relating our random graphs to branching processes, which are much easier to analyze. We also consider other properties of the model, showing, for example, that when there is a giant component, it is `stable': for a typical random graph, no matter how we add or delete o(n) edges, the size of the giant component does not change by more than o(n).Comment: 135 pages; revised and expanded slightly. To appear in Random Structures and Algorithm

    Sparse random graphs with clustering

    Full text link
    In 2007 we introduced a general model of sparse random graphs with independence between the edges. The aim of this paper is to present an extension of this model in which the edges are far from independent, and to prove several results about this extension. The basic idea is to construct the random graph by adding not only edges but also other small graphs. In other words, we first construct an inhomogeneous random hypergraph with independent hyperedges, and then replace each hyperedge by a (perhaps complete) graph. Although flexible enough to produce graphs with significant dependence between edges, this model is nonetheless mathematically tractable. Indeed, we find the critical point where a giant component emerges in full generality, in terms of the norm of a certain integral operator, and relate the size of the giant component to the survival probability of a certain (non-Poisson) multi-type branching process. While our main focus is the phase transition, we also study the degree distribution and the numbers of small subgraphs. We illustrate the model with a simple special case that produces graphs with power-law degree sequences with a wide range of degree exponents and clustering coefficients.Comment: 62 pages; minor revisio

    Spatial preferential attachment networks: Power laws and clustering coefficients

    Get PDF
    We define a class of growing networks in which new nodes are given a spatial position and are connected to existing nodes with a probability mechanism favoring short distances and high degrees. The competition of preferential attachment and spatial clustering gives this model a range of interesting properties. Empirical degree distributions converge to a limit law, which can be a power law with any exponent τ>2\tau>2. The average clustering coefficient of the networks converges to a positive limit. Finally, a phase transition occurs in the global clustering coefficients and empirical distribution of edge lengths when the power-law exponent crosses the critical value τ=3\tau=3. Our main tool in the proof of these results is a general weak law of large numbers in the spirit of Penrose and Yukich.Comment: Published in at http://dx.doi.org/10.1214/14-AAP1006 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore