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Let G be an addable, minor-closed class of graphs. We prove 
that the zero-one law holds in monadic second-order logic 
(MSO) for the random graph drawn uniformly at random from 
all connected graphs in G on n vertices, and the convergence 
law in MSO holds if we draw uniformly at random from 
all graphs in G on n vertices. We also prove analogues of 
these results for the class of graphs embeddable on a fixed 
surface, provided we restrict attention to first order logic 
(FO). Moreover, the limiting probability that a given FO 
sentence is satisfied is independent of the surface S. We also 
prove that the closure of the set of limiting probabilities is 
always the finite union of at least two disjoint intervals, and 
that it is the same for FO and MSO. For the classes of forests 
and planar graphs we are able to determine the closure of 
the set of limiting probabilities precisely. For planar graphs 
it consists of exactly 108 intervals, each of the same length 
≈ 5.39 · 10−6. Finally, we analyse examples of non-addable 
classes where the behaviour is quite different. For instance, 
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the zero-one law does not hold for the random caterpillar on 
n vertices, even in FO.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We say that a sequence (Gn)n of random graphs obeys the zero-one law with respect 
to some logical language L if for every sentence ϕ in L the probability that a graph Gn

satisfies ϕ tends either to 0 or 1, as n goes to infinity. We say that (Gn)n obeys the 
convergence law with respect to L, if for every ϕ in L, the probability that Gn satisfies 
ϕ tends to a limit (not necessarily zero or one) as n tends to infinity.

The prime example of a logical language is the first order language of graphs (FO). 
Formulas in this language are constructed using variables x, y, . . . ranging over the ver-
tices of a graph, the usual quantifiers ∀, ∃, the usual logical connectives ¬, ∨, ∧, etc., 
parentheses and the binary relations =, ∼, where x ∼ y denotes that x and y are adja-
cent. For notational convenience we will also allow the use of commas and semicolons 
in the formulas in this paper. In FO one can for instance write “G is triangle-free” as 
¬∃x, y, z : (x ∼ y) ∧ (x ∼ z) ∧ (y ∼ z).

The classical example of a zero-one law is a result due to Glebskii et al. [20] and 
independently to Fagin [15], stating that the zero-one law holds when Gn is chosen 
uniformly at random among all 2

(n
2
)

labelled graphs on n vertices and the language is
FO. The (non-)existence of FO-zero-one and convergence laws has been investigated 
more generally in the G(n, p) binomial model, where there are n labelled vertices and 
edges are drawn independently with probability p (the case p = 1/2 of course corresponds 
to the uniform distribution on all labelled graphs on n vertices). Here, the FO-zero-one 
law holds for all constant p and in many other cases. In particular, a remarkable result 
of Shelah and Spencer says that if p = n−α with 0 ≤ α ≤ 1 fixed, then the FO-zero-one 
law holds if and only if α is an irrational number [40]. What is more, when α is rational 
then the convergence law in fact fails. That is, for rational α Shelah and Spencer were 
able to construct an ingenious FO-sentence such that the probability that G(n, n−α)
satisfies it oscillates between zero and one. The book [41] by Spencer contains a detailed 
account of the story of logical limit laws for the G(n, p) binomial model.

There are also several results available on zero-one laws for random graphs that satisfy 
some global condition, such as being regular, having bounded degree or being H-free for 
some fixed graph H. One of the earliest instances of such results deals with Kt+1-free 
graphs: Kolaitis, Prömel and Rothschild [27] proved an FO-zero-one law for the graph 
chosen uniformly at random from all Kt+1-free graphs on n vertices. For random d-regular 
graphs, with d fixed, there cannot be a zero-one law. For instance, the probability of 
containing a triangle is expressible in FO and tends to a constant different from 0 and 1. 
(This is an immediate consequence of Theorem 9.5 on page 237 of [23]). Using the 
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configuration model, Lynch [30] proved the FO-convergence law for graphs with a given 
degree sequence (subject to some conditions on this degree sequence), which in particular 
covers d-regular graphs with d fixed. For dense d-regular graphs, that is when d = Θ(n), 
a zero-one law was proved by Haber and Krivelevich [21], who were also able to obtain 
an analogue of the striking result of Shelah–Spencer mentioned above for random regular 
graphs.

In a different direction, McColm [31] considers trees sampled uniformly at random 
from all (labelled) trees on n vertices. He shows that a zero-one law holds in monadic 
second order (MSO) language of graphs, which is FO enriched with quantification over 
sets of vertices. That is, we now have additional variables X, Y, . . . ranging over sets of 
vertices and an additional binary relation ∈, that allows us to ask whether x ∈ X, for x
a vertex-variable and X a set-variable. This results in a stronger language which is able 
to express properties such as connectedness or k-colorability for any fixed k. In MSO we 
can for instance express “G is connected” as ∀X : (∀x : x ∈ X) ∨¬(∃x : x ∈ X) ∨ (∃x, y :
(x ∈ X) ∧ ¬(y ∈ X) ∧ (x ∼ y)).

The proof in [31] is based on two facts: for each k > 0 there exists a rooted tree Tk

such that, if two trees A and B both have Tk as a rooted subtree, then A and B agree 
on all sentences of quantifier depth at most k (defined in Section 2.1 below); and the 
fact that with high probability a random tree contains Tk as a rooted subtree. We show 
that this approach can be adapted to a much more general setting, as we explain next.

A class G of graphs is minor-closed if every minor of a graph in G is also in G. Every 
minor-closed class is characterised by the set of its excluded minors, which is finite by the 
celebrated Robertson–Seymour theorem. Notable examples of minor-closed graphs are 
forests, planar graphs and graphs embeddable on a fixed surface. We say that G is addable 
if it holds that 1) G ∈ G if and only if all its components are in G, and 2) if G′ is obtained 
from G ∈ G by adding an arbitrary edge between two separate components of G, then 
G′ ∈ G also. Planar graphs constitute an addable class of graphs, but graphs embeddable 
on a surface other than the sphere may not. (A 5-clique is for instance embeddable on 
the torus, but the vertex-disjoint union of two 5-cliques is not – see [35, Theorem 4.4.2]). 
Other examples of addable classes are outerplanar graphs, series-parallel graphs, graphs 
with bounded tree-width, and graphs with given 3-connected components [19]. Relying 
heavily on results of McDiarmid [33], we are able to prove the MSO-zero-one law for 
the random graph chosen uniformly at random from all connected graphs on n vertices 
in an addable minor-closed class. If G is a class of graphs, then C ⊆ G will denote the 
set of connected graphs from G; the notation Gn will denote the set of all graphs in G
with vertex set [n] := {1, . . . , n}, and Cn is defined analogously. If A is a finite set then 
X ∈u A denotes that X is chosen uniformly at random from A.

Theorem 1.1. Let G be an addable, minor-closed class of graphs and let Cn ∈u Cn be the 
random connected graph from G. Then Cn obeys the MSO-zero-one law.
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It is worth mentioning that the MSO-zero-one law does not hold in G(n, 1/2) – see 
[26]. For the “general” random graph from an addable class G, i.e. Gn ∈u Gn, there cannot 
be a zero-one law, even in FO logic. The reason is that there are sentences expressible in
FO, such as the existence of an isolated vertex, that have a limiting probability strictly 
between 0 and 1. (This follows immediately from Theorem 2.12 below, which is due 
to [33].) We are however able to prove the convergence law in this case.

Theorem 1.2. Let G be an addable, minor-closed class of graphs and let Gn ∈u Gn. Then 
Gn obeys the MSO-convergence law.

The proof is based on the fact that with high probability there is a “giant” component 
of size n − O(1), and uses the extraordinarily precise description of the limiting distri-
bution of the fragment, the part of the graph that remains after we remove the largest 
component [33].

Moving away from addable classes of graphs, let S be a fixed surface and consider the 
class of graphs that can be embedded in S. In this case we prove a zero-one law in FO for 
connected graphs. The proof is based on recent results on random graphs embeddable 
on a surface [32,10] and an application of Gaifman’s locality theorem (see Theorem 2.8
below). The notation G |= ϕ means “G satisfies ϕ”.

Theorem 1.3. Fix a surface S, let G be the class of all graphs embeddable on S and let 
Cn ∈u Cn be the random connected graph from G. Then Cn obeys the FO-zero-one law. 
Moreover, the values of the limiting probabilities lim

n→∞
P(Cn |= ϕ) do not depend on the 

surface S.

We remark that an analogous result was proved for random maps (connected graphs 
with a given embedding) on a fixed surface [3]. Again for arbitrary graphs we prove 
a convergence law in FO. Moreover, we show that the limiting probability of an FO 
sentence does not depend on the surface and is the same as for planar graphs.

Theorem 1.4. Fix a surface S, let G be the class of all graphs embeddable on S and let 
Gn ∈u Gn. Then Gn obeys the FO-convergence law. Moreover, the values of the limiting 
probabilities lim

n→∞
P(Gn |= ϕ) do not depend on the surface S.

We conjecture that both Theorems 1.3 and 1.4 extend to MSO logic. See the last 
section of this paper for a more detailed discussion.

Having proved Theorem 1.2, a natural question is which numbers p ∈ [0, 1] are limiting 
probabilities of some MSO sentence. The proof of Theorem 1.2 provides an expression 
for the limiting probabilities in terms of the so-called Boltzmann–Poisson distribution 
(defined in Section 2.2), but at present we are not able to deduce a complete description 
of the set of limiting probabilities from it. We are however able to derive some information 
on the structure of this set. Two easy observations are that, since there are only countably 
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many sentences ϕ ∈ MSO (since a sentence is a finite string of symbols, taken from a 
countable alphabet), the set {limn→∞ P(Gn |= ϕ) : ϕ ∈ MSO} must obviously also be 
countable; and since limn→∞ P(Gn |= ¬ϕ) = 1 − limn→∞ P(Gn |= ϕ), it is symmetric 
with respect to 1/2.

Certainly not every number p ∈ [0, 1] is a limiting probability of an MSO sentence, as 
there are only countably many such limiting probabilities. A natural question is whether 
the set of limiting probabilities is at least dense in [0, 1]. As it turns out this is never the 
case (for G an addable, minor-closed class):

Proposition 1.5. Let G be an addable, minor-closed class of graphs and let Gn ∈u Gn. 
For every ϕ ∈ MSO we have either limn→∞ P(Gn |= ϕ) ≤ 1 − e−1/2 ≈ 0.3935 or 
limn→∞ P(Gn |= ϕ) ≥ e−1/2 ≈ 0.6065.

Next, one might ask for the topology of the set of limiting probabilities. Could they 
for instance form some strange, fractal-like set? (See the last section of this paper for 
an example of a model of random graphs, where such things do indeed happen.) The 
next theorem shows that the set of limiting probabilities is relatively well-behaved, and 
also that the limits of FO-sentences are dense in the set of limits of MSO-sentences. We 
denote by cl(A) the topological closure of A in R.

Theorem 1.6. Let G be an addable, minor-closed class of graphs and let Gn ∈u Gn. Then

cl
({

lim
n→∞

P(Gn |= ϕ) : ϕ ∈ MSO

})
= cl

({
lim
n→∞

P(Gn |= ϕ) : ϕ ∈ FO

})

and this set is a finite union of closed intervals.

Let us remark that, in view of Proposition 1.5, the closure always consists of at least 
two disjoint intervals. In Section 6 we conjecture that there are at least four disjoint 
intervals for every addable, minor-closed class. Let us also observe that it follows from 
this last theorem and Theorem 1.4 that the closure of the FO-limiting probabilities for 
the random graph embeddable on S, for any surface S, coincides with the closure of the 
MSO-limiting probabilities for the class of planar graphs.

Perhaps surprisingly, the closure of the set of MSO-limiting probabilities can actually 
be determined exactly for two important examples. The first one is the class of forests.

Theorem 1.7. If G is the class of forests and Gn ∈u Gn then

cl
({

lim
n→∞

P(Gn |= ϕ) : ϕ ∈ MSO

})

=
[
0, 1 − (1 + e−1)e−1/2

]
∪
[
e−3/2, 1 − e−1/2

]
∪
[
e−1/2, 1 − e−3/2

]
∪
[
(1 + e−1)e−1/2, 1

]
≈

[
0, .170

]
∪
[
.223, .393

]
∪
[
.606, .776

]
∪
[
.830, 1

]
.
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The second class for which we can determine the closure of the set of limiting proba-
bilities of MSO sentences is the class of planar graphs. To describe the results, we need 
the exponential generating function corresponding to a class of graphs G, which is defined 
as G(z) =

∑∞
n=0 |Gn| z

n

n! .

Theorem 1.8. If G is the class of planar graphs and Gn ∈u Gn then the set

cl
({

lim
n→∞

P(Gn |= ϕ) : ϕ ∈ MSO

})

is the union of 108 disjoint intervals that all have exactly the same length, which is 
approximately 5.39 · 10−6. The endpoints of these intervals are given explicitly in Theo-
rem 4.8 in terms of ρ and G(ρ), where G(z) is the exponential generating function for 
the set of planar graphs, and ρ is its radius of convergence (see details in Section 4.4).

Until now we have dealt with addable minor-closed classes and graphs embeddable 
on a fixed surface, which in view of Theorems 1.3 and 1.4 (see also the results we list 
in Section 2.2) behave rather similarly to planar graphs. It is thus natural to ask to 
which extent our results can be expected to carry over to the non-addable case. Random 
graphs from several non-addable classes have recently been investigated in [7] and the 
results in that paper demonstrate that they can display behaviour very different from 
the addable case. In Section 5, we analyse three examples of non-addable graph classes 
from the logical limit laws point of view; and the results there are in stark contrast with 
the results on addable graph classes.

For t ∈ N a fixed integer, the collection G of all graphs whose every component has no 
more than t vertices is a minor-closed class that is not addable. Of course now Cn, the set 
of connected graphs from G on n vertices, is empty for n > t. So it does not make sense 
to consider the random connected graph Cn ∈u Cn. For the “general” random graph 
Gn ∈u Gn we see that, contrary to the addable case, every MSO sentence has a limiting 
probability that is either zero or one.

Theorem 1.9. Let t ∈ N be fixed, let G be the class of all graphs whose components have 
at most t vertices, and let Gn ∈u Gn. Then Gn obeys the MSO-zero-one law.

Another simple example of a non-addable minor-closed class of graphs G is formed by 
forests of paths (every component is a path). Note that now we can speak of Cn ∈u Cn, 
the random path on n vertices, but it is still a rather uninteresting object as the only 
randomness is in the labels of the vertices. In Section 5.2 we give an MSO-sentence 
whose probability of holding for the random path Cn is zero for even n and one for 
odd n, disproving even the MSO-convergence law for the random path. On the other 
hand, we are able to prove the MSO-convergence law for the “general” random graph 
from G. And, finally it turns out that now, contrary to the addable case, the limiting 
probabilities are in fact dense in [0, 1].
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Theorem 1.10. Let Cn be the random path on n vertices, and let Gn be the random forest 
of paths on n vertices. Then the following hold:

(i) The MSO-convergence law fails for Cn;
(ii) The MSO-convergence law holds for Gn;
(iii) cl

({
lim
n→∞

P(Gn |= ϕ) : ϕ ∈ MSO

})
= [0, 1].

We remark that the FO-zero-one law holds for the “random path” Cn. This follows 
immediately from Theorem 2.1.3 in [41].

Of course graphs with bounded component size and forests of paths are relatively 
simple classes of graphs. We turn attention to a non-addable minor-closed class of graphs 
that is slightly more challenging to analyse. A caterpillar consists of a finite path with 
zero or more vertices of degree one attached to it. A forest of caterpillars is a graph all 
of whose components are caterpillars. In Section 5.3 we construct an FO sentence such 
that the probability that the random caterpillar satisfies it converges, but not to zero or 
one. We are again able to show that the convergence law holds for the “general” random 
graph from the class (the random forest of caterpillars), but we are only able to do this 
if we restrict attention to FO logic – for what appears to be mainly technical reasons. 
And finally, also here the limiting probabilities (of FO sentences) turn out to be dense 
in [0, 1].

Theorem 1.11. Let Cn be the random caterpillar on n vertices, and let Gn be the random 
forest of caterpillars on n vertices. Then the following hold:

(i) The FO-zero-one law fails for Cn;
(ii) The FO-convergence law holds for Gn;
(iii) cl

({
lim
n→∞

P(Gn |= ϕ) : ϕ ∈ FO

})
= [0, 1].

Very recently (in the period since the submission of the present paper) it was shown 
that the FO-convergence law holds for the “random caterpillar” Cn by R. Lambers in 
his MSc thesis [28] that was written under the supervision of the second author.

In the next section we give the notation and results from the literature that we need for 
the proofs of our main results. In Section 3 we give the proofs of Theorem 1.1 through 1.4. 
In Section 4 we prove Proposition 1.5 and Theorem 1.6 through 1.8. The proofs of our 
results on non-addable classes can be found in Section 5. Finally, in Section 6 we give 
some additional thoughts and open questions that arise from our work.

2. Notation and preliminaries

All graphs in this paper will be simple and loopless. Throughout the paper, we write 
[n] := {1, . . . , n}. If G is a graph then we denote its vertex set by V (G) and its edge 
set by E(G). Their cardinalities are denoted by v(G) := |V (G)| and e(G) := |E(G)|. 
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For u ∈ V (G), we denote by BG(u, r), called r-neighbourhood of u, the subgraph of G
induced by the set of all vertices of graph distance at most r from u. When the graph 
is clear from the context we often simply write B(u, r). Occasionally we write x ∼ y to 
denote that x is adjacent to y, in some graph clear from the context.

If G, H are graphs, then G ∪H denotes the vertex-disjoint union. That is, we ensure 
that V (G) ∩ V (H) = ∅ (by swapping H for an isomorphic copy if needed) and then we 
simply take V (G ∪H) = V (G) ∪V (H), E(G ∪H) = E(G) ∪E(H). If n is an integer and 
G a graph then nG denotes the vertex-disjoint union of n copies of G.

An unlabelled graph is, formally, an isomorphism class of graphs. In this paper we 
deal with both labelled and unlabelled graphs. We will occasionally be a bit sloppy with 
the distinction between the two (for instance, by taking the vertex-disjoint union of a 
labelled and an unlabelled graph) but no confusion will arise. A class of graphs G always 
means a collection of graphs closed under isomorphism. We denote by UG the collection 
of unlabelled graphs corresponding to G.

Following McDiarmid [33], we denote by Big(G) the largest component of G. In case 
of ties we take the lexicographically first among the components of the largest order (i.e., 
we look at the labels of the vertices and take the component in which the smallest label 
occurs). The ‘fragment’ Frag(G) of G is what remains after we remove Big(G).

Recall that a random variable is discrete if it takes values in some countable set Ω. For 
discrete random variables taking values in the same set Ω, the total variation distance is 
defined as:

distTV(X,Y ) = max
A⊆Ω

|P(X ∈ A) − P(Y ∈ A)|.

Alternatively, by some straightforward manipulations (see [29, Proposition 4.2]), we can 
write distTV(X, Y ) = 1

2
∑

a∈Ω |P(X = a) − P(Y = a)|. If X, X1, X2, . . . are discrete 
random variables, we say that Xn tends to X in total variation (notation: Xn →TV X) 
if limn→∞ distTV(Xn, X) = 0.

Throughout this paper, Po(μ) denotes the Poisson distribution with parameter μ. We 
make use of the following incarnation of the Chernoff bounds. A proof can for instance 
be found in Chapter 1 of [39].

Lemma 2.1. Let Z d= Po(μ). Then the following bounds hold:

(i) For all k ≥ μ we have P(Z ≥ k) ≤ e−μH(k/μ), and
(ii) For all k ≤ μ we have P(Z ≤ k) ≤ e−μH(k/μ),

where H(x) := x lnx − x + 1. �
In Section 4, we make use of a general result on the set of all sums of subsequences 

of a given summable sequence of nonnegative numbers. The following observation goes 
back a hundred years, to the work of Kakeya [24].
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Lemma 2.2 ([24]). Let p1, p2, . . . be a summable sequence of nonnegative numbers. If 
pi ≤

∑
j>i pj for every i ∈ N, then

{∑
i∈A

pi : A ⊆ N

}
=

[
0,

∞∑
i=1

pi

]
.

From this last lemma it is straightforward to derive the following observation – see 
for instance [36, Equation (3) and Proposition 6].

Corollary 2.3. Let p1, p2, . . . be a summable sequence of nonnegative numbers, and sup-
pose there is an i0 ∈ N such that pi ≤

∑
j>i pj for all i > i0. Then the set of sums of 

subsequences of (pn)n is a union of 2i0 translates of the interval 
[
0,
∑

i>i0
pi
]
, namely:

{∑
i∈A

pi : A ⊆ N

}
=

⋃
x1,...,xi0∈{0,1}

[
x1p1 + · · · + xi0pi0 , x1p1 + · · · + xi0pi0 +

∑
i>i0

pi

]
.

(1)

We remark that the intervals in the LHS of (1) are not necessarily disjoint, but they 
are disjoint if pi >

∑
j>i pj for all i ≤ i0.

2.1. Logical preliminaries

A variable x in a logical formula is called bound if it has a quantifier. Otherwise, it is 
called free. A sentence is a formula without free variables.

The quantifier depth qd(ϕ) of an MSO formula ϕ is, informally speaking, the longest 
chain of ‘nestings’ of quantifiers. More formally, it is defined inductively using the axioms
1) qd(¬ϕ) = qd(ϕ), 2) qd(ϕ ∨ ψ) = qd(ϕ ∧ ψ) = qd(ϕ ⇒ ψ) = max(qd(ϕ), qd(ψ)),
3) qd(∃x : ϕ) = qd(∀x : ϕ) = qd(∃X : ϕ) = qd(∀X : ϕ) = 1 + qd(ϕ), 4) qd(x = y) =
qd(x ∼ y) = qd(x ∈ X) = 0.

For two graphs G and H, the notation G ≡MSO
k H denotes that every ϕ ∈ MSO

with qd(ϕ) ≤ k is either satisfied by both G and H or false in both. We define G ≡FO
k

H similarly. It is immediate from the definition that ≡MSO
k , ≡FO

k are both equivalence 
relations on the set of all graphs. What is more, for every k there are only finitely many 
equivalence classes (for a proof see, e.g., [14, Proposition 3.1.3]):

Lemma 2.4. For every k ∈ N, the relation ≡MSO
k has finitely many equivalence classes. 

The same holds for ≡FO
k .

The MSO-Ehrenfeucht–Fraïssé-game EHRMSO
k (G, H) is a two-player game played on 

two graphs G, H for k rounds. The game is played as follows. There are two players, 
Spoiler and Duplicator. In each round 1 ≤ i ≤ k, Spoiler is first to move, selects one 
of the two graphs G or H (and in particular is allowed to switch the graph at any new 
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round), and does either a vertex-move or a set-move. That is, Spoiler either selects a 
single vertex or a subset of the vertices. If Spoiler did a vertex-move then Duplicator 
now has to select a vertex from the graph that Spoiler did not play on, and otherwise 
Duplicator has to select a subset of the vertices from the graph Spoiler did not play on. 
After k rounds the game is finished. To decide on the winner, we first need to introduce 
some additional notation. Let I ⊆ {1, . . . , k} be those rounds in which a vertex-move 
occurred. For i ∈ I, let xi ∈ V (G), yi ∈ V (H) be the vertices that were selected in 
round i. For i /∈ I, let Xi ⊆ V (G), Yi ⊆ V (H) be the subsets of vertices that were 
selected in round i. Duplicator has won if the following three conditions are met:

1) xi = xj if and only if yi = yj , for all i, j ∈ I, and;
2) xixj ∈ E(G) if and only if yiyj ∈ E(H), for all i, j ∈ I, and;
3) xi ∈ Xj if and only if yi ∈ Yj , for all i ∈ I, j /∈ I.

Otherwise Spoiler has won. We say that EHRMSO
k (G, H) is a win for Duplicator if there 

exists a winning strategy for Duplicator. (I.e., no matter how Spoiler plays, Duplica-
tor can always respond so as to win in the end.) The FO-Ehrenfeucht–Fraïssé-game 
EHRFO

k (G, H) is defined just like EHRMSO
k (G, H), except that set-moves do not exist in 

that game. (So in the FO-game, Duplicator wins if and only if 1) and 2) are met at the 
end of the game.)

The following lemma shows the relation between these games and logic. A proof can 
for instance be found in [14, Theorems 2.2.8 and 3.1.1].

Lemma 2.5. G ≡MSO
k H if and only if EHRMSO

k (G, H) is a win for Duplicator.
Similarly, G ≡FO

k H if and only if EHRFO
k (G, H) is a win for Duplicator.

The Ehrenfeucht–Fraïssé-game is a convenient tool for proving statements about log-
ical (in-) equivalence. It can be used for instance to prove that the statement ‘G is 
connected’ cannot be expressed as an FO-sentence, and that similarly ‘G has a Hamilton 
cycle’ cannot be expressed by an MSO-sentence. (See for instance [41, Theorem 2.4.1].)

The following two standard facts about ≡MSO
k are essential tools in our arguments. 

They can for instance be found in [12, Theorems 2.2 and 2.3], where they are proved in 
a greater level of generality.

Lemma 2.6. If H1 ≡MSO
k G1 and H2 ≡MSO

k G2 then H1 ∪H2 ≡MSO
k G1 ∪G2. The same 

conclusion holds w.r.t. ≡FO
k .

Lemma 2.7. For every k ∈ N there is an a = a(k) such that the following holds. For 
every graph G and every b ≥ a we have aG ≡MSO

k bG.

Let us observe that the statement dist(x, y) ≤ r, where dist denotes the graph distance, 
can easily be written as a first order formula whose only free variables are x, y. If ϕ is a 
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first order formula then we denote by ϕB(x,r) the formula in which all bound variables are 
‘relativised to B(x, r)’. This means that in ϕB(x,r) all variables range over B(x, r) only. 
(This can be achieved by inductively applying the substitutions [∀y : ψ(y)]B(x,r) := ∀y :
((dist(x, y) ≤ r) ⇒ ψB(x,r)(y)) and [∃y : ψ(y)]B(x,r) := ∃y : (dist(x, y) ≤ r) ∧ψB(x,r)(y).) 
A basic local sentence is a sentence of the form

∃x1, . . . , xn :

⎛
⎝ ∧

1≤i≤n

ψB(xi,�)(xi)

⎞
⎠ ∧

⎛
⎝ ∧

1≤i<j≤n

dist(xi, xj) > 2�

⎞
⎠ , (2)

where ψ(x) is a FO-formula whose only free variable is x and � is a number. A local sen-
tence is a boolean combination of basic local sentences. The following theorem captures 
the intuition that first order sentences in some sense can only capture local properties. It 
will help us to shorten some proofs in the sequel. Besides in [17], a proof can for instance 
be found in [14, Section 2.5].

Theorem 2.8 (Gaifman’s theorem, [17]). Every first order sentence is logically equivalent 
to a local sentence.

Here “ϕ is logically equivalent to ψ” of course means that G |= ϕ if and only G |= ψ

(for every G).

2.2. Preliminaries on minor-closed classes

In this section we introduce some notions and results on minor-closed classes of graphs 
that we need in later arguments. We say that a class of graphs G is decomposable if G ∈ G
if and only if every component of G is in G. We say that G is addable if it is decomposable, 
and closed under adding an edge between vertices in distinct components. Let us mention 
(although we shall not use this anywhere in the paper) that a minor-closed class is 
addable if and only if it can be characterised by a list of excluded minors that are all 
2-connected [33, p. 1].

Throughout this paper, G denotes a minor-closed class of graphs, C the set of all 
connected graphs in G, Gn the graphs of G on vertex set {1, . . . , n}, Cn the connected 
elements of Gn, and UG denotes the unlabelled class corresponding to G, i.e., the set of all 
isomorphism classes of graphs in G. We define UC, UGn, UCn similarly. The exponential 
generating function of G is defined by

G(z) :=
∞∑

n=0
|Gn|

zn

n! ,

and similarly C(z) =
∑∞

n=1 |Cn| z
n

n! . (Note that by convention the “empty graph” is not 
considered connected, so that |G0| = 1 and |C0| = 0.) If G is decomposable then it can be 
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seen that G(z) and C(z) are related by the exponential formula (see [11, Lemma 2.1 (i)]
or [16, Chapter II])

G(z) = exp(C(z)). (3)

The radius of convergence of G(z) will always be denoted by ρ. (We remark that, for a 
decomposable graph class, the exponential formula implies that C(.) and G(.) have the 
same radius of convergence and that C(ρ) is finite if and only if G(ρ) is.)

Note that we have

ρ =
(

lim sup
n→∞

(
|Gn|
n!

)1/n
)−1

. (4)

By a result of Norine, Seymour, Thomas and Wollan [37], we know that ρ > 0 for 
every minor-closed class other than the class of all graphs. More detailed information on 
which values ρ can assume for minor-closed classes was obtained by Bernardi, Noy and 
Welsh [5]. Amongst other things, they showed that the radius of convergence is infinite 
if and only if G does not contain every path; and that otherwise, if G contains all paths, 
then ρ ≤ 1. An arbitrary class of graphs G is said to be smooth if

lim
n→∞

n|Gn−1|
|Gn|

exists and is finite. (5)

(In case this limit does exist then it must in fact equal ρ.) Smoothness turns out to 
be a key property in many proofs on enumerative and probabilistic aspects of graphs 
from minor-closed classes. The following result was proved by McDiarmid in [33]. The 
statement below combines Theorem 1.2 and Lemma 2.4 of [33].

Theorem 2.9 ([33]). Let G be an addable, minor-closed class, and let C ⊆ G be the 
corresponding class of connected graphs. Then C and G are both smooth.

A crucial object in the literature on random graphs from minor closed classes is the 
Boltzmann–Poisson random graph, which we define next.

Definition 2.10 (Boltzmann–Poisson random graph). Let G be a decomposable class of 
graphs, and let ρ be the radius of convergence of its exponential generating function 
G(z). If G(ρ) < ∞ then the Boltzmann–Poisson random graph corresponding to G is the 
unlabelled random graph R satisfying:

P(R = H) = 1
G(ρ) · ρv(H)

aut(H) for all H ∈ UG. (6)

Here aut(H) denotes the number of automorphisms of H, where the number of au-
tomorphisms of the empty graph is taken to be one. It can for instance been seen from 
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Burnside’s lemma that (6) indeed defines a probability distribution taking values in UG. 
(Alternatively, see Theorem 1.3 of [33].) The paper [33] also establishes the following 
result, which we state as a separate lemma for future convenience.

Lemma 2.11. Let G, ρ and R be as in Definition 2.10. Let H1, . . . , Hk ∈ G be non-
isomorphic connected graphs from G and let Zi denote the number of components of R
that are isomorphic to Hi. Then Z1, . . . , Zk are independent Poisson random variables 
with means EZi = ρv(Hi)/ aut(Hi).

The following is a slight rewording of Theorem 1.5 in [33], where something stronger 
is proved.

Theorem 2.12 ([33]). Let G be an addable minor-closed class other than the class of all 
graphs, let ρ be its radius of convergence and let Gn ∈u Gn. Then G(ρ) < ∞ and if Fn

denotes the isomorphism class of Frag(Gn) (so Fn is the unlabelled version of Frag(Gn)) 
then Fn →TV R, where R is the Boltzmann–Poisson random graph associated with G.

This powerful result has several useful immediate corollaries, as pointed out in [33]. 
For instance, it follows that, if G is addable and minor-closed, then | Big(Gn)| = n −O(1)
w.h.p., and

lim
n→∞

P(Gn is connected ) = lim
n→∞

P(Frag(Gn) = ∅) = P(R = ∅) = 1
G(ρ) . (7)

McDiarmid, Steger and Welsh [34] remarked that for the case of forests, the asymptotic 
probability of being connected is 1/G(ρ) = e−1/2, and they also conjectured that this is 
the smallest possible value over all weakly addable graph classes (a class of graphs G is 
weakly addable if adding an edge between distinct components of a graph in G always 
produces another graph in G). This conjecture was proved under some conditions which 
are met by addable, minor closed classes, by two independent teams: Addario-Berry, Mc-
Diarmid and Reed [1], and Kang and Panagiotou [25, Theorem 1.1]. Even more recently 
(since we submitted the present paper) the conjecture appears to have been settled in 
the affirmative by Chapuy and Perarnau [9]. A corollary of the result of [1,25] is the 
following.

Theorem 2.13 ([1,25]). If G is an addable, minor-closed class of graphs then G(ρ) ≤ √
e.

Let H be a connected graph with a distinguished vertex r, the ‘root’. We say that 
G contains a pendant copy of H if G contains an induced subgraph isomorphic to H, 
and there is exactly one edge between this copy of H and the rest of the graph, and 
this edge is incident with the root r. McDiarmid [33, Theorem 1.7] proved the following 
remarkable result:
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Theorem 2.14 ([33]). Let G be an addable, minor-closed class and Gn ∈u Gn. Let H ∈ G
be any fixed, connected (rooted) graph. Then, w.h.p., Gn contains Ω(n)-many pendant 
copies of H.

While not explicitly remarked in [33], the result carries over to the random connected 
graph from G.

Corollary 2.15. Let G be an addable, minor-closed class and let Cn ∈u Cn be the random
connected graph from G. If H ∈ G is any fixed, connected (rooted) graph then, w.h.p., 
Cn contains Ω(n)-many pendant copies of H.

Proof. By Theorem 2.14, there is a constant α > 0 such that P(En) = 1 −o(1), where En

denotes the event that Gn contains at least αn pendant copies of H. Let Fn denote the 
event that Cn contains at least αn pendant copies of H, and let An denote the event that 
Gn is connected. Aiming for a contradiction, let us suppose that lim infn→∞ P(Fn) =
β < 1. Observe that if we condition on An, we find that Gn is distributed like Cn (Gn

is now chosen uniformly at random from all connected graphs from Gn). Writing Ac
n for 

the complement of An, we see that:

lim inf
n→∞

P(En) = lim inf
n→∞

[
P(Fn) · P(An) + P(En|Ac

n) · (1 − P(An))
]

≤ lim inf
n→∞

[
P(Fn) · P(An) + 1 · (1 − P(An))

]

= β · 1
G(ρ) + (1 − 1

G(ρ) ),

using (7) for the last line. But this last expression is < 1, a contradiction. Hence we must 
have P(Fn) = 1 − o(1), as required. �

In the paper [32], McDiarmid proved a result analogous to Theorem 2.12 above for 
the class GS of all graphs embeddable on some fixed surface S under the additional 
assumption that GS is smooth. That GS is indeed smooth for every surface S was later 
established by Bender, Canfield and Richmond [4]. See also [2,10], where more detailed 
asymptotic information is derived for the number of graphs on n vertices from GS . By 
combining [32, Theorem 3.3] with [4, Theorem 2] we obtain:

Theorem 2.16 ([32,4]). Let S be any surface, let G be the class of all graphs embeddable on 
S and let Gn ∈u Gn. If Fn denotes the isomorphism class of Frag(Gn) then Fn →TV R, 
where R is the Boltzmann–Poisson random graph associated with the class of planar 
graphs P.

Let us stress that the fragment in this last case follows the Boltzmann–Poisson distri-
bution associated with the class of planar graphs. Hence the asymptotic distribution of 
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the fragment is independent of the choice of surface S. Of course, the remarks following 
Theorem 2.12 also apply to the case of graphs on surfaces, where ρ, G(ρ) are the values 
for the class of planar graphs.

Without having to assume smoothness, McDiarmid [32] was able to prove the analogue 
of Theorem 2.14 for graphs on surfaces.

Theorem 2.17 ([32]). Let S be a fixed surface, let G be the class of all graphs embeddable 
on S and let Gn ∈u Gn. Let H be any fixed, connected (rooted) planar graph. Then, 
w.h.p., Gn contains linearly many pendant copies of H.

A verbatim repeat of the proof of Corollary 2.15 now also yields:

Corollary 2.18. Let S be a fixed surface, let G be the class of all graphs embeddable on 
S and let and Cn ∈u Cn be the random connected graph from G. Let H be any fixed, 
connected (rooted) planar graph. Then, w.h.p., Cn contains linearly many pendant copies 
of H.

We also need another powerful result showing that the random graph embeddable on 
a fixed surface is locally planar in the sense given by the next theorem. It was essentially 
proved in [10], but not stated there explicitly. For this reason we give a short sketch of 
how to extract a proof from the results in [10].

Theorem 2.19. Let S be any fixed surface, let G be the class of all graphs embeddable 
on S, let Gn ∈u Gn, and let r ∈ N be fixed. Then w.h.p. BGn

(v, r) is planar for all 
v ∈ V (Gn).

Proof sketch. Let M be an embedding of a graph G on a surface S. The face-width 
fw(M) of M is the minimum number of intersections of M with a simple non-contractible 
curve C on S. It is easy to see that this minimum is achieved when C meets M only 
at vertices of G. Notice that if fw(M) ≥ 2r, then all the balls in G of radius r are 
planar.

Fix a surface S. From the results in [10] it follows that for any fixed k, a ran-
dom graph that can be embedded in S has an embedding in S with face-width at 
least k w.h.p. This is first established for 3-connected graphs embeddable in S; see 
[10, Lemma 4.2]. It is also proved that w.h.p. a random connected graph G embed-
dable in S has a unique 3-connected component T of linear size (whose genus is 
the genus of S), and the remaining 3- and 2-connected components are planar. The 
component T is not uniform among all 3-connected graphs with the same number of 
vertices, since it carries a weight on the edges. But since Lemma 4.2 in [10] holds 
for weighted graphs, the component M has large face-width w.h.p. Since the remain-
ing components are planar, this also applies to G. By Theorem 2.14, this implies 
the same result for arbitrary graphs. Analogous results were obtained independently 
in [2]. �
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Again a nearly verbatim repeat of the proof of Corollary 2.15 shows:

Corollary 2.20. Let S be any surface, let G be the class of all graphs embeddable on S, 
let Cn ∈u Cn be the random connected graph from G, and let r ∈ N be fixed. Then 
w.h.p. BCn

(v, r) is planar for all v ∈ V (Cn).

As evidenced by the results we have listed here, random graphs embeddable on a 
fixed surface behave rather similarly to random planar graphs. In particular, despite not 
being an addable class, the size of their largest component essentially behaves like the 
largest component of a random planar graph (as the number of vertices not in the largest 
component is described by the Boltzmann–Poisson random graph for planar graphs – 
cf. Theorem 2.16).

In general, however, non-addable minor-closed graph classes can display a very differ-
ent behaviour: see, for example, the recent paper [7], where several non-addable graph 
classes are analysed in detail. In particular, the largest component can happen to be sub-
linear w.h.p., as opposed to n −O(1) w.h.p. for the special non-addable class of graphs 
on a fixed surface.

Therefore, we cannot expect a result like Theorem 2.12 to hold for general smooth, 
decomposable, minor-closed classes. Using another result of McDiarmid, we are however 
able to recover a Poisson law for component counts under relatively general conditions. 
The following lemma is a special case of Lemma 4.2 in [33].

Lemma 2.21. Let G be a smooth, decomposable, minor-closed class of graphs and let 
Gn ∈u Gn. Let H1, . . . , Hk ∈ G be non-isomorphic, fixed, connected graphs, and let Ni

denote the number of components of Gn isomorphic to Hi. Then

(N1, . . . , Nk) →TV (Z1, . . . , Zk),

where the Zi are independent Poisson random variables with means EZi = ρv(Hi)/

aut(Hi), and ρ is the radius of convergence of the exponential generating function 
for G. �

Two examples of minor-closed classes that are decomposable, but not addable, are 
forests of paths and forests of caterpillars. Very recently Bousquet-Mélou and Weller [7]
derived precise asymptotics for the numbers of labelled forests of paths (resp. caterpil-
lars). As a direct corollary of their Propositions 23 and 26 we have:

Theorem 2.22 ([7]). The classes {forests of paths} and {forests of caterpillars} are both 
smooth.

Bousquet-Mélou and Weller [7] also analysed the class of all graphs whose components 
have order at most t (fixed). This is clearly a minor-closed class that is decomposable, but 
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not addable. It is in fact not smooth, but a similar property follows from Proposition 20 
in [7].

Corollary 2.23 ([7]). Let t ∈ N be fixed and let G be the class of all graphs whose compo-
nents have at most t vertices. There is a constant c = c(t) such that

n|Gn−1|
|Gn|

∼ c · n1/t.

3. The logical limit laws for the addable and surface case

3.1. The MSO-zero-one law for addable classes

The main logical ingredient we need is the following theorem that is inspired by a 
construction of McColm [31].

Theorem 3.1. Let G be an addable, minor-closed class of graphs. For every k ∈ N, there 
exists a connected (rooted) graph Mk ∈ G with the following property : for every connected 
G ∈ G that contains a pendant copy of Mk, it holds that G ≡MSO

k Mk.

Before starting the proof we need to introduce some more notation. Recall that a 
rooted graph is a graph G with a distinguished vertex r ∈ V (G). If G, H are two 
rooted graphs then we say that a third graph I is the result of identifying their roots
if I can be obtained as follows. Without loss of generality we can assume V (G) =
{r} ∪A, V (H) = {r} ∪B where r is the root in both graphs and A, B are disjoint. Then 
I = (V (G) ∪ V (H), E(G) ∪ E(H)) is the graph we get by ‘identifying the roots’.

The rooted Ehrenfeucht–Fraïssé-game EHRrMSO
k (G, H) is played on two rooted graphs 

G, H with roots rG and rH in the same way as the unrooted version. The only difference 
is that for Duplicator to win, at the end of the game the following additional condi-
tions have to be met in addition to conditions 1), 2), 3) from the description of the 
Ehrenfeucht–Fraïssé-game in Section 2.1: 4) xi = rG if and only if yi = rH , 5) xi ∼ rG if 
and only if yi ∼ rH , and 6) rG ∈ Xi if and only if rH ∈ Yi. We can view it as the ordinary 
game with one additional move, where the first move of both players is predetermined to 
be a vertex-move selecting the root. We write G ≡rMSO

k H if EHRrMSO
k (G, H) is a win for 

Duplicator. Note that ≡rMSO
k is an equivalence relation with finitely many equivalence 

classes (using that ≡MSO
k+1 has finitely many equivalence classes and the previous remark).

The next two lemmas are the natural analogues of Lemmas 2.6 and 2.7 for the rooted
MSO-Ehrenfeucht–Fraïssé-game. For completeness we include self-contained proofs.

Lemma 3.2. Suppose that G1 ≡rMSO
k H1, G2 ≡rMSO H2, and let G be obtained by identi-

fying the roots of G1, G2 and let H be obtained by identifying the roots of H1, H2. Then 
G ≡rMSO

k H.
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Proof. It is convenient to assume that V (G1) and V (G2) have exactly one element in 
common, the root rG of G, and to identify G1, G2 with the copies in G. And similarly 
for H1, H2 and H.

The winning strategy for Duplicator is as follows. If Spoiler does a vertex move, say 
he selects v of G� with � ∈ {1, 2}, then Duplicator responds by selecting a vertex of 
H� according to his winning strategy for EHRrMSO

k (G�, H�). Note that no confusion can 
arise if Spoiler selects the root of either graph since Duplicator must then select the root 
of the other graph (otherwise he loses immediately). Similarly, Duplicator never selects 
the root if Spoiler did not also select the root.

If Spoiler does a set move then Duplicator responds as follows. Suppose Spoiler selected 
X ⊆ V (G), and let us write X� := X ∩ V (G�) for � = 1, 2. Then Duplicator selects a set 
Y� ⊆ V (H�) for each � ∈ {1, 2}, according to the winning strategy for EHRrMSO

k (G�, H�), 
and then sets Y := Y1 ∪ Y2 as his response to Spoiler’s move. Again, no confusion can 
arise because of the presence or not of the root in X. If Spoiler selects a subset Y ⊆ V (H)
then Duplicator responds analogously. This is a winning strategy for Duplicator as every 
edge of G is either an edge of G1 or of G2 and every vertex of G other than the root is 
either a vertex of G1 or of G2; and similarly for H. �
Lemma 3.3. For every k ∈ N there is an a = a(k) such that the following holds. For every 
rooted graph G and every b ≥ a, if A is obtained from a copies of G and identifying the 
roots, and B is obtained from b copies of G and identifying the roots, then A ≡rMSO

k B.

Proof. Before proving the full statement, we prove a seemingly weaker statement.

Claim. Let G and a ≥ 2k·v(G) be arbitrary, and let a rooted graph A be obtained by 
identifying the roots of a + 1 copies of G and a rooted graph B by identifying a copies 
of G. Then A ≡rMSO

k B.

Proof of Claim. To prove the claim, let A1, . . . , Aa+1 be the copies of G that make up 
A, and let B1, . . . , Ba be the copies of G that make up B. For any i, j and v ∈ V (G)
we denote by vAi (resp. vBj ) the unique copy of vertex v inside the copy Ai of G (resp. 
inside the copy Bj of G).

Note that because of the demands 4) and 5) for Duplicator’s win, Spoiler basically 
‘wastes a move’ when selecting the root of either graph in a vertex-move, since the 
root already behaves like a marked vertex. So if Spoiler can win EHRrMSO

k (A, B), then 
winning is possible without ever making a vertex-move selecting the root of either graph. 
In the sequel we thus assume that Spoiler’s vertex-moves never selects the root.

We describe the situation after any move of the game EHRrMSO
k (A, B) by the graphs 

A, B, together with some ‘vertex-move-marks’ and ‘set-move-marks’ on their vertices, 
which record the number of the move when the respective vertex or vertex-set was 
selected, and whether it was a vertex- or set-move. (The information whether it was 
Spoiler or Duplicator who made a choice is not recorded.)
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For any move 0 ≤ k′ ≤ k, we say that Ai and Bj are marked identically to each other 
(after move k′) if for every move k′′ ≤ k′ the following holds: if k′′ was a vertex-move 
then vAi was marked if and only if vBj was marked (for all v ∈ V (G)) and if k′′ was a 
set-move then vAi was in the selected subset of V (A) if and only if vBj was in the selected 
subset of V (B) (for all v ∈ V (G)). Similarly, we also speak of Ai being marked identically 
to Aj if and only if no vertex-move occurred on either one, and every set-move until now 
selected the same subset from both.

For any 0 ≤ k′ ≤ k, let us say that the situation of the game after move k′ is good
(for Duplicator) if the following holds:

• Ai and Bi are marked identically for all 1 ≤ i ≤ a;
• no vertex of Aa+1 was marked by a vertex-move until now;
• there are at least 2(k−k′)·v(G) indices 1 ≤ i ≤ a such that Bi is marked identically to 

Aa+1.

Observe that if after move k′ = k the situation is still good, Duplicator has won the game. 
Our aim is to show by induction that Duplicator can indeed achieve this situation, up 
to a relabelling of A1, . . . , Aa+1 and a relabelling of B1, . . . , Ba. Clearly, the situation is 
good at the beginning of the game, when no moves have been played yet, corresponding 
to k′ = 0.

Now assume that after move k′ < k, the situation is good. We show that, no matter 
what Spoiler does in move k′ + 1, Duplicator can respond in such a way that after move 
k′ + 1 the situation is still good, possibly after some relabelling.

To see this, let us first suppose that Spoiler does a vertex-move: if this marks the 
vertex vAi ∈ V (Ai) for some v ∈ V (G) and 1 ≤ i ≤ a, then Duplicator simply responds by 
marking the vertex vBi ∈ V (Bi). Observe that now we are still in a good situation: Ai and 
Bi are marked identically for i = 1, . . . , a, and Aa+1 has none of its vertices marked by 
a vertex-move and is marked identically to at least 2(k−k′)·v(G) − 1 ≥ 2(k−k′−1)·v(G) of 
the Bi. Similarly, if Spoiler chooses to mark the vertex vBi ∈ V (Bi) for some v ∈ V (G)
and 1 ≤ i ≤ a, then Duplicator can again respond by marking vAi and we are still good. 
Assume thus that Spoiler marked a vertex of Aa+1. Since there are 2(k−k′)·v(G) > 1
indices i such that Ai is marked identically to Aa+1 we can just relabel A1, . . . , Aa+1
and arrive at the situation where Spoiler chose a vertex in an Ai with i ≤ a. But then 
the induction is again done, by the above. This completes the case when Spoiler does a 
vertex-move.

We now consider set-moves. In the rest of the proof, let I ⊆ [a] be the set of those 
indices i ∈ [a] for which Bi is marked identically to Aa+1, after move k′.

First suppose that Spoiler in move k′ + 1 selected a subset X ⊆ V (A). Observe that, 
since G has 2v(G) subsets in total, the set I∪{a +1} is partitioned into L ≤ 2v(G) subsets 
I1, . . . , IL such that, for any 1 ≤ � ≤ L, if i, j ∈ I� then Ai, Aj are marked identically 
after Spoiler’s (k′ + 1)-st move. There must be some � such that |I�| ≥ (|I| + 1)/2v(G) >

2(k−k′−1)·v(G). Relabelling if necessary, we can assume without loss of generality that 
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a + 1 ∈ I� for such an index �. (So in particular Aa+1 is marked identically to at 
least 2(k−k′−1)·v(G) of the other Ai.) Duplicators response is simply to select Y ⊆ V (B)
according to the rule that vBi ∈ Y if and only if vAi ∈ X – for all 1 ≤ i ≤ a and 
all v ∈ V (G). (This is of course done after any possible relabelling of A1, . . . Aa+1 and 
B1, . . . , Ba.) Note that no confusion can arise because of the root. It is easily seen that 
this way, the situation is still good after move k′ + 1.

Suppose then that Spoiler selected a subset Y ⊆ V (B). Now I is partitioned into 
L ≤ 2v(G) subsets I1, . . . , IL such that, for any 1 ≤ � ≤ L, the sets Bi, Bj are marked 
identically after Spoiler’s move whenever i, j ∈ I�. There is some 1 ≤ � ≤ L such that 
|I�| ≥ |I|/2v(G) ≥ 2(k−k′−1)·v(G). We fix such an � and an i0 ∈ I�. Duplicators response 
is to select X ⊆ V (A) according to the rules that vAi ∈ X if and only if vBi ∈ Y (for all 
1 ≤ i ≤ a and all v ∈ V (G)) and that vAa+1 ∈ X if and only if vBi0 ∈ Y (for all v ∈ V (G)). 
Again it is easily seen that the situation is still good after move k′ + 1.

We have seen that indeed, no matter which move Spoiler chooses to make, Duplicator 
can always respond in such a way that the situation will stay good. Hence A ≡rMSO

k B, 
which completes the proof of the claim. �

Having proved the claim, we are ready for finish the proof of the lemma. Observe that, 
by repeated applications of the claim, we also have that A ≡rMSO

k B for all a, b ≥ 2k·v(G)

if A is obtained by identifying the roots of a copies of G and B by identifying the roots 
of b copies.

Since there are finitely many equivalence classes for ≡rMSO
k , there is a finite list of 

graphs H1, . . . , H� such that every graph is equivalent to one of them. Let us set

a = a(k) := max
(
2k·v(H1), . . . , 2k·v(H�)

)
.

Let G be an arbitrary graph, and b ≥ a be arbitrary. There is some 1 ≤ i ≤ � such that 
G ≡rMSO

k Hi. Let A, A′ be obtained by identifying the roots of a copies of G resp. Hi, and 
let B, B′ be obtained by identifying the roots of b copies of G resp. Hi. By Lemma 3.2, 
we also have A ≡rMSO

k A′ and B ≡rMSO
k B′. By the claim and the observation we made 

immediately after its proof, we have A′ ≡rMSO
k B′. Hence also A ≡rMSO

k B. This proves 
that our choice of a(k) indeed works for every graph G, and concludes the proof of 
Lemma 3.3. �
Proof of Theorem 3.1. The construction of Mk is as follows. Recall that C denotes the 
set of all connected elements of G. Let rG be the set of all rooted graphs corresponding 
to G. That is, for each element G ∈ G there are v(G) elements in rG, one for each choice 
of the root. We define rC similarly. As remarked previously, Lemma 2.4, despite being 
about ≡MSO

k , implies that the relation ≡rMSO
k partitions the set of all rooted finite graphs, 

and hence in particular rC, into finitely many equivalence classes. Hence there exists a 
finite set of connected rooted graphs G1, . . . , Gm ∈ rC such that every connected rooted 
graph from rC is equivalent under ≡rMSO

k to one of G1, . . . , Gm.
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The graph Mk is now constructed by taking a copies of Gi for each i = 1, . . . , m, and 
identifying their roots, where a = a(k) is as provided by Lemma 3.3. Let us remark that 
G being addable and minor-closed implies Mk ∈ rG.

Let G ∈ G be an (unrooted) connected graph that contains at least one pendant 
copy of Mk. Let us fix one such pendant copy (for notational convenience we just iden-
tify this copy with Mk from now on). It is convenient to root G at the root r of Mk. 
Certainly, if Duplicator wins EHRrMSO

k (G, Mk), then he also wins the unrooted game 
EHRMSO

k (G, Mk). We consider the rooted version of the game in the remainder of the 
proof.

Let G1, . . . , Gm denote the rooted graphs used in the construction of Mk, and let G1
1, 

. . . , Ga
1 , . . . , G1

m, . . . , Ga
m be the copies of G1 until Gm whose roots were identified to 

create Mk. Let G′ denote the (rooted, connected) subgraph of G induced by (V (G) \
V (Mk)) ∪{r}. That is, to obtain G′ we remove all vertices of Mk from G except the root r. 
Observe that one can view G as consisting of G′, G1

1, . . . , G
a
m, identified along their roots. 

Also note that G′ ∈ G since it is a minor of G. Hence, by choice of G1, . . . , Gm, there 
exists 1 ≤ i ≤ m such that G′ ≡rMSO

k Gi. Without loss of generality i = 1. It follows 
from Lemma 3.2 that G ≡rMSO

k H, where H is obtained by taking a +1 copies of G1 and 
a copies of each of G2, . . . , Gn and identifying the roots. By Lemma 3.3 together with 
Lemma 3.2 we also have H ≡rMSO

k Mk. It follows that G ≡rMSO
k Mk, as required. �

With Theorem 3.1 in hand, we are now ready to prove the MSO-zero-one law for the 
random connected graph from an addable, minor-closed class.

Proof of Theorem 1.1. Let ϕ ∈ MSO be arbitrary, let k be its quantifier depth and 
let Mk be as provided by Theorem 3.1. By Corollary 2.15, w.h.p., Cn has a pendant 
copy of Mk. Thus, by Theorem 3.1, w.h.p., Cn ≡MSO

k Mk. In particular, this implies 
that if Mk |= ϕ then lim

n→∞
P(Cn |= ϕ) = 1 and if, on the other hand, Mk |= ¬ϕ then 

lim
n→∞

P(Cn |= ϕ) = 0. �
3.2. The MSO-convergence law for addable classes

In this section we prove the following more explicit version of Theorem 1.2 above.

Theorem 3.4. Let G be an addable, minor-closed class of graphs, let Gn ∈u Gn and let R
be the Boltzmann–Poisson random graph corresponding to G. For every ϕ ∈ MSO there 
exists a set F = F(ϕ) ⊆ UG such that

lim
n→∞

P(Gn |= ϕ) = P(R ∈ F).

(We remark that the Boltzmann–Poisson distribution on UG is well-defined in this 
case because of Theorem 2.13.) In the proof of Theorem 3.4 we make use of the following 
(nearly) trivial consequence of Theorem 2.14.
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Corollary 3.5. In the situation of Theorem 3.4: if H ∈ G is any fixed, connected (rooted) 
graph, then w.h.p. Big(Gn) contains a pendant copy of H.

Proof. By Theorem 2.14, there exists α > 0 such that Gn contains at least αn pendant 
copies of H w.h.p. Let An denote the event that Big(Gn) contains at least αn/2 pendant 
copies of H, and let Bn denote the event that Frag(Gn) contains at least αn/2 copies 
of H. We must have P(An) + P(Bn) ≥ P(An ∪ Bn) = 1 − o(1). Now observe that, for 
every fixed K > 0 we have

P(Bn) ≤ P(v(Frag(Gn)) > K) = P(v(Fn) > K) = P(v(R) > K) + o(1),

where Fn denotes the isomorphism class (i.e., unlabelled version) of Frag(Gn), the first 
inequality holds for n sufficiently large and we use Theorem 2.12 for the last equality. 
The probability P(v(R) > K) can be made arbitrarily small by choosing K large enough. 
From this it follows that P(Bn) = o(1). Hence P(An) = 1 − o(1). �
Proof of Theorem 3.4. Let ϕ ∈ MSO be arbitrary, let k be its quantifier depth and let 
Mk be as provided by Theorem 3.1. By Corollary 3.5, w.h.p., Big(Gn) contains a pendant 
copy of Mk. Hence, by Theorem 3.1, we have Big(Gn) ≡MSO

k Mk (w.h.p.). From this it 
also follows, using Lemma 2.6, that

Gn ≡MSO
k Mk ∪ Frag(Gn) w.h.p.

(where ∪ denotes vertex-disjoint union). In particular we have P(Gn |= ϕ) = P(Mk ∪
Frag(Gn) |= ϕ) + o(1). Now let F ⊆ UG be the set of all unlabelled graphs H ∈ UG such 
that Mk ∪H |= ϕ. It follows using Theorem 2.12 that:

lim
n→∞

P(Gn |= ϕ) = lim
n→∞

P(Mk ∪ Frag(Gn) |= ϕ) = lim
n→∞

P(Fn ∈ F) = P(R ∈ F),

where Fn again denotes the isomorphism class (i.e., unlabelled version) of Frag(Gn). �
3.3. The FO-zero-one law for surfaces

The proof of the FO-zero-one law for surfaces mimics that of the MSO-zero-one law 
for the addable case. The main ingredient is the following analogue of Theorem 3.1.

Lemma 3.6. For every k ∈ N there exists � = �(k) and a connected, rooted, planar graph 
Lk such that following holds. For every connected graph G such that

(i) the subgraph of G induced by the vertices at distance at most � from v is planar for 
every v ∈ V (G),

(ii) G contains a pendant copy of Lk,

it holds that G ≡FO
k Lk.
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Fig. 1. The construction of G′.

Proof. Recall that, up to logical equivalence, there are only finitely many FO-sentences 
of quantifier depth ≤ k. For each such sentence we fix an arbitrary local sentence that 
is logically equivalent to it (such a local sentence exists by Gaifman’s theorem). Let 
L be the set of local sentences thus obtained and let B = {ϕ1, . . . , ϕm} be the set of 
all basic local sequences that appear in the boolean combinations L. Let us set k′ :=
max(qd(ϕ1), . . . , qd(ϕm)) equal to the maximum quantifier depth over all these local 
sentences. For each 1 ≤ i ≤ m, we can write

ϕi = ∃x1, . . . , xni
:

⎛
⎝ ∧

1≤a≤ni

ψ
B(xa,�i)
i (xa)

⎞
⎠ ∧

⎛
⎝ ∧

1≤a<b≤ni

dist(xa, xb) > 2�i

⎞
⎠ . (8)

We now set � = �(k) = max(�1, . . . , �m), and we let Lk be a path of length 1 + 1000 ·
max(n1, . . . , nm) · � with a pendant copy of Mk′ attached to one of its endpoints, where 
Mk′ is as provided by Theorem 3.1 for the class of planar graphs. We root Lk at the 
middle vertex of the long path.

Let us now fix an arbitrary 1 ≤ i ≤ m. Let us first suppose that the sentence ∃x, y :
ψ
B(x,�i)
i (x) ∧ (dist(x, y) = �i) is not satisfied by any connected planar graph. Since Lk

is planar and every point is at distance exactly �i from some other point, the sentence 
∃x : ψB(x,�i)

i (x) does not hold for Lk. Hence ϕi cannot hold for Lk either. Let G be any 
connected graph with the properties (i) and (ii) listed in the statement of the lemma. 
Observe that, since G contains a pendant copy of Lk, for every x ∈ V (G) there is a 
vertex at distance exactly �i from x. Moreover, for every vertex x, the subgraph B(x, �i)
is connected and planar. But this shows ∃x : ψB(xi,�i)

i (x) cannot hold for G, because 
that would imply that ∃x, y : ψB(x,�i)

i (x) ∧ (dist(x, y) = �i) also holds. Hence ϕi does not 
hold for G either.

Next, let us suppose that the sentence ∃x, y : ψB(x,�i)
i (x) ∧ (dist(x, y) = �i) is satisfied 

by at least one connected planar graph H. We construct a graph G′ as follows. We take 
ni copies of H and join them to an extra point u, via edges to their y-vertices. We now 
attach a pendant copy of Lk to u. (See Fig. 1 for a depiction.)

Observe that, by construction, G′ |= ϕi. Since G′ and Lk are planar, by Theorem 3.1
we have

G′ ≡MSO
k′ Mk′ ≡MSO

k′ Lk.
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So Lk |= ϕi as well. We now claim that, because of the special form (8) of ϕi any graph 
G that contains a pendant copy of Lk will satisfy ϕi as well. To see this, we recall that Lk

will be hanging from the middle vertex of the long path. This gives that, for every vertex 
of Lk not on the path, its �-neighbourhood in G will be identical to its � neighbourhood 
in Lk. The same is true for the endpoint of the long path that we did not attach Mk′ to, 
and for any vertex of the long path within distance � of one of the endpoints of the path. 
Finally, we note that for every vertex v on the long path of Lk at distance > � from 
both endpoints we can find a vertex u of G, also on the long path but far enough away 
from the middle and the endpoints such that BLk

(v, �) and BG(u, �) are isomorphic as 
graphs rooted at v resp. u (both will just be a path of length 2� +1 with root the middle 
vertex). So, appealing to the special form (8) of ϕi, we see that the claim holds. That 
is, Lk |= ϕi implies G |= ϕi for each G that contains a pendant copy of Lk (suspended 
from the middle vertex of the long path).

This proves that if G is any graph satisfying the assumptions of the lemma, then 
G |= ϕi if and only if Lk |= ϕi. Since 1 ≤ i ≤ m was arbitrary, and every FO sentence 
of quantifier depth at most k can be written as a Boolean combination of ϕ1, . . . , ϕm, it 
follows that G ≡FO

k Lk for every G that satisfies the assumptions of the lemma. �
Proof of Theorem 1.3. The proof closely follows the structure of the proof of Theo-
rem 1.1. Let ϕ ∈ FO be arbitrary, let k be its quantifier depth and let �, Lk be as 
provided by Lemma 3.6. By Corollary 2.20, w.h.p., every �-neighbourhood of every ver-
tex of Cn is planar. By Corollary 2.18, w.h.p., Cn has a pendant copy of Lk. It thus 
follows from Lemma 3.6 that, w.h.p., Cn ≡FO

k Lk.
This implies that if Lk |= ϕ then lim

n→∞
P(Cn |= ϕ) = 1. And if, on the other hand, 

Lk |= ¬ϕ then lim
n→∞

P(Cn |= ϕ) = 0.
Since the graph Lk provided by Lemma 3.6 does not depend on the choice of the 

surface, the same is true for the value of the limiting probability. �
3.4. The FO-convergence law for surfaces

Theorem 3.7. Fix a surface S and let G be the class of all graphs embeddable on S and 
let Gn ∈u Gn. Let R be the Boltzmann–Poisson random graph corresponding to the class 
of planar graphs P. For every ϕ ∈ FO there exists a set F = F(ϕ) ⊆ UP such that

lim
n→∞

P(Gn |= ϕ) = P(R ∈ F).

Moreover, F(ϕ) ⊆ UP does not depend on the surface S.

The proof closely follows that of Theorem 3.4. We again separate out a (nearly) trivial 
consequence of in this case Theorem 2.17. The proof is completely analogous to that of 
Corollary 3.5 and is left to the reader.
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Corollary 3.8. If H is any fixed, connected, planar (rooted) graph, then w.h.p. Big(Gn)
contains a pendant copy of H. �
Proof of Theorem 3.7. Let ϕ ∈ FO be arbitrary, let k be its quantifier depth and let 
�, Lk be as provided by Lemma 3.6. By Theorem 2.19, w.h.p., the �-neighbourhood of 
every vertex of Gn is planar. By Corollary 3.8, w.h.p., Big(Gn) has a pendant copy of Lk. 
It follows by Lemma 3.6 that Big(Gn) ≡FO

k Lk (w.h.p.) and hence also, using Lemma 2.6:

Gn ≡FO
k Lk ∪ Frag(Gn) w.h.p.

(Here ∪ again denotes vertex-disjoint union). Let F ⊆ UP denote the set of all unlabelled 
planar graphs H such that Lk∪H |= ϕ, and let F ′ denote the set of all unlabelled graphs 
(not-necessarily planar) with the same property. Using Theorem 2.16, we find that:

lim
n→∞

P(Gn |= ϕ) = lim
n→∞

P(Lk ∪ Frag(Gn) |= ϕ) = lim
n→∞

P(Fn ∈ F ′) = P(R ∈ F ′)

= P(R ∈ F),

where Fn is the isomorphism class of Frag(Gn), and R is the Boltzmann–Poisson random 
graph associated with planar graphs. (The last equality holds because the distribution 
of R assigns probability zero to non-planar graphs.) It is clear that F does not depend 
on the choice of surface, since Lk does not depend on the surface either. �
4. The limiting probabilities

Throughout this section G will be an arbitrary addable, minor-closed class. For nota-
tional convenience we shall write

LFO :=
{

lim
n→∞

P(Gn |= ϕ) : ϕ ∈ FO

}
, LMSO :=

{
lim
n→∞

P(Gn |= ϕ) : ϕ ∈ MSO

}
,

where Gn ∈u Gn as usual. Here the dependence on the class G is suppressed in the 
notations LFO, LMSO for readability. The class under consideration will always be clear 
from the context.

4.1. There is always a gap in the middle

In this section we prove the following lemma about the structure of the logical limit 
sets of a general addable minor-closed class, which together with Theorem 2.13 proves 
Proposition 1.5. Notice that 1/G(ρ) ≥ 1/

√
e > 1/2 by Theorem 2.13.

Lemma 4.1. Let G be an addable, minor-closed class of graphs. Then LMSO ∩(
1 − 1

G(ρ) ,
1

G(ρ)

)
= ∅.
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Proof. Let ϕ ∈ MSO be arbitrary, and let E denote the event that Gn is connected. 
Observe that if we condition on E, then Gn is distributed like Cn (Gn is then chosen 
uniformly at random from all connected graphs on n vertices). Since the MSO-zero-one 
law holds for Cn by Theorem 1.1 we have either P(Cn |= ϕ) = 1 − o(1) or P(Cn |= ϕ) =
o(1). Let us first assume the former is the case. Then

lim
n→∞

P(Gn |= ϕ) = lim
n→∞

P(Gn |= ϕ|E) · P(E) + P(Gn |= ϕ|Ec) · P(Ec)

≥ lim
n→∞

P(Gn |= ϕ|E) · P(E)

= lim
n→∞

P(Cn |= ϕ) · P(E)

= 1 · 1/G(ρ),

where for the last equality we used the general limit in (7) above. Now suppose
P(Cn |= ϕ) = o(1). Then limn→∞ P(Gn |= ¬ϕ) ≥ 1/G(ρ) by the above, hence 
limn→∞ P(Gn |= ϕ) ≤ 1 − 1/G(ρ). �
4.2. The closure is a finite union of intervals

Here we prove the following more detailed version of Theorem 1.6. Note that both 
LMSO and LFO are countable sets since the set of MSO-sentences is countable.

Theorem 4.2. Let G be an addable, minor-closed class of graphs and let R be the corre-
sponding Boltzmann–Poisson random graph. Then

cl(LMSO) = cl(LFO) = {P(R ∈ F) : F ⊆ UG},

is a finite union of closed intervals.

Before starting the proof of Theorem 4.2, we will derive a number of auxiliary lemmas. 
From Theorem 3.4 we see immediately that LFO ⊆ LMSO ⊆ {P(R ∈ F) : F ⊆ UG}. The 
next lemma shows that LFO is in fact dense in {P(R ∈ F) : F ⊆ UG}.

Lemma 4.3. For every F ⊆ UG and every ε > 0 there is a ϕ ∈ FO such that

|P(R ∈ F) − lim
n→∞

P(Gn |= ϕ)| ≤ ε.

Proof. First note that it in fact suffices to consider only finite F ⊆ UG. (To see this, 
notice that there is always a finite F ′ ⊆ F such that P(R ∈ F ′) ≥ P(R ∈ F) − ε/2). Let 
us thus assume F is finite.

Let us pick a K such that P(v(R) > K) < ε and let FragK(G) denote the union of all 
components of G of order at most K. Let us observe that, for every F ∈ F , the event 
{FragK(Gn) ∼= F} is FO-expressible. (We simply stipulate, for each of the connected 
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graphs H ∈ UC on at most K vertices, how many components isomorphic to H the 
random graph Gn should contain.) Since F is finite, the event {FragK(Gn) ∈ F} =⋃

F∈F{FragK(Gn) ∼= F} is therefore also FO-expressible. Observe that

lim
n→∞

P

[
FragK(Gn) ∈ F

]
≤ lim

n→∞
P

[
Frag(Gn) ∈ F or v(Frag(Gn)) > K

]
≤ lim

n→∞
P

[
Frag(Gn) ∈ F

]
+ lim

n→∞
P

[
v(Frag(Gn)) > K

]
< P(R ∈ F) + ε,

where in the last line we used that P(v(R) > K) < ε by the choice of K.
Similarly,

lim
n→∞

P

[
FragK(Gn) ∈ F

]
≥ lim

n→∞
P

[
Frag(Gn) ∈ F and v(Frag(Gn)) ≤ K

]
≥ lim

n→∞
P

[
Frag(Gn) ∈ F

]
− lim

n→∞
P

[
v(Frag(Gn)) > K

]
> P(R ∈ F) − ε.

This concludes the proof of the lemma. �
Having established that LFO is a dense subset of {P(R ∈ F) : F ⊆ UG}, to prove 

Theorem 4.2 it suffices to show that this last set is a finite union of closed intervals. For 
the remainder of this section the random graph Gn will no longer play any role, and all 
mention of probabilities, events etc. are with respect to the Boltzmann–Poisson random 
graph R.

Let us order the unlabelled graphs G1, G2, · · · ∈ UG in such a way that the probabilities 
pi := P(R = Gi) are non-increasing. By Corollary 2.3, to prove Theorem 4.2 it suffices 
to show that pi ≤

∑
j>i pj for all sufficiently large i. For k ∈ N, let us write:

Ek :=
{
R contains no component with < k vertices and exactly

one component with k vertices
}
,

qk := P(Ek).

Lemma 4.4. For every k ∈ N, there is a set Ak ⊆ N such that qk =
∑

i∈Ak
pi. Moreover, 

the sets Ak are disjoint.

Proof. Phrased differently, the lemma asks for a F ⊆ UG such that we can write P(Ek) =∑
H∈F P(R = H). But this is obvious. That the sets Ak are disjoint follows immediately 

from the fact that the events Ek are disjoint. �
For each k ∈ N, let Zk denote the number of components of R of order k and let us 

write



P. Heinig et al. / Journal of Combinatorial Theory, Series B 130 (2018) 158–206 185
μk :=
∑

H∈UCk

ρk

aut(H) .

(Recall that UCk denotes the set of unlabelled, connected graphs from G on exactly 
k vertices.) Since the sum of independent Poisson random variables is again Poisson-
distributed, it follows from Lemma 2.11 that Z1, . . . , Zk are independent Poisson random 
variables with means EZi = μi. Hence we have:

qk = P(Po(μ1) = 0) · · ·P(Po(μk−1) = 0)P(Po(μk) = 1) = μke−(μ1+···+μk). (9)

Lemma 4.5. We have lim
k→∞

qk = 0 and lim
k→∞

qk+1
qk

= 1.

Proof. For H ∈ UCk the quantity k!/ aut(H) is exactly the number of labelled graphs 
G ∈ Ck that are isomorphic to H. It follows that

μk =
∑

H∈UCk

ρk

aut(H) =
∑
G∈Ck

ρk

k! = |Ck|
k! · ρk.

We thus have that

∞∑
k=1

μk = C(ρ) ≤ G(ρ) < ∞,

(where C(z) resp. G(z) denotes the exponential generating function of C resp. G). In 
particular we have μk → 0 as k → ∞. This immediately also gives that qk → 0 as 
k → ∞. Now recall that, according to Theorem 2.9 and the fact that for a decomposable 
class C(.) and G(.) have the same radius of convergence, we have (k+1)|Ck|

|Ck+1| → ρ as k → ∞. 
We therefore have:

lim
k→∞

qk+1

qk
= lim

k→∞

μk+1

μk
· e−μk+1 = lim

k→∞

ρ|Ck+1|
(k + 1)|Ck|

· e−μk+1 = 1,

as required. �
We are now ready to complete the proof of Theorem 4.2.

Proof of Theorem 4.2. As observed previously, it suffices to show that there exists some 
i0 ∈ N such that pi ≤

∑
j>i pj for all i ≥ i0. By Lemma 4.5, there is an index k0 such that 

qk+1 ≥ 0.9 · qk for all k ≥ k0. We now fix an index i0 with the property that pi0 < qk0 .
Let i ≥ i0 be arbitrary and let k ≥ k0 be the largest index such that qk ≥ pi. (Such 

a k exists since 0 < pi ≤ pi0 < qk0 and qk → 0.) By choice of k we must have pi > qk+�

for all � ≥ 1. Since k ≥ k0 we have that

qk+1 + qk+2 + · · · ≥ (0.9 + (0.9)2 + . . . )pi = 9pi > pi
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Fig. 2. The forests F1, . . . , F9.

Recall that, by Lemma 4.4, there are disjoint sets Am ⊆ N such that qm =
∑

j∈Am
pj

for all m ∈ N. Because pi > qk+� for all � ≥ 1 and (pn)n is non-increasing, we must have 
that i < j for all j ∈ A :=

⋃
m>k

Am. It follows that

pi <
∑
�>k

q� =
∑
j∈A

pj ≤
∑
j>i

pj ,

as required. Since i ≥ i0 was arbitrary, this concludes the proof of Theorem 4.2. �
4.3. Obtaining the closure explicitly for forests

Here we prove Theorem 1.7 above. For the class of forests F , it is well known that 
ρ = e−1 and G(ρ) = e1/2, see for example [16, Theorem IV.8] for a framework in which 
one can construct such explicit constants, and [5, p. 470, Section 2] for an explanation 
of that particular value.

Our plan for the proof of Theorem 1.7 is of course to apply Corollary 2.3. We wish 
to find an ordering F1, F2, . . . of all unlabelled forests UF with the property that the 
probabilities pi := P(R = Fi) are non-increasing (here, R is the Boltzmann–Poisson 
random graph corresponding to F), and to determine exactly for which values i the 
inequality pi >

∑
j>i pj holds.

To this end, we first ‘guess’ the initial part of the order. Let the graphs F1, . . . , F9 be 
as defined in Fig. 2.

By substituting ρ = e−1, G(ρ) = e1/2 in (6), we find that the probabilities correspond-
ing to F1, . . . , F9 are

p1 = e−1/2, p2 = e−3/2, p3 = p4 = e−5/2/2,

p5 = p6 = e−7/2/2, p7 = e−7/2/6, p8 = p9 = e−9/2/2.
(10)

It is readily seen that p1 ≥ · · · ≥ p9. Let us remark that, as the reader can easily 
check, every forest F that is not isomorphic to one of F1, . . . , F9 has either five or 
more vertices or it has exactly four vertices and aut(F ) ≥ 4. (In the second case it is 
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Fig. 3. Some forests with small automorphism groups.

either K1,3, or four isolated vertices, or two vertex-disjoint edges, or an edge plus two 
isolated vertices.) Hence, if F is not isomorphic to one of F1, . . . , F9 then P (R = F ) ≤
max(e−9/2/4, e−11/2) = e−11/2 < e−9/2/2 = p9. This shows that we guessed correctly, 
and F1, . . . , F9 are indeed the first nine forests in our order.

Lemma 4.6. 
∑

F∈UFn

1
aut(F ) > e for every n ≥ 6.

Proof. Let n ≥ 6. We will explicitly describe enough unlabelled forests on n vertices 
with small automorphism groups to make the sum exceed e. Fig. 3 shows them from left 
to right in the special case n = 6.

For every n ≥ 6, the following five forests all have at most two automorphisms: a path 
on n vertices, the union of a path on n − 1 vertices and an isolated vertex, a path on 
n − 1 vertices with a leaf attached to its second vertex, and a path on n − 1 vertices 
with a leaf attached to its third vertex, the union of an isolated vertex and a path on 
n − 2 vertices with a leaf attached to its second vertex. The following forests both have 
exactly four automorphisms for every n ≥ 6: the union of a path on n − 2 vertices with 
two isolated vertices, the union of a path on n − 2 vertices with a path on two vertices.

For every n ≥ 6, the seven forests just described are pairwise non-isomorphic. We 
thus have 

∑
F∈UFn

1
aut(F ) ≥ 5 · (1/2) + 2 · (1/4) = 3 > e. This proves the lemma. �

Lemma 4.7. The only indices k for which the inequality pk >
∑

j>k pj is satisfied are 
k = 1, 2.

Proof. Since 
∑

j>k pj = 1 − (p1 + · · · + pk) we have that pk >
∑

j>k pj if and only if 
p1 + · · ·+pk−1 +2pk > 1. The reader can easily check using the expressions given in (10)
that k = 1, 2 are the only values of k ≤ 9 for which this inequality holds.

Let k ≥ 10 be arbitrary, and recall that in this case, as remarked previously, we have 
pk ≤ e−11/2. Let n ≥ 6 be the unique integer such that

e−(n+1/2) < pk ≤ e−(n−1/2).

Then P(R = F ) = e−(n+1/2)/ aut(F ) < pk, for every F ∈ UFn. In other words, for every 
F ∈ UFn there exists a j > k such that P(R = F ) = pj . In yet other words, every forest 
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on n vertices must come after position k in our ordering of the unlabelled forests. Using 
Lemma 4.6 it now follows that:

∑
j>k

pj ≥
∑

F∈UFn

P(R = F ) = e−(n+1/2) ·
∑

F∈UFn

1
aut(F ) > e−(n−1/2) ≥ pk.

So the inequality pk >
∑

j>k pj indeed fails for all k ≥ 10. This proves the lemma. �
Proof of Theorem 1.7. By Lemma 4.7 and Corollary 2.3, we see that

cl(LMSO) =
⋃

a,b∈{0,1}

[
ap1 + bp2, ap1 + bp2 + (1 − p1 − p2)

]
.

Filling in the values for p1, p2 from (10), we see that we get exactly the four intervals 
shown in the statement of the theorem. �
4.4. Obtaining the closure explicitly for planar graphs

Here we prove a more detailed version of Theorem 1.8 above. The following result is 
phrased in terms of the exponential generating function for the class of planar graphs, 
and its radius of convergence. Detailed information on these quantities is available in 
the work of Giménez and the third author [18]. In particular both quantities are positive 
and finite, which can also be seen from the results we included in Section 2.2.

Theorem 4.8. If G = P is the class of planar graphs, ρ is the radius of convergence of its 
exponential generating function G, and if

λa,b,c,d,e :=
a + bρ + c

2ρ
2 + (d2 + e

6 )ρ3

G(ρ) , � := 1 −
1 + ρ + ρ2 + 4

3ρ
3

G(ρ) , (11)

then

cl(LMSO) =
⋃

a,b∈{0,1},
c,d,e∈{0,1,2}

[λa,b,c,d,e, λa,b,c,d,e + �] .

In particular, cl(LMSO) is the union of 108 disjoint intervals each of length 1 − 1
G(ρ) (1 +

ρ + ρ2 + 4
3ρ

3) ≈ 5.39 · 10−6.

The proof closely follows the structure of the proof from the previous section. Our 
plan is again to find (the initial part of) an ordering G1, G2, . . . of UP such that the 
sequence of probabilities pk := P(R = Gk) is non-increasing, and to determine precisely 
for which indices k the condition pk >

∑
j>k pj holds. Again we start by ‘guessing’ the 

first few graphs in the ordering. Let the graphs G1, . . . , G19 be as defined in Fig. 4.
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Fig. 4. The graphs G1, . . . , G19.

(Observe that these are precisely all unlabelled graphs on at most four vertices – 
including the empty graph G1.) The corresponding probabilities are

p1 = 1
G(ρ) , p2 = ρ

G(ρ) , p3 = p4 = ρ2

2G(ρ) , p5 = p6 = ρ3

2G(ρ) ,

p7 = p8 = ρ3

6G(ρ) , p9 = p10 = p11 = ρ4

2G(ρ) , p12 = p13 = ρ4

4G(ρ) , p14 = p15 = ρ4

6G(ρ) ,

p16 = p17 = ρ4

8G(ρ) , p18 = p19 = ρ4

24G(ρ) .

(12)

To decide for which indices the tail-exceeds-term condition pi ≤
∑

j>i pj holds (and to 
check that p1, . . . , p19 are in non-increasing order and that all graphs on at least five 
vertices satisfy pi ≤ p19), we need more detailed information on the values of ρ and G(ρ)
for planar graphs. As mentioned above, such information is available form the work of 
Giménez and the third author [18], who determined both quantities precisely as the 
solution of a (non-polynomial) system of equations. This system in particular enables us 
to compute the numbers ρ and G(ρ) to any desired degree of accuracy. The following 
approximations suffice for the present purpose:

Lemma 4.9. With G the exponential generating function of labelled planar graphs, and ρ
its radius of convergence,

0.03672841251 ≤ ρ ≤ 0.03672841266, 0.96325282112 ≤ 1/G(ρ) ≤ 0.96325282254.
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Our proof of Theorem 4.8 depends in a delicate way on the numerical values of ρ
and G(ρ). For example, one can choose approximations of ρ and 1/G(ρ) that agree 
with Lemma 4.9 in the first five digits, but differ in the sixth, and that if plugged into 
the expressions (12) would result in a different conclusion for Lemma 4.11 below. This 
would then suggest a different number of intervals in the statement Theorem 1.8. The 
approximations in Lemma 4.9 can be computed easily using a computer algebra package. 
For completeness we provide a proof that can be checked by hand, in a supporting 
document [22].

Getting back to the current proof, let us first observe that, now that we know ρ <
1/24, it is indeed true that p1 ≥ · · · ≥ p19 and that for i > 19 we have pi ≤ ρ5

G(ρ) <
ρ4

24G(ρ) = p19, as Gi must have at least five vertices. Thus G1, . . . , G19 are indeed the 
first nineteen unlabelled planar graphs, when the unlabelled planar graphs are ordered 
by non-increasing value of P(R = Gi).

The following lower bound will be sufficient for our purposes:

Lemma 4.10. For n ≥ 6 it holds that 
∑

H∈UPn

1
aut(H) > 30.

Proof. For notational convenience let us define ϕ(n) :=
∑

H∈UPn

1
aut(H) . Because of

|Pn| =
∑

H∈UPn

n!
aut(H) = n! · ϕ(n),

we have ϕ(n) = |Pn|/n!. Let us observe that n|Pn−1| ≤ |Pn| for every n ≥ 2. This is 
because given an arbitrary element of Pn−1, already the possibility to add the vertex n
and then either join it to exactly one existing vertex, or leave it isolated, creates n −1 +1 =
n distinct planar labelled graphs on [n], and all n|Pn−1| elements of Pn thus created are 
distinct. From this it follows ϕ is monotone non-decreasing in n, as ϕ(n)/ϕ(n − 1) =
|Pn|/(n|Pn−1|) ≥ 1. It therefore suffices to prove ϕ(6) > 30, or equivalently, |P6| > 21600. 
Now we use work of Bodirsky, Kang and Gröpl: the number of all labelled planar graphs 
on six vertices and with m edges is given, for all possible values 0 ≤ m ≤ 12, in the fifth 
row of the table in [6, Fig. 1] (the notation G(0)(n, m) is defined on p. 379). The sum of 
these numbers is |P6|, and equals 32071, which is strictly greater than 21600. �
Lemma 4.11. The only indices k for which the inequality pk >

∑
j>k pj holds are k =

1, 2, 4, 6, 8.

Proof. Recall that pk >
∑

j>k pj if and only if p1+· · ·+pk−1+2pk > 1. As it happens, the 
estimates on ρ and 1/G(ρ) provided by Lemma 4.9, together with the expressions (12)
suffice to determine for which k ≤ 19 the inequality holds. We leave the routine arithmetic 
computations verifying this to the reader. To see that the inequality holds for k =
1, 2, 4, 6, 8, it suffices to do explicit calculations with the lower bounds, and to see that it 
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fails for k = 11, 13, 15, 17, 19, it suffices to do explicit calculations with the upper bounds 
provided by Lemma 4.9. Observe that pk = pk+1 implies that pk ≤

∑
j>k pj , so that the 

inequality automatically fails for k = 3, 5, 7, 9, 10, 12, 14, 16, 18.
To complete the proof of Lemma 4.11, we are now left with k ≥ 20. Let k ≥ 20 be 

arbitrary. Since G1, . . . , G19 are all the unlabelled graphs on at most four vertices, we 
must have v(Gk) ≥ 5, so the formula in Definition 2.10 implies pk ≤ ρ5/G(ρ). Let n ≥ 6
be the unique integer such that

ρn

G(ρ) < pk ≤ ρn−1

G(ρ) .

Then P(R = H) = ρn

aut(H)G(ρ) < pk for every H ∈ UPn. Hence, every graph on n vertices 
must come after position k in the ordering. By Lemma 4.10 and the bound ρ > 1/30
from Lemma 4.9,

∑
j>k

pj ≥
∑

H∈UPn

P(R = H) = ρn

G(ρ) ·
∑

H∈UPn

1
aut(H) >

ρn−1

G(ρ) ≥ pk,

completing the proof. �
Proof of Theorem 4.8. The result follows immediately from Lemma 4.11 via an applica-
tion of Corollary 2.3. Note that 

∑
j>8 pj = 1 − 1

G(ρ) (1 + ρ + ρ2 + 4
3ρ

3) and that c, d, e in 
the expression given in the theorem take values in {0, 1, 2} because p3 = p4 and p5 = p6

and p7 = p8.
That the 2 · 2 · 3 · 3 · 3 = 108 intervals thus defined are all disjoint follows from the 

fact that their left endpoints always differ by at least p8 while each interval has length ∑
j>8 pj < p8. (For clarity, we remark here that no additional numerical evaluations are 

necessary. All that is needed to deduce the disjointness of the intervals is the statement 
of Lemma 4.11. See also the remark just after Corollary 2.3.) �
5. The non-addable case

5.1. The MSO-zero-one law for bounded component size (proof of Theorem 1.9)

Here we prove Theorem 1.9. In this subsection, we fix t ∈ N and G will be the class of 
all graphs whose components have at most t vertices. We need the following lemma on 
the number of components of Gn ∈u Gn isomorphic to a given graph.

Lemma 5.1. Let H be a fixed, connected graph from G, let K be an arbitrary constant and 
let Zn denote the number of components of Gn that are isomorphic to H. Then Zn > K

w.h.p.
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Proof. Let us write r = v(H). Using Corollary 2.23, we see that

EZn =
(
n
r

)
· r!

aut(H) · |Gn−r|
|Gn|

∼ crnr/t

aut(H) .

Similarly, we have

EZn(Zn − 1) =

(
n
r

)
·
(
n−r
r

)
·
(

r!
aut(H)

)2
· |Gn−2r|

|Gn|
∼

(
crnr/t

aut(H)

)2

.

It follows that Var(Zn) = EZ2
n − (EZn)2 = o((EZn)2). We can thus write

P(Zn ≤ K) ≤ P(|Zn − EZn| ≥ EZn/2) ≤ 4 VarZn/(EZn)2 = o(1),

where the first inequality holds for n sufficiently large (as EZn → ∞) and we have used 
Chebychev’s inequality for the second inequality. Hence Zn > K w.h.p., as required. �
Proof of Theorem 1.9. Let us fix a ϕ ∈ MSO and let k be its quantifier depth. Let 
a = a(k) be as provided by Lemma 2.7, let H1, . . . , Hm be all unlabelled, connected 
graphs on at most t vertices and set H := aH1 ∪ · · · ∪ aHm. (So H is the vertex disjoint 
union of a copies of Hi, for every i.) By Lemma 5.1, w.h.p., Gn has at least a components 
isomorphic to Hi for each i (and no other components). Using Lemmas 2.6 and 2.7 it 
thus follows that, w.h.p., Gn ≡MSO

k H. So if H |= ϕ then limn→∞ P(Gn |= ϕ) = 1 and 
otherwise limn→∞ P(Gn |= ϕ) = 0. �
5.2. A MSO-sentence without a limiting probability, for paths (proof of part (i) of 
Theorem 1.10)

Note that it is possible to ask, in a MSO-sentence, for a proper two-colouring of 
the graph, such that there are two vertices of degree one with the same colour. If this 
sentence is true of a path, the path must have odd order. Otherwise it fails. Thus we 
have:

Corollary 5.2. There exists a ϕ ∈ MSO such that P(Cn |= ϕ) =
{

1 if n is odd,
0 if n is even.

5.3. The FO-zero-one law fails for caterpillars (proof of part (i) of Theorem 1.11)

Let ϕ be the FO sentence which formalizes ‘there are two distinct vertices that have 
degree five and exactly one neighbour of degree at least two’. Then clearly a caterpillar 
satisfies ϕ if and only if both ends of its spine have degree five. (Here and elsewhere, 
we define the spine of a caterpillar as the path that consists of all vertices of degree at 
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least two.) The following lemma shows the FO-zero-one law fails for Cn, the random 
caterpillar.

Proposition 5.3. If ϕ is as above, then lim
n→∞

P(Cn |= ϕ) =
(

ρ4

4!(eρ − 1)

)2

, where ρ is the 

unique real root of xex = 1.

Proof. An oriented (labelled) caterpillar is a caterpillar, with ≥ 2 vertices on its spine, 
on which we choose a “direction” for the spine. In other words, an oriented caterpillar 
is a sequence of at least two stars, such that the first and the last star have at least two 
vertices. Let a and b be the endpoints of the spine. We compute the joint distribution 
of the number of leaves attached to a and b. It follows (cf. [16, Chapter II]) by basic 
theory of exponential generating functions (EGF) that, with number of vertices as size 
function, the EGF of stars is xex, of stars with at least two vertices is xex − x and of 
oriented caterpillars is

C(x) = (xex − x)2

1 − xex .

The numerator encodes the first and last stars, and the denominator the sequence (pos-
sibly empty) of intermediate stars.

Since C(x) is a meromorphic function with a simple pole at ρ, we can apply the results 
from [16, Section IV.5]). It follows that the number of oriented caterpillars on n vertices 
satisfies

[xn]C(x) ∼ c · ρ−nn!, (13)

for some constant c > 0.
We introduce variables u and w marking, respectively, the number of leaves attached 

to a and b. The associated EGF is

C(x, u, w) = x(eux − 1)x(ewx − 1)
1 − xex .

The probability that deg(a) = i + 1 and deg(b) = j + 1 is given by

[xnuiwj ]C(x, u, w)
[xn]C(x) = 1

i!j!
[xn]xi+j(ex − 1)−2C(x)

[xn]C(x) ∼ ρi

i!(eρ − 1)
ρj

j!(eρ − 1) .

This is because xi+j(ex − 1)2 is analytic, so that [xn]xi+j(ex − 1)−2C(x) ∼ ρi+j(eρ −
1)−2[xn]C(x).

We see that asymptotically the number of leaves attached to a and b are independent 
random variables, each distributed like one plus a Poisson-variable that is conditioned 
to be positive. In other words, if On is chosen uniformly at random from all oriented 
caterpillars on n vertices then:
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lim
n→∞

P(On |= ϕ) =
(

ρ4

4!(eρ − 1)

)2

.

Let En denote the event that Cn, the random (unoriented) caterpillar, is not a star 
(i.e. the spine has at least two vertices). Then we have that

P(Cn |= ϕ|En) = P(On |= ϕ),

since every unoriented, labelled caterpillar with at least two vertices in the spine cor-
responds to exactly two oriented, labelled caterpillars. Since there are n stars on n
vertices, and the total number of caterpillars is at least n!/2 (the number of paths), we 
have P(Ec

n) = o(1). It follows that

lim
n→∞

P(Cn |= ϕ) = lim
n→∞

P(Cn |= ϕ|En)P(En) + lim
n→∞

P(Cn |= ϕ|Ec
n)P(Ec

n)

=
(

ρ4

4!(eρ − 1)

)2

,

as claimed. �
5.4. The MSO-convergence law for forests of paths (proof of part (ii) of Theorem 1.10)

For forests of paths one can easily see that C(z) = z + 1
2
∑∞

n=2 z
n (since there is one 

path on n = 1 vertex, and there are n!/2 paths on n vertices for all n ≥ 2). So the radius 
of convergence must be ρ = 1 and we have C(ρ) = G(ρ) = ∞. In this section and in the 
following sections we will repeatedly make use of the following corollary to Lemma 2.21.

Corollary 5.4. With G, Gn and ρ as in Lemma 2.21, H ⊆ UG any set of (unlabelled) 
connected graphs from G, we set μ(H) := ρv(H)/ aut(H) for any H ∈ H and μ(H) :=∑

H∈H μ(H). If μ(H) = ∞ then, for any constant K > 0, w.h.p. Gn has at least K
components isomorphic to members of H.

Proof. For any finite subset H′ ⊆ H and any H ∈ H′ we denote by Nn(H) the number 
of components of Gn that are isomorphic to H, and by Nn(H′) =

∑
H∈H′ Nn(H) the 

number of components of Gn isomorphic to some member of H′. A sum of independent 
Poisson random variables being Poisson, it follows from Lemma 2.21 that Nn(H′) →TV
Z, where Z is a Poisson random variable with mean EZ = μ(H′) =

∑
H∈H′ μ(H). 

Observe that we can make EZ = μ(H′) as large as we wish by taking larger and larger 
subsets of H. Using the Chernoff bound (Lemma 2.1) it thus follows that

lim sup
n→∞

P(Nn(H) < K) ≤ lim
n→∞

P(Nn(H′) < K) = P(Z < K) ≤ e−EZ·H(K/EZ),

(provided EZ > K is sufficiently large), where H(x) := x lnx − x + 1. In particular, we 
can make P(Z < K) arbitrarily small by taking EZ = μ(H′) sufficiently large. �
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The following statement follows immediately from Corollary 5.4, since every path on 
at least two vertices has exactly two automorphisms and ρ = 1.

Corollary 5.5. Let F ⊆ UC be an infinite family of (unlabelled) paths, and let K > 0 be an 
arbitrary constant. W.h.p. the random forest of paths Gn contains at least K components 
isomorphic to members of F . �

Recall that ≡MSO
k is an equivalence relation with finitely many classes. Let m denote 

the number of classes that contain at least one path, and let C1, . . . , Cm be a partition of 
all (unlabelled) paths according to their ≡MSO

k -type. For each 1 ≤ i ≤ m, let us pick an 
arbitrary representative Hi ∈ Ci, and let us denote

Γk(a1, . . . , am) := a1H1 ∪ · · · ∪ amHm.

That is, Γk(a1, . . . , am) is the vertex-disjoint union of ai copies of Hi, for each i.

Proof of part (ii) of Theorem 1.10. Let ϕ ∈ MSO be arbitrary and let k be its quantifier 
depth.

Recall that for H ⊆ C we denote by Nn(H) the number of components of Gn that are 
isomorphic to a member of H. By Lemma 2.6 and the construction of Γk(a1, . . . , am) we 
have that

Gn ≡MSO
k Γk(Nn(C1), . . . , Nn(Cm)).

Let us assume (without loss of generality) that the classes C1, . . . , Cm′ are finite and 
Cm′+1, . . . , Cm are infinite for some m′ < m; and let a = a(k) be as provided by 
Lemma 2.7. We know from Corollary 5.5 that Nn(Ci) > a w.h.p. for all i ≥ m′. Hence, 
applying Lemma 2.6 and Lemma 2.7, we find that

Gn ≡MSO
k Γk(Nn(C1), . . . , Nn(Cm′), a, . . . , a) w.h.p.

Now define

A := {(a1, . . . , am′) ∈ ({0} ∪ N)m
′
: Γk(a1, . . . , am′ , a, . . . , a) |= ϕ}.

Since a sum of independent Poisson random variables has again a Poisson distribution, 
it follows that (Nn(C1), . . . , Nn(Cm′)) →TV (Z1, . . . , Zm′) where the Zi are independent 
Poisson random variables with means EZi =

∑
H∈Ci

1/ aut(H). It follows that

lim
n→∞

P(Gn |= ϕ) = lim
n→∞

P((Nn(C1), . . . , Nn(Cm′)) ∈ A) = P((Z1, . . . , Zm′) ∈ A).

This proves the convergence law (since the rightmost expression does not depend 
on n). �



196 P. Heinig et al. / Journal of Combinatorial Theory, Series B 130 (2018) 158–206
5.5. The FO-convergence law for forests of caterpillars (proof of part (ii) of 
Theorem 1.11)

For forests of caterpillars we have that ρ ≈ 0.567, where ρ is the unique real root of 
zez = 1 ([7, Proposition 26]), and G(ρ) = ∞ ([7, Table 1]).

Recall that the spine of a caterpillar is the path consisting of all vertices of degree at 
least two. For G a forest of caterpillars, let Long�(G) denote the union of all components 
whose spine has > � vertices, let Short�,K(G) denote the union of all components whose 
spine has at most � vertices and whose degrees are all at most K, and Bush�,K(G) :=
G \ (Long�(G) ∪ Short�,K(G)) denote the union of all remaining components. Before 
starting the proof of the convergence law for forests of caterpillars, we prove some lemmas 
on the subgraphs we just defined.

Lemma 5.6. For every � ∈ N and ε > 0 there is a K = K(�, ε) such that P(Bush�,K(Gn) �=
∅) ≤ ε for n sufficiently large.

Proof. For s ≤ � and t arbitrary, let Es,t denote the event that Gn contains a caterpillar 
on s + t vertices with s vertices on the spine. Observe that

P(Es,t) ≤
(

n
s+t

)
·
(
s+t
s

)
· s!

2 · st · |Gn−(s+t)|
|Gn|

. (14)

(We choose s + t vertices and construct a caterpillar of the required kind on them and a 
forest of caterpillars on the remaining vertices. This results in some over-counting, but 
that is fine for an upper bound. To construct the caterpillar on the s + t chosen vertices, 
we first choose s vertices for the spine, we arrange these s vertices in one of s!/2 ways 
on a path and each of the remaining t vertices then chooses one of the vertices of the 
spine to attach to.)

Since the class of forests of caterpillars is smooth (Theorem 2.22), for every ε > 0
there is an n0 = n0(ε) such that (ρ − ε) ≤ k|Gk−1|/|Gk| ≤ (ρ + ε) for all k ≥ n0. Let us 
observe that this also implies that

|Gn−m|
|Gn|

= O

(
(ρ + ε)m

(n)m

)
(for all n and m ≤ n). (15)

It follows that if s ≤ � and n ≥ s and t ≤ n − s are arbitrary then

P(Es,t) ≤ (n)s+ts
t

2t! · |Gn−(s+t)|
|Gn|

= O
(

st(ρ+ε)s+t

t!

)
= O

(
(�(ρ+ε))t

t!

)
.

(The first equality holds by rewriting (14), and the second line by filling in (15).) We 
thus have, for every T :
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P

⎛
⎜⎝ ⋃

1≤s≤�,
t≥T

Es,t

⎞
⎟⎠ = O

⎛
⎜⎝ ∑

1≤s≤�,
t≥T

(�(ρ + ε))t

t!

⎞
⎟⎠ = O

⎛
⎝∑

t≥T

(�(ρ + ε))t

t!

⎞
⎠ .

Since 
∑

t
(�(ρ+ε))t

t! < ∞, we can choose T such that P(
⋃

1≤s≤�,
t≥T

Es,t) < ε for all n.
To conclude the proof of the lemma, we simply set K(�, ε) = T + 2 and observe that 

whenever Bush�,K(Gn) �= ∅ then Es,t must hold for some s ≤ � and t ≥ T . �
Lemma 5.7. For every k ∈ N there is an � = �(k) and a forest of caterpillars Qk such 
that Long�(Gn) ≡FO

k Qk w.h.p.

The proof of this lemma makes use of an observation that we state as a separate 
lemma. Note that the isomorphism type of a caterpillar is described completely be a 
sequence of numbers d1, . . . , d� where � is the number of vertices of the spine and di is 
the number of vertices of degree one attached to the i-th vertex of the spine. We shall 
call these numbers simply the sequence of the caterpillar. Let us say that a caterpillar 
has begin sequence d = (d1, . . . , d�) (where always d1 ≥ 1) if its sequence either starts 
with d or it ends with d�, d�−1, . . . , d1. For every sequence d with d1 ≥ 1, let Hd ⊆ UC
denote the set of unlabelled caterpillars with begin sequence d. Throughout this section, 
μ(.) will be as defined by Corollary 5.4 (applied to the class of caterpillars).

Lemma 5.8. For any � and every sequence d = (d1, . . . , d�) (with d1 ≥ 1), we have 
μ(Hd) = ∞.

Proof. Let F := UC \Hd be the set of those caterpillars that do not have begin sequence 
d. Recall that C(ρ) =

∑
H∈UC μ(H). Since μ(F) + μ(Hd) = C(ρ) = ∞, we are done if 

μ(F) < ∞. Let us thus assume μ(F) = ∞.
For each H ∈ F let us define a graph H ′ ∈ Hd by adding � +

∑�
i=1 di vertices in the 

obvious manner. This clearly defines an injection mapping F to Hd. Also observe that for 
a caterpillar H with sequence t1, . . . , tk, the number of automorphisms aut(H) is either 
simply equal to t1! · · · tk! or to 2t1! · · · tk! (the latter case only occurs if the sequence is 
symmetric). Hence, it follows that

μ(H ′) ≥ ρ�+d1+···+d�

d1! · · · d�!
· μ(H),

for every H ∈ F . It follows that μ(Hd) ≥ ρ�+d1+···+d�

d1!···d�! · μ(F) = ∞, as required. �
Combining this last lemma with Corollary 5.4, we immediately get that

Corollary 5.9. For any � and every sequence d = (d1, . . . , d�) (with d1 ≥ 1) and every 
constant K > 0, Gn contains at least K components with begin sequence d, w.h.p.
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Proof of Lemma 5.7. Let k ∈ N be arbitrary. Recall that, up to logical equivalence, there 
are only finitely many FO-sentences of quantifier depth at most k. Thus, by Gaifman’s 
theorem (Theorem 2.8), there is a finite set B = {ϕ1, . . . , ϕm} such that every sentence 
of quantifier depth at most k is equivalent to a boolean combination of sentences in B, 
and for each i we can write:

ϕi = ∃x1, . . . , xni
:

⎛
⎝ ∧

1≤a≤ni

ψ
B(xa,�i)
i (xa)

⎞
⎠ ∧

⎛
⎝ ∧

1≤a<b≤ni

dist(xa, xb) > 2�i

⎞
⎠ .

Now let us set � = 1000 ·maxi �i. For each i, let us fix a caterpillar Hi with a spine of at 
least � vertices that satisfies Hi |= ∃x : ψB(x,�i)

i (x), if such a caterpillar exists. Without 
loss of generality we can assume there exists a m′ ≤ m such that the sought caterpillar 
Hi exists for all i ≤ m′ and it does not exist for i > m′. Let us now set

Qk := n1H1 ∪ · · · ∪ nm′Hm′ .

That is, Qk is the vertex disjoint union of ni copies of Hi, for each i ≤ m′.
For i > m′ we have that both Qk |= ¬ϕi and Long�(Gn) |= ¬ϕi. (Since there is 

no caterpillar with a spine of at least � vertices that satisfies ∃x : ψB(x,�i)
i (x).) On the 

other hand, for i ≤ m′, we have that Qk |= ϕi. Now note that, by the choice of � and 
Hi it is either the case that 1) every caterpillar whose begin sequence is equal to the 
sequence of Hi satisfies ∃x : ψB(x,�i)

i (x), or 2) every caterpillar whose begin sequence is 
equal to the reverse of the sequence of Hi satisfies ∃x : ψB(x,�i)

i (x). By Corollary 5.9, 
w.h.p., Gn contains at least ni components with either begin sequence. Hence, w.h.p., 
Long�(Gn) |= ϕi.

We have seen that Qk |= ϕi if and only if Long�(Gn) |= ϕi w.h.p. (for all 1 ≤ i ≤ m). 
Since every FO-sentence of quantifier depth at most k is a boolean combination of 
ϕ1, . . . , ϕm, it follows that Qk ≡FO

k Long�(Gn) w.h.p. �
Proof of part (ii) of Theorem 1.11. Let us fix a sentence ϕ ∈ FO, let k be its quantifier 
depth and let �, Qk be as provided by Lemma 5.7. Let ε > 0 be arbitrary, and let 
K = K(�, ε) be as provided by Lemma 5.6. Let H1, . . . , Hm ∈ UC be all (unlabelled) 
caterpillars whose spines have at most � vertices and whose sequence has only numbers 
less than K; and let Nn(Hi) denote the number of components of Gn isomorphic to Hi. 
By Lemma 2.21, we have that (N(H1), . . . , N(Hm)) →TV (Z1, . . . , Zm), where the Zi

are independent Poisson random variables with means EZi = μ(Hi) = ρv(Hi)/ aut(Hi). 
Let us set

Λk(a1, . . . , am) := a1H1 ∪ · · · ∪ amHm ∪Qk.

(That is, Λk(a1, . . . , am) is the vertex disjoint union of Qk with ai copies of Hi for ev-
ery i.) By Lemma 5.7, we have that Long�(Gn) ≡FO

k Qk w.h.p. Since Gn \Bush�,K(Gn)
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is exactly the union of all Long�(Gn) with all component of Gn that have spine 
length at most � and all degrees at most K, it follows using Lemma 2.6 that also 
Gn \ Bush�,K(Gn) ≡FO

k Λk(N(H1), . . . , N(Hm)) w.h.p. Now let A := {(a1, . . . , am) ∈
({0} ∪ N)m : Λk(a1, . . . , am) |= ϕ}. We see that

P(Gn |= ϕ) ≤ P((N(H1), . . . , N(Hm)) ∈ A) + P(Bush�,K(Gn) �= ∅)
+ P(Long�(Gn) �≡FO

k Qk)

≤ P((Z1, . . . , Zm) ∈ A) + ε + o(1),

and, similarly

P(Gn |= ϕ) ≥ P((N(H1), . . . , N(Hm)) ∈ A) − P(Bush�,K(Gn) �= ∅)
− P(Long�(Gn) �≡FO

k Qk)

≥ P((Z1, . . . , Zm) ∈ A) − ε + o(1).

These bounds show that lim supn→∞ P(Gn |= ϕ) and lim infn→∞ P(Gn |= ϕ) differ by at 
most 2ε. Sending ε ↓ 0 then proves that the limit limn→∞ P(Gn |= ϕ) exists. �
5.6. The proof of parts (iii) of Theorems 1.10 and 1.11

The following general result proves parts (iii) of Theorems 1.10 and 1.11 in a sin-
gle stroke. We recall that for decomposable classes, we have the ‘exponential formula’ 
G(z) = exp(C(z)), where C(z) is the exponential generating function for the connected 
graphs C ⊆ G. Moreover, both forests of paths and forests of caterpillars are smooth by 
Theorem 2.22. Both classes are decomposable and they satisfy G(ρ) = ∞ (in view of 
C(ρ) = ∞ [7, Table 1] and G(z) = eC(z)). Let us also note that both C and G have the 
same radius of convergence.

Theorem 5.10. Let G be a decomposable, smooth, minor-closed class satisfying G(ρ) = ∞
and let Gn ∈u Gn. Then there is a family of FO properties Φ such that their limiting 
probabilities exist, and

cl
({

lim
n→∞

P(Gn |= ϕ) : ϕ ∈ Φ
})

= [0, 1].

Proof of Theorem 5.10. By the exponential formula, we also have C(ρ) = ∞. Since 
n!/ aut(H) is exactly the number of labelled graphs isomorphic to H when v(H) = n, 
we have 

∑
H∈UCn

1
aut(H) = |Cn|/n!. With μ(H) as in Corollary 5.4, we get the following 

alternative expression for C(ρ):

C(ρ) =
∑ |Cn|

n! ρn =
∑

μ(H).

n H∈UC
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Since C(ρ) = ∞, we can define an infinite sequence H1, H2, . . . of finite, disjoint subsets 
of UC with the property that 1000 ≤ μi :=

∑
H∈Hi

μ(H) < 1001 for each i. To see why 
the upper bound can be made to hold, keep in mind the definition of μ, and also that 
ρ ≤ 1 (by a result of Bernardi, Noy and Welsh [5]).

Let us set

Ei :=
{

no component of Gn is isomorphic to an element of Hi

}
(i = 1, 2, . . . ),

and

F1 := E1, Fi := Ec
1 ∩ · · · ∩Ec

i−1 ∩ Ei (i = 2, 3, . . . ).

The events Fi are clearly FO-expressible, and disjoint.
Let us now fix some index i. For 1 ≤ j ≤ i, let Nj denote the number of components 

isomorphic to a graph in Hj . Since the sum of independent Poisson-distributed random 
variables is again Poisson-distributed, it follows from Lemma 2.21 that

(N1, . . . , Ni) →TV (Z1, . . . , Zi),

where the Zj are independent Poisson random variables with EZj = μj . We find that

pi := lim
n→∞

P(Fi)

= P(Z1 > 0) · · ·P(Zi−1 > 0) · P(Zi = 0)

= (1 − e−μ1) · · · (1 − e−μi−1) · e−μi .

Observe that

1 ≥
i∑

j=1
pj = 1− lim

n→∞
P(Ec

1 ∩ · · · ∩Ec
i ) = 1− (1− e−μ1) · · · (1− e−μi) ≥ 1− (1− e−1001)i.

By sending i → ∞ we see that 
∑∞

i=1 pi = 1. It follows that, for every i:
∑
j>i

pj = 1 − (p1 + · · · + pi) = P(Z1 > 0, . . . , Zi > 0) = (1 − e−μ1) · · · (1 − e−μi)

Next, observe that since μi > 1000 we have e−μi < 1 − e−μi . Hence:

pi = (1 − e−μ1) · · · (1 − e−μi−1) · e−μi < (1 − e−μ1) · · · (1 − e−μi) =
∑
j>i

pj .

We can thus apply Lemma 2.2 to derive that
{∑

pi : A ⊆ N

}
= [0, 1].
i∈A
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For A ⊆ N a finite set, let us write FA :=
⋃

i∈A Fi. Then FA is clearly FO-expressible, 
and limn→∞ P(FA) =

∑
i∈A pi. Let Φ ⊆ FO be all corresponding FO-sentences (i.e., 

every ϕ ∈ Φ defines FA for some finite A). We have:

{
lim
n→∞

P(Gn |= ϕ) : ϕ ∈ Φ
}

=
{∑

i∈A

pi : A ⊆ N finite
}
.

Finally observe that for every A ⊆ N, ε > 0 there is a finite A′ ⊆ A such that | 
∑

i∈A pi−∑
i∈A′ pi| < ε. In other words, the limiting probabilities of Φ are dense in [0, 1], as 

required. �
6. Discussion and further work

Here we mention some additional considerations and open questions that arise natu-
rally from our work.

MSO limit laws for surfaces. While we were not able to extend our proofs of Theo-
rem 1.3 and 1.4 to work for MSO, we believe that the results should generalize.

Conjecture 6.1. Let G be the class of all graphs embeddable on a fixed surface S. Then 
Cn ∈u Cn obeys the MSO-zero-one law and Gn ∈u Gn obeys the MSO-convergence law.

Let us mention that the proof of this conjecture is likely to be much more involved 
than the proofs of Theorems 1.3 and 1.4. The proof will probably have to take into 
account detailed information on the global structure of the largest component, and it 
may have to treat different surfaces separately. In MSO one can for instance express the 
property “Gn has an H-minor” (for any H) and by the results in [10], the random graph 
on a surface S will have the “correct” genus (i.e. Gn and Cn will not be embeddable 
on any “simpler” surface) with high probability. Hence, with high probability, at least 
one forbidden minor for embeddability on each simpler surface will have to occur. In 
particular, if the MSO-zero-one law/convergence law holds, then the value of the limiting 
probabilities of some MSO sentences will depend on the surface S. Let us also mention 
that no sensible analogue of Gaifman’s locality theorem (Theorem 2.8) for MSO seems 
possible and that, related to this, in the MSO-Ehrenfeucht–Fraïssé game the set moves 
allow Spoiler to exploit global information. (For instance, if G is 4-colourable and H is 
not, then Spoiler can start by exhibiting a proper 4-colouring of G in four set-moves, 
and then catch Duplicator by either exhibiting a monochromatic edge or an uncoloured 
vertex in H. Since the chromatic number is a global characteristic – there are graphs 
that are locally tree-like yet have high chromatic number – this suggests that if we wish 
to prove the MSO-zero-one and/or convergence laws for random graphs on surfaces 
by considering the Ehrenfeucht–Fraïssé game, we may have to come up with a rather 
involved strategy for Duplicator.)
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An attractive conjecture of Chapuy et al. [10] states that for every surface S, the 
random graph embeddable on S will have chromatic number equal to four with high 
probability. Since being k-colourable is expressible in MSO for every fixed k, establishing 
our conjecture above can be seen as a step in the direction of the Chapuy et al. conjecture. 
In [10] it was already shown that the chromatic number is ∈ {4, 5} with high probability. 
Proving the MSO-zero-one law will imply that the chromatic number of the random 
graph is either four w.h.p. or five w.h.p. (as opposed to some probability mass being on 
4 and some on 5, or oscillating between the two values).

The limiting probabilities. In all the cases where we have established the convergence 
law in this paper, it turned out that the closure of the set of limiting probabilities is 
always a union of finitely many closed intervals. A natural question is whether there are 
choices of a model of random graphs for which the convergence law holds, but we end up 
with a more exotic set. The answers happens to be yes. For instance, if in the binomial 
random graph model G(n, p) we take p = ln n

n + c
n then the FO-convergence law holds 

and we get (see [41], Section 3.6.4) that

cl
({

lim
n→∞

P(G(n, p) |= ϕ) : ϕ ∈ FO)
})

=
{∑

i∈A

pi : A ⊆ {0} ∪ N

}
, (16)

where pi := μie−μ/i! with μ = e−c. Observe that pi >
∑

j>i pj for all sufficiently large i. 
From this it follows that the right hand side of (16) is homeomorphic to the Cantor set 
(see [38]).

Returning to random graphs from minor-closed classes, let us recall that for every 
addable, minor-closed class we have that G(ρ) ≤ e1/2 by a result of Addario et al. [1]
and independently Kang and Panagiotou [25]. In the notation of Section 4 we have 
p1 = 1/G(ρ), so that this gives that p1 > 1 − p1 =

∑
j>1 pj . Corollary 2.3 allows 

us to deduce from this that there is at least one “gap” in the closure of the limiting 
probabilities. In the case of forests there are in fact three gaps in total. We believe that 
every addable, minor-closed class has at least three gaps, and moreover that the reason 
is the following.

Conjecture 6.2. If G is an addable minor-closed class, G(z) its exponential generating 
function and ρ the radius of convergence, then

G(ρ) < 1 + 2ρ.

In the notation of Section 4 we have p1 = 1/G(ρ) and p2 = ρ/G(ρ). So the conjecture 
is equivalent to p2 > 1 − p1 − p2, which together with Corollary 2.3 will indeed imply 
that the closure of the set of limiting probabilities consists of at least four intervals (that 
is, there are at least three gaps). The difficulty lies on relating the values of ρ and G(ρ).

MSO-convergence law for smooth and decomposable graph classes. We were able to 
show that for forests of paths, the MSO-convergence law holds. For forests of caterpillars 
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we were only able to show the FO-convergence law, but we believe the MSO-convergence 
law should hold too. What is more, we conjecture that this should be true in general for 
every minor-closed class that is both smooth and decomposable.

Conjecture 6.3. For every decomposable, smooth, minor-closed class, the MSO-conver-
gence law holds.

In the proof of the MSO-convergence law for forests of paths, we considered the 
partition C1, . . . , Cm of all unlabelled paths UC into ≡MSO

k -equivalence classes. We used 
that whenever |Ci| = ∞, then Nn(Ci), the number of components isomorphic to elements 
of Ci, will grow without bounds, whereas if |Ci| < ∞, then Nn(Ci) will tend to a Poisson 
distribution. This essentially relied on the fact that all paths on at least two vertices 
have precisely two automorphisms.

One would hope that for other smooth and decomposable minor-closed classes some 
variation of the proof for forests of paths, i.e. considering the number of components 
belonging to each ≡MSO

k -equivalence class separately, might lead to a proof of our con-
jecture. For paths it was very easy to show a dichotomy between Nn(Ci) growing without 
bounds or Nn(Ci) following a Poisson law. For general smooth, decomposable, minor-
closed classes one might still expect a similar dichotomy although the proof, even for 
forests of caterpillars, is likely to be more technically involved than in the case of forests 
of paths.

Extensions to the 2-addable and rooted case. Possible extensions of our results are 
to classes of graphs with higher connectivity properties. Call a minor-closed class G
2-addable if it is addable and it is closed under the operation of gluing two graphs through 
a common edge. This is equivalent to the fact that the minimal excluded minors are 
3-connected. An MSO-zero-one law should hold for 2-connected graphs in G, by proving 
an analogous of Theorem 2.12 for pendant copies of a 2-connected graph overlapping with 
the host graph in exactly one specified edge. Moreover, we believe an MSO-convergence 
law should hold for rooted connected planar graphs, adapting the proof by Woods [42]
for rooted trees (the zero-one law does not hold since, for example, the probability that 
the root vertex has degree k tends to a constant strictly between 0 and 1). We leave both 
problems for future research.

Unlabelled graphs. In enumerative combinatorics, unlabelled objects are typically 
much harder to deal with than labelled ones. We strongly believe that our results on 
addable classes will extend to the unlabelled case.

Conjecture 6.4. Let G be an addable, minor-closed class and let UG be the corresponding 
collection of unlabelled graphs. The MSO-zero-one law holds for Cn ∈u UCn, the random
connected, unlabelled graph from G. The MSO-convergence law holds for Gn ∈u UGn.

The previous conjecture would follow with the same proofs as in Theorems 1.1 and 1.2, 
provided the analogue of Theorem 2.14 on pendant copies holds. It is believed that this 
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is the case, but so far it has been proved only for so-called subcritical classes [13]. These 
include forests, outerplanar and series-parallel graphs, but not the class of planar graphs.

Analogues of the Rado graph. Although we do not formulate any research question in 
this direction, we cannot resist mentioning some of our thoughts concerning analogues of 
the Rado graph, a beautiful mathematical object that is associated with the FO-zero-one 
law for the binomial random graph G(n, 1/2). If T is the set of all FO-sentences ϕ such 
that limn→∞ P(G(n, 1/2) |= ϕ) = 1, then as it happens there is (up to isomorphism) 
exactly one countable graph that satisfies all sentences in T , namely the Rado graph. 
The Rado graph has several remarkable properties, and surprisingly, it is connected to 
seemingly far-removed branches of mathematics such as number theory and topology. 
See [8] and the references therein for more background on the Rado graph.

One might wonder whether, for the cases where we have proved the zero-one law, 
a similar object might exist. It follows in fact from general arguments from logic that 
there will always be at least one countable graph that satisfies every sentence that has 
limiting probability one. What is more, carefully re-examining the proof of Theorem 3.1, 
we find that we can construct such a graph by identifying the roots of M1, M2, . . . with 
Mk as in Theorem 3.1. One might hope that, similarly to the case of the Rado graph, our 
graph is the unique (up to isomorphism) countable graph that satisfies precisely those 
MSO sentences that have limiting probability one. By some straightforward variations 
on the construction (for instance by not attaching the consecutive Mk-s directly to the 
root, but rather by hanging them from the root using paths of varying length) we can 
however produce an uncountable family of non-isomorphic graphs with this property.
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