35 research outputs found

    Logical limit laws for minor-closed classes of graphs

    Get PDF
    Let G\mathcal G be an addable, minor-closed class of graphs. We prove that the zero-one law holds in monadic second-order logic (MSO) for the random graph drawn uniformly at random from all {\em connected} graphs in G\mathcal G on nn vertices, and the convergence law in MSO holds if we draw uniformly at random from all graphs in G\mathcal G on nn vertices. We also prove analogues of these results for the class of graphs embeddable on a fixed surface, provided we restrict attention to first order logic (FO). Moreover, the limiting probability that a given FO sentence is satisfied is independent of the surface SS. We also prove that the closure of the set of limiting probabilities is always the finite union of at least two disjoint intervals, and that it is the same for FO and MSO. For the classes of forests and planar graphs we are able to determine the closure of the set of limiting probabilities precisely. For planar graphs it consists of exactly 108 intervals, each of length 5106\approx 5\cdot 10^{-6}. Finally, we analyse examples of non-addable classes where the behaviour is quite different. For instance, the zero-one law does not hold for the random caterpillar on nn vertices, even in FO.Comment: minor changes; accepted for publication by JCT

    Nonconvergence, undecidability, and intractability in asymptotic problems

    Get PDF
    Results delimiting the logical and effective content of asymptotic combinatorics are presented. For the class of binary relations with an underlying linear order, and the class of binary functions, there are properties, given by first-order sentences, without asymptotic probabilities; every first-order asymptotic problem (i.e., set of first-order sentences with asymptotic probabilities bounded by a given rational number between zero and one) for these two classes is undecidable. For the class of pairs of unary functions or permutations, there are monadic second-order properties without asymptotic probabilities; every monadic second-order asymptotic problem for this class is undecidable. No first-order asymptotic problem for the class of unary functions is elementary recursive.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26912/1/0000478.pd

    The problem of optimal scheduling with restriction on the number of workers

    No full text

    On the question of quantitative characteristics of logical formulas

    No full text

    Zero-one law for an extension of first-order predicate language

    No full text
    corecore