741 research outputs found

    Last-mile logistics optimization in the on-demand economy

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Amplifying Quiet Voices: Challenges and Opportunities for Participatory Design at an Urban Scale

    Get PDF
    Many Smart City projects are beginning to consider the role of citizens. However, current methods for engaging urban populations in participatory design activities are somewhat limited. In this paper, we describe an approach taken to empower socially disadvantaged citizens, using a variety of both social and technological tools, in a smart city project. Through analysing the nature of citizens’ concerns and proposed solutions, we explore the benefits of our approach, arguing that engaging citizens can uncover hyper-local concerns that provide a foundation for finding solutions to address citizen concerns. By reflecting on our approach, we identify four key challenges to utilising participatory design at an urban scale; balancing scale with the personal, who has control of the process, who is participating and integrating citizen-led work with local authorities. By addressing these challenges, we will be able to truly engage citizens as collaborators in co-designing their city

    Collaborative urban transportation : Recent advances in theory and practice

    Get PDF
    We thank the Leibniz Association for sponsoring the Dagstuhl Seminar 16091, at which the work presented here was initiated. We also thank Leena Suhl for her comments on an early version of this work. Finally, we thank the anonymous reviewers for the constructive comments.Peer reviewedPostprin

    Innovative business-to-business last-mile solutions:models and algorithms

    Get PDF

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Optimization under Uncertainty for E-retail Distribution: From Suppliers to the Last Mile

    Get PDF
    This thesis examines problems faced in the distribution management of e-retailers, in different stages of the supply chain, while accounting for sources of uncertainty. The first problem studies distribution planning, under stochastic customer demand, in a transshipment network. To decide on a transportation schedule that minimizes transportation, inventory and outsourcing costs, the problem is formulated as a two-stage stochastic programming model with recourse. Computational experiments demonstrate the cost-effectiveness of distribution plans generated while considering uncertainty, and provide insights on conditions under which the proposed model achieves significant cost savings. We then focus our attention on a later phase in the supply chain: last-mile same-day delivery. We specifically study crowdsourced delivery, a new delivery system where freelance drivers deliver packages to customers with their own cars. We provide a comprehensive review of this system in terms of academic literature and industry practice. We present a classification of industry platforms based on their matching mechanisms, target markets, and compensation schemes. We also identify new challenges that this delivery system brings about, and highlight open research questions. We then investigate two important research questions faced by crowdsourced delivery platforms. The second problem in this thesis examines the question of balancing driver capacity and demand in crowdsourced delivery systems when there is randomness in supply and demand. We propose models and test the use of heatmaps as a balancing tool for directing drivers to regions with shortage, with an increased likelihood, but not a guarantee, of a revenue-producing order match. We develop an MDP model to sequentially select matching and heatmap decisions that maximize demand fulfillment. The model is solved using a stochastic look-ahead policy, based on approximate dynamic programming. Computational experiments on a real-world dataset demonstrate the value of heatmaps, and factors that impact the effectiveness of heatmaps in improving demand fulfillment. The third problem studies the integration of driver welfare considerations within a platform's dynamic matching decisions. This addresses the common criticism of the lack of protection for workers in the sharing economy, by proposing compensation guarantees to drivers, while maintaining the work hour flexibility of the sharing economy. We propose and model three types of compensation guarantees, either utilization-based or wage-based. We formulate an MDP model, then utilize value function approximation to efficiently solve the problem. Computational experiments are presented to assess the proposed solution approach and evaluate the impact of the different types of guarantees on both the platform and the drivers

    An investigation into the role of crowdsourcing in generating information for flood risk management

    Get PDF
    Flooding is a major global hazard whose management relies on an accurate understanding of its risks. Crowdsourcing represents a major opportunity for supporting flood risk management as members of the public are highly capable of producing useful flood information. This thesis explores a wide range of issues related to flood crowdsourcing using an interdisciplinary approach. Through an examination of 31 different projects a flood crowdsourcing typology was developed. This identified five key types of flood crowdsourcing: i) Incident Reporting, ii) Media Engagement, iii) Collaborative Mapping, iv) Online Volunteering and v) Passive VGI. These represent a wide range of initiatives with radically different aims, objectives, datasets and relationships with volunteers. Online Volunteering was explored in greater detail using Tomnod as a case study. This is a micro-tasking platform in which volunteers analyse satellite imagery to support disaster response. Volunteer motivations for participating on Tomnod were found to be largely altruistic. Demographics of participants were significant, with retirement, disability or long-term health problems identified as major drivers for participation. Many participants emphasised that effective communication between volunteers and the site owner is strongly linked to their appreciation of the platform. In addition, the feedback on the quality and impact of their contributions was found to be crucial in maintaining interest. Through an examination of their contributions, volunteers were found to be able to ascertain with a higher degree of accuracy, many features in satellite imagery which supervised image classification struggled to identify. This was more pronounced in poorer quality imagery where image classification had a very low accuracy. However, supervised classification was found to be far more systematic and succeeded in identifying impacts in many regions which were missed by volunteers. The efficacy of using crowdsourcing for flood risk management was explored further through the iterative development of a Collaborative Mapping web-platform called Floodcrowd. Through interviews and focus groups, stakeholders from the public and private sector expressed an interest in crowdsourcing as a tool for supporting flood risk management. Types of data which stakeholders are particularly interested in with regards to crowdsourcing differ between organisations. Yet, they typically include flood depths, photos, timeframes of events and historical background information. Through engagement activities, many citizens were found to be able and motivated to share such observations. Yet, motivations were strongly affected by the level of attention their contributions receive from authorities. This presents many opportunities as well as challenges for ensuring that the future of flood crowdsourcing improves flood risk management and does not damage stakeholder relationships with participants
    • …
    corecore