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Chapter 1 

Introduction 

City logistics aims to find appropriate strategies that can improve the overall 
efficiency of freight distribution in urban areas while mitigating congestion and 
environmental externalities. Many driving factors, including globalization, 
urbanization, e-commerce, and on-demand economy, have promoted significant 
paradigm shifts in city logistics over the past decades. On the one hand, the 
growth of e-commerce creates a new consumption pattern in Business-to-
Consumer segments resulting in increasing demand for home deliveries and 
deliveries at alternative locations in the urban area. The e-commerce giant 
platforms are forced to provide fast and cheap deliveries, facing fierce 
competition.  

On the other hand, urbanization and globalization increase freight flow 
dramatically, impacting and challenging the supply chain. Freight movements 
contribute significantly to congestion and environmental issues in the urban area. 
Moreover, recent phenomena as the on-demand economy, e-commerce, and 
advanced digital technologies, enlarge the framework of city logistics. Customers 
request more flexible and fast deliveries such as same day and even within 2 hours. 
It is thus crucial to develop innovative strategies to build a more efficient, cost-
effective, and sustainable city logistics system.  

City logistics is inherently interdisciplinary, challenging different 
stakeholders (i.e., City authorities, Freight carriers, Residents, and Retailers) to 
improve the overall performance of freight distribution while mitigating their 
externalities and inefficiencies. Many researchers and practitioners propose 



1-Introduction 

2 
 

collaborative business models and initiatives to optimize city logistics' economic, 
operative, social, and environmental goals. However, not all initiatives and 
proposals are successfully implemented. One of the main reasons for failure is a 
lack of support and commitment from different stakeholders [1]. Besides, they fail 
to design suitable and sustainable policies for city logistics from a managerial 
perspective while mainly focusing on the technological issues as platforms or 
optimization tools, missing a global version and ignoring the interaction between 
business and operational model. 

In the last decades, many research and state-of-the-art have developed 
different models, methods, and decision support tools for city logistics from 
technological perspectives [2-6]. However, there are still some critical issues in 
the application of city logistics. In the e-commerce era, the information related to 
orders appears online, mainly from private customers, generating a dynamic and 
uncertain setting. The number of orders is much larger than in the classical 
distribution services. Most orders have a significantly reduced weight and volume, 
challenging the decision-makers to cope with large-scale problems with 
uncertainty. Besides, online orders are increasingly associated with the explicit 
request, or at least the expectation, of faster delivery times, like same-day or even 
2 hours deliveries. The decision-making process is thus contracted into very short-
time horizons, highlighting the need for a flexible system that can represent 
different behaviors into an overall model. Some innovative strategies and new 
business models can be integrated into parcel delivery and freight transportation if 
a negotiation process is done between stakeholders. For example, the success 
factors of innovative proposals and initiatives should be considered in the actual 
application of parcel delivery. The adoption of new delivery options and 
crowdsourced delivery models should align with different actors' broad goals (e.g., 
economic, social, operational, and environmental goals). It is necessary to develop 
a holistic approach to investigate the managerial and operational application of 
city logistics, particularly the last-mile delivery, as it is the least efficient stage of 
the supply chain. However, such an approach is still missing in the literature.  

This thesis aims to fill this gap in the literature in terms of multi-disciplinary 
approach and modeling framework for last-mile optimization. It starts with an 
extensive analysis of the recent relevant literature on smart city projects, 
highlighting these initiatives' critical success and failure factors. The review 
conducted on smart city projects confirms the interdisciplinary nature of 
applications in city logistics. The results highlight the need to merge technologies 
and strategies into sustainable solutions capable of facing the logistics challenges 
and, in the meantime, satisfying demanding customers. The challenge for 
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sustainable solutions of city logistics is to integrate business models of the 
different actors, embedding prediction and optimization techniques considering 
the dynamism, pricing, and costing schemes, as well as operational issues of the 
new system.  

In this direction, the thesis contributes to: 
⚫ demonstrate the potential value of integrating business and operational 

models in city logistics. 
⚫ investigate the benefits of the integration of business and operational 

models in the city context. In particular, the thesis focuses on the last-
mile optimization of the supply chain, considering the integration of 
crowdsourced delivery and multiple delivery options in urban parcel 
delivery with large-scale and uncertain settings. 

⚫ investigate the possibility to reduce carbon emissions in parcel delivery 
applications, taking advantage of using real-world GPS trajectory data of 
floating vehicles in a megacity of China.  

This thesis is organized as follows. 
Chapter 2 provides an overview of city logistics, introducing the emerging 

trends and challenges and presenting the extensive analysis of smart city projects 
related to city logistics.  

Chapter 3 presents the managerial and strategic analysis for urban parcel 
delivery, describing the stakeholders’ profiles in terms of their needs, cost, and 
revenues structures. We propose a multi-disciplinary approach that integrates the 
traditional transportation modes (i.e., vans) and low-emission vehicles (i.e., cargo 
bikes). Besides, the integration of business and operational models is 
demonstrated by the performance analysis of two delivery options, based on the 
main variables such as travel distance and delivery time. This chapter is based on 
the paper [7] developed in collaboration with another PhD student.  

In Chapter 4, we propose a multi-stage stochastic model to capture the 
dynamic and stochastic features of real-world parcel delivery application and 
solve a dynamic and stochastic vehicle routing problem with time windows by a 
simulation-optimization strategy. We extend the preliminary analysis of the 
integration of traditional transportation (i.e., vans) with new delivery options (i.e., 
cargo bikes). We also consider ordinary people as crowd drivers who offer their 
time and resources to provide transportation services, reflecting the emerging 
trend in practice. To demonstrate the potential benefits of this integration, we 
conduct a case study in the medium-sized city of Turin (Italy). This Chapter is 
based on the paper in [8].  
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Advanced improvements in technology enable researchers and practitioners to 
measure the real-time travel speed through the real-world GPS trajectory data of 
floating vehicles. In Chapter 5, we study a time-dependent green vehicle routing 
problem based on real-time travel speed in the road network of Chengdu, a 
megacity in western China, investigating the possibility of carbon emission 
reduction by calculating the lowest fuel consumption path in parcel delivery 
application. A branch and price algorithm is used to solve this problem. We also 
demonstrate that the time-dependent lowest consumption path is a promising 
choice for carrier companies in fuel consumption and travel-time saving. 

Finally, Chapter 6 summarizes conclusions and future developments of the 
research activity 
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Chapter 2 

Urban freight transportation and 
last-mile logistics 

2.1 Urban freight transportation and logistics in the on-
demand economy era 

The growing urbanization and the development of megacities (having more 
than 10 million inhabitants) give rise to numerous city logistics challenges. City 
logistics, also known as urban freight transportation, is about finding efficient and 
effective ways to distribute goods in urban areas while avoiding undesirable 
consequences on congestion, human health, and the environment [9]. The 
definition of efficiency includes fewer vehicles, better vehicle capacity utilization, 
and reduction of CO2 emissions and other greenhouse gases. Efficiency is 
involved in the flexibility of operations, service quality, and synchronization of 
different services in cities. In addition, freight transportation is one of the 
significant causes of traffic congestion, air pollution, and noise, which 
significantly influence the quality of life in urban areas. Crainic et al. [3] 
highlighted that 30% of city street capacity is consumed by freight vehicles in 
major French cities. On average, freight transportation represents 10% of the total 
vehicle kilometers traveled in 13 American cities [10]. Figures are equally telling 
on energy consumption and CO2 emissions. Urban traffic accounts for 40% of 
CO2 emissions and 70% of emissions of other air pollutants within road transport-
related CO2 emissions. 
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Consequently, traffic and congestion lead to almost 1% loss (i.e., about 100 
billion Euros) of the European Gross Domestic Product (GDP) every year. 
Furthermore, in the US, transportation represented 27% of total U.S. greenhouse 
gas emissions in 2013 and increased more from 1990 to 2013 in absolute terms 
than any other sector [9]. It is thus crucial to design a more innovative and 
competitive freight transportation system while reducing the negative 
environmental impacts. 

Moreover, it is well-recognized that city logistics is involved with several 
participants and key stakeholders which has different roles, problems, and 
concerns, including: 

⚫ City authorities. They implement policies to mitigate the negative impacts 
of city logistics and reconcile the often-conflicting interests of the 
different stakeholders.  

⚫ Freight carriers. They need to move freights around the urban areas to 
customer destinations. They require many urban infrastructures such as 
parking and loading area to complete the services. They are mainly 
concerned with the efficiency, capacity, and reliability of deliveries. 

⚫ Residents. They act as one of the primary recipients of urban parcels. 
Residents expect fast delivery services and not to be affected by traffic 
jams, noise, and pollution. 

⚫ Retailers. They are trying to maximize their profit while maintaining a 
stable, sustainable, and competitive business model. For example, they 
cooperate with third-party logistics providers to reduce the operational 
cost of last-mile delivery. In addition, they initiate some innovative 
strategies to increase customer orders, such as promotion and additional 
services.   

It is challenging to suit all the user groups with such a range of disparate 
views and conflicting interests. For example, freight carriers are expected to 
provide a high level of service at a lower cost. Moreover, traffic congestion levels 
in urban areas have constantly risen because of the increasing traffic demand. 
Therefore, it is vital to view the individual stakeholders and decisions as 
components of an integrated city logistics system, which implies the cooperation 
of carriers, retailers, movements, and the consolidation of loads of different 
customers. Besides, city logistics encounters many changes in political, economic, 
and social conditions in the era of the on-demand economy. The main changes are 
following: 

⚫ Urbanization. Urban population growth is challenging the city logistics 
systems in both developed and developing countries. According to the 
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World Urbanization Prospects 2018 [11], the urban population reached 
approximately 78.7% and 50.6% in developed and developing countries 
by mid-2018.  

⚫ Globalization. Urban areas, as economic units, are supporting and are 
influenced by globalization. The scale and intensity of the mobility of 
capital, goods, residents, and techniques have been expanded by 
international transactions (e.g., trade liberalization). On the one hand, 
these phenomena are challenging the global design of city logistics 
systems such as facility location, infrastructure construction, and resource 
allocation. On the other hand, the urban region becomes a core 
organizational and competitive unit where logistics firms thrive on 
comparative costs and innovative capabilities.  

⚫ The blowout growth of e-Commerce reshapes the entire logistics chain. 
Daniela [12] reported that over two billion people purchased goods or 
services online, and e-retail sales surpassed 4.2 trillion U.S. dollars 
worldwide in 2020. Thanks to the ongoing digitalization of modern life, 
customers can request fast and even on-time delivery services for free or 
at a lower cost. With the extreme competitive conditions, the logistics 
firms are forced to reduce operational costs through innovative logistics 
solutions. Indeed, some leading e-Commerce platforms, such as Amazon 
and Alibaba, are facing increasing requests for fast, cheap, or even free 
deliveries with high-quality service. According to Marcucci et al. [13], 74% 
of consumers state that they will most likely buy a product that offers a 
same-day delivery service in the US. Only 32% of consumers are willing 
to wait 2 or 3 days for delivery in the UK. In this context, traditional 
delivery serves are transformed as the sale of immediately deliverable 
products. For example, Amazon Prime and Amazon Now enable online 
orders to be received within a day or even two hours. Therefore, the 
efficiency of logistics becomes vital for their competition.  

⚫ The intensive restrictions of greenhouse gas emissions from governments 
and city authorities force logistics firms to reduce fuel consumption and 
emissions. Indeed, as the world’s biggest greenhouse gas emitter, the 
Chinese government has announced to cut its carbon dioxide emissions 
per unit of gross domestic product, or carbon intensity, by more than 65% 
from 2005 levels by 2030 and achieve carbon neutrality by 2060. In 
addition, the EU has put in place legislation to reduce emissions by at 
least 40% by 2030 – as part of the EU's 2030 climate and energy 
framework and current contribution to the Paris Agreement. The 
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importance of environmental issues is continuously translated into 
regulations, with a tangible influence on logistics and supply chain 
management.  

All these changes are reshaping the traditional city logistics. The increasing 
growth of e-commerce, for example, contributes to a significant increase in direct-
to-customer services in urban areas, which leads to the so-called last-mile 
challenges. Besides, the ever-growing attention to sustainability continuously 
changes both solutions and decision support systems of urban freight transport. 
The basic idea is that the development of city logistics does not eventually lower 
the quality of life and attractiveness of city areas and does not impact the global 
climate and residents’ health. It implies that multiple and competing objectives 
must be considered and handled suitably during city logistics system design, 
planning, and execution.  
2.2 Trends and challenges 

From a global perspective presented above, it is clear that city logistics is a 
complex system, challenging the city authorities and other stakeholders to find an 
appropriate solution to improve transportation efficiency while preserving the 
quality of life of residents. In particular, the most critical trend and related 
challenges for urban transportation and logistics are described as follows. 
E-Commerce Growth.  United Nations states that the urban population is set to 
increase by almost 700 million by the year 2030, reaching a total of 5.2 billion, 
which results in the increase of urban movement for goods in these areas. The 
considerable rise in urbanization rates results in a change in the people’s demands 

for goods. With the deep integration of digital technology and the real economy, 
urban consumers can buy products and services electronically. E-commerce is 
developed as a new business model to fulfill the enormous market demand. It is 
experiencing growth of more than 10% per year worldwide and regionally. The 
first factor that explains this explosion is the increase of Internet users. Besides, 
the widespread use of the Internet is undergoing a further acceleration due to the 
pandemics caused by COVID-19. Online sellers gain massive success because of 
the safety and convenient services and lower prices. Amazon and Alibaba are 
reported to bill more than a trillion dollars a year. E-commerce changes the 
delivery pattern of city logistics, especially the last mile delivery. The number of 
freight movements increases significantly since the goods need to be delivered to 
consumers’ homes rather than retail stores. In addition, the widespread diffusion 
of intelligent devices considerably increases the total number of mobile-based 
transactions. In this context, retailers and logistics firms need to provide on-
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demand logistic capabilities to keep up with consumer expectations that 
incorporate high logistics service quality and low costs. 
On-demand Economy.  The on-demand economy refers to a new business model 
based on online platforms that provide immediate matching between a user who 
needs a good or service and another who can share the assets of skill, time, or 
goods. It has led to the reorganization of the supply chain, which creates a new 
industrial philosophy, the so-called just-in-time. In the e-commerce sector, the 
delivery services are pushed to be completed within the same day or even two 
hours. Though the on-demand economy improves the experience perceived by 
customers, it undeniably increases the complexity of the logistic system, 
challenging the logistics service to develop more efficient and innovative 
solutions. Some leading retailers have started to share logistics infrastructure and 
services with competitors. It enables them to share existing assets and capacities 
through online sharing platforms, especially when the assets need a large amount 
of capital [14]. According to Savelsbergh and Woensel [9], sharing assets and 
capacities can increase consolidation and capacity utilization, reducing freight 
movements, fleet size, and empty travel for logistics firms. In addition, Amazon, 
DHL, and Wal-Mart have developed logistics service that takes advantage of 
professional crowdsourced delivery capabilities. For example, Wal-Mart, a major 
retailer in the US, has developed a collaborative service that encourages its 
employees to deliver online products to consumers’ homes [15]. In 2015, Amazon 
implemented crowdsourced last-mile delivery by creating Amazon Flex, an on-
demand package delivery service that employs freelance workers to deliver same-
day delivery packages to final customers [16]. In addition to developments of this 
system by leading e-retailers, multiple start-ups have been launched in recent 
years that provide last-mile crowdsourced deliveries (e.g., Deliv, DoorDash, Hitch, 
Postmates) [17]. These collaborative business models can be both attractive and 
financially convenient for both operators and consumers as they can: (1) cut 
financial and environmental costs, taking advantage of using existing assets and 
resources; (2) increase the time and capacity flexibility for logistic operators and 
customers in performing their respective actions; (3) reduce the number of 
permanent drivers, driving kilometers, and double line parking thus implicitly 
decreasing operational cost.  However, difficulties in these novel business models 
should not be underestimated regarding environmental sustainability, income 
distribution equality, and system resilience. For example, Alnaggar et al. [17] 
highlighted that there are many new challenges of making appropriate decisions 
for crowdsourced delivery system including matching decisions, routing decisions, 
scheduling decisions, and compensation decisions. 
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Improvements in Technology.  The new and emerging technologies, such as 
digital connectivity, big data, and automation, can drive city logistics innovation 
and potentially reduce the negative impacts on congestion, safety, and the 
environment. Nowadays, data are everywhere. The availability of real-time data 
from different sources, including transportation infrastructure sensors, global 
positioning system (GPS) of vehicles, and various information systems from 
logistics firms and shippers, can improve reliability, efficiency, and visibility of 
freight transport operations. In addition, data is more and more openly available 
and shared with customers, enabling them to view the real-time status of 
deliveries via mobile devices and online platforms. However, there are still many 
challenges. For example, data needs to be extracted and analyzed in real-time, 
requiring advanced data analytics methods. Besides, the volume, velocity, and 
variety of data arriving in real-time continue to accelerate. Therefore, logistics 
firms need to transform these data into decisions quickly. However, embedding 
and effectively using high-value information in the decision support system is 
nontrivial, primarily when associated with uncertainty (i.e., demand, capacity, 
travel times, etc.) 
Large-scale Problems and Uncertainty.  The growing demand in e-commerce 
mentioned above has led to a rapid increase in freight movements in urban areas, 
calling for the appropriate solutions for solving large-scale problems. Indeed, the 
online shopping platforms allow consumers to order the fragmented demand more 
frequently than collecting in the retail stores, resulting in vast parcel flows. The 
high density of deliveries point-to-point leads to an increase in the delivery travel 
distance and service times because of traffic and congestion. Besides, the 
advances in technology enable consumers to buy a product or service through 
online platforms at any time, which contributes to multiple types of uncertainty 
for logistic systems. For example, the total demand, location, and travel time from 
the distribution center to the final customers’ homes are unknown before planning 

execution.   
2.3 Smart city and its link to city logistics 
     This section starts with a brief introduction of smart cities and their essential 
elements, followed by an extensive analysis of smart city projects (SCPs) in the 
literature. It then ends with some results that highlight the link between city 
logistics and smart cities. 
2.3.1 Smart city and its key elements 
     Smart city, as technology and data-driven paradigm for sustainable city 
development, has received more and more attention in recent years. It is essential 
to understand the success and failure factors that influence smart city performance 
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and its interactions with city logistics. There are some different definitions of the 
smart city in the literature. The European Commission [18] reported that a smart 
city has more efficient traditional networks and services that benefit its inhabitants 
and business, taking advantage of the information and communication 
technologies (ICT). It means a more interactive and responsive city administration, 
more innovative urban transport networks, and better facilities locations. This 
definition is aligned with the Smart City Foundations proposed by Harrison et al. 
[19]. They define a smart city as “connecting the physical infrastructure, the IT 
infrastructure, the social infrastructure, and the business infrastructure to leverage 
the collective intelligence of the city.” Indeed, from a global view of a smart city, 
it should be considered a place where different types of resources and advanced 
technologies are well integrated. Smart cities actively involve various 
stakeholders, including the residents themselves, transforming them from mere 
observers to core contributors to innovation [20]. From the trend and challenges 
described in section 2.2, it is clear that the top-level design of smart cities plays a 
vital role in the reformation of city logistics. The smart city logistics solutions 
should be in line with the logic of smart city design. For example, the 
optimization of logistics activities is achieved based on the connectivity between 
various stakeholders. This optimization process aims to fulfill consumer 
expectation, minimizing operational cost, and related externalities including 
climate change, air pollution, noise, and congestion. The key elements of smart 
city logistics can be summarized as following: 

⚫ Digitalization and Big Data Analytics. Efficient data sharing is 
fundamental to extracting high-value information from the big data on 
city logistics, particularly the transportation sector. It contributes to data 
sharing across the different transport stakeholders and thus can improve 
the products and services. The Intelligent Transport System (ITS) 
effectively combines various technology, infrastructure, service, planning, 
and operation methods, supporting real-time data collection and decision-
making processes. The smart devices are deployed in the network of ITS, 
such as sensors, controllers, GPS devices, mobile phones, cloud 
computing, and IoT [21], which enable ITS to provide secure and 
economic on-demand services. 

⚫ Collaboration among stakeholders. The cooperation of multiple and 
diverse stakeholders is more and more critical as it can benefit for 
increasing the transparency and communication between players. For 
example, different managers and workers may have different cultures and 
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backgrounds, resulting in a different understanding of operations or even 
conflicts in practice.     

⚫ Flexible deliveries by multimodal transport. Multimodal transport means 
the freights movements are involved with more than one mode of 
transportation. It offers more efficient and sustainable delivery and has 
thus developed as an essential component for city logistics worldwide. 
Besides, multimodal logistics increase the capability of ITS to address the 
uncertainty in dynamic decision-making problems in facing real-time 
changes (i.e., customer demand, locations, service time, and travel times). 
Perboli et al. [8] reported that the multiple delivery options benefit the 
management of last-mile delivery in terms of economic and 
environmental cost-saving, providing a flexible solution for on-demand 
delivery services. 

⚫ Urban Consolidation Center. Urban Consolidation Centers (UCCs) are 
logistic facilities located in urban areas that serve as terminals or satellites 
for multimodal logistics systems. They collect packages from different 
logistics firms, consolidate them, and then deliver them to final customers. 
It can reduce the total travel distance and pollution for last-mile freight 
transportation [22]. However, the efficient and sustainable operation of 
UCC requires many supports from stakeholders: (1) political support; (2) 
governance and financing viability; (3) strategic location design; (4) the 
organization of the last-mile logistics. 

In summary, intelligent city logistics combines digital technologies that 
integrate stakeholders, systems, and transport means that interact with users to 
develop a sustainable and environmental-friendly logistics system that fulfills 
residents’ expectations.   
2.3.2 Analysis of SCPs 

This section aims to fill the gap by applying the taxonomy proposed by [23] to 
a set of 199 outstanding SCPs globally to provide some relevant insights on the 
critical success and failure factors of projects in the transportation industry. 
Indeed, it emerged as the most predominant sector the city managers are looking 
for sustainable development, reflecting the close link between transportation, City 
Logistics, and Smart City.  

Smart cities have received increasing attention in recent years. One part of the 
literature addresses the concept of smart cities by elaborating the definitions, 
applications, and main characteristics. For example, Albino et al. [24] provide an 
in-depth analysis of the literature and identify the primary descriptions of smart 
cities. Su et al. [25] identify the relevant content of the construction of smart city 
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applications, including the wireless city, smart home, smart transportation, 
intelligent public service and social management, smart urban governance, and 
green city. Caragliu et al. [26] summarize smart cities’ common characteristics 
from different perspectives concerning the smart economy, mobility, environment, 
living, and governance. Moreover, Zanella et al. [27] elaborate on the smart city 
concept and services, including buildings’ structural health, waste management, 
noise monitoring, traffic congestion, city energy consumption, smart parking and 
lighting.  

Although the concept of smart cities lacks universality due to the different 
vision and priorities, the improvement of people mobility and freight 
transportation in urban areas through the adoption of ICT solutions represents one 
of the main pillars to achieve a smart city, according to a consistent part of the 
literature. For example, Xiong et al. [28] review intelligent transportation systems 
for smart cities and illustrate the outlook of intelligent urban transportation in 
China. Intelligent transport planning is introduced in the 12th Five-Year Plan, the 
“Internet of Things” and “Smart City” major special projects. 

Mohanty et al. [29] identify the different components of a smart city, such as 
smart infrastructure, smart transportation, smart energy, smart healthcare, and 
smart technology. The ICT, especially two emerging technology frameworks, 
Internet of Things (IoT) and Big Data (BD), enables keys for improving smart 
cities. Nowicka [30] presents smart city logistics on the cloud computing model 
for a sustainable city. The internet technologies promoting cloud-based services, 
IoT, use of smart phones and smart meters and RFIDs allow meeting the citizens’ 

demand-driven requirements in City Logistics. Moreover, Awasthi et al. [31] 
apply a fuzzy TOPSIS method to evaluate sustainable transportation systems for 
smart cities. It provides a multi-criteria decision-making approach for decision-
makers to assess the associated environmental costs, including air pollution, noise, 
etc., which is regarded as the quality of life in modern cities.  

Malindretos et al. [32] introduce the link between City Logistics and Smart 
Cities reviewing the City Logistics models that have been implemented in Europe 
for the sustainability and the growth of smart cities. The models that the authors 
investigate concern the application of City Logistics measures as the Urban 
Freight Consolidation Centres. 

Although we recognize the importance of City Logistics to foster the 
development of smart cities, we identify a lack of a global vision of the main 
trends and patterns and the critical success and failure factors of these initiatives. 
This study aims to fill the shortage in the literature concerning smart cities by 
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proposing a cluster analysis of SCPs, based on a taxonomy with polythetic classes 
[33]. The taxonomy used is illustrated in Figure 2.1.  

From a methodological point of view, we built it following a three-step 
method described by [33]. First, we began with an empirical analysis of the SCPs 
ended, ongoing, or at least already funded in 2018, retrieving information about 
projects from referred journals and conference proceedings as the source of Smart 
City literature, deliverables of the projects, governmental and consulting reports. 
This first phase yielded a selection of about 199 outstanding SCPs (25 in Europe, 
55 in Canada, 25 in the USA, 20 in Brazil, 26 in Australia, and 48 in Asia), 
making our analysis, even if not exhaustive, the most extensive screening of SCPs 
in the selected areas. 

According to the lean business methodology GUEST [34], we added to the 
taxonomy a further level of analysis based on a managerial perspective, which 
could help researchers and practitioners to define more appropriate business 
models in future projects.  For this purpose, for each SCP, we analyzed the value 
proposition and the business model. The aim is to highlight the needs, gains, and 
pains of the main stakeholders involved and the components needed to make the 
project work, including the costs and revenues structures.  

This further analysis represents a value-added for future real case studies and 
research projects. Considering these results, government and project initiators 
should be able to dene more appropriate business models and policies for Smart 
Cities applications, anticipating the stakeholders' requirements in the early stage 
of the project, with benefits regarding the success of the projects and financial 
sustainability in the long run. 
Taxonomy 

The taxonomy (Figure 2.1) is composed of three different axes, representing 
the three main criteria used to classify the various aspects of the SCPs. They are 
Description, Business Model, and Purpose. In the following subsection, we briefly 
describe the taxonomy, while the interested reader could refer for a detailed 
discussion of each axis and category to the original work of [23]. 
Description. It provides an overview of the project and its context, with particular 
regard to its categories, to the objectives faced and the industry (Objectives), the 
tools and the technologies adopted (Key Enabling Technologies), the nature of the 
project initiator (Project initiator), and the key actors involved in an SCP 
(Stakeholders). 
Business model. The increasing Smart City interest leads to the need for 
redefining new business models and governance mechanisms. Thus, this axis 
addresses the aspects related to project management and the business and 
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governance models. It investigates the nature of the project manager 
(Management) and the providers of infrastructures, equipment, and financial 
resources (Infrastructure financing and Financial Resources). In particular, an 
essential building block of a Business Model is those concerning the key 
resources [35]. In SCPs, they are mainly represented by physical assets as 
infrastructures, equipment, vehicles, and devices or by financial resources 
essential for the project realization. Private entities, public or mixed, can provide 
these resources. According to the World Economic Forum [36], the private sector 
has a pivotal role, supporting the planning of the needed infrastructure and 
helping to address capacity issues across state governments and urban local bodies. 
Purpose. This axis classifies the SCPs according to their final goal. It identifies 
the user that will adopt and benefit from the solution developed by the project 
(Client), the type of product (Product), and the geographical target (Geographical 
target). 

Figure 2.1 Taxonomy 

2.3.3 Trends of the transportation industry in SCPs 
This section presents the results obtained from applying the taxonomy to the 

sample of SCPs in different continents.  
Concerning the Description axis, the results represented in Table 2.1 highlight 

that transportation is one of the most frequent objectives in SCPs, particularly in 
the United States (60%), Europe (52%), Asia (75%), and Brazil (60%). Moreover, 
usually, transportation is combined with building, energy, and reduction of CO2 
emissions objectives due to the high correlation of these sectors and mutual 
benefits. These results are more significant in Europe and Asia. They relate to the 
encouragement of the European Commission to zero-emission transport with the 
Horizon 2020 program and the increasing attention of Asian countries on the City 
Logistics topic.  
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Table 2.1 Different objectives of smart city projects for each country* 

 
 *The sum of the percentages of the objectives category is more than 100% due to the great relevance of the 
multi-objective projects. 

Due to the strict correlation between these industries, the SCPs that deal with 
the transportation objective commonly involve critical enabling technologies 
(Figure 2.2) as ICTs, new technologies (e.g., RFID and GIS), smart grids, and 
innovative sensors. The results highlight the higher propensity of European, Asian, 
and Canadian countries to adopt innovative technologies than the USA, where 
Cloud Computing and database tools are the most present in projects focused on 
logistics, transportation, and mobility of passengers and freight. This finding 
reflects the increasing diffusion of the IoT paradigm for Smart Mobility and City 
Logistics issues. In fact, according to Zanella et al. [27], urban IoTs are designed 
to support the smart city vision, which aims at exploiting the most advanced 
communication technologies to help added-value services for the administration 
of the city and the citizens. For example, the Smart Columbus initiative in districts 
in the Columbus Region adopts the ITS to deploy a Driver Assistive Truck 
Platooning System. It is based on wireless technology to ensure the efficient and 
safe movement of logistics-related vehicles.  

Objectives USA Canada Europe Australia Asia Brazil 

Transportation 60% 44% 52% 46% 175% 60% 

City Logistics 8% - 24% 8% 4% - 

Energy 44% 45% 68% 50% 65% 95% 

Buildings 20% 24% 56% 27% 48% 25% 

CO2 Emissions 52% 33% 68% 46% 44% 100% 

Water 24% 22% 8% 23% 39% 5% 

Security 40% 33% 12% 12% 63% 20% 

E-Governance 24% 25% 24% 15% 48% 35% 

Social Innovation 40% 47% 32% 58% 63% 25% 

Multi-Objectives 72% 69% 92% 69% 92% 100% 
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Figure 2.2 Key enabling technologies to deal with transportation in Smart Cities 

The Grow Smarter initiative aims to guarantee a sustainable last-mile delivery 
of goods in dense urban areas in Barcelona. The proposed solution consists of 
installing an urban consolidation center for the micro delivery of goods, from 
which the last-mile operators perform deliveries using electric tricycles. These 
vehicles are equipped with IoT sensors to monitor environmental information (e.g., 
temperature, air pollutants, and humidity) and link them to their position through 
GPS technology.  

Moreover, many city managers are adopting innovative transport solutions 
within the framework of the City Logistics to meet the biggest challenges that 
smart cities are facing today (e.g., traffic and congestion). An example is the 
URBeLOG project co-funded by the Italian Ministry of Education, Universities, 
and Research under “Smart Cities and Communities and Social Innovation” [37]. 
This initiative aims to develop an innovative open, dynamic and cooperative 
telematics platform combined with the adoption of infrastructure City Logistics 
measures as the mobile depot, providing services and applications for the last mile 
logistics in urban areas. Moreover, URBeLOG integrates main functions allowing 
the development of processes, services, and applications for City Logistics of the 
future (e.g., possibility to book loading/unloading zones, road pricing, and traffic 
restrictions). 

On the other hand, the governments aware of the need for more efficiency and 
effective management of cities, due to the rapid urbanization, started to foster 
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investment in ICT tools to improve the infrastructures and overcome socio-
economic problems. In the majority of the projects, the ICT infrastructure is 
coupled with Operations Management and Operations Research tools to optimize 
the operations. Fewer projects are using such methods to incorporate user 
behaviors and integrate the business models. This trend confirms a more general 
trend in Operations Management, relegating the Operations Research methods to 
the operational and, sometimes, the tactical level and somehow losing the grip 
with the managerial and business model and development phases. 

Moreover, smart cities initiatives lead promoters to adopt measures to improve 
transportation and mobility within urban and metropolitan areas attributed to 
social sustainability. These initiatives usually combine objectives as 
Transportation and Security, aiming to improve urban road safety.  

Concerning the link between Smart City and City Logistics, Table 2.2 
summarizes some SCPs with a strong emphasis on urban freight transport and 
logistics, highlighting the City Logistics measure adopted, according to the 
categories presented in the literature [37]. However, to our vision and as emerged 
in Table 2.1, SCPs are still too focused on people mobility, disregarding the 
potential for efficient and sustainable urban freight transportation in making cities 
smarter. 
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Table 2.2 Details of Smart City initiatives dealing with City Logistics 

Project/Initiative Location City Logistics measure Details
Loading zones and off-street loading

facilities for freight
Multimodal urban arterial road

Infrastructure Consolidation center

Regulation, Technology Management of smart parking and
loading zones by “Park Adelaide”App

Ningbo Asia Technology Cloud Logistics and IoT
Multimodal trip planning tool

Connected vehicles
Truck platooning through Intelligent

Transport Systems
Smart hub

Connected vehicle freight applications
Intermodal terminal reservation systems

Sensors
Technology, Electric vehicles

New business models Last-mile cargo bikes
Real time monitoring software and

hardware systems

Technology, Hybrid and Electric vehicles equipped
with on-board units

Infrastructure
Online platform for logistics

management of last mile and booking
loading/unloading zones

IoT sensors
Mobile depot

Technology, Electric vehicles
Infrastructure, New

business models
Last-mile cargo bikes

Hybrid Urban Consolidation Center
GPS based monitoring system

Sharing Cities London-
Milan-Lisbon

Europe Technology Implement Electric vehicles in City
Logistics

REMOURBAN Europe Technology Electric vehicles
Electric vehicles

Smart traffic management and
sustainable delivery systems

Micro distribution of freight with the use
of sensors

STRAIGHT SOL Europe

Growth Smarter Europe Technology

URBeLOG Europe

Gold Coast City
Transport Strategy
2031

Australia Infrastructure

Adelaide Smart Move Australia

Smart Columbus USA Technology,
Infrastructure

Beyond Traffic: The
Smart City Challenge
Kansas City

USA Technology

Triangulum Europe
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We looked at the managerial aspects representing our approach's novelty 
regarding the categories Project Initiator, Stakeholders, Management, 
Infrastructure Financing, Financial Resources, and Client. It emerges a massive 
public sector engagement in the SCPs focused on the transportation industry due 
to the enormous investment required by the infrastructures and the solutions for 
freight transport and intelligent mobility. For example, according to Li et al. [38], 
the rapid development of smart cities, particularly in China, is primarily attributed 
to the cooperation between IT companies and the government. This aspect 
highlights a general policy of the Chinese government to accelerate high-tech and 
strategic startups by putting them in SCPs with more significant funds. Besides, 
North America is more shaped by pro-business influences. The private sector 
assumes a valuable function as project initiator, provider of financial resources, 
and client, compared to the other countries as Europe that historically has been 
more welfare-oriented. 

Some success factors, including the partnerships and business model, are also 
investigated. The current trends of partnership, infrastructure financing, and 
financial resources for SCPs are mixed, combining the advantages for both private 
companies and public institutions. Figure 2.3 shows the partnership in SCPs is 
hybrid for all the countries. The infrastructure financing and financial resources 
have the same results. According to Chen et al. [39], cities can benefit from 
intelligent mobility investments by involving all the public and private actors 
collaboratively and transparently.  
 

 
Figure 2.3 Business model and geographical target in SCPs 
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Another interesting outcome is that the geographical target of SCPs mainly 
focuses on the urban area, except for Europe and Brazil. It can be explained by the 
emerging need for demand-driven related ICT solutions, such as the car and bike-
sharing system, on-demand delivery, and parking schedule. While considering 
Europe and Brazil, the more targets focus on the layer of international cooperation. 

The efficiency of City Logistics is strongly affected by conflicting personal 
preferences and multi-attribute decision-makers. From the perspective of 
stakeholders, this paper analyses the perceptions of five different stakeholders, 
including City, Citizens, Administration, SMEs, and Universities, for all 
investigated countries. According to Table 2.3, the central stakeholders for all 
countries are City, Citizens, Administration, and SMEs. Almost all the 
perceptions are larger than 70%, with some 100% perceptions.  On the contrary, 
University is less involved actors for four countries, with only 40% for the USA, 
33% for Canada, and 27% for Australia and Asia. This result can be explained by 
the different intentions of local universities and the different levels of cooperation 
between government and universities. All stakeholders play the primary role of 
the SCPs for Europe and Brazi since all the perceptions are larger than 80%. Note 
that these two counties also pay more attention to international cooperation, 
according to Figure 2.3. In particular, Citizens is one of the most significant 
stakeholders since all the perceptions are larger than 87%. Considering that 
transportation is the most frequent objective in SCPs, efficient urban mobility 
requires improving citizens' participation. 

 
Table 2.3 Different Stakeholders of smart city projects for different countries 

Stakeholders USA Canada Europe Australia Asia Brazil
City 76% 95% 80% 100% 100% 100%
Citizens 100% 87% 96% 100% 100% 100%

Administration 80% 76% 80% 62% 98% 100%

SMEs 88% 80% 100% 73% 83% 100%

Universities 40% 33% 88% 27% 27% 85%  
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Chapter 3 

A managerial analysis of urban 
parcel delivery 

Urban freight transportation and parcel delivery have been subjected to 
significant paradigm shifts in recent years caused by the urbanization and 
development of megacities. Urbanization and globalization increase freight flow 
dramatically, with a considerable impact and challenge on the supply chain. 
Freight movements contribute significantly to congestion and environmental 
issues in the urban area. Recent phenomena as the on-demand economy, e-
commerce, and advanced digital technologies, enlarge the framework of city 
logistics. Customers request more flexible and fast deliveries such as same day 
and even within 2 hours delivery. It is thus crucial to develop innovative strategies 
to build a more efficient, cost-effective, and sustainable city logistics system. 

Besides, the increasing attention on the environmental impact of urban freight 
transportation (e.g., congestion, noise, climate change, and air pollution) 
stimulates the application of non-motorized transport tools to move people and 
goods (e.g., bikes and cargo bikes), new delivery options (e.g., lockers) and 
collaborative business models [40, 41]. However, integrating different delivery 
options is not straightforward, owing to the interactions and conflicts among 
actors, their business models, and the technologies themselves [42, 43]. 

To cope with the different issues of such a complex system, City Logistics 
develops many initiatives and proposals to optimize the traffic flow and jointly 
address the economic, operative, social, and environmental sustainability of 
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transportation and logistics. Furthermore, it mitigates the inefficiencies and 
externalities, which are more evident in the last-mile segment of the supply chain 
[23]. However, despite the rich literature and state-of-the-art City Logistics, not 
all solutions and proposals are successfully implemented. 

⚫ They lack support and commitment from the different stakeholders (with 
diverse expertise) in the urban areas, missing a managerial perspective in 
designing sustainable policies appropriate for freight transportation and 
logistics.  

⚫ The implementation and proposal focus too much on the technical 
aspects as platforms, or optimization tools, missing a global vision and 
ignoring the coordination of different actors and their interactions.  

To the best of our knowledge, a holistic vision of such a complex and hyper-
connected system that integrates actors’ behavior analysis, economic and 

managerial considerations into simulation and optimization tools has little 
attention in the literature. The study by [40, 44] are the first attempt to overcome 
this lack. The authors in [44] developed a last-mile typology and an instrument to 
simulate the total last-mile costs. 

In this work, we integrate green transportation modes with traditional systems 
in business models, cost and revenue structures, and policies. First, we identify the 
different players in the transportation and parcel delivery system. Then, we 
consider several combinations of traditional vehicles (e.g., trucks and vans) and 
green carriers (e.g., electric or hybrid vehicles, bikes, and cargo bikes), 
investigating their business models and behaviors from a managerial perspective. 
Finally, a Lean Business methodology named GUEST is used to understand the 
context and gather information and data for solving the optimization problem. 

This chapter is organized as follows. Section 3.1 introduces the 
multidisciplinary methodology in this study. Section 3.2 describes details of the 
managerial analysis of the urban parcel delivery and presents the business models 
of the actors. These actors’ operational models are discussed in Section 3.3 

regarding the times, distances, and costs (both operating and environmental) 
associated with different types of vehicles. Finally, in Section 3.4, we introduce 
our Monte Carlo-based simulation-optimization framework. 
3.1 Methodology 

The GUEST methodology is a Lean Business approach inspired by [45] and 
other lean startup applications, adapted for multi-actor complex systems (MACSs), 
such as city logistics [46, 47]. It is applied to analyze the actors’ and stakeholders’ 
needs from the early phases of the solution design to the different stages of the 
development and implementation. The development can thus be guided to meet 
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stakeholders' needs from both the business model and operational aspects. The 
results provide a higher commitment from the different actors and market 
acceptance of the outputs, which can guide the creation of the new collaborative 
business models, mitigating the problems in current City Logistics measures. The 
fundamental five steps of the GUEST methodology are the following: 

• Go. We first investigate the stakeholders in City Logistics, particularly the 
last mile segment application, analyzing their current behavior and internal and 
external forces that interact with them and affect their businesses. We mainly 
focus on an international courier delivery service operating in Italy, particularly in 
Europe, in general. The purpose is to gather information and obtain a complete 
description of the stakeholders’ profiles, including their needs and cost structures. 

• Uniform. The knowledge of the system must be assessed in a standard way 
to obtain a shared vision of the MACS. In this phase, we apply the Business 
Model Canvas to describe the governance and business models [45]. It is a 
graphical tool used to understand how the proposed solutions enable the creation 
of value for the involved stakeholders. It can simply and holistically present how 
integrating traditional transportation modes, and green delivery options can fulfill 
different operators' needs and benefit their gain. Besides, a SWOT analysis is used 
to identify the opportunities and threats of this integration.  

•  Evaluate. We propose a deep analysis and comparison to identify the key 
factors linking the business and operational models. Moreover, we explicitly 
describe the entire structure of the costs and revenues for each transportation 
option. Finally, the main variables that affect last-mile logistics in urban areas 
(e.g., travel distance and delivery time) are used to conduct a performance 
analysis of the traditional and green delivery options, supporting the integration of 
business and operational models.  

 • Solve. A simulation-optimization approach is conducted to obtain a 
comprehensive vision of the overall complex system based on the managerial 
analyses undertaken in the previous phases.  

 •  Test. The results of the Monte Carlo simulation are analyzed and discussed 
to deduce mixed-fleet policies. 

As highlighted by the authors in [40, 48], many benchmark instances for 
testing city logistics solitons do not come from actual or realistic settings. Still, 
they are generated based on the classical instances or artificial data, making 
difficulties and inaccuracy of assessing new models. In this work, we use three 
streams of realistic data concerning the business models, the cost structures, and 
the operations of all the stakeholders. These data are obtained from a major 
international parcel delivery company operating on all continents and involved in 
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the URBan Electronic LOGistics (URBeLOG) project and the stakeholders 
involved in the Synchro-NET H2020 project [47, 49, 50]. In addition, the 
information and data concerning the business models and cost structures are 
collected from interviews with the Chief Executive Officer (CEO), Chief 
Operating Officer (COO), and the company's marketing directors. 

 
3.2 Managerial analysis of the urban parcel delivery 

Multiple actors with conflicting goals and objectives are involved in the city 
logistics and parcel delivery system. We list the five main actors as follow: 

• International courier. The company operates the delivery services at 
international and national levels, particularly the long-haul shipments. 

• Traditional subcontractor. Once the freights arrive at the urban distribution 
centers from the long-haul shipments, the traditional subcontractor operates their 
deliveries service in the last-mile segment. It is usually a small or medium-sized 
company, generally organized as a legal form of cooperatives with limited 
financial and fleet capacity. 

• Green subcontractor. It is a small firm with a business model similar to the 
traditional subcontractor. However, a vital component of its value proposition 
relies on the low environmental impact of the delivery activity, taking advantage 
of adopting green vehicles. 

• Customer. This category refers to the final receiver of parcel delivery 
services. There are different customer segments: business-to-business (B2B), 
business-to-consumer (B2C), consumer-to-business (C2B), consumer-to-
consumer (C2C), and intra-business. 

• Authority. It represents the local public administration designing policies for 
freight transportation in urban areas. It mitigates the negative externalities in 
transportation activities and the related social costs. 

This section presents the analysis of the leading industry-driven operators, 
analyzing their business profiles and interactions. In particular, we use a business 
development approach based on the Business Model Canvas, which has not 
received relevant interest in the literature.  
3.2.1 Business model of international couriers 

Figure 3.1 depicts the Business Model Canvas of the international courier. Its 
main customers are listed in the following segments, each with different behaviors 
and goals. The B2B segment consists of firms that employ couriers to deliver 
products in their logistic chain towards other companies. It includes e-commerce, 
involving freights flows between e-retailers and producers. The B2C segment 
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consists of companies that sell products directly to customers, bypassing supply 
chains, such as e-stores and online platforms. 

On the contrary, the C2B segment represents returning goods in reverse 
logistics for different reasons, including waste collection, products recycling, 
customer rejections, or requests mismatches. The delivery services provided for 
personal needs between individuals who require to send goods or documents are 
parts of the C2C segment. Finally, intra-business companies employ couriers to 
move products among their different plants and warehouses. The international 
courier provides time-sensitive transportation services as one of its value 
propositions, pushed by the strict and short time windows. They also consider the 
flexibility and reliability of the delivery to deal with the increasing customer 
requests in the on-demand economy. Another value proposition component is a 
superior customer experience, taking advantage of shipment efficiency, speed, 
reliability, and security. Besides, consumers benefit from customized delivery 
services for different products (e.g., fragile or perishable products) in last-mile 
delivery. The international courier provides two types of value (i.e., cost 
optimization service and sales market extension) to small and medium-sized 
business customers. 

On the one hand, express deliveries allow firms to reduce the inventory level 
in a Just-In-Time orientation and optimize production processes and costs. On the 
other hand, the sales market extension is strictly related to the customer strategy. 
Value propositions are delivered to customers through different channels (e.g., 
direct and indirect channels). Website and mobile applications are used as the first 
contact points with customers, raising the awareness of services and helping them 
understand the added values. Physical structures, such as retail stores and 
shopping malls, provide physical contact and interaction for customers. As one of 
the marketing strategies, brand identity is related to another type of channel. 
International carriers show their brand through personalized vehicles or digital 
advertising to increase public notice. The indirect channels are mainly available 
on partner-owned websites in e-commerce. The availability of websites, help 
desks, and call centers is used to foster customer relationships. These services 
provide customers with support and assistance in any phase of the delivery 
process, offering a high level of customer experience and increasing customer 
stickiness. As highlighted in the value chain analysis conducted by LUISS 
Business School and Associazione Italiana Corrieri Aerei Internazionali (AICAI) 
[51], the main activities that represent the core business of the international 
couriers are operations management and customer care. Operations management 
involves normal activities including route planning, intermodal transportation, 
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pickups, and deliveries, checking the overall process) while customer care 
consists of customer relationship management related to every step in the delivery 
process: pre- and after-sales support, tracking and tracing of parcels, proof of 
delivery. To maintain its business model, the international courier creates 
partnerships and alliances with high strategic value. The key partners, such as 
suppliers, subcontractors for outsourcing activities in the last mile, cargo operators 
and handling agents, logistics, and commercial joint ventures, are all considered to 
make the business more efficient and develop new models. Finally, other 
partnerships are generated with local administrations to fulfill government 
regulations and ensure the sustainability of parcel delivery in urban areas (e.g., the 
URBeLOG project [50]). The international courier pays for critical resources to 
support the business model. These resources include materials (e.g., fuel costs, 
packages, consumables, etc.), staff costs, inventory costs, handling fees, 
acquisition and maintenance of vehicles, equipment, ICT systems and facilities, 
operation costs, and subcontractor fees in outsourcing parts. Other costs include 
marketing and advertising expenditure and those related to risk management. 

 

 
Figure 3.1 Business Model Canvas of an international courier 

 
3.2.2 Business model of traditional subcontractors 

As described previously, international couriers outsource delivery services in 
the last-mile segment of the supply chain to subcontractor couriers (see Figure 3.2 
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for the BMC), increasing operational efficiency and customer stickiness. 
Outsourcing offers value for customers by several benefits in terms of cheap, fast, 
and flexible delivery. It takes advantage of good management of activities in 
urban areas concerning peak demand and temporal constraints forced by time-
sensitive deliveries (e.g., prime customers, disaster relief [52]). The traditional 
subcontractor reaches their customers through commercial agreements and tenders. 
The relationship between subcontractors and customers is thus established and 
maintained by a constant negotiation and information exchange along with all 
delivery activities (e.g., tracking services and feedback), ensuring the co-creation 
of value for the final user. The coordination with international courier customers 
plays a key role, fundamental for the success of multimodality and the well-
functioning of the on-demand logistics, with the consecutive satisfaction of final 
users. Other critical activities for the traditional subcontractors are the optimal 
management of delivery services and the scheduling of dispatchers to achieve 
high efficiency and reliability. It is coping with the challenges such as timeline 
constraints, the risk of delivery failure (approximately 12% of all deliveries) [53], 
and the last-mile split delivery problem [54]. 

 

 
Figure 3.2 Business Model Canvas of a traditional subcontractor 
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3.2.3 Business model of green subcontractor 
The increasing attention on environmental issues forces the logistics 

companies to develop innovative business models that guarantee the sustainability 
and efficiency of urban transportation, particularly the last-mile parcel deliveries. 
These companies apply business models similar to traditional subcontractors 
while considering their activities' environmental issues, often using bikes and 
cargo bikes as the green delivery options. Figure 3.3 depicts the BMC related to 
the green subcontractor. The international courier is the primary customer 
segment of the green subcontractor that outsources the last-mile operations and 
includes the B2B and B2C components for intercity and intracity postal services. 
The green subcontractors provide the value proposition by cycle-logistics services 
capable of overcoming the difficulties and complexities of parcel deliveries in 
urban areas. Indeed, there are different City Logistics regulation measures, 
including mobility restrictions (e.g., low traffic zones (LTZ) and low emission 
areas), inadequate or insufficient infrastructure (e.g., unavailability of 
loading/unloading zones). In addition, cycle logistics provide customers with 
different gain creators and pain relievers, such as speed, punctuality, and flexible 
service. 

The better operation of bikes in city traffic and the integration between 
traditional vans and bikes decrease the operation cost reductions (e.g., fuel, 
insurance, parking fine, etc.) and maintain high service quality. The size of parcels 
delivered by green subcontractors is reduced dramatically into small-sized 
packages, between 0 to 3 kg, or up to 6 kg. Finally, the last value proposition for 
customer segments is offered by the green image and credentials needed to 
generate a sustainable supply chain. Green subcontractors use websites as the first 
channel to reach their customers. Information and advertising can be put on 
websites to increase awareness and knowledge of their services. Other channels 
(e.g., media and interviews in magazines) are used to specialize in transportation 
and environmental issues. Traditional and green subcontractors establish and 
maintain relationships with customer segments by constant information exchange 
among delivery activities such as tracking services, feedback, and information 
about CO2 savings. The main revenue stream for green subcontractors is the 
income they earn from customers for the last-mile parcel delivery services sale 
and cycle logistics, revenue from CO2 savings and the carbon credit trading, and 
fees and royalties from affiliates. Physical assets (i.e., bikes and cargo bikes, 
warehouses) and human resources (i.e., bikers) are the critical resources used to 
ensure the operation of the business model. In this model, the performance of 
bikers, external factors (e.g., weather condition, fatigue, and workload scheduling) 
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can significantly influence the service quality and functioning. Other critical 
resources contain intangible assets, including partnerships that can reduce the 
repeatability of the model by competitors, the ICT tools and software applied to 
optimize operations management [55]. 

 

 
Figure 3.3 Business Model Canvas of a green subcontractor 

 
From the analysis of BMCs, all operators provide their customer segments 

with a value proposition consisting of time-sensitive transportation services and 
express delivery. However, the inherent dynamic factors in transportation and 
parcel delivery services affect the performance of this complex system. Indeed, 
the major international couriers in the industry do not operate the entire process, 
while they outsource the deliveries in the last-mile segment to traditional and 
green subcontractors. This process enables better operational performance and 
economic efficiency, mitigating the issues caused by the diffusion of 
subcontracting and the partial autonomy of fleet managers, leading to customer 
proximity. 

The SWOT analysis (Figure 3.4 and Figure 3.5) and the Business Model 
Canvas demonstrate that, for traditional subcontractors, the main weaknesses and 
threats are their influence on the environment and the critical issues affecting 
European regions, including traffic and congestion, LTZ, and the unavailability of 
loading and unloading zones. These factors compromise the management of 
deliveries, such as adverse conditions for couriers with traditional vehicles. On the 
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contrary, green subcontractors have strengths on these same points, as they apply 
low-emission vehicles (e.g., bikes) with a low environmental impact in last-mile 
parcel deliveries. Green subcontractors are thus able to earn additional income 
from CO2 savings and carbon credit trading, as highlighted in the revenue streams 
block of the BMCs (Figure 3.3). However, the capacity limitation of bikes is one 
of the main drawbacks in the operational model of green subcontractors. This 
limitation is partially overcome using next-generation cargo bikes, which have a 
maximum payload of around 100–150 kg per bike, based on the estimation in 
Europe by [56]. The SWOT analysis highlights a threat related to the competition 
between traditional and green subcontractors. The strategy of the international 
courier can also affect the competition, as they can guide subcontractors using a 
financial lever. The pure cost competition between traditional and green 
subcontractors in the same geographical area originates a price war, which 
decreases their profitability or differentiation in terms of service quality for the 
final customer. 

Moreover, as highlighted in [42], a similar situation might happen when a fleet 
is owned internally by an international courier. Besides, the partial organizational 
independence of local depot fleet managers and their strategic objectives in cost 
reductions might have similar effects to those of a price war between traditional 
and green subcontractors. From the analysis of the financial structure of each 
business model, the costs related to the vehicles and the social costs associated 
with the negative externalities have considerable relevance. To further analyze the 
relevance, we investigate these costs through quantitative research in Section 3.3. 
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Figure 3.4 SWOT analysis for the traditional subcontractor 

 
Figure 3.5 SWOT analysis for the green subcontractor 
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3.3 Operational model analysis in parcel delivery 
      As shown in the previous analysis of BMCs, combining traditional and green 
subcontractors might have benefits in terms of efficient last-mile delivery. In the 
meantime, it may cause a price war, decreasing the service quality. It is thus 
critical to further understand the cost and performance structure of the system. We 
mainly focus on operating cost and environmental costs as follow. 
3.3.1 Operating costs analysis 

We consider four types of vehicles: gasoline-fueled, diesel-fueled and electric 
vans, and cargo bikes reflecting the transition occurring in the industry and the 
standard vehicles composing the fleets of the large portion of delivery couriers. In 
addition, we consider the electric vehicle e-NV200 adopted in the partnership 
between Nissan Motor Co. Ltd. and DHL Express within the “GoGreen" program 

[57]. We estimate the operating and environmental costs for each class of vehicles 
as well as the different environmental and economic impacts, including 
investment, fleet management, and maintenance requirements, emissions. The 
Operating Costs per Kilometer (OCK) related to each type of vehicle are 
estimated and compared to identify the most cost-efficient, considering the 
operative performance. According to [58], the OCK includes both variable costs 
(e.g., gasoline) and the total cost of ownership, which are expressed in Euro per 
kilometers traveled in the last-mile segment [e/km]. This cost is composed of 
variable costs and fixed costs. The latter is not proportional to the distance, and 
the courier incurs regardless of the vehicle’s usage degree. The OCK function is: 

𝑂𝐶𝐾 =
𝐹𝐶 + 𝑉𝐶

𝑇𝐾
=

(𝑣 + 𝑡𝑥 + 𝑖 + 𝑝) + (𝑓 + 𝑡 + 𝑚𝑟)

𝑇𝐾
 

Where, 𝐹𝐶, 𝑉𝐶, and 𝑇𝐾 represent the total annual fixed costs, variable costs, and 
traveled kilometers, respectively. The entity of each item has been estimated 
through primary data from market research on the commercial practices applied 
by the different stakeholders. Besides, it has been supported by formulating 
specific assumptions on the use conditions of the vehicles benchmark. These 
items and assumptions are listed in Table 3.1: 
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Table 3.1 Item description and estimated values 

Item description Estimated Values
Total annual traveled kilometers 25000 km\year

Total annual hours to reach customer destination
and to do delivery operations

2000 hour\year

Commercial speed of vehicles in urban areas 35 km\h

Completed deliveries of each driver 80 deliveries per day

Average time of all operations including parking of the
vehicle and collecting the proof of delivery

4.5 min\delivery

Each component of cost has charged in refers to the
technical life cycle of the vehicle

5 years
 

 
The components of fixed and variable costs are briefly presented as follows. 
 • Purchase cost of the vehicle (𝑣). It is estimated based on the realization by 

the fleet manager section of several car dealers. It is referred to as a leasing 
agreement of 5 years, considering both the interest and principal payments on the 
loans. The company operating for transportation and parcel delivery activities will 
manage the asset’s depreciation and amortization schedule during this time 
horizon. A straight-line depreciation method is used to represent the simplest and 
most applied depreciation method in the market. We refer to the term as the so-
called “useful life” based on the number of years the vehicle is expected to be a 
valuable asset for the logistics company. In our case, we adopt a life cycle of 5 
years for both vehicles and batteries. 

• Vehicle taxes (𝑡𝑥). It considers the vehicles' expenditures and taxes based on 
the current regulations (i.e., the ownership tax). 

 • Insurance (𝑖). It is the total cost of the truck liability insurance accounting 
for the vehicle capacity and the third-party cargo insurance, excluding the theft 
and fire insurances. Several insurance companies offer the average value of the 
prices, according to secondary research.  

• Personnel costs (𝑝). It is the total salary payable to a driver, including taxes 
and employees’ social security contributions, based on the National Collective 
Labour Agreement prescribed for the category to which they belong. 

• Fuel (𝑓). The total cost contains both fuel supply (fossil and diesel) and 
power supply. Their values are estimated by the consumption derived from the 
technical specifications offered by the manufacturer. The average monthly 
domestic prices are used to measure the cost of petrol and diesel fuel, according to 
the statistical data elaborated by the Italian Ministry of Economic Development 
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for 2018. Besides, the electricity price is calculated as an average cost from the 
fees charged to the business customers by major energy industry suppliers. 

• Tire costs (𝑡). They are based on the list prices charged by the leading 
manufacturers, considering a 15% discount by a corrective factor to purchase high 
quantities for the whole fleet. In addition, the average usage is about 50000 
km/year (data estimated and given by fleet managers). 
        • Maintenance and repair costs (𝒎𝒓). They are estimated based on data from 
the Automobile Club Italia (ACI) [59] and related to the expenditures for the 
activities needed to keep the vehicle's performance during its life cycle. These 
activities are grouped in time or condition-based maintenance to prevent adverse 
events and maintain the standard use conditions. Otherwise, it is considered as 
breakdown maintenance or repair after a failure occurrence. 

Tables 3.2-3.4 show the different cost items for the fossil-fueled, diesel-fueled, 
and electric vehicles.  
 

Table 3.2 Operating Costs per Kilometre related to the fossil-fuelled vehicle 
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Table 3.3 Operating Costs per Kilometre related to the diesel-fuelled vehicle 

 
 
 

Table 3.4 Operating Costs per Kilometer related to the electric vehicle 
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3.3.2 Environmental costs analysis 
The carbon footprint is defined as the total amount of greenhouses gas emitted 

directly or indirectly by an activity, a product, a company, or an individual, 
according to the technical specification ISO/TS 14067:2013 “Greenhouse gases – 
Carbon footprint of product - Requirements and guidelines for quantification and 
communication.” We thus calculate the emissions for the last-mile delivery 
process that is in line with the technical specification. We consider the emissions 
derived directly from fuel combustion, the indirect emissions generated by the 
production process of fossil fuel, and the consumption of energy related to the 
charging of batteries. As our study focuses on the last-mile segment, we ignore 
the emissions generated from long-haul transportation and vehicles' production 
and disposal process. We also consider other pollutants originated by the 
transportation process, such as nitrogen oxides (𝑁𝑂𝑥) which are transferred into 
CO2, using a relevant factor of 4.7 kg per liter of fuel consumed [60]. To 
investigate how the cost efficiency of the courier is affected by environmental 
impacts, we denote the carbon footprint in economic terms by using the Pigouvian 
tax, known as the carbon tax, according to the price paid for CO2 emissions in the 
atmosphere (see Table 3.5). This price mechanism aims to reduce emissions by 
making it cost-effective to switch to innovative technologies, mitigating non-
green behaviors and environmental impacts. We conduct a scenario analysis 
imposing different values of the carbon tax, according to the tariffs adopted in 

some countries (e.g., 17 €
𝑡

 in France[61] and 150 €
𝑡

 in Sweden[62]). 
 

Table 3.5 Cost analysis results 

 
 

As presented in BMCs, all operators have to pay for using vehicles, including 
the operational and social costs. The traditional subcontractors using fossil-fuel 
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vehicles incur a higher price than the green subcontractors. Electric vehicles 
achieve better cost savings due to the lower insurance tariff and the exemption 
from the ownership tax payment. However, few electric vehicles are also applied 
in the market because of the high running costs concerning the total purchase cost. 
On the other hand, bike couriers permit an economic efficiency derived from 
lower vehicle management costs and lower personnel costs related to riders' skills. 
Besides, the green subcontract benefits from the additional revenue earned from 
CO2 savings and carbon credit trading. Compared with traditional vehicles (petrol 
and diesel), assuming that carbon credit prices are 30% lower than the carbon tax 
tariffs, applying bike subcontractors may earn average revenue of about 0.02€ 
per stop [42]. This estimate assumes greater relevance when we consider the high 
volumes of parcels delivered in urban areas. 
3.4 Simulation 

The findings obtained in the costs analysis are used as input in a decision-
support system proposed for developing and managing mixed-fleet policies in a 
specified urban area. The overall system contains several modules, including the 
simulation-optimization approach integrating a Monte Carlo simulation, a last-
mile optimization meta-heuristic, and data aggregation and analytic module. We 
use I1, I2, and I3 in the computational experiments, ranging from 1000 to 4000 
parcels. These instances are originated from accurate analytics collected during 
three weeks at the end of 2014 by a medium-sized courier. As shown in Table 3.6, 
this data set contains three types of parcels in terms of their composition, based on 
the classification by the European Commission. We thus assort packages as 
“mailer” (0–3 kg), “small parcels” (3–6 kg), and “large deliveries” (larger than 6 
kg). Mailers account for the most significant portion of the parcels, owing to the 
increasing impact of e-commerce. These parcels are easy to operate and move by 
the green subcontractors. Mailers are thus more profitable for both subcontractors, 
counting a significant part of their critical mass to make their business models 
sustainable. The large parcels account for almost 30% of all parcels, but their 
destinations are in semi-central or suburban areas, where the green courier cannot 
deliver. The courier operates from a central depot outside the city, while a 
secondary depot is located near the urban area for the cargo bikes. 

Table 3.6 Classes of parcels and delivery locations 

Parcel delivery features n. delivery %
In center  3395 22.51

Out of center  11688 77.49
0–3 kg  8577 56.87
3–6 kg  1915 12.7
> 6 kg  4590 30.43

Total deliveries 15083 100  
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To simulate the operational context, we define five operational scenarios 
combining the two geographical areas managed by the green subcontractors the 
three classes of parcels that each subcontractor can operate. The scenarios are 
listed as follows: 
• Scenario S_0. Only the traditional subcontractor operates in this area. 
• Scenario S_3_C. The green subcontractor manages the mailer parcels in the 
central area, while the traditional subcontractor delivers all remaining packages. 
• Scenario S_3_S. The green subcontractor delivers mailer parcels in both the 
central and semi-central areas. The traditional subcontractor delivers all remaining 
packages. 
• Scenario S_5_C. The green subcontractor delivers mailers and small parcels (up 
to 5 kg) in the central area. The traditional subcontractor delivers all remaining 
parcels. 
• Scenario S_5_S. The green subcontractor delivers mailers and small parcels (up 
to 5 kg) in central and semi-central areas. The traditional subcontractor delivers 
all remaining parcels.  
To evaluate the integration of traditional vehicles and green delivery options (i.e., 
cargo bikes) with low emission, we measured three key performance indicators 
(KPIs) as follows: 
Equivalent vehicle (Veh Eq). We compute the number of equivalent vehicles 
used by the subcontractors. To compare traditional and green subcontractors, we 
implement a conversion from bikes to vans. The conversion considers a full-time 
work shift of a traditional subcontractor, which, based on European regulations, is 
six-and-a-half hours. 
 • CO2 savings. We calculate the kilograms of CO2 not emitted in the scenarios 
with cargo bikes. 
• Number of parcels delivered (nD/h). To investigate to what extent the 
integration of cargo bikes influences the operative performance and the efficiency 
of the traditional courier, we calculate the number of parcels delivered per hour 
(nD/h), which is a common practice to define the efficiency of a courier. 

Table 3.7 shows the results of the experiments. Applying cargo bikes to 
deliver the mailers and small parcels decreases the total emissions of around 14 
tons per year, with an amount of CO2 savings larger than 40%. The value of CO2 
savings in each scenario is emissions reduction compared with the scenario S_0. 
Another valuable outcome is that the service area of cargo bikes plays a massive 
role in that result. Indeed, the scenarios in which the green subcontractors access 
the central and the semi-central regions (i.e., S_3_S and S_5_S) have higher CO2 
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savings than scenarios S_3_C and S_5_C. The reason is that the traditional 
subcontractors no longer serve these areas, reducing 25% travel distance of vans, 
with substantial benefits in emissions and costs. 

Moreover, outsourcing mailers and small parcels to one or more green 
subcontracts decrease the traditional subcontractor's operational efficiency and 
profitability. For instance, in scenarios S_5_C and S_5_S, the traditional 
subcontractor operates only large parcels, which generally require much time to 
handle and deliver. As a result, it reduces the needed vehicles (e.g., in Set I2, the 
value of VehEq decreases from 9.89 to less more than 3 or 4), increases the total 
service time, and reduces the number of deliveries fulfilled in a day. Furthermore, 
this number is diminished by the rapid saturation of van capacity (because of the 
large parcels) that imposes on the traditional subcontractors' frequent returns to 
the depots. Indeed, Table 3.7 highlights a decrease of up to 5 deliveries per hour 
transferring from scenario S_0 to the other scenarios applying bikes. This 
reduction is related to a loss of efficiency of about 15% when mailers are 
managed by cargo bikes. Besides, it is more than 30% when small parcels are 
outsourced.  

Moreover, given that the existing contractual schemes imply revenues based 
on the operational performance and penalties on the failed deliveries, the new 
contract should consider increasing the number of deliveries required for the 
cargo bikes to balance the loss of efficiency for the traditional subcontractor 
without reducing the service quality. Indeed, if the traditional subcontractor 
manages its fleet, it should outsource only the mailers in central and semi-central 
areas and small parcels downtown, avoiding a significant reduction of efficiency 
while improving the service quality for customers. In the case of an internal fleet, 
the green subcontractor must deliver all the demand of dispatched mailers and 
small parcels in the traffic and congestion areas. In the case of the external fleet, 
the traditional subcontract should internalize the green fleet or outsource mailers 
in central and semi-central regions. At the same time, the outsourcing of small 
parcels (3-5 kg) requires changing the contractual scheme, decreasing the margins 
of the green subcontractor.  
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Table 3.7 Results of Monte Carlo simulation 

 
Note that the green subcontractor has no value in S_0 since it is not included in this scenario. 
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Chapter 4 

On-demand parcel delivery in 
sharing economy 

4.1 Last mile logistics and crowdsourcing 
Last-mile logistics is the least efficient stage of the supply chain and 

comprises up to 28% of the total delivery cost [63]. The efficiency of last-mile 
logistics is influenced by customer density and time windows, congestion, 
fragmentation of deliveries, and shipment size [64]. Besides, last-mile logistics 
generate different externalities, especially greenhouse gas emissions, air pollution, 
noise, and congestion. Therefore, it is crucial to find efficient and innovative 
solutions to improve the last-mile logistics. As a result, new last-mile delivery 
solutions have emerged in the last decade. For example, Melo and Baptista [65] 
reported that integrating cargo bikes with traditional vans improves traffic 
performance. 

Moreover, the evolution of automation technology enables logistics firms to 
apply innovative business applications in last-mile logistics. In particular, 
automated goods delivery is forecasted to offer an appropriate solution for up to 
80 percent of all Business-to-Customers (B2C) deliveries [66]. Many leading 
companies, including DHL, SF Express, Google, and Amazon, use unmanned 
aerial vehicles (UAVs) in real-world applications [67]. The trend of developing 
innovative technology in last-mile logistics is unstoppable as it can potentially 
reduce operational costs and pollutions in the long term. However, it doesn’t 

indicate the innovative technologies will be applied as it has many difficulties for 
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real-world application. For example, UAVs have some drawbacks in the 
application of last mile delivery such as high capital investments, low-carrying 
capability, and flying range limitation and legislation restrictions in urban areas. It 
cannot perform the delivery in certain conditions. 

Consequently, some compromise solutions are currently widely considered 
and applied in the last mile delivery applications. One of these solutions is crowd 
shipping or known as crowdsourced delivery. The main idea behind crowdsourced 
delivery is to reorganize existing resources such as human resources, facilities, 
and other delivery capacities to complete the last leg of the distribution process. In 
particular, crowdsourcing or the so-called “Uberization of the last mile” is an 

emerging application for parcel delivery that outsources the parcels to crowd 
drivers [68, 69]. They are a group of local and non-professional drivers who are 
willing to temporarily work for delivery companies and provide their assets (e.g., 
the vehicle) to perform the parcel delivery [70]. A certain amount of money, 
named compensation, is rewarded after completing the pickup or delivery tasks 
[71]. 

Crowdsourced delivery has several definitions. One of them is:  
A goods delivery service that is outsourced to occasional carriers drawn from 

the public of private travelers and is coordinated by a technical platform to obtain 
benefits for the involved stakeholders [72].  

Kafle et al. [73] reported that they consider cyclists and pedestrians as 
crowdsources interested in transferring parcels with a truck carrier and 
undertaking jobs for the last-leg parcel delivery. Experiments show that replacing 
trucking with local crowdsources for the last leg reduces total operational cost 
compared to pure-truck delivery. In addition, Guo et al. [74] propose to build a 
hybrid city logistics system where crowdsourced delivery and the traditional 
delivery networks are closely integrated. Results show that applying 
crowdsourced delivery as a supplement to the conventional delivery network can 
reduce the last-mile logistic costs. Another idea is to use cargo bikes or electric 
bicycles to reduce distribution externalities and improve the performance of last-
mile delivery. These bicycles are ideal for inner-city transportation since they are 
emission-free, quiet, and less disturbing for the residents [75]. Nocerino et al. [76] 
analyze the performance of electric bicycles and electric scooters for goods 
delivery in city areas and test the use of these vehicles in 7 European countries 
with 39 companies. They demonstrate that light electric cars can replace 
traditional combustion engines, mitigating logistic impacts in city areas.  

The advantages of crowdsourcing are lower operation costs, higher flexibility, 
and lower emissions than traditional delivery options [72]. Indeed, it is a digital-



4-On-demand parcel delivery in sharing economy 

44 
 

driver business model with its asset (i.e., the crowd drivers bring their vehicles 
and provide for their maintenance). Paperless operations reduce overall costs and 
make the service attractive to online customers. Besides, in real-world parcel 
delivery applications, customer demand, locations, and other attributes are usually 
unknown beforehand or known only probabilistically. Therefore, the stochastic 
information on customers’ attributes becomes increasingly important, given its 

impact on the activities at the operational level. Addressing the dynamic or 
stochastic contexts in parcel delivery has potential benefits in increasing solution 
quality and reducing operating cost and travel distance [77, 78]. In this direction, 
we thus investigate the dynamic and stochastic features of parcel delivery, 
considering multiple delivery options and crowd drivers as sources of delivery 
capacity.  

The highlight of this work is following:  
⚫ We formulate a multi-stage stochastic model to capture the stochastic 

elements that arise in parcel delivery, namely the Dynamic and Stochastic 
Vehicle Routing Problem with Time Windows (DS-VRPTW). We thus 
address the uncertainty of some attributes and the possibility that some 
requests appear during the day, requiring adjustments in the delivery plan. 

⚫ We propose a simulation-optimization framework to solve the DS-
VRPTW. The simulation can create realistic instances from real data, 
guiding to simulate various policies and scenarios. We solve the DS-
VRPTW through a Large Neighborhood Search (LNS) metaheuristic 
integrating several solution improvement procedures because of its 
complexity and the large-size instances.  

⚫ As described before, we involve multiple and integrated transportation 
modes and delivery options, i.e., vans, cargo bikes, and crowd drivers. We 
also investigate the impact of varying customer demand. A case study in 
the medium-sized city of Turin (Italy) is conducted to analyze the 
potential influence of using multiple delivery options and crowd drivers in 
parcel delivery on operational cost, environmental cost, and delivery 
efficiency. The resulting managerial insights expressed in a set of policies 
are part of the outcomes of the Logistics and Mobility Plan 2019-2021 led 
by the Regional Council of Piedmont (ICELab@Polito, the general 
confederation of Italian industry Confindustria, Piedmont Region, and 
LINKS Foundation). 

Our model attempts to reduce transportation by vans favoring cargo bikes and 
other delivery options and synchronizing the transport flow. It would aid planners 
in reacting to disruptions or new requests while improving the service's quality 
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and sustainability through the efficient utilization of available resources [79]. 
4.2 Literature review  

In this section, we review the literature on crowdsourcing and DS-VRPTW. 
Crowdsourcing is also known as crowd shipping [80] and crowdsourced delivery 
[81]. In addition, many researches in the literature have investigated the impact of 
using crowd-resources to operate deliveries. 

Alnaggar et al. [82] present an extensive review of crowdsourced delivery 
from current industry and academic literature. They propose a taxonomy of 
available platforms according to their matching mechanisms, target markets, and 
compensation schemes. They classify four decisions that belongs to operational 
(e.g., matching and routing) and tactical levels (e.g., scheduling and compensation) 
to improve the crowdsourced delivery. Zhen et al. [83] propose six mathematical 
models to evaluate different operation modes of the crowdsourced delivery. The 
authors consider several realistic factors, including the latest service time for each 
task, task cancellation rate, and range distribution of tasks. Extensive experiments 
validate the effectiveness of the proposed models, and some managerial 
implications are outlined to help crowdsourced companies make scientific 
decisions. Yıldız [84] proposes a “courier friendly” crowd-shipping (CS) model to 
carry out express package deliveries in an urban area. This model uses 
transshipment points to enhance operational efficiency and a company-controlled 
backup delivery capacity to account for the uncertainty in the crowd-provided 
delivery capacity. The Monte-Carlo simulation approach is used to determine 
“shadow costs” of capacity utilization and make the assignment (matching) 
decisions. Le et al. [85] develop and evaluate four different pricing and 
compensation schemes for CS systems under additional demand and supply 
scenarios. The platform provider’s profits are more sensitive to the increase of 
willingness to pay than the rise of expected to be paid. The insights are helpful for 
CS firms to attract and retain customers and couriers in the system by setting up 
optimal prices and optimal compensations based on demand and supply levels as 
well as the firms’ expected profits and platform users’ presuming surplus. Devari 
et al. [71] investigate the potential of engaging friends or acquaintances in parcel 
delivery. They demonstrate that this strategy decreases total emissions and 
delivery costs. Dayarian and Savelsbergh [86] investigate a form of crowd 
shipping in which in-store customers supplement company drivers to serve online 
orders for a same-day delivery problem. They solve the static and dynamic 
variants of this problem by using myopic and sample-scenario planning 
approaches, respectively. Archetti et al. [87] consider occasional drivers as 
additional couriers to manage delivery. They develop a multi-start heuristic to 
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generate the near-optimal solution. The extensive computational study 
demonstrates the potential advantages of employing occasional drivers for cost-
saving. Dahle et al. [88] consider a pickup and delivery problem with time 
windows and occasional drivers that applys crowd drivers to take a detour to 
manage one or more customer requests. They model the problem through both 
load and flow formulation, and solve it to optimality for up to 70 requests. Their 
experiments demonstrate an average cost savings of 10-15% by engaging crowd 
drivers. Though good results have been proved in several papers, these research 
do not capture parcel delivery's stochastic and dynamic features. In the real-world 
operations, many online requests from customers are appeared dynamically. The 
requests information, including demand, location, and time windows are revealed 
over time when changing planned routes or rescheduling during the execution 
process. 

As highlighted by Ritzinger et al. [89], exploring dynamic and stochastic 
information in VRPs achieves the benefits mainly up to 20% of cost-saving, 
carbon emissions reduction, and efficiency improvement. Various papers have 
been investigated on DS-VRPTW [90, 91]. For instance, bent and Van 
Hentenryck [92] consider a dynamic VRPTW with stochastic customers, where 
the objective function is to maximize the number of served customers. They 
develop a multiple scenario approach (MSA) to continuously obtain the routing 
plans for scenarios, considering known and future customer orders. The 
computational experiments demonstrate that MSA has significant improvements 
over approaches not exploiting stochastic information. 

Florio et al. [93] propse a branch-price-and-cut algorithm for VRP with 
stochastic demands. Instances with up to 76 nodes are solved up to five hours. 
Furthermore, they prove that the solution to the stochastic problem is up to 10% 
less costly than the deterministic variant.  

Subramanyam et al. [94] develop a robust optimization approach to address a 
wide class of heterogeneous VRPs under demand uncertainty. To evaluate and 
present this uncertain demand, they generate a robust solution that remains 
feasible for all expected demand realizations. Heuristic and exact methods are 
applied to enhance robust solutions. However, the trade-off between robustness 
and cost is highly dependent on the selection of the uncertainty set. 

Hvattum et al. [95] apply a dynamic stochastic hedging heuristic (DSHH) to 
address a DS-VRP. Customer locations and demands are set to be unknown. 
Besides, the Poisson distribution is used to represent the number of customers 
revealed at each time period. A multi-stage stochastic model, extending the two-
stage one, is applied to record the stochastic and dynamic elements of the real-
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world case. When the customers’ information are revealed, two recourse actions 
are applied to rearrange the routing plans or start the new route. Compared to a 
myopic dynamic heuristic (MDH) that does not exploit future events, the DSHH 
can obtain more than 15% travel distances saving.  

Sarasola et al. [96] propose an extended variable neighborhood search (VNS) 
algorithm to investigate a VRP with stochastic demand and dynamic requests. By 
using sampling-based VNS, they obtain improvements by 4.4% on average.  

The previous research highlight how exploiting stochastic information 
generates many benefits for the routing plan in real-world applications. However, 
to the best of our knowledge, there is no research combining crowdsourcing with 
DS-VRPTW.  

The main idea behind this combination is to investigate the potential benefits 
of considering crowd drivers in parcel delivery with stochastic and dynamic 
customer requests. In this paper, we model this problem as a multi-stage 
programming problem with recourse. The first recourse action allows crowd 
drivers to collect the demand of stochastic customers. Then, the second recourse 
action relocates the customers in planned routes. We develop a simulation-
optimization-based multi-stage heuristic that gradually constructs routes by 
exploiting statistical information on future customer demand. 
4.3 Problem description and mathematic model 

In this section, we describe the problem setting and the mathematical model.  
Different research and projects on urban logistics highlighted that freight 

networks should rely on the interoperability of several business models, 
stakeholders, and modes of transportation for managing the parcel delivery in the 
last mile [42, 97, 98]. This concept of urban synchromodality refers to the 
optimization and synchronization of both the transport modes and the parcel flows 
created from online shopping and reverse logistics. It would be beneficial for 
improving the economic and environmental sustainability and resilience of 
multimodal networks. In particular, we consider a decision-maker of a traditional 
courier company (i.e., using vans) that manages a set of customer deliveries with a 
limited and heterogeneous fleet of vehicles within one day. In doing so efficiently, 
it outsources the operation of some parcels to a green courier company (i.e., using 
cargo bikes) and crowd-sourced drivers. 

Assuming that the traditional courier and the green courier start their 
operations from a satellite center (generally located in existing urban areas) and a 
mobile depot in the city center, respectively, where the parcels are consolidated. 
While the crowd drivers start the journey to pick up and deliver packages in urban 
areas from their original place (e.g., their home). The crowd operators earn 
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compensation after completing the parcel delivery services. There are different 
ways to calculate payment depending on the exact commercial contract. Note that 
a crowd driver may not be available in certain timeslots or even only in a specific 
timeslot. 

To reflect the real-world practices of the last-mile delivery, we assume that a 
significant part of customer orders arises the day before the decision-making 
process. Thus, they are known to the couriers at the beginning of the working day. 
In contrast, some other customer requests appear dynamically during the day. 
Furthermore, these requests are operated based on real-time routing decisions, 
making quantifying a priori of time and costs tricky. The investigated problem is 
an extended variant of vehicle routing problems (VRPs) [99] that aims to provide 
a fleet of vehicle routes to serve customers with minimum costs.  

The DS-VRPTW problem contains features of both the Dynamic VRP and 
Stochastic VRP. The number of stochastic customers, their reveal time, and other 
attributes (e.g., time window, demand, and location) is only known by their 
probability distributions. The problem can be firstly solved as the deterministic 
VRPTW, generating an initial plan for these requests. When the stochastic 
customers reveal dynamically, some recourse actions must be taken. We permit 
that the dynamic customers can be inserted into the initial routes or reassigned to a 
crowd driver who manages the service. If none of the two actions are feasible, the 
customer requests are thus rejected. Note that if a vehicle has already moved to a 
new customer, then this customer must be served by that vehicle, i.e., the 
preemption of customers is not allowed. 
4.3.1 Model formulation 

We formulate the problem as a new variant of the DSVRPTW. In particular, a 
two-stage stochastic model with recourse that extends the deterministic VRPTW 
model is proposed. We list the symbols used in the model in Table 4.1.  

We define some assumptions in this model. Firstly, the depot {0} is operating 
during a given time horizon [𝑒0, 𝑙0],  and there is a single known moment 𝑡 ∈

[𝑒0, 𝑙0] at which all stochastic information are revealed. At this moment, several 
recourse actions can be applied so that new customers are served. Let the set of 
initial locations be denoted by 𝑁 = 𝐶 ∪ {0}, where 𝐶 = {1, 2, … , 𝑛 } denotes the 
initially known customers. 
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Table 4.1 Notation  

Symbol Definition
Initially known customers and stochastic customers
Maximum capacity of vehicles and crowd drivers
Set of initial and total locations
Set of heterogeneous vehicles and crowd drivers
Random variable vector of customer location and demand
Random variable vector of earliest and latest arrival time
Travel cost and travel time from i  to j  by vehicle k
Earliest and latest arrival time of customer i  or depot 0
Binary variable on whether vehicel k moves from i to j

Binary variable on whether i  is served by a crowd driver v
Binary variable on whether customer j  is rejected
The time at which the service of  i  is exactly completed by k

Time interval and its corresponding operational decision
Random variable distribution and expected value of travel cost

Binary variable on whether vehicle k  moves  from i  to j  in
second-stage recourse action but not in the first-stage solution
Binary variable on whether vehicle k  moves from i  to j in the
first-stage solution but not after recourse action

The time at which the service of  i  has completed by k  based
on the second-stage recourse actions

𝐶, 𝐶 

  ,   

𝑁, 𝑁  

𝐾,𝑉

𝑒 , 𝑙 
𝑥   

𝑥   
 

𝑥   
 

   

𝑝 

   

   
 

    , 𝑡   

𝐶  ,   

   ,    

h,   

  ,    
 

Let the set of stochastic customers revealed at time 𝑡 be denoted by 𝐶 =

{𝑛 + 1, 𝑛 +  2, … , 𝑛 + 𝑛  }. We can then represent the set of all locations as 𝑁 =

𝐶 ∪ {0}, where 𝐶 = 𝐶 ∪ 𝐶 . Every pair of locations 𝑖, 𝑗 ∈ 𝑁  is associated with 
the travel time 𝑡    and the travel cost      for the vehicle 𝑘, where the service 
time is included in 𝑡   . Each customer 𝑖 ∈ 𝐶  has a demand 𝑑  and a time window 
[𝑒 , 𝑙 ]. The service of a customer 𝑖 must be started after 𝑒  and before 𝑙 . Waiting 
at a customer 𝑖 is allowed while violating the latest time window 𝑙  would incur a 
penalty. A set of heterogeneous vehicles 𝐾 = {1, 2, … , 𝑘} , each of maximum 
capacity   , starts at and returns depot between time horizon [𝑒0, 𝑙0]  after 
finishing all the services. Moreover, a set of crowd drivers 𝑉 = {1, 2, … , 𝑣 }, each 
of handling capacity   , starts at their original place 𝑂  to serve the dispatched 
customers. Let 𝐾 = 𝐾 ∪ 𝑉 denotes all the available delivery options. The crowd 
drivers with a limited service radius are employed to collect the demand of 
stochastic customers and consolidate it at one of the customers' locations. Let   =

(𝐶  ,    ,     ,    ) be the random variable vector and  = (𝐶 ,   ,   ,   ) is one 
of its particular realizations with probabilities 𝑝 .  
The two-stage stochastic programming problem can be defined as follows: 
  

                               𝑚𝑖𝑛 ∑ ∑ ∑     

 ∈𝐾

𝑥   

 ∈𝑁 ∈𝑁

+ ∑ 𝑝  (𝑥, 𝑝,  , )

 ∈  

                                                       (4.1) 
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                (𝑥, 𝑝,  ,  ) = ∑ ∑ ∑     

 ∈𝐾′

(𝑥   ± 𝑥   
 )

 ∈𝑁′ ∈𝑁′

+ 𝐻 ∑ ∑    

 ∈𝑉 ∈𝐶 ′

+ 𝑃 ∑ 𝑝 

 ∈𝐶 ′

                    (4.2) 

s.t 

                       ∑ ∑ 𝑥   = 1   ∀𝑗 ∈ 𝐶                                                                                                   (4.3)

 ∈𝐾 ∈𝑁

 

                      ∑ 𝑥0  

 ∈𝑁

= 1   ∀𝑘 ∈ 𝐾                                                                                                         (4.4) 

                       ∑ 𝑥   

 ∈𝑁

− ∑ 𝑥   

 ∈𝑁

= 0   ∀ℎ ∈ 𝐶, ∀𝑘 ∈ 𝐾                                                                      (4.5) 

                       ∑ 𝑥 0 

 ∈𝑁

= 1   ∀𝑘 ∈ 𝐾                                                                                                          (4.6) 

                       ∑ ∑ (𝑥   + 𝑥
   

±𝑥𝑖𝑗𝑘
−

) = 1   ∀𝑗 ∈ 𝐶′

 ∈𝐾′ ∈𝑁′

                                                                            (4.7) 

                       ∑ (𝑥0  + 𝑥
0  

±𝑥0𝑗𝑘
−

)

 ∈𝑁′

= 1   ∀𝑘 ∈ 𝐾′                                                                                  (4.8) 

                       ∑ (𝑥   + 𝑥   

±𝑥𝑖ℎ𝑘
−

)

 ∈𝑁′

− ∑ (𝑥   + 𝑥
   

±𝑥ℎ𝑗𝑘
−

)

 ∈𝑁′

= 0        ∀ℎ ∈ 𝐶 ′, ∀𝑘 ∈ 𝐾                  (4.9)  

                                    

                       ∑ (𝑥 0 + 𝑥 0 

±𝑥𝑖0𝑘
−

)

 ∈𝑁′

= 1   ∀𝑘 ∈ 𝐾′                                                                                (4.10) 

                       ∑ 𝑑 ∑ 𝑥   

 ∈𝑁 ∈𝐶

≤      ∀𝑘 ∈ 𝐾                                                                                          (4.11) 

                       ∑ 𝑑 ∑ (𝑥   + 𝑥
   

±𝑥𝑖𝑗𝑘
−

)

 ∈𝑁 ∈𝐶

≤      ∀𝑘 ∈ 𝐾′                                                                   (4.12) 

                       𝑥   
 ≤ 𝑥      ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾                                                                                        (4.13) 

                       𝑥   
 = 0   ∀𝑖, 𝑗 ∈ 𝐶𝑡 , ∀𝑘 ∈ 𝐾                                                                                           (4.14) 

                       𝑡𝑥   
 ≤       ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾                                                                                        (4.15) 

                          + 𝑡  − 𝑀  (1 − 𝑥   ) ≤       ∀𝑗 ∈ 𝐶, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾                                       (4.16) 

                       𝑒 ≤    ≤ 𝑙    ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾                                                                                        (4.17) 

                          + 𝑡 0 − 𝑀 0(1 − 𝑥 0 ) ≤ 𝑙0   ∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾                                                        (4.18) 
                          

 + 𝑡  − 𝑀  (1 − 𝑥   − 𝑥   
 + 𝑥   

 ) ≤    
    ∀𝑗 ∈ 𝐶 ′, ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾′           (4.19) 

                       𝑒 ≤    
 ≤ 𝑙    ∀𝑖 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾′                                                                                      (4.20) 

                          
 + 𝑡 0 − 𝑀 0(1 − 𝑥 0 − 𝑥 0 

 + 𝑥 0 
 ) ≤ 𝑙0   ∀𝑖 ∈ 𝐶 ′, ∀𝑘 ∈ 𝐾′                            (4.21) 

                        0 = 𝑒0   ∀𝑘 ∈ 𝐾                                                                                                               (4.22) 

                        0 
 = 𝑒0 + (𝑡 − 𝑒0)𝑥00    ∀𝑘 ∈ 𝐾′                                                                                 (4.23) 

                       𝑥   = 0   ∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾                                                                                                  (4.24) 

                       𝑥   
 = 0   ∀𝑖 ∈ 𝐶 ′, ∀𝑘 ∈ 𝐾′                                                                                               (4.25) 

                       𝑥   ∈ {0,1}   ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾                                                                                       (4.26) 

                       𝑥   
 , 𝑥   

 ∈ {0,1}   ∀𝑖, 𝑗 ∈ 𝑁 ′, ∀𝑘 ∈ 𝐾′                                                                            (4.27) 

                          ∈ {0,1}   ∀𝑣 ∈ 𝑉, ∀𝑖 ∈ 𝐶 ′                                                                                            (4.28) 
                       𝑝 ∈ {0,1}   ∀𝑗 ∈ 𝐽                                                                                                               (4.29) 

                          ∈[𝑒0, 𝑙0]   ∀𝑖 ∈ 𝐶, ∀𝑘 ∈ 𝐾                                                                                            (4.30) 

                          
 ∈[𝑒0, 𝑙0]   ∀𝑖 ∈ 𝐶 ′, ∀𝑘 ∈ 𝐾′                                                                                          (4.31) 

The objective function (4.1) minimizes the first stage routing cost as well as 
the cost of the recourse. Co. The random quantity  (𝑥, 𝑝,  ,  ) is the expected cost 
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at the second stage, which includes adjusting the routing, employing crowd 
drivers, and a penalty 𝑃 paid for the customer rejection. We set a very high value 
of 𝑃 so that the minimization of the objective function would result in minimizing 
the number of rejected customers as well. Note that a high value of 𝑃 would make 
the rejection of a customer request unaffordable. Thus, in some cases, a suitable 
value of 𝑃 should be considered. 

Constraints (4.3) -(4.6) are similar to (4.7) -(4.10), ensuring that all customers 
are visited once, and any vehicle must start and end at one depot, respectively. 
Constraints (4.5) and (4.9) guarantee flow conservation. Constraints (4.11) and 
(4.12) ensure that the vehicle capacities are not violated in both first and second 
stage solutions. Constraints (4.13)-(4.15) ensure that a tour between the customer 
𝑖  and 𝑗  in the first-stage solution cannot be skipped in second stage solution 
recourse if the service in departure location is finished before time 𝑡 
where  𝐶𝑡 denotes the customers revealed at time 𝑡 . Constraints (4.16)-(4.18) 
ensure that the time windows of both customers and depot are not violated, where 
𝑀   is a sufficiently large constant, e.g., 𝑀  = 𝑙 + 𝑡  − 𝑒 . Constraints (4.19)-
(4.21) are used to track when service is completed in the second-stage solution. 
Constraints (4.22) and (4.23) guarantee that vehicle 𝑘  cannot leave the depot 
before time 𝑡 in the second stage decision if it does not leave the depot in the first 
stage. Finally, constraints (4.26)-(4.31) express the domain of decision variables.  

The crowd drivers are considered as sources of special delivery capacity that 
move within the city who are employed to pick up the demand from customers. 
They have to follow traditional drivers' constraints, including capacity, time 
windows, start and return at the original place. Note that the crowd drivers have a 
limited service distance. The stochastic requests are dispatched to crowd drivers 
by checking the service distance and feasibility of capacity and time windows 
constraints. We assume that crowd drivers should consolidate the parcels to a 
traditional van at the nearest customer location or a mobile depot. Both vans and 
crowd drivers have very tight schedules. Waiting for consolidation would incur 
the violation of time window constraints. It is thus crucial to synchronize the 
actions of crowd drivers and traditional vans, i.e., they should arrive at a selected 
customer location or mobile depot at the same time to operate the consolidation. 
We assume that the operational context of parcel delivery can be separated into a 
predefined number of time intervals ℎ. The problem is modified with information 
revealed during each interval. A multi-stage model can thus be extended from a 
two-stage stochastic model into an ℎ -stage model for any given ℎ  by adding 
additional variables and constraints for each stage [95]. 
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4.4 Methodology description 
The exact approach for multi-stage stochastic VRPs currently fails to solve the 

problems with a significant number of customers. The evaluation of recourse cost 
function (4.2) can become extremely difficult, depending on the distribution of 
random variables. Developing a practical heuristic is thus one of the promising 
approaches to solve this complex and large-size problem. Instead of assuming 
particular distributions of stochastic variables, we propose a simulation-
optimization based multi-stage heuristic based on sample information. Sample 
scenarios are first obtained using a Monte Carlo simulation and then guide a 
heuristic approach that generates a routing plan for each time interval in turn. We 
assume that the time horizon can be divided into ℎ intervals 𝐻1, … , 𝐻  which is 
related to stages in the multi-stage model. At the beginning of each interval, the 
algorithm generates a routing plan that minimizes the expected travel cost of 
serving both known and stochastic customers. At each time interval ℎ ∈ [𝐻1, 𝐻 ], 
an action    must be decided. Each action    contains two parts: first, for each 
customer 𝑖 ∈ 𝐶  revealed at a time interval ℎ, the action    must accept or reject 
the customer based on the given constraints. Second, the action    must provide 
the operational decisions for traditional vehicles or crowd drivers at time interval 
ℎ (i.e., service a customer, travel to the next customer, or wait at the current 
position). Before the online execution, the first action  1 at time interval 𝐻1  is 
obtained based on a set of known offline customers. A solution is a sequence of 
actions  1…  that covers the whole operational horizon. On the one hand, we 
apply the rescheduling and adoption of the crowd drivers as two recourse actions 
to cope with the dynamic feature of the problem. On the other hand, using 
stochastic information during the planning is to capture the stochastic elements. 
The key idea is to solve each sample scenario as a deterministic VRPTW and 
select the distinguished plan from the solutions [92]. A post-optimization 
procedure is finally applied to compute additional key performance indicators 
(KPIs).  

Figure 4.1 illustrates the framework, and the remaining part of this section 
describes the details of this algorithm. 
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Figure 4.1 Simulation-Optimization Framework 

4.4.1 Operational context generation 
The operational context is obtained by collecting different sources of 

information, e.g., city network, vehicle fleet and travel time, customer attributes, 
and the company’s objective and constraints. The city network is generated 

considering: i) the city map provided by the local government; ii) geographical 
coordinates and empirical distributions of customers and depots by courier 
companies.  

Courier companies offer the specific attributes of a vehicle's fleet (i.e., 
capacity, speed, fuel consumption). Furthermore, we collect customer attributes, 
i.e., locations, demand, and time windows, and measure the travel times through 
the sensors spread in the city. Stochastic information is known as the probability 
distribution (e.g., demand and service time). Finally, the objectives and 
constraints are defined based on the specific optimization problem.  

Some data may be stochastic since the uncertainty of some components in the 
operational context is involved. These data can be described by random variables, 
including service or travel time, customer demand, etc.  

As some components of the operational context involve uncertainty, these data 
can be described by random variables and typically generated from the historical 
data of delivery companies. In other words, these data illustrate the structure of 
the problem, which would be solved in the subsequent few phases. The original 
data for generating the operational context is provided in the work [40]. 
4.4.2 Scenarios generation and simulation 

We apply the Monte Carlo simulation or multi-scenario approach to calculate 
the expected (or recourse) costs. An approximation algorithm for deterministic 
VRPTW is thus used to evaluate a solution on a set of scenarios. Furthermore, 
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metaheuristics such as LNS and tabu search can be efficiently engaged with 
sampling approaches to implement a simulation-based multi-stage stochastic 
optimization approach. 

The scenarios are obtained according to the well-defined operational context 
and the knowledge about the probability distributions of the stochastic variables. 
Each scenario is related to a specific realization of all the random variables in an 
operational context. The distributions of demand, reveal time, time windows, and 
locations are applied to create possible future customer requests. Monte Carlo 
sampling is used to obtain a set of instances. Each instance includes both the 
known customers and the stochastic ones drawn from the given distributions. 
These sample instances show that likely events are associated with a high 
probability. For any given time interval ℎ, solutions of these sample instances are 
generated by simple local search algorithms such as insertion heuristic and regret 
heuristic. The implementation starts with the routes which are already executed. 
Each start depot matches the vehicles’ current position, while the capacity of each 
vehicle is calculated by reducing the weight of goods collected up to the current 
time. The end depot remains the same, and time windows are appropriately 
modified. We check the feasibility of dispatching the customers to crowd drivers 
based on service distance and other constraints. In addition, we identify the 
frequently visited customers among the sample instances and decide to serve these 
customers during ℎ  in the final plan. We generate more accurate travel time 
matrices by implementing the Google Earth application programming interfaces 
(APIs) through a georeference module. 
4.4.3 Optimization 

The optimization algorithm is an extended meta-heuristic that combines the 
ruin and recreate principle and a group of general heuristics proposed by [100] 
and [101]. It aims to obtain and enhance the routing plans for multiple scenarios. 
We first assume that an initial solution   has been generated by a simple insertion 
heuristic. Then, a quantity 𝑞  of customers is removed from the solution. We 
conduct the ruin and recreate operations on the current solution  𝑛𝑒𝑤, to diversify 
the search space and enhance the solution. The algorithm ends when it reaches a 
certain number of iterations (i.e., 5000 iterations). Since the parameter 𝑞 
determines the neighborhood size, we select an appropriate value 𝑞 that balances 
the computational efforts and solution quality. In our case, we set 𝑞 equal to 10% 
of the maximum customers for each instance. The performance and robustness of 
LNS are dependent on the selected ruin and recreate operations. Note that in each 
ruin and recreate operation process, only one heuristic is chosen and applied based 
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on the well-known roulette wheel selections. More details about the whole process 
are described as follow: 
Construct an initial solution.  

For the given scenario, the algorithm starts with an initial solution generated 
by the basic greedy heuristic. This heuristic aims to repeatedly insert a request at 
the best position (i.e., cheapest possible position), which means that the request is 
always inserted into a position with a minimum insertion cost in each iteration. In 
particular, let 𝑈  be the set of unserved customers and ∆𝑓   be the change of 
objective value incurred by inserting request 𝑖 ∈ 𝑈 at the cheapest position in the 
vehicle 𝑘, if request 𝑖 fails to insert in the vehicle 𝑘, the value ∆𝑓   is set to infinite. 
We thus compute all the potential insertion and insert request 𝑖 in vehicle 𝑘 at its 
minimum cost position as follows: 
(𝑖, 𝑘) ≔ arg 𝑚𝑖𝑛 ∈𝑈, ∈𝐾 (∆𝑓  )                                                                        (4.32) 

In each iteration, we only change one route and terminate the process until all 
requests are inserted, or no feasible requests exist. As a simple construction 
heuristic, the basic greedy heuristic has the potential problem of postponing the 
placement of expensive customers (i.e., with larger ∆𝑓  ) to the last iterations. The 
expensive customers are thus difficult to be served. Indeed, many routes might 
have no space at the last iterations, leading to creating new routes or rejecting 
customers. Therefore, repair operations are considered as an alternative approach 
to overcome this potential issue.  
Ruin operations. 

After generating the initial solution for each scenario, we use four ruin 
strategies (i.e., random removal, worst removal, related removal, and cluster 
removal) to ruin the initial solution. These heuristics take a given solution   as 
input and then output a partial solution with 𝑞 removed requests.    

Random removal is the most straightforward heuristic that selects 𝑞 requests 
randomly and removes them from the current solution. It aims to diversify the 
search space.  

Worst removal chooses some requests that have high costs in their current 
position. Given a solution   and a request 𝑖, we denote 𝑓( , 𝑖) as the objective 
value that request 𝑖 has been removed from solution  . The change of objective 
value ∆𝑓   is defined as ∆𝑓  = 𝑓( ) − 𝑓( , 𝑖).  The worst removal repeatedly 
selects a new request 𝑖 with the highest cost of ∆𝑓   until 𝑞 requests are removed. 
The function of the worst removal heuristic is to remove the requests at the worst 
positions and insert them at other positions to obtain better objective value in the 
recreate process. However, to avoid the same customers with expensive costs 
being removed repeatedly, it is crucial to keep the randomization of this heuristic. 
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It can be achieved by applying a parameter 𝑝 ≥ 1  that controls the selection 
process. A less expensive customer associated with a high value of 𝑝, may be 
selected. This probability decreases with the value ∆𝑓  . It means that if the value 
of 𝑝 is small, then the most expensive customer is selected.  

The related removal aims to remove the requests that are similar to each other 
in some sense. The motivation of this heuristic is that we may not gain any 
improvement when reinserting the removed requests in the case they are very 
similar to each other. The similarity of request 𝑖  and request 𝑗  is defined as 
relatedness 𝑅(𝑖, 𝑗). The main idea is to measure the similarity by computing the 
difference value in terms of capacity, service-starting time, and distance between 
requests 𝑖 and 𝑗, as indicated in the equation (4.33). 
𝑅(𝑖, 𝑗) = 𝜑   + 𝜎(|  −   |) + 𝜏(|𝑞 − 𝑞 |)         (4.33) 

Note that all terms in this equation are normalized in the range [0,1]. The 
related removal procedure removes a random customer, and in the successive 
iterations, it chooses customers similar to the already removed customers. The 
parameter 𝑝 is again used to control the selection process as we do in the worst 
removal. We refer to [102, 103] for further details of the heuristic. 

The last heuristic, namely cluster removal, is a variant of the related removal. 
It is used to remove clusters of related requests from a few routes, which removes 
the groups of requests entirely from different routes if the single removed request 
is inserted back into the route. 
Repair operations. 

After applying the ruin operation, a group of repair operations is used to 
generate new solutions for each scenario. The operation is conducted in parallel 
since there are different scenarios. The basic greedy heuristic is used again to 
recreate the new solutions. However, this simple heuristic may insert some 
requests back in their previous position. The regret heuristics are then used to 
mitigate this problem by using a kind of look-ahead information. Let ∆𝑓 

𝑞 be the 
change of objective value incurred by inserting customer 𝑖 at its best position in 
the 𝑞th cheapest route for customer 𝑖. The value of ∆𝑓 

2  is thus the change of 
objective value by inserting customer 𝑖 into the route where the customer could be 
inserted second-cheapest. In each iteration, the customer 𝑖 is chosen according to 
the equation 𝑖 ≔ arg 𝑚 𝑥 ∈𝑁 (∆𝑓 

2 − ∆𝑓 
1)his operation aims to maximize the 

difference in the cost of inserting customer 𝑖 at its best route and second-best route. 
This process is repeated until no customers can be inserted. Instead of using a 
simple acceptance criterion that only accepts the solution with a better objective 
value, the simulated annealing strategy is applied to choose the solutions based on 
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a varying probability. The detail of this strategy can be found in the study by 
[100].  

The abovementioned steps are repeated until the given termination criterion is 
met, i.e., reach the maximum running time or have no improvement for 
continuous iterations. As the optimization process continues, a set of routing plans 
is maintained at each interval. We use a natural operation to decide which 
customers should be fixed in the routes for the current interval. In particular, it is 
applied to exploit the common features among the maintained routing plans, i.e., 
select the customer that is most frequently visited in the current time interval in 
the multiple sample scenarios. Once identifying these customers, the action    is 
then fixed to visit these customers during the current time interval ℎ in the final 
plan. At the end of the last time interval, we conduct a post-optimization and 
compute the related KPIs. 
4.5 Case Study 

We analyze the potential impact of crowdsourcing and multiple delivery 
options in terms of economic, environmental, and operational sustainability for 
on-demand parcel delivery. In doing so, a real case study is conducted related to 
urban logistics in Turin (Italy). We first present the description of the case study 
and the corresponding operational context. Then, we discuss the computational 
results to provide valuable insights for decision-makers. 
4.5.1 Description of the operational context 

Last-mile presents severe challenges to the operations of the supply chain 
network. Thus, alternative distribution systems architectures have been proposed 
to tackle these challenges and improve the efficiency of last-mile delivery. We 
consider a promising solution as the adoption of a two-tier system [104]. In the 
first level, vans perform deliveries from distribution centers located in a strategic 
node of the city to Urban Consolidation Centers named satellite. They are 
generally transshipment points near the city center. At the second level, orders are 
consolidated to city freighters, i.e., small vehicles that can move quickly and 
efficiently along any street in the city center area operated even partially with 
crowdsourcing contracts [105]. 

In this case study, we conduct four benchmarks integrating van, bike, and 
crowdsourcing: 

• Benchmark 1 (B1): only traditional vans (fossil-fueled) are applied to 
operate the parcel delivery. 

• Benchmark 2 (B2): green carriers, such as drivers using cargo bikes or 
bicycles with the messenger bag, are used as an environment-friendly 
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delivery option, providing economic and operational benefits for parcel 
delivery. In B2, we consider both van and bike as transportation modes. 

• Benchmark 3 (B3): crowdsourcing is considered as a flexible delivery 
option. The crowd driver plays the role of additional capacity to fulfill the 
on-demand requests. In practice, the delivery tasks are dispatched according 
to the distance between crowd drivers and customers.  

• Benchmark 4 (B4): all the above delivery options are applied.     
The urban distribution setting and data used in this chapter are inspired from 

the analysis of a real case study of the city Turin conducted by the CARS@Polito 
[106] and the ICELab@Polito [107], with the collaboration of the Torino Living 
Lab project [108] and the Amazon Innovation Award. The managerial insights 
coming from this work will be part of the new Logistics and Mobility Plan to be 
activated in 2022 in the Piedmont region. 

To generate specific operational contexts, we have fused the parameters and 
data coming from the following sources: 

• URBeLOG project for the distribution of customers and real (and 
anonymized) information about their location [37]; 

• Municipality of Turin for what concerns the satellite location, city map, and 
data on the road network from sensors in the city; 

• the study by [40] regarding vehicle characteristics, costs, and revenue 
structure of parcel delivery companies. 

In particular, the city network presented in Figure 4.2 is generated using a 
2.805 × 2.447 km2 area in Turin that includes both the center of the city and a 
semi-central area. We consider that area because, according to [7], it is the area in 
which the different modes can coexist sustainably (from economic, environmental, 
social, and operational perspectives) and is also the most populated area of the 
city, covering more than the 80% of the total population. We consider a 
distribution center located on the city's outskirts to serve the traditional carriers, 
while a mobile depot in the city center is a satellite facility for the green carrier 
and crowd drivers. Two sequential connected points denote road segments of this 
network. The roads’ information is extracted from the shapefiles provided by the 

local public authority in Turin. The average speed on each road segment is 
monitored by the speed sensors around the city area. Each point on this network is 
associated with a unique ID number and real GPS coordinates.  
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Figure 4.2 City network in the case study 

Note that the red square represents the mobile, while the blue circles are the offline customers. 
 

Table 4.2 shows the values of the capacity, speed, and service time for each 
delivery option. As an international parcel delivery company offers these 
parameters in Turin, their values are supposed to be fixed, and thus, we use them 
as input in our case study. As the crowd drivers move within the city, we thus 
randomly generate the location of crowd drivers on this graph. We conduct some 
preliminary experiments to obtain a suitable number of available crowd drivers. 
The aim is to analyze and test the impact of the different numbers of available 
crowd drivers for B4. The detailed results are shown in subsection 4.5.2. We 
classify the parcels according to their weights as mailers (0-3kg), small parcels (3-
6kg), and large parcels (over 6kg). In particular, the percentage of total parcels for 
each type is defined as 57%, 13%, and 30%, respectively, according to section 3.4. 
 
Table 4.2 Input parameters 

Mailers
small

parcels

large

parcels

Van 70 700kg NA 40 4 4 5

Cargo Bike 15 70kg NA 20 2 2 —

Crowd Driver 6 4 Parcels 2 15 2 — —

Service time(min) 
Delivery

Options

Maximum

parcel

size(kg)

Capacity
Coverage

(km)

Speed

(km/h)

 
In the operational context, we divide the eight working hours as four time 

buckets with the same length based on the current standard for timeslots in time-
sensitive urban delivery (e.g., Amazon Prime Now, Uber Freight). Each bucket is 
split into 1 minute time unit. For each potential customer, the demand is generated 
based on its parcel type, while the time window is specified for the time bucket by 
the simulator. In our simulation, we consider instances with 550, 350, and 150 
potential customers, respectively. For each context, 70% of offline requests are 
known before scheduling, while 30% of potential customers are assigned as prime 
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members with a priority that restricts their time window to the first two buckets. 
The expected behavior of each potential customer for the investigated problem is 
described. For each potential customer location 𝑖 and each time unit 𝑡 of the time 
horizon, a probability is associated with an online request (i.e., picking up a parcel) 
that may reveal at a time 𝑡 for location 𝑖. 

Once all the locations are defined, the mutual distances between these 
customers and depots are generated. Instead of using Euclidean distance, the 
distance matrix among the points is computed by Dijkstra’s shortest path method. 

Finally, the travel time matrixes are generated based on these distance matrixes 
and the original speed among the road segments in the input data.  

We consider three different degrees of dynamism (DOD) to address dynamic 
online requests, i.e., 15%, 30%, and 45%. For example, DOD-15% means that 
there are 15% of dynamic requests in total customers. For each operational 
context, we thus generate three different sub-contexts, which are applied to 
measure the impact of DOD. We develop ten independent scenarios with ten sets 
of dynamic online requests for each sub-context, obtained by sampling their 
probability distributions. Each online request is associated with its location, 
demand, time windows, and when they appear in the time horizon. We generate a 
total of 360 instances. They are available on the Github repository at the following 
link: https://github.com/gcmswm/Benchmarks. 

The objective function minimizes first the total travel cost (expected) of parcel 
delivery and second the number of rejected requests.  
4.5.2 Numerical analysis 

In this section, we measure the impact of adopting crow drivers and 
multimodality on the sustainability of parcel delivery. 

Experiments are conducted based on some randomly generated test problems. 
For each benchmark and operational context, we conduct ten independent tests. 
Therefore, we solve the 360 instances independently by the optimization 
procedure. To analyze the experimental results, we compute different KPIs that 
reflect the mix of economic, environmental, and operational facets of the service: 
• Economic sustainability. Based on the current real practices, the delivery cost 

is associated with the number of parcels served by different delivery options 
since different options have additional contract costs. We define the KPI as 
cost per delivery for each option: 
o cost per delivery (van), the unit cost of each parcel delivered by 

traditional van; 
o cost per delivery (bike), the unit cost of each parcel served by bike. 

https://github.com/gcmswm/Benchmarks
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We consider the operating costs related to the vans and cargo bikes. These 
costs are computed per kilometer traveled in the last mile segment of the 
supply chain. They include variable costs (e.g., gasoline) and the total cost of 
vehicle ownership [7]. In particular, we consider both costs directly related to 
the vehicles (e.g., purchase cost, taxes, insurance, fuelling, and maintenance 
costs) and personnel costs (e.g., drivers/bikers salaries and related taxes). The 
typical contract scheme in the parcel delivery industry imposes the 
conversion from a cost per kilometer to a cost per stop. 

In crowdsourcing, we consider the compensation per delivery that reflects 
the unit paid by the company to crowd driver for each delivered parcel. The 
exact compensation is dependent on many factors, including distance, weight, 
and the local market. However, we follow the investigation from [72] for the 
medium distance, inter-city market and adopt an average value (i.e., 1.8€ per 
delivery) as compensation for crowd drivers. 

• Environmental sustainability. We consider the emissions and costs of the 
overall last-mile chain. In particular, we consider three types of emissions: 
direct emissions from the fuel combustion process, indirect emissions emitted 
by the fuel production process, and the long-haul shipment of the fuel, CO2 
equivalent to including pollutants, such as nitrogen oxide. We thus compute 
the CO2 emission saved in B2, B3, and B4, based on the lower travel distance 
by using green delivery options (i.e., bike and crowdsourcing). 

• Operational sustainability. The operating efficiency of the delivery system is 
typically evaluated in terms of completed deliveries. We apply the total 
number of parcels served per hour (𝑛𝑆

 
) to measure operational sustainability.  

Preliminary analysis for crowdsourcing 
This section conducts a preliminary experiment to test the suitable number of 

crowd drivers in our case study. The average distance traveled by vans and the 
total average economic cost are computed for comparison. In this experiment, the 
number of crowd drivers is set equal to 5, 10, 15, 20, and 25, while their locations 
are randomly generated spreading within the urban area. The experiment is 
analyzed by using benchmark B4 with 350 potential customers.  

In general, there are some limitations to the number of crowd drivers in real-
world applications because of different reasons, including the customers’ requests, 

the availability and motivation of crowd drivers, and suitable compensation 
strategies.  

To find a decent number of crowd drivers in our case study, we analyze the 
results shown in Figure 4.3 and Figure 4.4. In particular, the values in Figure 4.3 
highlight that when the number of available crowd drivers is low (i.e., five 
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drivers), and the degree of dynamism is low (i.e., 15%), these drivers are used to 
manage the online requests given their flexibility. Besides, vans remain a good 
choice when the degree of dynamism increases while the number of available 
crowd drivers is still low and thus, insufficient to cope with the high online 
requests.  

Increasing the number of crow drivers manages a more significant part of the 
requests than the previous scenario, although the degree of dynamism increases. It 
reduces the distances traveled by vans (e.g., when DOD is 45%, increasing the 
number of crowd drivers from 5 to 25, the average van distance decreases by 
20%). Moreover, when the number of crowd workers is equal to 20, we reduce the 
average van distance for all the DODs. In particular, for DOD equals 15%, we 
reach the lowest value of the distance traveled using vans. It is reflected in the 
lowest value of the economic costs faced by the traditional courier company 
(Figure 4.4). While the economic cost for DOD-30% and DOD-45% has no 
significant variation for the different crowd drivers. 

We thus decide to use 20 as the baseline number for crowd drivers for our 
case study. This choice is based on two reasons in the real-world application. First, 
when the number of crowd drivers is too large, some of the crowd drivers cannot 
receive enough delivery tasks during the execution, which will decrease their 
motivation for participating in the parcel delivery. Second, if the number of crowd 
drivers is too small, there can be a lack of available crowd drivers in some local 
areas, impacting the expected service quality. 

However, the optimal capacity planning of crowd drivers is a complex 
problem due to many factors, including the compensation of delivery, the 
motivation of crowd drivers, and the available customer requests. The interested 
readers are referred for more details to [109]. 
 

        
Figure 4.3 Comparison of van distance               
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Figure 4.4 Comparison of economic cost 

Performance comparison for benchmarks 
We compute the percentage of each KPI compared with benchmark B1 to 

demonstrate the performance of using different options for parcel delivery. Figure 
4.5 presents the performance of the traditional vans in B2, B3, and B4. The 
statistics are computed as a percentage variation of each KPI to the value of the 
same KPI in B1. The operating and environmental cost savings generated by 
using cargo bikes and crowdsourcing are denoted as 𝛥𝑂𝐶 and 𝛥 𝐶 respectively. 
While 𝛥 𝑓𝑓𝑖 𝑖𝑒𝑛    denotes the reduction of efficiency incurred by the reduced 
number of services (We referred to [42] for a detailed description of the 
computation of the KPIs). 

Figure 4.5 shows the improvement of economic and environmental 
sustainability when applying different delivery options (vans, cargo bikes, and 
crowdsourcing) for parcel delivery. As shown in Figure 4.5, the adoption of cargo 
bikes (B2), crowdsourcing (B3), and their combination (B4) lead to the reduction 
of economic and environmental costs. These reductions are obtained by reducing 
the number of vans and their total travel distance, which leads to a 25%, 21%, and 
44% decrease in average economic cost for B2, B3, and B4, respectively. Besides, 
the average reductions of CO2 emissions for B2, B3, and B4 are 116.68kg, 
115.01kg, and 297.05kg, contributing to 17%, 16%, and 46% total average 
reductions of the environmental cost, respectively. In particular, when the degree 
of dynamism is equal to 45%, the 𝛥 𝐶  values are larger than the other two 
counterparts, i.e., DOD-15% and DOD-30%. According to the results, the 
potential benefits of using cargo bikes and crowdsourcing as green carriers are 
demonstrated for investigated three benchmarks. The most significant finding is 
that combining both cargo bikes and crowdsourcing into traditional van delivery 
reaches the highest reduction of economic and environmental costs. In addition, 
the loss of efficiency for B2, B3, and B4 is 25%,11%, and 33% on average, 
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respectively. B3 reaches the minimum loss of efficiency for parcel delivery, while 
the economic and environmental cost saving is promising, i.e., 21% and 16% on 
average. Though the B4 reaches the maximum average loss of efficiency at 33%, 
the maximum economic and environmental cost savings (44% and 46%) are 
reached. In practice, when crowd drivers and cargo bikes are involved with 
traditional vans, there should be a balance between the increase in profits and 
service quality. The integration of different delivery options should be managed 
wisely to balance the workload, working conditions, efficiency, and service 
quality.  

Figure 4.5 Performance comparison of different benchmarks 

In this work, we consider two strategies to deal with the high demand for 
dynamic requests. The first one is to dispatch the online requests to the spreading 
crowd drivers based on the available recourse actions proposed by the 
optimization solver. The second is to accommodate the online requests to the 
existing vehicles with spare capacity.  

To demonstrate the impact of crowd drivers for on-demand parcel delivery, 
we compare the rejected customer requests for each benchmark. Figure 4.6 
presents a boxplot of the results for the four benchmarks. This figure represents 
the case with 550 potential customers, as there are no rejected requests in 
instances with 150 and 350 customers. Three different DODs are considered since 
the different number of dynamic requests may have different influences on the 
number of rejected requests. As shown in Figure 4.6, the number of rejected 
requests in B1 is the largest independently by the DOD. When the DOD increases, 
the number of rejected requests increases significantly. This result shows that only 
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using traditional vans as the delivery option would cause more rejected requests 
when the dynamic requests are higher. When the cargo bikes are integrated, as 
shown in B2, the number of rejected requests decreases while the result has the 
same trend with B1 since the number of rejected requests is also increased with 
DOD. However, the trend in B3 and B4 is different. The number of rejected 
requests in both B3 and B4 remains stable for different DODs. Note that the 
results of B4 are better than B3 for each DOD since they have a lower minimum, 
average and maximum number of rejected requests according to the boxplot. 
Besides, there are only a few numbers of rejected requests in both B3 and B4. 
This result indicates that introducing crowd drivers as a delivery option can 
significantly reduce the number of rejected requests for our investigated instances. 
Therefore, considering these results, we conclude that green carriers and crowd 
drivers are promising delivery options to deal with online customer requests in the 
context of stochastic and dynamic parcel delivery. 
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Figure 4.6 Comparison of rejected requests for different benchmarks 

 
Influence of different customer demand 

To analyze the influence of varying customer demand on sustainability 
performance (i.e., operational cost, environmental cost, and efficiency), we 
conduct a group of experiments on B4 by changing customer demand. 
Furthermore, we decide to conduct a sensitivity analysis on this parameter as the 
uncertainty on the composition of the demand will affect the congestion and the 
development of urban areas [42, 110].  
In doing so, we generate three new groups of customer demand varying the 
composition of the demand as follows: 

• reduction of 20% resulting in a market downturn; 
• increase of 20% and 40% to suppose a market expansion.  
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The results are represented in Table 4.3 concerning the current situation of 
demand. 
 

Table 4.3 Impact of different customer demand 

Demand instance size △OC △EC △Efficiency

150 13.9% 9.4% 10.0%

350 5.3% 13.8% 29.1%

550 3.9% 12.5% 36.7%

150 -7.8% -9.7% -6.3%

350 -14.1% -17.3% -0.2%

550 -8.2% -14.8% -2.6%

150 -17.1% -35.6% -18.7%

350 -18.2% -34.7% -11.7%

550 -14.6% -28.2% -8.1%

80%

120%

140%

 
The values of 𝛥𝑂𝐶 , 𝛥 𝐶 and 𝛥 𝑓𝑓𝑖 𝑖𝑒𝑛    represent the percentage 

variations of operational cost, environmental cost, and efficiency, respectively, 
between the normal customer demand and three other different groups of demand.  
Table 4.3 shows that when the customer demand decreases to 80%, the 
operational cost, environmental cost, and delivery efficiency of the delivery 
system decrease for all investigated instances. When the customer demand 
increases to 120%, the operational cost increases from 7.8%-14.1% for the 
investigated cases. The environmental cost increases by 9.7%, 17.3%, and 14.8% 
for three different instance sizes. The efficiency of parcel delivery is witnessed to 
a few increases ranging from 0.2%-6.3%. Moreover, the demand expansion of 40% 
has the most significant change among other instances. For example, the 
operational cost increases by 17.1%, 18.2%, and 14.6%, respectively, while the 
environmental cost increases by 35.6%, 34.7%, and 28.2%, respectively.  

The delivery efficiency has a significant increase in all instances. The results 
show that customer demand has a significant impact on operational cost as well as 
environmental cost. When the customer demand decreases/increases, operational 
and environmental cost decreases/increases. The potential reason for this 
phenomenon is the total required delivery capacity is changed. However, it is not 
a linear function between customer demand and costs since many other factors 
must be considered. Thus, it is difficult for companies to decide how many 
vehicles should be prepared for varying customer demand. To solve this issue, one 
of the potential solutions, we believe, is to introduce more flexible delivery 
options like cargo bikes from a third-party or crowd drivers from the social 
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community. Both options are suitable for the on-demand market and would not 
cause much more fixed costs for delivery companies.   
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Chapter 5 

Time-dependent green vehicle 
routing problem with time 
windows 

5.1 Introduction 
The ever-growing concern over environmental issues has led many countries 

to reduce emissions and fuel consumption. As the world’s biggest greenhouse gas 

emitter, China has announced to cut its CO2 emissions per unit of gross domestic 
product, or carbon intensity, by more than 65% from 2005 levels by 2030 and 
achieve carbon neutrality by 2060. In addition, the European Union (EU) has put 
in place legislation to reduce emissions by at least 40% by 2030 – as part of the 
EU's 2030 climate and energy framework and current contribution to the Paris 
Agreement. The importance of environmental protection is continuously translated 
into regulations that have a tangible influence on logistics and supply chain 
management. The contribution of logistics activities in terms of emissions cannot 
be ignored. According to the annual report for Inventory of U.S. Greenhouse Gas 
Emissions and Sinks, the transportation sector generates the largest share of 
greenhouse gas emissions, i.e., 28.2% in total. 

Given that road freight transportation accounts for a large portion of CO2 
emissions, reducing emission and fuel consumption is inevitable in transportation 
management. There is an increasing number of studies on the interface between 
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logistics and environmental issues in this direction. Sbihi and Eglese [111] 
investigate some combinatorial optimization problems existing in reverse logistics, 
waste management, and vehicle routing and scheduling in the context of green 
logistics. Lin et al. [112] reviewed many environmental management applications 
in sustainable supply chain management. Demir et al. [113] discuss the fuel 
estimation models to reduce CO2 emissions in green road freight transportation. 
Ericsson et al. [114] mention that CO2, directly related to carbon-based fuel 
consumption, is regarded as one of the most severe environmental threats through 
the greenhouse effect.  

This chapter incorporates CO2-related considerations in city logistics, 
specifically in the Vehicle Routing Problem (VRP) framework. The CO2 emission 
and fuel consumption are influenced by vehicle speed, vehicle load, and travel 
time [115]. Assuming constant vehicle speed is unrealistic for most logistics 
applications due to traffic congestion or cannot calculate precise fuel consumption 
and CO2 emissions. Thus, the time-dependent travel times are considered in the 
calculation of fuel consumption. Time dependency is usually modeled by 
partitioning the planning horizon into a series of short time intervals, in which the 
constant speed is assumed. The investigated problem is relevant to Time-
Dependent Green Vehicle Routing Problem with Time Windows (TDGVRPTW), 
accounting for time-dependent travel times, fuel consumption, and CO2 emissions 
costs. There have been many studies for solving TDGVRP based on different 
solution methods. Xiao and Konak [116] applied a hybrid algorithm of MIP and 
iterated neighborhood search to solve a GVRP under traffic congestion. Soysal 
and Çimen [117] propose a simulation based on a restricted dynamic 
programming approach for the TDGVRP. Kazemian et al. [118] investigate a 
GTDVRPTW by presenting a graph transformation approach to reduce the 
problem complexity.  

However, many previous studies conducted their experiments based on the 
simple customer graph instead of the real road network (geographical graph). In 
the customer graph, travel distances or expected travel time are typically 
calculated based on the Euclidean distance. It is an approximate approach to 
measure fuel consumption and time dependency. Another main drawback of 
testing on a customer graph is that it ignores path selection decisions since there 
are typically multiple road segments connecting two customers. According to 
[119], considering path selection decisions in a real road network results in 
significant savings in cost and fuel consumption compared to traditional TDVRP. 
Besides, in the previous studies, the time-dependent travel speed is assumed by the 
different proportions of a constant speed, resulting in the so-called fast, normal, 
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and slow speed profiles. This assumption cannot truly reflect the real-time travel 
times and traffic congestion in a real road network. In this paper, the time-
dependent travel time is measured using real-time GPS trajectory data of floating 
vehicles in Chengdu, a megacity in western China. In addition, all experiments are 
conducted on Chengdu's real road network to consider path selection decisions in 
TDVRP explicitly. We propose three different path selection decisions with the 
objective function accounts for total travel distance, travel duration, and fuel 
consumption, respectively. For any given two customers in a real road network, 
we can then generate three different paths, namely shortest distance path (SDP), 
time-dependent quickest time path (TDQTP), and time-dependent lowest 
consumption path (TDLCP), respectively. Incorporating routing and path selection 
decisions has potential benefits for cost and fuel consumption savings since it 
considers the temporal and spatial differences of congestion in a real road network.  

This work has three main contributions to the literature. 
⚫ We propose an efficient branch and price algorithm for solving the time-

dependent green vehicle routing problem based on real-time travel speed in 
the road network of Chengdu, a megacity in western China. This algorithm 
is proved to be efficient for solving the investigated TDGVRPTW up to 40 
customers in the large road network with 1502 nodes and 4641 road 
segments. 

⚫ We demonstrate the benefits of incorporating time-dependent lowest 
consumption path into vehicle routing compared to the traditional shortest 
distance and quickest time path selection decisions. The saving of CO2 
emission and travel time is up to 4.79% and 6.91% for investigated 
instances. It is also demonstrated that the benefits would be more 
significant in the larger size of the real road network. 

⚫ The proposed TDLCP algorithm can be used as a fundamental technique 
for fuel-optimized navigation systems in real road networks. In addition, 
the branch and price algorithm for solving TDGVRPTW can also be 
applied in the operation of logistics companies to minimize fuel 
consumption and CO2 emission.   

This Chapter is organized as follows. Section 5.2 reviews the relevant 
literature. Section 5.3 describes the TDGVRPTW model. The exact solution 
method is discussed in Section 5.4. The experimental settings and results are 
presented in Section 5.5.  
5.2 Literature review 

This chapter considers the time-dependent travel time, time windows, carbon 
emission, and fuel consumption in vehicle routing. To provide a clear review of 
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previous research, we briefly summarize the literature related to TDVRPs, GVRPs, 
and TDGVRPs. 
Time-dependent vehicle routing. The TDVRP is first formulated as a mixed-
integer linear programming formulation by [120] to measure the traffic congestion 
effects on vehicle routing. A greedy nearest-neighbor heuristic and a branch and 
cut algorithm are proposed to solve the TDVRP. Ichoua et al. [121] introduce a 
travel speed model with a First In–First Out (FIFO) property for TDVRP. The 
FIFO property guarantees that if a vehicle travels from a customer 𝑖 to a customer 
𝑗 at time 𝑡, any identical vehicle leaving customer 𝑖 to customer 𝑗 at time 𝑡 +  , 
where  > 0, would always arrive later. They propose a tabu search method to 
solve TDVRP and test it using modified Solomon instances with three time 
periods and three types of time-dependent arcs. The experiment results show that 
the time-dependent speed model significantly improves over the traditional 
vehicle routing model with fixed travel times. Donati et al. [122] introduce a multi 
ant colony optimization algorithm (MACO) to solve TDVRP. The results show 
that the proposed MACO can solve TDVRP by using Solomon instances and real-
network data. Kok et al. [123] employ a modified Dijkstra algorithm and a 
restricted dynamic programming heuristic to solve TDVRP. Several strategies to 
avoid traffic congestion are investigated, including selecting alternative routes, 
changing the customer visit sequences, and changing the vehicle-customer 
assignments. Gendreau et al. [124] present a comprehensive review of the travel 
speed model, application, and solution method for TDVRP. Gmira et al. [125] 
propose a tabu search heuristic for TDVRPTW on a road network. They 
emphasize the importance of considering the travel speed variations on road 
segments for realistic delivery routing. Computational tests show that the tabu 
search heuristic can obtain high-quality solutions in very reasonable computation 
times on recent benchmark instances in the literature.  
Green vehicle routing. There have been increasing and various studies focusing 
on the GVRP in recent years. Bektas and Laporte [115] present a variant of GVRP, 
named Pollution-Routing Problem (PRP), with a comprehensive objective 
function that accounts for the total travel distance and the fuel consumption, travel 
times, and their costs. The computational results show that, contrary to the VRP, 
the PRP is significantly more difficult to solve to optimality but has the potential 
of total cost savings. Erdoğan and Miller-Hooks [126] formulate a GVRP that 
minimizes total distance while incorporating stops at alternative fueling stations in 
routing plans. Demir et al. [127] present an adaptive large neighborhood search 
algorithm (ALNS) and a speed optimization procedure to solve a bi-objective PRP 
that accounts for CO2 emissions and driving time. However, their model cannot 
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consider traffic congestion since the complete traffic data are not available at the 
planning stage. Dabia et al. [128] propose a branch and price algorithm for a 
variant of PRP. The master problem is a set partitioning problem and is solved 
using column generation. The pricing problem is a speed- and start-time 
elementary shortest path problem with resource constraints and solved by a 
tailored labeling algorithm. Extensive computational experiments show the good 
performance of the proposed algorithm. Moghdani et al. [129] propose an 
extensive structure compromising various aspects, including variants of GVRPs, 
objective functions, uncertainty, and solutions approach for GVRPs. 
Time-dependent green vehicle routing. In recent years, TDGVRP has received 
increasing attention in both the academic and industry community since traffic 
congestion can significantly affect fuel consumption and CO2 emission. Jabali et 
al. [130] propose an Emissions-based Time-Dependent Vehicle Routing Problem 
(E-TDVRP) for calculating CO2 emissions in a TDVRP context. Based on the 
optimal VRP solutions in the literature, they construct an upper and lower bound 
for CO2 emissions. Experiments show the results of the E-TDVRP were relatively 
close to the lower bound, with a CO2 emissions reduction of 4.3% on average. 
Ehmke et al. [131] present a tabu search algorithm to solve TDVRP to minimize 
CO2 emissions. The test is conducted on instances from a real road network 
dataset and 230 million speed observations. Experiments show that significant 
savings in emissions can occur mainly in the suburbs, with heavier vehicles, and 
with heterogeneous pickup quantities compared with routes created with more 
traditional objectives. Huang et al. [119] investigate a time-dependent vehicle 
routing problem with path flexibility (TDVRP–PF) and formulate it under 
deterministic and stochastic travel speed. Compared to VRP, the TDVRP–PF 
generates significant savings in terms of cost and fuel consumption. Franceschetti 
et al. [132] propose a metaheuristic for the TDPRP consisting of routing several 
vehicles to serve a set of customers and determining their speed on each route 
segment with minimizing the cost of driver’s wage and carbon emissions. An 

ALNS heuristic and several new removal and insertion operators significantly 
improve the solution quality. Soysal and Cimen [117] address a TDGVRP that 
accounts for transportation emissions. The problem is formulated and solved by 
simulation-based restricted dynamic programming. The results reveal that 2.3% 
benefit on total emissions and 0.9% benefit on total routing cost could be obtained 
if vehicles start delivery after the heavily congested period is passed. Xu et al. 
[133] investigate a GVRPTW with time-varying vehicle speed. An improved non-
dominated sorting genetic algorithm (NSGA-II) with adaptive and greedy 
strategies is developed to solve the GVRP. Sung and Nielsen [134] address a 
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speed optimization problem under time-dependent travel conditions to minimize 
fuel consumption. An exact approach with approximation schemes is proposed to 
solve this problem. Experiments verify the performance of the proposed method 
in terms of finding near-optimal solutions within a short computation time. Fan et 
al. [135] investigate a multi-depot TDGVRP with minimizing the fixed costs of 
vehicles, penalty costs, and fuel costs. A hybrid genetic algorithm with variable 
neighborhood search is proposed to solve this problem. Cai et al. [136] investigate 
a GVRP with carbon emissions minimization. The differentiation in speed limits 
in each time period and each type of road is considered. A hybrid particle swarm 
optimization is proposed to solve this problem.  
5.3 Problem description 

We first summarize the symbols and their definitions in Table 5.1 and then 
describe the mathematical model of the investigated TDGVRPTW. 

 
Table 5.1 Notation 

Symbol Definition
Set of intersections; Subset of N  consisting of a set of customer nodes C  and a depot {o }
Index of road segment; Set of road segments; Arc set of customers
A fleet of identical vehicles; Capacity of vehicles; Curb-weight of vehicles
Service time and demand of node i
Earliest and latest time at which collection can start at the customer
Carrying weight, travel speed and travel time of vehicle on any given road segment respectively
Parameters of the engine, speed, and weight modules used in FCEM to estimate the fuel consumption
Time horizon; Time intervals; Index of time interval
A path that contains a sequence of road segments traveling from node  i  to node j
Set of possible paths traveling from node i  to node j
Total distance from node i  to node j
Travel time through path       when departing from node i  at time t
Fuel consumption of a vehicle traveling on a path      at time t
Index of feasible route; Set of all feasible routes; A relatively small subset of route in the LP relaxation 
Fuel consumption of route r ; Dual variables
Binary variable that specifies whether customer i is visited on a route r
Binary variable that specifies whether a route r  is included in the solution
Binary variable that is associated with two branching decisions
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Let 𝐺(𝑁,  ) be a road network, where 𝑁  denotes the set of interactions and   
denotes the set of road segments. Figure 5.1 shows an example of a real road 
network. Let 𝑁  be a subset of 𝑁, which consists of a set of customer nodes  𝐶 and 
the depot 𝑜 (i.e., 𝑁 = 𝐶 ∪ {𝑜} c). Let    be the arc set of customers. There is a 
fleet of identical vehicles 𝐾, each with capacity  , starting at depot 𝑜 to collect 
freight from customers   𝐶  scattered in  𝐺(𝑁,  ). Let a node 𝑖 ∈ 𝐶  be associated 
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with its service time   , demand    and time window [𝑒 , 𝑙 ] , with 𝑒 (𝑙 )  the 
earliest (latest) time at which collection can start at the customer. We set the depot 
demand to zero, and the time window of the depot is set to be [𝑒𝑜, 𝑙𝑜] = [0, 𝑇] by 
given a finite time horizon 𝑇. The objective is to minimize the overall operational 
cost, including vehicle drivers’ cost and fuel consumption cost. The vehicle 
drivers’ cost is paid by the fixed monthly salary and is thus considered as a 

constant. The objective is thus to minimize the total fuel consumption cost. We 
adapt a widely used Fuel Consumption Estimation Model (FCEM) to calculate the 
fuel consumption. This model can be simplified as a function of carrying weight 
 , travel speed 𝑣 and travel duration   of vehicle on any given road segment as 
follow: 

              𝐹( , 𝑣, 𝑡) =  1𝑡 +  2𝑣
 𝑡 +   ( +  )𝑣𝑡)                (5.1) 

where   is the curb-weight of vehicles, and  1,  2  and    are parameters of the 
engine, speed, and weight modules, respectively. The detailed description of 
FCEM can be found in Appendix A.  
 

 
Figure 5.1 An example of real road network 

5.3.1 Time-dependent travel time 
Similar to [121, 137], we associate each road segment  ∈   with a speed 

profile that divides the time horizon [0, 𝑇] into 𝐻 time intervals. In this profile, the 
travel speeds are assumed to be constant in any time interval ℎ ∈ 𝐻 but may vary 
from one interval to the next. With this setting, the corresponding travel time 
function is a continuous piecewise linear function that satisfies the FIFO property, 
meaning that the travel time functions are all strictly increasing. We define a path 
𝑃  

 = { 1
 ,  2

 , … } as a sequence of road segments traveling from node 𝑖 to node 𝑗. 
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There are normally multiple paths connecting node 𝑖 and node 𝑗 in the real road 
network. We thus define 𝑃  = {𝑃  

1 , 𝑃  
2 , … } as the set of possible paths traveling 

from node 𝑖  to node 𝑗 . Let 𝜏  
 (𝑡)  be the travel time through path 𝑃  

  when 

departing from node 𝑖 at time 𝑡 ∈ ℎ = [𝑡 , 𝑡 ] where 𝑡  and 𝑡  are the lower and 
upper boundary of time interval ℎ.  

Algorithm 1 describes the procedure for calculating the total travel time 𝜏  
 (𝑡) 

from node 𝑖 to node 𝑗 for any departing time 𝑡 according to [121]. Suppose that 
the vehicle leaves node 𝑖 at time 𝑡 ∈ ℎ to travel an arc(𝑖, 𝑗) with total distance 𝑑  , 
the travel time it travels at speed 𝑣  is denoted by 𝜏  

  (𝑡). We have: 

                                      𝜏  
 (𝑡) = ∑ 𝜏  

  (𝑡)                                                                  (5.2)

 ∈𝐻

 

which is the sum of travel time spent at speed 𝑣  for related time interval ℎ. 
This function has a finite set of break points that denote the change of speed 
(hence the travel time). Figure 5.2 presents an example of the travel time and 
travel speed function for an arc of distance 1. Besides, let 𝑡  and 𝑡  denote the 
current time and arrival time respectively. According to equation (5.1), the fuel 
consumption of a vehicle traveling on a path 𝑃  

  at time 𝑡 can be calculated as  

  𝑓  
 (𝑡) =  1 ∑ 𝜏  

  (𝑡)

 ∈𝐻

+  2 ∑(𝑣 ) 𝜏  
  (𝑡)

 ∈𝐻

+   ∑( +  )𝑣 𝜏  
  (𝑡)

 ∈𝐻

  (5.3) 

 
Algorithm1 Travel time calculation
Step 1. Initialization 
      1.1
      1.2
      1.3
Step 2. While                  do
      2.1
      2.2
      2.3
      2.4
Step 3. Return            

𝑡 ≔ 𝑡

𝑑 ≔ 𝑑  

𝑡 ≔ 𝑡 + (𝑑 𝑣 )

(𝑡 > 𝑡 )

𝑑 ≔ 𝑑 − 𝑣 (𝑡 − 𝑡 )

𝑡 ≔ 𝑡 

𝑡 ≔ 𝑡 + (𝑑 𝑣 )

ℎ ≔ ℎ + 1

(𝑡 − 𝑡)  
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Figure 5.2 An example of travel time and travel speed function 

 
The investigated TDGVRPTW is clearly a complex problem, as in addition to 

the complexity of TDVRP, it also considers the real time travel speed. The 
complexity of the problem is 𝒪(|𝑁|2 ⋅ | | ∙ |𝐻|) , where |𝑁|  is the number of 
served customers,  | | is the number of network road-links and |𝐻| is the number 
of time intervals. The carrier company needs to allocate customers to vehicles, 
determine the exact order in which are visited, and make the path selection 
decisions based on time-dependent travel speed. The time-dependent travel speed 
influences not only the resulting travel time function of each road segment, and in 
return, affects the departure time vehicles leave at the depot, but also path 
selection between customers due to the temporal and spatial differences of 
congestion. 
5.3.2 Time-dependent lowest fuel consumption path (TDLFCP) 

A modified Dijkstra’s algorithm is proposed to find the time-dependent lowest 
fuel consumption path from node 𝑖 to node 𝑗 efficiently for any given departure 
time 𝑡, carrying load   and speed profile. The pseudo-code of this algorithm is 
present in Algorithm 2. In step 1, all the parameters are first initialized. In 
particular, each node is labeled by the departure time, predecessor node, fuel 
consumption and current load. The label is then updated from the original node 𝑖 
based on the dynamic programming principle in step 2. The step 3 aims to find the 
unvisited node with lowest fuel consumption and mark it as ‘visited’. The 

algorithm is terminated if node 𝑗 is visited, otherwise it goes to step 2. 
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Algorithm 2 Modified Dijkstra's algorithm for time dependent lowest fuel consumption path from node i  to j
Step 1. Initialize graph G(N,A) , departure time t , load  w , and speed profile.
      1.1. Label the original node i  as                     , where                                represents the departure time,
             the predecessor node         , fuel consumption and current load of node i
      1.2. Label all other nodes as
      1.3. Set node i as "visited"
Step 2. Label update.
      2.1. Denote the last visited node as 
      2.2. For any not visited node              and arc                      do
            a)Calculate                                         , where                        represents the fuel consumption on 
               arc                     when the truck travels from node       to node     at time       with load 
            b)If                    , update the label of node n  with                                                                where
                                 is the travel time on arc
Step 3. Scan a node.
      Find the unvisited node with the lowest fuel consumption      and mark it as "visited"
Step 4. Termination.
      If node j is visited, stop.
      Else, go to step 2.
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5.4 Set partitioning formulation and column generation 

Let   be the set of all feasible routes that satisfy vehicle capacity and time 
windows. A binary variable   

  specifies whether customer 𝑖 ∈ 𝐶 is visited on a 
route 𝑟 ∈  . For each route 𝑟 ∈  , define a binary parameter   , which equals to 1 
if route 𝑟 is included in the solution and 0 otherwise. The TDGVRPTW can be 
formulated as the following set partitioning model: 

            Min ∑ 𝑓   

 ∈Ω

                                                                                          (5.4) 

subject to 

                    ∑   
 

 ∈Ω

  = 1,          ∀𝑖 ∈ 𝐶                                                                       (5.5) 

                      ∈ {0,1},          ∀𝑖 ∈ 𝐶                                                                             (5.6) 
The objective function (5.4) aims to minimize the total fuel consumption 

where 𝑓  is the fuel consumption of route 𝑟. Constraint (5.5) guarantees that each 
customer is visited exactly once, while constraint (5.6) defines the range of the 
variables. A column generation (CG) method is used to solve a restricted master 
problem (RMP) by replacing   with a relatively small subset   ⊆   in the linear 
programming (LP) relaxation of (5.4)-(5.6). At each iteration of CG process, an 
optimal primal solution for this RMP is obtained by solving a pricing subproblem 
that searches for variables with negative reduced cost. The reduced cost of a 
variable (route) can be calculated as 

                      𝑓 ̅ = 𝑓 − ∑   
 

 ∈Ω

  ,          ∀𝑖 ∈ 𝐶                                                           (5.7) 



5-Time-dependent green vehicle routing problem with time windows 

78 
 

where   , 𝑖 ∈ 𝐶 are the dual variables associated with constraint (5.5). When 
negative reduced cost routes are found, they are added to subset    before starting 
next iteration. Otherwise, the CG process is terminated with an optimal solution to 
the MP.   
5.4.1 Branching 

To derive integer solutions, branching is the ultimate operation to conduct in a 
branch and price algorithm. We adapt a robust branching scheme based on flow 
variables 𝑥  = ∑   

∗
 ∈Ω′ , (𝑖, 𝑗) ∈   , where   

∗ is the (fractional) optimal solution 
of the LP relaxation of RMP. It is one of the most common branching rules 
introduced by Desrosiers et al. [138] for VRPTW. 𝑥   is a binary and is associated 
with two branching decisions (i.e., 𝑥  = 0  and 𝑥  = 1 ). The former decision 
indicates that the arc (𝑖, 𝑗) will be removed from the arc set when solving the 
pricing problem. On the contrary, the arc (𝑖, 𝑗) must be included in a solution if 
𝑥  = 1. To enforce this, we first identify two type of arcs (i.e., arc(𝑖, 𝑘), 𝑘 ≠ 𝑗, 𝑖 ∈

𝐶 and arc(𝑘, 𝑗), 𝑘 ≠ 𝑖, 𝑗 ∈ 𝐶) in all route variables in current RMP. All these arcs 
are then removed from arc set    to enforce that node 𝑗 will always be visited 
immediately after node 𝑖 in any route generated by the pricing problem. We select 
branching variables by using Strong branching [139]. Strong branching aims to 
quickly evaluate the impact of branching on several candidates. For each branch 
candidate, the lower bound of two children nodes is estimated by solving the 
associated LP relaxation. In particular, for any given arc branching node, a subset 
of arcs   

 ⊂    that are candidates for branching is selected. The lower bounds 
𝑙𝑏𝑎

  and 𝑙𝑏𝑎
  of both children nodes can then be calculated if arc  ⊂   

  was 
chosen for branching. After calculating all these lower bounds, one can select the 
branch that maximizes the lower bound in the weakest of the two children nodes. 
The number of nodes to explore in the search tree can be reduced significantly by 
using Strong branching, while it would increase the time to select the branching 
candidate at each node. Consequently, the common practice is to limit the size of 
candidates to evaluate and to calculate approximate lower bounds in the strong 
branching selection process.  
5.4.2 Pricing problem 

We solve the pricing problem by using bidirectional labeling that consists of 
extending labels in both directions (from node 0 to its successors and from node 
𝑛 + 1 to its predecessors). The forward labels and backward labels are merged to 
obtain the complete feasible routes.  
The forward labeling algorithm 
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In this algorithm, labels are extended from the start depot to its successors. We 
assume the vehicle leaves depot at time 0. We record the following information to 
a label  𝑓: 

𝑣( 𝑓)   Last node visited on the partial path 𝑝( 𝑓). 
𝐹( 𝑓)   Total fuel consumption used on the partial path 𝑝( 𝑓). 
 ( 𝑓)   Total load delivered along the partial path 𝑝( 𝑓). 
𝛿𝐿𝑓

(𝑡)   The ready time function at 𝑣( 𝑓). 

𝑆( 𝑓)   Set of nodes visited along the partial path 𝑝( 𝑓). 
The partial path 𝑝( 𝑓) can be deduced from iteratively  
Given a label  𝑓

 , its extension label  𝑓 along arc(𝑣( )𝑓
 , 𝑗) to a node 𝑗 can then 

be created based on following equations: 

𝛿𝐿𝑓
(𝑡) = max {𝑒 +   , 𝛿𝐿𝑓

′ (𝑡) + 𝜏
 (𝐿𝑓

′ ) 
(𝛿𝐿𝑓

′ (𝑡)) +    },          (5.8) 

    𝑆( 𝑓) = 𝑆( 𝑓
 )⋃{𝑗},                        (5.9) 

    𝐹( 𝑓) = 𝐹( 𝑓
 ) +   ,                      (5.10) 

     ( 𝑓) =  ( 𝑓
 ) +   ,           (5.11) 

 
The new label  𝑓 is feasible if it simultaneously satisfies the following three 

conditions: 
   𝛿_( _𝑓^′ ) (0) + 𝜏_𝑣( _𝑓^′ )𝑗 (𝛿_( _𝑓^′ ) (0)) +  _𝑗 ≤ min {𝑡_𝑚, 𝑙_𝑗 +

 _𝑗 }     ∧    𝑗 ∈ 𝑁\{0}                                                        (5.12) 
    ( _𝑓^′ ) +  _𝑗       ∧    𝑗 ∈ 𝑁\{0}         (5.13) 
    𝑆( _𝑓^′ )⋂{𝑗} = ∅   ∧    𝑗 ∈ 𝑁\{0}          (5.14) 

 
Condition (5.12) ensures that the node 𝑗 can be arrived within its time window 

and do not exceed the fixed time 𝑡𝑚. Condition (5.13) ensures that the total load 
 ( 𝑓) of label  𝑓 do not exceed the vehicle’s capacity. Condition (5.14) avoids 
the repetitive label extension.  

In the labeling algorithm, there are typically very large number of labels 
needed to be derived and stored. To reduce the number of labels and accelerate 
the label extension process, several dominance rules proposed by Dabia et al. [137] 
are used to eliminate the unpromising labels. Let  ( 𝑓) be the set of feasible 
extensions of the label  𝑓 to node 𝑛 + 1. More formally, the set  ( 𝑓) contains all 
partial paths that can leave node 𝑣( 𝑓) at time 𝛿𝐿𝑓

(0) or later and arrive node 𝑛 +

1 within time windows, which has total load less than  −  ( 𝑓) and that do not 



5-Time-dependent green vehicle routing problem with time windows 

80 
 

visit nodes from 𝑆( 𝑓). For any label  ∈  ( 𝑓), we define  𝑓⨁𝐿  as the label 
generated from extending  𝑓 by  . In forward labeling algorithm, dominance is 
defined as following: 

DEFINITION 1. Label  𝑓
2  is dominated by label  𝑓

1  if 
1. 𝑣( 𝑓

1) = 𝑣( 𝑓
2), 

2.  ( 𝑓
2) ⊆  ( 𝑓

1) 
3. 𝐹( 𝑓

1⨁𝐿) ≤ 𝐹( 𝑓
2⨁𝐿), ∀ ∈  ( 𝑓

2). 
Condition 2 indicates that any feasible extension of label  𝑓

2  must be feasible 
for label  𝑓

1 . In addition, condition 3 ensures that extending label  𝑓
1  should always 

generate a better route with lower fuel consumption. However, it is difficult to 
verify all the conditions of definition 1 without evaluating all feasible extensions 
of both label  𝑓

1  and  𝑓
2 . Instead, more sufficient dominance rules are introduced in 

proposition 1 to further reduce the computational efforts.  
PROPOSITION 1. Label  𝑓

2  is dominated by label  𝑓
1  if 

a. 𝑣( 𝑓
1) = 𝑣( 𝑓

2), 
b. 𝐹( 𝑓

1) ≤ 𝐹( 𝑓
2), 

c. 𝑆( 𝑓
1) ⊆ 𝑆( 𝑓

2), 
d. 𝑑𝑜𝑚( 𝑓

2) ⊆ 𝑑𝑜𝑚( 𝑓
1), 

e. 𝛿𝐿𝑓
1 (𝑡) ≤ 𝛿𝐿𝑓

2 (𝑡), ∀𝑡 ∈ 𝑑𝑜𝑚( 𝑓
2), 

f.  ( 𝑓
1)   ( 𝑓

2). 
Conditions c, e, and f enforce that any feasible extension of label  𝑓

2  is feasible 
for label  𝑓

1 . Conditions b, d, and f ensure that for any feasible extension   of label 
 𝑓

2 , the fuel consumption of the path 𝑝( 𝑓
1⨁𝐿) is less than or equal to the fuel 

consumption of the path 𝑝( 𝑓
2⨁𝐿).  

The backward labeling algorithm. 
In the backward labeling algorithm, labels are extended from the depot (i.e., 

node 𝑛 + 1 ) to its predecessors. For a label  𝑏 , we record the following 
information: 

𝑣( 𝑏)   First node visited on the partial path 𝑝( 𝑏). 
𝐹( 𝑏)   Total fuel consumption used on the partial path 𝑝( 𝑏). 
 ( 𝑏)   Total load delivered along the partial path 𝑝( 𝑏). 
𝛿𝐿𝑏

(𝑡)   Ready time at node 𝑛 + 1 along the partial path 𝑝( 𝑏) when 
leaving node 𝑣( 𝑏) at time 𝑡. 

𝑆( 𝑏)   Set of nodes visited along the partial path 𝑝( 𝑏). 
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Let 𝑡 ( 𝑏) denote the latest possible ready time at node  𝑣( 𝑏). The set of 
feasible extensions  ( 𝑏) of  𝑏 is the set of partial paths such that when leaving 
at the depot and reaching node 𝑣( 𝑏)  at some time 𝑡 ≤ 𝑡 ( 𝑏)  within time 
windows. The basic operation in the backward labelling algorithm is quite similar 
to the forward labelling algorithm which aims to extend a label  𝑏

  along an 
arc(𝑗, 𝑣( 𝑏

 ) ) to a node 𝑗 to generate a new label  𝑏. The ready time function of a 
new label  𝑏 can be calculated as follows: 

𝛿𝐿𝑏
(𝑡) = 𝛿𝐿𝑏

′ (max {𝑒 (𝐿𝑏
′ ) +   (𝐿𝑏

′ ), 𝑡 + 𝜏  (𝐿𝑏
′ )(𝑡) +   (𝐿𝑏

′ ) }),      (5.15) 
In addition, we can update other information of label by  

𝑆( 𝑏) = 𝑆( 𝑏
 )⋃{𝑗},           (5.16) 

𝐹( 𝑏) = 𝐹( 𝑏
 ) +   ,                      (5.17) 

 ( 𝑏) =  ( 𝑏
 ) +   ,          (5.18) 

The extension of  𝑏
  of  𝑏 is feasible respect to the following three conditions 

 ( _𝑏^′ ) +  _𝑗       ∧    𝑗 ∈ 𝑁\{𝑛 + 1},        (5.19) 
𝑡_𝑙 ( _𝑏 ) ≥ max (𝑡_𝑚, 𝑒_𝑗 +  _𝑗 )    ∧   𝑗 ∈ 𝑁\{𝑛 + 1},      (5.20) 
𝑆( _𝑏^′ )⋂{𝑗} = ∅   ∧    𝑗 ∈ 𝑁\{𝑛 + 1},         (5.21) 

Condition (5.19) ensures the capacity feasibility while the condition (5.20) 
ensures that node 𝑗 can be arrived within its time windows and the extension will 
be terminated before 𝑡𝑚. To avoid redundancy, we omit the dominance rules as 
they can be applied in the same way as in forward labelling algorithm. 

 
Merging forward and backward labels. 
After all the forward and backward labels are generated, they are merged to obtain 
the complete feasible routes with negative reduced cost. The resulting label  =

 𝑏⨁𝐿𝑓
 is feasible if it satisfies the condition (5.22). 

𝑣( 𝑏) = 𝑣( 𝑓)    ∧   𝑆( 𝑏)⋂𝑆( 𝑓) = {𝑣( 𝑓)}   ∧    ( 𝑏) +  ( 𝑓) −

  (𝐿𝑓) ≤  ,                                                                                          (5.22) 
Furthermore, it has the following attributes: 

⚫ 𝑣( ) = 𝑛 + 1, 
⚫ 𝐹( ) = 𝐹( 𝑏) + 𝐹( 𝑏) −   (𝐿𝑓), 

⚫  ( ) =  ( 𝑏) +  ( 𝑓) −   (𝐿𝑓), 

⚫ 𝑆(𝑙) = 𝑆( 𝑏)⋃𝑆( 𝑓) 
The new labels   with negative reduced cost are then added to the RMP as new 

columns. Otherwise, the CG process is terminated for current iteration. 
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5.5 Computational results 
This section presents the results of computational experiments using the 

mixed-integer formulation of TDGVRPTW described in section 5.3 and the 
branch and price algorithm presented in section 5.4. All tests are conducted using 
a different set of instances with respectively 10, 20, 30, and 40 customers. These 
instances are that are stored in a Github repository 
(https://github.com/gcmswm/InstancesForTDGVRP). All experiments are tested 
by using CPLEX 12.10 on an Intel(R) Core(TM) i9-10850K computer with 3.60 
GHz and 16 Gb RAM.  

To compare the potential difference in the size of a real-road network, we 
generate three different sizes of real road networks based on the map of Chengdu. 
Table 5.2 lists the number of nodes and road segments for small, medium, and 
large road network cases, respectively, while Figure 5.3 shows the image of each 
road network. 

 
Table 5.2 Information of three different road network 

Road network # Road segments # Nodes
Small 1250 408
Medium 2233 835
Large 4641 1502  

  

Small Road Network Medium Road Network Large Road Network
 

Figure 5.3 Three road network cases with different network sizes 

Instead of assuming the equal demand and service time of each customer, we 
generate the customer demand based on the random samples from normal 
(Gaussian) distribution. After generating the customer demand, the service time is 
generated based on an adequate proportion of customer demand. The main point 
is that more customer demand needs more time to load or unload. The customer 
locations are generated by randomly selecting from the nodes of each road 
network, and time windows of each customer are also randomly generated based 
on some reasonable rules. For each road network, we generate 80 instances with 
four different numbers of total customers. For example, the instance name ‘S1-10’ 

https://github.com/gcmswm/InstancesForTDGVRP
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means the first instance of the small road network with ten customers, while the 
instance name ‘L5-30’ means the fifth instance of the large road network with 30 
customers. Customers are served by a fleet of homogeneous light-duty vehicles, 
each with a capacity of 4995 kg. Other parameters of the vehicles are presented in 
Table A.1 in Appendix A. According to [140], the burning of a liter of diesel 
produces around 2.65 kg of CO2 (based on the calorific value of diesel with a 
density of 0.835 𝑘𝑔 𝑑𝑚  ). We apply the 2.65 kg as a diesel emission factor of 
CO2-emissions per liter. The CO2 emission can thus be calculated by the product 
of fuel consumption and emission factor. 

We generate the speed profile by using real time travel speed obtained by GPS 
data of taxis in the city of Chengdu, China. The details of generation of speed 
profile are present in Appendix B.  

Figure 5.4 presents two examples of speed profiles for 40 randomly chosen 
road segments in the large road network. The time horizon starts at 8:00 am and 
ends at 18:00 pm. We divide the total 10 hours into 30 time intervals.  Each 
interval has 20 minutes with a constant speed. 
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Figure 5.4 Two examples of speed profiles for 40 randomly chosen road segments 

5.5.1 Performance of branch and price algorithm 
To provide a clear graph view of the solution for TDGVRPTW, we first 

generate detailed paths of solving three instances in Figure 5.5. In Figure 5.5, 
different colored lines indicate different vehicle routes. For example, in Figure 5.5 
(b), 20 customers are served by four vehicles in different routes. Next, Table 5.3 
presents the detailed solution of instance L18-20, including vehicle routes, travel 
distance, fuel consumption, CO2 emission, and travel times.  
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(a) Detailed path of instance L15-10 (b) Detailed path of instance L18-20 (c) Detailed path of instance L16-30
 

Figure 5.5 Detailed paths of three instances in a large road network 

Table 5.3 Detailed solution of instance L18-20 

Vehicle Routes Distance
(km)

Fuel
(Liter)

CO2 Emissions
(kg)

Travel Times
(min)

0-13-17-3-18-0 9.48 0.56 1.47 21.5
0-5-10-16-1-9-20-0 21.43 1.16 3.08 43.8
0-2-14-6-19-12-0 25.66 1.51 4.00 57.9
0-8-15-11-4-7-0 40.09 2.14 5.67 79.1
Total 96.65 5.37 14.23 202.3  

 
To review the performance efficiency of the proposed branch and price 

algorithm, we summarize the minimum, average and maximum CPU time and the 
gap of solving these instances in Table 5.4. It is clear that the branch and price 
algorithm is fully efficient for the instances with 10 and 20 customers as all of 
these instances can be solved optimally within a few seconds or minutes. On the 
other hand, the computational efforts for solving the instances with 30 customers 
increase to about 50 minutes on average while optimality is still guaranteed. In 
addition, the CPU time increases significantly for almost all the cases with 40 
customers, i.e., 4.3 hours on average. This is because our procedure is only 
terminated when the gap is reached to 0.0% or the CPU time is reached to 18000s. 
The gap between lower bound and upper bound is about 2.5% on average, which 
is typically acceptable for many real-world industrial problems. 
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Table 5.4 Time consumption and gap of solving different instances 

Minimum Maximum Average Minimum Maximum Average
Small 0.3 1.2 0.6 0.0 0.0 0.0

Medium 0.5 7.5 2.2 0.0 0.0 0.0
Large 1.5 20.5 5.5 0.0 0.0 0.0

Small 12.7 375.8 96.9 0.0 0.0 0.0
Medium 31.6 382.4 110.6 0.0 0.0 0.0

Large 44.2 677.8 196.4 0.0 0.0 0.0

Small 55.3 3198.3 991.2 0.0 0.0 0.0
Medium 85.5 5845.1 1613.7 0.0 0.0 0.0

Large 179.0 18000.0 5158.1 0.0 0.0 0.0

Small 772.6 18000.0 14051.3 0.0 6.9 1.6
Medium 5098.8 18000.0 16483.2 0.0 6.6 2.5

Large 7582.8 18000.0 16398.2 0.0 7.7 2.5

Gap(%)

40
customers

20
customers

30
customers

10
customers

CPU Time(s)
Road NetworkProblem Size

 
5.5.2 Comparison of three different path selection decisions 

To demonstrate the potential difference of the proposed different path 
selection decisions in the real road network, i.e., TDLEP, SDP, and TDQTP, we 
generate the shortest distance path, quickest time path, and lowest consumption 
path for six given origin-destination (OD) pairs, respectively. Figure 5.6 presents 
the detailed paths for a vehicle traveling from the origin to its destination at 
departure time 10:00 am with a load of 4000 kg. To make a clear comparison, we 
also list all the information including travel distance, travel time, and fuel 
consumption for the three paths in Table 5.5. In Figure 5.6, there are distinctive 
paths for traveling each OD pair. Most notable is shown in Figure 5.6(f), where 
the three paths are almost totally different. In Figure 5.6(b), (c), (e), and (f), the 
SDP starts from the origin and then across the city center to its destination, while 
the TDQTP detours through the outmost ring road. From our common sense, this 
is usually a good decision when the road segments of the city center have heavy 
traffic. However, it is worth stating that the TDLCP should be considered a 
practical choice since it has the lowest consumption while the values of travel 
distance and travel time are all between the counterpart values in SDP and 
TDQTP in the given six cases. Take the OD pair ‘641—771’ in Figure 5.6(c) as 
an example. Its travel distance through SDP, TDQTP and TDLCP is 16.332 km, 
20.913 km, and 16.779 km, respectively. The travel distance with TDQTP 
increases 28.05% compared to the counterpart in SDP, while the distance through 
TDLCP only increases 2.66%. The situation is similar for travel time, while the 
TDLCP decreases the consumption by 11.63% and 6.57% compared to SDP and 
TDQTP, respectively. Note that this is not a coincidence since our experiments on 
all investigated 240 instances further prove this interesting finding. 
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Lowest Consumption Path Shortest Distance Path Quickest Time Path

(a) (b) (c)

(d) (e) (f)

 

Figure 5.6 Detailed paths for three different path selections in a large road network 

Table 5.5 Detailed information of different path selections for six OD pairs 

Distance  Consumption Travel Time
(km) (Liter) (min)

SDP 9.717 0.581 22.25
TDQTP 12.492 0.595 18.67
TDLCP 10.319 0.558 20.77

SDP 16.848 0.996 37.58
TDQTP 20.287 0.959 30.17
TDLCP 18.485 0.904 31.84

SDP 16.332 1.036 40.15
TDQTP 20.913 0.989 34.41
TDLCP 16.779 0.928 34.73

SDP 14.415 0.951 37.25
TDQTP 16.805 0.841 30.62
TDLCP 14.919 0.824 31.33

SDP 14.182 0.925 36.23
TDQTP 21.110 0.988 31.85
TDLCP 14.353 0.876 33.75

SDP 15.371 0.946 36.25
TDQTP 19.778 0.940 32.65
TDLCP 15.919 0.936 35.67

ModelOD Pairs

363—80

1027—914

598—305

515—764

596—419

641—771

Order in
Figure 7

(a)

(b)

(c)

(d)

(e)

(f)

 
 

To further verify the potential benefits of incorporating TDLCP into time-
dependent vehicle routing in real road networks, we conducted the experiments 
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based on all investigated 240 instances. Table 5.6 lists the results of average travel 
distance, consumption, emissions, and travel times. The column ‘Problem Size’ 

indicates the number of customers in the group of instances.  The column ‘Road 
Network’ and ‘Model’ identify the road network size and path selection decision, 
respectively. The column ‘Average Distance’ lists the average travel distance 

based on 20 instances for each road network and problem size. The gap is 
calculated by comparing the value of TDQTP and TDLCP with the value of SDP, 
respectively. As the CO2 emission is calculated by multiplying a factor with fuel 
consumption, the gap of CO2 emission is thus the same as the gap of fuel 
consumption. Besides, the average travel times and their gap are listed in the last 
two columns. Let us start looking at the average travel distance. The average 
travel distance of TDLCP is always less than the counterpart of TDQTP for all 
instances.  This result indicates that TDLCP is a better choice than TDQTP in the 
case of saving travel distance. Besides, the savings of average consumption and 
emissions for TDLCP and TDQTP range from 2.75% to 4.79% and from 2.72% to 
4.33%, respectively. The value of TDLCP is for sure less than the value of 
TDQTP for all instances, but there is no significant difference between them. This 
is because the TDLCP and TDQTP have the same paths for some OD pairs. Take 
the extreme case as an example. For any two connected nodes, the TDQTP, SDP, 
and TDLCP are for sure the same no matter how heavy traffic on the road 
segment since there is only one way to travel from the origin to its destination. In 
addition, the saving of average travel time for TDLCP and TDQTP is up to 6.91% 
and 7.40%, respectively.  

In summary, compared to SDP, incorporating TDLCP into time-dependent 
vehicle routing would result in up to 4.79% consumption and emission savings 
and 6.91% travel time savings, while the travel distance increases up to 2.90%. 
On the contrary, the TDQTP witnesses emission savings and travel time savings 
up to 4.33% and 7.40% respectively while the travel distance increases up to 
4.94%. Another interesting finding is that when the size of the real road network 
increases, the value of the gap also increases relatively. The potential reason is 
that the larger the road network is involved, the more different paths could travel 
between OD pairs. This finding indicates that the benefits of considering TDLCP 
in time-dependent vehicle routing would be more significant in the larger and 
more complex road network.   
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Table 5.6 Comparison of three different path selection models. 

(km) Gap(%) (Liter) (Kg) Gap(%) (min) Gap(%)
SDP 28.585 - 1.825 4.84 - 71.26 -

TDQTP 29.549 3.37 1.758 4.66 -3.70 67.74 -4.93
TDLCP 29.380 2.78 1.757 4.65 -3.77 67.77 -4.89

SDP 35.212 - 2.154 5.71 - 83.20 -
TDQTP 36.291 3.06 2.078 5.51 -3.52 79.17 -4.84
TDLCP 35.955 2.11 2.076 5.50 -3.63 79.25 -4.75

SDP 55.477 - 3.307 8.76 - 126.21 -
TDQTP 58.214 4.94 3.164 8.38 -4.33 116.86 -7.40
TDLCP 57.088 2.90 3.148 8.34 -4.79 117.48 -6.91

SDP 39.904 - 2.536 6.72 - 98.91 -
TDQTP 40.923 2.56 2.448 6.49 -3.48 94.40 -4.56
TDLCP 40.711 2.02 2.447 6.48 -3.52 94.47 -4.48

SDP 57.099 - 3.451 9.15 - 133.12 -
TDQTP 58.666 2.74 3.334 8.83 -3.42 126.80 -4.75
TDLCP 58.216 1.96 3.331 8.83 -3.50 126.94 -4.64

SDP 87.522 - 5.189 13.75 - 197.99 -
TDQTP 91.177 4.18 4.994 13.23 -3.76 186.10 -6.01
TDLCP 89.782 2.58 4.982 13.20 -3.98 186.70 -5.70

SDP 65.172 - 4.121 10.92 - 160.71 -
TDQTP 66.550 2.12 4.009 10.63 -2.72 155.04 -3.53
TDLCP 66.192 1.57 4.008 10.62 -2.75 155.15 -3.45

SDP 87.681 - 5.355 14.19 - 207.14 -
TDQTP 89.954 2.59 5.165 13.69 -3.54 197.29 -4.75
TDLCP 89.350 1.90 5.162 13.68 -3.60 197.45 -4.68

SDP 125.460 - 7.534 19.97 - 289.13 -
TDQTP 130.745 4.21 7.208 19.10 -4.32 269.66 -6.73
TDLCP 129.020 2.84 7.188 19.05 -4.60 270.51 -6.44

SDP 84.284 - 5.317 14.09 - 207.23 -
TDQTP 86.164 2.23 5.171 13.70 -2.76 199.75 -3.61
TDLCP 85.859 1.87 5.168 13.70 -2.80 199.79 -3.59

SDP 112.179 - 6.857 18.17 - 265.34 -
TDQTP 115.264 2.75 6.617 17.53 -3.51 252.68 -4.77
TDLCP 114.435 2.01 6.611 17.52 -3.58 252.90 -4.69

SDP 172.011 - 10.285 27.26 - 394.67 -
TDQTP 178.156 3.57 9.867 26.15 -4.07 370.60 -6.10
TDLCP 176.433 2.57 9.849 26.10 -4.24 371.29 -5.92

40
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Small

Medium

Large

Average DistanceProblem
Size

10
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Chapter 6 
 

Conclusions 

This thesis investigates urban freight transportation and logistics problems 
arising in the City Logistics from both managerial and application points of view.  

Nowadays, the urban freight transportation and logistics system must be more 
competitive and well-functioning, pushed by many factors such as the undergoing 
fierce competition, increasing demand from e-commerce, and high expectations of 
customers. It requires the commitment and cooperation of multiple stakeholders 
and actors and the integration of different business and operational models. In 
doing so, a holistic representation of this complex and hyper-connected system is 
needed. It means that the system should be managed in a modular manner that 
integrates, on the one hand of existing logistics subsystems such as single and 
multi-echelon structures, multimodal and intermodal delivery options (i.e., cargo 
bikes and crowd drivers). On the other hand, a macro-level of interconnections 
among actors, stakeholders, and subsystems should be considered in the top-level 
design of the system. 

This integration considers the behavioral, technological, and optimization 
components of urban freight transportation, enabling decision-makers to cope 
with the various issues arising in urban areas and decisional levels. In particular, it 
requires a multi-disciplinary approach from different research communities (e.g., 
Operational Research, Computer Science, Data Science, Transportation Science) 
to model the overall system. 
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The previous study has demonstrated the effectiveness of using a multi-
disciplinary approach to cope with emerging critical problems in City Logistics. 
These problems include the integration of traditional transportation modes (i.e., 
vans) and, low-emission vehicle (i.e., cargo bikes) and new delivery options (i.e., 
crowd drivers), the dynamic and stochastic vehicle routing problem in the form of 
stochastic demand and location, and time-dependent vehicle routing problem in 
the real road network.  

We have investigated these new applications to overcome a noteworthy 
portion of a gap in the literature considering the integration of different logistics 
and transportation business and operational models and the mixing of managerial 
and operational perspectives to provide public and private policies and jointly 
optimize the parcel delivery process. Furthermore, after analyzing the state-of-the-
art research on smart city projects, we found that the current trend of partnership, 
infrastructure financing, and financial resources for SCPs is mixed, which can 
benefit and encourage all public and private actors to collaborative business 
models. Besides, there is a need for innovative business models, methods, and 
software to represent the entire transportation system, including public 
governance, individuals, and freight movement.  
      To develop and demonstrate the effectiveness of an innovative business model, 
we applied the multi-disciplinary approach to deal with the current practice in 
last-mile delivery. We consider substituting traditional single-echelon routing 
structures with two-echelon ones involving satellites centers and low emission 
delivery options. Indeed, outsourcing the last-mile delivery tasks to third-party 
companies with lower operational cost or flexible delivery options (e.g., crowd 
drivers) is current practice. 
      First, we identified the main actors involved in the City Logistics system from 
both business and operational perspectives and explicitly investigated these actors' 
behaviors, costs, and revenues structures. The operational and economic 
performance of the traditional and green delivery options are also analyzed based 
on the main variables in last-mile delivery (e.g., distance, delivery time, personnel 
cost, etc.). This managerial analysis supports the operational actions and their 
implementation in practice. 

   Second, we addressed a DSVRPTW problem with crowdsourcing for on-
demand parcel delivery. Multiple delivery options are considered into this 
problem together with crowd drivers. A new simulation-optimization framework 
is proposed and applied for the last-mile delivery system, enabling decision-
makers to combine different sources of data, conduct simulation and optimization 
on various realistic instance sets, and analyze the KPIs.  
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We conducted a case study in the medium-sized city of Turin (Italy) to measure 
the potential impact of using cargo bikes, crowdsourcing in parcel delivery. Our 
results show that combining crowd drivers and green carriers into traditional van 
delivery is beneficial to economic and environmental cost-saving, while the 
delivery efficiency decreases. In particular, the total travel distance and CO2 
emissions are reduced in our investigated instances. In addition, green carriers and 
crowdsourcing are promising and flexible solutions when dealing with many 
online requests. We varied the customer demand investigating its potential 
impacts on the system. The results show that operational and environmental costs 
are sensitive to customer demand variations.  

Finally, we investigated a time-dependent green vehicle routing problem based 
on real-time travel speeds in the road network of Chengdu, a megacity in western 
China. A branch and price algorithm is proposed to solve this problem. Three 
different path selection decisions are considered to incorporate into vehicle 
routing. Extensive experiments show that the proposed branch and price algorithm 
efficiently solves the problem of up to 40 customers in the large road network 
with 1502 nodes and 4641 road segments. In addition, the comparison of three 
different path selection decisions demonstrates that the time-dependent lowest 
consumption path is a promising choice for carrier companies in terms of fuel 
consumption and travel-time saving. 

Future directions will consider the optimal workforce capacity planning in 
crowdsourcing applications and their compensation strategies, i.e., hourly 
compensation, per-delivery compensation, and driver-determined compensation 
[82]. Besides, it is also a promising research direction to use the emerging 
techniques (e.g., deep reinforcement learning) from deep learning areas to solve 
combinatorial optimization problems in urban freight transportation and logistics 
systems.  
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Appendix 
A. Fuel Consumption Estimation Model 

A widely used comprehensive model by [141] and [142] is adopted to estimate 
fuel consumption. For a vehicle carrying weight  (𝑘𝑔) and traveling distance 

𝑑(𝑚)  with a constant speed 𝑣 (
𝑚

𝑠
)  in travel duration  , the fuel consumption 

𝐹( , 𝑣,  ) can be estimated as  
𝐹( , 𝑣,  ) = 𝜆(𝑘𝑁𝑒𝑉 + 𝛾𝛽𝑣  + 𝛾𝛼( +  )𝑑)                                        (A.1) 
where contains three different modules, namely engine, speed, and weight 

module, respectively. The engine module 𝑘𝑁𝑒𝑉  is linear in travel duration  , 
while the speed module 𝛾𝛽𝑣   is cubic in speed. The last term 𝛾𝛼( +  )𝑑 is 
called weight module that is linear in the total weight ( +  ). Note that   is the 
vehicle curb-weight, 𝜆 =

 

𝜓𝜅
, 𝛾 =

1

1000𝜖𝜛
, 𝛼 = 𝑔 sin(𝜙) + 𝑔𝐶 cos(𝜙), and 𝛽 =

0.5𝐶𝑑 𝑓𝜌. For simplicity, we denote the constant parameter  1,  2 and    as the 
parameter of engine, speed, and weight module respectively. It thus simplifies the 
original equation A.1 to a simple version in equation 5.1. Table A.1 presents all 
the parameters based on a light vehicle (type: BJ1089VEJDA-A2) and other 
constants adapted from [142]. 
 
 
 
 
 
 
 
 
 



 

93 
 

Table A.1 Parameters in the FCEM model 

Type Notation Desciption Value
Truck-dependent Engine friction factor (kJ/rev/liter) 0.2

Engine speed (rev/s) 33
Engine displacement (liter) 5
Curb-weight (kg) 2850
Truck Capacity(kg) 4995
Front surface area(      ) 3.912
Truck drive train efficiency 0.4
Efficiency parameters for diesel engines 0.9

Road-dependent Road angle 0
Coefficient of rolling resistance 0.01

Emission parameters Heating value of a typical diesel fuel (kJ/g) 44
Conversion factor (g/liter) 737
Fuel-to-air mass ratio 1
Air density (kg/      ) 1.2041
Gravitational constant (m/    ) 9.81
Coefficient of aerodynamic drag 0.7

𝑘
𝑁𝑒

𝑉
 

 

𝑚2 𝑓

 

 
𝜙

𝐶 

 
 

𝑚 𝜌

𝑔

𝐶𝑑

 2

 

   

B. Road segment speed  

We generate the speed profiles by using a link travel speed dataset. This 
dataset is obtained by first collecting real-time GPS trajectory data of floating 
vehicles in Chengdu, a megacity in western China, from March 1st to June 30th, 
2017. Then, a map matching technique is used to output the projected paths of the 
trajectories on the map and estimate the travel speeds on each link in different 
time periods. The detailed steps to obtain the dataset are referred to [143]. 
 

C. Complete results of branch and price algorithm  

In Tables A.2-A.5, we present the results of investigated 240 instances for 
solving the TDGVRPTW. The column ‘Instance’ contains the information about 

the size of the road network and the number of customers for each instance. The 
columns denoted as ‘LB’ and ‘UB’ show the best lower and upper bounds found 

all over a branching tree. In the column “Gap”, we calculate the difference 

between lower bound and upper bound. The computational time (in seconds) 
spent to solve an instance is listed in the column ‘Time’. Table A.2 Instances with 10 
customers shows that the proposed algorithm is fully efficient for small instances 
with ten customers. Almost all small instances can be solved to optimality within 
a few seconds. Table A.3 shows that when the number of customers increases to 
20, the instances can also be solved to optimality with a relatively longer CPU 
time. Besides, the size of road network does not have a significant impact on 
solving instances with ten customers and 20 customers. When the customer 
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number increases to 30, even though all the instances can be solved to optimality, 
it takes much more computation effort, as shown in Table A.4. However, when 
the customer number increases to 40, only a few instances can be solved to 
optimality within a reasonable computation time (a predefined time limit:18000s). 
According to Table A.5, there are six instances, three instances, and four instances 
solved to optimality for small, medium, and large road networks, respectively, 
within 18000 seconds. Besides, the gap between lower bound and upper bound for 
instances in the small road network ranges from 0.0% to 6.9%, while the 
counterpart values in the medium and large road networks range from 0.0% to 6.6% 
and from 0.0% to 7.7% respectively.  

 
Table A.2 Instances with 10 customers 

Instance LB UB Gap(%) Time(s) Instance LB UB Gap(%) Time(s) Instance LB UB Gap(%) Time(s)
S1-10 1.87 1.87 0 1.1 M1-10 2.06 2.06 0 1.6 L1-10 2.72 2.72 0 5.5
S2-10 1.85 1.85 0 1.2 M2-10 2.17 2.17 0 0.5 L2-10 3.42 3.42 0 5.9
S3-10 1.58 1.58 0 0.6 M3-10 1.99 1.99 0 1.3 L3-10 3.56 3.56 0 6.5
S4-10 2.08 2.08 0 0.7 M4-10 2.09 2.09 0 0.6 L4-10 2.47 2.47 0 2.5
S5-10 1.67 1.67 0 0.6 M5-10 2.23 2.23 0 0.5 L5-10 3.19 3.19 0 20.5
S6-10 1.81 1.81 0 0.8 M6-10 1.94 1.94 0 0.8 L6-10 2.58 2.58 0 7.2
S7-10 1.80 1.80 0 0.6 M7-10 1.67 1.67 0 0.7 L7-10 3.35 3.35 0 3.4
S8-10 1.70 1.70 0 0.4 M8-10 2.03 2.03 0 0.8 L8-10 2.72 2.72 0 3.8
S9-10 1.72 1.72 0 0.6 M9-10 1.81 1.81 0 0.9 L9-10 3.39 3.39 0 6.1
S10-10 1.75 1.75 0 0.4 M10-10 1.82 1.82 0 4.8 L10-10 2.51 2.51 0 2.5
S11-10 1.72 1.72 0 0.3 M11-10 2.34 2.34 0 3.8 L11-10 3.50 3.50 0 1.5
S12-10 1.62 1.62 0 0.6 M12-10 1.92 1.92 0 0.8 L12-10 3.22 3.22 0 5.3
S13-10 1.66 1.66 0 0.8 M13-10 1.99 1.99 0 1.6 L13-10 3.45 3.45 0 6.5
S14-10 1.56 1.56 0 0.5 M14-10 2.45 2.45 0 0.8 L14-10 3.72 3.72 0 6.1
S15-10 1.88 1.88 0 0.4 M15-10 2.53 2.53 0 7.5 L15-10 3.65 3.65 0 6.9
S16-10 1.63 1.63 0 0.7 M16-10 1.95 1.95 0 0.6 L16-10 2.93 2.93 0 3.6
S17-10 1.92 1.92 0 0.9 M17-10 1.92 1.92 0 5.7 L17-10 3.19 3.19 0 2.3
S18-10 1.80 1.80 0 0.4 M18-10 2.61 2.61 0 2.8 L18-10 3.23 3.23 0 9.7
S19-10 1.59 1.59 0 0.3 M19-10 2.10 2.10 0 1.3 L19-10 3.25 3.25 0 2.2
S20-10 1.92 1.92 0 1.1 M20-10 1.89 1.89 0 7.1 L20-10 2.91 2.91 0 1.9
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Table A.3 Instances with 20 customers 

Instance LB UB Gap(%) Time(s) Instance LB UB Gap(%) Time(s) Instance LB UB Gap(%) Time(s)
S1-20 2.33 2.33 0 26.4 M1-20 3.11 3.11 0 117.9 L1-20 5.18 5.18 0 206.8
S2-20 2.56 2.56 0 19.8 M2-20 3.28 3.28 0 33.1 L2-20 5.61 5.61 0 86.5
S3-20 2.66 2.66 0 72.1 M3-20 3.22 3.22 0 48.7 L3-20 4.79 4.79 0 44.2
S4-20 2.44 2.44 0 44.4 M4-20 3.43 3.43 0 160.5 L4-20 5.50 5.50 0 92.8
S5-20 2.37 2.37 0 146.1 M5-20 3.69 3.69 0 66.5 L5-20 4.86 4.86 0 677.8
S6-20 2.38 2.38 0 169.2 M6-20 3.10 3.10 0 382.4 L6-20 4.55 4.55 0 539.8
S7-20 2.44 2.44 0 55.2 M7-20 3.18 3.18 0 59.1 L7-20 4.71 4.71 0 105.5
S8-20 2.36 2.36 0 23.2 M8-20 3.21 3.21 0 192.8 L8-20 3.86 3.86 0 284.6
S9-20 2.44 2.44 0 159.0 M9-20 3.20 3.20 0 31.6 L9-20 5.70 5.70 0 154.8
S10-20 2.70 2.70 0 296.4 M10-20 3.29 3.29 0 125.4 L10-20 5.07 5.07 0 193.2
S11-20 2.67 2.67 0 16.7 M11-20 2.95 2.95 0 305.9 L11-20 5.12 5.12 0 63.5
S12-20 2.52 2.52 0 63.3 M12-20 3.34 3.34 0 34.1 L12-20 4.86 4.86 0 106.1
S13-20 2.73 2.73 0 46.9 M13-20 3.04 3.04 0 32.5 L13-20 5.11 5.11 0 298.2
S14-20 2.13 2.13 0 12.7 M14-20 3.93 3.93 0 56.6 L14-20 5.66 5.66 0 190.1
S15-20 2.24 2.24 0 45.2 M15-20 3.22 3.22 0 151.7 L15-20 4.62 4.62 0 123.1
S16-20 2.22 2.22 0 15.6 M16-20 3.41 3.41 0 33.0 L16-20 4.89 4.89 0 44.2
S17-20 2.09 2.09 0 375.8 M17-20 3.80 3.80 0 139.0 L17-20 4.24 4.24 0 62.0
S18-20 2.61 2.61 0 70.0 M18-20 2.88 2.88 0 88.5 L18-20 5.37 5.37 0 91.7
S19-20 2.68 2.68 0 140.4 M19-20 3.39 3.39 0 100.0 L19-20 5.05 5.05 0 306.8
S20-20 2.68 2.68 0 138.7 M20-20 3.09 3.09 0 51.9 L20-20 4.90 4.90 0 256.2
 
Table A.4 Instances with 30 customers 

Instance LB UB Gap(%) Time(s) Instance LB UB Gap(%) Time(s) Instance LB UB Gap(%) Time(s)
S1-30 4.20 4.20 0 546.4 M1-30 5.30 5.30 0 417.4 L1-30 6.90 6.90 0 7258.8
S2-30 4.01 4.01 0 428.5 M2-30 4.60 4.60 0 929.5 L2-30 7.65 7.65 0 3462.9
S3-30 3.91 3.91 0 1019.0 M3-30 5.00 5.00 0 2514.2 L3-30 6.87 6.87 0 301.6
S4-30 3.88 3.88 0 663.6 M4-30 5.25 5.25 0 398.0 L4-30 7.10 7.10 0 18000.0
S5-30 4.03 4.03 0 114.3 M5-30 4.87 4.87 0 5845.1 L5-30 7.04 7.04 0 819.6
S6-30 4.31 4.31 0 205.2 M6-30 5.01 5.01 0 1767.2 L6-30 7.42 7.42 0 2295.4
S7-30 4.17 4.17 0 154.6 M7-30 5.68 5.68 0 651.8 L7-30 7.43 7.43 0 4290.9
S8-30 3.99 3.99 0 1781.7 M8-30 5.04 5.04 0 1853.7 L8-30 7.12 7.12 0 13139.3
S9-30 3.93 3.93 0 588.4 M9-30 5.48 5.48 0 482.1 L9-30 6.85 6.85 0 3732.2
S10-30 3.65 3.65 0 506.0 M10-30 4.83 4.83 0 3977.6 L10-30 7.28 7.28 0 12841.2
S11-30 3.56 3.56 0 155.9 M11-30 4.87 4.87 0 340.5 L11-30 7.39 7.39 0 249.9
S12-30 4.18 4.18 0 3198.3 M12-30 5.47 5.47 0 2813.7 L12-30 7.22 7.22 0 13046.2
S13-30 3.83 3.83 0 1475.5 M13-30 5.04 5.04 0 988.7 L13-30 7.01 7.01 0 2395.7
S14-30 4.14 4.14 0 2480.1 M14-30 5.07 5.07 0 255.4 L14-30 7.52 7.52 0 1404.0
S15-30 4.47 4.47 0 2533.3 M15-30 5.08 5.08 0 490.5 L15-30 6.85 6.85 0 2381.2
S16-30 4.02 4.02 0 73.8 M16-30 5.10 5.10 0 85.5 L16-30 7.92 7.92 0 404.5
S17-30 4.23 4.23 0 55.3 M17-30 5.78 5.78 0 3156.3 L17-30 6.73 6.73 0 179.0
S18-30 3.97 3.97 0 780.1 M18-30 5.21 5.21 0 4962.6 L18-30 6.97 6.97 0 3103.5
S19-30 3.55 3.55 0 1526.2 M19-30 5.22 5.22 0 234.2 L19-30 6.91 6.91 0 13375.5
S20-30 4.11 4.11 0 1537.1 M20-30 5.32 5.32 0 110.6 L20-30 7.57 7.57 0 481.1
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Table A.5 Instances with 40 customers 

Instance LB UB Gap(%) Time(s) Instance LB UB Gap(%) Time(s) Instance LB UB Gap(%) Time(s)
S1-40 5.41 5.48 1.3 18000.0 M1-40 6.93 7.22 4.0 18000.0 L1-40 9.38 9.67 3.0 18000.0
S2-40 5.30 5.30 0.0 8559.2 M2-40 6.97 6.97 0.0 5098.8 L2-40 9.11 9.87 7.7 18000.0
S3-40 5.44 5.50 1.2 18000.0 M3-40 6.71 7.18 6.6 18000.0 L3-40 10.36 10.52 1.6 18000.0
S4-40 4.99 5.14 3.0 18000.0 M4-40 6.77 6.83 0.8 18000.0 L4-40 11.17 11.70 4.6 18000.0
S5-40 5.51 5.58 1.3 18000.0 M5-40 6.69 6.94 3.6 18000.0 L5-40 10.88 11.36 4.2 18000.0
S6-40 5.09 5.30 4.0 18000.0 M6-40 6.72 6.86 1.9 18000.0 L6-40 10.18 10.79 5.6 18000.0
S7-40 5.25 5.34 1.6 18000.0 M7-40 6.68 6.75 1.0 18000.0 L7-40 9.55 9.63 0.9 18000.0
S8-40 5.54 5.95 6.9 18000.0 M8-40 6.89 7.18 4.1 18000.0 L8-40 9.44 9.61 1.8 18000.0
S9-40 5.24 5.24 0.0 3352.3 M9-40 6.63 6.63 0.0 11175.4 L9-40 10.68 10.68 0.0 12243.2
S10-40 5.26 5.26 0.0 11095.6 M10-40 6.92 7.04 1.7 18000.0 L10-40 9.27 9.67 4.1 18000.0
S11-40 4.88 4.93 0.9 18000.0 M11-40 6.22 6.48 4.0 18000.0 L11-40 9.91 9.91 0.0 9310.4
S12-40 5.12 5.12 0.0 3112.0 M12-40 6.86 6.86 0.0 7361.6 L12-40 10.46 10.64 1.8 18000.0
S13-40 5.27 5.42 2.8 18000.0 M13-40 6.97 7.21 3.4 18000.0 L13-40 10.90 11.04 1.3 18000.0
S14-40 5.39 5.52 2.5 18000.0 M14-40 7.07 7.13 0.9 18000.0 L14-40 9.96 9.96 0.0 10828.1
S15-40 4.96 5.00 0.8 18000.0 M15-40 7.03 7.42 5.3 18000.0 L15-40 10.00 10.00 0.0 7582.8
S16-40 5.44 5.54 1.8 18000.0 M16-40 6.60 6.80 3.0 18029.0 L16-40 9.09 9.29 2.1 18000.0
S17-40 5.19 5.28 1.7 18000.0 M17-40 6.64 6.87 3.4 18000.0 L17-40 10.10 10.62 5.0 18000.0
S18-40 5.55 5.71 2.9 18000.0 M18-40 6.54 6.70 2.4 18000.0 L18-40 10.43 10.72 2.7 18000.0
S19-40 5.35 5.35 0.0 2183.6 M19-40 6.37 6.62 3.7 18000.0 L19-40 10.70 10.90 1.8 18000.0
S20-40 5.57 5.57 0.0 722.6 M20-40 6.44 6.48 0.6 18000.0 L20-40 9.05 9.14 1.0 18000.0
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