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Muita coisa é inata, mas muito é feito pelo treinamento. Por isso, ninguém será
bem-sucedido se se poupar, se não mergulhar fundo nos temas maiores e se não estiver

em condições de, às vezes, se empenhar até o extremo por causas insignificantes.1

Walter Benjamim, Rua de Mão Única - Obras Escolhidas II.

1Many things are innate, but a lot is done by training. Therefore, no one will be successful if (s)he spares
(her)himself, if (s)he does not delve deeply into the bigger issues and if (s)he is not willing to strive to the
extreme even for the insignificant causes.
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C.1 Dynamic solutions obtained with the proposed MPA on C60 instances. . . 155
C.2 Dynamic solutions obtained with the proposed MPA on C90 instances. . . 156
C.3 Dynamic solutions obtained with the proposed MPA on C120 instances. . . 156
C.4 Dynamic solutions obtained with the proposed MPA on C150 instances. . . 157
C.5 Dynamic solutions obtained with the proposed MPA on C60 instances, (γ>

0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
C.6 Dynamic solutions obtained with the proposed MPA on C90 instances. (γ>

0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.7 Dynamic solutions obtained with the proposed MPA on C120 instances.

(γ> 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.8 Dynamic solutions obtained with the proposed MPA on C150 instances.

(γ> 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
C.9 Dynamic solutions obtained with the proposed MPA on C60 instances. γ=

0, 25% pickup requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
C.10 Dynamic solutions obtained with the proposed MPA on C90 instances. γ=

0, 25% pickup requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
C.11 Dynamic solutions obtained with the proposed MPA on C120 instances. γ=

0, 25% pickup requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.12 Dynamic solutions obtained with the proposed MPA on C150 instances. γ=

0, 25% pickup requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
C.13 Dynamic solutions obtained with the proposed MPA on C60 instances. γ>

0, 25% pickup requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
C.14 Dynamic solutions obtained with the proposed MPA on C90 instances. γ>

0, 25% pickup requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
C.15 Dynamic solutions obtained with the proposed MPA on C120 instances. γ>

0, 25% pickup requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
C.16 Dynamic solutions obtained with the proposed MPA on C150 instances. γ>

0, 25% pickup requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164



1
INTRODUCTION

You had my curiosity... but now you have my attention.

Quentin Tarantino, Django Unchained

O R so I hope! This thesis focuses on novel approaches for dealing with last-mile op-
erations faced by logistics service providers in urban contexts. The last-mile refers

to the last link in the transport chain followed by a parcel to fulfill consumers’ requests
for goods, from the shelf of the last distribution center to the hands of the buyer. We
investigate two recent innovations and the potential cost-benefits of introducing such
models into transportation logistics for last-mile operations. More specifically, we first
consider a crowd-sourced solution – where drivers are not employed by a carrier but oc-
casionally offer their services through on-line platforms and are contracted as required
by the carrier – for the fulfillment of transportation requests and evaluate the benefits
of introducing transfers to support driver activities. We frame the problem as an exten-
sion of a pickup and delivery problem with transfers and propose a heuristic optimiza-
tion method to solve it. The second novel model we consider is what has been defined
as roaming delivery systems, in which the service provider has access to private cars’
storage compartments, and can service customers using the trunk of their cars. Sup-
ported by automotive and communication technologies, the model has the potential
to make e-commerce operations more convenient, mitigating failed deliveries at home.
We introduce a stochastic version of the Vehicle Routing Problem with Roaming Delivery
Locations (VRPRDL) and propose a two-stage stochastic model using the possibility of
servicing customers at different locations as a recourse action. Finally, we introduce a
dynamic variant of the VRPRDL in which customers announce in real-time the locations
where their cars are or will be parked and the service provider decides whether visiting
customers at home or at their roaming locations.

1
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1.1. THE RISE OF E-COMMERCE AND LAST-MILE CHALLENGES

I T took me a while to recall when I had my first on-line purchase experience and, if
memory serves me right, buying that digital camera was a mixture of excitement and

skepticism: I only had to create a customer account, select the camera’s model, use the
numbers of a credit card that was not even mine and the purchase would be sealed. Not
having someone from the shop present to make the transaction a more formal occasion
was a concern but the deal too good to pass. After a few days, worries that we had been
scammed and would have to visit the store, after all, the delivery person was at the door.
Nowadays, online shopping is so pervasive that it is hard to remember when it was only
a doubtful possibility. The time from purchase to delivery has decreased significantly,
orders are now placed on mobile devices and delivered not only at home.

By facilitating the search of products, the comparison of the many available options
and prices, more and more consumers are using the internet for ordering from tonight’s
dinner to a larger TV to the latest smart phone. While total retail sales have been steadily
increasing worldwide, jumping from U$22.97 trillion in 2017 to U$25.04 trillion in 2019,
the share of e-commerce1 in the global retail sales has increased from 10% to 14.1% dur-
ing the same period. By 2023, it is projected that e-commerce will represent 22% of retail
sales worldwide, reaching U$6.54 trillion (Lipsman, 2019).

This was the scenario until the beginning of 2020, when the COVID-19 crisis has
brought unprecedented changes to many human activities. As tight and tighter mea-
sures were imposed to halt the spread of the virus and diminish the human toll, the eco-
nomic damage plunged most countries into recession in 2020. On the one hand, social-
distancing policies meant that most physical interactions were significantly limited and,
combined with strict confinement measures, have put on hold almost all of traditional
brick-and-mortar retail. On the other hand, whereas total retail sales have decreased,
the crisis has amplified the aforementioned shift from traditional means of purchasing
to e-commerce – for example, in the EU, while total retail sales in April 2020 decreased by
17.9% compared to April 2019, sales via mail or via the Internet increased by 20% during
the same period (OECD, 2020). The crisis is accelerating the expansion of e-commerce,
which proved to be a crucial element during these times as a means of keeping cus-
tomers with access to a variety of products from the convenience and safety of their, and
by allowing many business to continue operating, even under social-distancing mea-
sures. The landscape of e-commerce has been changing significantly in response to the
COVID-19 pandemic and will likely continue to be even more dynamic as the crisis un-
fold. E-commerce growth is expected to increase at an even faster pace than predicted
before 2020.

Despite all benefits, with the explosion of e-commerce and on-line sales new issues
emerged, challenging logistic service providers to handle the sheer amount of direct-to-
consumer orders while still providing efficient service. In 2018, the six largest carriers
in The Netherlands, a country with a population of 17.18 million inhabitants, delivered

1including products or services ordered via the internet, excluding travel and event tickets, payments, food
services or gambling sales
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504 million parcels, with a turnover of €2.15 billion (Authority for Consumers & Markets,
2019). For around 10% of those parcels, delivering to the correspondent address or to
a neighbor was not possible during the first visit and, consequently, the company had
to arrange an alternative option e.g., a second visit, which can increase the total trans-
portation cost significantly, or ask the customer to pickup the parcel at a collection point,
which decreases customer’s experience. The fulfillment of so many individual orders at
consumers’ homes cannot be done at the same economies of scales when replenishing
retail stores, increasing the number of freight movements (Savelsbergh and Van Woensel,
2016). Inevitably, the growing number of delivery vans in residential areas and in the city
centers contributes negatively to living conditions, reducing safety (Bandler et al., 2019)
and adding to already increasing levels of congestion and growing emissions of pollu-
tants in the environment (DePillis, 2019). Getting a parcel delivered to its purchaser at
the right address and at the right time incurs not only in high operational costs but also
in high environmental impacts.

In the transport chain followed by a product from the warehouse shelf to the cus-
tomer’s hands, the so called last-mile represents the very last step of that sequence. But
despite comprising only one of the many steps in the total process, last-mile logistics ac-
count for around 50% of the total costs of shipping (McCrea, 2016) – it is a highly work in-
tensive process (Wall, 2019), hindered by slow travel speeds within cities, and performed
by low capacity vehicles with low fill rates. Complicating matters further, customers are
more and more the driving factor when it comes to how the last-mile supply chains of
e-tailers are organized. While traditional brick-and-mortar stores offer instant gratifica-
tion to consumers, in online retail getting the product to the customer is an important,
if not crucial, part of the experience, as it represents the single concrete touchpoint for
e-commerce: customers tend to not differentiate between the retailer and the delivery
service provider. In the era of social media, a faulty delivery experience is quickly shared
by annoyed customers, reaching many potential clients before the delivery person rings
the door-bell.

In an attempt to attract customers for shopping online, e-tailers have started to of-
fer increased service levels, promising next-day or even same-day, 2-hour delivery ser-
vices, sometimes not even charging extra fees. Fast and (almost) free delivery services
have become commoditized, not in the least an extra enhancement for customers’ ex-
perience while shopping online but a competitive edge. As such, and considering all
challenges involved, last-mile logistics remain a cornerstone for business-to-consumer
(B2C) e-commerce. Due to the high operational costs and environmental impacts, lo-
gistic service providers are considering new and innovative concepts to provide more
efficient and sustainable models to overcome the challenges in last-mile operations.

1.1.1. INNOVATIVE MODELS IN B2C LAST-MILE SYSTEMS

In the last few decades, advances in computing and communications systems have dras-
tically transformed modern societies. Recent innovations and the increased use of infor-
mation technology are having far-reaching impacts not only on how we shop, but also
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on how we work, travel, learn and interact with others. Not surprisingly, technology pro-
gresses are also being introduced in the last-mile sector. Together with advances in the
automotive industry, information technology is being used not only to find more cost
efficient delivery plans, but also to support innovative last-mile models focusing toward
automation, safety and emission reduction.

Perhaps one of the most significant changes due the use of information technology
is in the way we access and use services like ordering food, a ride, a place to stay or even
hiring a handyman to mount a TV. The last decade has seen the rise of the sharing econ-
omy. Also termed gig economy, it is characterized by a business model that enables and
facilitates the sharing of goods and services (Hu, 2019). It represents a shift from tradi-
tional schemes of ownership and workforce employment to models in which physical
assets are managed as services that can be shared and reused at a lower price and more
flexibly.

In the last-mile sector, solutions within the sharing economy have been proposed
connecting demand for (last-mile) logistic services to a crowd-based supply offering ex-
cess capacity in terms of time and/or space to perform such services, using their own
means. Generally, these services are offered by individuals without certified logistic skills
and working without any formal professional contract. As such, this concept is com-
monly referred as “Uber for logistics” (Rai, 2019).

1.2. RESEARCH PROBLEMS
In this thesis, we investigate two recent last-mile novel systems built around the idea of
using excess capacity (time/space) of non-professional individuals, possibly customers,
to improve last-mile operations within urban contexts. In the first one, we focus on a
crowd-sourced system where drivers express their availability to perform delivery tasks
for a given period of time and a platform communicates a schedule with requests to
serve. In the second, we consider a last-mile model in which direct-to-consumer deliv-
eries can be made using the trunk of the customer’s car, while the vehicle is parked at a
location along the customer’s itinerary.

1.2.1. LAST-MILE IN THE ERA OF SHARING ECONOMY: CROWD-SHIPPING
Solutions built around the emerging concept of sharing economy are one of the alter-
natives that some companies are now exploring to supplement traditional freight trans-
portation systems (e.g., last mile). Crowd-shipping refers to contexts where transporta-
tion capacity is provided by individuals willing to provide their time and vehicles for a
limited (short) duration. In one realization of crowd-shipping, the transportation ser-
vice is performed by individuals during trips they would drive anyway e.g., from home
to work. An on-line platform matches trips to suitable requests based on a number of
aspects, such as the required detour to visit the delivery address, offered compensation.
This realization of crowd-shipping solutions are still in a very incipient stage (Dablanc
et al., 2017). In another realization of the concept, already being implemented by large e-
tailers and platforms (e.g, Amazon Flex, Uber-Freight), drivers willing to perform trans-
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Figure 1.1: Consumers’ perception of last mile innovations regarding delivery flexibility. Adapted from Rai
(2019).

portation services are matched to demand for such services in real-time by the on-line
platform. The drivers are independent, work for a given period of time and are paid on
a hourly basis. Therefore, the platform is able to manage available capacity in a more
flexible way (e.g., deciding on the requests and the sequence of visits). In the thesis, we
focus on the latter realization of crowd-shipping.

1.2.2. ENTER THE TRUNK: THE CAR AS A B2C LAST-MILE SOLUTION
In a survey conducted with 1000 consumers in Belgium, Rai (2019) aimed at capturing
consumers’ attitude towards crowd logistics and identifying which crowd logistics ser-
vices are considered of interest. In particular, one of the points surveyed was related to
consumers interest for more flexible last-mile delivery options. The survey showed that
72,2% of consumers would like to be able to adapt the location of delivery, even if the or-
der is already placed and in transit. Moreover, 33.8% of the consumers showed interest
in an option in which parcels could be delivered on their geo-location i.e., the current
customer location at the time of delivery. Figure 1.1 reports the findings of the survey for
that particular question.

Trunk delivery is a novel approach to last-mile delivery being tested by even the
largest e-tailers companies (e.g., Amazon In-Car Delivery) as a means to provide cus-
tomers more flexible delivery options. In this approach, the service provider has access
to the trunk of the customer’s vehicle where delivery couriers can leave packages. Some
researches show that the average car is parked away from home for a significant period
of time, turning the vehicle, virtually, into a pickup/delivery station on wheels. Such
models have the potential of alleviate failed deliveries at home, one of the main logistics
service provider’s challenges.

1.2.3. RESEARCH QUESTIONS
With the scenario presented so far and the particular last-mile systems we consider, the
research objective of the thesis can be summarized as: investigate and quantify possible
cost benefits and trade-offs in using spare capacity, either in the form of available time or
available space, offered by private individuals as well as customers, to perform last-mile
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services within urban contexts.
In each chapter of the thesis, a particular sub-question will be considered within a

given last-mile application and aiming toward the main objective, namely:

• What are the characterizing features of crowd-logistics, specially crowd-shipping?

• How available crowd-sourced capacity (drivers) can be managed and used in order
to effectively meet transportation demand?

• Can trunk delivery be an option to mitigate failed deliveries due to uncertainty in
servicing customers at planned locations in a priori designed delivery routes?

• Is trunk delivery still effective when information regarding customers’ itineraries
are unknown beforehand?

1.3. CONTRIBUTIONS
Rapid urban growth has posed both challenges and opportunities for city planners, not
in the least when it comes to the design of transportation and logistics systems for freight.
But urbanization also fosters innovation and sharing, which have led to new models for
organizing movement of goods within the city. Chapter 2 highlights one of these new
models: Crowd-Logistics. We define the characterizing features of crowd logistics, review
applications of crowd-based services within urban environments, and discuss research
opportunities in the area of crowd logistics.

In Chapter 3, we examine the potential benefits of introducing transfers to support
pickup and delivery operations in urban areas employing crowd-sourced drivers. Trans-
fer locations are service points available in the network and serve as intermediate lo-
cations where one driver can exchange freight loads with other drivers. We believe our
research helps in advancing the implementation of decision-making tools used to oper-
ate crowd-sourced delivery systems and understanding how such systems can be better
explored.

In the second part of the thesis, we consider last-mile systems in which the service
provider has access to the trunk of the customer’s car. Chapter 4 considers a problem re-
cently proposed to model such systems, the Vehicle Routing Problem with Roaming De-
liveries Locations (VRPRDL). Our contribution to this routing literature stems from con-
sidering stochastic travel times while solving the problem. We believe such contexts are
important given the increasing level of urbanization and its consequences on the ability
of retail companies to fulfill promised service levels (in particular, in e-commerce) for
last-mile delivery within urban environments e.g., due to increased levels of congestion.

In Chapter 5, we drop the assumption that customers’ itineraries are known to the
service provider when deciding on the routing plans to serve customers. Alternatively,
we consider that a customer announces the location where his/her car is currently or
will be parked dynamically, as time goes by, defining a novel dynamic variant of the VR-
PRDL. We investigate the trade-offs a delivery company might consider when offering
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such service compared to a traditional, only-home delivery option. Moreover, we evalu-
ate the potential benefits of including dynamic roaming locations as a mean to integrate
the fulfillment of both delivery and return (pickup) flows.

1.4. OVERVIEW
For the sake of clarity, Figure 1.2 presents a diagrammatic overview of the thesis, posi-
tioning each chapter within the two main topics considered in the work. Each chapter
in this thesis is self-contained and can be read individually. Consequently, back-to-back
readers might notice some overlap, especially during introduction sections, where the
problems are motivated.

Finally, when solving vehicle routing problems, the common assumption is that the
values of all input parameters e.g., travel times, customer demands, are known before
the design phase of the routing plans and will not change during the execution phase of
the plans. Input data can be classified accordingly to two main dimensions: evolution
and quality of information (Bektas et al., 2014a). The former concerns how data changes
or become available as time passes by, whereas the latter specifies the level of certainty
regarding the value of an input parameter. In a static and deterministic problem, all input
parameters are known in advance with a high degree of certainty, and they do not change
after the problem is solved. In static and stochastic problems, input parameters are re-
vealed in stages but the degree of uncertainty is captured by e.g., random or stochastic
variables. In dynamic problems, part or all input data is not known beforehand, and only
revealed concomitantly to the execution of the routing plan. Here, the system must react
quickly as new information is revealed (dynamic and deterministic), or anticipate future
information to better handle incoming events, if stochastic information is available (dy-
namic and stochastic). Figure 1.3 illustrates a matrix in which the two aforementioned
dimensions for classifying input data are represented. With the exception of Chapter 2,
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Figure 1.3: Classification of the problems treated on each chapter.

each chapter of the thesis is positioned on a quadrant of that matrix accordingly to the
evolution and quality of information assumed on the problem being considered.
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CROWD-BASED CITY LOGISTICS

We tend to overestimate the impact of a new technology in the short run,
but we underestimate it in the long run.

Roy Amara

C ITIES are drivers of economic development, providing infrastructure to support count-
less activities and services. Today, the world’s 750 biggest cities account for more

than 57% of the global GDP and this number is expected to increase to 61% by 2030.
More than half of the world’s population lives in cities, or urban areas, and this share
will continue to grow. Rapid urban growth has posed both challenges and opportunities
for city planners, not in the least when it comes to the design of transportation and lo-
gistics systems for freight. But urbanization also fosters innovation and sharing, which
have led to new models for organizing movement of goods within the city. In this chap-
ter, we highlight one of these new models: Crowd Logistics. We define the characterizing
features of crowd logistics, review applications of crowd-based services within urban en-
vironments, and discuss research opportunities in the area of crowd logistics.

The work in this chapter has been published in Sampaio et al. (2018).
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2.1. INTRODUCTION

C Ity Logistics advocates a holistic view of the transport and logistic activities within a
city, considering the negative (e.g., congestion and pollution) as well as the positive

(e.g., economic, mobility, safety) impacts on the city’s population. It seeks cost-efficient,
but sustainable, solutions that minimize required flows of people and goods (Savels-
bergh and Van Woensel, 2016; Crainic and Montreuil, 2016). In this chapter, we focus on
how the crowd may be part of such cost-efficient, but sustainable solutions, especially
related to the flows of goods.

As the urbanization trend will continue in the coming decades, the number of peo-
ple living in urban areas is expected to grow from today’s 54% of the world population
to 66% by 2050 (United Nations, 2015). Moreover, the largest 750 cities in the world are
responsible for more than 57% of the global GDP and this share is expected to increase to
61% by 2030 (Oxford Economics, 2017). At the same time, in today’s increasingly global
and interconnected world, the share of e-commerce of total global retail sales is also
expected to continue to increase, from 7.4% in 2015 to 15.5% in 2021 (eMarketer Edi-
tors, 2017). Furthermore, consumers have higher service expectations than ever before.
In a survey with more than 2,000 customers in the US, 64% of those interviewed indi-
cated they are willing to pay a premium for faster delivery, and 39% would pay more for
same day delivery (Accenture Interactive, 2015). E-tailers are stimulating and exploiting
these service expectations by offering fast delivery options as a means to compete with
brick-and-mortar retailers and, in many cases, are not even charging consumers for the
increased level of service (Savelsbergh and Van Woensel, 2016). The population growth
and urbanization, the explosion of e-commerce, and the proliferation of fast delivery
options, require innovative solutions and business models to ensure cost-effective, but
also environmentally and socially friendly, transportation of goods.

Logistic practices in which infrastructure sharing and service integration are core
concepts represent a new trend in transportation systems aimed at providing a more
economically and environmental gainful alternative to current practices. Facilitated by
advances in information and communication technologies and the ubiquity of personal,
mobile smart devices, a shift to new ways of collaborative consumption is seen. Often
termed sharing economy, this new phenomenon is characterized by managing physical
(underused) assets as services and recognizing the possible benefits of the temporary
use of a third-party service over the long-term possession of an (expensive) asset (DHL
Trend Research, 2017). Whereas the concept of outsourcing in and of itself is not neces-
sarily innovative, what the sharing economy adds is a technology platform in which un-
organized individuals (the crowd) can offer their services, i.e. outsourcing to the crowd
or, as coined by Howe (2006), crowdsourcing. As a matter of interest, the aforementioned
survey conducted by Accenture Interactive (2015) also reported that a significant share
of those surveyed who enable geolocation on their mobile devices do so for travel and
transportation applications, and that 73% of those surveyed would be willing to receive
deliveries from third-parties rather than directly from a retailer.

As with most crowd-sourced activities, reaching critical mass is key to a successful
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implementation of the concept (Agatz et al., 2012; Klumpp, 2017). Combined with the
fact that business-to-consumer (B2C) e-commerce ends at the customer’s preferred lo-
cation (e.g. house, office, trunk of the car), densely populated cities are, therefore, promi-
nent environments where crowd logistics may flourish. Crowd logistics should thus be
seen as part of a broader web/mobility logistics systems (Goetting and Handover, 2016).

In line with the essential aim of city logistics, i.e., reducing the number of vehicle
movements to fulfill freight demands (contributing to reducing greenhouse emissions
and enhancing people’s life), logistics with the crowd begets manifold opportunities but
also challenges. Recently, Buldeo Rai et al. (2017) provided a literature review on crowd
logistics initiatives and conducted interviews with practitioners willing to adopt the con-
cept to leverage their business activities. The authors list 18 characteristics defining
the broad variety of concepts found, and assess the impact of each on economic, so-
cial and environmental sustainability in order to identify the factors that determine the
overall sustainability potential of crowd logistics. Those characteristics are classified ac-
cordingly to the stakeholders they relate to, namely, receiver and commissioner (either
business or consumer), logistic service provider, platform provider and the crowd, and
include, among others, involvement of dedicated logistic providers, crowd motivation,
and modal choice to perform the services. Most of the literature on crowd logistics limits
itself to urban distribution and last mile activities, i.e., so far crowd logistics has been
considered intrinsic to city logistics.

Despite growing interest in applications of crowd logistics, few studies exist investi-
gating the many challenges that need to be resolved before a full realization of the con-
cept can be achieved. The objective of this chapter is to provide an overview of appli-
cations of crowd-sourced logistics services, and also point out and discuss some of the
relevant issues pertaining to the deployment of such innovative systems and their im-
pact and relevance for city logistics.

A related and complementary initiative to city logistics is the Physical Internet (Mon-
treuil, 2011), which takes the concepts of the Digital Internet to propose an efficient,
sustainable, and resilient logistic infrastructure to move physical objects. In this con-
ceptual vision, freight and people move in the transportation network similarly to how
data travels through the Internet. Physical objects are encapsulated in modular pack-
ets (π–containers) having unique identifiers that help in the routing, monitoring and
traceability, allowing them to follow distinct routes, even if having the same origin and
destination, to get to their final delivery. Applied to an urban environment, the Physi-
cal Internet underpins what Crainic and Montreuil (2016) define as Hyperconnected City
Logistics, for which crowdsourcing the transportation activities exemplifies the possible
synergy between people mobility and freight logistics.

The remainder of this chapter is organized as follows. City logistics covers a variety of
activities, and some of these activities lend themselves well to crowdsourcing. In Section
2.2, we present and discuss not only the obvious ones, e.g., the transport of packages to
consumers, but also the less obvious ones, e.g., the receiving of packages on behalf of
consumers, in neighborhoods, apartment and office complexes, and the return trans-
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port of packages to retailers. In Section 2.3, we highlight and elaborate on aspects that
may be of special interest to the transportation science and logistics community, e.g.,
compensation schemes, supply management, and demand smoothing, and the impli-
cations on sustainability. Our perspective on the future of crowd logistics and its role
in city logistics is given in Section 2.4. Finally, in Section 2.5, we present concluding re-
marks.

2.2. CROWDSOURCING LOGISTICS SERVICES
Crowdsourcing initiatives have been considered for a variety of applications, ranging
from real-time image search to journalism, from health and medical research to vot-
ing. Whereas the term entails the delegation of an activity or process to an independent
mass of people (the crowd), there is no commonly agreed upon definition of the con-
cept. A first attempt to integrate many of the existing definitions was made by Estellés-
Arolas and González-Ladrón-de Guevara (2012), wherein the authors propose to identify
crowdsourcing activities based on aspects such as who forms the crowd, the tasks it has
to do, and the incentives it receives for doing them. Crowd Logistics concerns crowd-
sourcing of logistics activities (Mladenow et al., 2015), for example, the delivery of goods
to consumers using non-professional drivers who are already on the road and willing
to detour to the location of these consumers (crowdsourced delivery) or the offering of
short-term storage space by non-dedicated third-parties for missed deliveries and later
collection (crowdsourced receiving).

As with crowdsourcing, there is no agreed upon definition of crowd logistics. Re-
cently, Buldeo Rai et al. (2017) defined the term as “an information connectivity enabled
marketplace concept that matches supply and demand for logistics services with an un-
defined and external crowd that has free capacity with regards to time and/or space, par-
ticipates on a voluntary basis, and is compensated accordingly”, which, in our view, in-
deed captures the essential characteristics of crowd logistics. The authors also argue
that crowd logistics fits in the 4 A’s of sustainable city distribution framework proposed
by Macharis and Kin (2017) wherein innovative concepts are classified accordingly to
Awareness, Avoidance, Act and shift, and Anticipation of new technologies. As such,
environmental benefits are envisioned as one of the main benefits of crowd logistics.
Crowdsourced delivery, for example, allows for a better utilization of transportation ca-
pacity, by fostering consolidation and coordination of existent vehicle flows, offered by
the crowd, potentially reducing congestion and greenhouse gas emissions, as it can re-
duce the number of vehicles dedicated to goods movements.

We note, however, that the “crowd” in crowd logistics refers to a (large number of) in-
dependent individuals (participating on a voluntary basis), but that the specific realiza-
tion of this crowd can have a significant impact on whether or not crowdsourced logistic
services contribute to improving city logistics. For example, when existent flows (e.g., ex-
istent vehicle movements) are exploited for service fulfillment, this will likely contribute
to more sustainable city logistics (Paloheimo et al., 2016; Chen et al., 2017b; Punel and
Stathopoulos, 2017). However, in many of the popular platforms for on-demand trans-
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Figure 2.1: A schematic view of crowd logistics activities within urban environments.

portation services, either for people mobility (e.g., Uber, Lyft) or for freight delivery (e.g.,
UberRUSH, Lalamove), in which those seeking a service are matched/connected to in-
dependent agents providing that service, fulfillment is realized by creating new service
flows rather than exploiting existing ones.

2.2.1. EXAMPLES OF CROWD LOGISTICS

In the following, we discuss a few examples of crowdsourced logistics services. Figure
15.1 illustrates how city logistics might be (re-)organized, and how many activities can be
performed by a combination of professional and crowdsourced services. A distribution
center (1), on the outskirts of the city, utilizes a professional delivery service employing
company vans as well as spare capacity on public transportation, e.g, intercity buses (2)
to convey goods to the city. Individuals on their way to work (3) — the crowd — can also
participate and handle part of the flow of goods. Within the city, individual packages
can also reach final customers by different means. A professional delivery service might
exploit crowd-delivery opportunities: it might engage a commuter (4) — an individual —
to take a package to an address nearby the commuter’s destination. Individuals choosing
to live in the city might make deliveries in return for discounts on their bike rentals (5). To
streamline the receipt of goods, neighbors may be willing to accept, store, and ultimately
deliver a packages (6) — crowd-storage — or large residential buildings may install locker
boxes (7), thus reducing the occurrence of missed deliveries.
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CROWDSOURCED DELIVERY

Also termed crowdshipping, crowdsourced delivery within urban environments is con-
sidered as a promising opportunity to accommodate the higher consumer service levels,
e.g., same-day or even 2-hour delivery. In this setting, a customer or business (crowd-
sourcee) uses an ICT platform (crowdsourcer) to place a request for a delivery service
to be fulfilled by one of many independent drivers (crowd) registered in the platform.
A matching system assigns the request to one driver based on the characteristics of the
service (time, destination, capacity) and availability (proximity, en route drivers, detour).

Within crowdsourced delivery, we distinguish two main types of offered services:
door-to-door and store-to-door. Hitch and Roadie are examples of platform providers
facilitating door-to-door delivery services wherein travelers (drivers, bikers) pick up and
deliver packages for shippers (senders). Hitch allows shippers to post requests for items
they want picked up and delivered, and travelers to announce journeys they plan to
undertake. Roadie takes the concept a step further and does not require travelers to
announce journeys they plan to take, but continuously monitors the movements of its
“roadies” and uses machine learning algorithms to recognize travel patterns and auto-
matically identify travelers that can serve requests posted by shippers.

Crowdsourced store-to-door delivery services focus on the B2C market. As an ex-
ample, e-tailer Zalando relies on Trunkrs to offer same-day-delivery for its customers
in certain cities in Europe. Trunkrs uses crowdsourced delivery, but also established
courier services. This allows them to provide the reliability demanded by its customers
(the e-tailers). Walmart is considering another form of crowdsourced store-to-door de-
livery services by having in-store customers (the crowd) fulfilling the delivery of items
purchased by its on-line clients (Barr and Wohl, 2013).

Other popular store-to-door delivery initiatives are found in the grocery and food
service industry, where the platform provider not only arranges the delivery service, but
also acts as store front and allows its customers to select the retailer/restaurant from
which they want to purchase. Instacart, for example, offers same-day grocery delivery
for products bought at grocery stores selected by the customer. This is also typical for
meal delivery services, like GrubHub, UberEats and Foodora wherein couriers (drivers
or bikers) pick up a meal at the restaurant selected by the customer and deliver it to the
customer’s home.

Despite the fast growing number of companies offering crowdsourced delivery, liter-
ature addressing aspects and issues related to these services is still limited. Paloheimo
et al. (2016) conducted a case study in Finland applying crowdsourcing to library deliv-
eries, e.g., books and other media. The study highlights the potential carbon footprint
reduction, on average, an equivalent of 1.6 kilometers in spite of the fact that 80% of the
deliveries involved trips of less than 5km, and the benefits on leveraging social cohesion
that can be achieved with crowdsourced deliveries. Based on the crowdshiping concept
envisioned by Walmart, Archetti et al. (2016) introduce the Vehicle Routing Problem with
Occasional Drivers (VRPOD). The occasional drivers are the in-store customers willing
to deliver an online order for a small compensation. The authors stress the challenges
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associated with designing an appropriate compensation scheme and the need to con-
tinue to employ company drivers to be able to ensure a certain service level. A more
in-depth study of this form of crowdsourced delivery is provided in Dayarian and Savels-
bergh (2017). We discuss pricing and supply management related issues in more detail
in Section 2.3.

Kafle et al. (2017) proposes a two-tiered delivery system, in which the second tier
is crowdsourced. In that second tier, cyclists and pedestrians (the crowd) relay parcels
from trucks and fulfill the last mile of the delivery. In the system, the carrier/courier
posts pickup and delivery requests on a platform and individuals bid to carry out a sub-
set of those requests. Relay points are locations where parcels are transferred between
a truck and (one or more) individuals. The company decides on the winning bids and
plans the truck routes that visit the relay points and delivery addresses of requests for
which no bids were received (or for which the received bids were too expensive). Com-
pared to a pure truck based solution, the system can provide cost reductions (including a
reduction in penalty costs associated with late deliveries). The use of transfers points in
crowdsourced delivery systems is also considered by Chen et al. (2017b). The authors in-
troduce the Multi-Driver Multi-Parcel Matching Problem (MDMPMP), in which parcels
may be transported by a single or by multiple drivers, being transferred between drivers
en route to the parcel’s end destination in this case. Relaying parcels between drivers
allows for a more flexible matching of drivers and parcels, since drivers do not need
to fulfill the complete parcel’s journey and use transfer opportunities to bring the par-
cel closer to its end destination. Moreover, since trip duration is mostly important to
the driver, as long as the parcel reaches the customer in time, assigning longer paths to
the parcels may facilitate the system-wide matching. Similar to Paloheimo et al. (2016),
the authors also highlight that without the condition of using pre-existent vehicle flows,
crowdsourced delivery operations may induce extra vehicle movements, reducing po-
tential environmental benefits and positive impacts on city logistics.

More recently, some companies are also experimenting with a new method to pro-
vide last-mile delivery that would not even require (or require very limited) human in-
tervention. Google and Amazon, for example, are running trials to investigate the use of
drones to support package delivery. Usually, these machines can only carry one pack-
age at a time, with a maximum weight (≈ 2Kg) and for a limited range (≈ 20Km). Thus,
in order to make more efficient use of the capacity and range of a drone, they are de-
ployed from a mobile delivery vehicle. An example can be found in Agatz et al. (2018),
where the authors consider the case of one single truck and single drone. With deliver-
ies being conducted simultaneously by both the truck and the drone, not only the total
distance travelled by the truck can be reduced but also the total time to service all cus-
tomers. Crowdsourcing the drone activities is considered by Behroozi and Ma (2020),
where the authors consider a combined system of regular delivery trucks and crowd-
sourced drones. Package delivery is performed by a big truck carrying a large number
of packages to a neighborhood or a town in a metropolitan area. The packages are then
assigned to crowdsourced delivery agents who operates drones to deliver the packages
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to their final destinations.

CARGO-HITCHING

Integration of freight and passenger transport may also play a role in efficient and re-
liable delivery services, since people and goods may be able to share the same infras-
tructure for a part of their journey, especially within a city (Trentini et al., 2012; Fatnassi
et al., 2015). Cargo-hitching is a realization of this idea and extends the crowdsourced
delivery concept by (also) exploiting spare capacity available in public transportation,
including tram, metro, buses and taxi service systems, in urban areas for the movement
of freight. Van Duin et al. (2019) provides an overview of projects considering the in-
tegration of passenger and freight transport, including examples combining bus, bike,
train and trams services. The authors also provide insights on understanding how to or-
ganize viability for cargo hitching projects, as a concept providing environmental and
social benefits while at the same time providing a sustainable business model.

Long-haul implementations of cargo-hitching have existed for many years in the
airline and railroad industry. Short-haul implementations, however, are less common.
PostBus Courier (DHL, 2015) is a DHL service integrating parcel transport and passen-
ger service on its long-distance intercity bus network. Initially, in 2015, the service was
offered between Berlin and Hamburg, particularly for same-day, urgent, shippings for
both B2C and B2B customers. In a fully integrated system, however, different stakehold-
ers may be involved (Jesus Gonzalez-Feliu and Routhier, 2014; Arvidsson et al., 2016),
e.g., a logistics service provider who leases (spare) capacity on buses from a city bus
operator. Coordination and synchronization are challenging in such environments and
only a limited number of research efforts exploring these issues have been reported in
the literature.

Masson et al. (2017) propose a Mixed Urban Transportation Problem consisting of
two tiers for the distribution of goods within cities. In the first tier, city buses are used to
transport goods from distribution centers to a set of bus stops and then, in the second
tier, goods are transferred to city freight distributors to be delivered to the end customer.
Ghilas et al. (2016) consider the feasibility and opportunity of incorporating scheduled
public transportation in the distribution of goods. Pickup and Delivery (PD) vehicles are
used to bring (collect) goods to (from) a bus station, and spare capacity on the scheduled
bus services, which can be high, especially in off-peak hours, is used to move goods for
part of their journey to their end destination.

Whereas buses and other public transport modes operate on predetermined routes
and schedules, taxis are more flexible as passengers determine pickup and delivery lo-
cations as well as times. Thus, taxis may be used, at times, to move freight within the city
on an individual on-demand basis. Li et al. (2014) introduce and explore the Share-a-
Ride Problem, which is an extension of the Dial-a-Ride-Problem (Cordeau and Laporte,
2007), but taking into account the different requirements to transport people and freight
using a taxi network (e.g., maximum ride-time, detours, number of stops, etc.). Taxis are
allowed to deliver parcels as long as the service level for the passenger does not dete-
riorate significantly. A Freight Insertion Problem (FIP) is proposed to insert parcel col-
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lections in a given routing plan for passengers aimed at minimal passenger disruptions.
Chen and Pan (2016) specifically refers to a “crowd of taxis” to propose, in the same vein
as the solution for reverse flows in Chen et al. (2017a), using a taxi fleet in the city in
tandem with a network of 24/7 shops to satisfy last-mile delivery requests.

2.2.2. BEYOND TRADITIONAL CROWD LOGISTICS

Crowd logistics, up to now, has been seen mostly as an opportunity to reduce the cost
and the speed of delivery in the urban distribution of goods, in particular for the fulfill-
ment of home deliveries. In the future, crowd logistics will likely cover a wider range of
city logistics functions. We discuss some in this section.

RECEIVING PACKAGES

For home delivery, an important aspect of the fulfillment process is the actual receiving
of the package. Failing to deliver because a recipient is not at home to accept (and, possi-
bly, sign for) the package will not only disappoint consumers, but will also result in extra
costs, because courier companies usually retry delivery (a few times). To prevent missed
deliveries, alternative delivery options have been introduced, e.g., customers are offered
(convenient) locations to collect parcels, ranging from strategically located locker boxes
(e.g., at subway or train stations) to pickup points at gas stations and convenience stores.
Locker box solutions for apartment blocks and other housing complexes are offered, for
example, by Amazon (The Hub). Such solutions not only help in reducing missed de-
liveries, but also in increasing service efficiency. Due to the large number of residents
in apartment complexes, door-to-door delivery of every package can be quite time con-
suming. Moreover, the number of packages delivered in these residential buildings has
been increasing as fast as e-commerce (17%) for the last three years (Rodrigue, 2017).

At such pace, even those alternative collection services, e.g., locker boxes, will soon
reach the limit of their usefulness. Moreover, installing locker boxes is expensive and,
even though unattended delivery can be mitigated, the problem is not entirely solved,
since parcels may be kept in the locker for several days. The use of crowdsourced solu-
tions might provide a better means to alleviate the situation.

Wang et al. (2016) propose a last-mile fulfillment system in which the delivery of a
parcel, from a locker/pickup station to the end consumer, is crowdsourced to a pool
of citizen workers. Compared to a self-collection model, having the crowd collect and
deliver parcels from locker boxes can reduced costs, since potentially fewer locker boxes
are required and the turn-over rate can be increased. Experiments using datasets from
Singapore and Beijing show that the approach can be used in large-scale settings (with a
huge number of workers and parcels to be collected and delivered).

Another crowdsourced solution is neighbor or neighborhood delivery, where an in-
dividual uses his/her available time and space (capacity) at home to receive and tem-
porarily store packages. This is a possibly attractive proposition for elderly residents in a
neighborhood, both from a social and economic perspective. In Europe, such service is
offered by DHL and PostNL as long as the sender does not require strict delivery to the
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customer (signed delivery). Even though companies do not offer any compensation for
the person receiving the package, such approaches not only mitigate the negative effects
of unsuccessful deliveries but also can help in building a sense of community around the
neighborhood.

RETURNING PACKAGES

The continuous growth of on-line and e-commerce sales has also led to an increase in
returns. To increase on-line sales, especially in the apparel industry, offering free returns
has been not only essential, but has also become the norm. In Europe, customers have
the right to return items within 14 days, for any reason, and get a full refund. Free returns,
of course, are not free for the retailer and the need for more cost-effective ways to man-
age reverse flows has become obvious (de Brito and Dekker, 2004). Figures from 2015
showed that 30% of goods purchased on-line are returned (Reagan, 2016). On specific
markets, as apparel and shoes, that rate can be even higher. Moreover, customers are
more willing to buy when offered free returns (United Parcel Service of America, 2015)
and “buy anywhere return anywhere" policies have contributed to omni-channel strate-
gies that shortens the supply chain towards the customer but the impact of such strate-
gies on city logistic is not yet clear (Savelsbergh and Van Woensel, 2016).

Thus, not only increased direct-to-consumer deliveries pose new challenges for city
logistics, but also the increased rate of returns. However, integrating the fulfillment of
both flows is not straightforward as an item might be returned to the same distribution
center where it came from, to another distribution center, or to a store (omni-channel
solutions), for example, and might require different handling. Nonetheless, and despite
being more time flexible than the last-mile delivery, an efficient return process is bene-
ficial for both customers and companies. For the former, a fast return may result in an
earlier refund deposit or a new product delivered. For the latter, it impacts the possible
reselling of the returned item.

Crowdsourcing reverse flow activities is, therefore, a promising option for compa-
nies and could also contribute to mitigate the negative effects of extra vehicle move-
ments within a city to fulfill returns. Yet, real cases of such solutions are not known to
the authors. Research on feasibility issues, though, has already begun, but is limited.
Chen et al. (2017a) propose to use shops (since they provide flexible delivery and pickup
times, and are more convenient to customer and drivers) to build a collection network
for returned goods in which en-route taxi services are used to collect packages at shops,
before picking up the passenger, or to deliver packages at the shops, after dropping off
the passenger. Different collection strategies are used to dispatch the taxis to transport
goods from shops to the distribution centers, exploiting the extra capacity for small par-
cel on taxis, thus diminishing the carbon footprint to fulfill the service compared to using
a truck for the same purpose.

Whereas crowdsourced receiving solutions (e.g., neighborhood delivery) are mostly
applied to support last-mile deliveries, returned goods might also be stored by the crowd,
facilitating collection operations for companies.
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Figure 2.2: Example of crowdsourced activities within city logistics.

An overview of the city logistic applications discussed in the previous sections, with
examples of crowdsourcing services, is given in Figure 2.2.

2.3. RESEARCH OPPORTUNITIES IN CROWD LOGISTICS
In this section, we discuss a few topics that are not only relevant to crowd logistics, but
also provide, in our view, exciting research opportunities.

The rise of the sharing economy makes it possible to monetize goods and services
not deemed as assets before (Geron, 2013). As a consequence, new models have emerged
based on the (temporary) access to rather than the ownership of (expensive) assets. In
the context of logistics, this represents a paradigm shift from traditional models with a
focus on optimizing asset ownership for a given activity (DHL Trend Research, 2017).
The adoption of crowd logistics follows a transition away from the traditional schemes,
in which a company owns assets and employs workers to perform its logistic activities, or
outsources its logistic activities to third-party providers. More and more, mixed schemes
are developed in which a company reduces its owned assets (e.g. vehicles and workers)
to perform its logistic activities, and relies, instead, on crowd logistics for some of these
activities (and, potentially, even all of its logistics activities).
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This paradigm shifts necessitates more research on a number of relevant topics. Clearly,
for these time being, crowd logistic raises more questions than answers. Research ad-
dressing these questions is still in its infancy.

Below, we discuss the following research topics: Consolidation using existing flows,
which avoids the need for additional resources to be put on the heavily congested infras-
tructure, thus leading to more sustainable logistics services. Willingness to participate,
which is critical to the success of a crowd logistics market, and involves both the sup-
ply of capacity and the demand for capacity in the market. Scale and dynamics, which,
for crowd logistics, are significantly different from more traditional logistics services, as
the number of participants (both on the supply and the demand side) tends to be much
larger and their entry and exit faster and less predictable.

2.3.1. CONSOLIDATION USING OF EXISTING FLOWS

Consolidation, coordination and cooperation are fundamental to city logistics, and cen-
tral for achieving an integrated system in which freight movements are performed as
efficiently as possible e.g., by minimizing the fleet size, reducing empty traveling. Most
of the literature considers the availability (capacity and time) of preexistent flows as a
central aspect to crowd logistics.

Clearly, independent agents, not necessarily already performing another duty (e.g.,
a commuting driver), can be considered as part of a crowd-logistics solution. However,
Paloheimo et al. (2016) also point out that rebound effects, where drivers travel longer
distances, particularly motivated by monetary compensation, can reduce the potential
environmental effects. Additionally, Chen et al. (2017b) mention that crowdsourcing ac-
tivities not using pre-existing flows generate new movements, reducing the overall im-
pact on sustainability.

One activity that best exemplifies the aforementioned issues, in the context of people
transportation, is ride-sharing (Kamar and Horvitz, 2009; Agatz et al., 2012; Furuhata
et al., 2013), in which drivers offer empty seats to other travelers with similar itineraries
and time schedules. Those arrangements benefit not only the driver (sharing the costs of
owning and maintaining a car), but also the passengers, since sharing a ride can be less
costly and more convenient than using traditional forms of transportation. Moreover,
ride-sharing also has an impact on the efficiency of urban transportation: potentially
less vehicles are used to provide the required mobility, traffic congestion can be reduced,
as well as fuel consumption and greenhouse gas emissions.

BlaBlaCar is a platform providing ride-sharing support, connecting drivers with empty
seats to interested passengers. Recently, Uber started to offer a new service, UberPOOL,
wherein drivers can announce their journeys and are matched with riders heading in
the same direction. Perhaps due to the collaborative aspects of these sharing platforms,
non-economic benefits such as improving the environment and social welfare may be
regarded as primary objectives of such services.
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2.3.2. WILLINGNESS TO PARTICIPATE

In a study investigating the motivations why people participate in sharing economy ac-
tivities, Hamari et al. (2016) highlight that while sustainability aspects influence how
collaborative consumption is perceived, participants are mostly motivated by economic
benefits. Nevertheless, other factors such as enjoyment in performing the activity and
social awareness are also important. This is in accordance with the results reported in
Paloheimo et al. (2016) for the case study of a crowd-delivery pilot for a library, where
monetary compensation, while important, was not the main driver for participation.

An important characteristic of crowd logistics services is that they are offered by in-
dependent providers on a voluntary basis i.e., there is no employee-employer agreement
between the company (platform owner) and the crowd. Relying for all or part of your lo-
gistics activities on the crowd is thus a non-trivial strategical/tactical decision that has
major implications. In the context of crowd delivery, professional drivers are more ex-
pensive, but are available when required and do what you need, thus providing certainty
and reliability. Independent drivers are less expensive, but are only available when it is
convenient for them and perform tasks that they deem beneficial, leading to uncertainty
and, potentially, a significant loss of service quality. Additionally, a characteristic of on-
demand services is that customers are sensitive to price and waiting time (Tang et al.,
2016; Taylor, 2017). The availability of independent drivers may be a concern as well as
the willingness of independent drivers to perform certain transportation requests. To
ensure reliability and quality of service towards its customers, a company may still have
to rely on (some) professional drivers (either company employees or third-party drivers).

A key mechanism to manage this capacity uncertainty is the compensation scheme
utilized for the independent providers (crowd). Regardless of whether the crowd is driven
by altruistic, non-monetary motivations or by the possible economic gains that can be
achieved, an efficient compensation scheme is crucial for attracting participants. These
can include both monetary and non-monetary incentives. On the platform side, relying
on independent providers to fulfill real-time requests is challenging since the providers
decide whether and when to work and this decision is driven by the offered compensa-
tion. Few providers implies that customers will have to wait more to be serviced which,
in turn, will decrease customer satisfaction and demand. The platform has to choose
an appropriate compensation level for providers, in some cases dynamically, given the
available number of providers and customers. So far, this problem has only been mod-
eled using concepts from queueing theory (Tang et al., 2016) but could also be framed
using concepts of cooperative and non-cooperative game-theory. More research is re-
quired to better understand how to make these trade-offs, which will have to involve
modeling the behavior of independent providers.

Economy of scales dictate costs and pricing strategies for professional logistic ser-
vices providers, e.g., consolidating large amounts of low-valued small activities. Due
to the nature of the services offered by the crowd (e.g., spare capacity on free time),
crowd services tend to be more personalized and, thus, more fragmented. As an ex-
ample, crowd-delivery services operate on a parcel level (e.g., the driver/agent only per-
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forms one delivery) and do not take advantage of consolidation. Setting appropriate
prices should take into account a large number of small and low-valued single activities
performed by different agents (Klumpp, 2017). Other pricing mechanisms, such as the
bidding system proposed in Kafle et al. (2017), could be leveraged to address such issues.
Operational planning for horizontal cooperations between road transportation carriers
often is performed through auction-based mechanisms in which requests are exchanged
among carriers (Song and Regan, 2003; Verdonck et al., 2013). In a crowd-delivery con-
text, bidding mechanisms could allow for a better assessment for which compensation
is considered appropriate for a crowd agent and, also, help the crowd logistic platform in
deciding which activities to crowdsource. Furthermore, bidding mechanisms stimulate
the use of existing flows or space instead of generating new traffic and/or capacity. For
example an independent driver already heading to a certain delivery location has lower
marginal cost and effort and thus can ask for a smaller compensation than someone who
especially has to drive there.

2.3.3. SCALE AND DYNAMICS

As a highly interconnected and interdependent environment, information regarding dif-
ferent aspects of the city changes constantly. Congestion, for example, might have a sig-
nificant impact on travel times. For delivery services, new requests might arrive after
the route planning for the vehicle has been decided. For a survey on the inherent is-
sues and challenges posed by vehicle routing optimization in city logistics contexts, the
reader is referred to Cattaruzza et al. (2015). One of these challenges, in particular, is
especially relevant for the crowd-sourcing of transportation activities, namely, how to
handle dynamic incoming information to (re-)optimize decisions already made taking
into account the new information. In the context of crowd logistics, since participation
is voluntary, real-time information regarding crowd availability, for example, will be cru-
cial for successful implementations.

To date, only few works have considered crowd logistic approaches taking into ac-
count dynamic information. Li et al. (2014) extended the SARP to consider dynamic sce-
narios in which passenger requests are accepted or denied in real-time (at the time of the
call), but parcel demands are known (pickup and delivery locations and time windows)
beforehand. Routes for the accepted passengers are generated and feasible parcels are
inserted by solving an associated FIP. Arslan et al. (2019) introduces a variant of the dy-
namic pickup and delivery problem in which ad-hoc drivers (occasional drivers) are
willing to make a small detour in exchange for a small compensation to improve on-
demand delivery. Both ad-hoc drivers and delivery requests arrive in real-time and the
crowdsourcing platform has to assign delivery tasks to drivers. Real-time information
is handled in a rolling horizon framework that re-optimizes the system whenever a new
request or driver is available. A simulation study is conducted to evaluate the feasibility
of the concept, based on data collected from the city of Rotterdam, the Netherlands. Da-
yarian and Savelsbergh (2017) consider the dynamics of employing in-store customers
to deliver online orders (as envisioned by Walmart).
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2.4. BEYOND CITY LOGISTICS
The focus of the chapter is on crowdsourcing opportunities in city logistics. In this sec-
tion, we briefly discuss crowdsourcing opportunities in inter-city logistics, which, of
course, may impact city logistics as well.

Whereas the rise of car-sharing initiatives may in the future provide a valid, and pos-
sibly attractive, alternative to renting cars, P2P car-sharing, at the moment, still rep-
resents only a small share of the market. Regardless, a critical issue when supporting
one-way renting (or one-way sharing) is repositioning. Rental car companies incur sig-
nificant costs in the repositioning of cars in order to re-balance fleet availability among
their rental counters. Such a re-balancing operation is either performed by trucks or by
dedicated drivers. To reduce such repositioning costs, Transfercar, among others, ini-
tiated a service that connects rental car companies having cars to be repositioned, and
drivers willing to perform the repositioning task: crowdsourced repositioning. However,
a seemingly missed opportunity is to use the capacity created by the repositioning of
vehicles for the movement of freight.

Inter-city flows, (e.g., the repositioning of a rental car from one city to another) while
not having a direct impact on city logistics, still can influence the goods distribution in-
side the city. We provide two such examples in airline transportation. Airmule is a plat-
form wherein air travelers flying with spare luggage allowance can register themselves as
on-board couriers, offering a transport service from their departure to their arrival air-
ports. Under the promise of improved access to products not available locally, Grabr is
a door-to-door crowd-sourced delivery service but, differently from Airmule, the crowd
also takes care of the purchase. The requester posts a solicitation for a particular item
to be purchased and travelers post offers for servicing such request (if they can buy the
product while traveling and if they are willing to deliver the purchase upon their return).
After the requester accepts an offer, the platform handles associated financial transac-
tions, i.e., the traveler gets paid after the delivery has been confirmed.

Moreover, cities infrastructure in the future will more and more make use of techno-
logical advances such as sensors and other types of electronic data collection. Their use
will not be limited to transportation systems, but will include the numerous other sys-
tems in urban areas (e.g., waste management, law enforcement), all of them integrated
on a network to optimize the overall city performance. This will call for new strategies
to extract information from the infrastructure and advanced data analytics methods to
make sense of the data and use it to support (optimized) decision making. Finally, in
these new scenarios, citizenship participation will be a central aspect.

2.5. FINAL REMARKS
Crowd logistics, i.e., involving the crowd in freight related activities, is one of the strate-
gies that may help achieve the goals of city logistic. Despite its significant potential, it
is far from obvious how to best use the crowd for logistic services, from an economic,
societal and environmental point of view. There is no commonly accepted definition of
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crowd logistics and of who constitutes the crowd, and yet crowd logistics, one way or
another, will play an important role in city logistics.

To be able to achieve the objectives of city logistics i.e., reducing the number and
improving the efficiency of freight movements within the city, it is necessary for every-
one using the already stressed urban infrastructure and for everyone impacted by ur-
ban freight transport to come together (Jesus Gonzalez-Feliu and Routhier, 2014; Bektas,
et al., 2015). The challenge is that these objectives can no longer be achieved by investing
in extra capacity. There is too little space and the costs are prohibitive (Savelsbergh and
Van Woensel, 2016). New strategies to organize and control freight movements within
cities are required.

The goal of this chapter was to provide an overview of crowdsourcing solutions in
transportation and logistics, from natural applications in (home) delivery to less obvi-
ous applications in receiving and returning of goods, and to highlight opportunities for
interesting and high impact research. We hope that our perspective will stimulate and
encourage others to seek creative and innovative solutions to the challenges of city logis-
tics as more and more of us will be living in larger and larger cities all around the world.
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R Apid urban growth, the increasing importance of e-commerce and high consumer
service expectations have given rise to new and innovative models for freight de-

livery within urban environments. Crowdsourced solutions – where drivers are not em-
ployed by a carrier but occasionally offer their services through on-line platforms and
are contracted as required by carriers – are receiving growing attention from industry.
We consider a crowdsourced system where drivers express their availability to perform
delivery tasks for a given period of time and the platform communicates a schedule with
requests to serve. We investigate the potential benefits of introducing transfers to sup-
port driver activities. At transfer locations, drivers can drop off packages for pick up by

1The problem becomes too many problems if you do not look after the right way to solve it.
The work in this chapter is published in Sampaio et al. (2020)
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other drivers at a later time. We frame the problem as a Multi-Depot Pickup and Delivery
Problem with Time Windows and Transfers, and propose an Adaptive Large Neighbor-
hood Search algorithm that effectively identifies beneficial transfer opportunities and
synchronizes driver operations. Computational experiments indicate that introducing
transfer options can significantly reduce system-wide travel distance as well as the num-
ber of drivers required to serve a given set of requests, especially when drivers have short
availability and requests have high service requirements.
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3.1. INTRODUCTION

D Elivering goods in urban areas is one of the most challenging logistics activities.
And given the continuing urbanization and the increasing share of e-commerce in

retail sales, it will only become more challenging in the future. Therefore, creative ideas
and innovative concepts are needed and have to be explored. Among the most promis-
ing, so far, is crowdshipping, where transportation capacity is provided by individuals
willing to provide their time and their vehicle for a (short) period of time. The use of
crowdshipping to improve B2C delivery and to support high consumer service levels is
being explored by various companies. As an example, e-tailer Zalando relies on Trunkrs
to offer same-day delivery for its customers in certain cities in Europe. Trunkrs uses
crowdsourced delivery, but also established courier services to provide the reliability de-
manded by its customers (the e-tailers). For an overview of crowded-based applications
in transportation and logistics, see Buldeo Rai et al. (2017); Sampaio et al. (2018).

The primary challenge associated with the use of crowd-sourced transportation ca-
pacity is that the capacity is provided by individuals who are not under contract and
incentive schemes have to be used to secure capacity when and where it is needed. One
option is to dynamically adjust compensation based on the required capacity, i.e., in-
crease compensation at times when and at places where more capacity is needed. An-
other option, the one we assume is used in our research, is to ask individuals to commit
to work for a specific period of time, a block, in return for a minimum pay assurance.
Such a scheme is employed, for example, by Amazon Flex and Grubhub (a meal delivery
platform).

Because blocks tend to be relatively short, as this provides flexibility both for the
company and for the individuals, we consider a system in which goods to be delivered
can be transferred, i.e., be taken from their origin to their destination by more than one
driver. This allows a company to make use of available crowd-sourced capacity to handle
short-distance as well as long-distance transportation tasks.

To model the proposed crowd-sourced delivery system, we consider a Pickup and
Delivery Problem with Time Windows and Transfers (PDPTW-T). At transfer locations,
drivers can drop off packages for pick up by other drivers at a later time. The number
and location of transfer points are strategic decisions and not considered in our study.
A transfer location can be situated at accessible locations – facilitating the operations
between drivers – such as gas stations, stores and supermarkets. It can also be an auto-
mated facility, such as a locker station, situated in one of those locations. Characteriz-
ing delivery settings that might benefit from the introduction of transfers has yet to be
studied (to the best of our knowledge, this is only investigated by Mitrović and Laporte
(2006)).

When the transfer of requests is not an option, the problem is a Pickup and Delivery
Problem with Time Windows (PDPTW) and defined as follows. A fleet of vehicles is avail-
able to satisfy a set of transportation requests, each defined by a load to be transported
(goods or people) by a single vehicle from a pickup location (origin) to a delivery location
(destination) where the pickup has to occur after a given time and delivery has to take
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place before a given time. Multiple requests can be served by the same vehicle, as long
as the vehicle capacity is never exceeded. When all requests are known in advance, the
problem is referred as the static PDPTW; when requests arrive during the execution of
planned routes and routes have to be updated to accommodate new requests, the prob-
lem is referred to as a dynamic PDPTW. The objective is to determine a set of vehicle
routes serving all requests, where the function that drives the costs is chosen accord-
ing to the application at hand (e.g., distance, duration, number of vehicles, or pollution
Savelsbergh and Sol (1995)). The reader is referred to Berbeglia et al. (2010) for a survey
on dynamic pickup and delivery problems.

As mentioned above, transfer points are locations in the network where requests can
be transferred between vehicles and temporarily stored. Hence, more than one vehicle
can be used to serve a single request, e.g., a request may be picked up at its origin by one
vehicle, then dropped at a transfer point where another vehicle (potentially with other
characteristics) picks it up and delivers it at its destination. Note that direct transporta-
tion from the pick up location to the delivery location by the same vehicle is still possible.
Transfer points allow, among others, service by a mixed fleet of vehicles ((electric) truck,
van, or bike), but also allow integration of freight and passenger transportation. As any
pickup and delivery problem can be seen as a special case of a pickup and delivery prob-
lem with transfers, pickup and delivery problems with transfers are NP-Hard. A critical
challenge when solving pickup and delivery problems with transfers is synchronization.
Whereas allowing goods to be temporarily stored (or people to wait) at an intermediate
location provides more flexibility and, thus, may allow more effective use of resources,
these resources need to be carefully synchronized in order to obtain a feasible solution.

Our contributions can be summarized as follows. We analyze the potential benefits
of transfers in pickup and delivery operations in urban areas, focusing specifically on
settings in which drivers operate short shifts (as is likely to happen in crowdshipping
settings models). In such settings, the flexibility provided by transfers may allow serving
long-distance requests that would otherwise be impossible. We propose a heuristic for
the solution of instances of the multiple-depot PDPTW-T. The heuristic produces high-
quality solutions in a reasonable amount of time. We compare the performance of the
heuristic to that of a state-of-the art heuristic for the (multiple-depot) PDPTW. The main
limitation of our approach, at this point in time, is that it assumes that all information is
available at the start of the planning horizon. In the future, we plan to extend our tech-
nology to a dynamic setting, where information arrives over time during the planning
horizon. Nevertheless, we believe that our current analysis already provides relevant
and informative insights into the potential benefits of transfers for transportation sys-
tems relying, in part, on crowd-sourced capacity.

The remainder of the paper is organized as follows. The relevant literature and re-
lated problems are discussed in Section 3.2. The notation used throughout the text is
introduced in Section 3.3, as well as a formal problem definition of the problem and a
mathematical programming formulation. The heuristic, an Adaptive Large Neighbor-
hood Search heuristic, is introduced in Section 3.4, and the results of an extensive com-
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putational study are presented in Section 3.5. Finally, we present conclusions and direc-
tions for further research in Section 3.6.

3.2. RELATED LITERATURE
The literature considering the use of transfer points in pickup and delivery problems can
be divided in two groups: (1) pickup and delivery problems with transshipment (PDP-
T) and (2) pickup and delivery with cross-docking (PDP-CD). Whereas both, transfers
and cross-docks, act similarly in providing a consolidation mechanism in which short
term storage for a limited amount of requests allows vehicles to potentially improve their
loading plans, a few differences are worth mentioning. First, in a cross-docking system
transportation requests are executed by a set of separate pickup and delivery routes. In-
bound vehicles collect the items, bring them to the CD where they are consolidated, and
then a set of outbound vehicles delivers them to their final destinations (Maknoon and
Laporte (2017)). Transfer locations, on the other hand, can be seen as a possible transfer
opportunity i.e., a request can be carried out either through transfers and, in this case,
one vehicle collects the load and another one delivers it to its final destination, or the
request can be served directly by the same vehicle. Second, the CD is the start and end
location for each route in the plan, whereas a transfer can be any location where vehicles
can exchange loads throughout their routes. Third, in some CD applications, consolida-
tion activities can only be executed when all vehicles are in the CD. In the PDP-T, this is
not required as long as synchronization requirements are met.

The static (i.e., all transportation requests are known in advance of the optimization)
PDP variants have given rise to a substantial amount of research Berbeglia et al. (2007).
Only recently the possibility of allowing transfers of goods (or people) is addressed in
the literature. Mitrović and Laporte (2006) proposed a two-phase heuristic to solve the
PDP-T consisting of a construction phase, in which a start solution is obtained, and an
improvement phase defined by iteratively removing and inserting requests in a candi-
date solution. Nakao and Nagamochi (2008) consider the PDP-T, without time windows
on the requests, and analyze lower bounds for the case where one transfer location is
available and vehicles are allowed to visit the transfer at most once. The authors show
that z(PDP ) < (6dpke+1)·z(PDPT ), where k is either the number of routes in an optimal
solution of the PDP-T or the number of requests, z(PDP ) and z(PDPT ) are the optimal
travel costs for the PDP and the PDP-T, respectively. A first mathematical formulation
and a branch-and-cut approach were proposed in Cortés et al. (2010), but only small
instances could be solved. Motivated by an air cargo carrier application, Qu and Bard
(2012) introduced an insertion heuristic to identify profitable circumstances to exploit
the transshipment option. The authors developed a GRASP algorithm and proposed a
set of randomly generated instances. More recently, Rais et al. (2014) proposed a new
model for the problem, distinguishing between vehicle (routes) and request flows and
using multi-commodity flows to match these two. Masson et al. (2013) proposed an
adaptive large neighborhood (ALNS) algorithm for the problem, and tackled the Dial-
a-Ride Problem (DARP) with transfers in Masson et al. (2014). A similar problem was
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proposed by Ghilas et al. (2016), where requests are allowed to be transferred to/from
scheduled lines such as bus, train and metro, operating between two terminals. In a re-
cent survey from Guastaroba et al. (2016), pickup and delivery problems with transfers
are mentioned as one of the extensions of the PDP with cross-docking.

An increasing number of new start-ups within the shared-economy context, explor-
ing different ways of monetizing underused assets e.g., cars, rooms, is giving rise to new
strategic and operational issues that have to be addressed in order to support such sys-
tems. It is only recently that crowdsourced delivery systems have received academic
attention. Based on the crowdshipping concept envisioned by Walmart, Archetti et al.
(2016) introduce the Vehicle Routing Problem with Occasional Drivers (VRPOD). Occa-
sional drivers are in-store customers willing to fulfill the delivery for an online customer
on their journey (performing a small detour, if necessary) after leaving the store. The
authors highlight the challenges associated with designing appropriate compensation
mechanisms and the importance of employing company drivers in order to ensure a
certain service level. Dayarian and Savelsbergh (2017) explore using in-store customers
to supplement company drivers to deliver dynamic incoming, on-line customer orders.
Dahle et al. (2019) build on the VRPOD and introduce the Pickup and Delivery Problem
with Time Windows and Occasional Drivers (PDPTW-OD). The authors propose com-
pensation schemes for the occasional drivers and show that cost savings of 10–15% can
be achieved even when the company utilizes a sub-optimal scheme.

Behrend and Meisel (2018) investigate a form of crowdshipping, in which private
drivers offer to execute delivery jobs for other people on trips they would make any-
way, within item-sharing contexts, where assets e.g. tools, leisure equipment, can be
temporarily rented. Whereas the prevalent practice on item-sharing platforms is that
the transportation of an asset is delegated to the consumer (either the consumer actu-
ally performs the task or hire a courier company), the authors show that crowdshipping
can increase profits and service levels for an item-sharing platform. Arslan et al. (2019)
consider a service platform that dynamically creates matches between parcel delivery
tasks and private drivers. Since the platform is only able to control the available number
of drivers, a regular, dedicated vehicle fleet is also operated by the platform. The au-
thors introduce a new variant of the dynamic pickup and delivery problem, and propose
a rolling horizon framework for its solution. Results show that, compared to traditional
delivery systems, crowdshipping systems can provide savings of up to 37%.

In another realization of the crowdshipping concept, similar to the approach con-
sidered in this work, drivers willing to perform transportation services use an online
platform (Uber-Freight, Amazon Flex) and are matched to demand for such services in
real-time. The drivers are independent, work for a given period of time and are paid in
a hourly basis. To the best of our knowledge, there is no work dealing specifically with
such scenarios. Nevertheless, in a similar context, taxi drivers might be willing, at times,
to move freight within the city. Li et al. (2014) introduce and explore the Share-a-Ride
Problem taking into account different requirements to transport people and freight us-
ing a taxi network. Taxis are allowed to deliver parcels as long as the service level for the
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passenger does not deteriorate significantly. A Freight Insertion Problem (FIP) is pro-
posed to insert parcel collections in a given routing plan for passengers aimed at mini-
mal passenger disruptions (e.g., maximum ride-time for passengers, maximum detours,
number of stops). Chen and Pan (2016) refers to a “crowd of taxis” to propose, in the
same vein as the solution for reverse flows in Chen et al. (2017a), using the taxi fleet and
a network of 24/7 shops to satisfy last-mile delivery requests.

The use of intermediate locations in crowdsourced delivery systems, as an interface
between company drivers and the crowd, is invstigated by Kafle et al. (2017). The au-
thors propose a two-tiered delivery system, in which the second tier is crowdsourced to
cyclists and pedestrians (the crowd). In the system, a truck carrier posts pickup and de-
livery requests on a platform and individuals in the crowd bid to carry out a subset of
those requests. Parcels can be transferred between a truck and (one or more) individ-
uals at relay locations. The company decides on the winning bids and plans the truck
routes that visit the relay points and delivery addresses of requests for which no bids
were received or were too expensive. Chen et al. (2017b) introduce the the Multi-Driver
Multi-Parcel Matching Problem (MDMPMP), in which parcels may be transported by a
single or by multiple drivers, using existing planned routes of the drivers. Parcels can be
transferred between drivers, allowing for a more flexible matching of drivers and parcels,
since drivers do not need to fulfill the complete parcel’s journey and use transfer oppor-
tunities to bring the parcel closer to its final destination.

3.3. PROBLEM DESCRIPTION
The Pickup and Delivery Problem with Time Windows and Transfers (PDPTW-T) is de-
fined as follows. We are given a set of transportation requests R = {(i+, i−)| i+ ∈ P, i− ∈ D},
where P and D are the set of pickup and delivery locations, respectively, and where a re-
quest ri = (i+, i−) concerns the pickup of a load at i+ and its delivery at i− within time
window [Ei+ ,Li− ], specifying the earliest time, Ei+ , when the load is available at the ori-
gin and the latest time, Li− , when the load must be delivered at the destination. A fleet
of vehicles, V , is available to serve the requests. Each vehicle v ∈ V starts and ends its
shift at a depot located at mv ∈ M , with M the set of all depot locations. Each vehicle
v ∈ V has a duty period, or shift, [Ev ,Lv ]; the vehicle can depart its depot at Ev and has
to return to its depot by Lv . There is a set Γ of transfer locations. A request ri ∈ R can be
served by one vehicle visiting both i+ and i−, or by two vehicles with one vehicle visiting
i+ and the other visiting i−. In the latter case, the request is transferred at a location t ∈ Γ.
Note that we allow only a single transfer. Two vehicles serving a request are not required
to be at the transfer location at the same time, i.e., transfer locations offer short-term
storage (a vehicle can drop off a request and leave, while another vehicle can come and
pick up the request at a later time). Multiple vehicles can visit a transfer location at the
same time and vehicles can wait at a transfer location. We focus on settings where the
number of drivers is large and shift durations are short (relative to the planning horizon)
– which is representative of crowdshipping settings. We also assume, for simplicity of
exposition, that the size of loads is small compared to the vehicle capacity, and that the
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vehicle capacity is never restricting.

3.3.1. MATHEMATICAL FORMULATION
The PDPTW-T can be modeled on a directed graph G(W, A) with node set W = P ∪D ∪
M ∪Γ and A = {(i , j ) | i , j ∈W, i 6= j }. It takes a vehicle τi j > 0 units of time to travel from
i to j , (i , j ) ∈ A, and incurs a cost ci j > 0. We assume travel times satisfy the triangle in-
equality. The objective is to find a minimum cost set of vehicle routes serving all requests
(either by one vehicle or by two vehicles). Rais et al. (2014) propose a flow-based mixed
integer programming formulation for the PDPTW-T, in which request flows are linked
with vehicle flows. The vehicle flow is modeled by binary variables xv

i j , indicating the

traversing of arc (i , j ) ∈ A by vehicle v . Request flows are modeled by binary variables
y vr

i j indicating whether vehicle v ∈ V carries request r ∈ R over arc (i , j ) ∈ A. Synchro-

nization of transfer operations is achieved through variables av
i and d v

i , for arrival and
departure times of vehicle v at location i , respectively, and binary variables sv w

tr indicat-
ing whether request r is transferred between vehicles v and w at transfer location t . The
formulation is given below

min
∑

v∈V ,(i , j )∈A
ci j xv

i j (3.1)

s.t.
∑

(i , j )∈A
xv

i j ≤ 1 ∀v ∈V , i = mv (3.2)∑
(i , j )∈A

xv
i j =

∑
( j ,i )∈A

xv
j i ∀v ∈V , i = mv (3.3)∑

(i , j )∈A
xv

i j −
∑

( j ,i )∈A
xv

j i = 0 ∀v ∈V ,∀i ∈W \ M (3.4)∑
v∈V

∑
(i+, j )∈A

y vr
i+ j = 1 ∀r ∈ R,r = (i+, i−) (3.5)∑

v∈V

∑
( j ,i−)∈A

y vr
j i− = 1 ∀r ∈ R,r = (i+, i−) (3.6)∑

v∈V

∑
(t , j )∈A

y vr
t j − ∑

v∈V

∑
( j ,t )∈A

y vr
j t = 0 ∀r ∈ R, t ∈ Γ (3.7)∑

(i , j )∈A
y vr

i j − ∑
( j ,i )∈A

y vr
j i = 0 ∀v ∈V ,r = (i+, i−) ∈ R, i ∈W \ {Γ∪ {i+, i−}} (3.8)

y vr
i j ≤ xv

i j ∀(i , j ) ∈ A, v ∈V ,r ∈ R (3.9)

d v
i +τi j −av

j ≤ M(1−xv
i j ) ∀(i , j ) ∈ A, v ∈V (3.10)

d v
i+ ≥ Ei+ , av

i− ≤ Li− ∀r = (i+, i−) ∈ R, v ∈V (3.11)∑
( j ,t )∈A

y vr
j t + ∑

(t , j )∈A
y wr

t j ≤ sv w
tr +1 ∀r ∈ R, t ∈ Γ, v, w ∈V (3.12)

av
t −d w

t ≤ M(1− sv w
tr ) ∀r ∈ R, t ∈ Γ, v, w ∈V (3.13)

xv
i j ∈ {0,1} ∀(i , j ) ∈ A, v ∈V (3.14)
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y vr
i j ∈ {0,1} ∀(i , j ) ∈ A, v ∈V , r ∈ R (3.15)

sv w
tr ∈ {0,1} ∀t ∈ Γ, r ∈ R, v, w ∈V (3.16)

av
i ,d v

i ≥ 0 ∀i ∈W, v ∈V (3.17)

The objective (1) is to find a minimum cost set of routes satisfying all requests. Con-
straints (2) enforce that each vehicle executes at most one route and constraints (3) en-
force that a vehicle starts and ends a route at the same depot. Vehicle flow conserva-
tion is expressed by constraints (4). Constraints (5) and (6) guarantee that each request
is served, i.e., it is picked up and delivered, respectively. The flow conservation for re-
quests, at transfer locations, is enforced by constraints (7), and at non-transfer locations
by constraints (8). Note that for transfer locations, a request entering the transfer is al-
lowed to leave in a different vehicle, whereas for non-transfer locations a vehicle entering
the location with a given request must leave the location with that request. Request and
vehicle flows are linked by constraints (9), which enforce that a request has to travel in
a vehicle. Consistency of arrival and departure times is enforced by big-M constraints
(10) and time windows are enforced by constraints (11). Transfer operations are syn-
chronized by constraints (12) and (13): if request r ∈ R is transferred between vehicles v
and w , v, w ∈V , at location t ∈ Γ, then vehicle w can depart from transfer location t only
after the arrival of vehicle v at transfer location t .

As in the above formulation, we will assume for the remainder that a request is only
transferred once, that a vehicle visits a given transfer location only once, and that two
vehicles meet and exchange requests only once. A vehicle can visit multiple transfer
locations on its route.

3.3.2. BENEFITS OF TRANSFERS
To illustrate and assess the potential benefits of using transfers, we analyze a set of styl-
ized instances and compare solutions with and without transfers.

Consider an instance in which the pickup and delivery locations are vertices of a
regular n-sided polygon with side length S, inscribed in a circle of radius Υ. A single
depot (m ∈ M) is located at the center of the circle, and also acts as a transfer location
(t ∈ Γ). Let the common shift for vehicles be [0,4Υ] and let the common time window for
requests be [0,4Υ] as well, with S >Υ.

Next, we locate the pickup and delivery locations of the requests in such a way that
the ratio k1/k2 can get very large, where k1 is the minimum fleet size required to serve
all requests when transfers are not allowed and k2 is the minimum number of vehicles
required when transfers are allowed, can get very large. Figures 3.1a, 3.1b, 3.1c, and 3.1d
illustrate instances with 3, 4, 5, and 6 requests, respectively.

In Figure 3.1a, for example, six requests, (1+,1−), ..., (6+,6−) are shown. If fewer than
six vehicles are available to serve all requests when transfers are not allowed, then two re-
quests must be picked up and delivered by the same vehicle. However, this is impossible,
because two requests with a common pickup location do not have a common delivery
location, which implies that the vehicle needs to visit three locations and the travel time
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is at leastΥ+S+S+Υwhich exceeds 4Υ (since S >Υ). Observe that, if more requests are
added, a fleet of six vehicles would still be enough to serve all requests, no matter where
the pickup and delivery locations for the added requests are located. Thus, in the best
solution without transfers, k1 = 6 vehicles (routes) are required, each departing from the
depot, visiting two vertices of the polygon (one with the pickup and another with the
delivery), and returning to the depot.

When transfers are allowed, the best solution requires k2 = 3 vehicles, each perform-
ing a route departing from the depot, visiting one vertex of the polygon, then the transfer
location, followed by a vertex and returning to the depot. All loads are picked up and
taken to the transfer location where they are consolidated and then taken to their final
destination. It is not possible to use fewer than three vehicles. If two vehicles are used,
then one of them has to visit two locations to pickup loads and take them to the transfer
location, which would not leave enough time for delivery. Thus, for this setting, we have
k1/k2 = 2.

Figure 3.2 illustrates the potential benefits of transfers in a setting with two depots
and a single transfer location. In the example, the six requests (1+,1−), ..., (6+,6−) can
be serviced by vehicles from any depot. Deliveries 1−,2− and 3− are located in a line
and spaced by S time units. The time windows for those locations are such that if a ve-
hicle picks all three requests, the deliveries should be visited in the order 3−,2−,1−. In
particular, latest delivery times are set as L1− = L3− −S and L2− = L1− −S and L3− small
enough such that a vehicle visiting 1− or 2− before visiting 3− is not able to reach 3− be-
fore L3− . Moreover, the shift length is such that a vehicle departing from 1− after visiting
3− and/or 2− is not able to return to m1 in time. As a consequence, when transfers are
not allowed, requests (1+,1−), (2+,2−), (3+,3−) have to be served by a different vehicle
(Figure 3.2a). Observe that for requests (4+,4−), (5+,5−), (6+,6−) we have a similar situa-
tion, as the locations are positioned on symmetrical positions, with depot m2 replacing
m1. When transfers are allowed, two vehicles, one from depot m1 and one from depot
m2, can serve all requests (Figure 3.2b). Note that, after visiting transfer t and swapping
the requests, the deliveries still have to be visited in the order 3−,2−,1− (and 4−,5−,6−.).

3.4. ADAPTIVE LARGE NEIGHBORHOOD SEARCH
Solving instances of the mathematical model presented in Section 3.3.1 in a reason-
able amount of computation time is only possible for small instances; Rais et al. (2014)
presents results for instances with 10 and 14 locations (5 and 7 requests, respectively)
and where transfers are allowed at every location. This is due, in part, to the symme-
try (vehicles are indistinguishable) and the use of big-M constraints, which results in
weak linear relaxations. Therefore, we develop an Adaptive Large Neighborhood Search
(ALNS) algorithm which is able to handle large instances in short computation times.

ALNS algorithms have been successfully applied to many hard combinatorial prob-
lems, in particular to many variants of the vehicle routing problem (see Pisinger and
Ropke (2007)). An ALNS algorithm specifically designed for solving instances of the
PDPTW is described in Ropke and Pisinger (2006). A successful ALNS algorithm relies
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m1 m2

1+ 2+ 3+

3− 2− 1−

4+ 5+ 6+

6− 5− 4−

(a)

tm1 m2

1+ 2+ 3+

3− 2− 1−

4+ 5+ 6+

6− 5− 4−

(b)

Figure 3.2: A PDPTW-T instance where transfers result in significant benefits.

on the availability of several fast-to-explore local search neighborhoods for modifying
a solution. We focus on neighborhoods that remove requests from the current solution
and reinsert them to create a modified solution. At each iteration, one of the neighbor-
hoods is selected, giving priority to neighborhoods that have been successful in earlier
iterations. Improving solutions are always accepted, but a diversification mechanism is
incorporated which sometimes allows for the acceptance of worse solutions. The basic
flow of our ALNS algorithm is given in Algorithm 1.

An initial solution, in which some of the requests are transferred, is obtained as de-
scribed in Section 3.4.1. A removal and insertion operator are chosen (line 4) based on
weights that reflect past performance. The removal and insertion operators are applied
in sequence (line 5). The acceptance of the resulting solution is controlled by a scheme
that is similar to those found in simulated annealing (SA) algorithms. More specifically,
given the current solution Sc , a solution S is accepted with probability e−(z(S)−z(Sc ))/T

where T > 0 is the current temperature. The temperature starts at T0 and is decreased
at every iteration of Algorithm 1 by the cooling rate 0 < α < 1, that is Ti+1 = Tiα. T0 is
given by ω

−ln(0.5) z0, where z0 is the cost of the initial solution and 0 <ω< 1, i.e., a solution
with cost (1+ω)z0 has probability 0.5 of being accepted. A higher value ω (and con-
sequently T0) allows for more diversification throughout the search, especially during
the early stages, but may still be insufficient to avoid getting trapped in local optimum.
Therefore, we take a similar approach to Stenger et al. (2013) and reset the temperature
to ω

−ln(0.5) z∗ after ν iterations in which no improving solution has been found, where z∗
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Algorithm 1: Overview of the main steps in the proposed solution method (ALNS)

Input : Set R = {(i+, i−)|i+ ∈ P, i− ∈ D} with pickup and delivery requests; Set of
transfer locations, T

Output: Routing plan S∗
1 I ← Construct an initial solution having a subset of the requests transferred;
2 S∗,Sc ← I ;
3 while Termination criteria not satisfied do
4 Choose a removal (O−) and an insertion (O+) operators;
5 S ←O+(O−(Sc ));
6 if z(S) ≤ z(Sc ) then
7 Sc ← S;
8 if z(S) ≤ z(S∗) then
9 S∗ ← S;

10 else
11 Sc ← accept (S,Sc );

12 Update weights used for operators selection;

13 return S∗;

is the cost of the best solution found so far.

3.4.1. INITIAL SOLUTION
A critical aspect of an ALNS algorithm for solving the PDPTW-T concerns the strategies
embedded for deciding which requests to transfer and at which locations. Such strate-
gies have to be embedded in the solution improvement framework (i.e., removal/insertion
operators that explicitly consider transfers), but starting with an initial solution in which
some requests are being transferred might help guide the search – requests are consid-
ered one at a time and introducing a (new) transfer is not likely to look attractive as it
involves detours to visit a transfer location. Thus, by having (some) transfers in the ini-
tial solution, an ALNS algorithm is more likely to make effective use of transfer options.

Any solution, s, is characterized by a subset R ′
s ⊂ R of requests being transferred. We

create an initial solution, s0, by forcing a subset of requests to be transferred in the initial
solution. Next, we describe how we obtain R ′

s0
⊂ R (3.4.1) and how we decide on the

transfer locations to use (3.4.1) when constructing s0 (3.4.1).

SELECTING REQUESTS TO TRANSFER

For a request ri = (i+, i−) ∈ R, let τi be the (direct) travel time between i+ and i−. Select-
ing the requests that are forced to use a transfer in the initial solution is controlled by a
threshold τ′. We let R = {(i+, i−) ∈ R;τi ≥ τ′} be the candidate set for transferred requests
in the initial solution.

Transferring of requests having relatively long travel times might yield cost savings
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as it may induce “regional” vehicle routes in which requests with pickup and delivery
locations in a region are served without a transfer and requests with pickup and delivery
locations in different regions are served using a transfer. The threshold τ′ is defined
based on the characteristics of an instance, e.g., half of the longest possible travel time.

SELECTING A TRANSFER LOCATION

Given the set of candidate requests to be transferred in the initial solution, the next deci-
sion concerns which transfer location to use. To prevent transfers that require a large de-
tour (compared to traveling directly from pickup to delivery location), transferring ri ∈R

via t ∈ Γ is considered only when τi+,t +τt ,i− ≤ γτi , where γ> 1 is a parameter controlling
the maximum allowed ratio between the detour τi+,t +τt ,i− and the direct travel time τi .
Moreover, transferring request ri via t has to be feasible for at least one combination of
depots ma and mb , i.e., feasible routes ma − i+− t −ma and mb − t − i−−mb that can
be timed and synchronized to induce a feasible transfer at t have to exist. If there is no
feasible transfer location for a request in the candidate set, the request is removed from
the candidate set.

Among the feasible transfer locations t ∈ Γ for request (i+, i−) we select the one that
minimizes the difference between τi+,t and τt ,i− . This strategy favors transfer locations
that are located more centrally between the pickup and delivery locations of a request,
thus better balancing the detour required to visit the transfer between the two vehicles
serving the request. Figure 3.3 illustrates the possible transfer assignment for a request
(i+, i−).

t1

t2

i+ i−

Figure 3.3: Selecting a transfer location for request (i+, i−). Location t1 is selected, since it gives more balanced
detours.

CONSTRUCTING THE INITIAL SOLUTION

The initial solution, s0, is constructed such that all requests in R ′
s0

are served by two
vehicles and transferred at the location selected using the strategy presented in Section
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3.4.1. All other requests ri ∈ R \ R ′
s0

are served by a single vehicle. To construct a feasible
solution, all requests in R \ R ′

s0
are put in the “request bank” and one iteration of the

ALNS algorithm for the PDPTW by Ropke and Pisinger (2006) is executed to obtain a
partial solution for those requests. Then, for each request ri ∈ R ′

s0
, we use a “Greedy

insertion with transfer” operator of our ALNS framework (described in Section ??) to (try
and) insert ri using the selected transfer location. If unsuccessful, two new routes are
created: ma − i+ − t −ma and mb − t − i− −mb , where depots ma ,mb ∈ M are chosen
such that the total travel time of the two new routes is minimized.

3.4.2. IMPROVEMENT PHASE
At the heart of any ALNS algorithm is a set of operators, each modifying the current so-
lution in a specific and limited way, i.e., making small modifications to the current solu-
tion, and, thus, defining a neighborhood. As is common in many ALNS algorithms for
routing problems, our operators either remove or insert sets of locations (either pickup
or delivery locations).

For a given solution, let ρ(i ) andσ(i ) denote the direct (on the same route) predeces-
sor and successor nodes, respectively, of node i . The detour cost associated with node
i is δi = cρ(i ),i + ci ,σ(i ) − cρ(i ),σ(i ). The detour cost associated with request r = (i+, i−)
is δr = δi+ +δi− when σ(i+) 6= i−, and δr = cρ(i+),i+ + ci+,i− + ci−,σ(i−) − cρ(i+),σ(i−) when
σ(i+) = i−. Similarly, if request r is not yet served in the solution, then the cost to in-
sert its pickup i+ (its delivery i−) between nodes u and v (v = σ(u)) is the detour cost
cu,i++ci+,v−cu,v (cu,i−+ci−,v−cu,v ), which we also denote as δi+ (δi− ). The insertion cost
of request r = (i+, i−), given insertion positions (u+, v+) and (u−, v−) for the pickup and
delivery nodes, respectively, is the detour cost δr = δi+ +δi− when (u+, v+) 6= (u−, v−),
and cu,i+ + ci+,i− + ci−,v − cu,v when (u+, v+) = (u−, v−) = (u, v).

REMOVAL OPERATORS

A removal operator deletes a number of requests from the current solution and adds
them to a request bank (from which insertion operators select requests to be inserted).
Let O−

k (s) denote the (partial) solution that results after removal operator O−
k is applied

to solution s, and let R−
k (s) denote the set of requests deleted from solution s by operator

O−
k . Algorithm 2 illustrates the steps performed by a removal operator.

1. Worst request removal (O−
1 ): The operator deletes q requests in non-decreasing

order of their detour cost.

2. Random request removal (O−
2 ): The operator deletes q requests selected at ran-

dom.

3. Route removal (O−
3 ): The operator uses a biased selection procedure to choose a

route to delete from the current solution. Only routes that do not visit a transfer are
considered. The probability that a route is selected to be deleted is proportional to
the ratio of the waiting time in the route and the number of requests served in the
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Algorithm 2: Steps of removal operator O−
k

Input : Feasible solution, s
Output: Partial solution O−

k (s) and set of deleted requests R−
k (s)

1 q ← Number of requests to delete;
2 O−

k (s) ← s;

3 R−
k (s) ←∅;

4 for 1,2..., q do
5 Select a request r ∈ R \ R−

k (s) to be deleted;

6 O−
k (s) ←O−

k (s) \ r ;

7 R−
k (s) ← R−

k (s)∪ r ;

8 return O−
k (s),R−

k (s) ;

route. Thus, the operator favors the deletion of less efficient routes. All requests
in the chosen route are deleted. If the number of requests deleted is less than q ,
then another route is selected. The process continues until at least q requests are
deleted.

4. Transfer-based request removal (O−
4 ): This operator considers requests that have

been transferred in one or more previous solutions. For each request ri = (i+, i−),
let t∗i denote the number of times request ri has been transferred in an incum-
bent solution encountered during the search. The probability that a request ri is

selected is proportional to 1− t∗i
I∗ , where I∗ denotes the (total) number of incum-

bent solutions encountered during the search. Note that requests that are seldom
transferred in incumbent solutions are more likely to be deleted than requests that
are often being transferred in incumbent solutions.

5. Cluster removal (O−
5 ): This operator is an adaptation of an operator used in Mas-

son et al. (2013, 2014) and based on the idea that if the pickups (deliveries) of a
set of requests form a cluster, it may be beneficial if they are picked-up (delivered)
by the same vehicle and dropped off at (collected from) a transfer location. In our
implementation, we randomly pick a “root” request (i+, i−) and compute sets C+

i
and C−

i , where C+
i contains pickup locations within radius µ= 60 units of distance

from i+ being serviced by a different vehicle (and the delivery location is not within
µ from i+) and C−

i contains delivery locations within radius µ from i− being ser-
viced by a different vehicle (and the pickup location is not within µ from i−). The
requests in the larger set are deleted. The parameter q is ignored.

After the deletion of requests, it may happen that a vehicle visits a transfer location,
but no transshipment of any request takes place. We allow such unnecessary visits to
remain in the current solution for at most φ iterations. If in φ consecutive iterations a
transfer location t is not used to transfer any request, it is removed from the route(s).
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Allowing unnecessary visits to transfer locations can be beneficial, because inserting a
request involving a transfer location that is not yet in the solution results in additional
detour costs and, consequently, a deterioration in solution quality. If the transfer loca-
tion is already in the solution, even if it is currently not used to transfer requests, the
increase is only due to the detour cost incurred for the inserted request itself. Moreover,
it also increases the likelihood that the transfer location is already visited by multiple ve-
hicles. A downside of keeping transfer locations with unnecessary visits in the solution
is that the time required to visit the transfer location may render an otherwise feasible
insertion infeasible. Moreover, more insertions with transfers are evaluated and, as a
consequence, execution time is longer. Despite these downsides, our experiments have
shown that keeping transfer locations with empty visits provides a good mechanism for
exploring transfer opportunities. A post-processing step at the end of the search removes
any unnecessary visits at transfer locations in the best solution found.

INSERTION OPERATORS

The objective of an insertion operator is to reintroduce requests in the set R−
i (s), i.e., the

requests deleted by removal operator O−
i . Let O+

j (s) denote the solution obtained after

applying insertion operator O+
j to a (partial) solution s. Algorithm 3 presents the steps

performed by an insertion operator that does not consider transfers, and Algorithm 4
presents the steps performed by an insertion operator that does consider transfers.

1. Greedy insertion without transfer. Requests are sequentially inserted in the least-
cost position and route. If a request cannot feasibly be inserted, it remains in the
request bank. The sequence in which requests are inserted defines an operator:

• O+
1 : Requests are selected in decreasing order of direct travel time from pickup

to delivery location.

• O+
2 : Requests are selected in increasing order of insertion cost. More for-

mally, if∆r k represents the least cost to insert request r in route k (∆r k =∞ if
the insertion is infeasible), then the operator selects request r ′ to be inserted
in route k ′ as (r ′,k ′) = argminr∈R−

i (s), k∈K ∆r k . Values∆r k are updated after the

selected request has been inserted in its associated route.

• O+
3 : Requests are selected in decreasing order of regret, i.e., the absolute

difference between least insertion cost and the second least insertion cost.
More formally, if ∆1

r k is the least-cost insertion of request r in a route k and
∆2

r k is the second least-cost insertion of request r in a route k (where k may
be the same or a different route), then the operator selects request r ′ to be
inserted in route k ′ as (r ′,k ′) = argmaxr∈R−

i (s), k∈K (∆2
r k −∆1

r k ). Values ∆1
r k and

∆2
r k are updated after the selected request has been inserted in its associated

route.

• O+
4 : Similar to operator O+

2 , but the request is selected randomly among the
best ψ insertions, where, after initial experiments, ψ is set to 30% of the fea-
sible insertions.
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Algorithm 3: Steps of insertion operator that does not consider transfers

Input : Partial solution s and set of requests R to be inserted
Output: A complete solution s̄, or a partial solution s̄ plus a set R̄ of requests that

were not inserted
1 L ← requests in R ordered accordingly to some criterion;
2 R̄ ←∅;
3 s̄ ← s;
4 I ←∅ // list of feasible insertions;
5 for r = (i+, i−) ∈ L do
6 feasible ← False;
7 for each route v in s do
8 for k1 ∈ {0,1, ...,K }, positions within route v do
9 evaluate insertion of i+ at position k1 in v ;

10 if insertion is feasible then
11 for k2 ∈ {k1, ...,K } do
12 evaluate insertion of i− at position k2 in v ;
13 if insertion is feasible then
14 feasible ← True;
15 I ← I ∪ (k1,k2, v);

16 if feasible=False then
17 R̄ ← R̄ ∪ r

18 insertion r in s̄ using least-cost insertion i ∈ I ;

19 return s̄, R̄;
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Algorithm 4: Steps of insertion operator that considers transfers.

Input : Partial solution s and set of requests R to be inserted
Output: A complete solution s̄, or a partial solution s̄ plus a set R̄ with requests

that were not inserted
1 L ← requests in R ordered accordingly to some criterion;
2 R̄ ←∅;
3 s̄ ← s;
4 I ←∅ // list of feasible insertions;
5 for r = (i+, i−) ∈ L do
6 feasible ← False;
7 for each route v and transfer location t visited by v in s do
8 n ← position of t in v ;
9 for k1 ∈ {0,1, ...,n −1}, positions in v do

10 evaluate insertion of i+ at position k1 in v ;
11 if insertion is feasible then
12 for each route w visiting t do
13 m ← position of t inh w ;
14 for k2 ∈ {m +1, ...,K } positions in route w do
15 evaluate insertion of i− at position k2 in w ;
16 if insertion is feasible then
17 feasible ← True;
18 I ← I ∪ (k1,k2, t , v, w)

19 if feasible=False then
20 R̄ ← R̄ ∪ r

21 insert r in s̄ using least-cost insertion i ∈ I ;

22 return s̄, R̄;
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2. Greedy insertion with transfer. Requests are sequentially inserted in the least-cost
positions and routes. If a request cannot feasibly be inserted, it remains in the re-
quest bank. Given a request r = (i+, i−), an operator seeks two routes, ka and kb ,
and a transfer location, t , such that the possible visit times at t for ka and kb over-
lap (i.e., there exist a time when both vehicles can be at t ). If it is possible to insert
i+ before t in ka and i− after t in kb (properly accounting for any change in the
arrival time at t of route ka due to the insertion of i+), the insertion is considered
feasible. The sequence in which requests are inserted defines an operator:

• O+
5 : Requests are selected in decreasing order of direct travel time from pickup

to delivery location.

• O+
6 : Requests are selected in increasing order of insertion cost. More for-

mally, if∆r k1k2 is the cheapest cost to insert request r = (i+, i−), where i+ and
i− are inserted in routes k1 and k2, respectively (∆r k1k2 =∞ if the insertion
is infeasible), then the operator selects a request r ′ and routes k ′

1 and k ′
2 by

(r ′,k ′
1,k ′

2) = argminr∈R−
i (s), k1,k2∈K ∆r k1k2 . Values ∆r k1k2 are updated after the

selected request has been inserted in its associated routes.

• O+
7 : Requests are selected in decreasing order of regret insertion with trans-

fers. More formally, if ∆1
r k1k2

represents the least-cost insertion of request r

using a transfer, and ∆2
r k1k2

represents the second least-cost insertion of re-
quest r using a transfer (where the routes in which the pickup and delivery lo-
cation are inserted may be the same or may differ), then the operator selects
request r ′ and its associated routes as argmaxr∈R−

i (s), k1,k2∈K (∆2
r k1k2

−∆1
r k1k2

).

Values ∆1
r k1k2

and ∆2
r k1k2

are updated after the selected request has been in-
serted in its associated routes.

3. Transfer insert O+
8 : This operator facilitates the inclusion of transfers in a solu-

tion by creating routes with an unnecessary visit at a transfer location. Requests
are selected in decreasing order of direct travel time between pickup and delivery
location. For a request r = (i+, i−), let Ci be the circle with radius τi

2 , where τi

is the distance between i+ and i−, centered at the midpoint of the line segment
joining i+ and i−. If there is a transfer location t within Ci and a feasible route
mv −i+−t −i−−m′

v for vehicle v ∈V (not yet in the solution), this route is created.
If there are multiple transfer locations in Ci , the one minimizing the difference
|τi+,t −τt ,i− | is chosen.

It is possible that an insertion operator does not succeed to insert all requests deleted
by a removal operator. In this case, the remaining requests are inserted as follows: find
a route ka with transfer location ta maximizing the number of delivery locations that
can be feasibly inserted in ka after ta . Let the set of these delivery locations be denoted
by D . Similarly, find a route kb with transfer location tb maximizing the the number of
pickup locations that can be feasibly inserted in kb before tb . Let the set of these pickup
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locations be denoted by P . If |D| ≥ |P |, the delivery locations in D are inserted in ka (if
feasible) after ta . For each inserted delivery location, if it is not possible to insert the
corresponding pickup in a route already in the solution, a new route mv − i+− ta −mv

is created (assuming a vehicle v is available). If |D| < |P |, a similar process is used, but
starting with the pickup locations. If, at the end, there are still remaining requests, these
are inserted in new routes without transfers.

OPERATOR SELECTION

The adaptive weight mechanism used to control the selection of a removal and insertion
operator is implemented by a roulette wheel procedure, as described in Pisinger and
Ropke (2007). If the weight of operator Oi , i ∈ 1, ...Π, is πi , expressing the desirability of
selecting operator Oi , then the probability of selecting Oi is given by πi /

∑Π
j=1π j . The

removal and insertion operators are chosen independently, i.e., with different roulette
wheels. At the start of the search, all operators have equal weights. During the search,
the weights are updated every κ iterations, similarly to Pisinger and Ropke (2007). As
discussed above, in our ALNS algorithm, two types of insertion operators are considered:
operators in which transfers are considered, and operators considering transfer opera-
tions. Since the insertion of a node (request) can be feasible for one type, but not for the
other, our ALNS algorithm selects two insertion operators, one of each type. The oper-
ator with the largest weight is applied first, and if there are remaining nodes (requests),
then the other operator is applied.

The performance of each operator is recorded in its weight based on the solutions
obtained after the operator is applied. In particular, the score π̄i for operator Oi starts
at 0 at the start of each segment of κ iterations, and is incremented by: σ1 if an overall
best solution is found, σ2 if an improving solution is found, and σ3 if a worse solution
is found and accepted (as part of the annealing scheme). If ai is the number of times
operator Oi was used during the current segment (of κ iterations), then the new weight
πi is given by πi (1−ρ)+ (π̄i /ai )ρ, where ρ ∈ [0,1] adjusts the importance given to scores
in past segments. Since two insertion operators may be applied in one iteration, their
weights are updated independently.

EFFICIENCY

The performance of an insertion-based neighborhood search heuristic relies heavily on
its ability to efficiently evaluate the feasibility of an insertion, as a very large number
of insertions will be attempted. In Appendix B, we discuss the information that is kept
with the current solution to allow fast (constant time) evaluation of the feasibility of an
insertion. Moreover, we show how to update this information when the current solution
changes.

3.5. COMPUTATIONAL EXPERIMENTS
In this section, we present the results of a set of computational experiments conducted
to evaluate the performance of the ALNS algorithm and to characterize transportation
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settings which might benefit from the introduction of transfers. The ALNS algorithm
was coded in C++ and the experiments were conducted using an Intel Core i5-2450M
machine, running at 2.5 GHz x 4 with 4 GB of RAM, under Ubuntu 16.04. To investi-
gate the benefits of transfers, we compare the solutions obtained by our ALNS algorithm
to the solutions obtained by the ALNS algorithm of Ropke and Pisinger (2006), which
does not consider transfers. Furthermore, we analyze the impact of different problem
characteristics, in particular, the vehicle’s shift length, the number of transfer locations,
the geographic distribution of transfer locations, and the geographic distribution of cus-
tomers.

3.5.1. INSTANCE GENERATION

To assess the potential benefits of transfers in freight transportation systems employing
crowd-sourced drivers, we generate sets of instances that capture characteristics of such
systems. We consider a squared geographical area of 120× 120 units of distance and
assume that one unit of distance can be traveled in one time unit (e.g. 60 km/h). Four
depots are located in the area as shown in Figure 3.4a, requests can be serviced from
any depot, and the number of vehicles in each depot is sufficient to service all requests.
Pickup and delivery locations are drawn uniform randomly in the area, but we consider
different scenarios, C , for origin-destination proximity: long-distance requests only (L),
i.e., at least 60 units between a pickup and a delivery location, short-distance requests
only (S), i.e., no more than 60 units of distance, but at least 30 units between a pickup and
a delivery location, and a third scenario having both long-distance and short-distance
requests (M).

We generate instances with 50, 75, and 100 requests, each with a 180 units of time
(e.g., 3-hour) time window, i.e., Ei+ = 0 and Li− = 180 for all ri ∈ R, for each class L,
M and S. If γ = 1/|R|

∑
ri∈R τi indicates the origin-destination proximity of an instance,

then for the generated instances in classes L, M , and S, we have, on average, γ = 74.67,
γ = 57.69 and γ = 45.82, respectively. We consider vehicle shift lengths 180, 240, and
300 (i.e., drivers operate for three, four, or five hours). The instances are created such
that even for the shortest shift length (H = 180), all requests can be served (i.e., there is
at least one depot such that a vehicle from that depot can feasibly visit the pickup and
delivery locations of a request on a route). Moreover, we consider two geographies for
the transfer locations, MD-4T and MD-5T, shown in Figures 3.4a and 3.4b, respectively.
In the former there are four transfer locations, and in the latter there are five transfer
locations, with one additional transfer location in the center of the region. The full set of
instances can be downloaded at http://dx.doi.org/10.17632/pywzcgyzrv.1.

We note that Mitrović and Laporte (2006) generated instances of the PDPTW-T moti-
vated by an application in last-mile freight transportation, and used these in their com-
putational experiments. Furthermore, Masson et al. (2013) generated instances of the
PDPTW-T motivated by an application in which transportation requests of disabled peo-
ple need to be served. As indicated earlier, our research is motivated by an environment
in which crowd-sourced drivers, working for short periods of time, transport shipments

http://dx.doi.org/10.17632/pywzcgyzrv.1
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(a) MD-4T
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Figure 3.4: Basic settings for multi-depot instances generation. Squares and triangles represent depots and
transfers, respectively.

from origin to destination. As a consequence, the instances available in the public do-
main are not representative of the operating environment we are exploring, and, thus,
the instances are not well-suited for testing our methodology. Nevertheless, for the sake
of completeness and as a validation of our methodology, we present results for a subset
of the instances proposed by Mitrović and Laporte (2006) in the appendix.

3.5.2. ALNS ALGORITHM PARAMETER TUNING
In Table 3.1, we show the parameters (column Par.) and the values used in our ALNS. In
the left side of the table, we present the parameters that are set to similar values used in
Ropke and Pisinger (2006). In the right side of the table, we present the parameters we
believe have a significant impact on the performance of our proposed ALNS algorithm
and for which the values have been carefully calibrated.

Table 3.1: ALNS Parameters and values

Par. Description Value Par. Description Value
ι ALNS iterations 25K ψ1 Min. removed requests 0.1|R|
α SA cooling rate 0.98 ψ2 Max. removed requests 0.2|R|
ω Initial temperature adjustment 0.15 σ1 Score for incumbent solution 40
κ Level length 250 σ2 Score for improving solution 10
ν Max. non-improving iterations 250 σ3 Score for worse, new solution 1
ρ Reaction factor 0.2 φ Max. empty transfers iterations 100
µ Cover radius used in removal O−

5 60

Parameter tuning was done using a set of six instances, three with 30 and three with
50 requests – one instance for each scenario of origin-destination proximity, L, S and
M –, as described in 3.5.1. All parameters to be tuned are given a default value. Then,
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a single parameter value (or single parameter set values) is varied while the others are
kept fixed. For each parameter value considered (of the parameter being tuned), we
solve each of the six instances five times. The parameter value yielding the best results is
chosen. The process continues until all parameters have been assigned a value. The pa-
rameters to be tuned, and their respective default values, are ((ψ1,ψ2), (σ1,σ2,σ3),φ) =
((6,10), (10,10,10),100), where parameters 0 < ψ1 < ψ2 < 1 control the fraction of re-
quests to be removed, σ1,σ2,σ3 are the reward values for operators and φ is the maxi-
mum number of iterations an unused transfer is allowed to remain in the current solu-
tion. In the initial solution for an instance, each request is served individually by a single
vehicle without a transfer. To assess the quality of different parameter values, we assign
a score to each solution obtained: z∗/z, where z is the cost of the solution and z∗ is the
cost of best solution encountered during an experiment. Because we also want the pro-
posed ALNS algorithm to be reasonably efficient, we adjust the score to take run times
into account as well: 0.7z∗/z +0.3t∗/t, where t is the run time and t∗ is the fastest run time
encountered during an experiment. Thus, a value close to 1.0 for a parameter value (the
average score over the five runs) indicates superior performance.

Table 3.2: Calibration of ALNS parameters.

(ψ1,ψ2) (σ1,σ2,σ3) φ

(0.1,0.2) (0.2,0.3) (0.3,0.4) (40,10,1) (4,2,1) (1,1,1) 0 100
0.98 0.89 0.85 0.96 0.95 0.93 0.88 0.96
0.87 0.82 0.76 0.88 0.86 0.85 0.90 0.88
0.87 0.79 0.73 0.95 0.92 0.92 0.88 0.95
0.95 0.88 0.83 0.96 0.97 0.98 0.97 0.96
0.96 0.87 0.83 0.95 0.91 0.88 0.93 0.95
0.93 0.84 0.77 0.90 0.74 0.78 0.72 0.90

1 Each row corresponds to an instance and each column to the average score over five runs
for the relevant parameter value(s). The best parameter value(s) is shown in bold.

First, we tune the interval from which the number of requests to be removed by
a removal operator is drawn uniform randomly, i.e., [ψ1|R|,ψ2|R|], where parameters
0 < ψ1 < ψ2 < 1 control the fraction of requests to be removed. The results show that
(ψ1,ψ2) = (0.1,0.2) performs best. Allowing for a larger fraction of requests to be re-
moved may lead to a wider exploration of the solution space, but it also increases time
per remove-and-reinsert combination as requests are inserted one by one and execution
time primarily depends on the number of requests inserted.

Next, we tune the reward values for the operators, where we note that their relative
difference is more important than the values themselves. We consider three sets of pa-
rameters: one in which finding new best and better solutions is highly rewarded, i.e.,
(σ1,σ2,σ3) = (40,10,1), one in which success in finding new best and better solutions is
recognized as a positive and rewarded, but not as much, i.e., (σ1,σ2,σ3) = (4,2,1) and,
finally, one in which we do not actively “encourage” the search for new best and better
solutions, but rely on the randomness in the search process to encounter high-quality
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new best and better solutions, i.e., (σ1,σ2,σ3) = (1,1,1). With the exception of one in-
stance, the best results are obtained by highly rewarding success in finding new best and
better solutions. This indicates that the SA acceptance mechanism, in combination with
the restarting procedure, is enough to provide a satisfactory level of diversification in the
search, and avoids getting trapped in local optima.

Finally, we calibrate the maximum number of iterations,φ, that an unnecessary trans-
fer location visit is allowed to remain in the current solution. We consider two scenar-
ios: one in which an unnecessary transfer location visit is removed immediately, i.e.,
φ = 0, and one in which an unnecessary transfer location visit is kept much longer, i.e.,
φ = 100. Even though run times increase when an unnecessary transfer location visit
is kept longer, it appears to be worthwhile to do so. This is likely due to the fact that it
significantly simplifies the search for beneficial transfer opportunities.

3.5.3. STYLIZED INSTANCES

We have used the proposed ALNS algorithm to solve stylized instances as shown in Fig-
ure 3.1, with 4, 5, 6, 7 and 8 sided polygons inscribed in a circle with radius 100 (where
instances for 7 and 8 sided polygons are created as expected). We compare the solutions
obtained by the proposed ALNS algorithm, where the center of the circle can be used as
transfer location, to the solutions obtained by the ALNS algorithm of Ropke and Pisinger
(2006) (i.e., without any transfers), and to the optimal solutions. The results can be found
in Table 3.3. For each instance, we report the total travel distance (Dist), the number of
vehicles used (Veh), the total computational time in seconds (Time) and the number of
requests transferred (Trans).

Our proposed ALNS is able to obtain the optimal solution for all but one of the in-
stances. In constructing the polygons, we took distance and time to be equivalent (trav-
eling one unit of distance requires one unit of time) and forced distances and travel times
to be integer valued. As a result, for the 7-sided polygon it was not possible to obtain a
completely regular shape. This hinders synchronization at the transfer points, and hence
a lower quality solution resulted. The higher run times of our proposed ALNS algorithm
compared to the one of Ropke and Pisinger (2006) are the result of more complex and
more time consuming insertion operators, because the need to consider transfers. This
is especially true for these stylized, highly symmetrical instances, where proper synchro-
nization of transfers is critical.

Table 3.3: Algorithm comparison using stylized instances.

Instance ALNS Ropke Proposed ALNS Optimal

Polygon |R| Dist Veh Time Dist Veh Trans Time Dist Veh

4-sided 12 4336 12 0.9 1600 4 10 11.3 1600 4
5-sided 20 7104 20 1.5 2000 5 15 25.5 2000 5
6-sided 30 7244 18 2.2 2400 6 24 48.3 2400 6
7-sided 42 10652 28 13.6 2992 9 36 32.6 2800 7
8-sided 56 14988 40 17.8 3200 8 49 94.6 3200 8
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3.5.4. AN EXAMPLE OF TRANSFER BENEFITS
We first illustrate the potential benefits of transferring requests by analyzing the results
of a single instance of class L with 25 requests, shift length 180, and transfer location
geography MD-4T. Figure 3.5 shows two solutions, one in which transfers are not con-
sidered (Figure 3.5a) obtained with the ALNS by Ropke and Pisinger (2006), and one in
which transfers are considered (Figure 3.5c) obtained with our proposed ALNS (squares
indicate depots, triangles indicate transfer locations, and circles indicate pickup and de-
livery locations).

(a) (b)

(c) (d)

Figure 3.5: Overview of a solution without transferred requests (a), and a solution having requests transferred
(c).
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In the solution without transfer (Figure 3.5a) all but six requests are served by a ded-
icated vehicle (i.e., a vehicle serving a single request), and 22 vehicles are used. In the
solution with transfers (Figure 3.5c) only two requests are served by a dedicated vehi-
cle and all other requests are transferred, and only 10 vehicles are used. To facilitate
comparing the solutions with and without transfers and to better understand the bene-
fits of transfers, we show, in Figures 3.5b and 3.5d, four rectangles, one for each depot,
representing the area containing the routes originating from that depot. Observe that
in Figure 3.5b, corresponding to the solution without transfers, there is a much larger
overlap between the rectangles than in Figure 3.5d, corresponding to the solution with
transfers. This illustrates that when transfers are possible, vehicles can stay closer to the
depots and can perform pickups and deliveries of multiple requests within the shift; it is
as if the transfer locations induce sub-regions within the region. When transfers are not
possible, a vehicle performing a pickup has to also perform the corresponding delivery
and consolidating multiple requests within the shift becomes more difficult.

Similar settings i.e., transfer location geography MD-4T, 3-hour time window, shift
length 180, are used to generate a set of 15 instances with 10 requests, where five in-
stances have long-only, five instances have short-only and five instances have mixed-
distance requests. These instances are solved using the IP formulation presented in Sec-
tion 3.3 and employing Gurobi 8.01 as the IP solver with a time limit of two hours. For
each instance, we compute a solution without transfers, using the ALNS algorithm by
Ropke and Pisinger (2006), and provide it as an initial solution to the solver. We also
compute a solution using our proposed ALNS algorithm and provide it as an initial solu-
tion. The results can be found in Table 3.4, where we report the total distance (Dist), the
number of vehicles used (Veh), and the optimality gap after two hours (Gap). Solutions
in which one or more requests are transferred are labeled with a superscript t .

The results show that for most instances, Gurobi is unable to improve the initial so-
lution provided in two hours (note the large optimality gaps after two hours of com-
puting). If a solution without transfers is provided, a better solution is found for five
instances, where in four of them the improved solution has at least one request that is
transferred. The solutions produced by our ALNS algorithm are equal or better (in terms
of total distance and number of vehicles used) in 14 out of the 15 instances. When the
solutions produced by our ALNS algorithm are provided as initial solution, Gurobi again
finds a better solution for five instances, where in three of them the improved solution
uses fewer vehicles.

3.5.5. RESULTS FOR PROPOSED GENERATED INSTANCES

A set of 10 instances was generated for each combination of number of requests, origin-
destination proximity, and vehicle shift length. Each instance in a set is solved five times
using the ALNS algorithm by Ropke and Pisinger (2006) and our proposed ALNS algo-
rithm, and the average cost of the solutions as well as the lowest cost among them are re-
ported. Two initial solutions were considered in the runs with our proposed ALNS algo-
rithm: the solution obtained with the ALNS algorithm by Ropke and Pisinger (2006) and
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the initial solution constructed as described in Section 3.4.1 using τ′ = 0.8maxri∈R {τi }
and γ = 1.25. To evaluate the potential benefits of transfers, we compare the gap be-
tween solutions with transfers and solutions without transfers: ∆ = (cw − c)/c, where c
is the cost of the solution without transfers and cw is the cost of the solution with trans-
fers. Note that, because the solution found by the ALNS algorithm of Ropke and Pisinger
(2006) is not necessarily optimal, we cannot claim that the benefits are solely due to
adding transfers.

First, we consider transfer location geometry MD-4T. In Table 3.5 we report the re-
sults for instances with 50 requests for each origin-destination proximity class (C ) and
vehicle shift lengths 180, 240 and 300 (H). Each row in the table presents average results
over all instances for the given combination (H ,C ). Column RP ALNS reports the cost (c)
and the fleet size (V eh) of the solutions obtained with the ALNS algorithm by Ropke and
Pisinger (2006) (in each of the five runs, the same solution was found). Column Proposed
ALNS reports the results obtained using our proposed ALNS algorithm. Column Best re-
ports results for the best among the five solutions, whereas column Average reports the
average over the five solutions. Column s0 indicates the initial solution used: sr , solu-
tion produced by the ALNS algorithm of Ropke and Pisinger (2006), or st , solution pro-
duced by the scheme described in Section 3.4.1. Column ∆D (%) reports the reduction
in distance, column ∆V (%) reports the reduction in the number of vehicles used, col-
umn Trans reports the number of transferred requests, and column t(s) reports the run
time in seconds, excluding the time to obtain the initial solution. Note that scheme st

requires little time (less than one second) whereas scheme sr requires running the ALNS
algorithm by Ropke and Pisinger (2006) which takes a considerable amount of time (on
average 60% of the running time of our proposed ALNS algorithm). Detailed results can
be found in the appendix.

We observe that transfers can provide significant benefits, especially when the driver
shift length is short (H = 180) and the distance between pickup and delivery locations is
long (L) – we see a reduction of almost 50% for both the total distance and the number of
vehicles used. When the distance between pickup and delivery location is short (S), the
benefits are minor, in the order of 1-2%, regardless of driver shift length. As expected,
the benefits decrease when driver shift lengths increase, because with longer driver shift
lengths routes can cover larger distances and serve more requests in the same route,
which tends to be less costly than using transfers.

The effect of the initial solution appears to be minor. Starting from an initial solution
in which requests are transferred tends to result in final solutions with slightly more re-
quests being transferred than starting from an initial solution in which no requests are
transferred. This is likely due to the fact that insertions with transfer operators are more
likely to be rewarded during the early stages of the search when the initial solution al-
ready has some transfers. When starting from a high-quality (locally optimal) solution
without transfers, introducing transfers in the solution is likely to increase the total dis-
tance and insertions with transfer operators are less likely to be rewarded. For instances
in which the distance between pickup and delivery location is short (S), and where trans-
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fers have a limited value, especially for larger shift lengths (H = 240 and H = 300), start-
ing from an initial solution with transfer is in fact detrimental to the quality of the final
solution. We also note that the run time is slightly higher when starting from an initial
solution with transfers, because, as noted earlier, the more time-consuming insert with
transfer operations are performed more often.

Next, we consider transfer location geometry MD-5T. The results can be found in Ta-
ble 3.6. The benefits are similar to what we have seen for transfer location geometry MD-
4T, but for the fact that, on average, more requests are transferred, and, consequently,
slightly higher CPU times are observed.

To show that our proposed ALNS algorithm scales well, we present results for in-
stances with 75 and 100 requests in Tables 3.7 and 3.8, respectively. In each table, we
show the results obtained for transfer location geometry MD-5T and using an initial so-
lution with transfers. We observe once more that for instances in which there are re-
quests with a long distance between pickup and delivery location (L and M) and the
shift lengths are relatively short (180 and 240), the proposed ALNS algorithm is able to
find solutions that reduce both the total distance and the number of vehicles used.

3.5.6. EVALUATION OF REMOVE AND INSERT OPERATORS

The performance of the remove and insert operators employed in our ALNS algorithm
has been evaluated on two representative instances. The first instance, I1, has 50 long-
only requests, shift length 180, and transfer location geometry MD-4T. As we have seen,
such an instance is likely to benefit from transfers. The second instance, I2, has 50 short-
only requests, shift length 300, and transfer location geometry MD-4T – an instance less
likely to benefit from transfers. We analyze which operators are used throughout the
search when solving these two instances and also if this depends (strongly) on the initial
solution.

Recall that the likelihood of an operator being selected is proportional to its weight,
where the weight is initialized and updated during each segment of κ iterations (within
a segment, operators are rewarded scores based on whether or not an operator advances
the search, i.e., obtains a new best solution, obtains an improving solution, or obtains a
worse, but accepted solution). Therefore, to analyze the performance of an operator dur-
ing the search, we report how the weight of the operator changes during the search and
its contribution to advancing the search (the ratio of the number of times the operator
advanced the search and the total number of times the search advanced).

Figures 3.6 and 3.7 show the progressing of the operators for instances I1 and I2, re-
spectively. In each figure, we show, separately, the progression of the removal and the
insertion operators. We use a stacked bar graph to show the progression of the contri-
bution to advancing the search and a line plot to show the progression of the weight.
The values are collected at the end of every 500 iterations (2κ). The graphs on the left
(labeled (a) on both Figures 3.6 and 3.7) show results obtained when using an initial so-
lution without transfers, and the graphs on the right (labeled (b) on both Figures 3.6 and
3.7) show results obtained when using an initial solution with transfers.
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Figure 3.6: Progression of operators during the search when solving instance I1 starting from an initial solution
without transfers (left) and with transfers (right). Removal operators: O−

1 – worst request; O−
2 – random request;

O−
3 – route; O−

4 – transfer-based request; O−
5 – cluster. Insertion operators without transfers: O+

1 – travel time;
O+

2 – insertion cost; O+
3 – regret; O+

4 – random. Insertion with transfers: O+
5 – travel time; O+

6 – insertion cost;

O+
7 – regret; O+

8 – transfer.

Note that the stacked bars for the removal operators always sum up to 1, whereas
some of the stacked bars for an insertion operator (with or without transfers) sum up to
less than 1. This is due to the fact that two insert operators are selected at each iteration.
If the first operator (with the largest weight) succeeds inserting all requests, then the
second one is not used. Thus, for some iterations the search is advanced after applying
only one of the selected operators.

Figure 3.6 shows that for both initial solutions, insertion operators using transfers
are the ones contributing the most for advancing the search (note that the scales of the
vertical axis of the weight charts are not same). The stacked bars show that, in many iter-
ations, an insertion with transfer operator alone is able to advance the search (because in
many cases the stacked bars for the insertion without transfer operators sums up to less
than 1, indicating that the they were not used). The larger weights of the insertion with
transfer operators also demonstrate that these operators are more successful in finding
new best and better solutions. We see that insertion with transfer operator O+

8 is mostly
used at the start of the search process and more so when the initial solution does not
have transfers. None of the other three insertion with transfer operators clearly domi-
nates the others. However, we see that when the initial solution already has transfers,
insertion with transfer operator 0+5 is able to quickly find good transfer options for the
requests with long distances between pickup and delivery locations (the initial spike in
the weight chart shows the operator finds new best solutions). Regarding removal opera-
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Figure 3.7: Progression of operators during the search when solving instance I2 starting from an initial solution
without transfers (left) and with transfers (right). Removal operators: O−

1 – worst request; O−
2 – random request;

O−
3 – route; O−

4 – transfer-based request; O−
5 – cluster. Insertion operators without transfers: O+

1 – travel time;
O+

2 – insertion cost; O+
3 – regret; O+

4 – random. Insertion with transfers: O+
5 – travel time; O+

6 – insertion cost;

O+
7 – regret; O+

8 – transfer.

tors, note the important contribution of the transfer-based removal O−
4 , especially when

starting with a solution without transfers.

When an instance benefits little from transfers, as is the case for instance I2, the
proposed ALNS algorithm recognizes this and adjusts accordingly (Figure 3.7). When
the initial solution has no transfers, the search advances mainly using insertion without
transfer operators. Even though insertion with transfer operator O+

8 introduces a few un-
necessary transfer visits early in the search, the transfer location is eventually removed
from the solution. When the initial solution has transfers, improving solutions involving
transfers are found in the early iterations, but as the search progresses and the insertion
without transfer operators successfully insert more and more requests, the search ad-
vances primarily due to these operators (the turning point appears somewhere around
iteration 17000).

3.5.7. THE IMPORTANCE OF THE ADAPTIVE LAYER

In a recent work by Turkeš et al. (2020), the authors conduct a meta-analysis to gain in-
sights into the importance of the adaptive layer in the ALNS framework. In particular,
136 studies are assessed regarding whether or not adaptiveness actually contributes to
the performance of an ALNS algorithm. Most of the works assessed consider routing or
scheduling problems. The study shows that, surprisingly, the addition of an adaptive
layer in an ALNS algorithm improves the objective function value by 0.14%, on average.
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We conducted a similar experiment to evaluate the average improvement of the objec-
tive function caused by the adaptive layer in our ALNS implementation. To this end,
we run our ALNS having the adaptive layer disabled and, thus, operators are selected
(uniform) randomly throughout the execution of the algorithm, without accounting for
their past performance.. We compare the results obtained over a set of 18 instances (9
with 50 requests and 9 with 75 requests) with the results obtained for the same instances
solved using our ALNS with the adaptive layer enabled. For each instance, we execute
the algorithms three times. With the adaptive layer enabled, average improvements in
the objective value of 5.5% were observed. For some instances, the objective value im-
proved by 10.8%. The larger improvements are observed on instances for which a par-
ticular type of operator is more suitable for the given instance characteristics. That is, on
instances benefiting from transfers, the operators exploiting transfer opportunities, and
for instances not benefiting from transfers, the operators without transfers. Thus, the
adaptive layer is able to capture the underlying structure of the instance (benefiting or
not from transfers) by selecting the more successful operators and improve the algorith-
mic performance. Finally, we observe that in the work by Turkeš et al. (2020), the authors
highlight two outliers in the study, for which the adaptive layer provided improvements
of 15.5% and 6.5%.

3.5.8. BLOCK-BASED CROWD-SOURCED TRANSPORTATION SYSTEMS

In this section, we evaluate the impact of transfers in a block-based crowd-sourced sys-
tems, i.e., system in which drivers are available for certain periods of time (blocks) dur-
ing the planning. In particular, drivers commit to provide their services in one or more
offered blocks, time slots of a given duration.

In the following experiments, we consider only instances with short and long re-
quests (class M) and with only long requests (class L), as instance with only short re-
quests (class S) do not benefit from transfers. Given a request r = (i+, i−), the time win-
dow [Ei+ ,Li− ] is generated as follows: Li− = F +τi+,i− , where F is a number drawn uni-
form randomly from [60,480−τi+,i− ], and Ei+ = F −60 (i.e., there is one hour of flexibility
to perform the request). The planning horizon is nine hours, and crowd-sourced drivers
sign up for three-hour blocks. We consider a geography similar to the one depicted in
Figure 3.4b, but without locations m1 −m4, and where crowd-sourced drivers start and
end their blocks at location t1.

Firstly, we consider a setting in which the planning horizon [0,540] is divided into
three non-overlapping blocks [0,180], [180,360], and [360,540]. To assess the possible
benefits provided by considering transfers, we compare the number of requests not served
in a solution with and without the use of transfers (these requests would have to be
served by dedicated, professional drivers). A visualization of the results can be found
in Figure 3.8, which is based on 10 instances with 50 and 100 requests for class L and M
(a total of 40 instances). We see, as expected, that the number of requests that cannot
be served decreases when drivers are able to transfer requests. More requests with long
direct travel times between pickup and delivery locations can be served using a trans-
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fer and drivers in different blocks. On average, 22% more requests can be satisfied by
crowd-sourced drivers when transfers are utilized.

Figure 3.8: Number of requests not served when drivers sign up for blocks in the set
{[0,180], [180,360], [360,540]}

Next, we consider a setting in which the planning horizon [0,540] is divided into over-
lapping blocks [0,180], [90,270], [180,360], [270,450], and [360,540]. The additional flexi-
bility provided by overlapping blocks results in all requests being served in the instances,
both with and without transfers. Therefore, to assess the benefits of transfers, we focus
on the number of drivers required in each of the blocks. Figure 3.9 shows results for
two specific instances, one in class M and the other in class L, both with 100 requests.
For each instance, the figure shows the number of open requests in the system at time
t (x-axis), where a request r = (i+, i−) with time windows [Ei+ ,Li− ] and Ei+ ≤ t ≤ Li− is
considered open, and the number of drivers used in a solution with and without the use
of transfers. (Additional results, in which we average over all instances in a class, can
be found in the appendix.) The two instances, however, are representative of the results
observed.

First, we see that fewer drivers are needed when sharing is allowed, especially when
there are only long requests. Second, we see that when transfers are allowed, the number
of drivers in the system in the first block is larger than when transfers are not allowed.
This signals that when transfers are allowed, many requests are picked up in the first
block and brought to transfer points to be consolidated and delivered in subsequent
blocks (which requires more drivers in the first block). As a consequence, fewer drivers
are required in subsequent blocks, as it takes less time to deliver consolidated requests.
As a result, which may be advantageous, the number of drivers required across the blocks
is more balanced.
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Figure 3.9: Instances with mixed (M) and long (L) requests and the required crowd-sourced capacity for service
with and without the use of transfers.

3.6. FINAL REMARKS
Our research has focused on investigating the potential benefits of using transfers in
urban freight delivery systems. Our results show that these benefits can be significant,
especially in settings where pickup and delivery locations are relatively far apart and
driver shifts are relatively short. Thus, transfers may be especially valuable for urban
freight delivery systems that rely, in part or completely, on crowdsourced delivery capac-
ity, because crowdshippers tend to work for relatively short periods of time. Our results
also show that the ability to transfer requests can substantially reduce the number of
drivers required to serve a given number of requests. This too may be especially valuable
in urban freight delivery systems that rely on crowdsourced delivery capacity, because
crowdshippers are often compensated based on the number of requests they serve, and
when the number of requests served per driver increases, it will become easier to attract
crowdshippers to the system.
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VEHICLE ROUTING WITH ROAMING

DELIVERY UNDER STOCHASTIC

TRAVEL TIMES

In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.

Although that way may not be obvious at first unless you’re Dutch.

Tim Peters, The Zen of Python

W E address a stochastic variant of the Vehicle Routing Problem with Roaming De-
livery Locations. In this model, direct-to-consumer deliveries can be made in the

trunk of the customer’s car, while the vehicle is parked at a location along the customer’s
itinerary. The stochasticity arises from the uncertainty in travel times and the problem
is formulated as a two-stage stochastic model. We propose a scenario-based sample av-
erage approximation to obtain a heuristic solution. Several experiments to assess the
effect of our solution approach compared to a pure deterministic solution approach, us-
ing expected travel times, show that a cost savings of on average more than 30% can
be obtained. Furthermore, it is shown that the flexibility provided by using alternative
roaming delivery locations as a recourse to avoid missed deliveries can provide, on av-
erage, costs savings of 25% compared to a recourse staying with the locations chosen in
the a priori first stage plan.
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4.1. INTRODUCTION

P Rivate cars represent a large share of the total flow of vehicles within urban areas.
Given current population and urbanization growth, they will likely continue to have

a prominent role in the fulfillment of transportation activities for years to come. How-
ever, some studies reveal that the average car is parked most of the time and only being
used for a relatively short period – parked at home for 80% of the time, 16.5% elsewhere
and moving for 3.5% (Bates and Leibling, 2012). Improving the period of time when the
vehicle is actually moving e.g., minimize travelled distance to reduce costs/emissions,
was the focus of attention for most academic studies. However, a comprehensive view
seeking for more cost-effective, sustainable solutions to minimize flows of goods and
people needs to leverage all available resources at all times.

Trunk delivery refers to using the trunk of a customer’s car, when the vehicle is parked,
as a possible location for the final delivery of goods to the consumer. As indicated, cars
are parked away from home for a significant amount of time, thus providing opportu-
nities that could be seized to avoid, for example, missed deliveries and, consequently,
multiple visits at home. In fact, given the explosion of e-commerce and on-line shop-
ping, the last-mile supply chains of even the largest e-tailers are strained by the sheer
volume increase of direct-to-consumer orders. This challenge is even amplified by the
increased customer service levels offered by e-tailers to compete against the instant grat-
ification of brick-and-mortar stores. Companies are evaluating new and innovative busi-
ness models, such as trunk delivery, that could help improving last-mile operations. As
an example, Amazon recently introduced a free in-car delivery service for some of its
customers. In a partnership with a selection of car manufacturers, the service connects
to the vehicle allowing the Amazon delivery person an one-time access to the trunk of
the customer’s car. Whereas neither manufacturers nor Amazon expects monetary gains
from the service, they see it as an added delivery option to market (Hawkins, 2018).

The Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) is intro-
duced by Reyes et al. (2017). In the VRPRDL, each customer has a given, fixed, itinerary
specifying one or more locations where his/her car will be parked, within correspond-
ing time windows i.e. a roaming delivery location. While the work by Reyes et al. (2017)
showed the benefits of trunk delivery, specially combined with traditional home deliv-
ery, a fully deterministic environment is assumed. Nevertheless, companies may face
many uncertain disruptions that could affect travel times e.g., accidents, vehicle break-
downs, weather and, consequently, hinder the fulfillment of a delivery within the time
windows during which the customer’s car will be parked at a given location. Moreover,
since a customer is also moving from one location to another along his/her itinerary, the
time during which the customer’s vehicle will be available for trunk delivery at a given
location might also be delayed due to increased travel times. Stochastic travel times in
the VRPRDL is first considered by Lombard et al. (2018). The authors propose a Monte-
Carlo method in which many deterministic VRPRDL instances, one for each travel time
realization which is sampled out of the considered travel time distribution, are solved
until the variation of the costs found is marginal. A frequency analysis is performed to



4.1. INTRODUCTION

4

67

assess the (probability of) occurrence of the best solutions and the costs of the most fre-
quent solutions found. However, for contexts where the routing plan has to be decided
before travel times are known (e.g. to ensure correct and timely loading of the delivery
vehicles), such an approach might yield very poor solutions since the routing plans com-
puted in the method are optimized towards a particular travel time matrix, which might
not necessarily realize.

In this work, we also consider the VRPRDL and Stochastic Travel Times (VRPRDL-
STT). We assume a context in which the service provider has to decide on the operational
routing plans before the uncertain travel times are revealed. This is necessary to ensure
all items to be loaded into the correct delivery vehicles. We propose tackling the problem
as a two-stage, stochastic optimization problem. Conceptually, in the first stage, we ob-
tain the a priori VRPRDL routing plan (also known as first-stage decision) which abides
to the time windows of any location visited, considering deterministic travel time val-
ues. In the second stage, travel times are revealed and the a priori plan is modified by a
given recourse policy whenever a failure, i.e. a late visit to a customer’s location, occurs.
The objective is to obtain an a priori routing plan minimizing both the expected travel
costs (routing) and the costs incurred in the second stage following the recourse pol-
icy. For many different types of Vehicle Routing Problems with Time Windows (VRPTW),
servicing a location outside its associated time windows is acceptable, to some extent,
although incurring in waiting time in case of early arrivals and a penalty in case of late ar-
rivals. For the VRPRDL, the delivery locations, the trunk of a car, are only present within
a given time window. Waiting is allowed, but late arrivals are not feasible, since the car
will not be present anymore at the location. We propose different recourse policies to
recover feasibility in the a priori plan given realized travel times in the second-stage. For
example, if due to the realized travel times a particular customer location cannot be vis-
ited within its corresponding time windows, another location in the customer itinerary
might be selected.

To solve the two-stage problem, we propose a solution framework which combines
an extension of the local search heuristic devised by Reyes et al. (2017), to account for
uncertain travel times, with an implementation of the Sample Average Approximation
(SAA) approach proposed by Kleywegt et al. (2002). We assume that travel times follow
a known probability distribution, allowing for the generation of (a very large number
of) different possible scenarios. The SAA method is an iterative procedure that solves
the problem restricted to a small set of scenarios on each iteration and evaluates the
obtained solution over a (considerable) larger set of (independent) scenarios to approxi-
mate the expected objective function value. We note that, even if the chosen probability
distribution of the travel time follows the convolution property, integrating the evalua-
tion of the recourse policies proposed in this work in an exact approach is challenging.
The SAA method is suitable to deal with extremely large scenarios sets, thus able to ap-
proximate the optimal value of the stochastic problem. Moreover, exact and heuristic
solution approaches can be applied to solve each restricted problem in a SAA iteration.

The contributions of this research are:
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• We consider a last-mile application with roaming locations, where the company is
able to access the trunk of a customer car, and taking into account stochastic travel
times. We present a two-stage stochastic formulation with recourse to model the
problem. We propose a scenario-based stochastic approximation (SAA) method to
solve the problem combined with an adaptation of the local search heuristics pro-
posed in Reyes et al. (2017) considering recourse costs to evaluate neighborhood
solutions. In our computational experiments, we explicitly evaluate implementa-
tion decisions taken into the design of the SAA method (choice of sample size to
estimate better lower bounds, trade-off between solution quality and computa-
tional time, number of iterations).

• We exploit the flexibility introduced by trunk-delivery i.e., a delivery can be made
at different locations at different times. Specifically, we define a variety of recourse
policies reducing the number of failed deliveries caused by travel time stochastic-
ity.

• We show the benefits of using a stochastic solution approach over the determin-
istic counterpart are twofold. First, the evaluation of different travel time scenar-
ios in the a priori stage allows for a better assessment of the customer availability
and to hedge against the travel time uncertainty. Results show that, compared to
a deterministic solution approach, which takes average travel times as input, the
proposed methodology provides savings of, on average, more than 30%. Secondly,
exploiting the flexibility to visit customers at other locations than planned for in
the a priori plan, leads on average to cost savings of 25%.

The remainder of the chapter is organized as follows. Section 4.2 reviews some of the
works related to the VRPRDL as well as issues regarding the consideration of stochastic
elements in vehicle routing problems, in particular stochastic travel times. The mathe-
matical notation used throughout the text is introduced in Section 4.3, as well as a formal
problem definition and the mathematical programming formulation proposed by Reyes
et al. (2017), considering deterministic travel times. We extend the formulation to a two-
stage stochastic model to account for uncertainty in travel times. In Section 4.4, we de-
scribe our implementation of a scenario-based Sample Average Approximation. Section
4.5 presents computational experiments carried out to evaluate the proposed method-
ology and to assess the gains of considering uncertainty in travel times when planning
the schedules of drivers in the context of trunk delivery. Finally, our conclusions and
directions for further research are presented in Section 4.6.

4.2. RELATED LITERATURE
The VRPRDL was first introduced in Reyes et al. (2017). The authors developed con-
struction and improvement heuristics and assessed the benefits of trunk delivery, show-
ing that a reduction of up to 50% on total travelled distance can be achieved for certain
environments. A followup work by Ozbaygin et al. (2017) was the first to tackle the prob-
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lem with an exact approach, introducing a Branch-and-Price method for the VRPRDL
able to solve instances of up to 120 customers. In both works, all relevant information
(travel times, customers, demands) are assumed to be deterministic and not changing
over time (static). More recently, Ozbaygin and Savelsbergh (2019) proposed a dynamic
but deterministic variant of the problem in which customers’ planed routes for the en-
tire service day are known to the service provider beforehand, but can change during the
execution of the delivery schedules. In particular, the authors assume that a customer
always visits the locations in his/her planned route for the day but arrival and departure
times at these locations might deviate from those previously informed to the provider.

The problem relates to both the VRPTW and to the Generalized Vehicle Routing Prob-
lem (GVRP). For the former, the reader is referred to Toth and Vigo (2014) for an exten-
sive coverage of many problem variants and state-of-the-art methods. The latter was
introduced by Ghiani and Improta (2000) and consists of a generalization of the VRP for
which the set of customers is partitioned in clusters and exactly one customer of each
cluster has to be visited in the solution. The reader is referred to Bektaş et al. (2011) for
formulations and an exact method to solve the GVRP and to Kovacs et al. (2015) for an
application of the problem and a heuristic solution approach. Moccia et al. (2012) intro-
duced the GVRP with Time Windows (GVRPTW) and proposed a tabu search heuristic
to solve the problem. Observe that the GVRPTW reduces to the VRPRDL when all the
locations of a given cluster define the customer’s itinerary and the associated time win-
dows of each location within a cluster are non-overlapping. The VRPRDL also relates to
a problem recently proposed by Gambella et al. (2018), the Vehicle Routing Problem with
Floating Targets. The problem is a dynamic variant of the VRP, and the objective is to ob-
tain a route schedule visiting a set of target points that can freely move in the plane. As
an example, the target points are ride-sharing users who share a common destination.
Instead of agreeing on meeting at a fixed location (e.g., home), the driver might meet an
individual asking for transport at a location midway on the route from the fixed location
to the common destination.

Recently, increased attention has been given to numerous stochastic variants of the
VRP(TW). The uncertain events addressed in most of the works comprise customers
availability, when the presence or absence of a customer is a random event; demand
volumes, when the exact amount of a commodity to collect or deliver is unknown; oper-
ation times, when travel or service times, for example, are considered stochastic. Gen-
dreau et al. (2016) provide an overview of the state-of-the-art for those main classes of
stochastic VRPs, the modelling issues and the exact and approximate methods that have
been proposed to solve them. The uncertainty on travel times addressed in this work
stem mainly from unexpected disruptions affecting expected values e.g., increased traf-
fic due to accidents or weather conditions. Expected variations on travel times such as
due to congestion during peak-hours (e.g., early morning and late afternoon rush) can
be tackled using deterministic models by considering time-dependent travel times. The
reader is referred to Gendreau et al. (2015) for an overview of such problems.

Usually, a VRPTW with stochastic travel times (VRPTW-STT) takes into account devi-
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ations from customer’s time windows in the computation of the expected recourse costs.
In problems with soft time windows, late arrivals are allowed in the routing plan, but usu-
ally incurring in a penalty proportionally to their tardiness and a recourse action is not
necessary. As observed by Gendreau et al. (2016), this allows for the use of closed-form
expressions to compute the expected total penalty of a route – i.e., the expected earli-
ness and tardiness – if the probability distribution follows the convolution property. A
shifted gamma distribution (Erlang) is considered by Russell and Urban (2008). The au-
thors propose different functions to evaluate penalty costs (fixed, linear, quadratic) and
a tabu-search heuristic to solve the problem. Li et al. (2010) considered both stochas-
tic travel and service times modeled by a normal distribution with parameters (mean,
variance) depending on the arcs and customers, respectively. The authors propose a
chance constrained programming and a stochastic programming model and solve both
models with an adaptation of a tabu-search heuristic. Soft time windows are also con-
sidered by Taş et al. (2013). The authors assume the travel time of one unit of distance
as a random variable with gamma distribution by given parameters (scale, shape). The
travel time for an arc is then obtained by scaling the unit travel time with respect to the
arc distance. A tabu-search heuristic is proposed to solve the problem and the authors
consider different coefficients of variation for the travel time per unit distance to assess
solutions obtained regarding variability. The same problem is solved exactly through a
branch-and-price method by Taş et al. (2014b) and under time-dependency of the travel
times by Taş et al. (2014a). Deadlines for visiting (a subset of) customers under stochas-
tic travel times are considered by Adulyasak and Jaillet (2016). The problem is extended
to consider soft time windows, and a branch-and-cut framework is proposed.

For problems with hard time windows, such as the VRPRDL(STT), late arrivals at cus-
tomers are not allowed, requiring a recourse action to be applied to recover feasibility.
Modelling expected arrival times at customers cannot be done, generally, by applying
convolution properties of the distribution used to model travel times, as hard windows
tend to truncate the distribution. Only a few works have addressed problems with hard-
time windows and stochastic times and, due to the difficulty in computing expected
times, the recourse policies proposed are usually restrictive e.g., assume that only one
disruption occurs in a route, and only one recourse action is necessary (Errico et al.,
2016). A VRPTW with stochastic travel times and stochastic demands is considered by
Branda (2012), where the problem was modelled as a stochastic programming problem
with chance constraints and a sample average approximation technique was used to de-
rive estimates on the sample sizes required to obtain a feasible solution. Normal dis-
tributed travel times are considered by Ehmke et al. (2015) and a chance-constrained
model is proposed in order to guarantee a given service level for customers (a probabil-
ity on respecting the time windows). Those features can be embedded in any algorithm
for the VRPTW with stochastic travel times and demands, and the authors show how
to apply them on a tabu search heuristic. Binart et al. (2016) address a variation of the
stochastic VRPTW, considering both stochastic travel and service times, in which cus-
tomers are split in mandatory and optional. The first have to be served within their time
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windows whereas the latter can be serviced at any time during the planning horizon or
not be serviced at all. The objective is to minimize total travel time servicing as many
optional customers as possible. Stochastic travel and service times are dealt through
dynamic programming where optional customers are used as buffers to hedge against
the variations on those elements. Finally, Miranda and Conceição (2016) propose a sta-
tistical model to compute the cumulative probability function for the arrival times over
customers when travel times are normally distributed.

Only a few works addressing stochastic events in the context of the GVRP(TW) ex-
ist. Similarly to the work by Laporte et al. (2002) on the VRP with stochastic demands,
Biesinger et al. (2016) consider a recourse policy which consists of returning trips to
the depot whenever a failure – a stock-out – occurs and propose an Integer L-Shaped
Method (Laporte and Louveaux, 1993) and branch-and-cut framework to solve a GVRP
with stochastic demands.

In a related stream of literature, dynamic and online routing problems are consid-
ered, where the information (e.g., customer availability, travel time, demand, etc) is re-
vealed concomitantly to the operating period, requiring (almost) immediate response to
update the routing and scheduling decisions taken so far. In particular, same-day deliv-
ery problems for online purchases are a recent trend, where customers place orders on
the same day that they should be delivered. The reader is referred to Voccia et al. (2019)
where the authors consider a same-day delivery problem and identify when it is ben-
eficial for the vehicles to stay at the depot, waiting for more information (customer re-
quests). In the same vein, Klapp et al. (2018) conduct a study on the trad-offs in same-day
delivery operations by considering dispatching waves of vehicles at pre-defined times.
For a general overview of dynamic routing problems, the reader is referred to Pillac et al.
(2013a).

Most of the works in the literature focus either on solving a (static) stochastic prob-
lem, as in our work, or a (deterministic) dynamic problem. Only a few works exist in
which stochastic information is used within a method to solve a dynamic problem. Bent
and Van Hentenryck (2004) showed that dynamic routing approaches can benefit from
including stochastic information when decisions are taken concomitantly to the execu-
tion of the routes. Our work contributes to the stochastic VRP literature by considering
the stochastic version of a novel VRP application. Our results indicate the benefits of
stochastic information even for static contexts, and provide a baseline for assessing the
dynamic version of the problem. Moreover, the recourse policies described in the next
section can also be used within dynamic contexts.

4.3. PROBLEM DESCRIPTION
We first provide a general description of the VRPRDL and the MIP formulation proposed
by Reyes et al. (2017), adapted to our notation, in Sections 4.3.1 and B, respectively. In
Section 4.3.3, we consider that travel times are uncertain and define the VRPRDL with
Stochastic Travel Times (VRPDL-STT). We then extend the MIP formulation proposed
by Reyes et al. (2017) and describe a two-stage stochastic formulation for the VRPDL-
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STT.
In Section 4.3.3, we consider that travel times are random variables and describe a

two-stage stochastic formulation for the VRPRDL with Stochastic Travel Times (VRPDL-
STT).

4.3.1. THE VRP WITH ROAMING DELIVERY LOCATIONS

In the VRPRDL, a set of customers C = {1,2, ...,n} is serviced by a homogeneous fleet of
vehicles having a fixed capacity, Q, operating during the planning period [0,T ]. Each
customer c ∈ C has a non-negative demand dc and is associated with a unique set of
locations Nc , specifying the itinerary of customer c i.e., the locations and times at which
his/her car is available for trunk delivery. Assuming Nc = {i c

1 , i c
2 , ..., i c

|Nc |} and that i c
1 =

i c
|Nc | represent the home location for any customer c, his/her itinerary is defined by the

directed graph G(Nc , Ac ), where Ac = {(i c
1 , i c

2 ), (i c
2 , i c

3 ), ..., (i c
|Nc |−1, i c

|Nc |)}. A delivery vehicle
servicing a customer c ∈C visits exactly one of the delivery locations in Nc i.e., does not
traverse arcs in AC = ⋃

c∈C
Ac . Let N = (⋃

c∈C Nc
)∪ {0,n +1} be the set of service locations,

where 0 is the source depot and n + 1 the target depot of the vehicles. The route of a
vehicle is defined over the directed graph G(N , AR ), where AR = ( ⋃

c1,c2∈C
c1 6=c2

(Nc1 × Nc2 )
)∪

( ⋃
c∈C

({0}×Nc )
)∪ ( ⋃

c∈C
(Nc × {n +1})

)
.

A non-negative travel time, ti j , and cost wi j (e.g. distance) for traversing the arc
are associated with each arc (i , j ) ∈ A = AC

⋃
AR , and arc’s travel times are the same for

customers and delivery vehicles. Servicing customer c ∈C can occur at any of the loca-
tions i ∈ Nc , but only during a location-dependent time-interval [ai ,bi ]. In particular,
the time windows for any customer c ∈ C are non-overlapping, defining an ordering on
the location set Nc , and are defined as:

ac
1 = 0; bc

|Nc | = T (4.1)

ac
` = bc

`−1 + ti c
`−1,i c

`
∀`= 2, ..., |Nc | (4.2)

that is, a customer starts at home and moves from one location to another in his/her
itinerary throughout the planning period [0,T ], being available for trunk delivery at loca-
tion i c ∈ Nc when the car is parked (not moving), between times ai and bi . It is assumed
that, for a pair of distinct customers c,c ′ ∈ C , Nc ∩Nc ′ =∅, i.e., customers do not share
locations. This assumption is readily satisfied by introducing duplicate locations when
necessary. Since there exists a unique correspondence between a location and a cus-
tomer, we define the function π : N \ {0,n +1} 7→C to map a location i ∈ N to the unique
customer it belongs to, i.e. i ∈ Nπ(i ). All routes start at the source depot, 0, and end at the
target depot, n +1, within the planning period i.e., a0 = an+1 = 0 and b0 = bn+1 = T , and
should not exceed vehicle capacity. A solution to the VRPRDL constitutes a set of routes
in which each customer, c ∈ C , is serviced exactly once within the time windows of the
selected location for service, i ∈ Nc . The objective is to find a set of routes minimizing
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the total costs e.g., distance travelled. By definition, the problem generalizes to the well-
known Generalized VRP with time window constraints. Moreover, when |Nc | = 1 for all
c ∈C , the problem reduces to a standard Capacitated VRP with Time-Windows. It follows
that the VRPRDL belongs to the class of NP-Hard problems.

Throughout this paper, the following notation is used. Given a subset of vertices
S ⊆V , the cutset δ(S) denotes the set of edges with exactly one endpoint in S. The cutset
δ+(S) denotes the set of directed edges (arcs) having their tail in S and their head not in
S. Similarly, the cutset δ−(S) denotes the set of edges with their head in S and their tail
outside S. For undirected edges δ(S) = δ+(S) = δ−(S). A summary of the notation used
throughout this paper is given in Table 4.1.

Parameter Description

C Set of customers
Nc Set of locations for customer c ∈C
Q Vehicle capacity
dc Demand of customer c ∈C
ti j Travel time from i to j
wi j Cost to travel from i to j
[ai ,bi ] Time window associated with location i ∈ N

Table 4.1: Mathematical notation used throughout the text

4.3.2. DETERMINISTIC MIP MODEL

To unambiguously define the problem, we re-state the MIP model proposed by Reyes
et al. (2017), adapted to our notation. The model uses binary routing variables xi j , indi-
cating whether a delivery vehicle traverses arc (i , j ) ∈ AR , continuous start time variables
τc to record the service start time of customer c ∈C , and continuous load variables yc to
track the vehicle capacity remaining after visiting customer c ∈C .

min
∑

(i , j )∈AR

wi j xi j (4.3)

s.t.
∑

(i , j )∈δ+(Nc )

xi j = 1 ∀c ∈C (4.4)∑
( j ,i )∈δ−(Nπ(i ))

x j i =
∑

(i , j )∈δ+(Nπ(i ))

xi j ∀i ∈ N \ {0,n +1} (4.5)

yc ≥ yc ′ +dc ′ −Q(1− ∑
i∈Nc

∑
j∈Nc′

xi j ) ∀c ∈C ∪ {0},c ′ ∈C \ {c} (4.6)

τc ′ ≥ τc +
∑

i∈Nc

∑
j∈Nc′

ti j xi j −T (1− ∑
i∈Nc

∑
j∈Nc′

xi j ) ∀c ∈C ∪ {0},c ′ ∈C \ {c} (4.7)
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∑
i∈Nc

ai
∑

(i , j )∈δ+(Nc )

xi j ≤ τc ≤
∑

i∈Nc

bi
∑

(i , j )∈δ+(Nc )

xi j ∀c ∈C (4.8)

xi j ∈ {0,1} ∀(i , j ) ∈ AR (4.9)

0 ≤ yc ≤Q −dc ∀c ∈C (4.10)

0 ≤ τc ≤ T ∀c ∈C (4.11)

The objective function minimizes the total travel cost for the vehicles. Constraints
(4.4) ensure that all customers are serviced and constraints (4.5) ensure that flow conser-
vation is preserved over all locations. Capacity constraints are imposed by inequalities
(4.6) – the sum of customer demands served in a single trip cannot exceed the vehicle
capacity. Inequalities (4.7) guarantee that the correct amount of driving time is spent
between servicing customers c and c ′. Finally, service within one of the availability time
windows of the customer is imposed by (4.8). A vehicle is allowed to wait if it arrives early
at a customer location, but it cannot be late.

4.3.3. THE VRPRDL WITH STOCHASTIC TRAVEL TIMES
The VRPRDL-STT considered in this work can be defined as follows. We assume that
the service provider takes actions at two distinct times. At planning time, the provider
has to decide on a set of a-priori routes, each starting and ending at the depot, servicing
each customer exactly once within the time windows of the selected location for ser-
vice, that is, a solution to the VRPRDL. After the a-priori routing plan is defined, it is
carried out during the operational time. When deciding the set of a-priori routes, the
provider uses deterministic information regarding travel times (e.g., assuming there is
no traffic). Obviously, travel time variations might occur during operational time. Con-
sequently, customers might not be serviced within their corresponding time windows
or vehicles might return late at the depot (overtime), when vehicles follow the a-priori
plan. Let the a-posteriori routing be the set of routes obtained at operational time which
resulted from the a-priori plan being modified by the service provider, as a result of the
revealed travel times, in order to minimize the costs incurred by not serviced customers
and drivers overtime. Thus, the service provider targets the design, at planning time, of
a-priori routes which, on expectation, requires the least cost set of modifications during
operational time, when travel times are revealed

Conceptually, the decision on the a-priori routing plan, taken before the uncertain
travel times are known, is a first-stage decision. After uncertainty is revealed, the a-priori
routes can be modified by second-stage actions, or recourse actions. For example, one
possible recourse action (in the next section, we elaborate more on all recourse actions
considered in this paper) could be to deliver to a different location within the customer’s
itinerary in case revealed travel times render it to be infeasible visiting the customer
within the time windows of the location chosen in the a-priori route. Note, however,
that a customer’s vehicle moves from one location to another in his/her itinerary and
is subjected to the same variations in travel times experienced by the delivery vehicles.
In particular, the extent of a disruption along the arcs in the itinerary, Ac , of a customer
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c ∈C might change the availability for service in the locations i ∈ Nc i.e., change the time
windows [ai ,bi ]. Let δi j ≥ 0 be the length of the disruption in arc (i , j ) ∈ A, ω̃i j = ti j +δi j

the realized travel time during the second-stage and [ãi , b̃i ] the time window for location
i after disruptions realize. As per example, after the travel times are revealed in the 2nd
stage, disruptions in the customer’s itinerary could have caused the customer to arrive
late at location i ∈ Nc , i.e. at time ãi > ai . Consequently, the time window during which
the customer can be serviced at location i ∈ Nc shrinks or the location becomes unavail-
able for servicing in the extreme case that ãi > bi . Figure 4.1 illustrates the itinerary of
a customer c ∈ C , with four locations Nc = {i c

1 , i c
2 , i c

3 , i c
4 }. In the example, location i2 is

not available for delivery anymore in the second stage. The time window for location i1

remains the same and the time windows for locations i3 and i4 are shortened.

ai c
1 bi c

1
ai c

2 bi c
2

ai c
3 bi c

3
ai c

4 bi c
4

ti c
1 ,i c

2
ti c

2 ,i c
3

ti c
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ãi c
1 b̃i c
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ãi c
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2
t̃i c

2 ,i c
3

t̃i c
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t i me

ti me

1st stage
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Figure 4.1: Changes in location’s time windows for a particular travel time scenario. ω̃i , j = ti , j +δi , j . Squiggly
line segments correspond to time windows during which the customer can be visited at a given location.

A TWO-STAGE STOCHASTIC MODEL

We now extend the the MIP formulation (4.3)− (4.11) to include stochastic travel times.
First, let ω = (ωi j )(i , j )∈A be a random variable vector, where ωi j is the stochastic travel
time for traversing arc (i , j ), and ω̃= (ω̃i j )(i , j )∈A is a particular realization ofω. To repre-
sent recourse actions taken after the realization of the travel times (second-stage vari-
ables), we use similar variables as proposed by Hvattum et al. (2006) for a VRP with
stochastic customers. Let x+

i j , (i , j ) ∈ AR , be a binary variable indicating whether (x+
i j = 1)

a vehicle traverses arc (i , j ) in the second-stage but not in the first-stage solution x =
(xi j )(i , j )∈AR . Similarly, let x−

i j , (i , j ) ∈ AR be a binary variable indicating whether (x−
i j = 1)

a vehicle traverses arc (i , j ) in the first-stage but not in the second-stage solution, after
recourse. The continuous variable τ+c track the (potentially new) service time of cus-
tomer c ∈ C after recourse. We now let x+

i j , x−
i j and τ+c all depend on the random event

ω to emphasize that those decision variables are defined for each travel time realization
vector ω̃. Similarly, let [ai (ω),bi (ω)] be the time windows for location i ∈ N as a func-
tion of the random travel time variable ω and denote by [ãi , b̃i ] the time windows for a
realized vector ω̃.

The structure used to define the recourse actions in the second-stage is said to be
relatively complete if for every first-stage solution and every possible realization of ran-
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dom data, the second-stage problem is feasible. Observe that the structure (x+,x−) does
not provide relatively complete recourse, as some customers might not be serviced in
time at any of his/her locations depending on the realized arc travel times. However,
a model with relatively complete recourse can be achieved if skipping service for some
customers is allowed, incurring in a high penalty (Hvattum et al., 2006). Let λc (ω) be a
binary variable indicating whether customer c ∈ C is skipped (λc (ω) = 1) in the second
stage solution, and Λc the penalty for skipping customer c. When vehicles return to the
depot, each unit of time exceeding the time horizon, T , incurs in a penalty cost of β.
Moreover, let binary variables uc,c ′ indicate whether customers c,c ′ ∈ C are serviced by
the same first-stage route.

min
∑

(i , j )∈A
wi j xi j +E[R(x,x+,x−,τ+,λ,ω)] (4.12)

s.t. (4.4)− (4.11)∑
(i , j )∈δ+(Nc )

(xi j +x+
i j (ω)−x−

i j (ω))+λc (ω) = 1 ∀c ∈C (4.13)∑
( j ,i )∈δ−(Nπ(i ))

(xi j +x+
i j (ω)−x−

i j (ω)) =∑
(i , j )∈δ+(Nπ(i ))

(xi j +x+
i j (ω)−x−

i j (ω)) ∀i ∈ N \ {0,n +1} (4.14)

τ+c ′ (ω) ≥ τ+c (ω)+∑
i∈Nc

∑
j∈Nc′

ωi j (xi j +x+
i j (ω)−x−

i j (ω))−

T (1− ∑
i∈Nc

∑
j∈Nc′

(xi j +x+
i j (ω)−x−

i j (ω))) ∀c ∈C ∪ {0},c ′ ∈C \ {c} (4.15)

τ+c (ω) ≥ ∑
i∈Nc

ai (ω)
∑

(i , j )∈δ+(Nπ(i ))

(xi j +x+
i j (ω)−x−

i j (ω)) ∀c ∈C (4.16)

τ+c (ω) ≤ ∑
i∈Nc

bi (ω)
∑

(i , j )∈δ+(Nπ(i ))

(xi j +x+
i j (ω)−x−

i j (ω)) ∀c ∈C (4.17)

x+
i j (ω)+x−

i j (ω) ≤ 1 ∀(i , j ) ∈ AR (4.18)

c,c ′ on the same first-stage route ⇐⇒ uc,c ′ = 1 ∀c,c ′ ∈C (4.19)

x+
i j (ω) ≤ uπ(i ),π( j ) ∀(i , j ) ∈ AR , i 6= 0, j 6= n +1

(4.20)

x+
i j (ω) ∈ {0,1} ∀(i , j ) ∈ AR (4.21)

x−
i j (ω) ∈ {0,1} ∀(i , j ) ∈ AR (4.22)

0 ≤ τ+c (ω) ≤ T ∀c ∈C (4.23)

λc (ω) ∈ {0,1} ∀c ∈C (4.24)

uc,c ′ ∈ {0,1} ∀c,c ′ ∈C (4.25)
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where

R(x,x+,x−,τ+,λ,ω) = ∑
(i , j )∈AR

wi j (x+
i j (ω)−x−

i j (ω))+ ∑
c∈C

Λcλc (ω) +

β
∑
c∈C

∑
i∈Nc

max{0,τ+c (ω)+ωi 0 −T (1− ∑
i∈Nc

(xi 0 +x+
i 0(ω)−x−

i 0(ω)))−T }

The objective is to minimize total routing cost for the first stage solution and ex-
pected (random) recourse costs R(x,x+,x−,τ+,ω), encompassing the cost of changes re-
quired in the first stage routing and penalties for skipping customers and overtime after
recourse. Constraints (4.13)-(4.14) ensure that customers are either visited or skipped
in the second stage solution. Cost Λc , c ∈ C , should be set to a high value, such that
skipping customer c in the second-stage only occurs when it is not feasible to service
c within its corresponding time windows. Observe that time windows for customer lo-
cations in the second stage, ai (ω) and bi (ω), depend on the realization of the random
vector ω and are, thus, random variables as well. Inequalities (4.15)-(4.17) ensure that
service times for not skipped customers in the second stage occur within their corre-
sponding time windows, ãi and b̃i , given the revealed travel times ω̃. Inequalities (4.18)
are added to make the definitions of second stage variables x+

i j (ω) and x−
i j (ω) consis-

tent, but are not necessary since they are only used together in the form (x+
i j (ω)−x−

i j (ω)).

Note that, if arc (i , j ) ∈ AR is traversed both in the first and second stage, then xi j (ω) = 1
and x+

i j (ω) = x−
i j (ω) = 0 (or, also, x+

i j (ω) = x−
i j (ω) = 1, if inequalities (4.18) are not en-

forced). Inequalities (4.19)-(4.20) impose that a second stage route services only cus-
tomers assigned to the same first stage route. Such restriction could be, for example,
due to sorting and bundling processes being done considering the first stage solution
and which are not easily or quickly changed after recourse. Thus, a complete reschedul-
ing is not allowed – reassignment of customers to a different vehicle route or the start
of new routes is not allowed after recourse – and we only allow that customers may be
rearranged within their corresponding first stage route and that a different location from
the one chosen to service a customer in the first-stage may be selected to service that
customer after recourse. Consequently, vehicle capacity does not need to be enforced in
second-stage constraints. For the sake of simplicity, inequalities (4.19) are stated as in-
formal implications in the model but can be formulated as linear constraints, as shown
in the Appendix.

In formulating the two-stage model, we assume that the random variable ω has fi-
nite support. We have one recourse structure (x+,x−,τ+,λ) and constraints (4.13)-(4.25)
defined for each possible realization ω̃. Even if the particular distribution used to model
travel times is not discrete, we can approximate the optimal value of the problem by
considering ω taking values over a discrete, finite subset of its support i.e., we consider
a (potentially large) set of realizations of the distribution. Another difficulty with the for-
mulation is that the recourse actions allowed by the model are less restrictive than those
usually considered in the literature, specially regarding hard-time windows. For exam-
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ple, Errico et al. (2016) consider that a route needs at most one recourse action. More
intricate actions make evaluating the recourse cost more complex and, even when sim-
pler actions are considered, computing the value R with integer recourse (in the case
(x+,x−)), requires solving many similar integer NP-Hard problems (Schultz et al., 1998).

Not surprisingly, it is usually the case that solving two-stage stochastic VRPs to opti-
mality is only possible, from a computational point of view, for problems with few cus-
tomers. Thus, we resort to a heuristic scenario-based method to solve the VRPRDL-STT
considering fixed recourse actions applied to a first-stage solution to compensate for the
possible infeasibilities arising after the observation of ω (e.g. customers being serviced
outside their time windows). In particular, one of the recourse actions consists of servic-
ing a customer on a different location when the location given by the first-stage is not
feasible given the revealed travel times.

In the following section, we describe each considered recourse action.

4.3.4. RECOURSE ACTIONS
Each non-serviced customer (location) potentially leads to an extra cost (Λc in the two-
stage formulation) representing, for example, the cost of outsourcing the service. More-
over, routes exceeding the time horizon T incur an overtime penalty proportionally to
the extra time. For all proposed actions, a vehicle initially follows its a priori route vis-
iting customer locations within their time windows (in case of early arrival, waiting is
allowed). Travel times are assumed to be revealed at once in the two-stage formulation
(at the start of the second-stage). However, in evaluating the value R of a recourse ac-
tion, values of travel times realizations ω̃i j , (i , j ) ∈ A, are assessed in an ordered manner,
as dictated by the first-stage route. In particular, at a location i ∈ N , only travel time re-
alizations of arcs adjacent to i , δ−({i }) are used in evaluating the action to take. In this
way, only values of arcs that could potentially be traversed by the vehicle from its current
location are assumed to be known, and not values of arcs visited later in the route (e.g.,
non-anticipativity is preserved).

First, we describe three recourse actions not utilizing opportunities to service a cus-
tomer at a different location than that of the first-stage route.

• Do nothing (R0): No corrective action is taken i.e., the second-stage route remains
the same as in the first-stage. The penalty Λc is incurred for all customers c ∈ C
serviced outside their time windows.

• Skip next customer (R1): Given an a priori route, the realized travel times could
lead to infeasibilities serving one or more customers within their time windows.
If serving the next customer in the route is not possible (within the time window
of the selected location), that customer is skipped and a penalty is incurred. Cus-
tomers in the route continue to be skipped until a customer location able to be
visited within its corresponding time windows is found (given the a priori route).
If no customer location is found, the vehicle returns to the depot. Figure 4.2a il-
lustrates an example for a route visiting four customers. After servicing customer
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c2, visiting c3 within the time windows of the selected location is not possible and
the customer is skipped. Similarly, it is not possible to visit c4 (from c2’s location)
within the corresponding time window of the selected location and customer c4

is also skipped. Visiting customer c5 at the selected location is feasible and, after
servicing c2, the vehicle visits customer c5.

• Skip customers (R2): Similar to the previous recourse action, customers are skipped
whenever the first-stage route leads to a late visit, but the decision on which cus-
tomers to skip is optimized. Given a first stage route r = (v0 = 0, v1, v2, ...v|r | =
n +1), where vi ∈ N ∪ {0,n +1}, i = 0, ..., |r | are the locations visited by r , and the
realized travel times ω̃, define the following dynamic program:

z(vi , v j ,τi ) =


βmax{τi + ω̃vi ,v j −T,0} if v j = n +1

min{z(v j , v j+1,max{τπ(vi ) + ω̃vi ,v j , ãv j }), if τπ(vi ) + ω̃vi ,v j ≤ b̃v j

z(vi , v j+1,τπ(vi ))+Λπ(v j )}

z(vi , v j+1,τπ(vi ))+Λπ(v j ) otherwise

(4.26)

where z(vi , v j ,τi ) is the minimum total penalty cost incurred for skipping cus-
tomers in the (partial) route (vi , ..., v j ), where the earliest time at vi is τi . For
route r , the minimum value is obtained by solving z(0, v1, a0) and the correspond-
ing set of skipped customers can be obtained by backtracking the optimal path in
the recursion. Observe that the dynamic program in Equation (4.26) assumes the
travel times of all arcs in the first-stage route to be revealed, thus violating non-
anticipativity. We use this recourse as a means to evaluate the value of having all
information available to the decision-maker and compare to the previous recourse
R1.

Since customers in the VRPRDL-STT have different possible locations for delivery
(with non-overlapping time-windows), a natural recourse action consists in attempting
delivery at another location in the customer’s itinerary.

• Reschedule next customer (R3): Similar to the skip next customer recourse, cus-
tomers are visited following the locations given by the first stage route. If servic-
ing the next location in the a priori route, within the location’s time window, is
not possible, instead of skipping this customer, a delivery to a different location
is evaluated. If service is possible within the time window of another location in
the customer’s itinerary, then this location is selected and the customer is visited
there. In case multiple locations can be selected, the one with the minimum de-
tour time is chosen. If no location can be selected, the customer is skipped. Figure
4.2b depicts the same a priori route as in Figure 4.2a but applies this recourse in
the second stage. Customer c3 is skipped, as no other location in the set Nc3 can
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be visited within the corresponding time windows. Customer c4 would be skipped
if only the location selected in the first stage route could be visited. However, by
selecting a different location in the set Nc4 (in the example, visiting i c4

3 instead of
i c4

1 ), the vehicle can still deliver to customer c4.

• Reschedule customers (R4): Similarly to the previous recourse action, a different
location other than that in the first-stage solution is selected for customers that
would otherwise not be serviced by following the first-stage route. However, the
set of customers to skip, and evaluate a new location for servicing, is obtained by
solving the dynamic program defined in Recourse 2. All locations corresponding to
skipped customers are removed from the route before trying to reinsert those cus-
tomers again, but at a different location, in the route. Given a skipped customer,
c ∈C , a location i ∈ Nc is inserted at the best position in the route, minimizing the
required detour, and the best feasible insertion is executed. If no location i ∈ Nc

is feasible to be inserted, customer c is skipped in the route. Similarly to recourse
R2, recourse R4 also violates non-anticipativity, but we use it to assess the value of
information and compare against recourse R3.

0

c1

c2

c3

c4c5

1st stage

2nd stage

(a) Skipping customers (c3 and c4).

Nc3

Nc40

c1

c2

i c3
1 i c3

2

i c3
3

i c4
1

i c4
2

i c4
3

c5

1st stage

2nd stage

(b) Changing the location of an otherwise
skipped customer (c4).

Figure 4.2: Recourse actions applied to a first-stage route visiting five customers. In 4.2a, customers are skipped
if delivery occurs outside the location time windows (R1) and, in 4.2b, a different location might be selected
for an otherwise skipped customer (R3).

In the following section, we elaborate on how we (heuristically) solve the two-stage
model with recourse. It is worth mentioning that we are mainly interested in the first-
stage solution from the model (the decision taken by the provider at planning stage). The
second-stage recourse actions for a given realization ω̃ does not lead to an a-posteriori
solution, obtained during operational time, but to a simulation of it. Moreover, we as-
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sume that ω̃i j become known at the beginning of the second-stage, even though it might
be only traversed at a later point in the operational time. Thus, a travel time scenario
ω̃ specifies values for traversing the arcs regardless of the period in the horizon [0,T ].
Observe that this is in contrast with a multistage approach, wherein travel times are ob-
served at different points over the horizon, and decisions (recourse actions) are taken to
react to the outcomes after each observation.

4.4. SAMPLE AVERAGE APPROXIMATION
The Sample Average Approximation is a framework to solve stochastic discrete optimiza-
tion problems by Monte-Carlo simulation proposed by Kleywegt et al. (2002). A compu-
tational study using the method for solving two-stage stochastic routing problems in the
form minx∈X w′x+E[R(x,ω)] was conducted by Verweij et al. (2003). The idea is to ap-
proximate the expected value function E[R(x,ω)] by the corresponding sample average
function z(x) = 1

N

∑N
i=1 R(x,ω̃i ), whereΩ= {ω̃1, ...,ω̃N } is a set of realizations (scenarios)

of the random vector ω, and solve a Sample Average Approximation (SAA replication)
problem minx∈X vΩ(x), vΩ(x) = w′x+ z(x), considering not the full support of ω – which
can grow exponentially with the dimension of x – but a smaller set of realizations. A large
set of realizations, Ω′ = {ω̃1′ , ...,ω̃N ′

}, N ′ À N , is then used to approximate the true ex-
pected value (solution gap) of the solution obtained by solving the SAA problem. The
procedure is repeated until a certain criteria is met (e.g. the maximum number of repli-
cations, the optimality gap is small enough).

Algorithm 5 illustrates the main steps of our SAA implementation. Usually, imple-
mentations of the SAA framework proposed by Kleywegt et al. (2002) solve a fixed num-
ber, M , of SAA replications, generally using a fixed sample size |Ω| = N . In contrast,
in our implementation, the number of replications solved is not fixed and the sizes of
the samples used to solve each replication is adjusted accordingly to the performance
of the method for a current value, namely, the gap estimator, εm , after solving the mth

SAA replication. Kleywegt et al. (2002) utilize ε= vΩ′ (x)− v̂Ω as an estimator of the (true)
optimality gap vΩ′ (x)− v∗, where v∗ is the optimal cost of the problem considering all
possible realizations ofω. By solving each SAA replication to optimality, it can be shown
that v∗−E[v̂Ω] is monotonically decreasing in N i.e., v̂Ω is a statistical lower bound for v∗
(Verweij et al., 2003). Since in our approach individual SAA problems are solved heuristi-
cally, v̂Ω is not necessarily a valid lower bound and, moreover, the lower bound estimator
v̂Ω tends to overestimate the true lower bound. However, we still compute and use the
estimator v̂Ω in order to evaluate the performance of the SAA problems given the cur-
rent sample size, N , and to adjust (increase) the sample size throughout the method, but
only after a certain level of convergence (variance of the values observed in the past L
replications) is achieved.

Choosing the sizes N and N ′ is a trade-off between solution quality and computa-
tional efficiency in solving the SAA problems. Observe that solving each SAA problem be-
comes more time consuming as N increases, but the estimated lower bound, v̂Ω, tends to
be stronger and, consequently, the SAA gap tends to be smaller. In our implementation,
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Algorithm 5: Overview of the (proposed) SAA framework implementation

Input : Initial sample size N ; N ′, the large set of realizationsΩ′ = {ω̃1′ , ...,ω̃N ′
};

Number of replications L to check for convergence
Output: Solution x∗

1 m ← 1

2 GenerateΩm = {ω̃1, ...,ω̃N }
3 Solve the SAA problem overΩm , with objective vΩm and solution xm

4 Evaluate xm onΩ′:
5 vΩ′ (xm) ← w′xm + 1

N ′
∑N ′

i=1 R(xm ,ω̃i ′ )
6 Compute the average of solutions found in previous iterations

7 v̂Ω← 1
m

∑m
i=1 vΩi

8 Compute the SAA gap estimate:

9 f ∗ ← mini=1,...,m vΩ′ (xi );

10 εm ← f ∗−v̂Ω
f ∗

11 Compute variance of v̂ over the past L replications

12 σ2
v̂Ω

= 1
(L−1)

∑m
i=m−l (v̂Ω− v i

Ω)2

13 σ2
εm

= 1
(L−1)

∑m
i=m−l (ε̂−εi )2

14 Check convergence and update the sample size:
15 if σv̂Ω ≤ 0.01 then
16 if εm ≤ 0.05 then
17 Generate a new (independent) sample setΩ′

18 return x∗ = mini=1,...,m vΩ′ (xi )
19 else
20 N ← N +∆
21 m ← m +1
22 goto 2

we use a fixed |Ω′| = N ′ throughout the algorithm, and start solving the SAA problems
over small sample sets |Ω| = N . An integer parameter ∆ is used to control the extent by
which to increase N (how many additional scenarios to consider). When the solutions
obtained by replications with the same sample size N converge, the gap estimator εm

is evaluated and, in case it is not yet below the tolerance, N is increased by ∆ and new
replications are solved, until convergence. Otherwise, all solutions obtained by solving
each SAA replication are evaluated over a new (independent) setΩ′ and the best solution
is returned.

In Section 4.5, we conduct a series of experiments to assess the implementation de-
cisions taken in our proposed SAA.
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4.4.1. SOLVING THE SAA PROBLEM

To solve the SAA problem minx∈X w′x + 1
N

∑N
i=1 R(x,ω̃i ), we resort to an adaptation of

the heuristics proposed by Reyes et al. (2017) which considers travel time uncertainty
in the arcs. We did so by adding the sample average function to the objective and, as
a result, we also modified the local search operators such that the marginal cost of an
insertion considers both the changes in distance and recourse costs over N scenarios
Ω = {ω̃1, ...,ω̃N }. In particular, computing the change in the recourse costs before and
after an operator is applied requires the evaluation of the modified solution (route) on
the sample setΩ. Algorithm 6 gives an overview of how second-stage recourse costs are
computed for a given first-stage solution and recourse policy, R, considering a sample of
K travel time realizations.

Algorithm 6: Evaluating second stage costs for a first-stage solution x.

Input : First stage routing solution x; a sampleΩ= {ω̃1, ...,ω̃K } of travel time
realizations; a recourse action R ∈ {R0,R1,R2,R3,R4}.

Output: The average recourse cost 1
K

∑K
i=1,R(x,ω̃i )

1 R(x,Ω) ← 0

2 for each scenario ω̃i ∈Ω do
3 for each route, r , in x do
4 Apply recourse R to r , considering travel times ω̃i , to obtain a new route r ′
5 U ← set of customers visited by r but not visited following r ′
6 for each customer c ∈U do
7 R(x,Ω) ← R(x,Ω)+Λc

8 λn+1 ← arrival time at the target depot for route r ′
9 R(x,Ω) ← R(x,Ω)+βmax{0,λn+1 −T }

10 return R(x,Ω)
K

Given a realization of travel times, one of the recourse decisions described in Section
4.3.4 is applied to each a priori route in the first-stage solution x (Line 4), and a new
route (second-stage route) is obtained in which customers are skipped and/or a different
customer location is selected for service. The penaltyΛc is is incurred for every customer
c ∈U ⊆C not visited in the second-stage route (Line 7) as well as the overtime cost (Line
9). Finally, Algorithm 6 returns the average recourse cost for solution x computed over
all travel time scenarios inΩ (Line 10).

4.5. COMPUTATIONAL EVALUATION
In this section, we present a set of computational experiments conducted to evaluate
the performance of the proposed framework in solving the VRPRD-STT and to assess the
benefits of trunk delivery considering unknown travel times at the time of planning. Our
algorithms are coded in Java and all experiments are executed on an Intel Xeon E5-2666
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v3 CPU @3.5GHz machine, 15GB, running Ubuntu Server 18.04.

In our experiments, unless explicitly stated otherwise, we use the following input
parameters. The number of samples used to solve each SAA replication is initially set to
N = 1 and the increase parameter∆ is set to 5d εm

0.05 e, i.e., the higher the relative difference
between current and desired (estimate) gaps the larger the increase in the number of
samples. The setΩ′ has size |Ω′| = 10000. Convergence of the estimators (gap and lower
bound) are checked considering the variance over the last L = 15 replications and the
algorithm terminates when convergence is attained and the gap estimator is below 0.05.
We consider a congestion level of η = 0.35 (representative for the average congestion
level of the top 100 congested cities worldwide (Tom Tom, 2016). The transportation
cost matrix w = (wi j )(i , j )∈AR is defined by the travel distance between any two locations
i and j . The overtime penalty is β = 2 and the maximum allowed overtime is set to 120
time units (two hours). We define the penalty cost of not servicing customer c ∈ C , in
the second stage, as Λc = 10Fc , where Fc is the total (distance) cost of a single route
from the depot to the home location of customer c and back to the depot e.g., the cost
of a subcontracted, dedicated service. For a solution x, we define w′x and E[R,x] as the
corresponding first and second-stage costs, respectively.

4.5.1. INSTANCE DESCRIPTION

To evaluate the impact of stochastic travel times in solving the VRPRDL, we perform
computational experiments using problem instances introduced by Reyes et al. (2017).
In particular, we consider their set of general instances, with 15, 20 and 30 customers,
each with up to five roaming delivery locations, a time horizon of T = 720 (12 hours), a
single depot (locations 0 and n +1 are the same) at the center of the region under con-
sideration, and vehicles with capacity Q = 750. The geographic profile of each customer,
c ∈C , is as follows: the roaming delivery locations of c, Nc , are centered around the cus-
tomer’s home location and all are reachable, within the time horizon, from the depot;
the itinerary of c starts at its home location, visits each roaming location and ends at
home. Time windows (i.e., the time customer c spends at each location, being available
for delivery) are generated by subtracting the total time spent by travelling from the time
horizon and allocating the remaining time, in uniformly random lengths, to each loca-
tion i ∈ Nc . Observe that if |Nc | = 1 then customer c is available during the whole time
horizon exclusively at home.

Table 4.2 reports the characteristics of each instance considered in the computa-
tional experiments. Each row represents an instance and depicts the number of cus-
tomers (|C |), the total number of locations (

∑
c Nc ) and the average time, as a percentage

of the time horizon T , that customers are available for delivery (Av.), where customer
time windows are defined by deterministic (expected) travel times. We also distinguish
between customers available only at home (|Nc | = 1, available over the full time horizon)
and customers available at roaming delivery locations (|Nc | > 1). Thus, in the column
Roaming, we report the average (Avg.), the minimum (Min) and maximum (Max) per-
centage of time that customers with roaming locations are available for delivery.
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A disruption on an arc might alter the customer availability at the locations for trunk
delivery (see Figure 4.1). In an extreme case, this means that delivery at some locations
becomes infeasible. To give an insight on how changes in travel times might affect the
availability (time windows at each location in the itinerary) we also report, in column
Stochastic, the number of locations (Av gm) that are unavailable once travel times are
revealed and the time available for delivery (Av), as the average values over 10000 differ-
ent travel time realizations.

All customers
(deterministic)

Roaming customers
(deterministic)

Stochastic

Instance |C | ∑
c Nc Av.(%) Avg(%) Min (%) Max (%) Avgm Av(%)

I0 15 63 63.1 47.7 4.9 81.4 5.4 60.9
I1 15 58 69.1 52.2 31.0 90.4 3.9 66.2
I2 15 53 71.3 53.5 7.9 98.6 7.4 68.1
I3 15 51 64.2 39.1 8.3 82.4 6.1 61.6
I4 15 53 69.9 55.7 14.2 96.9 3.6 69.8
I5 20 67 69.9 49.1 16.3 99.7 5.2 68.1
I6 20 69 67.7 40.7 7.5 97.2 9.3 65.8
I7 20 81 60.0 41.3 4.4 64.2 10.3 57.3
I8 20 77 53.9 36.6 1.0 85.0 10.3 51.6
I9 20 64 69.5 52.1 14.2 98.6 6.9 67.3

I10 30 104 64.2 50.2 3.1 98.1 6.7 61.8
I11 30 114 56.4 41.8 0.6 89.4 14.9 53.6
I12 30 119 57.0 44.9 3.8 83.3 13.6 54.0
I13 30 108 63.6 47.1 12.4 91.7 9.4 61.7
I14 30 125 56.7 46.8 4.0 96.3 13.7 54.1
I15 30 120 61.5 48.7 2.8 93.8 6.3 58.8
I16 30 131 53.0 46.3 7.5 93.5 13.3 50.2
I17 30 107 61.1 43.4 0.6 64.4 9.9 58.7
I18 30 99 65.0 49.1 7.6 85.3 10.3 62.5
I19 30 76 78.1 50.0 4.9 91.4 7.9 76.8

Table 4.2: Description of a subset of the general VRPRDL instances proposed by Reyes et al. (2017).

4.5.2. GENERATING TRAVEL TIMES SCENARIOS

For this work, we follow an approach similar to Taş et al. (2013), Jabali et al. (2015) and
Vareias et al. (2017). We model the (stochastic) time to traverse an arc (i , j ) ∈ A as a ran-
dom variable given by ti j +δi j , where δi j ≥ 0 is the duration of the stochastic disruption
on arc (i , j ) and ti j is a deterministic travel time, used in the first stage. Specifically,
we consider that δi j follows a gamma distribution with a given shape parameter, k, and
scale, θi j , depending on the deterministic travel time value of the arc. Gamma distribu-
tions are used to describe stochastic travel times in the literature, as it follows convolu-
tion and non-negativity properties. The parameters k and θi j allow for the generation of
scenarios considering the degree by which travel times vary, adjusted by the coefficient
of variation (ĉv ).
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Let η ≥ 0 be a congestion level, representing the (expected) increase in travel time
proportional to the travel time used in the first stage i.e., the travel time of arc (i , j ) after
a disruption incurs an expected increase of E[δi j ] = ηti j . Thus, if δi j ∼G(k,θi j ), we have:

E[δi j ] = kθi j = ηti j (4.27)

V ar (δi j ) = kθ2
i j (4.28)

We derive parameters k and θi j for a given value ĉv as follows:

ĉv =
√

kθ2
i j

kθi j
=⇒ k = 1

ĉv
2 , θi j = ηti j ĉv

2 (4.29)

A scenario ω̃ is, then, an assignment of a random value to each arc (i , j ) ∈ A, with
ω̃i j = ti j +δi j , where δi j is drawn from the gamma distribution G(k,θi j ), given a value
of ĉv . Figure 4.3 illustrates the probability density of the gamma distribution used to
model the disruption on a particular arc (i , j ) ∈ A with ti j = 60 and η= 0.35, considering
different (squared) coefficient of variation values: ĉ2

v = 0.0625 (Figure 4.3a), ĉ2
v = 0.25

(Figure 4.3b) and ĉ2
v = 1.00 (Figure 4.3c). Within the SAA framework, the objective value

(4.12) of the solution xi obtained after solving the i th SAA replication, is approximated
by vΩ′ (xi), taking a very large sampleΩ′. Thus, Figure 4.3 presents an interval frequency
for |Ω′| = 10000 values sampled from the distribution.

In this specific example, the disruption δi j has the same expected value, E[δi j ] = 21,
regardless of the coefficient value used to obtain the parameters k and θi j of the gamma
distribution. However, the samples derived from each distribution differ significantly. In
particular, observe that the maximum disruption observed for ĉ2

v = 1.00 is approximately
four (resp. two) times the maximum disruption observed for ĉ2

v = 0.0625 (resp. ĉ2
v = 0.25).

The higher ĉ2
v , the higher the number of samples with low probability, but with larger

disruption values. Scenarios drawn from a distribution with ĉ2
v = 0.0625 represent short

length disruptions occurring frequently (e.g., sudden increase in traffic as a consequence
of events on adjacent streets), whereas values sampled from a distribution with ĉ2

v = 1.00
reflect severe disruptions with low probability of happening (e.g., accidents blocking one
or more lanes, severe speed reduction due to road condition).

We consider that the travel times of arcs in the instances introduced by Reyes et al.
(2017) already account for expected disruptions i.e., the deterministic travel time, t̄i j

of arc (i , j ) ∈ A is t̄i j = ti j + E[δi j ]. When solving an instance taking into account the

stochastic disruptions, the travel time of an arc (i , j ) ∈ A in the first-stage is ti j = t̄i j

(1+η) ,
and the stochastic disruption, δi j , in the second-stage is sampled from a gamma distri-
bution, as shown previously, i.e., ti j is the travel time to traverse arc (i , j ) ∈ A without any
disruption, and E[δi j ] = ηti j . Figure 4.3d illustrates the travel and disruption times for
an arc (i , j ) ∈ A. In the remaining sections, unless specified otherwise, we use ĉ2

v = 0.25.
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Figure 4.3: Disruption, δi j , on arc (i , j ), ti j = 60 and η= 0.35, sampled with different ĉ2
v values.
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4.5.3. THE VALUE OF A STOCHASTIC SOLUTION

To assess the value of stochastic information, we obtain a stochastic solution, xs , using
our SAA framework, as well as a deterministic solution, xd , in which all random variables
are replaced by their expected values. Next, we compare the routing costs (first stage),
as well as the recourse costs (second stage) for both solutions. The expected recourse
cost for a solution is obtained through Algorithm 6, using a large scenario sample size
|Ω| = 10000. Through this experiment, we show the extent to which first-stage decisions
and costs of a stochastic solution change as a consequence of incorporating uncertainty
in the travel times. To facilitate a fair comparison, we require that the number of routes
in the stochastic solution does not exceed the number of routes used in the deterministic
solution. As elaborated in Section 4.4, we use our adapted implementation of the local
search heuristic proposed by Reyes et al. (2017) to compute both xd and xs . To calculate
xs , we use xd as a starting solution to our heuristic.

Figure 4.4 depicts the comparison of xd and xs for the instances in Table 4.2 using
recourse R0. Recall that in R0 no corrective actions are taken: the second-stage costs
solely include penalties incurred for missed customers and overtime. In this experiment,
the scenarios are generated using a coefficient of variance ĉ2

v = 0.25. The results for xs

are averaged over 3 runs of the SAA framework.
For each instance, Figure 4.4 shows the routing costs w′x, and the expected recourse

costs, E[R0,x], for both the deterministic solution xd and the stochastic solution xs . The
total cost of a solution is given by w′x+E[R0,x]. Figure 4.4 also shows the value of the

stochastic solution computed as v ss = 100× (vΩ′ (xd )−vΩ′ (xs ))

vΩ′ (xd )
, where vΩ′ (xd ) and vΩ′ (xs )

are the total costs of the deterministic and stochastic solutions, respectively.

Figure 4.4: The value of incorporating stochastic information. Second-stage costs are derived from recourse
R0, travel times scenarios are derived from distributions having coefficient of variation ĉ2

v = 0.25.
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As can be observed in Figure 4.4, the total costs of the deterministic solutions are sig-
nificantly higher than the costs of the stochastic solutions. In fact, using our stochastic
framework, we realize a cost reduction of nearly 42% compared to deterministic solu-
tions. The difference in first-stage routing costs is small (on average 1%) but the routing
plans differ significantly. The main changes stem from vehicle-customer assignment de-
cisions, the order of service and the selected service locations.

Figure 4.5: The value of incorporating stochastic information to solve the VRPRDL using recourse actions
R1,R2,R3 and R4. Travel times scenarios derived from distributions having coefficient of variation ĉ2

v = 0.25.

In Figure 4.5 we repeat the same experiment for recourse actions R1-R4. Again, we
observe that the stochastic solutions drastically improve over the deterministic solu-
tions: the average cost reductions are 38%(R1), 33%(R2), 40% (R3), and 32%(R4). Note
that in these experiments, the deterministic solution, xd , and its routing cost, w′xd, re-
main constant independent of the recourse action being used; only the expected re-
course cost E[Ri ,xd] changes due to its dependency on Ri . When comparing the ex-
pected recourse costs E[Ri ,xd] for i = 1, . . . ,4 and fixed xd , we observe that on average
the recourse costs of R4 are lowest, followed by R3, R2 and finally R1.

4.5.4. RECOURSE POLICY COMPARISON
A mutual comparison of recourse policies R1 and R2, as well as R3 and R4 is provided
in Figure 4.6. Per instance, the average results over three runs of the SAA algorithm are
shown.

Recall from Section 4.3.4 that recourse policies R1 and R3 greedily skip or reschedule
customers that cannot be reached within their time windows, whereas policies R2 and
R4 use a more involved DP to compute the best subset of customers in a given route to
skip or reschedule, violating non-anticipativity of travel time realizations. From Figure
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4.6, we confirm that recourse policy R2 outperforms its simpler counterpart (R1): the
costs of R2 are on average 4% lower than R1. The difference in costs obtained for poli-
cies R3 and R4 are negligible, with R4 performing slightly better. These cost reductions
come with an increase of computation time of 50− 60%, because solving the dynamic
problem (4.26) is computationally relatively expensive. The limited performance of re-
course actions assuming full knowledge of travel time realizations is explained by the
fact that the average number of customers per route, and thus the number of traversed
arcs, in the first-stage solution is relatively low (4-5 customers). As a result, recourse poli-
cies wherein deciding on which customer(s) to skip is made assuming only knowledge
of travel times for the next arc to traverse (R1, R3) performs similarly to recourse policies
assuming full knowledge at the start of the second-stage (R2,R4). More specifically, com-
paring the results on the instance for which recourse R2 improves over R1 the most (20%)
and the results on the instance with the least improvement (< 1%), R2 outperforms R1

when the solution contains slightly longer routes (5-6 customers). Longer routes con-
solidating more customers might decrease routing costs for first-stage decisions, but are
likely to require more recourse actions due to travel time realizations, since they contain
more arcs.

Figure 4.7 compares policies R1 and R3, investigating the benefit of being able to visit
a customer at a different location than the one selected in the a priori plan. Policy R3, in
contrast to R1, attempts to reschedule a customer at an alternative location in case of a
missed delivery. Solution costs obtained with policy R3 are on average 25% lower than
the costs obtained with policy R1: both the first stage costs and the second stage costs
are lower (resp. 1% and 44%). Do note that evaluating recourse R3 is generally more
complex than evaluating R1, and, as a result, evaluating the second-stage costs using R3

takes about twice the execution time required to evaluate recourse R1. In practice, this
computation time increases proportional with the number of alternative locations in the
itinerary of a customer.

Based on these results, we conclude that a recourse policy (R3) exploiting the flexi-
bility of visiting customers at different locations provides routing schedules with over-
all higher quality than a policy which simply skips customers who cannot be serviced
in time (R1), but also incurs in relatively higher computational costs. If fast computa-
tion times are required, then recourse action R1 is recommended, which still achieves
a 37% improvement over a deterministic model which only takes expected values into
account. Moreover, recall that only recourse actions R0, R1 and R3 yield realistic poli-
cies that could be applied as travel times are revealed throughout the horizon, as R2 and
R4 violate the non-anticipativity of travel times realization. It is however interesting to
observe how close the performance of recourse policy R3 is, which only uses partial in-
formation, in comparison to R4. In practise, R2 and R4 could still be applied in the case
when travel times are revealed, or at least a good estimation of them is made available,
in periods (e.g., morning, afternoon, evening). Thus, the dynamic problem in Equation
(4.26) could be solved using values of all arcs traversed in a given period by the a-priori
route.
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Figure 4.6: Comparison of solutions obtained by recourse actions R1 and R3 compared to solving the dynamic
programming (R2 and R4) model (4.26).

Figure 4.7: Savings by changing the service location of an otherwise skipped customer.
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ĉ2
v = 0.0625 ĉ2

v = 1.00

vΩ′ (x∗) T(s) v ss(%) vΩ′ (x∗) T(s) v ss(%)
Average 3,107 1,920 38.4 5,546 7,881 32.3

Table 4.3: Impact of travel time scenarios generated with different coefficient of variance. R3 is applied as
second-stage recourse action.

4.5.5. THE IMPACT OF TRAVEL TIME VARIANCE

To assess the impact of travel time variance, we conduct an experiment in which the
stochastic travel times are drawn from different gamma distributions: one with a low
variance (ĉ2

v = 0.0625) and another one with a high variance (ĉ2
v = 1.00). The results

averaged over all instances are reported in Table 4.3. Again the SAA algorithm has been
invoked 3 times per instance.

As can be observed from Table 4.3, the solution costs vΩ′ (x∗) increase significantly
when the variance increases: vΩ′ (x∗), for the high variance instances, is almost twice the
value of the low variance instances. On average, the second-stage recourse costs account
for 31% (low variance) resp. 63% (high variance) of these total costs. Next to an increase
in costs, we witness a decrease in the Value of the Stochastic Solutions (VSS), from 38.4%
for the low variance instances to 33.7% for the high variance instances. Finally, we ob-
serve a significant increase in computation times when the variance increases. This in-
crease is attributed to the fact that in case of a high variance, more SAA replications are
needed with a larger sample size (N ) before the termination criteria of our SAA algorithm
are met.

Figure 4.8 illustrates an example of how (first-stage) routing decisions can be affected
when stochastic travel times are taken into account and the impact of those decisions
on second-stage costs. In Figure 4.8a we show the deterministic solution routing for
instance I18. Figure 4.8b shows a stochastic solution obtained with the SAA using re-
course policy R3 under travel time scenarios with ĉ2

v = 0.25, for the same instance. The
locations visited by a given customer have all the same color but are distinguished by
solid (home location) and empty circles (the roaming delivery locations). In particular,
we highlight customer c5, visiting four roaming locations (most likely to be impacted by
travel time disturbances). In the deterministic solution, the delivery to customer c5 is
made at the second roaming location visited by c5, which is closer to the depot (at the
center of the figures). For the stochastic solution, the sampling scheme in the SAA is able
to drive the routing solution to deliver to c5 at the third roaming location visited by the
customer, farther from the depot but closer to the next roaming location and to home.
The stochastic solution is thus able to cope better with travel time disturbances affect-
ing customer c5. Although the routing costs are similar (less than 4% difference), when
both routes are evaluated over travel time scenarios with ĉ2

v = 0.25 and with recourse R3,
the second-stage cost for the stochastic solution is more than 50% cheaper than for the
deterministic solution.
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(a) Deterministic solution (b) Stochastic solution. R3 and ĉ2
v = 0.25

Figure 4.8: Routing solutions for the deterministic (a) and stochastic (b) solutions obtained for instance I18.
For the sake of clarity, the last leg of the routes (to the depot) are not shown.

4.5.6. MINIMUM VISITING TIME AT ROAMING LOCATIONS
In the previous experiments, we assumed that for a customer c ∈ C , when arriving at a
roaming location i ∈ Nc after the latest time, bi , (that is, for a realized travel time sce-
nario, ãi > bi ) the customer does not spend time at location i and drives directly to
the next location in his/her itinerary. Thus, we conducted a few experiments where we
impose that each customer spends at least a given amount of time, τ, at each roaming
location in his/her itinerary, regardless of the time of arrival. Similarly to the previous
experiments, an arrival after bi implies that location i will not be available for delivery.
We assume that τ is too short to make the service feasible. If the length of the time win-
dows, [ãi , b̃i ], at location i for a given realized scenario is smaller than τ, then we impose
b̃i = ãi +τ.

Table 4.4 reports the results of the experiments, using τ = 10 and travel time sce-
narios with ĉ2

v = 0.25. Column Instance shows the aggregate instances by the number
of customers (I1−4 : |C | = 15, I5−9 : |C | = 20 and I10−19 : |C | = 30). In columns vΩ′ (xs )
and v ss(%), we report the average solution costs and the value of stochastic solution,
respectively, over instances of the corresponding aggregation (recall that to compute the
v ss, the deterministic solution is evaluated over the same travel time scenarios and re-
course policy as for the stochastic solution when evaluating second-stage costs). We
observe similar results as those presented in Section 4.5.3, where the stochastic solu-
tions clearly perform better when evaluated in different travel time scenarios. However,
the total costs are larger compared to those observed previously, on average 30% more
expensive. A delivery can be scheduled for a location i ∈ Nc , at which the realized time
window [ãi , b̃i ] is shorter than τ units of time. In case the recourse policy is not able to
re-schedule the delivery to another location, the customer is missed, increasing second-
stage costs. Moreover, once a customer is delayed, unless he/she spends longer at subse-
quent locations, it will be harder to deliver at a roaming location. Those scenarios were
not considered for the experiments in Section 4.5.3.
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Recourse R3 Recourse R1

Instance vΩ′ (xs ) v ss(%) vΩ′ (xs ) v ss(%)
I1−4 3,554.4 29.2 4,376.1 36.2
I5−9 4,526.4 32.3 5,174.6 36.8
I10−19 6,715.1 26.9 8,119.7 28.0

Table 4.4: Value of stochastic solutions considering customers always spend time (τ= 10 units of time) at the
roaming locations along their itineraries, regardless of time of arrival.

4.5.7. EVALUATING THE SAA FRAMEWORK

A common problem in the implementation of SAA algorithms is selecting the parameters
N (number of scenarios in setΩ) and M (number of SAA replications). Both parameters
are instance-dependent: low values of M and N lead to poor solutions, whereas high val-
ues of M and N significantly increase computation times. In this work, we aim to avoid
this problem through an incremental update scheme for N and a termination criteria
based on a gap estimate εm (Algorithm 5), instead of a fixed number of iterations M . In
this section, we conclude with an empirical evaluation of these design choices.

To establish the impact of our incremental update scheme, we solve the benchmark
instances (Table 4.2) for fixed values of N by setting ∆= 0 in Algorithm 5. We terminate
SAA as soon as σv̂Ω is less than 0.01 (line 15 in Algorithm 5). For these experiments, we
use recourse policy R0 and ĉ2

v = 0.25.

As an example, we solve instance I5 for fixed N = 1,5,15,20 with our incremental
update scheme. The results are depicted in Figure 4.9a. For each SAA replication m (x-
axis) the graphs show the value v̂Ω and the objective value vΩ′ (xm). Clearly, when N
is too small (e.g. N = 1), the objective value vΩ′ (xm) fluctuates considerably. For larger
values of N the objective value becomes more stable, indicating that the solution xm

obtained by solving the mth SAA replication with |Ω| = N closely approximates the value
vΩ′ (xm). Figure 4.9b shows that our incremental scheme increases the value of N twice,
and terminates after m = 60 iterations. Here, the best solution value is found for N = 19.

Table 4.5 summarizes the results, averaged over all instances with the same number
of customers |C |. Similar to the experiments in the previous sections, the SAA algorithm
has been invoked 3 times per instance. For a given |C |, Table 4.5 reports the average
results obtained with fixed N = 1,5,15,30,60,90, and with the proposed incremental up-
date scheme (∼). For a given |C | and N , we state the best objective value found vΩ′ (x∗) by
the time the algorithm terminates, the time at which this best solution was discovered
(TTB), the total execution time (T(s)), and the number of times (N ) SAA terminated
with εm ≤ 0.05. Here, we remind the reader that when εm > 0.05 our incremental update
scheme would increase sample size N (line 19 in Algorithm 5).

Observe from Table 4.5 that when |C | equals 15 and 20, the best results are obtained
for N = 30, whereas for |C | = 30, the best result is found for N = 90. Manually picking
the ideal value of N is hard without enumerating different values of N . Fortunately our
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(a) SAA replications solved with a fixed sample size N = 1,5,15,20.

(b) SAA replications with sample sizes adjusted throughout the method.

Figure 4.9: Comparison of the evolution of the SAA framework considering fixed sample sizes N (a) and the
adjusted sizes (b)

incremental update scheme (∼) finds solutions of comparable quality, without the need
to manually select N , and relatively fast when compared against the computation times
for larger N .
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|C | = 15 |C | = 20

N vΩ′ (x∗) N TTB T(s) vΩ′ (x∗) N TTB T(s)

1 4,108 0 15 32 5,182 0 23 41
5 3,528 0 24 70 4,039 1 54 108

15 3,453 0 58 136 3,915 1 122 218
30 3,414 3 70 215 3,829 1 108 383
60 3,427 3 145 463 3,895 3 783 994
90 3,434 5a 175 816 3,933 5a 397 1,301
∼ 3,444 5a 108 297 3,834 5a 445 994

|C | = 30

vΩ′ (x∗) N TTB T(s)

1 9,212 0 62 95
5 7,304 1 108 260

15 6,878 0 360 582
30 6,796 5 680 1,174
60 6,785 8 1,081 2,177
90 6,774 10a 2,396 4,737
∼ 6,796 10a 2,143 3,373

Table 4.5: Running the SAA with a fixed N . vΩ′ (x∗): best solution found; N : the number of times SAA ter-
minated with εm ≤ 0.05; TTB: time when best solution found; T(s): total execution time. ĉ2

v = 0.25 and R0 as
second-stage recourse action. a All SAA invocations terminated with εm ≤ 0.05.
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4.6. CONCLUSIONS
We addressed a stochastic variant to a last-mile delivery problem, considering trunk delivery.
In this case, a customer’s car is used to facilitate the delivery process of direct-to-consumer
orders. This problem is modeled as a Vehicle Routing Problem with Roaming Delivery
Locations. Customers are assumed to be available for delivery at different locations as
he/she moves along an itinerary, defining non-overlapping windows for servicing. By
considering uncertain travel times when designing the routes for service, not only de-
livery vehicles are affected by possible differences between expected and realized times,
but also customers, since travel times also affect the availability of customers at each
location along their itinerary. Moreover, the presence of different locations for delivery
to a customer might provide service providers with new approaches to handle uncertain
events (e.g., road disruptions) while maintaining a desirable service level to customers.

We tackled the problem as a two-stage stochastic problem and implemented a hier-
archical, scenario-based sample approximation method, in combination with an adap-
tation of local search heuristics, to take travel time uncertainty into account. Experi-
ments conducted on a set of VRPDL instances showed that planning the delivery routes
while explicitly taking stochasticity into account leads to significant savings compared
to a deterministic approach which solely considers expected travel time values. Routing
plans obtained by using expected values are too conservative when travel time realiza-
tions are shorter than expectations, or induce many missed deliveries in the advent of
significant traffic disruptions. The SAA approach used in this paper resolves this issue by
optimizing routes over a large number of potential travel time realizations.

Future research could involve the role of new technology (e.g., machine learning) to
monitor and predict daily itineraries of receivers and drivers. This could allow, for exam-
ple, delivery routes being adjusted dynamically, using real-time information provided by
customers given the current status of the network.





5
VEHICLE ROUTING WITH DYNAMIC

ROAMING DELIVERY LOCATIONS

For all its uncertainty, we cannot flee the future.
One meets (her)his destiny often in the road (s)he takes to avoid it.

Jean de La Fontaine

In this chapter, we consider a new dynamic variant of the Vehicle Routing Problem with
Roaming Delivery Locations (VRPRDL). In this new variant, customers’ itineraries are
not known to the service provider beforehand but dynamically announced by customers
throughout the time horizon. The only information required by the service provider
from its customers are the home location and the corresponding customer’s availabil-
ity at home. A Multiple Plan Approach (MPA) is used in which multiple routing plans
are maintained to provide alternative ways for reacting to dynamic information. Deci-
sions to dispatch a vehicle servicing customers at home or at a dynamically announced
location are taken by means of a consensus function, which selects an appropriate route
in the pool. The results show that the solutions obtained with the MPA effectively make
use of dynamically announced locations by customers. In our experiments, integrating
dynamic locations into the routing plans led to improvements for almost all problem
instances, with certain instances displaying improvements of more than 30%.
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5.1. INTRODUCTION

Traditional brick and mortar stores were once the only option customers had to buy their
products. The ubiquity of internet access and the increased penetration of mobility tech-
nology (e.g., mobile phones, smart devices, internet of things) not only dramatically in-
creased on-line sales and e-commerce, but also shifted the power towards the consumer.
Higher service levels are now offered as a means to provide customers more convenience
while e-shopping. Fulfilling customer demands through multiple channels, the omni-
channel logistics, have gained importance as a strategy to cope with higher customer
expectations. However, offering and satisfying such high level requirements to enhance
customer’s experience do not come without challenges and costs.

In a conventional e-commerce setting, customers place orders on-line and have their
products delivered at home, possibly within a preferred time windows. However, the
small size of individual deliveries and the increased number of freight movements ren-
der home delivery an expensive option, both from a service provider and city logistics
perspective (Savelsbergh and Van Woensel, 2016). Moreover, while speedy delivery op-
tions can increase customer satisfaction, many customers might not need or want such
options, due to extra cost for the service (e.g., home delivery with a window length of
two hours can be as costly as three times the delivery cost of an unattended delivery
(Punakivi et al., 2001)). A study conducted by Retail System Research (Baird and Rosen-
blum, 2015) investigates the challenges faced by retailers to fulfill home-deliveries. In
addition, the study evaluates the benefits perceived by the customer when opting for a
delivery at home. Most of the retailers recognize the importance of increasing the speed
of delivery to customers (52%) and offer differentiated services (47%), whereas many
customers value narrower delivery windows (42%) and e-tailers that offer a delivery ser-
vice which is faster than driving to a local store (33%). An option to service the cus-
tomer at a more convenient location than home is to use the trunk of the customer’s car.
This option has gained traction recently after Amazon, in partnership with some car’s
manufacturers, launched its service, Amazon In-Car delivery (Hawkins, 2018), at some
selected areas in the US. Using the trunk of customers’ cars is also been considered by
DHL and the Dutch postal service, PostNL, as one of the alternatives to provide more ef-
ficient last-mile services (Cohen, 2019). By having access to the trunk of the customers’
cars, the service provider can fulfill delivery or pickup (e.g., returning of merchandising)
requests without the physical presence of customers.

In this work, we consider a dynamic last-mile service system with roaming customer
locations where the service provider is able to access the trunk of a customer’s car. Most
works assessing roaming last-mile systems consider that customers inform their full
planned routes to the service provider. However, advances in communication technolo-
gies allow for options in which customers are not required to inform their full planned
journeys in advance. Thus, customers can have a more convenient experience while
e-shopping and service providers can deal with less uncertainty regarding customers
planned routes during order execution. In particular, the provider offers a next-day ser-
vice, in which orders are received and processed throughout the day before the service
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(a) Traditional next-day service
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(b) Next-day service with roaming locations

Figure 5.1: Time progression of logistics processes involved in next-day last-mile delivery services.

operation starts. When posing a request, a customer indicates only his/her home loca-
tion and availability (as time windows) at home, for the next day. Figure 5.1b illustrates
the service setting considered. During the planning phase, all orders received are taken
into account to determine viable routes to service customers at their home locations.
Note that new customers arriving during the execution of the routes are only considered
for next-day service. Over the course of the day, customers in the planned routes can
announce, dynamically, other location(s) where they will be available for service (e.g.,
the car will be parked at a given location for a specific duration). Vehicles are loaded and
dispatched from a depot to visit customers at one of their locations and, at any given
time during the day, the service provider might decide to dispatch vehicles for servicing
customers either at home or at a dynamically announced location.

5.1.1. LITERATURE REVIEW
Reyes et al. (2017) first introduced the Vehicle Routing Problem with Roaming Delivery
Locations (VRPRDL), developed construction and improvement heuristics and assessed
the benefits of trunk delivery, thereby showing that a reduction of up to 50% on total
travelled distance can be achieved for certain environments. An alternative solution ap-
proach for the VRPRDL was proposed by Ozbaygin et al. (2017). Their exact approach
based on a branch-and-price framework is able to solve instances with up to 120 cus-
tomers. In both works, all relevant information (e.g., travel times, customer itineraries,
demands) is assumed to be static and deterministic – all parameters are known in ad-
vance and with certainty at planning, and do not change during operation. Advances in
information and communication technologies enabled the development of many inno-
vative transportation services and fostered the interest on dynamic routing problems, in
which part or all of the information is revealed dynamically, concomitantly with the ex-
ecution of planned routes. The reader is referred to Pillac et al. (2013b) and Bektas et al.
(2014b) for extensive overviews on dynamic routing problems.
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Recently, Ozbaygin and Savelsbergh (2019) considered a dynamic and deterministic
variant of the VRPRDL. Customers planned routes for the entire day (customer itinerary)
are known during planning stage but might change during the execution of the deliv-
ery schedules. In particular, the authors assume that a customer always visits the loca-
tions in his/her itinerary but arrival and departure times at these locations might deviate
from the values used during planning stage. The authors propose an iterative framework
which solves a (static) VRPRDL, with updated data from customers, using a branch-and-
price method whenever a certain number of deviations from the input data have oc-
curred. By using information collected during the solving of previous optimizations, the
authors are able to efficiently solve the problem in short computational times.

To the best of our knowledge, Ozbaygin and Savelsbergh (2019) is the only study ad-
dressing a dynamic variant of the VRPRDL. The dynamic VRPRDL that we consider dif-
fers from the one addressed in that work regarding:

The source of dynamism: Ozbaygin and Savelsbergh (2019) assume that all customer
locations are known beforehand and that customers might depart earlier or arrive
later than the times specified on the a-priori itinerary (i.e., time windows at lo-
cations may change). We assume that customers only provide the home location
and associated time windows during the planning stage, and that other locations
and corresponding time windows along their itineraries are announced through-
out the day.

Service setting: in Ozbaygin and Savelsbergh (2019), the focus is on collection settings,
wherein the company collect packages from the trunk of a customer’s car (e.g., re-
turn of goods). As a single commodity setting is assumed, a vehicle can service a
customer which was previously assigned to a different vehicle. Consequently, dy-
namically arriving updates might be integrated in the current routing plan even
when changing in assignment is required. In our work, we consider delivery ap-
plications (e.g., last-mile) and assume that each customer has a unique product
to receive (multi-commodity). In particular, if the product of a customer is loaded
into a vehicle, either that vehicle delivers to the customer or it has to come back to
the depot before the item can be loaded into another vehicle.

Waiting strategy: in Ozbaygin and Savelsbergh (2019), a vehicle can wait at a location
(before servicing the customer), and can be re-routed before service starts, when
new information arrives and re-optimization is performed. Vehicles are dispatched
at the start of the time horizon, fully loaded with the commodity. In our work, dis-
patching decisions are explicitly taken into account. In particular, delaying dis-
patching decisions may allow for the gathering of more information (e.g, a cus-
tomer informs a location in his/her itinerary rendering a better overall routing
plan). As noted, for delivery requests, consolidation opportunities are only possi-
ble when vehicles are in the depot and solely minimizing travel times may induce
higher waiting times at customer locations. Thus, we aim for solutions with lim-
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ited waiting times at customer locations and allow vehicles to perform multiple
trips (return to the depot multiple times) within the operational horizon.

5.1.2. CONTRIBUTIONS
The main contributions of this work are: (i) we introduce a dynamic variant of the VR-
PRDL in which customers are not required to inform their full planned routes at the
day of service. We show that while having customer itineraries revealed dynamically
provides more flexibility to customers, compared to solutions considering only home
visits, it can, however, potentially improve the operations of service providers. We indi-
cate insights on the compromises that a delivery company can consider when offering
such service compared to a traditional, only-home delivery option. (ii) We consider a
dynamic strategy to decide on the actions to take during the operational day, in partic-
ular, to support vehicle dispatching decisions. (iii) We evaluate the potential benefits of
including roaming locations as a mean to integrate the fulfillment of both delivery and
return (pickup) flows.

The remainder of this chapter is structured as follows. In Section 5.2, we describe
the problem, in particular, the dynamic settings considered. Section 5.3 describes the
proposed Multiple Plan Approach (MPA) and the rolling horizon framework. We elabo-
rate on the dynamic events and how the solution pool is maintained and updated after
the triggering of each event. In Section 5.4, we present experimental results assessing
the benefits of the solutions obtained with the methodology against a traditional, only
home-solution. Finally, we conclude with some insights for further work.

5.2. PROBLEM FORMULATION
The VRPDRL considered in this work is characterized by a central depot, denoted by 0,
from which a set of homogeneous vehicles V = {1...,V }, each with capacity Q, is dis-
patched to provide last-mile pickup and delivery services within a given geographic area
R. Let C = {c1,c2, ...,cn} be the set of customers whose orders the service provider re-
ceived and will be serviced during the current operating day defined by the time-horizon
[0,T ] (see Figure 5.1b). Each customer c ∈ C has a non-negative demand, dc , that the
service provider has to fulfill, either a delivery or a pickup (return of parcels) operation.
When posing a request, besides the demand, customer c provides his/her home location,
`c

h ∈ R, and associated time windows. Customers might have multiple time windows
at home (e..g, home availability at different times), [ac

h1
,bc

h1
], [ac

h2
,bc

h2
], ..., [ac

hM
,bc

hM
] ⊆

[0,T ], where these time windows are ordered and non-overlapping. During the planning
phase, the service provider uses the informed home locations and time windows to de-
termine a routing plan servicing the set of customers C . At the start of the operating
day the provider might dispatch vehicles for servicing customers at home, as decided in
the routing plan. Alternatively, the provider can defer visiting some customers at home
until some other locations are announced. Note that the provider is not certain about
whether a given customer will announce a location. However, the provider does know
the latest time to dispatch a vehicle for servicing the customer at home during his/her
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last time windows there, and can potentially wait until that time for an announcement.
During operation, customers who did not yet have their requests satisfied can an-

nounce to the service provider their current location and availability (i.e., where and for
how long the customer’s car is parked). Thus, the company might postpone dispatching
decisions and wait for customers to provide alternative service locations that could po-
tentially yield more favorable routes. For customer c ∈C , let i ∈ {1,2,3, ...} and `c

i be the

i th location visited by customer c throughout the operational horizon [0,T ], with avail-
ability [ac

i ,bc
i ]. Given the updated information provided by not-yet serviced customers,

the provider could decide to service those customers at their present location, instead of
at home, integrating the new location into the routing plan. Once the provider makes a
dispatch decision and a vehicle leaves the depot following a given route, all customers
assigned to the vehicle are visited at the locations prescribed by the route and the vehicle
returns to the depot once all assigned customers have been serviced. Additional visits to
customers requiring pickup of goods might still be added to the route after the vehicle is
dispatched. A vehicle is allowed to wait at a customer location if the visit occurs before
the earliest time for that location, but late visits are not allowed (hard time windows).

The dynamic operating scenarios are based on the following assumptions:

• Uncertainty comes from a single source. In particular, uncertainty comes from the
possibility of customers announcing – dynamically, as time goes by – locations in
their itineraries where service can also take place, besides home location. Deci-
sions are taken without any knowledge of future customer locations i.e., without
assuming stochastic information on customers’ itineraries.

• Diversion is not allowed: once a driver is en route to his/her next destination,
he/she must necessarily service that location.

• To fulfill delivery requests, a vehicle has to be loaded from the depot whereas
pickup requests can be serviced by en-route vehicles.

The objective is to dynamically design a set of routes servicing customers either at
home or at a dynamically announced location, minimizing system wide transportation
costs, accounting for total travel distance and waiting times. We consider settings in
which travel times are relatively short compared to the planning horizon, such that vehi-
cles are able to perform multiple routes departing from the depot. Moreover, we assume
all customers are serviced, either at home or at a dynamically announced location, and
that a sufficient vehicle fleet is available for that.

At any point in time t ∈ [0,T ], the following information is available to the service
provider for assisting decision making:

• The set H = {`c1
h , ...,`cn

h } of customers home locations as well as the associated
time windows at which customers are at home.

• The set L t = {`c1 ,`c2 , ...,`cn }∪H , containing all known valid locations at time t ,
where a location is valid at time t if it can still be visited, within its corresponding
time windows, at time t .
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• The set C t , containing the set of customers not yet serviced by time t . Let C̄ t =
C \C t be the set of customers serviced by time t .

• The set V t , containing the routes assigned to each dispatched vehicle that did not
return to the depot by time t . In particular, for a route r ∈ V t , let φ(r ) be the time
that the vehicle assigned to route r returns to the depot.

• The travel time between two locations i , j ∈ L t ∪ {0} is deterministic and repre-
sented by τi j , which is proportional to the distance, di j , and cost, ci j , incurred
when a vehicle goes from location i to j .

Throughout the text, we employ the following terminology. A routing plan, or plan
for short, consists of a set of routes covering all customers who were not yet serviced,
either at home or at a dynamically announced location in a customer itinerary. Within a
routing plan, a customer can be visited by at most two routes: one route visiting the cus-
tomer at home and a different route visiting the customer at a dynamically announced
location. Considering all information known to a customer can increase the ability of
a routing plan to accommodate future information. A route starts at the depot, visits a
given subset of the customers at most once, and returns to the depot. At some point in
the operational day, a route in the routing plan can be assigned to a vehicle, and that
vehicle is immediately dispatched from the depot. We assume that there is a sufficiently
large amount of vehicles at the depot such that routes can always be assigned to a vehi-
cle at the depot. All customers in a route assigned to a vehicle, a dispatched route, are
considered serviced and removed from all routing plans. The final solution consists of
all the routes selected for dispatching throughout the operating day.

5.3. SOLUTION METHOD
The proposed dynamic variant of the VRPRDL is solved through a rolling horizon frame-
work using a Multiple Plan Approach (MPA) to include dynamic information and support
decisions during the execution of the routes. In the framework, periodic re-optimizations
are performed whenever there is an update to the input data (i.e., a customer announces
a new location), keeping information regarding promising solutions on an adaptive mem-
ory (Taillard et al., 2001). Those solutions are maintained throughout the horizon and
can be seen as alternative plans to better accommodate (future) information. In the
following, we describe the framework in more detail and elaborate further on the pro-
cedures to maintain the solution pool and how it is used to assist on dispatching and
routing policies.

5.3.1. MULTIPLE PLAN APPROACH
The MPA was introduced by Bent and Van Hentenryck (2004) and is a generalization of
the adaptive memory framework proposed by Gendreau et al. (1999), who introduced
a parallel tabu search using multiple solutions. The MPA generalizes the work by Gen-
dreau et al. (1999) making it independent of the search procedure used to generate so-
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lutions. The general idea is to populate and maintain a pool with multiple plans that is
used to select a distinguished plan upon which decisions are based on. The pool is up-
dated periodically, ensuring that all routing plans are coherent with the current state of
information and past decisions. The selection of a distinguished plan is accomplished
using a consensus function ranking, at each time t , all plans based on their similarity
to other plans in the pool. As noted in Bent and Van Hentenryck (2004), better results
can be achieved when using a function ranking the plans based on their similarity than
selecting the one with the smallest cost.

At each time t ∈ [0,T ], let the pool be represented by Ωt = {σ1,σ2, ...,σK }, where
σi is a routing plan consistent with the current information at time t (i.e., a solution
to the VRPRDL considering locations L t ). Moreover, let plan σi ∈ Ωt be specified by
σi = {σi ,1,σi ,2, ...,σi ,m}, where σi , j = (0,` j1 , ...,` jp ,0) is a route servicing customers at
locations ` j1 , ...,` jp ∈ L t . Routes do not necessarily prescribe departure times from
a location, but rather imposes constraints on them. In particular, for a route σi , j =
(0,` j1 ,` j2 , ...` jp ,0), we keep effective time windows [αi j

0 ,βi j
0 ] and [αi

jk
,βi

jk
], for k = 1, ..., p,

specifying the earliest and latest times a vehicle assigned to σi , j would have to depart
from the depot and from locations ` jk , respectively, to ensure that all customers in the
route can be visited within their indicated time windows. A route σi j in the pool is con-

sistent at time t if it has effective windows for departure at the depot, [αi j
0 ,βi j

0 ], such that

α
i j
0 = t and βi j

0 > t .

The MPA proposed in this work considers decisions regarding the set of customers
to assign to a route and when to dispatch a route with assigned customers. Customers
requiring delivery service can only be assigned to routes not yet dispatched from the de-
pot. Locations from customers requiring pickups, however, can be included into routes
assigned to already dispatched routes. At the start of the operating day, the pool consists
of routing plans visiting all customers only at home. Over the course of the day, when-
ever a new location update from a customer arrives, we consider servicing that customer
at this new location. To this purpose, we try inserting the location in a route (not visiting
the associated customer) on each routing plan in the pool. The pool, thus, maintains
a number of routing plans, with routes using different locations to service a given cus-
tomer – for example, a customer might be serviced at his/her current roaming location
in one route, but at home in another route. Pool updates are performed periodically, en-
suring that all routing plans are coherent with the current state of vehicles and customers
(locations).

5.3.2. INITIAL PLAN GENERATION

Some dynamic vehicle routing problems assume that part of the input data (e.g., cus-
tomers) is known at planning time whereas some other part is revealed dynamically,
defining a partially dynamic problem. This is the case for the problem considered in
this work: we assume that part of the customer’s itinerary is known at planning time,
namely, the home location and the associated time windows, whereas other locations
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are announced throughout the time horizon, during execution time. Thus, the initial
pool Ω0 is populated by a number of routing plans, all visiting customers only at home.
As customers’ itineraries are revealed, these plans get modified, and some customers
might be serviced at an announced location instead of at home. Within a plan, new
routes may be created, but new plans are not created i.e., |Ω0| = |Ωt | ∀t ∈ [0,T ]. In par-
ticular, at each time during the time horizon, all plans in the pool contain a route visiting
not-yet serviced customers, c ∈C t , at home.

5.3.3. EVENT HANDLING
Our MPA framework takes into consideration three types of events, namely, (1) announce-
ment of a new location by a customer, (2) vehicle dispatching and (3) route timeouts. The
MPA handles (1) by evaluating the insertion of any newly arrived location at the routing
plans in the pool as well as performing the required updates. Vehicle dispatching de-
cisions (2) are taken using a consensus function specifying which routes in the pool to
dispatch at a given time. We will discuss the function later in this section. Events (3) con-
cern routes in the plan (i.e., not yet dispatched) that have become infeasible at a given
time. The MPA handles such events by re-evaluating assignment and routing decisions
in any plan which triggered a timeout, making it consistent with the current state.

For each of the events considered, we specify how the current status of the pool tran-
sitions fromΩt toΩt+1 and how the consensus function is defined and used when taking
dispatching decisions. Different from our MPA, we note that in Bent and Van Hentenryck
(2004) the consensus function is used to select a distinguished plan σ∗

i ∈Ωt at each time
t . The distinguish routing plan defines the next action to take (i.e., which customer to
visit next), and this plan can change throughout the time horizon. In our proposed MPA,
we use the consensus function to decide on which routes to dispatch, selected among
all routes in all routing plans in the pool. Once a route is selected, a vehicle is assigned
to perform that route – loaded with parcels and dispatched. During the execution of the
route, additional parcel pickup requests at customer locations can be assigned to the
vehicle as long as the route remains feasible in terms of its time-windows and capacity.
Thus, our consensus function selects a distinguished route,σ∗

i , j , to dispatch and that will

define a set of actions to take. Moreover, observe that at time t ∈ [0,T ], even if no event
occurs, the natural transition to time t+1 consists basically in updating the effective time
windows of the routes in the pool.

TIMEOUT

A timeout event is triggered at time t = β
i j
0 if the route σi j ∈ σi (in the pool Ωt ) is not

assigned to a vehicle. In this case, the route has become inconsistent as it can no longer
serve all its customers within their respective time windows if dispatched after t . For this
event, we re-evaluate the route (assignment and sequencing decisions) to make it con-

sistent again, such that, after the re-evaluation, βi j
0 > t holds. In particular, given a route

σi j = (0,` j1 , ...,` jp ,0) triggering a time-out event, let I ⊆ {` j1 , ...,` jp } be the ordered set

of (customers’) locations for which α
i j
k = β

i j
k i.e., there is no slack in the departure time
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from location `k if the route departs from the depot at time t . Each location in I is re-
moved from the route (in order) and earliest times of subsequent locations recomputed,

until all earliest times from locations remaining in k ∈ I are changed such that αi j
k <βi j

k

and βi j
0 > t . Let I ′ ⊆ I be the set of removed locations. We try to re-insert those locations

in the plan σi , but considering earliest dispatching time from the depot as αi j
0 = t + 1

for all routes j in σi . In case re-inserting the location in the plan is not possible (even
by creating a dedicated route), the location is not considered for servicing the associated
customer in the given routing plan. The operations are summarized as:

∀σi ∈Ωt :
T ← {σi j ∈σi | TIMEOUT(σi j , t )}
I ′ ←∅
∀σi j ∈ T :
σi j ← COMPATIBLE(σi j , t +1, I ′)

σi ← INSERT(σi , t +1, I ′)
Ωt+1 ←Ωt

where TIMEOUT(σi j , t ) returns whether route σi j became inconsistent at time t ,
COMPATIBLE(σi j , t +1, I ′) returns a route in which the incompatible route σi j has been
made compatible at time t +1, possibly removing customers and adding them on the set
I ′. INSERT(σi , t+1, I ′), returns a routing plan in which locations in I ′ have been inserted
in one of the routes inσi , minimizing insertion costs, and assuming departure time from
the depot at t +1, in case feasible insertions exist.

LOCATION ANNOUNCEMENT

Whenever a not yet serviced customer, c ∈C t , announces availability at his/her current
location, `c

k , at time t , we try to accommodate such information in each routing plan
σi ∈Ωt , inserting the new location in a routeσi j ∈σi at minimal cost. The planσi might
already contain a route servicing customer c at `c

h (home). In that case, we also evaluate
removing the home visit and inserting the new announced location in that route. If the
latter is the minimum insertion among all feasible insertions, it is performed and the
home visit (`c

h) is removed and inserted into another route, at minimum cost. In this
way, every plan in the pool contains a route servicing customers at home. This is done in
order to assure that, in case a route visiting customers at dynamically announced loca-
tions is never dispatched, a routing plan resorting to home visit is always available. Since
home locations and associated time windows are known from the beginning of the time
horizon, the latest time a route has to be dispatched to visit a customer at home is also
known. Thus, we can define:

Ωt+1 ←Ωt

∀σi ∈Ωt+1

σi ← INSERT(σi ,`c
k )

where INSERT(σi ,`c
k ) returns a plan in which location `c

k has been inserted in one of
the routes σi j ∈ σi (if a feasible insertion exists), minimizing insertion cost. The insert
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operation might add a new route in the plan σi in case location `c
k can only be reached

in time by a dedicated route.
When a customer requiring pickup service announces a location, observe that routes

assigned to a dispatched vehicle might be able to serve that request. Our proposed MPA
evaluates the insertion of the request as described above, but also considers (feasible)
insertions on routes already dispatched as follows. After evaluating the best insertion
on a route of a vehicle already dispatched (if one exists), we also compute the average
insertion cost on routes in the pool (as described). In case the cost of the (best) insertion
in a dispatched route is lower than the average insertion cost in the pool, the insertion
is performed in the dispatched route. This may be viewed as a way of capturing situa-
tions when, even though a cheap insertion might exist in the pool, dispatching a route
servicing that customer has limited consensus value and detouring a dispatched vehicle
seems more promising.

CONSENSUS-BASED VEHICLE DEPARTURE

Given the windows for departure at the depot, [αi j
0 ,βi j

0 ], a route σi , j in the pool has

to be assigned to a vehicle, and the vehicle dispatched, at latest at time β
i j
0 . We use

a similar idea as in Bent and Van Hentenryck (2004), and define a consensus function
f : S 7→ Z≥0 to rank a route in a set S accordingly to its similarity to all other routes in S.
More precisely, given two routes σi1 j and σi2k , let Ci1, j ,Ci2,k ⊆C be the set of customers
visited by routes σi1 j and σi2k , respectively. Then, the similarity between the two routes
is defined as:

s(σi1, j ,σi2,k ) = |Ci1, j ∩Ci2,k |
max(|Ci1, j |, |Ci2,k |)

(5.1)

it follows that routes servicing the same set of customers, have maximum similarity.
Let the maximum similarity of a route σi1, j when compared to all routes in some plan
σi2 ∈Ωt , be given by:

s(σi1 j ,σi2 ) = max(s(σi1 j ,σi21), s(σi1 j ,σi22), ..., s(σi1 j ,σi2m)) (5.2)

The consensus value for a route σi , j ∈σi is then defined as:

f (σi j ) =
K∑

p=1:p 6=i
s(σi j ,σp ) (5.3)

where theΩt = {σ1,σ2, ...,σK } are the plans in the pool at a given time t . Observe that,
by definition of equations 5.2 and 5.3, it holds that s(σi1 j ,σi2k ) ≤ 1 and f (σi j ) ≤ K −1.

Dispatching decisions are taken as follows. Routes are never dispatched if βi j
0 −αi j

0 >W ,
where W specifies the maximum available waiting time at the depot before dispatch-

ing. Let S = {σi , j : βi j
0 −αi j

0 ≤ W } the set of all routes in the pool available for dis-
patching at time t . Let σ∗

i j be the route with the largest amount of consensus, i.e.,
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σ∗
i j = argmaxσi j ∈S f (σi j ). We only dispatch a route if a minimum amount of consen-

sus has been reached, that is, if f (σ∗
i j ) ≥ µK , where µ ∈ (0,1] is a pre-defined scalar. If

more than one route attains the largest consensus observed, the route with the mini-
mum (travel) cost is selected. Ties are broken arbitrarily.

When route σ∗
i j is selected for dispatching at time t , the pool needs to be updated to

account for this action. In particular, the customers Ci , j serviced by route σ∗
i , j must be

removed fromΩt+1:

σi ←σi \σ∗
i j

∀σk ∈Ωt :
σk ← REMOVE(σk ,Ci , j )

Ωt+1 ← UPDATE(Ωt )

where REMOVE(σk ,C ) returns a routing plan in which all customers in C have been
removed from the routes in plan σk . UPDATE(Ωt ) updates all earliest and latest depar-
ture times for all routes in all plans in the pool, considering earliest departure from the
depot at time t +1.

5.4. COMPUTATIONAL EXPERIMENTS
We carried out our computational analysis on data-sets used in previous works evaluat-
ing roaming locations for last-mile services. First, we elaborate on the characteristics of
the VRPRDL instances used for conducting the experiments in section 5.4.1. Using those
instances, we show that routing plans making use of locations announced by customers,
in a dynamic fashion, can improve over routing plans optimized using only customer
home locations. The rolling horizon framework used to simulate the dynamic setting is
presented in section 5.4.2. In section 5.4.3, we show how we obtain the routing plans
using only home locations. The only-home solution is compared against solutions ob-
tained in the dynamic context, using our proposed MPA. All strategies used to initialize
the pool are presented in 5.4.4. We report the numerical results in section 5.4.5, where
we also evaluate the impact of a customer announcing his/her coming location in ad-
vance and the inclusion of pickup requests. Our proposed algorithms are implemented
in C++ and experiments executed on an Intel Xeon E5-2666v3 CPU @3.5GHz machine,
15GiB, running Ubuntu Server 18.04. Problems formulated as Mixed Integer Program-
ming (MIP) models are solved using Gurobi 8.0.1 as the MIP solver.

5.4.1. INSTANCE DESCRIPTION

We use the set of realistic instances proposed by Reyes et al. (2017). These instances have
customers divided in: only at home, at home and work, and at home, work and some-
where else after work (gym, shopping mall, etc.). Work locations are divided into eight
pre-defined work clusters, inspired by the geography of Atlanta, US. The eight clusters
represent major regions and are centered accordingly to their location in the map of the
city. The operation period, [0,T ], comprises 14 hours and a customer itinerary is such
that the first and last locations are the customer’s home, with first and second home time
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location announcements

Figure 5.2: Example of a customer itinerary in a realistic instance proposed in Reyes et al. (2017). The customer
is available at home for a few hours in the morning, leaves to work, where he/she spends most of the day. After
work, pays a visit to the gym, before going back home.

windows [ac
h1

,bc
h1

] = [0,Lc
h] and [ac

h2
,bc

h2
] = [E c

h ,T ], respectively, for a customer c (Lc
h is

the time at which customer c leaves home and E c
h the time at which he/she is back). Fig-

ure 5.2, illustrates an example for a customer visiting two locations (excluding for home)
during the day. In these instances, customers spend only a fraction of the total time
horizon travelling i.e., most of the time the customer’s car is parked. Table 5.1 shows the
characteristics of the instance set. We consider a total of 40 instances, divided in 4 groups
with 60, 90, 120 and 150 customers each. On all instances, exactly 10% of customers are
available at home during the whole period and, for the remaining customers, the average
itinerary size (excluding home) is 1.6. Columns Average TW width, Time avail. for ser-
vice at home and Time avail. at an announced location report the corresponding values,
as a percentage of the full time horizon, considering only customers that are also avail-
able at locations other than home (90% of customers). The geographic area, R, where
customers’ locations are to be serviced is a squared region, 120 x 120 minutes2, and the
central depot is located in the center of R i.e., any point can be reached from the depot
within, at most, 60

p
2 minutes.

5.4.2. ROLLING HORIZON FRAMEWORK

The proposed MPA is applied over a rolling horizon framework in which each of the
events described in Section 5.3.3 triggers a local update of the pool. Updates are based
on insertion heuristics, providing reaction to incoming information in short computa-
tional time. To improve the final solution quality, a route is (re)-optimized for a short
period (10 seconds), by solving an associated Travelling Salesman Problem, when se-
lected for dispatching. This is in line with most dynamic vehicle routing methods based
on re-optimization, where fast heuristics are used to (quickly) react to information up-
dates and more complex re-optimization methods are applied periodically for further
improvement (Bektas et al., 2014a).

The implementation of the rolling horizon framework is based on a solver-simulator-
controller feedback loop, similar to the one proposed in Larsen and Pranzo (2018). Fig-
ure 5.3 illustrates the overall architecture of the framework. The simulator module is
responsible for advancing the time and communicating customer events. In particu-
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% Time avail. for
service at home

% Time avail. at an
announced location

Inst. |C | ∑
c Nc

Average TW
width(%)

Avg Min Max Avg Min Max

0 60 198 25.2 30.0 0.7 55.7 57.7 0.7 57.1
1 60 198 25.1 31.3 1.0 51.8 55.9 0.2 56.5
2 60 198 25.1 30.3 1.0 53.6 57.0 0.4 57.1
3 60 198 25.2 32.3 0.1 45.1 55.3 0.7 56.9
4 60 198 25.0 30.3 0.4 50.5 56.4 0.4 57.1
5 60 198 24.8 29.3 0.7 39.8 56.8 2.0 57.1
6 60 198 24.9 33.2 2.1 54.5 53.4 0.8 57.1
7 60 198 25.2 31.2 0.1 50.4 56.3 0.2 57.0
8 60 198 24.9 31.2 0.5 39.4 55.2 1.0 57.1
9 60 198 25.1 31.6 0.2 50.5 55.5 0.2 57.1

10 90 297 24.9 31.9 0.8 45.4 54.6 0.1 56.8
11 90 297 25.1 32.4 0.5 52.5 54.7 0.6 57.1
12 90 297 24.7 29.8 0.4 49.2 56.0 0.5 56.8
13 90 297 24.9 30.5 0.6 52.6 56.0 0.0 57.1
14 90 297 25.0 30.7 0.0 52.0 56.2 0.2 57.1
15 90 297 25.0 31.7 0.7 52.1 55.1 0.7 57.1
16 90 297 25.2 32.3 0.7 51.5 55.3 0.1 57.0
17 90 297 24.8 31.2 1.4 53.7 55.1 0.5 57.1
18 90 297 24.9 30.0 0.8 54.0 56.5 0.4 57.0
19 90 297 25.0 31.6 0.1 54.0 55.0 0.1 57.1

20 120 396 24.9 31.4 0.0 52.6 55.1 0.1 57.1
21 120 396 25.0 30.9 0.5 52.7 55.8 0.4 57.0
22 120 396 25.4 31.9 1.2 43.3 56.2 0.2 57.1
23 120 396 24.9 31.7 0.1 52.7 54.8 0.2 57.0
24 120 396 25.0 31.9 0.4 53.7 55.0 0.4 57.0
25 120 396 24.9 30.8 0.0 54.4 55.8 0.0 57.1
26 120 396 25.0 30.8 0.8 54.3 55.9 0.2 57.1
27 120 396 25.0 31.1 0.1 51.5 55.9 0.0 57.0
28 120 396 25.1 30.6 0.4 55.5 56.6 0.8 57.1
29 120 396 24.8 31.1 0.4 52.7 55.1 0.4 57.1

30 150 495 25.0 31.6 0.7 51.9 55.4 0.2 57.1
31 150 495 24.9 30.3 0.1 53.7 56.2 0.5 57.0
32 150 495 25.1 31.5 0.1 54.5 55.8 0.0 57.1
33 150 495 25.0 31.6 0.1 51.5 55.3 0.1 57.1
34 150 495 24.9 31.3 0.0 54.0 55.3 0.0 56.9
35 150 495 25.0 30.6 0.2 54.5 56.2 0.0 57.1
36 150 495 25.0 30.9 0.2 53.7 55.9 0.1 57.1
37 150 495 25.1 31.1 0.0 54.4 56.3 0.4 57.1
38 150 495 24.9 31.0 0.1 54.4 55.5 0.2 57.1
39 150 495 25.1 31.8 0.2 56.5 55.4 0.1 57.1

Table 5.1: Characteristics of the realistic instances proposed by Reyes et al. (2017).



5.4. COMPUTATIONAL EXPERIMENTS

5

113

lar, the simulator module reads the (full) VRPRDL instance – containing all customer’s
itineraries and time windows – and simulates the announcements of the locations to the
controller module as time progresses. Moreover, the module keeps track of the progres-
sion of vehicles movements through time, such as when customers are visited and when
vehicles return to the depot (potentially becoming available for dispatching again). The
controller module implements the MPA by maintaining and updating the pool through
the solver module, deciding when to call it. Note that the controller module is limited by
the information provided by the simulator – only information up to time t in the VRPRDL
instance is known to the module. Additionally, the controller implements the consensus
function and informs the simulator when a route is selected for dispatching.

Controller Simulator

Solver

Solution
Pool

VRPRDL
Instance

Customers’ announcements
Vehicle movements

Dispatching
decisions

Figure 5.3: Dynamic framework architecture and relationships.

The dynamics of customers’ locations announcements are considered in two ways.
In the first, we assume customer c ∈ C announces a location `c

i in his/her itinerary as
soon as the customer arrives at that location. In the second, we consider that the cus-
tomer announces the next location in his/her itinerary at the time he/she leaves his/her
present location. This effectively gives the system a lead-time announcement, γ, equal
to the travel time from one location to the next in the itinerary. Figure 5.4 illustrates the
two approaches.

5.4.3. ONLY-HOME SOLUTION
After all customer requests have been received – mostly likely, using a cut-off time for
order arrival – the company has the time allotted for the planning phase to decide on a
routing plan with the received information (home locations) before the order execution
phase (see Figure 5.1b). The home-only solution is obtained by solving an MIP formula-
tion for the VRPRDL (refer to constraints 4.3–4.11 in Chapter 4) considering only home
locations and minimizing travelling costs, waiting times and vehicles used. Due to this
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Figure 5.4: Example of a customer itinerary with two locations (except for home), `c
1 and `c

2. In the first an-
nouncement scheme (solid lines), `c

1 and `c
2 are announced at times Ec

1 and Ec
2 , respectively, i.e., with a lead

time γ = 0. Under the second scheme (dashed lines), `c
1 is announced at Lc

h , with a lead-time γ1 = Ec
1 −Lc

h .

Similarly, `c
2 is announced at Lc

1, with a lead-time γ2 = Ec
2 −Lc

1.

(Only) Home Solutions

Inst. Obj Routes Fleet Range
C60 1084.1 7.4 5.7 38.8
C90 1620.6 9.9 7.5 39.0
C120 1950.3 13.7 10.0 39.0
C150 2121.6 15.5 11.0 38.6

Table 5.2: Solutions servicing customers only at home, customers are serviced only at home, either at the early
or late windows.

objective function, any route visiting customers at early and late home time windows
incurs in very large waiting times (and, consequently, high cost). Thus, a home-only so-
lution comprises a set of routes servicing customers early (during the first home time
window) and a set of routes servicing customers late (during the second home time win-
dow). We limit the solving of the model to eight hours, a reasonable time expend during
planning phase for the operational problem considered.

In Table 5.2, we report the results obtained for the only-home solutions. Each line in
the table is the average result over the 10 instances in a given class (column Inst.), de-
tailed results for each particular instance in a class are presented in appendix C. We also
report the routing plan cost (travel time and waiting, if any) in column Obj., the number
of routes in column Routes, and the required fleet in column Fleet. Column Range re-
ports the average distance from the depot to the locations used to service customers in
the routing plan. The only-home solutions are static solutions, and provide the baseline
for assessing the dynamic solutions obtained with our proposed MPA, when customers
announce locations along their daily itineraries (other than home) where they can be
serviced.

5.4.4. INITIAL SOLUTION POOL

At the beginning of the service day, only home locations and associated time windows
(early and late) are known. Thus, the initial routing plans considered in the MPA con-



5.4. COMPUTATIONAL EXPERIMENTS

5

115

tain routes only visiting customers at home. We consider three strategies for obtaining
initial solutions: i) the only-home solution, as 5.4.3; ii) servicing customers only during
their late home time windows, and iii) servicing the ρ|C | closest customers to the depot
in their early home time window and all others in their late home time window, with
0 < ρ < 1. To solve ii) and iii), we resort to the same MIP formulation used to obtain
the only home-solution but add appropriate constraints to impose the desired solution
characteristics (i.e., imposing which time windows should be used or not for a given cus-
tomer).

In order to populate the initial solution pool, Ω0, is initialized with the 100 (or less,
if not that many are found) best solutions found when solving the MIP formulation cor-
respondent to the strategy used to obtain initial routing plans servicing customers at
home. Solutions which are more than twice as costly as the best solution found are dis-
carded. At time t = 0, following the best solution found, routes servicing customers at
their early time windows are dispatched. Routes servicing customers at late time win-
dows are kept in the pool.

The choice of an initialization strategy affects how the MPA is able to accommodate
future location announcements from customers. By having initial routing plans servic-
ing all customers at home during late time windows, we can postpone service and wait
for customers announcing other locations along their daily itinerary that could poten-
tially yield a more favorable routing plan. Some customers might have itineraries visiting
locations far from the depot, thus by servicing customers nearby the depot during their
early time windows we can avoid drivers visiting locations potentially far away from the
depot.

5.4.5. RESULTS

To assess the benefits of customers dynamically providing locations for servicing, we
compare only-home solutions with the solutions produced by the proposed MPA. The
MPA solution consists of the final routing plan, at the end of the rolling horizon, con-
taining all dispatched routes. In the experiments, we evaluate different values for W ,
the maximum available waiting time at the depot before dispatching of a route. Differ-
ent strategies for starting the MPA and populating the pool are evaluated. Moreover, we
also conduct experiments to show the impact of customers announcing in advance (lead
time γ> 0) the next location at which they will be available for service.

EVALUATING THE MPA SOLUTIONS

We first evaluate the results obtained when customers only require delivery service (the
original setting of the VRPRDL) and with no announcement lead-time (i.e., γ= 0). In the
first set of experiments, we assess how the dynamic solutions behave given i) different
waiting times, W , before dispatching.ii) the strategy used to provide initial routing plans
servicing customers at home.

Strategy H M refers to using the solutions found when solving the only-home model
to populate the initial solution pool, Ω0 (i.e., the best solution found is the only-home
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Dynamic Solutions, γ= 0

Inst. St W ∆o (%) Roam.(%) Routes(%) Fleet(%) Range
H M 15 -14.6 72.0 33.8 -22.8 26.7

C60 0E 30 -24.9 88.5 31.1 -22.8 23.9
10E 15 -22.3 78.0 32.4 -14.0 22.7
25E 60 -18.4 64.3 21.6 -24.6 23.8

H M 30 -23.0 73.4 45.5 -18.7 25.7
C90 0E 60 -29.6 87.8 35.4 -12.0 23.4

10E 30 -22.9 78.0 63.6 -10.7 23.5
25E 30 -18.9 63.7 55.6 -8.0 24.4

H M 30 -9.4 69.2 41.6 -15.0 27.9
C120 0E 30 -21.3 87.1 34.3 -1.0 24.4

10E 30 -20.1 78.9 36.5 -15.0 24.5
25E 15 -14.2 63.8 42.3 -20.0 25.1

H M 60 -10.2 68.8 41.9 -15.5 25.6
C150 0E 30 -18.3 86.9 43.9 13.6 24.0

10E 15 -14.0 77.6 45.8 -8.2 23.6
25E 60 -16.0 63.9 32.9 -25.5 23.7

Table 5.3: Best dynamic solutions obtained by the MPA starting with different initial routing plan strategies
(St = {H M , 0E , 10E , 25E }). Each row shows the average results over the 10 instances in the correspondent
class.

solution in Table 5.2). In strategies xE x ∈ {0,10,25}, for populating Ω0 we impose that
x% of the customers, those closest to the depot, are serviced in their early time windows
at home. Thus, 0E means that no customer will be serviced in his/her early home time
windows and are initially considered for service at the late home time windows.

Table 5.3 reports results for instances in each class (C60, C90, C120 and C150). Each
row in the table is the average over the 10 instances in a class, and shows the waiting
time before dispatching (W , in the same unit as travel and wait times, e.g., minutes)
which provided the best (average) solutions for a given start solution strategy (St ). The
MPA solution is compared to the only-home solution in terms of the relative difference
in cost, number of dispatched routes (Routes) and number of vehicles used (Fleet), com-
puted as ∆o(%) = cd−ch

ch
, where cd and ch are the costs of the MPA and only-home solu-

tions, respectively. The relative difference in routes and fleet size are computed similarly.
Columns Roam. and Range show the percentage of visits at roaming locations and the
average range of the routing plans (Range), respectively.

Overall, the MPA approach is able to successfully integrate the dynamically announced
(roaming) customers locations and achieve final routing plans improving over the only
home (static) solutions. We observe that solutions with larger improvements on total
route cost (∆o) tend to include more roaming locations (Roam.) in the final routing plan
and improvements of up to 30% could be obtained. The characteristics of the initial rout-
ing plans also has a significant impact on the quality of the solutions achieved by the
MPA. Starting with not servicing customers in the early home time windows (St = 0E)
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tend to provide final solutions improving the most on total route cost, but usually re-
quires a slightly higher vehicle fleet. Moreover, with this strategy, the MPA is able to ser-
vice more customers at roaming locations. As the routing plans initially consider only
visits at home during late time windows, the routes are able to better accommodate dy-
namically announced locations. The drawback of such approach is that, as the routing
plans in the pool change over time, customers whose announced locations are not in-
serted in a dispatched route are left in short routes in the pool, consolidating only a few
customers. Considering the delivery to customers during their early home time windows
(10E , 25E) provide solutions which tend to contain early routes consolidating many cus-
tomers and avoid having to dispatch vehicles consolidating only a few customers late in
the service day.

AVAILABLE TIME UNTIL DISPATCH

Regarding the available waiting time at the depot, W , before dispatch, larger values of W

result in quicker dispatching, if consensus is achieved. Observe that if βi j
0 −αi j

0 ≤W = 0
for a routeσi j , but consensus is not achieved for dispatching, thenσi j times out and the
route is modified as discussed in Section 5.3. For W > 0, route σi j does not necessarily

time-out when β
i j
0 −αi j

0 ≤ W and will remain unmodified in the pool for longer. Thus,
consensus is achieved on improving solutions more often for W > 0 than for W = 0. In
Table 5.3 we show the values of W for which we obtained the best solutions but, for a
given initial routing strategy, St , the solutions obtained with W > 0 are of similar quality
(around no more than 5% higher than the best).

For a giving start strategy, St , dispatching the routes at the latest time possible (i.e.,
W = 0), resulted in the worse final solutions. As consensus is reached less often than for
larger values of W , less roaming locations are included in the routing plans. Moreover, as
route time-outs occur more often, the routes reaching consensus tend to consolidate less
customers and, consequently, more vehicles are required. Dispatching vehicles sooner
(larger W values), have a less significant impact but still also can be detrimental to the
dynamic approach. Whereas, on average, more roaming locations can be visited, when
the solutions obtained W = 60 have a higher improvement compared to W = 15 or W =
30, a slightly higher fleet is required. This is to be expected, as early dispatching can lead
to the MPA missing opportunities to better consolidating customers.

DRIVERS DISPERSION OVER TIME

One aspect of servicing customers at the dynamic (roaming) locations is that it may allow
company drivers servicing customers (knowing that the customer is available) at times
covering a larger part of the time horizon. In contrast, only-home solutions visits cus-
tomers at early or late time windows (assuming that, knowing the customer is not home,
a delivery attempt will not be made), and drivers are idle for long periods. In Figure
5.6, we show how drivers are being used throughout the planning horizon considering
two solutions, using two different strategies for the initial routing plans. Customers an-
nounce locations in between the home visits (early and late), and the MPA integrates
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some of this information on routes servicing customers at late time windows. Routes
(drivers) are then active during the middle of the planning horizon and able to finish
servicing all customers earlier than the only-home solutions and in total fewer drivers
are needed.

Figure 5.5: Time periods showing when routes are active in the dynamic solution, for each start solution,
throughout the time horizon. A routes is active when it has been assigned to a vehicle, the vehicle has been
dispatched and not yet finished servicing all customers in the route. Each time period comprises one hour.
Results are the average for all instances in C150, St = 25E and W = 30.

THE VALUE OF INFORMATION

We also evaluate the routing plans obtained with the MPA regarding the value of infor-
mation. In that case, the VRPRDL instance is solved as a static and deterministic prob-
lem, considering all information regarding customers’ itineraries is known in advance
and does not change during the planing horizon. The solution represents the best solu-
tion that could potentially be implemented in a dynamic setting, and is compared to the
MPA solution. To that end, we solve the (full) instances using a MIP formulation for the
VRPRDL and Gurobi 8.0.1 as the MIP solver, with a time limit of 12 hours. Due to the size
of the instances, we only perform theses experiments for instances in classes C60 and
C90. We report the results in Table 5.4. Column Dynamic reports the best (average) value
obtained with the settings providing the best results in the MPA (W = 30 and St = 0E),

where Gap= cd−Ob j
Ob j and cd is the cost of the solution obtained by the MPA.

ANNOUNCEMENT LEAD-TIME

In this part we consider scenarios with a positive announcement lead-time, γ > 0, i.e.,
the customer announces the next location he/she will visit when leaving his/her current



5.4. COMPUTATIONAL EXPERIMENTS

5

119

All Information Dynamic

Inst. Obj. Roam. Routes Range Gap Roam. Routes Range
C60 779.1 49 6 21.9 0.05 53 9 23.9
C90 1063.5 73 11 22.8 0.08 78 13 23.7

Table 5.4: Value of information compared to the MPA (dynamic) solutions.

Dynamic Solutions, γ> 0

Inst. St W ∆o (%) Roam.(%) Routes(%) Fleet(%) Range
H M 15 -19.5 63.7 13.5 -31.6 24.1

C60 0E 30 -24.8 88.3 27.0 -22.8 23.9
10E 60 -25.8 79.2 25.7 -29.8 21.9
25E 60 -19.9 64.2 14.9 -31.6 24.1

H M 60 -21.9 74.1 49.5 -17.3 25.4
C90 0E 60 -31.8 88.2 29.3 -8.0 23.4

10E 30 -23.5 78.6 59.6 -13.3 23.1
25E 15 -19.9 63.4 54.5 -14.7 24.3

H M 15 -14.9 64.4 40.1 -20.0 24.9
C120 0E 30 -22.7 86.5 29.2 -3.0 24.7

10E 15 -19.4 78.0 35.0 -13.0 24.5
25E 30 -15.2 64.3 38.0 -21.0 24.7

H M 15 -18.2 63.6 29.0 -23.6 23.3
C150 0E 60 -20.4 88.3 37.4 -0.9 23.3

10E 60 -15.3 78.8 43.2 -4.5 23.0
25E 15 -18.2 63.6 29.0 -23.6 23.3

Table 5.5: Best dynamic solutions obtained by the MPA starting with different initial routing plan strategies
(St = {H M , 0E , 10E , 25E }). Each row shows the average results over the 10 instances in the correspondent
class.

location (see Figure 5.4). Table 5.5 shows the (best) results obtained, for each of the initial
routing plan strategies.

We observe that under lead-time announcement best solutions are achieved more
often with W = 60 than in case of no lead-time announcement (Table 5.3). With cus-
tomers announcing locations in advance, that information is available for longer in the
solution pool with consensus being achieved more frequently on routes with larger avail-
able waiting times before dispatched at the depot, leading to faster dispatching. Starting
with routing plans servicing customers at home during late time windows provided the
largest reduction in costs but, similarly to the case for γ = 0, at the expense of a relative
larger fleet than the other strategies. On average, a reduction of 3% on cost (∆o(%)) and
4% on the required fleet could be achieved by having customers announcing locations
along their itinerary in advance.

When a customer has to announce a location in advance, although the system might
benefit from having the information earlier (in the case of the proposed MPA, consen-
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sus is achieved faster), a downside in a real last-mile system implementation is that it
can introduce a source of uncertainty, namely, if the customer will indeed reach the an-
nounced location within the informed time windows.

Figure 5.6 illustrates when drivers are active for solutions with and without lead-time
announcement, considering starting the MPA with routing plans servicing customers
late at home (St = 0E). Note that start of service (routes being dispatched) is similar in
both cases, around the fourth hour, but more drivers are dispatched initially for γ > 0.
Moreover, the peak on the number of simultaneous active drivers occur at similar times,
but a slight lower number of drivers is required for γ= 0.

Figure 5.6: Time periods showing when vehicles are active in the dynamic solution, for each start solution,
throughout the time horizon. Results are the average for all instances in C150 using 0E as the start method.

INCLUDING PICKUP REQUESTS

Next, we perform experiments considering that some (randomly selected) customers in
a given instance require pickup service (e.g., returning of merchandising). The addi-
tional aspect introduced by considering pickups during execution is the fact that such
services can also be fulfilled by vehicles already dispatched, as returning to the depot is
not required (as opposed to delivery services).

Table 5.6 reports results for scenarios in which 25% of the customers require pickup
operations. Column Picks shows the average number of pickups serviced by en-route
vehicles (i.e., pickups inserted on an already dispatched route). Similarly to results con-
sidering only delivery requests, best solutions were achieved with W > 0 and we ob-
serve that only a few pickups could be included on already dispatched routes. However,
for solutions with W = 0 e.g., dispatch routes at the latest possible moment, a signifi-
cant greater number of announced pickup requests is inserted on such routes (on av-
erage, three times more). This is explained by the following. With W = 0, the urgency
for dispatching is usually due to short (effective) time windows for locations visited at
the beginning of the route, and effective time windows for the last locations tend to be
wide enough to allow for a deviation due the insertion of a new location (a pickup re-
quest). For W > 0, insertions of newly announced (pickup) locations tend to be cheaper
on routes in the pool than for routes already dispatched (when feasible), as the slack to
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Dynamic Solutions, γ= 0 and 25% pickup requests

Inst. St W ∆o (%) Roam.(%) Routes(%) Fleet(%) Range Picks
H M 15 -17.1 71.7 28.4 -29.8 26.5 0.9

C60 0E 15 -26.1 88.3 31.1 -19.3 22.7 0.2
10E 15 -24.6 78.7 31.1 -14.0 22.8 0.5
25E 30 -18.6 64.2 21.6 -24.6 23.7 0.5

H M 30 -23.9 73.0 42.4 -14.7 25.9 1.7
C90 0E 30 -30.7 87.4 38.4 -8.0 23.6 1.4

10E 15 -24.4 77.8 59.6 -10.7 23.1 1.2
25E 30 -20.3 63.8 54.5 -12.0 24.2 0.6

H M 15 -11.9 67.2 38.7 -12.0 27.6 3.1
C120 0E 60 -22.5 87.3 31.4 -3.0 24.4 1.4

10E 30 -19.8 78.2 35.0 -14.0 24.4 1.0
25E 60 -14.7 64.2 40.1 -23.0 25 0.2

H M 60 -11.5 69.0 40.6 -8.2 25.7 2.2
C150 0E 30 -18.0 86.3 39.4 9.1 24.1 2.4

10E 30 -16.2 78.6 40.6 -9.1 24.0 0.7
25E 60 -16.7 63.9 31.0 -26.4 23.7 0.4

Table 5.6: Best dynamic solutions obtained by the MPA starting with different initial routing plan strategies
(St = {H M , 0E , 10E , 25E }). Each row shows the average results over the 10 instances in the correspondent
class.

accommodate detours is only available at a few locations visited by the route. More-
over, announced (pickup) locations are inserted more frequently at routes in the pool
for W > 0, whereas with W = 0 consensus is reached less often for routes in the pool,
allowing for more opportunities for insertions on already dispatched routes.

For a company servicing a larger number of customers, thus experiencing a higher
rate of information arrival (e.g., pickup announcements), and dispatching more vehi-
cles, these cases can be better explored. In this case, pickup announcements and active
dispatched routes will overlap more often. Moreover, we do not consider diversion. In
other words, after a vehicle has finished servicing all assigned customers and is return-
ing to the depot, any pickup location announced during this time, even if feasible to be
visited by the vehicle, will not be considered. An approach could be to allow for diver-
sion only once a vehicle is on its way to the depot, that is, once the driver is informed to
return (after servicing all assigned customers) he/she could receive, later, information
regarding new pickup visits that can be satisfied by the vehicle.

In Table 5.7, we report results showing the effects of lead-time announcement for
customer locations for the situation with 25% of pickup requests. Similarly for results
without pickup requests, having customers announcing in advance their next location
provides a slight improvement on the costs and required fleet. We can also observe an
increase in the number of pickups serviced by en-route vehicles. Consensus is reached
on routes with relative more available time before dispatch (W ), and consequently more
slack for the detour is required to service announced locations (pickup) after the dis-
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Dynamic Solutions, γ> 0 and 25% pickup requests

Inst. St W ∆o (%) Roam.(%) Routes(%) Fleet(%) Range Picks
H M 60 -19.4 72.3 27.0 -28.1 25.4 1.3

C60 0E 15 -27.3 87.7 21.6 -26.3 23.9 0.4
10E 60 -26.2 79.5 25.7 -28.1 21.7 0.5
25E 15 -20.4 63.5 12.2 -36.8 24.0 1.6

H M 60 -25.6 73.8 39.4 -21.3 25.7 2.6
C90 0E 15 -31.8 87.1 35.4 -6.7 23.4 1.4

10E 60 -23.9 79.1 58.6 -6.7 23.2 0.6
25E 30 -20.1 63.6 55.6 -14.7 24.5 1.1

H M 15 -14.3 67.3 35.8 -16.0 27.4 4.8
C120 0E 60 -24.9 88.3 24.1 -7.0 23.9 1.1

10E 15 -19.6 78.3 32.8 -11.0 24.3 1.6
25E 15 -16.0 64.4 37.2 -23.0 24.8 1.1

H M 60 -12.0 69.8 40.0 -17.3 24.8 2.7
C150 0E 30 -21.0 87.9 38.7 -0.9 23.5 2.9

10E 15 -16.1 78.2 45.2 -4.5 23.2 3.1
25E 15 -19.6 63.6 28.4 -20.9 23.2 1.3

Table 5.7: Best dynamic solutions obtained by the MPA starting with different initial routing plan strategies
(St = {H M , 0E , 10E , 25E }). Each row shows the average results over the 10 instances in the correspondent
class.

patch.

5.5. CONCLUSIONS
In this work, we introduced a new variant of the Vehicle Routing Problem with Roaming
Delivery Locations (VRPRDL). In this new variant, customers’ itineraries are not known
to the service provider during the planning phase but rather announced by the cus-
tomers dynamically, throughout the planning horizon (day). Contrary to other roaming
models proposed, in the setting considered in our work customers are not required to
announce their full itineraries in advance (e.g., during posing the request). This might
provide customers with a more convenient and flexible experience, as they do not need
to know or share their full itinerary in advance.

We proposed a Multiple Plan Approach (MPA) in which the possibility of visiting a
customer in more than one location is accounted for in the solution pool. Dispatch-
ing decisions are taken by a consensus function selecting the most promising routes in
the pool, trying to identify good opportunities for consolidating customers when their
current locations (e.g., closer to the depot) may improve over visiting them at home. In
our experiments, we observed only-home solutions with increased costs up to 30% com-
pared to servicing customers at dynamically announced locations. The plans obtained
with the MPA tend to use more routes, but requiring a similar, or fewer, number of ve-
hicles than the only-home plans. Routes visiting the dynamically announced locations



5.5. CONCLUSIONS

5

123

tend to be shorter (lower average range) than the only-home routes.
The MPA solutions combine servicing customers at home, using known information

at the beginning of the service day, and at dynamically announced locations. Thus, an
important aspect is how to devise the initial routing plans (with only home locations),
such that integrating newly announced locations also brings benefits to the logistics
company e.g., reducing routing costs. We have tested different strategies for obtain-
ing initial routing plans. In particular, starting with plans servicing customers during
their late windows at home provided the best improvements over the only home solu-
tions regarding routing costs. On one hand, by postponing service at home to the lat-
est time, it is possible to integrate a larger number of locations announced dynamically
by customers. On the other hand, if customers do not announce other locations, op-
portunities for servicing customers during their early home windows could be missed.
While the improvements obtained with starting with some customers serviced at home
in their early time windows are smaller than starting with late service at home, the for-
mer tend to require a smaller vehicle fleet. Ideally, that decision should be supported by
information on customers behaviour and willingness to share his/her locations. More-
over, similarly to the initial plans servicing customers only late at home, plans starting
with servicing customer early at home can potentially be improved by integrating dy-
namically announced locations if stochastic information on customers is available. For
example, when dispatching a route with early customers at home, the company might
also include packages of customers it expects to announce a location while the vehicle
is en-route.

We also observed benefits from considering the integration of returning services (pickup).
Since customers requiring that type of service can be visited by en-route vehicles, the
system has more flexibility on (re)assigning past decisions. However, there is a trade-
off between that flexibility and waiting policies e.g., the longer the wait for gathering
more information, the shorter the flexibility on dispatched routes to include pickup re-
quests. Another possibility is customers informing their locations earlier (e.g., before
being actually there) to service providers as a means to leverage decision making. In our
experiments, the settings with positive lead-time announcements provided, on average,
improvements of up to 3%. One possible disadvantage of such setting is that this could
lead to uncertainty in the informed data (e.g., due to travel time changes) and possibly
decrease the value of anticipating the location to the service provider.

Additionally, in this work we did not assume any stochastic information regarding
customers’ itineraries. By making use of advances in information technologies, predict-
ing the daily itinerary of customers could be a possibility. This would allow, for example,
the use of a sampling mechanism for possible customer locations. The MPA proposed
in this work could then be extended to the Multiple Scenario Approach (MSA) (Bent and
Van Hentenryck, 2004). It is a generalization of the MPA considering potential future in-
formation (e.g., a when and where a customer will be available in the future) and can
significantly improve over the MPA.
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CONCLUSIONS

We’ve all been up through the night time baby
Now let’s read the rays of reality

Jimi Hendrix, Power of Soul

We conclude the thesis by summarizing the main results and findings presented in
each previous chapter. We also highlight some important limitations that will need to
be resolved before a full realization of the concepts discussed in the thesis can be imple-
mented in a real-life system. Finally, we present points of interest for further research
and possible directions to extend the work in this thesis. We hope to stimulate the com-
munity to further consider the problems presented and their applicability.
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6.1. GENERAL DISCUSSION
Transportation activities play an important role in modern societies and are in contin-
uous change. Not only because transport of freight and people is a driving factor for
promoting economic development, but also due to the challenges to satisfy increasing
service levels and customers expectations.

One of the main drivers of changes in the transport sector has been on-line shop-
ping. As e-commerce develops and grows, e-shoppers and, consequently, e-retailers
are demanding more efficient, reliable and cheap delivery services from logistics ser-
vice providers. To compete against the immediate gratification provided by brick-and-
mortar stores and to attract more customers, e-retailers now have a wide variety of op-
tions to choose from in deciding how to get the parcel to its buyer such as multiple car-
riers, home delivery at preferred times, and the use of alternative collection points like
automatic parcel stations. However, taking the parcel from the warehouse’s shelf to the
customer’s hands, the last-mile conundrum, is not without its challenges. While car-
rying out e-commerce allows for significant cost reductions, specially due to reduced
need for physical establishment, order placement, staffing and customer support, ship-
ping costs can increase the final cost of products purchased on-line (Lee, 2002). More-
over, most of the world’s population lives in urban areas today and, as a consequence,
cities with a high population density are posing new challenges to transportation ser-
vices within urban areas. Congestion, for example, is a major issue in medium and big
cities, hindering the movements of both freight and people. Transport of merchandise
and passenger commuters are major contributors to greenhouse gas emissions. Logistic
service providers now have to, on one hand, satisfy customer demands for fast, reliable
and cheap services and, on the other hand, face the hurdles of operating in such highly
populated regions while complying with strict environmental policies.

Moreover, facing the pandemic crisis during 2020 accelerated the expansion of e-
commerce – and its importance for the continued access of products to consumers dur-
ing strict confinement measures – but has also heightened many challenges that already
existed before COVID-19. On top of that, persistent inequalities among the population
have been brought forward during the the crisis. As not everyone has the same level
of digital accessibility, buying online might not be an option to everyone, especially the
most vulnerable. During the pandemic, e-commerce proved crucial for the continued
access to not only high tech goods, but also to everyday necessities, like groceries and
medicines, relevant to most of the population. Regulations aimed at enabling innova-
tive environments that foster innovative e-commerce solutions have to ensure that it
can reach and deliver to everyone.

This thesis consists of two parts and investigates innovative models aimed at provid-
ing more cost-efficient solutions to last-mile transportation within urban contexts. In
the first part, the research focuses on crowd-based logistic services. We presented exam-
ples of crowd-based logistic applications and introduced a system in which transporta-
tion requests are performed by crowd-sourced drivers. We consider the use of transfer
locations in the transportation network through which drivers are able to exchange re-
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quests as a means to better manage the available pool of drivers. In the second part, the
aim of research was to evaluate roaming delivery systems in which direct-to-consumer
orders can be fulfilled using the trunk of a customer’s car. In order to capture more re-
alistic aspects of the operational scenarios faced by the operators, we extend the Vehicle
Routing Problem with Roaming Delivery Locations (VRPRDL), recently introduced to
model roaming systems, in two ways. First, we solve the problem considering stochastic
travel times and, second, we introduce a new dynamic variant of the VRPRDL in which
customers announce their itinerary locations as time goes by.

6.2. RESEARCH QUESTIONS REVISITED AND RESULTS

The main objective of the thesis is to quantify possible costs savings in last-mile sys-
tems using the aforementioned models. These include reductions in total fuel usage,
less overtime for drivers and required capacity (number of vehicles/drivers) to satisfy de-
mand. Thus, when assessing the proposed methodologies and solutions, we conduct the
experimental discussion mainly in terms of decrease in travel time or kilometers driven,
and fleet size. For urban freight transportation, reduced total kilometers driven have far-
reaching consequences, as it implies not only reduced travelled distance and costs for
operators, but also less negative social and environmental impacts (Browne et al., 2012).

WHAT ARE THE CHARACTERIZING FEATURES OF CROWD-LOGISTICS, SPE-
CIALLY CROWD-SHIPPING?
In Chapter 2, we provided an overview of crowd-based solutions for logistics and trans-
portation activities. Crowd-Logistics have the potential to transform the industry but,
until now, it is not entirely clear how to proper define the participants constituting the
crowd and how to integrate the services offered in crowd platforms into existing logis-
tics systems. In particular, for the crowd-sourcing of (last-mile) transportation activi-
ties, crowd-shipping, two realizations have been considered. In the first, crowd-drivers
are employed for transportation activities (e.g., pickup/delivery of parcels) while already
performing another duty (e.g., driving from work to home). In the second realization,
individuals offer their vehicle and time to perform the activities, agreeing to work for a
certain period of time and for a minimum payment assurance e.g., based on number of
worked hours or deliveries performed. In the first model, logistic activities might be per-
formed in a more efficient manner, by using pre-existent movements and consolidating
existing flows. However, service providers have less flexibility in using crowd-drivers dur-
ing the trips they would perform anyway, as their availability and willingness to perform
certain requests are limited (e.g., requiring a long detour or with a low compensation).
Crowd-sourced drivers that agree to work for a certain period of time can be managed in
a more flexible way, but fulfillment of requests is realized by creating new service flows
rather than exploiting existing ones. In any case, an important issue that companies
need to assess when integrating crowd-sourced services into their operational chain is
to which extent rely on the crowd. Since drivers join the crowd on a voluntarily basis,
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service providers will most likely always have to rely on professional capacity to ensure
customers fulfillment at desired service levels.

HOW CAN AVAILABLE CROWD-SOURCED CAPACITY (DRIVERS) BE MANAGED

AND USED IN ORDER TO EFFECTIVELY MEET TRANSPORTATION DEMAND?
When willing to allocate crowd-drivers to perform transportation activities, Chapter 2
emphasized the need for operators to employ appropriate compensation mechanisms
in order to attract enough individuals into the crowd platform. As important is how to
employ the available capacity to satisfy demand as effectively as possible i.e., fulfilling
as many requests as possible without the need of adjusting compensation (e.g., hourly
wages). In Chapter 3, we evaluate a model in which individuals commit to work for
a specific period of time, a block, in return for a minimum pay assurance during that
time. Large e-tailers (e.g., Amazon Flex) and meal delivery platforms (e.g., Grubhub) al-
ready employ such models. In order to provide more flexibility to operators and to crowd
drivers as well, blocks comprise short periods of time. We assess the benefits of employ-
ing the possibility of transferring requests between drivers as a means to make better
use of the available crowd-based drivers to handle requests with different characteris-
tics (e.g., short and long distance tasks). Our experiments showed that a decrease of up
to 47% on total travelled distance and using near half the number of required drivers to
service all requests can be achieved on settings where transfers can be used compared to
settings without transfers. The benefits of using transfers reduces as driver shift length
increases since routes can cover larger distances and serve more requests in the same
route, which tends to be less costly than when using transfers. The experiments also
showed that transfers allow for more requests to be served with a given capacity when
drivers operate in a block-based system. On average, 22% more requests could be satis-
fied by crowd-sourced drivers when transfers are utilized.

CAN TRUNK DELIVERY BE AN OPTION TO MITIGATE FAILED DELIVERIES DUE

TO UNCERTAINTY IN SERVICING CUSTOMERS AT PLANNED LOCATIONS IN A

PRIORI DESIGNED DELIVERY ROUTES?
In the second part of the thesis, we focus on roaming delivery systems, in particular,
when a customer’s car is used to facilitate the delivery process of direct-to-consumer or-
ders. Such systems have been modeled as a Vehicle Routing Problem with Roaming De-
livery Locations (VRPRDL), but only considering fully deterministic scenarios. In order
to account for more real aspects, in Chapter 4 we consider the VRPRDL under stochas-
tic travel times. Due to uncertain disruptions during the day e.g., accidents, vehicle
breakdowns, weather, travel times might hinder the service provider of fulfilling requests
within promised time windows at a given location, and service at another location and
time windows must be planned. Thus, we model the problem as a two-stage stochastic
problem and propose different recourse actions, using the possibility of servicing cus-
tomers at different locations at different times, reducing the number of failed deliveries
caused by travel time uncertainty. The benefits of the stochastic solutions over only de-
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terministic ones, considering expected travel time values, are twofold. First, evaluating
the a priori plan over different travel time scenarios allows for solutions hedging better
against travel time uncertainty, leading to savings of, on average, 30%. Second, recourse
policies exploiting the customer itinerary structure leads to more robust plans, on aver-
age, with a cost reduction of 25%.

IS TRUNK DELIVERY STILL EFFECTIVE WHEN INFORMATION REGARDING CUS-
TOMERS’ ITINERARIES ARE UNKNOWN BEFOREHAND?
In Chapter 4, we assumed that customers inform their full itinerary for the delivery day
to the service provider. In Chapter 5, we relax this assumption and rather consider that
customers might announce alternative locations to home where their car is or will be
parked, throughout the day, in real-time. The service provider might then decide to dis-
patch vehicles for servicing customers either at home or at a dynamically announced
location. In the experiments conducted, comparing a solution visiting customers only
at home and a solution obtained by integrating the dynamically announced customer
locations to define the routing plans, improvements of up to 11% could be observed
on some instances compared to only-home solutions. While the number of dispatched
routes is slightly higher in the dynamic environment, the required vehicle fleet is not sig-
nificantly different. Within the dynamic environment, vehicles tend to perform shorter
routes, servicing customers at locations closer to the depot, on average, than home loca-
tions in the only-home solutions. Vehicles (and consequently drivers), are better utilized
throughout the day and are able to finish servicing all customers earlier than compared
to the only-home solution (since routes servicing customers at home next to the end of
the time horizon finish later). Integrating pickup flows (e.g., returning of merchandis-
ing) might lead to a reduction of 5% on the total time required to service all customers’
requests.

6.3. CHALLENGES AND LIMITATIONS

Notwithstanding the promising findings of this thesis, a number of simplifying assump-
tions were made when modelling the systems discussed, so that appropriate method-
ologies to achieve insightful solutions with reasonable computational effort could be
applied. In Chapter 3, we assumed that the (strategic) decisions on the transfers infras-
tructure are already in place when solving the (operational) routing plans for the crowd-
drivers. Such decisions might not necessarily require the establishment of new facilities,
for example, by using existent available spaces such as the parking lots available in shop-
ping areas, gas stations or public transportation hubs. However, some additional mea-
sures and considerations will be required in order to make transfer operations as efficient
and secure as possible. The solutions using transfers in Chapter 3 require the synchro-
nization of drivers at these locations, either by having drivers waiting (shortly) for other
drivers or by allowing parcels to be (shortly) stored at the location. Clearly, such issues
have to be accounted when assessing the cost-benefits of the proposed transportation
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systems.

Additionally, as highlighted in Chapter 2, the use of crowd-sourced drivers raises con-
cerns regarding security, reliability and accountability. Crowd platforms have to gain
the confidence of both e-tailers and e-shoppers, creating willingness to rely on services
provided by the crowd e.g., the parcel will be delivered timely and with privacy. An is-
sue that was not addressed in this study was whether crowd-drivers always fulfill the
directions given by the platform e.g., decline a delivery service after having accepted
it. Whereas such cases can be mitigated by the platform via trust generation mecha-
nisms, it could require additional measures by the platform, potentially increasing the
final cost of transportation and decreasing the value of crowd-services. However, hid-
den beneath promises of higher levels of flexibility and autonomy, individuals working
for crowd platforms might often experience low pay, social isolation, working at irreg-
ular hours, overwork, sleep deprivation and exhaustion (Wood et al., 2018). While the
commercialization of spare time is one of the central ideas behind the gig-economy, it
has become, however, a way for many to avoid unemployment, resulting in effectively
full-time employees no longer protected by a legal system. Greater efforts are needed to
ensure basic rights and conditions for workers in the gig-economy, lest the benefits of
more flexible, cost-efficient business models are reaped only by companies in detriment
of workers, who are also consumers.

Regarding the roaming systems considered in Chapters 4 and 5, some questions still
remain to be answered. Perhaps one of the most important ones concerns the scalabil-
ity of the methodologies proposed in the thesis to tackle the problems. As mentioned,
the volume of direct-to-consumer orders are increasing at a staggering pace, following
the growth of the e-commerce market. Operators have to deal with thousands of orders
per day, managing and coordinating a fleet of thousands of vehicles. In the thesis, we
propose heuristics methods able to cope with problem instances having a few hundred
customers, beyond what is usually handled, within reasonable computational times, by
exact methods. However, it would be worthwhile, from a practical point of view, assess-
ing such limitations on real-life scenarios, not only taking into account more customers
but also other aspects that increase the complexity of solving the problems.

Furthermore, security and privacy are also issues that need to be accounted for in
such systems. The automotive industry has partnered with e-tailers and delivery oper-
ators to provide secure technologies that allows remote control of the vehicle’s trunk.
Regardless, data leaks and breaches are still a concern for some, which could allow for
unauthorized access. Moreover, the convenience of having the parcels going to the con-
sumer rather than the other way around, comes with a trade-off in privacy. Knowing
when and where to deliver the parcel to the costumer implies that information regard-
ing the geo-position of the car is constantly monitored as well as the daily routines of the
costumer. These are, for instance, features of a pilot trunk delivery service in Belgium
(cardrops.com).

cardrops.com
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6.4. FURTHER RESEARCH
The work presented in this thesis can be extended in different ways. One of the main
limitations of the approach presented in Chapter 3 is that it assumes all information re-
garding customer orders and, more importantly, crowd-drivers are available at the start
of the planning horizon. In reality, crowd drivers join the platform in a dynamic way, and
crowd capacity becomes available over time during the planning horizon.

Given the uncertain nature of crowd drivers, an interesting direction for further in-
vestigation could be to consider an a priori approach for the problem presented in Chap-
ter 3. If stochastic information regarding how drivers join the platform is available, one
can design an initial plan servicing customers based on (expected) crowd capacity. Simi-
larly to the approach presented in Chapter 4, recourse policies using professional drivers
could be defined for meeting demand when crowd capacity realizes but is not enough
following the a priori plan i.e., consider a static and stochastic problem.

From a methodological point of view, the Sample Average Approximation (SAA) method
proposed in Chapter 4 can be improved by adapting the scenario sampling mechanism,
such that in each SAA replication a better lower bound (estimation) can be computed by
selecting appropriate scenarios. This could be achieved, for example, using advances in
Machine Learning technology used to identify sample elements that yield a good rep-
resentation of the full sampling set. Moreover, solving each SAA replication can be exe-
cuted, to a certain extend, using parallel strategies to speed up the method.

Future research could involve the role of new technology to monitor and predict daily
itineraries of receivers and drivers. Some works have attempted to understand the mech-
anisms of a traveler’s behaviour through space an time. For example, Hamed and Man-
nering (1993) proposed a methodology for modeling traveler’s post-work activities, but
lacked the use of more elaborate and detailed data, specifically, regarding home-stay du-
ration, network and congestion information. Nowadays, the ubiquity of smart phones
and the internet, coupled with predictive analytics, can certainly fulfill that gap.
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A
PDPTW-T INSTANCES FROM

LITERATURE

We provide a comparison of our proposed methodology and the local search approach
proposed by Mitrović and Laporte (2006), highlighting some different aspects of solu-
tions obtained with each method. To the best of our knowledge, Mitrović and Laporte
(2006) were the first to propose instances for the pickup and delivery problem with trans-
fers (PDP-T) in the context of freight transportation. The authors were motivated by
a courier company which allows transfers of loads between vehicles as a way to keep
drivers within their home area. The authors propose a generalization of that practice,
where vehicles can visit customers over the entire service region. Masson et al. (2013)
also consider PDP-T instances, but motivated by the transportation of disabled people.
Moreover, travel times in those instances did not satisfy triangle inequality, which poses
a difficulty for our ALNS. Thus, we did not consider such instances.

Table A.1 presents a comparison of the results obtained on a subset of the instances
proposed by Mitrović and Laporte (2006) with 50 requests. Each line on Table A.1 is
the average result over 30 instances. In particular, we consider instances where pickup
and delivery locations are randomly (uniform) generated inside a 60km ×60km square.
Time windows for customers are generated with two schemes: in TW=10, the time for
servicing each request (the time between earliest pickup and latest delivery times) is 10
hours and, in TW=2-4-8, 30%,50% and 20% of the requests have 2,4 and 8 hours to be
serviced, respectively. For each scheme, an instance in which no transfers are available
and another (with the same customers) wherein four transfer locations are available in
the network are considered. A service time of 5 minutes is assumed at each customer,
whereas no service time is incurred at transfer locations. Moreover, capacity is not a
binding constraint. It is assumed that vehicles start at dummy locations at distance/time
zero from any other location and have a shift length of 10 hours (all starting at time 0). We
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observe that our approach is designed with focus on crowd-shipping applications, and
such assumptions on the vehicles would hardly hold in these contexts, where drivers
have limited shift lengths and are not always willing to drive over all the service region.

Local Search by
Mitrović and Laporte (2006) Proposed ALNS

TW TR c Trs(%) Veh c Trs(%) Veh ∆D (%) ∆V (%)
10 0 845.86 0 4.63 836.35 0 3.36 −1.12 −27.42

4 791.53 51 7.03 824.24 5.14 3.43 4.14 −51.21

2-4-8 0 1324.63 0 11.03 1291.88 0 10.47 −2.47 −5.08
4 1297.84 28 11.90 1279.66 0 10.63 −1.40 −10.67

Table A.1: Comparison of results obtained on instances proposed by Mitrović and Laporte (2006) using the
Local Search proposed by the same authors and our proposed ALNS. For each scheme of customer’s time
windows (TW=10, TW=2-4-8), we consider a scenario in which transfers are not available and a scenario with
four transfer locations in the network. Column c reports the total (distance) cost of a solution, Trs presents
the percentage of requests that are transferred between vehicles, and column Veh reports the total number of
vehicles required. Columns∆D (%) and∆V (%) illustrate the relative difference in total distance and number of
vehicles, respectively, between the solutions achieved by the local search of Mitrović and Laporte (2006) (s1)
and our proposed ALNS (s2) as ∆= 100× (s1 − s2)/s1.

When solving an instance without transfers available, our ALNS uses an initial so-
lution consisting of one dedicated vehicle per customer (servicing only the pickup and
delivery operations of one customer). When the same instance is solved considering the
use of transfers, we provide the best solution found without transfer as initial solution
to our ALNS. Results in Table A.1 are the average values over 30 instances in each TW
scheme.

We can observe that, in general, solutions achieved with our ALNS require less ve-
hicles to serve all customers and tend to transfer requests less frequently than solutions
achieved in Mitrović and Laporte (2006). As we focus on applications of crowd-sourced
drivers, it is paramount that demand can be met using capacity efficiently, without the
need of eventually having to attract more drivers to the system (e.g., transferring might
reduce total distance, but requires relatively more drivers available). For instances in
which customers have a 10 hours time windows (TW=10), our ALNS provide solutions
with comparable total distance as the local search by Mitrović and Laporte (2006) when
no transfers are available, but requiring, on average, 27% less vehicles. When transfers
are available, our ALNS achieves solutions with a slightly higher total distance (4.14%),
but requiring half the number of vehicles.

For instances with customer time windows generated in the scheme T W = 2− 4−
8, the best solutions obtained with our ALNS do not make use of transfers. However,
compared to solutions in Mitrović and Laporte (2006) with and without transfers, our
methodology achieves solutions with slightly lower total distance and less required ve-
hicles. In such instances, two factors contribute for reducing the attractiveness of trans-
ferring requests: (i) customers with tight time windows, reducing the time available for
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consolidation of requests at the transfers locations and (ii) the shift length allows vehicles
to move through the entire service area (no constraints on the initial and end locations of
a vehicle). As our computational experiments show, transfers are more beneficial when
drivers have a limited shift length and are not able to move over the entire service region.





B
MODELING TRANSFER

OPERATIONS

In oder to model transferred requests along the routes of a solution, most works in the
literature (Mitrović and Laporte (2006), Masson et al. (2013), Masson et al. (2014)) con-
sider the duplication of requests at the transfer (i.e. request ri is duplicated in (i+, t−i )
and (t+i , i−)). In order to avoid those duplications while modeling interactions between
vehicles, we propose a model in which transfer locations are duplicated in inbound and
outbound nodes for a given route at a transfer, regardless of how many requests are being
transferred (dropped-off or picked-up) by a given route at a particular transfer location.
Given a (partial) solution of the PDPTW-T, s, let Rs ⊂ R be the set of requests served by
this solution. The set of pickups (deliveries) serviced in s is denoted Ps (Ds ). If a vehicle
v1 visits a transfer location t ∈ Γ, nodes av1

t and d v1
t representing the arrival (inbound)

and departure (outbound) operations, respectively, of v1 at t are created. Denote the set
of transfers arrival’s and departure’s nodes in solution s by Is and Os , respectively. Fig-
ures B.1a and B.1b illustrate the correspondence between routing implementation and
the model. Requests ri and rk are transferred between vehicles v1 and v2 at transfer
location t .

The support graph of solution s is the directed graph Gs (Ws , As ) where Ws = M ∪Ps ∪
Ds ∪ Is ∪Os and As contains arcs (i , j ) such that i and j are visited by the same vehicle
and j is visited immediately after i , or i ∈ Is , j ∈ Os such that i is an arrival vertex at a
transfer for one vehicle and j the departure vertex at the same transfer location for an-
other vehicle. Those last arcs (between arrival and departure nodes) capture relations
between two vehicles at a transfer: if a vehicle v1 transfers one or more requests to an-
other vehicle, v2, at transfer location t , then arc (av1

t ,d v2
t ) ∈ As i.e. the departure of v2

at t depends on the arrival of vehicle v1 at t . Figure B.2 illustrates a solution with three
vehicles and two transfers, t1, t2. At transfer location t2, vehicle v1 receives request ri
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from vehicle v2, and vehicle v2 receives requests r j and rl from v1. Vehicle v3 only visits
location t1 to drop-off request rk , which is picked-up at t1 by vehicle v2.

j+ l+ av1
t2

d v1
t2 i−

i+ av2
t1

d v2
t1 k−

av2
t2

d v2
t2

l− j−

k+ av3
t1

d v3
t1

Transfer t1

Transfer t2

m1

m2

m3

m1

m2

m3

Figure B.2: Vehicles v1 and v2 are synchronized at t2 by (av1
t2

,d v2
t2

) and (av2
t2

,d v1
t2

), and vehicles v2 and v3 by

arc (av3
t1

,d v2
t1

). Is = {av1
t2

, av2
t1

, av2
t2

, av3
t1

},Os = {d v1
t2

,d v2
t1

d v2
t2

,d v3
t1

}

B.1. EVALUATING AND UPDATING SOLUTIONS
Given a solution s and its associated support (precedence) graph Gs , a route for vehicle
v ∈ V is a trip starting at its correspondent depot, mv , visiting a sequence of vertices
i ∈ P ∪D ∪ Is ∪Os and back to mv . Let kv = {mv , i1, i2, ..., in ,mv } represent the sequence
visited by vehicle v ∈ V in solution s and denote by ρi and σi the predecessor and suc-
cessor sets, respectively, of vertex i on its route. Note that vertices i ∈ P ∪D have exactly
one direct predecessor and one direct successor (i.e. |ρi | = |σi | = 1), whereas vertices
i ∈ Is ∪Os (inbound and outbound operations at transfers) might have more than one
successor (i ∈ Is ) or more than one predecessor (i ∈Os ). With a slight abuse of notation,
we refer to the (unique) direct predecessor (successor) for vertices i ∈ P ∪D as ρi (σi ).

INFORMATION MAINTAINED ON EACH NODE
For every location i ∈ P ∪D already assigned to a route, let ei and li be the earliest time
and the latest time, respectively, that service can start at location i (note that Ei and Li

are the time windows for request ri , but ei and li are variables changing accordingly to
other elements in the route). For the vertices representing transfer locations in solution
s, let ei , li for i = av

t ∈ Is , denote the earliest and latest possible arrival times for vehicle
v ∈V at transfer t ∈ Γ, respectively. For i = d v

t ∈Os , let ei , li denote the earliest and latest
possible departure times for vehicle v at transfer t . For each vehicle v ∈V in the solution,
let ev = Ev , the earliest time it can leave from its depot, and lv = Lv , the latest time it can
be back at its correspondent depot.

Given a solution s, earliest and latest times for visits in a route {i0 = mv , i1, i2, ..., in , in+1 =
mv } can be computed as follows:
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• For k = 1, ...,n, let eik = max{Eik ,eik−1+τik−1,ik } if ik ∈ P∪D∪Is , and eik = max j∈ρ(ik ) e j

if ik ∈Os .

• For k = n, ...,1, let lik = min{Lik , lik+1−τik ,ik+1 } if ik ∈ P∪D∪Os , and lik = min j∈σ(ik ) l j

if ik ∈ Is .

CHECKING THE FEASIBILITY OF INSERTIONS
Let ri = (i+, i−) a request to be inserted in a (partial) solution s, for which earliest and
latest values are already computed for nodes visited by the routes in s. The feasibility of
inserting i+ between ik and ik+1 is checked by computing:

ei+ = max{Ei+ ,eik +τik ,i+ }

and
li+ = min{Li+ , lik+1 −τi+,ik+1

}

if ei+ ≤ li+ the insertion is feasible. Given that the insertion of i+ is feasible, a feasi-
ble insertion for i− can be searched on the same route wherein the insertion of i+ was
checked, or on a different route, using a transfer location. Checking the feasibility of
inserting i− consists in the same procedure described before, but considering updated
values ei , li for vertices i in all routes affected by the (feasible) insertion of i+. Even if
pickup and delivery are inserted on the same route, more than one route might need to
be updated after an insertion due to the presence of transfers in the solution.

UPDATING ROUTES AFTER AN INSERTION
The insertion of a node (either a pickup or delivery) affects nodes before and after it
on route kv = {mv , i1, i2, ..., in ,mv } for vehicle v . When the vehicle does not visit any
transfer location, inserting i between nodes ik and ik+1 might modify earliest times for
nodes ik+1, ..., in and latest times for nodes i1, ..., ik : the detour time to visit the inserted
location might require that subsequent visits have to start later (increased earliest time)
and service at prior visits might not be postponed as much later as before (decreased
latest time) Campbell and Savelsbergh (2004).

When route kv = {mv , i1, i2, ..., in ,mv } visits one or more transfer locations, an inser-
tion can alter earliest and latest times of nodes in the routes of vehicles transshipping
requests with v at any of those transfer locations. Figure B.3 illustrates a simple example
with two vehicle routes, v1 and v2 (blue and red routes, respectively). If node i is to be
inserted in route v1, between nodes ik and ik+1, then, due to the fact that v1 transfers
one or more requests to v2 at transfer location t ∈ Γ (the arc (a1

t ,d 2
t ) indicates this fact),

vehicle v2 can only leave transfer t after the arrival of vehicle v1 i.e. ed 2
t
≥ ea1

t
. Thus,

earliest times for nodes visited by v2 in the sub-path starting at d 2
t onwards, until the

depot, might have to be updated. If v2 transfer any request to other vehicles at any other
transfer in that sub-path (i.e. an arc (a′2

t ,d w
t ) for a transfer t ′ ∈ Γ and a vehicle w ∈ V ),

then earliest times for nodes visited by those vehicles might also have to be updated.
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a1
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← update latest update earliest →

← update latest update earliest →

Figure B.3: Insertion and update procedures

Similarly, inserting j in the route kv2 = {mv2 , j1, j2, ..., jn ,mv2 } for vehicle v2, between
nodes jk and jk+1 can alter the latest service times for nodes visited by vehicle v1 since
the the latest time vehicle v1 can arrive at t (la1

t
) is bounded by the latest departure time

at transfer t for vehicle v2 (ld 2
t

). Latest times for nodes visited by other routes connected

with v1 at transfer locations in the sub-path starting at a1
t backwards might also need to

be updated.
Observe that if node i was inserted in the route for vehicle v1 after the visit to transfer

t , then this insertion would not require that latest times for nodes in the route for vehicle
v2 to be updated. Similarly, if j was inserted in the route for vehicle v2 before the visit
to transfer t , then earliest times for nodes visited by vehicle v1 would not need to be
updated.

Updating is performed similarly to the process for computing all earliest and latest
times for a solution, but taking into account that the solution already contains previ-
ously computed values ei and li , so only locations that might be affected by the inser-
tion are considered. After the insertion of node i between nodes ik and ik+1 in the route
{mv , i1, i2, ..., in ,mv }, the update procedure is as follows:

• For k ′ = k +1, ...,n, let eik′ = max{Eik′ ,eik′−1
+τik′−1,ik′ } if ik ′ ∈ P ∪D ∪ Is , and eik′ =

max j∈ρ(ik′ ) e j if ik ′ ∈Os .

• For k ′ = k, ...,1, let lik′ = min{Lik′ , lik′+1
− τik′ ,ik′+1

} if ik ′ ∈ P ∪ D ∪Os , and lik′ =
min j∈σ(ik′ ) l j if ik ′ ∈ Is .

To speed up the procedure, observe that whenever an earliest or latest update does
not change the original value, updating can stop. This is especially useful since that
might avoid unnecessary updates for routes connected at transfers. For example, after
the insertion of j between jk and jk+1, if the latest time for node d 2

t does not change, it is
not necessary to continue with the update for v2 and to update v1 backwards from a1

t .
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DETAILED RESULTS FOR THE

DYNAMIC VRPRDL

C.1. ONLY DELIVERY REQUESTS, NO LEAD-TIME ANNOUNCE-
MENT

Dynamic Solutions - C60 Instances, γ= 0

St W ∆o (%) Roam. Routes Fleet Range
H M 0 987.2 41.5 10.8 5.1 26.5

15 925.9 43.2 9.9 4.4 26.7
30 936.0 43.6 10.0 4.5 26.3
60 957.2 43.2 10.0 4.4 25.8

0E 0 980.5 48.5 11.8 6.4 25.2
15 837.7 52.3 9.4 4.5 24.0
30 814.4 53.1 9.7 4.4 23.9
60 815.0 53.3 9.7 4.4 24.3

10E 0 974.9 44.4 10.8 5.4 24.6
15 842.2 46.8 9.8 4.9 22.7
30 857.5 47.0 9.9 4.9 23.7
60 873.6 46.9 9.6 4.9 23.1

25E 0 973.9 36.8 10.5 5.4 24.7
15 887.2 38.4 9.2 4.4 23.6
30 887.1 38.5 8.9 4.3 23.8
60 884.3 38.6 9.0 4.3 23.8

Table C.1: Dynamic solutions obtained with the proposed MPA on C60 instances. Each line is the average over
the 10 instances in the class.
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Dynamic Solutions - C90 Instances, γ= 0

St W ∆o (%) Roam. Routes Fleet Range
H M 0 1698.4 55.5 19.2 10.1 28.9

15 1279.4 65.9 14.9 6.9 25.7
30 1248.4 66.1 14.4 6.1 25.7
60 1262.5 66.0 14.0 6.1 26.1

0E 0 1351.0 73.8 17.1 8.1 25.4
15 1217.4 77.9 14.5 7.4 23.9
30 1145.3 78.8 13.8 6.8 23.7
60 1141.2 79.0 13.4 6.6 23.4

10E 0 1457.8 65.4 18.4 8.4 25.0
15 1252.8 69.7 16.0 6.9 23.4
30 1248.8 70.2 16.2 6.7 23.5
60 1265.0 70.6 16.1 7.2 23.2

25E 0 1494.6 53.7 17.0 7.9 26.2
15 1322.7 56.7 15.5 6.9 24.4
30 1313.7 57.3 15.4 6.9 24.4
60 1317.9 57.2 15.5 7.0 23.9

Table C.2: Dynamic solutions obtained with the proposed MPA on C90 instances. Each line is the average over
the 10 instances in the class.

Dynamic Solutions - C120 Instances, γ= 0

St W ∆o (%) Roam. Routes Fleet Range
H M 0 2705.2 51.9 29.5 18.2 32.9

15 1780.5 81.1 19.7 9.2 27.9
30 1767.8 83.0 19.4 8.5 27.9
60 1816.4 83.1 19.2 9 28.1

0E 0 2549.5 66.2 28.9 19.8 32.8
15 1552.5 102.0 18.8 10.8 25.1
30 1534.5 104.5 18.4 9.9 24.4
60 1540.1 104.9 18.2 10.2 25.1

10E 0 1777.5 88.4 21.3 9.5 25.9
15 1574.5 93.8 18.6 9.3 24.6
30 1558.7 94.7 18.7 8.5 24.5
60 1561.7 94.6 18.6 8.8 24.4

25E 0 1799.6 73.9 20.9 8.6 25.8
15 1672.9 76.6 19.5 8.0 25.1
30 1676.0 76.7 19.1 7.7 25.1
60 1706.2 76.5 19.5 7.9 25.5

Table C.3: Dynamic solutions obtained with the proposed MPA on C120 instances. Each line is the average over
the 10 instances in the class.
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Dynamic Solutions - C150 Instances, γ= 0

St W ∆o (%) Roam. Routes Fleet Range
H M 0 2748.0 75.6 31.4 17.3 30.3

15 1932.0 100.7 23.0 9.3 25.8
30 1930.9 103.0 22.7 9.8 26.2
60 1904.5 103.2 22.0 9.3 25.6

0E 0 2668.6 97.0 32.0 20.4 30.4
15 1750.0 129.3 22.3 11.8 24.5
30 1734.2 130.4 22.3 12.5 24.0
60 1782.5 131.3 22.5 13.1 24.0

10E 0 2040.7 108.5 24.8 11.1 25.0
15 1825.1 116.4 22.6 10.1 23.6
30 1834.3 118.1 22.4 10.0 24.0
60 1858.5 118.1 22.7 10.3 23.9

25E 0 2041.9 91.3 23.6 9.2 25.5
15 1801.2 95.0 21.0 8.1 24.1
30 1791.1 95.3 20.6 8.0 23.7
60 1781.9 95.9 20.6 8.2 23.7

Table C.4: Dynamic solutions obtained with the proposed MPA on C150 instances. Each line is the average over
the 10 instances in the class.

C.2. ONLY DELIVERY REQUESTS, LEAD-TIME ANNOUNCEMENT

Dynamic Solutions - C60 Instances, γ> 0

St W ∆o (%) Roam. Routes Fleet Range
H M 0 1049.6 41.2 11.7 4.7 26.4

15 873.1 38.2 8.4 3.9 24.1
30 907.6 43.4 9.9 4.2 26.2
60 904.3 43.7 9.6 4.1 25.7

0E 0 1124.7 43.7 12.6 7.5 26.9
15 827.7 52.6 9.3 4.5 24.5
30 815.5 53 9.4 4.4 23.9
60 832.8 52.8 9.3 4.2 24.1

10E 0 888.4 46.4 10.8 5.1 23.2
15 844.3 46.9 9.6 4.6 22.4
30 817.0 47.6 9.4 4 22.3
60 804.8 47.5 9.3 4 21.9

25E 0 907.1 38.1 9.8 4.6 24.2
15 873.1 38.2 8.4 3.9 24.1
30 886.9 38.3 8.5 3.9 24.1
60 868.4 38.5 8.5 3.9 24.1

Table C.5: Dynamic solutions obtained with the proposed MPA on C60 instances. Only delivery orders and
positive lead-time announcement (γ> 0). Each line is the average over the 10 instances in the class.
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Dynamic Solutions - C90 Instances, γ> 0

St W ∆o (%) Roam. Routes Fleet Range
H M 0 1533.6 58.1 17.3 8.2 28.1

15 1298.7 57.1 15.3 6.4 24.3
30 1292.6 66.1 14.6 6.2 26.0
60 1266.3 66.7 14.8 6.2 25.4

0E 0 2261.0 69.75 27.0 16.75 30.2
15 1138.3 78.0 13.2 7.1 23.4
30 1122.2 79.2 12.9 7.0 23.0
60 1104.5 79.4 12.8 6.9 23.4

10E 0 1424.0 64.5 17.7 8.8 25.2
15 1263.9 70.1 15.8 7 23.6
30 1239.0 70.7 15.8 6.5 23.1
60 1243.8 70.9 15.9 6.8 23.4

25E 0 1472.2 53.2 17.3 7.8 25.8
15 1298.7 57.1 15.3 6.4 24.3
30 1302.2 57.4 15.5 6.4 24.1
60 1320.3 56.9 15.3 6.5 24.3

Table C.6: Dynamic solutions obtained with the proposed MPA on C90 instances. Only delivery orders and
positive lead-time announcement (γ> 0). Each line is the average over the 10 instances in the class.

Dynamic Solutions - C120 Instances, γ> 0

St W ∆o (%) Roam. Routes Fleet Range
H M 0 2815.1 45.4 30.1 19.2 34.7

15 1659.5 77.3 19.2 8.0 24.9
30 1711.0 83.0 19.7 8.1 27.0
60 1729.7 84.2 19.6 8.3 27.5

0E 0 2261.0 69.75 27.0 16.75 30.2
15 1522.1 102.4 18.4 9.5 24.3
30 1508.1 103.8 17.7 9.7 24.7
60 1519.5 105.4 17.9 9.5 23.9

10E 0 1747.1 87.7 21.1 10.5 25.7
15 1572.4 93.6 18.5 8.7 24.5
30 1596.9 94.0 18.5 8.9 24.2
60 1581.1 94.7 18.3 9.0 23.6

25E 0 1782.4 73.2 20.9 9.0 24.9
15 1659.5 77.3 19.2 8.0 24.9
30 1654.3 77.1 18.9 7.9 24.7
60 1689.6 77.5 19.1 8.2 24.9

Table C.7: Dynamic solutions obtained with the proposed MPA on C120 instances. Only delivery orders and
positive lead-time announcement (γ> 0). Each line is the average over the 10 instances in the class.
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Dynamic Solutions - C150 Instances, γ> 0

St W ∆o (%) Roam. Routes Fleet Range
H M 0 3128.4 60.3 35.3 22.7 32.6

15 1735.5 95.4 20.0 8.4 23.3
30 1913.2 103.1 23.1 9.8 25.4
60 1895.5 103.5 22.3 9.3 25.1

0E 0 2883.0 88.9 34.8 23.2 30.9
15 1752.2 130.1 22.7 11.2 23.7
30 1697.7 132.3 21.1 10.4 23.6
60 1689.8 132.5 21.3 10.9 23.3

10E 0 2214.4 106.0 28.1 12.7 25.6
15 1802.3 117.2 22.9 10.8 23.3
30 1834.7 117.5 22.9 10.5 23.6
60 1796.7 118.2 22.2 10.5 23.0

25E 0 1880.7 92.2 22.2 10.0 24.0
15 1735.5 95.4 20.0 8.4 23.3
30 1779.2 95.7 20.8 8.6 23.2
60 1746.8 95.7 20.2 8.3 23.1

Table C.8: Dynamic solutions obtained with the proposed MPA on C150 instances. Only delivery orders and
positive lead-time announcement (γ> 0). Each line is the average over the 10 instances in the class.

C.3. DELIVERY AND 25% PICKUP REQUESTS, NO LEAD-TIME

ANNOUNCEMENT
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Dynamic Solutions - C60 Instances, γ= 0, 25% pickup requests

St W ∆o (%) Roam. Routes Fleet Range Picks
H M 0 982.6 40.5 10.9 5.3 26.9 1.5

15 898.6 43.0 9.5 4.0 26.5 0.9
30 905.9 43.6 9.7 4.3 26.0 0.7
60 916.6 43.3 9.5 4.3 26.0 0.7

0E 0 950.5 48.8 11.7 6.6 24.8 1.6
15 801.0 53.0 9.7 4.6 22.7 0.2
30 807.9 53.2 9.7 4.8 23.6 0.3
60 827.2 53.2 9.7 4.4 24.2 0.2

10E 0 970.5 44.7 10.9 5.4 24.9 1.5
15 817.2 47.2 9.7 4.9 22.8 0.5
30 841.1 47.1 9.8 5.1 23.0 0.5
60 855.5 47.0 9.2 5.0 22.5 0.6

25E 0 985.2 36.5 10.8 5.5 25.2 0.4
15 892.4 38.3 9.2 4.4 24.0 0.4
30 882.2 38.5 9.0 4.3 23.7 0.5
60 897.3 38.4 9.1 4.3 23.9 0.4

Table C.9: Dynamic solutions obtained with the proposed MPA on C60 instances. Each line is the average over
the 10 instances in the class.

Dynamic Solutions - C90 Instances, γ= 0, 25% pickup requests

St W ∆o (%) Roam. Routes Fleet Range Picks
H M 0 1479.6 59.8 16.4 7.8 28.1 5.4

15 1279.8 65.6 15.0 6.6 25.8 1.6
30 1232.5 65.7 14.1 6.4 25.9 1.7
60 1265.1 65.9 14.3 6.1 26.0 1.7

0E 0 1406.0 72.2 16.7 8.7 26.6 5.2
15 1142.8 77.6 13.7 7.1 23.7 2.2
30 1123.5 78.7 13.7 6.9 23.6 1.4
60 1129.6 79.7 13.4 7.0 23.6 1.1

10E 0 1410.8 65.3 17.7 8.3 25.3 2.7
15 1225.0 70.0 15.8 6.7 23.1 1.2
30 1270.1 70.4 16.4 7.0 23.4 0.6
60 1262.3 70.7 16.2 7.2 23.5 0.4

25E 0 1433.4 54.4 16.6 7.4 25.7 3.0
15 1334.8 56.6 15.4 6.8 25.0 0.6
30 1291.0 57.4 15.3 6.6 24.2 0.6
60 1307.3 57.2 15.6 6.7 24.0 0.3

Table C.10: Dynamic solutions obtained with the proposed MPA on C90 instances. Each line is the average over
the 10 instances in the class.
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Dynamic Solutions - C120 Instances, γ= 0, 25% pickup requests

St W ∆o (%) Roam. Routes Fleet Range Picks
H M 0 1993.5 65.9 22.4 11.5 30.1 6.9

15 1718.4 80.6 19.0 8.8 27.6 3.1
30 1737.1 82.0 19.0 9.3 27.4 2.3
60 1758.8 82.6 19.3 9.0 27.9 1.7

0E 0 1762.8 88.5 21.4 12.1 26.6 6.0
15 1521.2 103.7 19.1 11.0 24.3 1.9
30 1513.0 104.3 18.2 9.9 24.3 2.2
60 1510.9 104.8 18.0 9.7 24.4 1.4

10E 0 1700.9 89.1 20.4 10.3 25.6 4.1
15 1580.8 93.2 18.8 9.0 25.2 1.1
30 1563.7 93.8 18.5 8.6 24.4 1.0
60 1595.1 94.3 18.5 8.7 24.6 0.4

25E 0 1756.3 75.4 20.8 9.5 24.6 2.5
15 1697.3 77.1 20.1 8.0 25.0 0.3
30 1665.7 77.1 19.5 7.5 25.1 0.5
60 1663.6 77.0 19.2 7.7 25.0 0.2

Table C.11: Dynamic solutions obtained with the proposed MPA on C120 instances. Each line is the average
over the 10 instances in the class.

Dynamic Solutions - C150 Instances, γ= 0, 25% pickup requests

St W ∆o (%) Roam. Routes Fleet Range Picks
H M 0 2619.0 76.3 29.4 16.7 30.6 9.5

15 1908.1 99.5 22.1 9.1 26.1 5.6
30 1884.5 102.4 22.1 9.3 25.8 2.8
60 1877.9 103.5 21.8 10.1 25.7 2.2

0E 0 2640.0 95.7 31.5 20.7 30.2 10.4
15 1792.2 125.3 22.4 12.4 24.5 4.0
30 1740.7 129.4 21.6 12.0 24.1 2.4
60 1778.7 131.6 21.7 13.1 24.3 1.5

10E 0 1920.2 113.4 24.2 10.8 24.6 4.5
15 1790.4 116.9 22.2 10.5 23.6 1.7
30 1777.9 117.9 21.8 10.0 24.0 0.7
60 1827.0 118.1 22.1 10.1 23.8 0.5

25E 0 1862.7 93.5 21.9 8.1 24.2 3.3
15 1804.2 95.1 20.8 8.2 24.4 1.2
30 1797.3 95.3 20.3 7.6 23.9 0.6
60 1766.8 95.9 20.3 8.1 23.7 0.4

Table C.12: Dynamic solutions obtained with the proposed MPA on C150 instances. Each line is the average
over the 10 instances in the class.
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C.4. DELIVERY AND 25% PICKUP REQUESTS, LEAD-TIME AN-
NOUNCEMENT

Dynamic Solutions - C60 Instances, γ> 0, 25% pickup requests

St W ∆o (%) Roam. Routes Fleet Range Picks
H M 0 1002.6 41.0 11.1 5.2 26.8 2.1

15 898.9 43.0 9.9 4.4 26.2 1.0
30 889.1 43.2 9.9 4.4 25.9 1.3
60 873.9 43.4 9.4 4.1 25.4 1.3

0E 0 1134.7 41.5 12.4 7.6 29.0 2.9
15 788.1 52.6 9.0 4.2 23.9 0.4
30 825.1 53.0 9.4 4.3 24.6 0.3
60 812.1 53.0 9.2 4.2 24.0 0.3

10E 0 904.1 46.4 11.0 5.4 23.5 1.8
15 830.7 47.0 9.5 4.5 22.4 0.6
30 813.9 47.4 9.5 4.3 22.1 0.7
60 800.5 47.7 9.3 4.1 21.7 0.5

25E 0 950.0 37.6 9.9 5.0 25.0 2.2
15 862.7 38.1 8.3 3.6 24.0 1.6
30 882.7 38.2 8.8 3.8 24.3 1.2
60 876.8 38.4 8.6 3.8 24.7 1.3

Table C.13: Dynamic solutions obtained with the proposed MPA on C60 instances. Each line is the average over
the 10 instances in the class.
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Dynamic Solutions - C90 Instances, γ> 0, 25% pickup requests

St W ∆o (%) Roam. Routes Fleet Range
H M 0 1420.0 60.2 16.0 7.2 27.3 6.5

15 1279.7 65.5 14.4 6.0 26.5 3.0
30 1214.0 65.7 13.9 6.4 26.0 2.9
60 1206.1 66.4 13.8 5.9 25.7 2.6

0E 0 1346.2 71.4 16.4 9.5 25.7 4.4
15 1105.2 78.4 13.4 7.0 23.4 1.4
30 1115.4 79.3 12.7 6.9 23.2 0.7
60 1106.4 79.9 12.5 6.7 23.6 0.6

10E 0 1349.5 65.8 17.1 8.4 25.2 3.3
15 1240.3 70.5 15.5 6.8 23.6 0.8
30 1242.5 70.9 15.6 6.7 23.3 0.7
60 1232.7 71.2 15.7 7.0 23.2 0.6

25E 0 1348.3 55.2 15.9 6.3 25.3 2.7
15 1296.0 57.3 15.5 6.6 24.4 1.0
30 1294.4 57.2 15.4 6.4 24.5 1.1
60 1298.5 57.0 14.9 6.4 24.1 0.9

Table C.14: Dynamic solutions obtained with the proposed MPA on C90 instances. Each line is the average over
the 10 instances in the class.

Dynamic Solutions - C120 Instances, γ> 0, 25% pickup requests

St W ∆o (%) Roam. Routes Fleet Range
H M 0 2016.3 68.8 22.0 10.0 29.5 6.4

15 1671.3 80.8 18.6 8.4 27.4 4.8
30 1689.4 81.2 18.5 8.0 27.4 3.7
60 1677.2 82.4 18.7 8.2 27.5 2.4

0E 0 2301.1 69.4 26.8 17.9 30.8 7.8
15 1484.4 102.9 17.8 9.3 25.2 3.1
30 1480.6 104.7 17.1 9.2 24.4 2.4
60 1464.4 106.0 17.0 9.3 23.9 1.1

10E 0 1675.1 88.8 20.2 9.6 25.8 4.9
15 1567.9 94.0 18.2 8.9 24.3 1.6
30 1576.1 94.2 18.3 8.7 24.3 0.5
60 1579.8 94.7 18.2 9.1 23.9 0.1

25E 0 1693.8 74.1 19.9 8.8 24.8 2.6
15 1639.1 77.3 18.8 7.7 24.8 1.1
30 1668.4 77.2 19.0 8.0 24.7 1.2
60 1707.4 77.6 19.4 8.2 25.2 1.1

Table C.15: Dynamic solutions obtained with the proposed MPA on C120 instances. Each line is the average
over the 10 instances in the class.
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Dynamic Solutions - C150 Instances, γ> 0, 25% pickup requests

St W ∆o (%) Roam. Routes Fleet Range Picks
H M 0 2555.7 76.3 28.5 15.9 30.3 11.8

15 1869.4 102.5 21.7 8.5 25.8 4.0
30 1873.5 103.9 21.4 8.8 25.4 3.0
60 1867.6 104.7 21.7 9.1 24.8 2.7

0E 0 2660.8 96.4 31.9 20.8 29.6 8.6
15 1725.3 130.2 22.4 11.4 23.7 3.1
30 1676.8 131.9 21.5 10.9 23.5 2.9
60 1705.2 132.6 21.7 11.5 23.8 2.1

10E 0 1955.4 110.0 24.8 10.7 24.9 5.4
15 1781.0 117.3 22.5 10.5 23.2 3.1
30 1808.5 117.8 23.0 11.3 23.2 1.7
60 1782.5 118.5 22.3 10.7 22.8 0.7

25E 0 1801.1 92.3 21.6 9.2 24.1 3.9
15 1705.2 95.4 19.9 8.7 23.2 1.3
30 1746.7 95.8 20.3 8.6 23.4 1.0
60 1757.3 95.4 20.3 8.1 23.3 0.3

Table C.16: Dynamic solutions obtained with the proposed MPA on C150 instances. Each line is the average
over the 10 instances in the class.



SUMMARY

INNOVATIVE BUSINESS-TO-CONSUMER LAST-MILE SOLUTIONS:
MODELS AND ALGORITHMS
Delivering goods in urban areas is one of the most challenging logistics activities. Given
both the increasing urbanization levels and the share of e-commerce in retail sales, last-
mile operations will only become more challenging in the future. The last-mile refers to
the last link in the transport chain followed by a parcel to fulfill consumers’ requests for
goods, from the shelf of the last distribution center to the hands of the buyer. In fact,
given the explosion of e-commerce, the last-mile supply chains of even the largest e-
tailers are strained by the sheer volume increase of direct-to-consumer orders. This chal-
lenge is even amplified given the service levels offered by e-tailers to compete against the
instant gratification of brick-and-mortar stores. Thus, companies are evaluating new
and innovative business models that could help improving last-mile operations.

This thesis focuses on novel approaches for dealing with last-mile operations faced
by logistics service providers in urban contexts. We investigate two recent innovative
models and the potential cost-benefits of introducing such models into transportation
logistics for last-mile operations. More specifically, we first consider crowd-sourced lo-
gistic solutions – e.g., where drivers are not employed by a carrier but occasionally offer
their services through on-line platforms and are contracted as required by the carrier –
on the fulfilment of logistic activities. The second novel model we consider is what has
been defined as roaming delivery systems, in which the service provider has access to
private cars’ storage compartments and can service customers using the trunk of their
cars. Supported by automotive and communication technologies, the model has the po-
tential to make e-commerce operations more convenient, mitigating failed deliveries at
home.

City Logistics advocates a holistic view of the transport and logistic activities within
a city, considering the negative (e.g., congestion and pollution) as well as the positive
(e.g., economic, mobility, safety) impacts on the city’s population. It seeks cost-efficient,
but sustainable, solutions that minimize required flows of people and goods. In Chap-
ter 2, we focus on how the crowd-based models may be part of such cost-efficient, but
sustainable solutions, especially related to the flows of goods. We define the characteriz-
ing features of crowd logistics, review applications of crowd-based services within urban
environments and discuss potential research opportunities.

Chapter 3 focuses on the assessment of a transportation system considering the use
of crowdshipping, where transportation capacity is provided by individuals willing to
provide their time and their vehicle for a (short) period and evaluate the benefits of in-
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troducing transfers to support driver activities. At transfer locations, drivers can drop off
packages for pick up by other drivers at a later time. We frame the problem as an ex-
tension of a pickup and delivery problem with transfers and propose an adaptive large
neighborhood search (ALNS) algorithm to solve it. Computational experiments indicate
that introducing transfer options can significantly reduce system-wide travel distance as
well as the number of drivers required to serve a given set of requests, especially when
drivers have short availability, as in a crowd-based system, and requests have high ser-
vice requirements.

Trunk delivery is a novel approach to last-mile delivery being tested by even the
largest e-tailers companies as a means to increase service levels to consumers. In this
approach, the company has access to the trunk of the customer’s vehicle where delivery
couriers can leave packages for that customer. In Chapter 4, we introduce a stochas-
tic version of the Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL)
and propose a two-stage stochastic model using the possibility of servicing customers
at different locations as a recourse action. Our contribution to this routing literature
stems from considering stochastic travel times in solving the problem. We believe such
contexts are important given the increasing level of urbanization and its consequences
on the ability of retail companies to fulfill promised service levels (in particular, in e-
commerce) for last-mile delivery within urban environments e.g., due to increased levels
of congestion. We exploit the flexibility introduced by trunk-delivery to define recourse
policies able to reduce the number of failed deliveries caused by stochastic travel times

Finally, in Chapter 5, we introduce a dynamic variant of the VRPRDL in which cus-
tomers are not required to inform their full planned routes at the day of service but
announce, in real-time, the locations where their cars are or will be parked. The only
information required by the service provider from its customers are their home loca-
tions and the corresponding customer’s availability at home. A Multiple Plan Approach
(MPA) is used in which multiple routing plans are maintained to provide alternative ways
for reacting to dynamic information. The service provider then decides whether to visit
customers at home or at their (announced) roaming locations. We consider a dynamic
strategy to decide on the actions to take during the operational day to support vehicle
dispatching decisions. While having customer itineraries revealed dynamically provides
more flexibility to customers, compared to solutions considering only home visits, it can,
however, potentially improve the operations of service providers.
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