828 research outputs found

    The impact of design techniques in the reduction of power consumption of SoCs Multimedia

    Get PDF
    Orientador: Guido Costa Souza de AraújoDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A indústria de semicondutores sempre enfrentou fortes demandas em resolver problema de dissipação de calor e reduzir o consumo de energia em dispositivos. Esta tendência tem sido intensificada nos últimos anos com o movimento de sustentabilidade ambiental. A concepção correta de um sistema eletrônico de baixo consumo de energia é um problema de vários níveis de complexidade e exige estratégias sistemáticas na sua construção. Fora disso, a adoção de qualquer técnica de redução de energia sempre está vinculada com objetivos especiais e provoca alguns impactos no projeto. Apesar dos projetistas conheçam bem os impactos de forma qualitativa, as detalhes quantitativas ainda são incógnitas ou apenas mantidas dentro do 'know-how' das empresas. Neste trabalho, de acordo com resultados experimentais baseado num plataforma de SoC1 industrial, tentamos quantificar os impactos derivados do uso de técnicas de redução de consumo de energia. Nos concentramos em relacionar o fator de redução de energia de cada técnica aos impactos em termo de área, desempenho, esforço de implementação e verificação. Na ausência desse tipo de dados, que relacionam o esforço de engenharia com as metas de consumo de energia, incertezas e atrasos serão frequentes no cronograma de projeto. Esperamos que este tipo de orientações possam ajudar/guiar os arquitetos de projeto em selecionar as técnicas adequadas para reduzir o consumo de energia dentro do alcance de orçamento e cronograma de projetoAbstract: The semiconductor industry has always faced strong demands to solve the problem of heat dissipation and reduce the power consumption in electronic devices. This trend has been increased in recent years with the action of environmental sustainability. The correct conception of an electronic system for low power consumption is an issue with multiple levels of complexities and requires systematic approaches in its construction. However, the adoption of any technique for reducing the power consumption is always linked with some specific goals and causes some impacts on the project. Although the designers know well that these impacts can affect the design in a quality aspect, the quantitative details are still unkown or just be kept inside the company's know-how. In this work, according to the experimental results based on an industrial SoC2 platform, we try to quantify the impacts of the use of low power techniques. We will relate the power reduction factor of each technique to the impact in terms of area, performance, implementation and verification effort. In the absence of such data, which relates the engineering effort to the goals of power consumption, uncertainties and delays are frequent. We hope that such guidelines can help/guide the project architects in selecting the appropriate techniques to reduce the power consumption within the limit of budget and project scheduleMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    Techniques for Improving Security and Trustworthiness of Integrated Circuits

    Get PDF
    The integrated circuit (IC) development process is becoming increasingly vulnerable to malicious activities because untrusted parties could be involved in this IC development flow. There are four typical problems that impact the security and trustworthiness of ICs used in military, financial, transportation, or other critical systems: (i) Malicious inclusions and alterations, known as hardware Trojans, can be inserted into a design by modifying the design during GDSII development and fabrication. Hardware Trojans in ICs may cause malfunctions, lower the reliability of ICs, leak confidential information to adversaries or even destroy the system under specifically designed conditions. (ii) The number of circuit-related counterfeiting incidents reported by component manufacturers has increased significantly over the past few years with recycled ICs contributing the largest percentage of the total reported counterfeiting incidents. Since these recycled ICs have been used in the field before, the performance and reliability of such ICs has been degraded by aging effects and harsh recycling process. (iii) Reverse engineering (RE) is process of extracting a circuit’s gate-level netlist, and/or inferring its functionality. The RE causes threats to the design because attackers can steal and pirate a design (IP piracy), identify the device technology, or facilitate other hardware attacks. (iv) Traditional tools for uniquely identifying devices are vulnerable to non-invasive or invasive physical attacks. Securing the ID/key is of utmost importance since leakage of even a single device ID/key could be exploited by an adversary to hack other devices or produce pirated devices. In this work, we have developed a series of design and test methodologies to deal with these four challenging issues and thus enhance the security, trustworthiness and reliability of ICs. The techniques proposed in this thesis include: a path delay fingerprinting technique for detection of hardware Trojans, recycled ICs, and other types counterfeit ICs including remarked, overproduced, and cloned ICs with their unique identifiers; a Built-In Self-Authentication (BISA) technique to prevent hardware Trojan insertions by untrusted fabrication facilities; an efficient and secure split manufacturing via Obfuscated Built-In Self-Authentication (OBISA) technique to prevent reverse engineering by untrusted fabrication facilities; and a novel bit selection approach for obtaining the most reliable bits for SRAM-based physical unclonable function (PUF) across environmental conditions and silicon aging effects

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Towards Successful Application of Phase Change Memories: Addressing Challenges from Write Operations

    Get PDF
    The emerging Phase Change Memory (PCM) technology is drawing increasing attention due to its advantages in non-volatility, byte-addressability and scalability. It is regarded as a promising candidate for future main memory. However, PCM's write operation has some limitations that pose challenges to its application in memory. The disadvantages include long write latency, high write power and limited write endurance. In this thesis, I present my effort towards successful application of PCM memory. My research consists of several optimizing techniques at both the circuit and architecture level. First, at the circuit level, I propose Differential Write to remove unnecessary bit changes in PCM writes. This is not only beneficial to endurance but also to the energy and latency of writes. Second, I propose two memory scheduling enhancements (AWP and RAWP) for a non-blocking bank design. My memory scheduling enhancements can exploit intra-bank parallelism provided by non-blocking bank design, and achieve significant throughput improvement. Third, I propose Bit Level Power Budgeting (BPB), a fine-grained power budgeting technique that leverages the information from Differential Write to achieve even higher memory throughput under the same power budget. Fourth, I propose techniques to improve the QoS tuning ability of high-priority applications when running on PCM memory. In summary, the techniques I propose effectively address the challenges of PCM's write operations. In addition, I present the experimental infrastructure in this work and my visions of potential future research topics, which could be helpful to other researchers in the area

    CROSS-LAYER DESIGN, OPTIMIZATION AND PROTOTYPING OF NoCs FOR THE NEXT GENERATION OF HOMOGENEOUS MANY-CORE SYSTEMS

    Get PDF
    This thesis provides a whole set of design methods to enable and manage the runtime heterogeneity of features-rich industry-ready Tile-Based Networkon- Chips at different abstraction layers (Architecture Design, Network Assembling, Testing of NoC, Runtime Operation). The key idea is to maintain the functionalities of the original layers, and to improve the performance of architectures by allowing, joint optimization and layer coordinations. In general purpose systems, we address the microarchitectural challenges by codesigning and co-optimizing feature-rich architectures. In application-specific NoCs, we emphasize the event notification, so that the platform is continuously under control. At the network assembly level, this thesis proposes a Hold Time Robustness technique, to tackle the hold time issue in synchronous NoCs. At the network architectural level, the choice of a suitable synchronization paradigm requires a boost of synthesis flow as well as the coexistence with the DVFS. On one hand this implies the coexistence of mesochronous synchronizers in the network with dual-clock FIFOs at network boundaries. On the other hand, dual-clock FIFOs may be placed across inter-switch links hence removing the need for mesochronous synchronizers. This thesis will study the implications of the above approaches both on the design flow and on the performance and power quality metrics of the network. Once the manycore system is composed together, the issue of testing it arises. This thesis takes on this challenge and engineers various testing infrastructures. At the upper abstraction layer, the thesis addresses the issue of managing the fully operational system and proposes a congestion management technique named HACS. Moreover, some of the ideas of this thesis will undergo an FPGA prototyping. Finally, we provide some features for emerging technology by characterizing the power consumption of Optical NoC Interfaces

    Applications of Antenna Technology in Sensors

    Get PDF
    During the past few decades, information technologies have been evolving at a tremendous rate, causing profound changes to our world and to our ways of living. Emerging applications have opened u[ new routes and set new trends for antenna sensors. With the advent of the Internet of Things (IoT), the adaptation of antenna technologies for sensor and sensing applications has become more important. Now, the antennas must be reconfigurable, flexible, low profile, and low-cost, for applications from airborne and vehicles, to machine-to-machine, IoT, 5G, etc. This reprint aims to introduce and treat a series of advanced and emerging topics in the field of antenna sensors

    XNAP: A Novel Two-Dimensional X-Ray Detector for Time Resolved Synchrotron Applications

    Get PDF
    The XNAP project develops a demonstration system for a spatially resolving detector with timing capabilities in the nanosecond range. A dense array of avalanche photodiodes is combined with multiple readout ASICs to build the detector hybrid. On an area of nearly 1 cm2, single photons can be counted within each of the 1k pixels. After 20 years of continuous improvements during operation, the ESRF Synchrotron is going to be upgraded substantially by the replacement of major parts of the source and the beamlines. For experimental techniques that will benefit from the increased brilliance, research into X-ray detectors is required. The requirements for the novel detector are composed of the distinguished properties of multiple state-of-the-art detector systems, shifted towards technical limits. The specification is transferred into the design of the sensor, ASIC, interposing structure and the readout system. A smaller prototype detector is built to resolve implementation challenges ahead of its large-scale accomplishment. Emphasis is put on the ASIC, and parallel approaches for the interconnecting technology and the readout system are carried out. The usability of the smaller prototype system is demonstrated with measurements of microfocus X-ray and Synchrotron light. Parts of the final detector are characterized at the laboratory prior to its commissioning

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc
    • …
    corecore