
University of Ferrara

Engineering Department of the University of Ferrara

Doctorate Degree in Science of Engineering

Coordinator: Prof. Stefano Trillo

Cycle: XXVI

CROSS-LAYER DESIGN, OPTIMIZATION

AND PROTOTYPING OF NoCs FOR THE

NEXT GENERATION OF

HOMOGENEOUS MANY-CORE SYSTEMS

ING-INF/01

Candidate: Advisor:

Hervé Tatenguem Fankem Prof. Davide Bertozzi

Academic Year 2011/2013

.

Acknowledgements

First of all I would like to thank my advisor Prof. Davide Bertozzi. He has

taught me, how to do a good research. I appreciate all his contributions of

time, ideas, and funding to make my Ph.D. experience productive and stim-

ulating. The joy and enthusiasm he has for his research was motivational

for me, even during tough times in the Ph.D. pursuit. The members of the

MPSoCs group have contributed immensely to my personal and professional

skills. The group has been a source of friendships as well as good advice and

collaboration. I am especially grateful to Daniele, Alessandro, Luca, Alberto,

Marco and Gabriele. I would also like to acknowledge Jann Raik and the

Tallinn Institute of Technology where I spent my internship. For this disser-

tation I would like to thank my reading committee members for their time,

interest, and helpful comments. I gratefully acknowledge the funding sources

that made my Ph.D. work possible. I was funded by the E.U. NaNoC and

vIrtical Projects. My time at UNIFE was made enjoyable in large part due

to the many friends and groups that became a part of my life. I am grateful

for time spent with colleagues and friends, for our memorable trips into the

cities. Lastly, I would like to thank my family for all their love and encour-

agement. For my parents who raised me with a love of science and supported

me in all my pursuits. For the presence of my brothers/sister and most of

all for my, supportive, encouraging, patient and loving Reine Flore whose

faithful support me during my Ph.D.

Thank you.

Hervé Tatenguem Fankem

Contents

Contents i

List of Figures vi

List of Tables 1

Abstract 3

Introduction 5

1 Overview of Two Architectural Variants of a Mesh 9

1 Introduction . 9

2 First Architectural Variant of a Mesh 9

2.1 Baseline Architecture 9

2.2 Basic Design Choices for the New Switch 10

Fault-Tolerance . 10

Notification Interface 11

Reconfigurability . 11

2.3 Experimental Results 12

Complexity Breakdown: Area Results 12

Complexity Breakdown: Delay Results 13

3 Second Architectural Variant of a Mesh 14

3.1 Tightly Coupled Dc FIFO 14

3.2 Input/Output Buffers 16

3.3 Probing System . 16

3.4 Path Shifting . 16

ii Contents

3.5 Control Path . 17

4 Experimental Results . 17

5 Conclusions . 20

2 Synthesis Flow 21

1 Design flow . 21

1.1 Introduction . 22

2 IC Timing . 24

2.1 Timing Margins . 24

3 Fixing hold-time violations . 26

4 Requirements for an IC timing optimization tool 27

5 The Compress Hold Time Tool 28

5.1 Hold-time buffer insertion 28

6 Results . 29

6.1 Hold Time Robustness:Fine-tuning the flow on a 2D

mesh . 29

7 Conclusion . 31

3 Contrasting Multi-Synchronous MPSoC Design Styles for

Fine-Grained Clock Domain Partitioning: the Full-HD Video

Playback Case Study 33

1 Abstract . 33

2 Introduction . 34

3 Related Work . 37

4 Synchronizer Architecture . 38

5 Full-HD Video Playback Requirements 41

5.1 System configuration 41

6 Design Flow . 44

7 Experimental Results . 46

7.1 Area results . 46

7.2 Setting the speed of the mesochronous NoC 47

7.3 Power results . 50

8 Conclusions . 53

Contents iii

4 Mesochronous NoC Technology for Power-Efficient GALS

MPSoCs: Mesochronous vs. Synchronous 55

1 Abstract . 55

2 Introduction . 56

3 Target GALS Architecture . 59

4 Hybrid coupling of synchronizer with the NoC 61

5 Synthesis of GALS Platforms 62

6 Experimental results . 64

Area and Wiring Overhead 64

Power analysis . 65

7 Conclusions and Discussion 66

5 Testing Archicteture on Top of The First Variant of the

Mesh 69

1 Abstract . 69

2 Introduction . 69

3 Baseline Architecture . 72

4 Basic Design Choices for the New Switch 72

Fault-Tolerance . 73

Notification Interface 73

Reconfigurability . 73

Boot-Time Testing Architecture 74

5 Cross-Feature Optimizations 75

6 Experimental Results . 78

Complexity Breakdown: Area Results 78

Complexity Breakdown: Delay Results 80

Coverage for single stuck-at faults 80

7 Conclusions . 81

6 Testing Architecture on Top of the Second Variant of the

Mesh 83

1 Switch Architecture . 83

1.1 Tightly Coupled Dc FIFO 84

1.2 Input/Output Buffers 84

1.3 Probing System . 85

iv Contents

1.4 Error correction . 86

1.5 Path Shifting . 87

1.6 Control Path . 88

2 Testing Methodology . 88

3 Experimental Results . 90

7 Ultra-Low Latency NoC testing via Pseudo-Random Test

Pattern Compaction 93

1 Abstract . 93

2 Introduction . 93

3 Related Work . 95

4 Testing methodology . 97

5 Baseline Switch Architecture 99

6 Testing Architecture . 99

6.1 LBDR testing . 100

6.2 Arbiter testing . 101

6.3 Output buffer testing 102

6.4 Input buffer testing . 103

6.5 Testing Multiplexers of the Crossbar 104

6.6 Testing Infrastructure Optimization 104

7 Experimental results . 106

7.1 Area Overhead . 106

7.2 Testing time . 108

7.3 Coverage . 110

8 Conclusions . 111

8 Cost-effective Contention Avoidance in a CMP with Shared

Memory Controllers 113

1 Abstract . 113

2 Introduction . 113

3 NoC Background and Related work 116

4 NoC Congestion . 117

4.1 NoC Contention . 117

4.2 Application Performance Relative to Memory Controller

Location . 118

Contents v

5 NoC Congestion Control . 119

6 Evaluation . 120

6.1 System configuration 121

6.2 Results . 123

6.3 Hardware breakdown 125

7 Conclusions . 126

9 Final FPGA Prototyping of Homogeneous Multicores. 129

1 Abstract . 129

2 Introduction . 129

3 FPGA Platform . 131

4 The System Under Test . 133

5 Basic components: the on-chip network 136

5.1 The Network Interfaces 136

6 Basic components: the supervision subsystem 137

7 Basic components: the reconfiguration algorithm 139

8 The application . 139

9 The physical platform implementation 141

10 Validating Built-in Self-Testing and NoC configuration 141

11 Validating Fault Detection and NoC Reconfiguration 142

12 Conclusion . 144

10 Power Characterization of Optical NoC Interfaces 151

1 Introduction . 151

2 Optical Network Interface Architecture 151

3 Power Characterization . 153

4 Analysis and Discussion . 154

5 Conclusion . 155

Bibliography 161

vi Contents

List of Figures

1.1 First variant: NACK/GO switch architecture. 12

1.2 Area analysis. 13

1.3 Routing delay analysis. 14

1.4 Dual-Clock FIFO integration into one input port of the switch

architecture. 15

1.5 The Second architectural variant at a glance. 18

1.6 Area overhead @500MHz. 19

1.7 Testing overhead and area Breakdown. 19

1.8 Normalized routing delay @Max Performance. 20

2.1 Increasing clock tree depth and increasing on-chip variability

causes increasing system-level timing uncertainty. 23

2.2 Increasing clock tree depth and increasing on-chip variability

causes increasing system-level timing uncertainty. 25

2.3 Increasing clock tree depth and increasing on-chip variability

causes increasing system-level timing uncertainty. 26

2.4 Increasing clock tree depth and increasing on-chip variability

causes increasing system-level timing uncertainty. 26

3.1 Plain multi-synchronous architecture based on dual-clock FIFOs. 37

3.2 Mesochronous synchronization in a multi-synchronous archi-

tecture. 37

3.3 Architecture of synchronizers. 42

3.4 Communication bandwidth requirements for full-HD video play-

back: 1920x1080 pixel, 60 frames/s, true color. 43

viii List of Figures

3.5 Area comparison between multi-synchronous NoC implemen-

tation variants when varying the FIFO depth. 47

3.6 Determining the speed of the mesochronous NoC for theArch.1

and Arch.2 settings. 48

3.7 Power consumption of Arch.1 system configurations. 50

3.8 Power consumption of Arch.2 system configurations. 51

3.9 Power consumption of Arch.3 system configurations. 51

4.1 Plain multi-synchronous architecture based on dual-clock FIFOs. 58

4.2 Mesochronous synchronization in a multi-synchronous archi-

tecture. 58

4.3 Hybrid mesochronous synchronizer architecture. 59

4.4 Power consumption with no activity and with uniform random

traffic (normalized with respect to the mesochronous network). 63

4.5 Area and wiring intricacy (normalized with respect to the

mesochronous network). 64

5.1 NACK/GO switch architecture. 78

5.2 BIST-enhanced switch architecture. 79

5.3 Interdependency Diagram between Reconfiguration, Fault-tolerance,

Testing and Notification. 80

5.4 Area analysis. 81

5.5 Routing delay analysis. 82

6.1 Dual-Clock FIFO integration into one input port of the switch

architecture. 85

6.2 The Second architectural Variant of the Mesh at a glance. . . 88

6.3 Testing Architecture. In green, the test wrapper is pointed out. 89

6.4 Area overhead @500MHz. 90

6.5 Testing overhead and area Breakdown. 91

6.6 Normalized routing delay @Max Performance. 91

7.1 Baseline Switch Architecture. 100

7.2 Lbdr Testing Architecture. 101

7.3 Arbiter Testing Architecture. 102

7.4 Output Buffer Testing Architecture. 103

List of Figures ix

7.5 Testing Architecture for Crossbar Multiplexers. 104

7.6 Cascaded Testing Architecture. 105

7.7 An Electron . 107

8.1 CMP tile-based design with dynamic application domains . . . 114

8.2 Basic switch architecture . 115

8.3 Switch architecture . 121

8.4 32 concurrent applications mapped on the system 123

8.5 32 concurrent applications mapped on the system (MSE be-

tween injected and accepted traffic) 125

8.6 32 concurrent applications mapped on the system (Averaged

network throughput, ocean workload) 126

8.7 Execution time distribution, 1 memory controller, ocean work-

load (With virtual channels) 127

8.8 Execution time distribution, 1 memory controller, ocean work-

load (No virtual channels) . 128

8.9 Switch area at 500 MHz . 128

9.1 VC707 baseline prototyping board. 131

9.2 FPGA platform overview . 133

9.3 Basic components of the on-chip network. 145

9.4 Design flow for platform implementation. 145

9.5 Built-In-Self-Testing at work (a). 146

9.6 Built-In-Self-Testing at work (b). 146

9.7 Built-In-Self-Testing at work (c). 147

9.8 Built-In-Self-Testing at work (d). 147

9.9 Transient fault detection and reconfiguration (a). 148

9.10 Transient fault detection and reconfiguration (b). 148

9.11 Transient fault detection and reconfiguration (c). 149

9.12 Transient fault detection and reconfiguration (d). 149

10.1 Optical Network Interface Architecture. 153

10.2 Static Power of Electronic Network Interface vs. Optical Net-

work Interface@//3. 156

x List of Figures

10.3 Static Power of Electronic Network Interface vs. Optical Net-

work Interface@//4. 156

10.4 Total Static Power of Electronic Network vs. Optical Network

@//3. 157

10.5 Total Static Power of Electronic Network vs. Optical Network

@//4. 157

List of Tables

2.1 Worst slack on links: unoptimized 4x4 mesh vs. HTR1 vs. HTR2. 31

2.2 Total slack on links: unoptimized 4x4 mesh vs. HTR1 vs. HTR2. 32

2.3 Total slack on whole design: unoptimized 4x4 mesh vs. HTR1

vs. HTR2. 32

2.4 Total Area: 4x4 mesh vs. HTR1 vs. HTR2. 32

3.1 Range for IP core speed and chosen settings. 45

5.1 Coverage for single stuck-at faults. 81

6.1 Coverage for single stuck-at faults. 92

7.1 Test Application Time Per Block 108

7.2 Testing Cycles as function of the Testing Approach 108

7.3 Test application time and coverage of different testing methods 109

7.4 Coverage as function of the Testing Approach 110

7.5 Compaction Table . 110

8.1 CMP configuration. 122

9.1 Resource utilization of the Virtex 7 chip. 144

10.1 Static and Dynamic Power Of Electronic Devices. 154

2 List of Tables

Abstract

This thesis provides a whole set of design methods to enable and manage the

runtime heterogeneity of features-rich industry-ready Tile-Based Network-

on-Chips at different abstraction layers (Architecture Design, Network As-

sembling, Testing of NoC, Runtime Operation). The key idea is to maintain

the functionalities of the original layers, and to improve the performance

of architectures by allowing, joint optimization and layer coordinations. In

general purpose systems, we address the microarchitectural challenges by co-

designing and co-optimizing feature-rich architectures. In application-specific

NoCs, we emphasize the event notification, so that the platform is contin-

uously under control. At the network assembly level, this thesis proposes a

Hold Time Robustness technique, to tackle the hold time issue in synchronous

NoCs. At the network architectural level, the choice of a suitable synchro-

nization paradigm requires a boost of synthesis flow as well as the coexistence

with the DVFS. On one hand this implies the coexistence of mesochronous

synchronizers in the network with dual-clock FIFOs at network boundaries.

On the other hand, dual-clock FIFOs may be placed across inter-switch links

hence removing the need for mesochronous synchronizers. This thesis will

study the implications of the above approaches both on the design flow and

on the performance and power quality metrics of the network. Once the many-

core system is composed together, the issue of testing it arises. This thesis

takes on this challenge and engineers various testing infrastructures. At the

upper abstraction layer, the thesis addresses the issue of managing the fully

operational system and proposes a congestion management technique named

HACS. Moreover, some of the ideas of this thesis will undergo an FPGA

prototyping. Finally, we provide some features for emerging technology by

characterizing the power consumption of Optical NoC Interfaces.

Introduction

Today, many-core embedded systems are moving towards the integration of

thousands of cores on a single chip. However, as the number of cores inte-

grated into a chip increases, the on-chip communication tends to become

the performance bottleneck and power hungry. To cope with the increasing

demand for high performance systems, many-core designs rely on integrated

network-on chips and exploit parallelism to make programs run faster. In-

deed, among all feasible solutions that have been proposed to cope with

the on-chip communication infrastructure, Network-on-Chips (NoCs) are the

most viable solution that lead to meet the performance and design productiv-

ity requirements of a complex on-chip communication infrastructure. On one

hand, NoCs provide an infrastructure for better modularity, scalability, fault-

tolerance, and higher bandwidth compared to traditional infrastructures. On

the other hand, developing applications using the full power of NoC-based

many-core embedded systems is not trivial and requires parallel programs.

Moreover, the programs to be run on the many-core chip are of varying degree

parallelized and they may have different characteristics regarding processing

needs, memory space and bandwidth. Above all, the efficient exploitation of

the abundant hardware resources will progressively go through the sharing of

such resources among a large number of concurrently executing applications.

The focus is therefore on how to manage the resources in many-core

chips in response to an increasingly complex and resource-sharing

workload, and how to optimize cooperation between system design

layers. There are two main examples of such resource management con-

cern. On one hand, each core or cluster or cores will be operated at different

voltages and frequencies for the sake of optimal execution and ultimately of

power management. On the other hand, such splitting will indirectly relieve

6 Introduction

the clock distribution problem in large chips, which cannot be performed

any more under the fully synchronous assumption. The above examples con-

firm that design layers are not isolated in manycore design, but have deep

cross-layer implications that should be co-optimized together.

Following the same cross-layer vision, the future applications will not be able

to assume that the underlying manycore computation and communication

fabrics are working in their entirety. In fact, there will be an increasing role

of manufacturing faults on system integrity, which calls for the relentless de-

velopment of testing strategies. To ensure the required quality and reliability

of such complex integrated circuits before supplying them to final users, ex-

tensive manufacturing tests need to be conducted and (absolute novelty) the

associated test cost may soon account for the same share of the total pro-

duction cost, as the ITRS documents start to point out.

When we combine the above (apparently different) issues together, it becomes

evident that their compound effect consists of turning a fully regular and ho-

mogeneous manycore platform into a runtime heterogeneous one. In fact, the

homogeneous design by construction undergoes a differentiation of operating

conditions, and suffer from the regularity-breaking effect of manufacturing

faults. This consideration is at the foundation of this work.

To address all these challenges, this thesis provides a whole set of

design methods to enable and manage the runtime heterogeneity of

features-rich industry-ready Tile-Based Network-on-Chips at dif-

ferent abstraction layers (1st layer: Architecture Design, 2nd layer:

Network Assembling, 3rd layer: Testing of NoC, 4th layer: Runtime

Operation).

The key idea consists to maintain the functionalities associated to the orig-

inal layers, and to improve the performance of architectures by allowing in-

teraction, joint optimization and coordination among the layers (cross-layer

design).

At the architecture layer, the manycore management challenge fundamen-

tally means the extension of current NoC architectures towards increased

flexibility, reconfigurability and /or notification capability. These terms as-

sume a different meaning depending on the NoC application domain. In gen-

eral purpose systems, the microarchitectural challenges consist of augment-

Introduction 7

ing regular tile-based NoCs into systems capable of runtime reconfiguration

of the routing function, of transient fault notification, and of some form of

fault-tolerance capability. This motivates the effort presented in this the-

sis: bringing state-of-the-art NoC architectures into the next generation of

industry-ready NoCs. This essentially goes through the design of feature-rich

architectures where the different features are co-designed and co-optimized

together. Vice versa, in application-specific NoCs the reconfigurability re-

quirement is (and will be) still far away, while instead the emphasis will be

on event notification, so that the platform is continuously under control.

At the network assembly level, the large size of manycore systems and the un-

predictability of the underlying silicon technology raise unprecedented com-

positional challenges, which are fundamentally physical design and design

technology issues.

For example, clock variability causes timing issues, as the clock skew affects

the timing in two ways: setup-time wise and hold-time wise.

While setup-time issues cause the system to function at reduced performance,

hold-time violations may render a system dysfunctional.

The above problems statistically show up at switch boundaries, since switches

are separated apart in real layouts. Therefore, it is at the switch boundaries

(that is, inter-switch communication) that the above issues should be mainly

addressed. This thesis proposes a HTR (Hold Time Robustness) technique,

that leads to tackle the hold time issue in synchronous NoCs links. At the

network architectural level, manycore design pose the challenge of the choice

of a suitable synchronization paradigm. On one hand, such large systems may

break the fully synchronous assumption by means of mesochronous clocking.

This paradigm today requires a boost of synthesis flow as well as the coexis-

tence with the DVFS (Dynamic Voltage and Frequency Scaling) requirement.

Ultimately, this implies the coexistence of mesochronous synchronizers in the

network with dual-clock FIFOs at network boundaries. On the other hand,

the penetration of dual-clock FIFOs in the design may be much deeper, that

is, they may be placed across inter-switch links hence removing the need for

mesochronous synchronizers. This approach has fundamentally different im-

plications both on the design flow and on the performance and power quality

metrics of the network. They will be all studied in this thesis.

8 Introduction

Once the manycore system is composed together, the issue of testing it arises.

This thesis takes on this challenge and engineers a testing infrastructure,

respectively on top of a general purpose and an application specific NoCs.

Moreover, an ultra-low latency NoCs testing infrastructure is designed for

”online testing” that cannot afford high testing cycles.

At the upper abstraction layer, the thesis addresses the issue of managing the

fully operational system delivered to the end user. At this level, among all the

possible runtime management issues, we focus on the congestion management

problem in two different scenarios: In the first scenario, we have multiple

physical networks (one global network and one local network composed of

two virtual-channels). In the second scenario, one physical network of 3

VCs or 2 VCs is considered in an attempt to collapse the network. In this sce-

nario, local and global traffics interfere not only on links but also on switches.

To overcome the above issue, this thesis proposes a congestion management

technique named HACS (Head-of-line Avoidance Congestion Skip-ahead), a

head-of-line blocking observation mechanism that allows buffered packets to

bypass the packet that is at the head of the queue. Moreover, some of the

ideas of this thesis will undergo an FPGA prototyping. In fact to validate

the industrial-ready NoC, this thesis reports on the prototyping of

a 16-core homogeneous multi-core processor with a faul-tolerant,

runtime reconfigurable and dynamically virtualizable on-chip net-

work. The prototyped system will validate the NoC capability of boot-time

testing and configuration, transient or intermittent fault-detection and run-

time reconfiguration of the routing function. Finally, we provide some features

for emerging technology. My contribution was a key enabler to facilitate the

power characterization of Optical NoC Interfaces, in such a way to be able

to look forward emerging optical interconnect technology. Overall, the the-

sis is a comprehensive contribution to the advance in the field of manycore

NoC-based system design.

Chapter 1

Overview of Two Architectural

Variants of a Mesh

1 Introduction

The digital design convergence, together with the new usage models of mo-

bile devices, are raising the clear need for new requirements such as flexible

partitioning, runtime adaptivity and reliability. The above trend has direct

implications on the design of the underlying on-chip network, which becomes

not only the system integration framework, but also the control framework

executing hypervisor commands, or reacting to runtime operating conditions.

The ultimate challenge for the NoC is to co-design these features together.

This chapter takes on this challenge and illustrates two design experiences of

a NoC switch architecture.

2 First Architectural Variant of a Mesh

2.1 Baseline Architecture

The first architectural variant (see fig.5.1) proposed in this chapter is a major

extension of the baseline ×pipesLite switch [82], which targets the embedded

computing domain with a very lightweight architecture.

The considered ×pipesLite variant implements logic-based distributed rout-

ing (LBDR): each switch has simple combinational logic that computes target

10 Overview of Two Architectural Variants of a Mesh

output ports from packet destinations and local switch coordinates. By means

of 26 configuration bits for each switch (indicating switch port connectivity,

routing restrictions, and deroutes), the routing function can be reconfigured

at runtime[84]. The straightforward yet overly expensive way to make the

baseline switch fault-tolerant is through Triple Modular Redundancy. The

only advantage is that the TMR architecture can afford keeping the native

STALL/GO flow control unmodified.

2.2 Basic Design Choices for the New Switch

The proposed switch architecture is designed to be the basic building block

of a reconfigurable and fault-tolerant NoC. Reconfiguration is achieved by

means of a global controller implemented in software, which requires com-

mand execution support in hardware. A dual network is therefore designed

to exchange control information between switches and the global controller.

Reconfigurability is implemented as runtime modification of the routing func-

tion, in order to provide not only flexible network partitioning when several

applications are concurrently executed, but also to avoid faulty links/regions

of the network. This latter functionality requires that points of failure are first

detected, both at boot and run time, then notified to the system manager,

that triggers the reconfiguration accordingly.

Fault-Tolerance

Whether a fault-tolerance switching strategy should affect the flow control

protocol or not is a major design choice with high impact on the overall switch

architecture. The work in[87] derives error recovery strategies for the same

NoC switch both from a flow control protocol with error notification capabil-

ity (NACK/GO) and from another one lacking this support (STALL/GO).

Data retransmission is used in the former case, while the latter one can only

rely on error correction. It has been shown that NACK/GO potentially re-

sults in shorter critical path, more conservative area and lower peak power, at

the cost of a slight average power overhead. This led us to opt for NACK/GO

for the proposed switch architecture (Figure 5.1). The proposed solution tar-

gets single event upsets (SEUs). In the data path, detectors trigger flit re-

1.2.2 Basic Design Choices for the New Switch 11

transmissions from the sender buffer, which is preceded by correction of the

stored flit in case it were corrupted in the buffer. On the control path, FSMs

are triplicated to avoid their permanent misalignment, while routing and ar-

bitration logic is just doubled, since dual-rail checkers (DRCs) can trigger

retransmissions from the input buffer upon mismatch detection.

Notification Interface

In this chapter, we opt for a centralized approach to network control: a global

manager is in charge of network reconfiguration decisions as an effect of fault-

tolerance, power management or virtualization strategies. In order to address

the need for control signaling between network nodes and the global manager,

we revert to the dual communication infrastructure proposed in[89], where

the main NoC is extended with a ring which connects all the switches of the

main NoC together. The ring implementation implies the extension of each

switch with a simple routing primitive, which is an oversimplified version of

an input buffered switch.

Reconfigurability

The reconfiguration mechanism of the routing function in the presence of

background traffic should provide deadlock freedom during the transition

from one routing algorithm to another, when extra dependencies may arise

and lead to deadlock. To cope with this issue, the first switch variant lever-

ages Overlapped Static Reconfigurations (OSR), a technique which avoids

draining network traffic[88]. OSR was first proposed for off-chip networks,

and its customization for a much more resource-constrained on-chip setting,

named OSR-Lite, has been performed in[83]. The basic principle is the fol-

lowing: if packets with the old routing function are guaranteed to never go

behind packets using the new routing function, then no deadlock cycles can

occur. In OSR this is achieved by triggering a token that separates old pack-

ets from new ones. The token advances through the network hop by hop,

following the channel dependency graph of the old routing function, and

progressively drains the network from old packets, allowing new packets to

enter the network at routers where the token already passed.

12 Overview of Two Architectural Variants of a Mesh

Figure 1.1: First variant: NACK/GO switch architecture.

2.3 Experimental Results

All the logic synthesis runs performed in this work have been carried out by

means of a low-power standard-Vth 40nm Infineon technology library.

Complexity Breakdown: Area Results

The following experiment points out both the complexity gap between the

native xpipesLite switch and the feature-rich extended one, and the area

increment that each integrated switch feature contributes. Normalized area

results are shown in figure 5.4, where features are incrementally added to the

baseline switch. This and its TMR extension are reported as reference design

points. Fault-tolerance is clearly the highest-impact feature. A non-negligible

area contribution comes in fact from detector and corrector modules and ac-

counts for almost 13% of the total area. When the reconfiguration mecha-

nism is integrated into the NACK/GO switch, an 11% of area overhead is

introduced. The notification system (TMR-protected dual network) results

lightweight (5% area overhead) since it takes advantages of the diagnosis

logic already made available for fault-tolerance purposes. Finally, the switch

capable of built-in self-test and self-diagnosis brings a 27% of area overhead

(Chapter 5 describes the testing architecture on top of the first variant),

1.2.3 Experimental Results 13

which is the second major source of complexity after fault-tolerance. When

we consider a baseline TMR switch which implements only fault-tolerance

on top of a baseline xpipesLite switch, we can see that the proposed switch

(rightmost bar in the plot) provides many more features at comparable area

footprint.

Complexity Breakdown: Delay Results

In order to evaluate the effects of each additional feature on the switch propa-

gation delay, we performed a 5x5 switch synthesis for maximum performance

for all the 5 incremental solutions under test. Results are reported in Fig.5.5.

The fault-tolerant NACK/GO switch, the switch with OSR-Lite mechanism

and the switch with notification system achieved a similar maximum oper-

ating speed. Finally, the testing framework degraded by 13% the maximum

performance of the NACK/GO switch. The performance of the switch is lim-

ited by the test-wrappers placed on the critical path. Considering the TMR

solution, this is around 30% slower than the baseline switch while the pro-

posed switch delivers far more functionalities at the cost of a longer critical

path (+13%).

Figure 1.2: Area analysis.

14 Overview of Two Architectural Variants of a Mesh

Figure 1.3: Routing delay analysis.

3 Second Architectural Variant of a Mesh

The second variant is a parameterized n × m (n: number of input ports,

m: number of output ports) source based routing 2-stage switch, augmented

with fault-tolerance provisions. The scheme of the switch architecture is de-

picted in figure 6.2 and is composed of the following main blocks:

- A fault tolerant input buffer of two slots with triplicated control logic and

endowed with voters.

- A fault tolerant output buffer of six slots with the same characteristics of

the input buffer.

- A fault tolerant arbiter, triplicated and endowed with voters.

- A Path-Shift module and a Crossbar.

- Some comparators are placed in specific places for runtime diagnosis and

to notify the global manager.

The next section describes the behaviour of each block of the switch:

3.1 Tightly Coupled Dc FIFO

Synchronization interfaces, such as dual-clock FIFOs, are typically instanti-

ated as external blocks with respect to the module they are connected with.

This ”loose coupling” of synchronizers with respect to NoC components im-

plies several drawbacks. First, the FIFO module introduces additional com-

munication latency in the intercommunication link. As a result, provisions

1.3.1 Tightly Coupled Dc FIFO 15

Figure 1.4: Dual-Clock FIFO integration into one input port of the switch

architecture.

must be normally made since the flow control signal may arrive multiple

clock cycles after the destination module decides to halt the source module.

The problem can be addressed by reserving space in the destination buffer,

thus incurring a significant area and power overhead, or by enhancing the

dual-clock FIFO with flow control capability.

In the EU-funded GALAXY project, the aforementioned problem was tackled

by merging the dual-clock FIFO with the switch input buffer, thus coming

up with a unique architecture block in charge of buffering, synchronization

and flow control, and sharing buffering resources for all of these tasks. The

GALAXY project has also showed that this design principle, which we denote

as ”tight coupling” of synchronizer with the NoC, can be applied to dual-clock

FIFOs in a straightforward way. For this reason, the second variant switch

can optionally replace its input buffer for a fully synchronous environment

with a dual-clock FIFO for a multi-synchronous environment, as illustrated

in Figure 6.1. In all cases, functional correctness is guaranteed.

A similar functionality can be easily implemented also in the first variant

switch.

16 Overview of Two Architectural Variants of a Mesh

3.2 Input/Output Buffers

Input and output buffers are much simpler than the ones of the first switch

variant, since they do not have to handle the Nack/go flow control protocol

but rather the simpler stall/go one. The input buffer is sized with two slots,

which is the minimum amount of resources needed not to lose data during

stall activation. It was 3 with Nack/go. The output buffer can be arbitrarily

sized for performance buffering. As previously mentioned, control logic of

input and output buffers is triplicated for fault tolerance and endowed with

voters. An additional voter is placed on top of the data-path registers with

the purpose of voting the outputs from the three instances of the buffer

control logic. The voted output drives the read and write pointers of FIFO

data registers.

3.3 Probing System

At the same time, probes inserted in front of each voter sniff their inputs

and inform (through a comparator and an OR gate) the global manager

about possible malfunctioning of each of the replicated branches. We find it

important that the manager can keep this kind of information under control,

so to be aware of a possible degradation of the fault-tolerance capability of the

architecture. The OR gate collects the outputs of the comparators associated

with each voting stage, as well as a notification signal from the correction

sub-system denoting whether correction actions have been performed or not.

Through the OR tree, a global notification of malfunctioning is achieved for

each switch and notified to the global controller via a star interconnection

topology.

3.4 Path Shifting

The Path-Shift module is composed of the following blocks:

- A demultiplexer, immediately inserted after the output of the pipeline stage.

It is composed of two inputs (data input and select input) and two outputs

(one for head flits and the other one for payload/tail flits).

- A Shifter and an encoder placed along the path followed by head flits.

- A 2x1 multiplexer

1.3.5 Control Path 17

When a new flit arrives in front of the Path-shift module, we need to identify

the flit type, i.e., whether it is a head flit or not.

For doing this, the select input port of the mux/demux is directly controlled

by the first bit of the input flit.

In fact, this bit is set to ”1” for a head flit and to ”0” for payload/tail flit.

So, when the input flit is a tail or a payload, path shifting is bypassed.

On the contrary, when a head flit arrives, we need to shift the routing infor-

mation so that each switch can always find in the same position its target

output port. Alternatively, we would need to embody in the packet the indi-

cation of how many hops the packet has already gone through. This way, the

switch would have to point every time to a different location in the packet

head. After shifting the address bits, checkbits are not meaningful any more

and need to be recomputed by the encoder before the flit can move on.

3.5 Control Path

Arbitration is performed with a round robin arbiter with triplicated control

logic. Each instance of the arbiter is endowed with voters for self-correction;

additional voters are located on top of crossbar multiplexers for reconvergence

of the control path to the control inputs of the data path. Similarly to the

first switch variant, a new arbiter state is saved only after voting it, to make

sure that triplicated FSMs do not get misaligned as an effect of errors. This

would compromise reliability of the control path for future transactions.

4 Experimental Results

This section describes the experimental results of the second variant of a

5x5 switch synthesized at the target speed of 500MHz with the 40nm low-

power SVT Infineon technology library. Input buffers are assumed to be fully

synchronous.

Figure 6.4 shows the area overhead of the proposed switch (rightmost bar)

with respect to an intermediate implementation without any testing support

and to a baseline TMR extension of the xPipeslite switch. It can be observed

that area overhead for testing amounts to only 12.96% (Chapter 6 describes

18 Overview of Two Architectural Variants of a Mesh

Figure 1.5: The Second architectural variant at a glance.

the testing architecture on top of the second variant). At the same time, more

functionalities and provisions than the TMR switch are delivered at a much

lower area footprint. Figure 6.5 illustrates the area breakdown of the testing

logic. The major contributor to the testing logic comes from the MISRs used

to perform the diagnosis and counts for ∼8.50%. The remaining part of the

overhead is spread among the wrappers and the LFSRs used as test patterns

generators.

Last but not least, when replacing the input buffer with a dual clock FIFO, in

practice there is no area overhead provided we keep the number of buffer slots

the same. Actual buffer sizing then depends on network-level requirements

such as the speed ratio between sender and receiver as well as the needed

throughput across a multi-synchronous link[52].

1.4 Experimental Results 19

Figure 1.6: Area overhead @500MHz.

Figure 1.7: Testing overhead and area Breakdown.

20 Overview of Two Architectural Variants of a Mesh

Figure 1.8: Normalized routing delay @Max Performance.

5 Conclusions

In this chapter, we present two architectural variants of a mesh endowed with

fault-tolerance, notification infrastructure and overlapped static reconfigura-

tion capability. We showed the major step in design complexity with respect

to a state-of-the-art switch for low-to medium-end embedded systems, arising

from the more aggressive requirements on switch functionality. At the same

time, we showed that more functionality than TMR can be delivered within

the same area budget, but with a non-negligible speed penalty.

Chapter 2

Synthesis Flow

1 Design flow

The synchronous flow regards the optimization of system-level hold-time mar-

gins, to improve system robustness to timing variability. In synchronous sys-

tems, the implementation of a global clock distribution network has increas-

ing adverse effects on timing, as systems scale up in size and transistors scale

down in geometries.

Smaller geometries mean higher variability, while larger gate count means

greater non-shared depth of the clock tree, between the different system-level

regions of the chip.

Clock variability causes timing issues, as the clock skew affects the timing in

two ways: setup-time wise and hold-time wise.

While setup-time issues cause the system to function at reduced performance,

hold-time violations may render a system dysfunctional. As clock variability

is a statistical effect, the timing degradation relates to yield: fewer chips will

function properly.

Today, the normal way to improve hold-time margin in a circuit involves

insertion of delay buffers at the data path end points. This affects also the

setup-time margin of the path.

In this chapter, the compress hold time prototype tool to optimize a circuit for

hold-time, is presented. The tool includes innovative algorithms for insertion

of hold-time buffers not only at the end points but in any branches of the data

paths of a design. An algorithm that fixes hold-time without worsening setup-

22 Synthesis Flow

time slack is also implemented (Further details are covered by confidentiality

and Non Disclosure Agreement).

Maintaining positive setup-time slack is important in order to ensure head-

room for successful backend convergence. The tool is successfully demon-

strated on three state-of-the-art IC designs, and will be applied to NoC-based

systems. It is shown how the tool is able to fix hold-time violations that are

not fixable with a standard end point buffer insertion approach, and to fix

hold-times without worsening total positive setup-time slack.

This was achieved by the compress hold time tool automatically inserting

delay buffers deep within the circuit, in non-setup-time critical branches of

the data paths. A mixed-approach provides the best of both worlds, resulting

in significantly better results than standard approaches.

1.1 Introduction

More than 99% of all digital ICs are implemented in a synchronous manner. A

synchronous system is characterized by having a synchronously clocked tim-

ing reference signal. In synchronous systems the implementation of a global

clock distribution network has increasing adverse effects on timing, as sys-

tems scale up in gate count and transistors scale down in geometries. Smaller

geometries mean higher variability in the logic gates, while larger system size

means greater non-shared depth of the clock tree, between the different re-

gions of the chip. Clock timing variability, defined as variability in the clock

arrival time at different clock tree sink points, is thus increasing in advanced

IC designs due to two factors.

i. Increasing on-chip variation (OCV) in clock logic gates, due to scaling

down fabrication technologies into nano-scale geometries.

ii. Increasing non-common clock tree path levels between system-level blocks,

due to design gate count scaling up into giga-scale.

Figure 2.1 illustrates this challenge. The non-common clock path is deeper

due to a larger clock tree, while the variability at each clock tree node is

increasing. As a direct result, the timing variability, between clock tree sink

points, increases. Clock timing variability causes data path timing issues, as

2.1.1 Introduction 23

Figure 2.1: Increasing clock tree depth and increasing on-chip variability

causes increasing system-level timing uncertainty.

the clock skew affects the data path in two ways: setup-time wise and hold-

time wise. While diminishing setup-time margins will reduce design perfor-

mance, hold-time issues will render circuits dysfunctional. As clock variability

is a statistical effect, the timing degradation relates to yield, as fewer chips

will function properly. Figure 2 shows how performance/timing related is-

sues constitute the fastest increasing yield degradation factor in scaling IC

technologies.

Today, the normal way to fix hold-time violations in a circuit involves in-

sertion of delay buffers at the data path end points. This also affects the

setup-time slack of the circuit. As a result, it is not always possible to fix

hold-time violations without causing setup-time violations in the process. But

even fixing hold-time violations in a manner that does not directly violate

setup-time may also represents a degradation of the circuit, if the positive

setup-time slack is reduced. This represents a major drawback in existing

tools. Maintaining positive setup-time slack is important in order to ensure

24 Synthesis Flow

headroom for successful backend convergence. The tool functionality signif-

icantly extends state-of-the-art in hold-time optimization, in that it enables

a major increase in flexibility and performance in the hold-time optimiza-

tion process, by providing advanced new algorithms for intelligent hold-time

buffer insertion. The tool will be applied to NoC-based designs in this chap-

ter. It is shown how hold-time violations that cannot be resolved using end

point buffer insertion can be resolved, with a reduced penalty on total posi-

tive setup-time slack and no impact on worst positive setup-time slack. In the

prototype tool, a focus on system-level communication channels has been im-

plemented by allowing hold-time fixing to occur only on data paths between

system-level partitions in a design, as arbitrarily specified by the user.

2 IC Timing

Timing is by far the most important design parameter in IC design today.

The timing of a circuit determines its performance as well as its robustness

to fabrication variability.

2.1 Timing Margins

Circuit timing revolves around two main concepts:

i. Hold-time margin

ii. Setup-time margin

Figure 2.2 illustrates these two timing concepts. In the figure, data indicates

a data arrival point, e.g. the data input of a flip flop or similar state-holding

element. The hold-time margin is the time after an active clock edge during

which the data value from the previous clock cycle must retain its state. This

is to ensure that the internal state of the state-holding element is completely

stable before the cell input starts to change. A hold-time violation will oc-

cur if a data path is very fast, so that new data arrives from another flip

flop a very short time after the clock has toggled. The setup-time margin is

the time before an active clock edge during which the data value from the

2.2.1 Timing Margins 25

Figure 2.2: Increasing clock tree depth and increasing on-chip variability

causes increasing system-level timing uncertainty.

previous clock cycle must attain its final state. This is to ensure that the in-

ternal state of the state-holding element is completely stable before the clock

input toggles. A setup-time violation will occur if a data path is very slow,

so that new data arrives from another flip flop too long time after the clock

has toggled, i.e. too short time before the following clock event. Hold-time

and setup-time margins are both influenced by variability in the clock tim-

ing. If the clock arrival time of the transmitting flip flop and receiving flip

flop are skewed relative to each other, the margins can either be increased

or diminished. Skew in one direction improves setup- time slack while wors-

ening hold-time slack, skew in the other direction improves hold-time slack

while worsening setup-time slack. Since the nature of variability is that the

direction of the skew is unknown, in order to accommodate the worst-case

scenario, both the setup- and hold- time margins must be higher than the

worst-case clock skew. In order to ensure that hold-time issues do not occur,

safety margins can be added. While such margins increase the reliability and

manufacturability they also tend to limit the performance of the circuits, by

taking an increasingly conservative view of circuit timing.

26 Synthesis Flow

Figure 2.3: Increasing clock tree depth and increasing on-chip variability

causes increasing system-level timing uncertainty.

Figure 2.4: Increasing clock tree depth and increasing on-chip variability

causes increasing system-level timing uncertainty.

3 Fixing hold-time violations

Hold-time violations can be fixed by inserting extra delay in the data path.

This effectively improves the hold-time margin by slowing down the data

signals. The normal approach to fix hold-time violations today is by inserting

buffers directly at the data path end points, as an ECO design flow step.

This approach is simple and works well, if a corresponding positive setup-

time slack is available. The data path leading to the input of a flip flop can

2.4 Requirements for an IC timing optimization tool 27

be complex however, and as shown in Figure 2.3, the end point timing may

be both hold-time critical and setup-time critical. This occurs if there are

both fast and slow paths leading to the end point. While inserting buffers at

the data path end point slows the signal down and improves the hold-time

margin, it meanwhile borrows setup-time, worsening the setup-time margin.

This is illustrated in Figure 2.4. This is not desirable for a number of reasons.

Firstly, if the end point is setup-time critical, an end point buffer cannot be

inserted without causing a setup-time violation. This is not acceptable, as

setup-time determines the performance of a circuit. Secondly, even if a degree

of positive setup-time margin exists, it is not wishful to reduce the positive

setup-time slack, as this is often used to ensure a margin for timing closure

later in the design flow.

4 Requirements for an IC timing optimiza-

tion tool

Timing of modern IC designs, and integrating into mainstream IC design

flows, is a complex task. Developing a timing optimization tool, there are a

number of advanced basic requirements to functionality and standard format

compliancy. To import and analyse a circuit, the following functionality is

required:

i) Import of

a. Liberty cell libraries

b. SDC timing constraint commands

c. SDF cell delay information

d. Gate-level Verilog netlist

ii) Support for complex, multi-clock and clock gated/muxed architectures.

iii) Support for multiple timing modes.

Apart from the development of the actual hold-time buffer insertion algo-

rithms, a major part of the work performed in achieving the deliverable

28 Synthesis Flow

described herein was focused on expanding and maturing existing FloorDi-

rector STA capabilities, integrating the hold-time buffer insertion algorithms

into the STA engine, and implementing support for the required netlist mod-

ification and Verilog export.

5 The Compress Hold Time Tool

A prototype tool for improving design hold-time margins, known as com-

press hold time, has been developed, and is embedded into Teklatechâs Flo-

orDirector IC design framework. The tool takes advantage of FloorDirectorâs

built-in import and export functionality as well as Static Timing Analysis

(STA) engine. Insertion of hold-time buffers in arbitrary branches of the data

paths, and insertion of hold-time buffers with no effect on setup-time slack,

constitutes the two key innovations in this chapter. The tool is fully con-

figurable, and an arbitrary level of robustness of hold-time can be achieved.

The impact on setup-time can be limited to the minimum level inherent in

the data path structure of the circuit.

5.1 Hold-time buffer insertion

The compress hold time prototype tool provides advanced functionality for

optimizing hold- time issues, fixing hold-time violations and improving exist-

ing hold-time margins, moving state-of-the-art significantly forward. Multi-

mode timing is an integral part of the algorithms, and timing validated con-

currently across multiple timing scenarios. The tool analyses the netlist and

timing of a design, and based on a parameter setup.

Hold-time is optimized by slowing down certain branches of design data

paths, by inserting buffers. While existing tools do this by inserting buffers at

the data path end points, compress hold time takes a much more advanced

approach. While simple end point buffer insertion is also possible using com-

press hold time, the tool implements a number of algorithms. A more ad-

vanced algorithm implemented as part of compress hold time works by iden-

tifying non-setup-time critical branches of hold-time critical data paths, and

automatically inserting hold-time buffers deep within the circuit. While not

2.6 Results 29

being limited to inserting hold-time buffers at the data path end points, com-

press hold time is thus able to improve hold-time slack with little or no effect

on end point setup-time slack. The algorithm is also able to fix hold-time vi-

olations that are not possible to fix by end point buffer insertion alone. This

is demonstrated in the results section. Finally, compress hold time is partic-

ularly useful for NoC-based designs, in which it may be particularly useful to

optimize hold-time margins in system-level paths more aggressively, in order

to improve robustness to system-level clock variability. Functionality for par-

titioning a design exists in FloorDirector, and compress hold time can take

this partitioning into account when optimizing. The optimization can be set

to include only paths between partitions in the optimization.

6 Results

6.1 Hold Time Robustness:Fine-tuning the flow on a

2D mesh

This section aims at the validation of two hold time robustness techniques

applied on top of the same baseline NoC (4x4 mesh). The baseline NoC makes

use of the xpipeLite switch as its basic building block. This experiment was a

fine tuning experiment of the hold-time improvement flow on the simple test

case of a 2D mesh. The first technique named here HTR1, improves the hold

time while keeping constant the setup time. On the contrary the second one

(named here HTR2) allows to improve the hold time by reducing the setup

time. In the experiments we conducted, the hold time robustness techniques

have been applied only to NoC links. The reason for this is that NoC routers

are relatively small objects, therefore it is not difficult to enforce a tight skew

constraint inside them. Vice versa, interconnected switches may be well far

apart, therefore there the ultimate skew is far more unpredictable and the

need for hold time optimizations arise. For hold time robustness, this means

that safe margins against later possible degradations during the place&route

step and even later as an effect of process variations have to be enforced.

We will hereafter compare the two techniques mentioned above (HTR1 and

HTR2) with respect to the 4x4 mesh devoided of any hold time optimization.

30 Synthesis Flow

The min-max synthesis we conducted was made by using the following 40nm

libraries:

- ucstarlib lpsvt 12t Pslow V090 T125

- ucstarlib lpsvt 12t Pfast V121 Tm30

Once the netlist was generated by the logic synthesis tool, we applied the

HTR1/HTR2 techniques on top of the same netlist and we measured respec-

tively:

- The worst and the total hold/setup time slacks on the links (see tables 2.1

and 2.2)

- The total hold/setup time slacks on the whole design (see table 2.3)

- The area overhead (see table 2.4)

Table 2.1 contains the worst hold/setup time slack on the link of each of

the three designs mentionded above. From left to right, these designs are

respectively the unoptimized 4x4 mesh (traditional synthesis flow), vs. the

HRT1- and HTR2-optimized netlists. The second line of this table contains

the worst hold time slack on the link, measured in the best case library.

As we can see on line 2 of that table, the HTR1 hold time slack results to

be greater than that of the 4x4 mesh (25% of improvement), moreover the

HTR2 hold time slack is 40% greater than that of the HTR1 one. The third

line of the same table contains instead the worst hold time slack on the link,

measured in the worst case library. In this latter case, the HTR1 technique

improves the hold time slack by 40% with respect to the 4x4 mesh while that

of the HTR2 one results to be roughly 90.4% greater than that of the HTR1

one. As regards the setup time (see line 4 of table 8), they are almost all

equal. More precisely, the 4x4 mesh and the HTR1 have the same setup time

while that of the HTR2 is a little bit smaller than the other values. Indeed

these measurements are in perfect agreement with expected results, hence

represent a perfect calibration of the NaNoC flow for hold time robustness.

On one hand, the HTR1 technique allows to improve the hold time slack

while keeping the setup time slack constant (0.48ns vs 0.48ns). On the other

hand, the HTR2 one allows to improve the hold time slack by reducing the

setup time slack (only 2% of reduction).

The informations contained in table 2.2 are similar to those of table 2.1. Here

2.7 Conclusion 31

instead of measuring the worst slack on the link, we measured the total worst

slack over all links. In this case, the HTR1/HTR2 hold time slacks measured

in the best case library (see line 2) result to be respectively 61% and 62.4%

greater than those of the 4x4 mesh. When measurements are made in the

worst case library (see line 3), the same HTR1/HTR2 hold time slacks result

to be respectively 104.8% and 108.8% greater than those of the 4x4 mesh.

Finally, the overall setup time slack degradation of HTR2 with respect to

that of the HTR1 one is only 3.7%. Table 2.3 contains measurements about

the total worst hold/setup time slack on the whole design. As expected, the

HTR1 technique allows to improve the overall hold time slack (see lines 2 and

3) with respect to the 4x4 mesh while keeping the setup time slack almost

constant (see line 4). As regards HTR2 technique, it allows a better hold time

slack improvement than the HTR1 one (13.4% vs 13.0% in the âbest case

libraryâ and 20.9% vs 24.6% in the âworst case libraryâ) but at the expense

of the setup time slack degradation (2.26% vs 0.25%). Table 2.4 shows the

area cost of the 4x4 mesh and the HTR1/HTR2 tech- niques. The total area

(expressed in %) has been normalized with respect to that of the 4x4 mesh.

From line 5 of table 2.4, it appears that both techniques (HTR1/HTR2)

require almost the same area overhead, 13% for the HTR1 and 12% for the

HTR2 one. Moreover, when considering the area breakdown, it appears that

all this overhead comes from combinatorial cells added to improve the hold

time (see line 2 of table 2.4). On the other hand the non combinatorial area

remains constant in all the three cases (see line 3 of table 2.4).

Worst slack on link 4x4 mesh HTR1 HTR2

Hold time bc lib 0.08ns 0.10ns 0.14ns

Hold time wc lib 0.15ns 0.21ns 0.40ns

Setup time wc lib 0.48ns 0.48ns 0.47ns

Table 2.1: Worst slack on links: unoptimized 4x4 mesh vs. HTR1 vs. HTR2.

7 Conclusion

As shown in the results section, this was successfully achieved. It was shown

how the newly developed algorithms achieve better results on both total

32 Synthesis Flow

Worst slack on link 4x4 mesh HTR1 HTR2

Hold time bc lib 899.98ns 1449.2ns 1462.34ns

Hold time wc lib 2078.97ns 4258.17ns 4342.15ns

Setup time wc lib 5931.52ns 5997.22ns 5773.8ns

Table 2.2: Total slack on links: unoptimized 4x4 mesh vs. HTR1 vs. HTR2.

Worst slack on whole design 4x4 mesh HTR1 HTR2

Hold time bc lib 4144.77ns 4685.48ns 4699.57ns

Hold time wc lib 10362.65ns 12533.35ns 12918.75ns

Setup time wc lib 26021.3ns 26087ns 25431.8ns

Table 2.3: Total slack on whole design: unoptimized 4x4 mesh vs. HTR1 vs.

HTR2.

Area 4x4 mesh HTR1 HTR2

Combinatorial Area 81937um2 106355um2 104720um2

Non Combinatorial Area 104282um2 104282um2 104282um2

Total Area 186219um2 210637um2 209002um2

Total Area (%) 100% 113% 112%

Table 2.4: Total Area: 4x4 mesh vs. HTR1 vs. HTR2.

number of hold-time violated end points resolved and total positive setup-

time slack reduction. The target was to improve the block-to-block hold-time

robustness to 25% of the clock cycle for any circuit. The compress hold time

prototype tool provides full flexibility, and the level of robustness required can

be specified arbitrarily. Together with the capabilities to optimize without

borrowing setup-time slack, a solution to any given level of robustness can be

achieved with a minimal impact on setup-time slack, as per the limitations

inherent to the structure of the data path 1.

1This chapter has included contents that are referred to a cooperative and interdisci-

plinary work where furher details are in[74].

Chapter 3

Contrasting Multi-Synchronous

MPSoC Design Styles for

Fine-Grained Clock Domain

Partitioning: the Full-HD

Video Playback Case Study

1 Abstract

Fine-grained (per-core) multi-synchronous systems calls for new clocking

strategies and new architecture design techniques. This chapter compares

two fundamental multi-synchronous implementation variants based on the

extensive use of dual-clock FIFOs vs mesochronous synchronizers respec-

tively. The architecture-homogeneous experimental setting, the cost-effective

merging of synchronizers with NoC switch buffers, the sharing of as many

physical synthesis steps as possible between the two architectures and the

requirements of a realistic full-HD video playback application are the key

innovations of this study.

34
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

2 Introduction

Pioneer research on GALS systems envisions the use of clockless intercon-

nect fabrics bridging synchronous islands with each other [27, 28] in a multi-

processor system-on-chip (MPSoC). A few chip demonstrators prove the via-

bility of this solution [24, 25, 26], yet they have not resulted in the widespread

adoption of asynchronous NoCs in the industrial arena. The reason is that

the gap between asynchronous handshaking techniques and current design

toolflows is still too large and in most cases uneconomical to bridge. As an

example, they require unconventional circuits such as Muller C-elements that

are usually unavailable in standard cell libraries. Moreover, asynchronous

logic is not well supported by mainstream CAD tools. Even in those cases

where physical design falls within reach of such tools, this is done with a lot

of manual intervention and disabling fundamental tool optimization features

not to violate specific timing constraints of asynchronous circuits [40], hence

resulting in largely unoptimized designs. In this context, the best solution

found so far for prototype design and fabrication consists of implementing

routers and GALS interfaces as hard macros using ad-hoc design styles [26].

Hard macros should be viewed in this case more as a way of working around

the lack of proper design and verification tools rather than an aggressive

optimization technique. In fact, area of these designs remains consistently

larger than fully synchronous NoC counterparts (1.8× in [26]). Regardless

of the design toolflow, it should be observed that as RC propagation delay

of on-chip interconnects degrades in nanoscale technologies the handshaking

operations in asynchronous NoCs start to last a considerable amount of time

thus significantly affecting communication performance.

The above landscape calls for a more evolutionary and cost-effective solution

in the direction of a progressive relaxation of synchronization assumptions in

nanoscale MPSoCs.

Common design practice consists of implementing clock domain crossings

by means of dual-clock FIFOs. However, this solution is expensive in terms

of buffering resources in the FIFO itself (needed to absorb the clock speed

difference) and of FIFO crossing latency, which can be of several clock

cycles [32, 34]. This overhead is likely to worsen in the future to counter the

3.2 Introduction 35

degradation of the resolution time constant of synchronizers [51].

Dual-clock FIFOs can be used to build up DVFS (Dynamic Voltage and Fre-

quency Scaling)-enabled systems with fine spatial locality by following the ar-

chitectural template in Fig.4.1, hereafter denoted as plain multi-synchronous.

They are instantiated at every switch port thus implementing clock domain

crossing for inter-switch communication. Each switch belongs to the clock

domain of its associated IP core. This solution replicates at a larger scale

the overhead of the FIFO synchronizers and introduces routing delay un-

predictability. In fact, network packets might have to cross low-speed clock

domains on their way to destination, and the spatial distribution of such per-

formance bottlenecks might change at runtime depending on the use case. On

the other hand, this architecture template removes the need for a global clock

tree, hence potentially resulting in better scalability and lower sensitivity to

technology constraints.

Since network-level implications of extensively using dual-clock FIFOs for

clock domain crossings are still largely unexplored, current design practice

consists of conservatively using these components only for coarse-grained sys-

tem partitioning in order to keep the overhead affordable. It is however not

clear whether the architectural template in Fig.4.1 is viable for cost-effective

and fine-grained multi-synchronous MPSoCs like those in [30].

One promising synchronization technique that is fully compliant with the

multi-synchronous paradigm is mesochronous clocking. Mesochronous syn-

chronizers allow a reliable communication between synchronous blocks de-

rived from a master clock (hence sharing the same frequency) but suffering

from arbitrary phase offset. This could be the case of a NoC inferred as an

independent clock domain, as illustrated in Fig.4.2 and hereafter denoted

as the mesochronous NoC. Given the chip-wide extension of the network

domain, clock distribution might be unbalanced and the different switches

might receive the same clock signal but with a different phase offset. Con-

straining such offset in the top-level clock tree might be either overly power

expensive or even infeasible for large nanoscale designs. Hence, mesochronous

synchronizers might be used to retime the data and transfer it reliably from

one switch to another. Even this architecture requires dual-clock FIFOs to

decouple the network from the clock domains of the individual IP cores, how-

36
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

ever they end up being instantiated only at network boundaries, while inside

the network more cost-effective mesochronous synchronizers (area-, power-

and latency-wise) are used.

While it can be easily demonstrated that mesochronous synchronizers are less

costly than dual-clock FIFOs when considering these synchronizers in isola-

tion, their integration within an entire platform might question this conclu-

sion since a number of typically overlooked effects come into play. First, the

synchronizer might have to be augmented to enforce timing margins for the

layout constraints of the design at hand (e.g., length of specific links). Second,

further complexity might be needed to implement clock gating for the case

of idleness. Third, requirements for more buffer slots might be posed to con-

nected NoC switches to enable full throughput operation. Fourth, while the

full-empty protocol of a dual-clock FIFO directly matches a stall/go flow con-

trol protocol in the network, augmenting mesochronous synchronizers with

flow control capability is not equally straightforward. Above all, the main

differentiating factor between the architectures in Fig.4.2 and Fig.4.1 is the

presence of a global and independent clock domain for the NoC.

As a result, identifying the most efficient implementation of multi-synchronous

NoCs is non-trivial and requires careful consideration of the application do-

main, of the system architecture and of physical synthesis effects. Conclusions

cannot be clearly drawn by assessing synchronization interfaces in isolation.

This chapter takes the network-level perspective and aims at quantifying de-

sign quality metrics of the two architectural templates with layout awareness.

For the sake of fair comparison, we implemented the two multi-synchronous

NoC variants with the same library of NoC components (the xpipes library)

and brought them through the same physical synthesis process, apart from

the few design steps that are solution-specific. Frequency settings of IP cores

and of the network (in the mesochronous case) strongly impact relative per-

formance and power figures, in addition to dictating constraints for the phys-

ical synthesis. Since these settings are tightly application-dependent, we im-

plemented an important case study for future mobile devices: full-HD video

playback. This enabled us to set the operating conditions for the frequency

islands in the NoCs and to simulate realistic communication bandwidths be-

tween the cores.

3.3 Related Work 37

VOLTAGE AND FREQUENCY ISLAND

CORE

NETWORK INTERFACE

SWITCH SWITCH

SWITCHSWITCH

DC_FIFOs

VOLTAGE AND FREQUENCY ISLAND VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

Figure 3.1: Plain multi-synchronous architecture based on dual-clock FIFOs.

MESOCHRONOUS

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

CORE

NETWORK INTERFACE

DC_FIFO

DC_FIFO

SWITCH SWITCH

SWITCHSWITCH

MESOCHRONOUS NoC

SYNCHRONIZERS

Figure 3.2: Mesochronous synchronization in a multi-synchronous architec-

ture.

3 Related Work

Many works are focused on asynchronous interconnection networks for GALS

systems, eliminating the need for global clock distribution. The CHAIN in-

terconnect [39], the ANOC architecture [41, 42], the prototype GALS NoC in

[43], the RASP network [44] and the mesh-of-tree topology in [38] are relevant

examples thereof. Mesochronous clocking is a milder approach to the relax-

ation of synchronization assumptions in MPSoCs. A common design method

of mesochronous synchronizers consists of delaying either data or the clock

signal to sample data reliably [45, 46] and/or to use a phase detector circuit

38
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

[36].

Delay-line based synchronizers are mostly suitable for full custom designs.

A different approach within reach of SoCs is proposed in [45, 35]: it em-

ploys cyclic write and read pointers with a certain initial spread to allow

collision-free write and read operations. [53, 34] employ similar approaches

while also synchronizing back-pressure signals. [53] investigates tight cou-

pling of mesochronous synchronizers with NoC switches. Dual-clock FIFOs

are the intuitive way of decoupling clock domains from each other, however

they incur large area, power and latency overhead, thus motivating research

efforts to mitigate their cost [33, 31, 32].

The dual-clock FIFO architecture in [52] borrows the token ring solution

for FSMs from [32] and the asynchronous comparison of pointers from [31].

Above all, it is integrated inside NoC switches serving as multi-purpose input

buffer.

In this chapter, we borrow and/or adapt synchronizer architectures from pre-

vious work in [52, 53], where design issues are discussed for the synchronizers

in isolation. In contrast, the focus of this work is on the network level. Very

few previous works share the same abstraction level. The most relevant one

is [37], where the multi-synchronous DSPIN network is contrasted with the

fully asynchronous ASPIN solution with synthetic traffic. However, there is

no exploration of the design points for multi-synchronous systems.

4 Synchronizer Architecture

Synchronizer selection and tuning was made based on the following guidelines

for the sake of fair comparison:

1. Compliance with a standard cell design flow to facilitate application to

the embedded computing domain.

2. Implementation of the source synchronous link design style, where syn-

chronizers receive a regular NoC link, carrying data, flow control com-

mands and a copy of the clock signal of the sender used as a strobe

signal. This style is currently the most mature one for synchronizer-

intensive designs.

3.4 Synchronizer Architecture 39

3. Suitability for a tight coupling design style, where synchronizers are not

placed as external blocks in front of NoC switches, but rather integrated

with the input buffer of downstream switches. This way, the same buffer

slots of the synchronizer can be reused for switch performance buffering

and for flow control purposes, thus coming up with a cost-effective

implementation. With tight coupling, latency is significantly reduced

as well, since additional stages are removed from the link and collapsed

into the switch input buffer. The reader should refer to [54] for an

overview of the benefits of tightly coupled synchronizers, which we take

for granted in this work.

4. Same buffer switching policy: unused buffer slots because of network

idleness or lack of congestion should not be clocked. This choice will

then enable a fair comparison of idle power between architecture vari-

ants.

The considered dual-clock FIFO architecture is illustrated in Fig.3.3(a).

The size of this latter is parameterizable. Based on [52], at least 5 slots are

required in order to support arbitrary frequency ratios between sender and

receiver clocks. Full and empty detectors signal fullness and emptiness con-

ditions of the FIFO. These detectors perform an asynchronous comparisons

between the FIFO write and read pointers that are generated in clock do-

mains which are asynchronous to each other.

For this reason, 2-stage brute force synchronizers are used to synchronize

deassertion of the full signal in the sender domain and of the empty signal

in the receiver domain, as showed in Fig.3.3(a). Further details can be found

in [52].

In this chapter we also consider the finding in [51] that the resolution time

constant of synchronizers keeps degrading as feature sizes shrink, therefore

more stages will need to be cascaded in brute force synchronizers in order to

achieve MTBFs (Mean Time Between Failures) of practical utility. To model

such requirements, we augment the dual-clock FIFO with 4-stage brute force

synchronizers (instead of 2) and increase the number of data FIFO slots

to 7 to preserve full-throughput operation in this case. In the experimental

results, both the 5 slot and the 7 slot FIFO variants will be considered to

account for the trend pointed by [51].

40
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

The dual-clock FIFO can be readily used for tightly coupled NoC-synchronizer

design, since it can directly serve as a switch input buffer. In fact, its empty

signal can be easily conditioned (see right-hand side of Fig.3.3(a)) and changed

into the valid signal for the switch arbiter. Based on it, the FIFO is admitted

to an arbitration round. Once a connection is established between an input

and output buffer of the switch, FIFO transmission can be stopped via the

stall/go flow control signal RX stall.

The baseline mesochronous synchronizer architecture is borrowed from [53]

and illustrated in Fig.3.3(b).

The rationale is to temporarily store incoming information in one of the front-

end registers, using the incoming clock wire to avoid any timing problem

related to the clock phase offset. Once the information stored in the front-

end registers is stable, it can then be read, processed and sampled by the

target clock domain.

Flow control is implemented by means of the stall/go signal, which freezes

synchronizer counters to prevent buffer overflow in the downstream block.

While this signal is already in synch with the back-end counter, it should be

synchronized with the transmitter clock before feeding the front-end counter.

A simple 1-bit synchronizer is instantiated for this purpose. This synchronizer

is replicated again in front of the upstream switch since it is demonstrated

in [53] that this solution gives rise to a larger timing margin for link delay.

The data path synchronizer can be easily coupled with the switch. For this

purpose, its output directly feeds the switch arbitration logic and its internal

crossbar. In practice, it serves as switch retiming and input buffer stage, in

addition to its native synchronization task. Unlike the (way more complex)

data path synchronizer, the replicated 1-bit control path synchronizer cannot

be integrated into the upstream switch, an approach which we denote as

hybrid coupling and which we follow in our implementation.

Finally, for the sake of fair comparison, we augmented the mesochronous

synchronizer of [53] with the same clock gating policy of the dual-clock FIFO.

Therefore, when there is no valid data in the synchronizer front-end, counters

are frozen and data buffers are not clocked. The back-end counter is stopped

after the valid signal is synchronized with the receiver clock domain by means

of another 1-bit synchronizer, as illustrated in Fig.3.3(b).

3.5 Full-HD Video Playback Requirements 41

Both the dual-clock FIFO and the mesochronous synchronizer are instanti-

ated as input buffers in the switches of the xpipesLite NoC to implement the

architecture variants in Fig.4.2 and Fig.4.1. Unlike the picture, it is worth

recalling that there are no synchronizers placed in NoC links, since they are

all collapsed in the input buffers of downstream switches or network inter-

faces (except for the 1-bit control-path synchronizer in mesochronous links).

The operating speed of the network or of its switches is now needed, but this

information is tightly application-dependent. Next section describes the use

case considered in this chapter.

5 Full-HD Video Playback Requirements

Extrapolating the usage scenarios of existing smart phones, one can imagine

that in some years from now, the video playback and capture capabilities

will not be limited to QVGA or WQVGA resolutions. With new mobile de-

vices having bigger display sizes, at least 1024x768 resolutions have to be

expected, but maybe even full HD-TV resolution. To provide a relevant ex-

perimental setting for the architectures under test, communication require-

ments of CPU, hardware accelerators and memory for video playback have

been scaled up to the high-end HD-TV resolution, thus addressing the most

challenging scenario foreseeable in the next few years. Extrapolated commu-

nication bandwidth requirements, based on the industrial experience of some

of the authors, are illustrated in Fig.3.4.

The operating speed of the IP cores depends on the bitwidth and on the

architecture of the core implemented in the real platform. Therefore, it was

only possible to identify a possible range of speeds for each core depending

on industrial IP core libraries and their projected future development. Table

3.1 lists possible min-max values of practical interest in the years to come.

5.1 System configuration

Future high-end mobile computing platforms will be most likely hierarchical.

At top level, a number of heterogeneous components will be interconnected by

a communication infrastructure, which is likely to have an irregular structure.

42
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

Token Ring
Counter

Token Ring
Counter

OR FF

FF

FF

FF

FF

FF

00SS S S

RX_STALLVALID_IN

Synchronizer Synchronizer

T
X
_
F
U
L
L

WRITE_POINTER
READ_POINTER

STALL VALID_OUT

CLK_TX CLK_RX

RX STALL

R
X
_
E
M
P
T
Y

W
P
i

W
P
i

R
P
i

R
P
i
+
1

SET
FULL

FULL_TMP EMPTY_TMP

SET
EMPTY

DATA_IN DATA_OUT
MUX

(a) Dual-clock FIFO architecture.

Mux Stall

clk_receiver

Flow Control
andData

Flow Control
Data andFlop_1

Flop_0

Flop_2

countercounter

counter

Front−end Back−end

clk_sender

Mux

Stall

counter

Flop_0

Flop_1

Flop_2

Flop_1

Flop_2

Mux

Stall

upstream
switch

clk_receiverclk_receiver

SWITCH INPUT BUFFER

counter

1−bit
synchronizer

To the Flop_0

(b) Mesochronous synchronizer architecture.

Figure 3.3: Architecture of synchronizers.

One component of this system will most likely be a multi-core programmable

accelerator consisting of a regular array fabric of computation tiles. Alterna-

tively, the entire system might only consist of such a regular fabric, like the

product in [48] for embedded computing.

The focus of this chapter is therefore on a 4x4 grid of identical general purpose

3.5.1 System configuration 43

500MBytes/s

Decoder
Video

SPI
Slave

Slave
SD/MMC

DMA
SD/MMC

DMA

DSP

CPU

Display
Control

Accelerator
Graphics

DDR

Display

SRAM3

SRAM1

SRAM2

Audio
In/Out

System
2G

System
3G/LTE

7MBytes/s

500MBytes/s

500MBytes/s

500MBytes/s

100MBytes/s

32MBytes/s

0.2MBytes/s

0.1MBytes/s

0.1MBytes/s0.1MBytes/s

0.2MBytes/s

0.2MBytes/s

8MBytes/s

8MBytes/s
7MBytes/s

7MBytes/s

8MBytes/s

500MBytes/s

Figure 3.4: Communication bandwidth requirements for full-HD video play-

back: 1920x1080 pixel, 60 frames/s, true color.

processor cores onto which the requirements of Fig.3.4 and Table 3.1 are

mapped.

At runtime, the video playback use case might be activated by mapping tasks

to cores and by configuring those cores to run at the speed that optimizes

execution of their associated task.

Without lack of generality and for the sake of fair comparison, we assume

that the frequencies in Table 3.1 are the speeds of the processor cores in the

homogeneous MPSoC.

44
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

We mapped the tasks to the 16 nodes of the 4x4 2D mesh network with the

minimum-path mapping algorithm in [49], which optimizes hop delay with

priority for the most communication-hungry cores. Dimension-order routing

is assumed. An additional constraint was introduced: I/O peripheral con-

trollers (such as DDR or SPI controllers) had to be mapped on the periphery

of the chip, thus leaving central locations only for computation or storage

tasks.

For the pre-computed mapping, three possible frequency settings were chosen

for the cores within the bounds in Table 3.1. They are denoted in the same

table as Arch.1, Arch.2 and Arch.3.

In Arch.1 the maximum speeds were chosen for almost all cores assuming

500 MHz to be the maximum possible clock speed in the system. Arch.1 is

an aggressive scenario where high-speed IP cores are available and a lot of

pressure is put on the on-chip interconnect performance.

In order to highlight a key design concern in multi-synchronous systems,

settings were then changed as in Arch.2 to reflect the case where throughput-

intensive information flows are exchanged between fast cores but are routed

through slow intermediate cores. Arch.2 tests robustness of architectures

under test to this unfortunate interrelation between operating speeds and

routing paths.

Finally, we artificially extended the case study to derive more general results

by selecting the same operating speed of 400 MHz for all cores (Arch.3).

This could be more easily the case in an homogeneous MPSoC with a coarse-

grained power management, or running an application which requires similar

frequency settings for its cores in spite of their non-homogeneous communi-

cation requirements.

6 Design Flow

System architectures were at first modeled in RTL-equivalent cycle-accurate

SystemC. OCP traffic generators were set to run at the speeds in Table 3.1

and programmed to inject traffic based on the bandwidth requirements in

Fig.3.4.

At this level, the mesochronous NoC can be modeled and simulated as a

3.6 Design Flow 45

Min Max Arch.1 Arch.2 Arch.3

IP core (MHz) (MHz) (MHz) (MHz) (MHz)

Video Decoder 100 500 300 500 400

DDR 266 400 400 400 400

Graphics Accelerator 100 300 300 100 400

SRAM 1 200 500 500 500 400

Display Control 100 500 300 500 400

SRAM2 200 300 300 300 400

CPU 300 1000 500 500 400

Display (ext. interface) 250 1000 500 300 400

DSP 100 300 300 300 400

SRAM3 100 300 300 300 400

Audio In/Out 10 100 100 100 400

2G System 100 150 150 150 400

DMA 100 200 200 200 400

3G/LTE System 100 200 200 200 400

SD/MMC DMA 100 200 200 200 400

SD/MMC Slave 100 200 200 200 400

SPI Slave 64 128 128 128 400

Table 3.1: Range for IP core speed and chosen settings.

synchronous one, since as demonstrated in [53] with the tight (or hybrid)

coupling design style latency (in clock cycles) and throughput of the networks

are the same.1 SystemC functional simulation aims at deriving the equivalent

speed of the mesochronous NoC that enables it to match the video playback

performance of the dual-clock FIFO-based platform.

We exploited an industrial 65nm technology library for the physical synthe-

sis, using Synopsys Physical Compiler and Cadence SoCEncounter for logic

synthesis and for place&route respectively.

For both platforms, a hierarchical bottom-up approach was taken. With this

approach, it is possible to synthesize, place and route separately each switch

and then to assemble them together to build up the entire system at the

top level of the hierarchy. The target synthesis frequency of the switches in

both platforms under test is 500 MHz, i.e., the worst case speed every switch

should be able to support. In fact, we consider video playback as just one use-

case running on top of the network. Other use-cases might require different

speed settings for the switches of the plain multi-synchronous platform or

1Latency in real elapsed time is slightly different, however positive and negative skews

across switch-to-switch links offset each other thus making the difference with a syn-

chronous NoC irrelevant. Again, this holds for a tightly coupled design style.

46
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

for the NoC of the mesochronous platform, which we assume to be upper

bounded at 500 MHz.

A hierarchical clock tree synthesis [47] was performed for the mesochronous

NoC. Local clock trees of the switches were synthesized with a tight skew

constraint of 5% of the target clock period. In contrast, the top-level clock tree

was inferred with a relaxed skew constraint of 60% of the clock period, since

timing of switch-to-switch communications is safeguarded by mesochronous

synchronizers.

Both platforms under test make use of source-synchronous links. In order to

avoid any timing misalignment between the data and the source synchronous

clock wires, we used the automatic bundled routing feature of the routing

tool. This proved sufficient for timing closure in our case. In more challenging

scenarios, the same result can be achieved with some scripting effort like in

[55].

Finally, it is worth mentioning that we used Synopsys PrimeTimePX to mea-

sure power on post-layout netlists with full annotation of switching activ-

ity from Verilog functional simulation. When measuring mesochronous NoC

power, the operating speed of the NoC was provided by the SystemC func-

tional simulation so to compare networks that provide the same application-

perceived performance.

7 Experimental Results

7.1 Area results

We first of all comment on the area results after place&route, which are

reported in Fig.3.5 and normalized to the area of a plain multi-synchronous

platform with 7 slot dual-clock FIFOs.

For the baseline 5 slot FIFO implementations (two leftmost bars), the gap be-

tween the mesochronous and the plain multi-synchronous NoC is not large (a

3.53% lower area), since both mesochronous synchronizers and dual-clock FI-

FOs are merged with the NoC architecture, where they replace input buffers.

With a loosely coupled approach, mesochronous synchronizers would have

required an oversizing of switch input buffers for full throughput operation

3.7.2 Setting the speed of the mesochronous NoC 47

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fifo5 Meso5 Fifo7 Meso7

A
R

E
A

 (
μ

m
2)

AREA
(65nm ST Technology Library)

Figure 3.5: Area comparison between multi-synchronous NoC implementa-

tion variants when varying the FIFO depth.

which would have offset their inherently lower number of buffer slots with re-

spect to dual-clock FIFOs. On the other hand, such augmented input buffers

do not dominate NoC area since other components (especially the output

buffers, sized to 6 slots in this architecture) play a major role.

However, even for short term chip implementations a 5 slot FIFO does

not guarantee a reasonable yield (see for instance [56]). An oversizing to 7

slots is advisable. When re-synthesizing both platforms under these assump-

tions, the two rightmost bars in Fig.3.5 point out an increased area gap: the

mesochronous NoC saves around 12% area. For larger systems (e.g., 64 cores)

this gap can only increase, since the plain multi-synchronous platform makes

larger use of dual-clock FIFOs than the mesochronous one.

7.2 Setting the speed of the mesochronous NoC

We now address the speed setting of the mesochronous NoC, which is pre-

liminary to power measurements.

By injecting the same traffic into the plain multi-synchronous and the mesochronous

NoCs based on the frequency settings of Arch.1 and the bandwidth require-

48
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

400 500 600 700 800 900 1000
0.95

1

1.05

1.1

1.15

1.2

1.25

Frequency Mesochronous NoC [MHz]

Fr
am

e d
ec

od
ing

 tim
e

Mesochronous architecture
Multi Synchronous architecture

(a) Arch1

100 150 200 250 300 350 400

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Frequency Mesochronous NoC [MHz]

Fr
am

e d
ec

od
ing

 tim
e

Mesochronous architecture
Multi Synchronous architecture

(b) Arch2

Figure 3.6: Determining the speed of the mesochronous NoC for the Arch.1

and Arch.2 settings.

ments of the video playback application, we measured the frame decod-

ing time from the SystemC functional simulation. Results are reported in

Fig.3.6(a) as a function of the speed of the mesochronous NoC.

As we can see, execution time decreases, at first steeply and then more grad-

ually, as the frequency of the mesochronous NoC increases, until reaching a

saturation point. The intersection of the two curves returns the smallest fre-

quency of the mesochronous NoC which allows the same performance of the

plain multi-synchronous solution. Area and power consumption are tightly

dependent on this value.

3.7.2 Setting the speed of the mesochronous NoC 49

Clearly, for frequencies above 500 MHz the network is not the performance

bottleneck and such a setting would not be cost-effective. In contrast, already

at 400 MHz the performance penalty is large, hence suggesting a frequency

of 500 MHz as the best choice for this case. This scenario is clearly a worst

case for the power efficiency of the mesochronous NoC, since in the multi-

synchronous NoC only a few islands operate at the maximum speed of 500

MHz, while the entire mesochronous NoC has to operate at such a speed.

This is an effect of Arch.1 settings where processor core speeds are high

and performance critical packets end up crossing moderate- to high-speed

intermediate islands.

Different results were obtained for the Arch.2 settings. This time, already

at 200 MHz the mesochronous NoC is able to match performance of the

plain multi-synchronous one (see Fig.3.6(b)). This is an effect of throughput-

intensive packet flows crossing low-speed intermediate islands, a scenario

which heavily penalizes the multi-synchronous NoC.

Either Arch.1 or Arch.2 might occur in practice. Usually, core speeds for task

execution on an homogeneous computation fabric are dictated by the appli-

cation and by the need to lower power consumption of the processor cores.

Typically, idle time is exploited to lower the core speed for better power ef-

ficiency or to temporarily switch-off the core. Operating conditions for each

task are taken and coordinated by the global power management framework.

At this level, communication costs are somehow abstracted since many details

of the hardware communication infrastructure may not be known in advance,

including the clock distribution strategy or the final mapping. In heteroge-

neous systems, where different IP cores ranging from CPUs to hardware

accelerators, I/O devices and memory macros are networked, these speeds

even depend on the library of available components. Then, mapping of tasks

onto the on-chip network is typically performed based on cost metrics such

as hop delay or power cost while meeting constraints such as that of non-

exceeding maximum link capacity [49] or the placement of I/O controllers.

As a result, there is typically no explicit constraint in synthesis flows avoiding

the combination of Arch.2 settings with the mapping selected for this work.

Even assuming to introduce such a constraint, this would imply to either in-

crease processor core speed (thus increasing its power which might dominate

50
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

0

20

40

60

80

100

120

140

160

180

200

DC_FIFO 5 MESO 5 DC_FIFO 7 MESO 7

VIDEO
PLAYBACK

IDLE

POWER CONSUMPTION
ARCH 1

PO
W

ER
 (

m
W

)

Figure 3.7: Power consumption of Arch.1 system configurations.

over network power) or to opt for a non-minimal route (with non-trivial im-

plications on communication performance and/or deadlock avoidance). This

chapter leaves the exploration of these optimizations for future work, and

searches for architecture design styles able to benefit from current design

methodologies.

7.3 Power results

Figures 10.2, 10.3 and 10.4 report power consumption comparison between

the mesochronous and the plain multi-synchronous platform both in idle

and traffic conditions for the three Arch.x operating conditions described in

Section 5.1.

Given the homogeneity of clock rates in the Arch.3 scenario, this latter is

considered first and highlights inherent architectural differences and their

role in determining power. As Figures 10.2, 10.3 and 10.4 show, this scenario

plays in favor of the mesochronous network. The plain multi-synchronous

platform results in 21% and 23% power consumption overhead in idle condi-

tion and during video playback respectively with respect to the mesochronous

counterpart.

The reason lies in the more complex control logic and the higher number of

3.7.3 Power results 51

0

20

40

60

80

100

120

140

DC_FIFO 5 MESO 5 DC_FIFO 7 MESO 7

VIDEO
PLAYBACK
IDLE

POWER CONSUMPTION
ARCH 2

PO
W

ER
 (

m
W

)

Figure 3.8: Power consumption of Arch.2 system configurations.

0
20
40
60
80

100
120
140
160
180
200
220

DC_FIFO 5 MESO 5 DC_FIFO 7 MESO 7

VIDEO
PLAYBACK
IDLE

POWER CONSUMPTION
ARCH 3

PO
W

ER
 (

m
W

)

Figure 3.9: Power consumption of Arch.3 system configurations.

52
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

buffer slots of the dual-clock FIFOs in the plain multi-synchronous platform

with the respect to the mesochronous synchronizers in the alternative im-

plementation variant. Interestingly, when moving from 5 to 7 slot dual-clock

FIFOs, the plain multi-synchronous platform exhibits a relevant 15mW over-

head for the video playback, while the overhead for the mesochronous NoC is

marginal. This is an appealing property for future on-chip realizations, where

a dual-clock FIFO intensive design will be severely penalized.

On the contrary, the Arch.1 scenario adds the runtime configuration of

the network in the power balance and plays in favor of the plain multi-

synchronous network. In this case, it saves around 32% of power in idle

condition and 31% for the video playback with respect to the mesochronous

counterpart. This is mainly due to the high operating frequency (500MHz) re-

quired by the mesochronous network to match the performance of the alterna-

tive architecture. Although mesochronous synchronizers are more lightweight

than the dual-clock FIFO synchronizers, the lower average operating fre-

quency of the switches in the plain multi-synchronous platform dominates

the final power consumption figures.

This result is however strictly dependent on the interaction between operating

speeds of the switches (or of the mesochronous NoC) and packet routing.

In fact, the Arch.2 scenario provides opposite results because of the low

operating speed of the mesochronous NoC (200MHz). This parameter is key

to determining power efficiency of the NoCs, thus explaining the significant

65% power consumption overhead of the plain multi-synchronous platform

both in idle and in traffic condition for Arch.2. When extending the dual-

clock FIFO synchronizers to 7 slots, this extension further increases the power

gap between the two platform solutions, although to a smaller extent with

respect to Arch.3 (around 3mW). This is due to the fact that the FIFO slot

overhead is offset by the low operating speeds of many clock domains. Also,

whether the traffic flows through high-speed or low-speed intermediate hops

makes power more or less sensitive to the FIFO size. The same considerations

apply to Arch.1.

Finally, the mesochronous NoC we are considering features a maximum skew

of 60% of the clock period between any two leaves of the top-level clock

tree. When iterating the place&route with a tighter 5% skew constraint, we

3.8 Conclusions 53

measured a power consumption increment across the inferred mesochronous

NoCs ranging from 4 to 6%. This result is in agreement with [50] and denotes

a promising option when the system size scales further up.

8 Conclusions

Although a mesochronous NoC will be increasingly area efficient with larger

integration densities, power efficiency strictly depends on the operating con-

ditions. Dual-clock FIFO based solutions are severely penalized by those map-

pings that route performance-critical packets across slow intermediate nodes.

In this scenario, the mesochronous NoC can easily do a better job. Vice versa,

when the combination of routing decisions, mapping strategy and core speed

setting is such to put pressure on NoC performance, the mesochronous NoC

is forced to work at maximum speed to match the performance of the plain

multi-synchronous solution, thus resulting in power overhead.

Based on the performed experiments, we believe that mesochronous NoCs

have a room in multi-synchronous systems: they enable packet routing through

performance-homogeneous hops and work with traditional design method-

ologies. Vice versa, dual-clock FIFO intensive architectures will be hardly

affordable for fine-grained clock domain partitioning, especially considering

the buffer over-provisioning that silicon technologies will require to sustain

yield. Nonetheless, in those use cases where only few cores have to run at high

clock rates, they are appealing for the reduced operating speeds of many of

their clock domains. However, their successful exploitation requires a proper

upgrade of the power management and NoC mapping strategies (and, above

all, their co-optimization) to work around slow intermediate network hops,

although the performance-power trade-off in this case is still unclear and will

be the focus of our future work.

54
Contrasting Multi-Synchronous MPSoC Design Styles for Fine-Grained
Clock Domain Partitioning: the Full-HD Video Playback Case Study

Chapter 4

Mesochronous NoC Technology

for Power-Efficient GALS

MPSoCs: Mesochronous vs.

Synchronous

1 Abstract

MPSoCs are today frequently designed as the composition of multiple volt-

age/frequency islands, thus calling for a GALS clocking style. In this context,

the on-chip interconnection network can be either inferred as a single and

independent clock domain or it can be distributed among core’s domains.

This chapter targets the former scenario, since it results in the homogeneous

speed of the NoC switching elements. From a physical design viewpoint,

the main issues lie however in the chip-wide extension of the network do-

main and in the growing uncertainties affecting nanoscale silicon technolo-

gies. This chapter proves that partitioning the network into mesochronous

domains and merging synchronizers with NoC building blocks, two main

advantages can be achieved. First, it is possible to evolve synchronous net-

works to mesochronous ones with marginal performance and area overhead.

Second, the mesochronous NoC exposes more degrees of freedom for power

optimization.

56
Mesochronous NoC Technology for Power-Efficient GALS MPSoCs:

Mesochronous vs. Synchronous

2 Introduction

Networks-on-chip (NoCs) are proving capable of easing the communication

bottleneck arising in multi-core computing platforms [91, 92, 93, 94], thus

overcoming the fundamental performance, power and physical design limi-

tations of shared and multi-layer busses. There is today little doubt on the

fact that a high-performance and cost-effective NoC can only be designed

in 45nm and beyond under a relaxed synchronization assumption [94, 96].

One effective method to address this issue is through the use of globally

asynchronous and locally synchronous (GALS) architectures, where the chip

is partitioned into multiple independent voltage and frequency domains.

Each domain is clocked synchronously while inter-domain communication

is achieved through specific interconnect techniques and circuits [95]. The

methodology of inter-domain communication is a crucial design point for

GALS architectures. One approach currently experimented in GALS NoC

prototypes consists of using purely asynchronous clockless handshaking for

transferring data words across clock domains [97, 98]. A few chip demonstra-

tors prove the viability of this solution [109, 111], but they have not achieved

widespread adoption of asynchronous NoCs in the industrial arena yet. In or-

der to more incrementally evolve current industrial practice, some previous

work in [101, 104] has developed synchronizer-based GALS NoC technology.

In particular, design techniques merging synchronizers with network build-

ing blocks (named the tightly coupled design style) have proved area, power

and performance efficient with respect to loosely coupled solutions, where

synchronizers are placed as external blocks to NoC switches. All these previ-

ous work concerns architecture design space exploration and quality metrics

assessment of synchronizer-based communications at the switch level. This

chapter builds on these milestones and moves a step forward by taking the

network-level perspective. While the migration from fully synchronous paral-

lel systems to GALS systems with voltage/frequency decoupling between IP

cores is taken as a matter of fact in this chapter, there are significant GALS

NoC architecture variants the designer can still choose from. The first one

consists of placing NoC switches in the clock domains of the IP cores they

are connected with. In contrast, an alternative solution consists of inferring

4.2 Introduction 57

the on-chip network as an independent clock domain, disjoint from those of

the IP cores. In this scenario, dual-clock FIFOs need to be instantiated only

at the network boundary, since the network is synchronized by a single and

independent clock signal. The homogeneous performance of NoC switches,

the fewer amount of dual-clock FIFOs required and the possibility to have

an always on system interconnect fabric make this solution more attractive

to this chapter. However, the feasibility and efficiency of this solution is now

mainly on burden of the physical designer. In fact, he has again to deal with a

large synchronous clock domain (the NoC itself) distributed throughout the

entire chip. A workaround for this problem consists of inferring the network

as a set of mesochronous domains, instead of a global synchronous domain,

yet retaining a globally synchronous perspective of the network itself. The

granularity of a mesochronous domain can be as fine as a NoC switch, which

is the case considered in this chapter. The communication between neighbor-

ing switches is then mesochronous as the top-level clock tree might not be

equilibrated. This brings the additional advantage that mesochronous syn-

chronizers are typically more lightweight than dual-clock FIFOs for use in

switch-to-switch links. This chapter leverages mature mesochronous com-

munication technology to perform a comprehensive crossbenchmarking of a

mesochronous NoC with a fully synchronous NoC for use in a GALS system.

Both networks share the same baseline MPSoC-oriented NoC architecture for

the sake of fair comparison. The tightly coupled design principle is followed

for mesochronous links, so that their unique optimization opportunities in

the NoC domain are fully exploited. The chapter relies on actual implemen-

tations on a 65nm industrial technology library and provides the assessment

of a wide range of design quality metrics, some of them of special interest for

nanoscale silicon technologies: performance, area, power, and clock tree syn-

thesis efficiency. This way, this chapter can provide useful guidelines for those

industrial designers currently committed to the development of next gener-

ation NoC-based MPSoCs. Concisely, the main contribution of this chapter

can be summarized as the crossbenchmarking of two GALS systems, the for-

mer implemented with a fully synchronous NoC; the latter leveraging a

mesochronous NoC. Both systems have been compared from an area and

power viewpoint. Since dual-clock FIFOs for connection to network inter-

58
Mesochronous NoC Technology for Power-Efficient GALS MPSoCs:

Mesochronous vs. Synchronous

VOLTAGE AND FREQUENCY ISLAND

CORE

NETWORK INTERFACE

SWITCH SWITCH

SWITCHSWITCH

DC_FIFOs

VOLTAGE AND FREQUENCY ISLAND VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

Figure 4.1: Plain multi-synchronous architecture based on dual-clock FIFOs.

MESOCHRONOUS

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

VOLTAGE AND FREQUENCY ISLAND

CORE

NETWORK INTERFACE

DC_FIFO

DC_FIFO

SWITCH SWITCH

SWITCHSWITCH

MESOCHRONOUS NoC

SYNCHRONIZERS

Figure 4.2: Mesochronous synchronization in a multi-synchronous architec-

ture.

faces are common to both solutions, they have not been considered in this

work. The remainder of this chapter is organized as follows. Section 3 will

present the GALS platforms under analysis whereas Section 4 will review

the architecture of the synchronizer block utilized as baseline to build the

mesochronous network. Section 5 will describe the method utilized to syn-

thesize the fully synchronous and the mesochrnous GALS system. Section

5 will present a comparison in terms of area, wiring and power overhead.

Finally, Section 6 concludes this work with a final discussion and directions

for future work.

4.3 Target GALS Architecture 59

Mux Stall

clk_receiver

Flow Control
andData

Flow Control
Data andFlop_1

Flop_0

Flop_2

countercounter

counter

Front−end Back−end

clk_sender

Mux

Stall

counter

Flop_0

Flop_1

Flop_2

Flop_1

Flop_2

Mux

Stall

upstream
switch

clk_receiverclk_receiver

SWITCH INPUT BUFFER

counter

1−bit
synchronizer

To the Flop_0

Figure 4.3: Hybrid mesochronous synchronizer architecture.

3 Target GALS Architecture

A GALS-based design style fits nicely with the concept of voltage and fre-

quency islands (VFIs), which has been introduced to achieve fine-grain system-

level power management and is currently driving the transition of most MP-

SoCs to GALS systems. In these systems, if network components belong to

the core’s VFIs then performance of communication flows would be deter-

mined by the slowest domain crossed on the way to destination. Also, in case

a VFI is shut down, global connectivity is jeopardized. An alternative solu-

tion is illustrated in Fig. 4.1, where the NoC lies in its independent VFI. This

way, performance of the whole switching fabric would be homogeneous, with

only boundary effects to take care of. Also, the network would be loosely cou-

pled with the cores’ VFIs, and each core/cluster of cores could be shutdown

without any impact on global network connectivity. The main issue with an

independent NoC VFI consists of the feasibility of its clock tree. The reverse

scaling of interconnect delays and the growing role of process variations are

some of the root causes for this. Even though inferring a global clock tree

for the entire network will still be feasible for some time, it will probably

come at a significant power cost. Moreover, it is unclear when the difficulty

of tightly and globally enforcing the skew constraint will truly become a

roadblock. However, a workaround for this problem does exist, as illustrated

60
Mesochronous NoC Technology for Power-Efficient GALS MPSoCs:

Mesochronous vs. Synchronous

in Fig.4.2. The network could be inferred as a collection of mesochronous

domains, instead of a global synchronous domain, yet retaining a globally

synchronous perspective of the network itself. There are several methods to

do this. One simple way is to go through a hierarchical clock tree synthesis

process. In practice, a local clock tree is synthesized for each mesochronous

domain, where the skew constraint is enforced to be as tight as in traditional

synchronous designs. Then, a top-level clock tree is synthesized, connecting

the leaf trees with the centralized clock source, with a very loose clock skew

constraint. This way, many repeaters and buffers, which are used to keep

signals in phase, can be removed, reducing power and thermal dissipation

of the top-level clock tree. The granularity of a mesochronous domain can

be as fine as a NoC switch block. The communication between neighboring

switches is then mesochronous as the clock tree is not equilibrated, while the

communications between switch and IP cores are fully asynchronous because

they belong to different clock domains. Bi-synchronous FIFOs are therefore

used to connect the network switches to the network interfaces of the cores,

as showed in Fig.4.2. This synchronization paradigm comes with additional

advantages. First, it makes a conscious use of area/power-hungry dual-clock

FIFOs, which end up being instantiated only at network boundaries. Instead,

more compact mesochronous synchronizers are used inside the network, thus

minimizing the cost for GALS technology. Finally, unlike fully asynchronous

interconnect fabrics, the synchronizer-based source-synchronous GALS ar-

chitecture illustrated in Fig.4.2 is within reach of current mainstream design

toolflows with just incremental effort. Typically, some scripting effort within

commercial synthesis frameworks enables these latter to meet the physical

requirements of source-synchronous designs [100, 108]. In the rest of this

chapter, the architectures in Fig.4.1 and Fig.4.2 will be compared from many

viewpoints by means of physical synthesis runs, to quantify when exactly to

migrate away from the architecture of Fig.4.1 and the actual overhead of

the architecture of Fig.4.2. The xpipesLite NoC architecture [99] is used as

baseline experimental setting to implement both GALS platforms. The flow

control protocol used by xpipesLite is stall/go: a forward signal, synchronous

with data, flags data availability (valid), while a backward signal flags a

destination buffer full (stall) or empty (go) condition.

4.4 Hybrid coupling of synchronizer with the NoC 61

4 Hybrid coupling of synchronizer with the

NoC

Usually, mesochronous synchronizers are just placed in front of the down-

stream switch (the loosely coupled design style). This has implications on

the size of the switch input buffer as well, which should cover the round

trip latency to sustain maximum throughput. Given the large buffering and

latency overhead of this approach, we proposed in [103] to bring the syn-

chronizer deeper into the downstream switch, as illustrated in Fig.4.3. The

reference synchronizer architecture receives as its inputs a bundle of NoC

wires representing a regular NoC link, carrying data and/or flow control

commands, and a copy of the clock signal of the sender used as a strobe

signal for them. The circuit is composed by a front-end and a back-end.

The front-end is driven by the incoming clock signal, and strobes the incom-

ing data and flow control wires onto a set of parallel latches in a rotating

fashion, based on a counter. The back-end of the circuit leverages the lo-

cal clock, and samples data from one of the latches in the front-end thanks

to multiplexing logic which is also based on a counter. The rationale is to

temporarily store incoming information in one of the front-end latches, using

the incoming clock wire to avoid any timing problem related to the clock

phase offset. Once the information stored in the latch is stable, it can be

read, processed and sampled by the target clock domain. In the architecture

of Fig.4.3, the synchronizer output now directly feeds the switch arbitration

logic and its internal crossbar, thus materializing the tight coupling concept

of the mesochronous synchronizer with the switch architecture. The ulti-

mate consequence is that the mesochronous synchronizer becomes the actual

switch input stage, with its latching banks serving both for performance-

oriented buffering and synchronization. A side benefit is that the latency of

the synchronization stage in front of the switch is removed, since now the syn-

chronizer and the switch input buffer coincide. The buffering overhead in the

switch input buffer because of flow control is also removed accordingly. The

main change required for the correct operation of the new architecture is to

bring the stall/go flow control signal to the front-end and back-end counters

of the synchronizer, in order to freeze their operation in case of a stall. While

62
Mesochronous NoC Technology for Power-Efficient GALS MPSoCs:

Mesochronous vs. Synchronous

this signal is already in synch with the back-end counter, it should be syn-

chronized with the transmitter clock before feeding the front-end counter.

The backward propagating stall/go is then directly synchronized with the

transmitter clock available in the front-end by means of a similar but smaller

(1-bit) synchronizer. For this architecture solution, only 3 latching banks are

needed in the synchronizer front-end, since link latency has been minimized.

In practice, only 1 slot more than the input buffer in the fully synchronous

switch. A loosely coupled approach would require a 4 slot input buffer and a

3 latch banks synchronizer. As regards the control path, a 1-bit synchronizer

is replicated in front of the upstream switch. This synchronizer is not merged

with the downstream buffer, since this would give rise to overly tight timing

constraints [101]. In contrast, integrating only the data-path synchronizer is

denoted as the hybrid coupling and gives more guarantees for timing closure,

and is the approach taken hereafter.

5 Synthesis of GALS Platforms

Both the synchronous and the mesochronous platforms have been designed

to be seamlessly integrated into an industrial design flow using commercial

tools for physical synthesis. Only standard cells are used and no full custom

components. The reference topology of our experiment is a 4x4 mesh net-

work where each switch is connected to either a core or a memory (of size

1.5mm). As far as the physical synthesis is concerned, the same bottom-up

methodology has been utilized for both platforms. Specifically, each network

switch has been placed and routed in isolation with a target frequency of

500MHz. The clock tree of each switch has been synthesized with a tight

skew constraint of 5% of the target clock period. Once the local clock tree is

characterized with its input delay, skew and input capacitance, a macromodel

is built in order to be used in the next design step. Furthermore, in order to

implement a hierarchical clock tree synthesis, a buffer has been inserted to

the input clock pin of each switch block. Once the switches have been placed

and routed, they are imported as macro blocks in the main network design

along with their libraries detailing both timing and physical characteristics.

The next step consists of performing a top-level clock tree synthesis by lever-

4.5 Synthesis of GALS Platforms 63

aging the switch macromodels previously extracted. In fact, this model can

be used to characterize the bottom clock tree given that these local clock

trees will not be modified by the place&route tool. Therefore, in order to

preserve the clock tree local to the switches, a ”PreservePin” tag must be

used in the CTS specification file. Please notice that the hierarchical CTS

has been used both for the synchronous and the mesochronous platforms,

since this is a standard methodology for parallel hardware platforms. The

only difference is the skew constraint in the top level clock tree, which can

be loosened for the mesochronous design while should be tightly enforced

for the synchronous one. Final step of our hierarchical methodology consists

of routing the switch-to-switch links and performing parasitics extraction

for accurate static-timing analysis and power estimation. Timing closure for

both the synchronous and mesochronous NoC has been achieved at 500 MHz

by performing exactly the same physical synthesis steps.

Figure 4.4: Power consumption with no activity and with uniform random

traffic (normalized with respect to the mesochronous network).

64
Mesochronous NoC Technology for Power-Efficient GALS MPSoCs:

Mesochronous vs. Synchronous

Figure 4.5: Area and wiring intricacy (normalized with respect to the

mesochronous network).

6 Experimental results

Area and Wiring Overhead

Figure 4.5 reports post-place&route area and wiring statistics for the archi-

tectures under analysis. From an area viewpoint, both systems exhibit the

same footprint. More in detail, our baseline architecture (i.e., the fully syn-

chronous mesh) features a 2-slots input and 6-slots output buffers. On the

other hand, its mesochronous counter-part has 3-slots input buffer and ex-

actly the same amount of output buffering. Nonetheless, the area overhead

is identical. This is due to the fact that synchronization mechanisms, tightly

coupled in the input buffer, are implemented through latch banks, which re-

quire typically a smaller area footprint compared to the flip-flops adopted in

the input buffer of the baseline architecture. The ultimate result is an equal

area occupation in both platforms although this comes with a somewhat

more challenging testing framework. From the wiring point of view, a 23%

net saving is achieved by the fully synchronous platform. The reason lies in

4.6 Experimental results 65

the fact that the mesochronous platform features an additional clock wire per

output port utilized as strobe signal for data synchronization and a further

external single bit synchronizer for backward flow control synchronization

instantiated in each of the 48 switchâtoâswitch channels of the network. Last

but not least, the slightly more complex network topology contributes to a

more complex structure of the clock tree.

Power analysis

By leveraging post-layout netlists and back-annotated switching activity, we

were able to achieve very accurate power figures. In fact, cycle-accurate sim-

ulations have been carried out with uniform random traffic as well as with

all the network switches in idle conditions. A value-change-dump file (VCD)

has been annotated from the simulations and consequently utilized to carry

out a very accurate power estimation with Synopsys PrimeTimePX. Figure

4.4 reports power consumption of both fully synchronous and mesochronous

networks. Idle power plays in favor of the fully synchronous network. This

is mainly due to the additional switchâtoâswitch clock wire used as strobe

signal for data synchronization. This result calls for further evolution of

mesochronous NoC technology, to implement a form of clock gating on these

lines. On the other hand, when stimulating the networks with a uniform ran-

dom traffic pattern, the mesochronous Network-on-Chip exhibits a smaller

power consumption with respect to the fully synchronous one. The reason

lies in the inherent architectural difference between the input buffer of the

mesochronous switch and of the synchronous one. In this latter, both flip-

flop banks are triggered at each clock cycle. Conversely, latch banks of the

mesochronous input buffer are triggered by an enable signal driven by a

counter. Since the counter logic enables only a single latch bank at a time,

the ultimate register power consumption of the mesochronous input buffer

is smaller than its synchronous counterpart. With a mesochronous NoC, an

interesting opportunity pointed by [105, 107] is to exploit hierarchical clock

tree synthesis to reduce power of the top level clock tree. The tuning knob

to materialize power savings is the relaxation of the skew constraint, so that

less buffers are instantiated in the top-level tree. We experimented this on

the 4x4 mesochronous mesh by incrementally relaxing the skew constraint.

66
Mesochronous NoC Technology for Power-Efficient GALS MPSoCs:

Mesochronous vs. Synchronous

Given the relatively small system size, we constrained the top level tree to

be placed and routed outside IP core area, which captures the challenging

requirements of many real-life MPSoC designs.

7 Conclusions and Discussion

Evolution of MPSoCs to GALS systems is an ongoing process, driven by

the immediate need to decouple voltage and frequency of IP cores from each

other for power management. However, when a GALS NoC is implemented as

an independent clock domain with dual-clock FIFOs at the boundaries, then

physical designers have again to deal with a global chip wide clock tree (i.e.,

the one of the network itself). By capitalizing on mature mesochronous tech-

nology, this chapter compares a mesochronous NoC and a fully synchronous

NoC (both for use in a GALS system) in a systematic way. The lesson learned

from this experimental work can be summarized as follows:

1. A fully synchronous NoC can be evolved to a mesochronous NoC at no

area and latency overhead because of the hybrid coupling design style.

2.During network activity, the mesochronous NoC proves more power-efficient

because of the inherent clock gating implemented at its tightly coupled syn-

chronizers in the switch input buffer. In contrast, a 20% higher standby power

is incurred because of the transmitted and continuously switching clock sig-

nals in source synchronous links. A clock gating technique applied to the

switch input buffer of the synchronous NoC and to the source synchronous

links of the mesochronous NoC may align power results of the two solutions.

In any case, the mesochronous NoC does not feature any significant overhead

from a power viewpoint.

3. Hierarchical clock tree synthesis in a mesochronous NoC can potentially

reduce total power of the top level clock tree at the cost of progressively

loosening skew constraints in the same tree. However, power savings achieved

in this way are not significant yet, for a number of concurrent reasons. First

of all, there is a gap between the required maximum skew and the obtained

one, since the CTS tool has been conceived for minimizing skew, and not

4.7 Conclusions and Discussion 67

for increasing it. Therefore, to take full advantage of this effect, CTS tools

should be customized accordingly.

4. On the other hand, when tight skew constraints are required under chal-

lenging physical and timing constraints, the CTS tool is not able to meet the

target. In practice, this means that with current CAD tools it will become

rapidly impossible to enforce tight skew constraints in the top level clock tree.

Under these operating conditions, it is important to have an underlying ar-

chitecture with inherent skew robustness. In our experiments, mesochronous

NoCs prove capable of meeting this requirement1.

2

1This chapter has included contents that are referred to a cooperative and interdisci-

plinary work where furher details are in[50].
2This chapter has included contents that are referred to a cooperative and interdisci-

plinary work where furher details are in[50].

Chapter 5

Testing Archicteture on Top of

The First Variant of the Mesh

1 Abstract

The digital design convergence, together with the new usage models of mo-

bile devices, are raising the clear need for new requirements such as flex-

ible partitioning, runtime adaptivity, reliability. In turn, such feature-rich

architectures make the testing challenge more severe. The above trend has

direct implications on the design of the underlying on-chip network, which

becomes not only the system integration framework, but also the control

framework executing hypervisor commands, or reacting to runtime operating

conditions. The ultimate challenge for the NoC is to co-design these features

together, while taking advantage of cross-feature optimization opportunities.

This chapter takes on this challenge and illustrates the design experience of

a NoC switch architecture serving as the key enabler for the next generation

of reliable and reconfigurable systems.

2 Introduction

Network-on-Chip (NoCs) design principles have recently reached a stage

where they start to stabilize[78, 79]. Unfortunately, the requirements on the

design of an embedded system as a whole are far from stabilizing. More

in detail, there is today an umistakable trend toward the implementation

70 Testing Archicteture on Top of The First Variant of the Mesh

of heterogeneous architectures in mobile systems, combining a host CPU

with a many-core programmable accelerator[80], or embedded GPGPU[81].

The provision of such acceleration by means of an array fabric of homoge-

neous processor cores yields unprecedented trade-offs between flexibility and

energy efficiency. As a result, efficient exploitation of on-chip accelerators

might go through time-multiplexing or time-interleaving of concurrent appli-

cations, which would incur large penalties in terms of serialization or context

switches, respectively. It is therefore no wonder that partitioning is emerging

as the fundamental paradigm for operation of many-core programmable ac-

celerators, in order to pursue the integration of functionality from separate

users/virtual machines onto NoC-based many-core architectures. A static

partitioning scheme cannot keep up with the increased levels of adaptivity

of modern embedded systems, therefore flexible partitioning should be the

target, that is, partitions can be arbitrarily set up or tore down at runtime,

and their shape may vary over time. A key enabler for flexible partitioning

is represented by the ability to rapidly, safely and properly configure the

routing mechanism of the underlying on-chip interconnection network, and

to dynamically reconfigure it at runtime to expose the maximum level of

flexibility to users. However, flexible partitioning and runtime reconfigura-

tion is not the only requirement that fosters the next generation of on-chip

networks. Today, due to the increased variability of components and breadth

of operating environments, reliability becomes relevant to mainstream ap-

plications. Implementation of fault-tolerant communication over the on-chip

network is still a challenging task in spite of the extensive record of research

works in the field[86], due to the potentially large overhead that may af-

fect the resulting architectures. In addition, a key property that novel NoCs

cannot miss is to guarantee a potentially fast path to industry, since NoC

deployment is today a reality. An important requirement for this purpose

is the efficient testability of candidate NoC architectures. This property is

very challenging due to the distributed nature of NoCs and to the difficult

controllability and observability of its internal components. When we also

consider the pin count limitations of current chips, we derive that NoCs will

be most probably tested in the future via built-in self-testing (BIST) strate-

gies. Although there is still ample room to research novel approaches to the

5.2 Introduction 71

specific challenges NoC architectures have to cope with, one key concern is

to co-design the solutions to different challenges in an integrated framework.

In practice, interdependencies between different NoC features should be de-

tected ahead of time so to avoid the engineering of highly optimized solutions

for specific problems, that however coexist inefficiently together in the final

switch architecture. This chapter takes on the challenge of engineering a NoC

switch for the next generation of feature-rich, highly reconfigurable and re-

liable systems, with thorough cross-feature optimizations. The novel switch

design point features the following key properties:

• The routing function is reconfigurable at runtime, so to enable ad-

vanced network management policies such as network partitioning and

isolation, virtualization, selective power down of specific regions; the

network does not need to be drained for the sake of deadlock-free re-

configuration.

• Reliability protection is guaranteed through fault-tolerant flow control

and through an error detection, notification and recovery infrastruc-

ture, with specific solutions for different kinds of faults. Single event

upsets are detected and fixed on-the-fly, while intermittent faults are

detected and addressed via routing path reconfiguration to avoid them.

• A BIST framework is set up targeting 97% coverage of single stuck-

at faults of the entire feature-rich NoC switch design. The framework

is conceived not only for post-silicon testing, but also for boot-time

testing of the device.

The distinctive contributions of this chapter are the following:

• We come up with a feature-rich NoC switch that makes an important

breakthrough in state-of-the-art NoC architectures;

• We show the interdependencies and smooth integration requirements

between the reconfiguration framework, the fault-tolerance mechanism

and the testing strategy in the proposed NoC switch.

• We quantify the steep increase in complexity that the new requirements

demand for in the NoC switch architecture.

• We identify which NoC feature impacts switch area and critical path

the most through analysis of incremental variants of the switch archi-

tecture.

72 Testing Archicteture on Top of The First Variant of the Mesh

3 Baseline Architecture

The switch architecture proposed in this work is a major extension of the

baseline ×pipesLite switch [82], which targets the embedded computing do-

main with a very lightweight architecture.

The considered ×pipesLite variant implements logic-based distributed rout-

ing (LBDR): each switch has simple combinational logic that computes target

output ports from packet destinations and local switch coordinates. By means

of 26 configuration bits for each switch (indicating switch port connectivity,

routing restrictions, and deroutes), the routing function can be reconfigured

at runtime[84]. The straightforward yet overly expensive way to make the

baseline switch fault-tolerant is through Triple Modular Redundancy. The

only advantage is that the TMR architecture can afford keeping the native

STALL/GO flow control unmodified. The baseline ×pipesLite architecture,

as well as its TMR extension, will be used as reference design points in the

experimental results.

4 Basic Design Choices for the New Switch

The proposed switch architecture is designed to be the basic building block

of a reconfigurable and fault-tolerant NoC. Reconfiguration is achieved by

means of a global controller implemented in software, which requires com-

mand execution support in hardware. A dual network is therefore designed to

exchange control information between switches and the global controller. Re-

configurability is implemented as run time modification of the routing func-

tion, in order to provide not only flexible network partitioning when several

applications are concurrently executed, but also to avoid faulty links/regions

of the network. This latter functionality requires that points of failure are first

detected, both at boot and run time, then notified to the system manager,

that triggers the reconfiguration accordingly. The basic design techniques

to deliver the target func- tionality (boot-time testing, fault tolerance, con-

trol signalling, and routing function reconfiguration) are hereafter described,

while their interdependencies are captured in section 5.

5.4 Basic Design Choices for the New Switch 73

Fault-Tolerance

Whether a fault-tolerance switching strategy should affect the flow control

protocol or not is a major design choice with high impact on the overall switch

architecture. The work in[87] derives error recovery strategies for the same

NoC switch both from a flow control protocol with error notification capabil-

ity (NACK/GO) and from another one lacking this support (STALL/GO).

Data retransmission is used in the former case, while the latter one can only

rely on error correction. It has been shown that NACK/GO potentially re-

sults in shorter critical path, more conservative area and lower peak power, at

the cost of a slight average power overhead. This led us to opt for NACK/GO

for the proposed switch architecture (Figure 5.1). The proposed solution tar-

gets single event upsets (SEUs). In the data path, detectors trigger flit re-

transmissions from the sender buffer, which is preceded by correction of the

stored flit in case it were corrupted in the buffer. On the control path, FSMs

are triplicated to avoid their permanent misalignment, while routing and ar-

bitration logic is just doubled, since dual-rail checkers (DRCs) can trigger

retransmissions from the input buffer upon mismatch detection.

Notification Interface

In this work, we opt for a centralized approach to network control: a global

manager is in charge of network reconfiguration decisions as an effect of fault-

tolerance, power management or virtualization strategies. In order to address

the need for control signaling between network nodes and the global manager,

we revert to the dual communication infrastructure proposed in[89], where

the main NoC is extended with a ring which connects all the switches of the

main NoC together. The ring implementation implies the extension of each

switch with a simple routing primitive, which is an oversimplified version of

an input buffered switch.

Reconfigurability

The reconfiguration mechanism of the routing function in the presence of

background traffic should provide deadlock freedom during the transition

from one routing algorithm to another, when extra dependencies may arise

74 Testing Archicteture on Top of The First Variant of the Mesh

and lead to deadlock. To cope with this issue, our switch leverages Overlapped

Static Reconfigurations (OSR), a technique which avoids draining network

traffic[88]. OSR was first proposed for off-chip networks, and its customiza-

tion for a much more resource-constrained on-chip setting, named OSR-Lite,

has been performed in[83]. The basic principle is the following: if packets

with the old routing function are guaranteed to never go behind packets us-

ing the new routing function, then no deadlock cycles can occur. In OSR this

is achieved by triggering a token that separates old packets from new ones.

The token advances through the network hop by hop, following the chan-

nel dependency graph of the old routing function, and progressively drains

the network from old packets, allowing new packets to enter the network at

routers where the token already passed.

Boot-Time Testing Architecture

This work implements a BIST strategy for the new switch, targeting single

stuck-at faults. All network switches are tested and diagnosed in parallel,

thus cutting down on test application time and making it independent of

network size. We envision a unique 39 bit LFSR per switch that feeds pseudo-

random test patterns to every switch port in parallel. Test responses of a

switch sub-block are fed to connected sub-blocks, serving as test patterns for

them, as much as possible, depending on whether aggregate coverage remains

reasonable or not. This approach minimizes test pattern generator (TPG) and

test wrapper overhead. Link testing is performed in a cooperative way: test

patterns are injected by the upstream switch while diagnosis is performed

by the downstream one. The BIST architecture is depicted in Fig.5.2. Test

responses are collected by Multiple Input Shift Registers (MISRs). One MISR

performs signature analysis of test responses from the link, the input buffer

and the LBDR block together with the associated OSR-Lite logic. Another

one collects responses from a crossbar mux, an output buffer, a port arbiter

and the associated OSR-Lite logic. The testing framework is able to reveal

the correct position of faults inside the switch, since a MISR is dedicated to

each input and output port.

5.5 Cross-Feature Optimizations 75

5 Cross-Feature Optimizations

Supporting fault-tolerance, reconfiguration, notification and testing in the

same switch architecture gives rise to relevant design inter-dependencies,

summarized in Fig.5.3. They are either opportunities to exploit, or require-

ments to enforce to ensure correctness, as hereafter described.

A. The support for dynamic reconfiguration of the routing function sug-

gests an efficient approach to the detection of and recovery from wear-out

faults. These latter typically exhibit a progressive onset, consisting of fre-

quent transient faults affecting the same circuit (intermittent faults) [90].

The NACK/GO infrastructure can detect transient faults and notify them

(and their location) to the global manager. The global manager can thus

monitor the frequency and the location of these events and eventually trig-

ger a reconfiguration to exclude the affected circuits before they become

permanently damaged.

B. The OSR-Lite mechanism for NACK/GO switches should accurately de-

fine when a switch port can migrate to a new routing algorithm. We activate

this latter when the token is received, and the last packet of the old routing

function has left the port while getting an ACK back from the receiver side

for it.

C. Fault-tolerance support in the switch has a double effect on testing effec-

tiveness. On one hand it ends up reducing the observability/controllability

of signals and hence the testing coverage. Voters and correctors in fact mask

errors of associated modules. Moreover, error detectors natively prevent prop-

agation of test responses across the data path upon error detection. Hence,

they cannot serve as test patterns for downstream modules, thus limiting

fault observability as well as downstream controllability. Therefore, we iden-

tified some workarounds to preserve testing coverage. In order to improve ob-

servability, voter inputs are brought to diagnosis logic that detects whether

there are discrepancies or not. To increase controllability of the data path,

we feed it with fully random test patterns from the LFSR, which are with

high probability incorrectly encoded (we use BCH code for data protection).

Test wrappers prevent the detector from driving the buffer FSM at each cy-

76 Testing Archicteture on Top of The First Variant of the Mesh

cle, thus enabling from time to time the test pattern to go through the data

path. Another wrapper randomly enables the corrector from time to time.

When this happens, test patterns for the data path are not provided by the

LFSR, but by the corrector itself. On the other hand, fault tolerance has also

some benefits on testing, that we exploited. In fact, replicated logic through

TMR and DMR provides a built-in support for diagnosis by enabling the

comparison of replicated outputs. Similarly, the error notification output of

the decoder was brought directly to a MISR for diagnosis.

D. Having a testing strategy enables the fault-tolerance framework to take

the absence of permanent faults for granted. Having our testing strategy iter-

ated at every system bootstrap increases the confidence level of this assump-

tion. Therefore, at every usage session, the user is informed about whether

the fault-tolerance logic has its full recovery capability from transient faults

at runtime, or whether it is degraded by permanent faults to some extent.

E. By having a notification infrastructure in place, and a global manager

for control tasks, implies that switches do not need to notify each other

the outcome of testing and diagnosis. This avoids the implementation of

complex notification protocols between the switches. Instead, after testing

completes at every system bootstrap, per-switch diagnosis bits are notified to

the global manager which processes them, gets global visibility, and programs

the routing function of the switches accordingly.

G. In the absence of a dual control network, overprovisioning of the main

NoC would be needed to support the reconfiguration process. For instance,

in[88] a dedicated virtual channel is instantiated for this purpose. Vice versa,

we use a VC-less main network and a simpler dual network to convey key

reconfiguration information.

F-H. The reconfiguration and the testing support dictate the packet format

on the dual control network. In particular, packets are composed of 2 or 3

flits. The first flit always contains information about the delivery time of

the packet (for fault statistics purposes), the type of information (i.e., BIST

testing result, reconfiguration bits or transient fault notification), and either

the source or the destination switch address. When BIST testing informa-

5.5 Cross-Feature Optimizations 77

tion are delivered to the global manager, then the second and the third flit

contain respectively the diagnosis result and its negated for information time

redundancy. Differently, reconfiguration packets back to switches require new

LBDR programming bits in both the second and the third flit. Finally, on-

line fault notification comes with only two flits, with the second flit reporting

the input-output port combination that triggered a transient fault.

I. As mentioned in point G, the first system configuration at bootstrap fol-

lows the BIST testing procedure, and does not take place in the presence of

background traffic. Therefore, we avoid token propagation of OSR-Lite at this

stage: and switches are programmed as they get the new routing information

through the dual network.

J. It is useless to localize faults inside modules that should be entirely dis-

abled regardless of the internal fault position. An LBDR-aware algorithm,

executed by the global manager, searching for routes on a given topology,

needs only information about the faulty links to generate a compatible rout-

ing function. As a consequence, we group switch logic blocks based on the

switch input or output port they belong to, and treat port failures as the fail-

ure of attached links. Thus, we end up having one diagnosis bit (pass/fail)

per switch port/link

K. As explained in point A, the switch is able to detect transient errors.

However, since we are targeting also intermittent faults, we notify the oc-

currence of transient faults to the global controller through ad-hoc control

packets, which also carry fault localization information.

L. The dual control network is a single point of failure, since the correct

configuration of the system depends on its capability to safely deliver in-

formation from switches to the controller and vice versa. For this purpose,

we took the approach in [10] and combined fault-tolerance design techniques

with online testing strategies on the dual control network, at the cost of

some extra communication latency on it. If a global manager detects that

communication with a switch is not fully reliable, the switch is discarded,

the topology is modified and a new routing function computed. We architect

the dual network under conservative assumptions, so that the probability of

78 Testing Archicteture on Top of The First Variant of the Mesh

Figure 5.1: NACK/GO switch architecture.

a deviation between wanted and actual routing configuration is marginal.

6 Experimental Results

All the logic synthesis runs performed in this work have been carried out by

means of a low-power standard-Vth 40nm Infineon technology library.

Complexity Breakdown: Area Results

The following experiment points out both the complexity gap between the

native xpipesLite switch and the feature-rich extended one, and the area

increment that each integrated switch feature contributes. Normalized area

results are shown in figure , where features are incrementally added to the

baseline switch. This and its TMR extension are reported as reference design

points. Fault-tolerance is clearly the highest-impact feature. A non-negligible

5.6 Experimental Results 79

Figure 5.2: BIST-enhanced switch architecture.

area contribution comes in fact from detector and corrector modules and ac-

counts for almost 13% of the total area. When the reconfiguration mecha-

nism is integrated into the NACK/GO switch, an 11% of area overhead is

introduced. The notification system (TMR-protected dual network) results

lightweight (5% area overhead) since it takes advantages of the diagnosis

logic already made available for fault-tolerance purposes. Finally, the switch

capable of built-in self-test and self-diagnosis brings a 27% of area overhead,

which is the second major source of complexity after fault-tolerance. The

area penalty mainly comes from MISRs and test-wrappers. Despite the use

of pseudo-random test patterns, which typically save area with respect to de-

terministic ones in BIST approaches[85], the control logic to be tested is so

complex that test wrappers need to penetrate deeper into the switch architec-

ture to improve controllability and observability. However, when we consider

a baseline TMR switch which implements only fault-tolerance on top of a

baseline xpipesLite switch, we can see that the proposed switch (rightmost

bar in the plot) provides many more features at comparable area footprint.

80 Testing Archicteture on Top of The First Variant of the Mesh

Figure 5.3: Interdependency Diagram between Reconfiguration, Fault-

tolerance, Testing and Notification.

Complexity Breakdown: Delay Results

In order to evaluate the effects of each additional feature on the switch propa-

gation delay, we performed a 5x5 switch synthesis for maximum performance

for all the 5 incremental solutions under test. Results are reported in Fig.5.5.

The fault-tolerant NACK/GO switch, the switch with OSR-Lite mechanism

and the switch with notification system achieved a similar maximum oper-

ating speed. Finally, the testing framework degraded by 13% the maximum

performance of the NACK/GO switch. The performance of the switch is lim-

ited by the test-wrappers placed on the critical path. Considering the TMR

solution, this is around 30% slower than the baseline switch while the pro-

posed switch delivers far more functionalities at the cost of a longer critical

path (+13%).

Coverage for single stuck-at faults

Table 6 reports the total number of cells associated to each tested mod-

ule, and the related achieved coverage by testing. This latter was derived

5.7 Conclusions 81

Switch sub-block Cells Coverage

OSR-Lite 360 95.0%

Arbiter 334 96.7%

Crossbar 154 97.4%

Input Buffer 1272 97.6%

Output Buffer 1855 97.4%

LBDR 289 91.0%

TOT 4264 96.8%

Table 5.1: Coverage for single stuck-at faults.

by means of an in-house made gate-level fault simulation framework. Worse

results are obtained for the OSR-Lite mechanism (â1
4
95%) and especially for

the LBDR (â1
4
91%), as a direct consequence of their FSMs and combinational

logic complexity, respectively. Concerning the testing latency, a network com-

posed of the proposed switches, as assumed so far, would take 10.000 clock

cycles for testing, regardless of the network size.

7 Conclusions

In this chapter, we propose a fully testable switch architecture endowed with

fault-tolerance, notification infrastructure and overlapped static reconfigura-

tion capability. We showed the major step in design complexity with respect

Figure 5.4: Area analysis.

82 Testing Archicteture on Top of The First Variant of the Mesh

Figure 5.5: Routing delay analysis.

to a state-of-the-art switch for low-to medium-end embedded systems, arising

from the more aggressive requirements on switch functionality. At the same

time, we showed that more functionality than TMR can be delivered within

the same area budget, but with a non-negligible speed penalty. Overall, this

chapter detected the interdependencies between the different design features

and addressed them all in the coherently integrated final switch microarchi-

tecture.

Chapter 6

Testing Architecture on Top of

the Second Variant of the Mesh

1 Switch Architecture

A parameterized n × m (n: number of input ports, m: number of output

ports) source based routing 2-stage switch has been designed for the applica-

tion specific computing domain, augmented with fault-tolerance provisions.

The scheme of the switch architecture is depicted in figure 6.2 and is com-

posed of the following main blocks:

- A fault tolerant Input buffer of two slots with triplicated control logic and

endowed with voters.

- A fault tolerant Output buffer of six slots with the same characteristics of

the input buffer.

- A fault tolerant Arbiter, triplicated and endowed with voters.

- A Path-Shift module and a Crossbar.

- Some comparators are placed in specific places for runtime diagnosis and

to notify the global manager.

The switch model was generated to be parameterizable to meet the require-

ments of application-specific topologies. Parameters that can be set include

the number of input and output ports and the width of the data portion of

the flit. The width of the checkbit portion is derived accordingly.

We will now describe the behaviour of each block of the switch, then we will

present the testing architecture with experimental results.

84 Testing Architecture on Top of the Second Variant of the Mesh

1.1 Tightly Coupled Dc FIFO

Synchronization interfaces, such as dual-clock FIFOs, are typically instanti-

ated as external blocks with respect to the module they are connected with.

This âloose couplingâ of synchronizers with respect to NoC components im-

plies several drawbacks. First, the FIFO module introduces additional com-

munication latency in the intercommunication link. As a result, provisions

must be normally made since the flow control signal may arrive multiple

clock cycles after the destination module decides to halt the source module.

The problem can be addressed by reserving space in the destination buffer,

thus incurring a significant area and power overhead, or by enhancing the

dual-clock FIFO with flow control capability.

In the EU-funded GALAXY project, the aforementioned problem was tackled

by merging the dual-clock FIFO with the switch input buffer, thus coming

up with a unique architecture block in charge of buffering, synchronization

and flow control, and sharing buffering resources for all of these tasks. The

GALAXY project has also showed that this design principle, which we denote

as âtight couplingâ of synchronizer with the NoC, can be applied to dual-clock

FIFOs in a straightforward way. For this reason, the switch can optionally

replace its input buffer for a fully synchronous environment with a dual-clock

FIFO for a multi-synchronous environment, as illustrated in Figure 6.1. In

all cases, functional correctness is guaranteed.

A similar functionality can be easily implemented also in the switch provided

the dc FIFO is extended with the NACK/GO flow-control protocol.

1.2 Input/Output Buffers

Input and output buffers are much simpler than the first switch variant,

since they do not have to handle the Nack/go flow control protocol but

rather the simpler stall/go one. The input buffer is sized with two slots,

which is the minimum amount of resources needed not to lose data during

stall activation. It was 3 with Nack/go. The output buffer can be arbitrarily

sized for performance buffering. As previously mentioned, control logic of

input and output buffers is triplicated for fault tolerance and endowed with

voters. An additional voter is placed on top of the data-path registers with

6.1.3 Probing System 85

Figure 6.1: Dual-Clock FIFO integration into one input port of the switch

architecture.

the purpose of voting the outputs from the three instances of the buffer

control logic. The voted output drives the read and write pointers of FIFO

data registers.

1.3 Probing System

At the same time, probes inserted in front of each voter sniff their inputs

and inform (through a comparator and an OR gate) the global manager

about possible malfunctioning of each of the replicated branches. We find it

important that the manager can keep this kind of information under control,

so to be aware of a possible degradation of the fault-tolerance capability of the

architecture. The OR gate collects the outputs of the comparators associated

with each voting stage, as well as a notification signal from the correction

sub-system denoting whether correction actions have been performed or not.

Through the OR tree, a global notification of malfunctioning is achieved for

each switch and notified to the global controller via a star interconnection

topology. In fact, we do not need a fine-grain diagnosis like in the first variant,

since if a switch component starts to fail repeatedly, we do not envision any

reconfiguration course of action in the system nor it might be possible in the

86 Testing Architecture on Top of the Second Variant of the Mesh

application-specific hardware platform at hand.

1.4 Error correction

Error correction was the preferred fault-tolerance strategy given its capabil-

ity to stretch device lifetime as much as possible in the presence of permanent

faults. The Hsiao code was used to implement the corrector. However, dif-

ferently than the first switch, an encoder needs to be integrated since with

source based routing the heat flit needs to be changed. Therefore, parity

check bits for the new flit need to be computed. Flit width can have different

sizes and this depends on data width and on the number of parity checkbits.

For example, for a data width of 32, 48, 64 or 128, their respective compound

flit width will consist of 39, 55, 72 and 137 bits. The number of checkbits

depends in fact on data width and is composed of 7, 7, 8 and 9 bits for re-

spectively a 32, 48, 64 and 128 bit data width.

These checkbits are computed by means of Hsiao encoder and are appended

to the data word before injection into the crossbar, as illustrated in figure

6.2.

A corrector module named ”Corr” and located after the data registers of

input buffers controls that the received checkbits match the computed ones

for data in transit. If checkbits are not the same, this means that the data is

corrupted and needs to be fixed. The corrector is able to detect at least two

errors and to correct only one. The corrector is also endowed with a one bit

output that informs the global manager each time computed checkbits don’t

match.

After the corrector module, there is a pipeline stage to cut down on the

switch critical path due to additional error correction logic,changing critical

path delay into latency. The pipelined organization of the switch will en-

able in the future to replace the current corrector with more powerful ones,

without or marginally impacting the clock speed. In the presence of switch

pipelining, integration with flow control is critical not to waste data and not

to incur throughput penalties. The switch implements a custom solution for

this purpose. A stall signal arriving from output ports through port arbiters

is brought both to the input buffer and to the single-slot pipeline registers,

where it serves as the enable signal. This way, we can avoid using two slot

6.1.5 Path Shifting 87

buffers as pipeline registers, as typically required for cascading stall/go retim-

ing and flow control stages. In fact, the transmission can be frozen directly

in the upstream input buffer, while preserving the capability of the pipeline

register to store 1 flit. At the same time, there is no performance penalty,

since flow resumption is immediate and in case there is no pushing data from

input buffers the stall signal is not activated from the output buffers (i.e., we

never prevent the pipeline register to get used).

At the output of the pipeline stage, flits are routed across two main paths:

- Towards the Path-Shift Module

- Towards the Arbiter Module

1.5 Path Shifting

The Path-Shift module is composed of the following blocks:

- A demultiplexer, immediately inserted after the output of the pipeline stage.

It is composed of two inputs (data input and select input) and two outputs

(one for head flits and the other one for payload/tail flits).

- A Shifter and an Encoder placed along the path followed by head flits.

- A 2x1 multiplexer

When a new flit arrives in front of the Path-shift module, we need to identify

the flit type, i.e., whether it is a head flit or not.

For doing this, the select input port of the mux/demux is directly controlled

by the first bit of the input flit.

In fact, this bit is set to ”1” for a head flit and to ”0” for payload/tail flit.

So, when the input flit is a tail or a payload, path shifting is bypassed.

On the contrary, when a head flit arrives, we need to shift the routing infor-

mation so that each switch can always find in the same position its target

output port. Alternatively, we would need to embody in the packet the indi-

cation of how many hops the packet has already gone through. This way, the

switch would have to point every time to a different location in the packet

head. After shifting the address bits, checkbits are not meaningful any more

and need to be recomputed by the encoder before the flit can move on.

88 Testing Architecture on Top of the Second Variant of the Mesh

Figure 6.2: The Second architectural Variant of the Mesh at a glance.

1.6 Control Path

Arbitration is performed with a round robin arbiter with triplicated control

logic. Each instance of the arbiter is endowed with voters for self-correction;

additional voters are located on top of crossbar multiplexers for reconvergence

of the control path to the control inputs of the data path. Similarly to the

first variant switch, a new arbiter state is saved only after voting it, to make

sure that triplicated FSMs do not get misaligned as an effect of errors. This

would compromise reliability of the control path for future transactions.

2 Testing Methodology

The main challenge of testing an application specific system consists of the

highly heterogeneous nature of the system itself, where every core (or cluster

of cores) might be operated at a different speed. For this purpose, the use of a

dual-clock FIFO between IP cores becomes mandatory. However, core speeds

are not typically fixed, but they may vary within a range. After consulting

6.2 Testing Methodology 89

Figure 6.3: Testing Architecture. In green, the test wrapper is pointed out.

with the industrial partners, we agreed on the feasibility of bringing all the

cores/clusters to the same speed for the sake of testing. This can be achieved

with frequency regulators or with a dedicated low-speed compact PLL for

system testing. Under these assumptions, we can assume to be able to test

the system under fully synchronous timing, as will be done throughout this

deliverable. Alternatively, the NaNoC design platform provided in deliverable

D1.4 a methodology to test multi-synchronous links through an asynchronous

handshake for the exchange of test patterns between frequency domains.

Due to requirement to limit the amount of area for the embedded testing

logic, and considering a milder approach to testing latency optimization, we

decided to adopt a testing approach based on pseudo-random test patterns.

The approach and the philosophy are pretty similar to the ones used for the

first variant switch, except for a few architecture-specific customizations. Di-

agnosis is again performed with Multiple Input Shift Registers (MISRs).

The overall testing architecture is depicted in the picture of figure 6.3.

As we can see, each switch is endowed with one worst case LFSR of 39 bits.

The LFSR feeds through a test wrapper all the crossbar multiplexer (”MUX”)

inputs with a 6 bits shift between any two adjacent inputs. This is needed to

90 Testing Architecture on Top of the Second Variant of the Mesh

Figure 6.4: Area overhead @500MHz.

get a satisfactory coverage for the multiplexer.

Meanwhile, the same LFSR drives the select input ports of each multiplexer

of the crossbar with a 1 bit shift position between each multiplexer, again to

stimulate all cells and improve the coverage.

At the same time, the LFSR drives the stall input and the valid input of

each input/output buffer, and the local ID flags, busy in and valid in of each

arbiter.

The data inputs of each arbiter are driven by test vectors from the upstream

switch, again implementing the principle of cooperative and parallel testing

between NoC switches.

A MISR placed after the arbiter and before the crossbar multiplexer of the

downstream performs the diagnosis.

3 Experimental Results

This section describes the experimental results of a 5x5 switch (second vari-

ant) synthesized at the target speed of 500MHz with the 40nm low-power

SVT Infineon technology library. Input buffers are assumed to be fully syn-

chronous.

Figure 6.4 shows the area overhead of the above switch (rightmost bar) with

respect to an intermediate implementation without any testing support and

to a baseline TMR extension of the xPipeslite switch (see D2.1). It can be

6.3 Experimental Results 91

Figure 6.5: Testing overhead and area Breakdown.

observed that area overhead for testing amounts to only 12.96%. At the same

time, more functionalities and provisions than the TMR switch are delivered

at a much lower area footprint. Figure 6.5 illustrates the area breakdown

of the testing logic in the switch. The major contributor to the testing logic

comes from the MISRs used to perform the diagnosis and counts for ∼8.50%.

The remaining part of the overhead is spread among the wrappers and the

LFSRs used as test patterns generators.

Figure 6.6: Normalized routing delay @Max Performance.

92 Testing Architecture on Top of the Second Variant of the Mesh

Switch sub-block Cells Coverage

Arbiter 393 96.43%

Multiplexer 144 99%

Input Buffer 803 99.5%

Output Buffer 640 98.7%

Encoder 136 99.6%

Shift 56 100%

TOT 2172 98.7%

Table 6.1: Coverage for single stuck-at faults.

The number of cycles required to reach 98.7% coverage of single stuck-at

faults in the whole switch is ∼10.000. We found this a satisfactory trade-off

given the use of pseudo-random test patterns.

Table 6.1 reports the number of cells and the coverage of each switch sub-

blocks. We used the same fault simulation framework as for the first variant

switch. The overall data-path can achieve a coverage of ∼99.19%, while the

remaining control-path is ∼96.43%; this is due to the complexity of the FSMs

inside the arbiter.

Figure 6.6 finally shows the implication of the switch features on its critical

path. The testing logic affects the maximum operating speed of the switch.

In fact, routing delay becomes ∼8% larger than the one of the switch without

the testing logic. Nevertheless, the maximum operating speed achievable is

still higher than that of the TMR reference solution.

Last but not least, when replacing the input buffer with a dual clock FIFO, in

practice there is no area overhead provided we keep the number of buffer slots

the same. Actual buffer sizing then depends on network-level requirements

such as the speed ratio between sender and receiver as well as the needed

throughput across a multi-synchronous link[52].

Chapter 7

Ultra-Low Latency NoC testing

via Pseudo-Random Test

Pattern Compaction

1 Abstract

This chapter aims at devising an optimized pseudo-random test methodology

for NoCs and its architectural support. The guiding principle consists of using

a test pattern compaction engine for generating minimal test lengths. We

show the application of this principle driven by the objective to minimize

test application time, at the cost of test wrapper complexity. The achieved

design point results in a reduction of test application time by two orders

of magnitude with respect to state-of-the-art test architectures for NoCs

exploiting pseudo-random patterns.

2 Introduction

All systems-on-chip (SoCs) should be tested for manufacturing defects. Such

testing procedure turns out to be particularly challenging for those large

scale SoCs making use of a network-on-chip (NoC) as their communication

backbone: the controllability/observability of NoC links and sub-blocks is rel-

atively reduced since they are deeply embedded and spread across the chip.

94
Ultra-Low Latency NoC testing via Pseudo-Random Test Pattern

Compaction

This issue adds up to the newer challenges of testing generic large digital

designs in nanoscale technologies. For instance, pin-count limitations restrict

the use of I/O pins dedicated for testing. Other concerns regard the use of

external testers, which has been a mainstream testing practice so far: lack

of scalability of test data volumes and high cost for full clock speed testing.

Finally, wear-out mechanisms such as oxide breakdown, electro-migration

and mechanical/thermal stress become more prominent in aggressively scaled

technology nodes. These breakdown mechanisms occur over time, therefore

the methodology and the infrastructure used for production testing should

be designed for re-use during the system lifetime as well. This again urges

new testing strategies. Built-in Self-Testing (BIST) to some extent overcomes

the above problems since test patterns are generated and evaluated on chip.

By exploiting the precise knowledge of the architecture and of the circuits

under test, a designer can come up with deterministic test patterns, thus

potentially resulting into minimized test sequences and superior coverage

results. Unfortunately, engineering such handcrafted deterministic patterns

is a largely manual and time consuming task which should be performed

again in case of technology library migrations or circuit modifications. More-

over, placement and routing of the design will certainly modify the gate-level

netlist, thus making coverage expectations not fully trustworthy.

For synthesized logic, which is by far a relevant part of an embedded sys-

tem, pseudo-random test patterns are frequently used because of their higher

flexibility. They potentially result in a lightweight test architecture due to

the simplicity of the linear feedback shift registers (LFSRs) and of the mul-

tiple input signature registers (MISRs) used to generate test patterns and

signatures respectively. The work in [50] proves a 20% area saving in 45nm

technology when a BIST architecture for NoCs is fed by pseudo-random pat-

terns rather than by handcrafted deterministic ones. Unfortunately, testing

with pseudo-random patterns also typically dominates the total runtime of

the BIST: in [12] 200000 cycles are reported for testing the main modules of

a NoC switch with such patterns. A reduction of one order of magnitude in

testing latency has been proved in [50], however authors there take a hybrid

approach, where pseudo-random test patterns are combined with determin-

istic ones and with architecture-specific DfT optimizations.

7.3 Related Work 95

In this chapter, we view the flexibility and the reduced test latency require-

ments as fundamental for efficient NoC testing. On one hand, re-engineering

deterministic patterns for each product evolution or technology migration is

not cost-effective. On the other hand, overly long test application times are

not compatible with the lifetime testing paradigm, where a testing procedure

may be run at least at each system bootstrap.

As a result, the main objective of this chapter is to develop an ultra low-

latency testing framework for NoCs capable of achieving such unprecedented

test application times (below 250 cycles regardless of the network size) with-

out reverting to deterministic patterns. In contrast, we start from pseudo-

random patterns and develop a testing methodology and its architectural

support in the NoC that preserve the generic and flexible nature of the pat-

terns. Such methodology and test architecture are therefore pretty general

in scope and can be applied to any NoC architecture other than the one

considered in this chapter. Test set compaction is at the core of our testing

framework. In order to minimize the test application time we chose to com-

pact test patterns for combinational logic blocks, where compaction efficiency

is more likely to outperform that achievable for sequential circuits. Registers

are tested with standard techniques. Combined with the concurrent testing

of switch sub-blocks, this approach achieved an order of magnitude lower test

application time than current literature.

The trade-off is clearly with the implementation complexity of the test wrap-

per, which needs to isolate the circuits that are concurrently tested and to

connect them to their test pattern generators (TPGs) and response analyzers.

This chapter proposes also an optimization strategy to limit such overhead

which consists of cascading several circuits under test (test responses of one

block become test patterns for the next one) and of exploiting the synergies

between them.

3 Related Work

As the integration densities keep increasing, on-chip interconnection networks

are becoming the reference communication backbone for multi-core comput-

ing in many embedded high performance systems [10], [7]. However, defects

96
Ultra-Low Latency NoC testing via Pseudo-Random Test Pattern

Compaction

still continue to increase and are more prominent in scaled technology. To

cope with this high defect rates, many test mechanisms have been proposed.

For example, [15] and [19] propose a test mechanism for regular and modular

systems like on-chip networks, but they incur a considerable area overhead.

In the same way, [18], [16], [20] and [17] have proposed full-scan and bound-

ary scan strategies, but they still have a high area overhead as showed in [14].

An alternative approach to reduce this overhead could be the partial scan

technique, however its testing time is the main drawback (tens of thousands

of clock cycles).

Another solution consists of applying test patterns from the input/output

borders of the network [8]; this approach has been extended in [9] in such a

way to support the diagnosis too. However, this approach is limited by the

high number of necessary test pins.

[3] proposed a testing framework based on handcrafted deterministic test

patterns and exploits the inherent structural redundancy of NoC switches.

This deterministic approach leads to one of the fastest testing times reported

in the literature for single stuck-at faults. However, this approach requires

the in-depth knowledge of the architecture under test and an extensive ef-

fort to carefully engineer handcrafted test patterns for it. On the same NoC

architecture of [3], the work in [50] implements a test architecture fed by

pseudo-random patterns. The achieved design point cuts down on the area

overhead by 20% in 45nm technology but provides comparable coverage in

one order of magnitude more test application time. On a different switch ar-

chitecture, [12] reports several tens of thousands of cycles for pseudo-random

testing of most parts of the switch, confirming that the use of such patterns

inherently plays against testing latency.

In this chapter, on the same NoC architecture of [3] and [50] we provide

a new design point, which achieves a high fault coverage with generic test

methodology steps and architecture design techniques (i.e., no deterministic

patterns). We rely on existing test set compaction tools (namely [4] and [5])

to cut down on testing latency, and elaborate on the test methodology and

on the architecture support needed to achieve unprecedented values of test

application times. The key challenge this chapter deals with is to identify the

most suitable circuits for test set compaction, so to maximize compaction

7.4 Testing methodology 97

efficiency and minimize test application time. At the same time, the imple-

mentation complexity of test wrappers, TPGs and response analyzers are

kept under control.

4 Testing methodology

The philosophy behind this work is that pseudo-random test patterns are de-

sirable for NoC testing since they can be easily reused and extended across

architecture variants and technology migrations. In fact, they save the con-

siderable effort and time to develop handcrafted deterministic patterns for

the architecture under test.

On the other hand, we believe that some optimizations with respect to their

naive application to NoCs are necessary to reduce test application time. This

chapter pushes this consideration to the limit and tackles the challenge of

materializing an ultra-low latency testing framework for NoCs start-

ing from pseudo-random test patterns. The applied optimizations then

retain the generic and flexible nature of the testing methodology by never

reverting to deterministic test patterns.

We found test set compaction a suitable architecture-agnostic step to opti-

mize test patterns, where the specific architecture implementation comes into

play only in determining the achieved compaction efficiency. In this chapter

we applied state-of-the-art compaction tools from the Turbo Tester [23] suite

for handling test patterns for the modules of NoC switches. To note that com-

paction tools have more degrees of freedom for test set optimizations when

they are fed by long test sequences that most likely stimulate the same error

multiple times. Thus, the choice of pseudo-random test sequences is an ideal

target for this case since these latter are commonly longer than deterministic

sequences generated by any ATPGs.

In order to obtain minimal test lengths, the following strategy was selected.

First, long pseudo-random test sequences were generated till the

obtained coverage for single stuck-at faults was 99%. Then, an ef-

ficient static test set compaction tool (Optimize [4]) was run by

requesting it to derive a compressed test set tracking the previ-

ously obtained coverage for each tested module. Finally, a veri-

98
Ultra-Low Latency NoC testing via Pseudo-Random Test Pattern

Compaction

fication step of the achieved coverage with the new test set was

performed. The compacted vectors are then easily hardwired in

hardware TPG.

A key issue for our testing framework was to properly identify the circuit

blocks the methodology should be applied to. The guiding principle in making

this choice was to achieve the lowest possible testing latency for the NoC as

a whole. This was pursued in two ways:

• Testing of NoC switches was engineered in such a way that all switches

can be tested in parallel. The key enabler was to implement a coopera-

tion mechanism between switches for testing their inter-switch links. In

practice, each switch sends test patterns across its outgoing links and

response analysis will be performed in the neighboring switches. The

opposite holds for incoming links, which are analyzed locally. At the

same time, switch internal blocks are tested in parallel, thus avoiding to

create dependencies between testing phases and enabling the maximum

testing parallelism.

• Test set compaction for combinational logic is intuitively simpler and

potentially more effective than that for sequential circuits. There are

a number of reasons for this. First, the compaction algorithm should

deal with simple test vectors rather than with test sequences. Secondly,

testing sequential logic of switch FSMs presents different requirements

with respect to combinational logic testing. In fact sequential logic has

fewer inputs than combinational logic but needs more clock cycles to

be stimulated, thus requiring a suitable wrapper properly sequencing

the outputs of the test generator. For these reasons, our goal of min-

imizing test application time motivated the choice for splitting each

switch sub-block (essentially arbiters, buffers and crossbar) into their

combinational logic and registers for the sake of testing. Then, registers

were tested with well-known techniques (fundamentally, comparison of

test responses or built-in scan-chains for self-testing), while the test set

compaction methodology was applied to combinational logic.

The choice of isolating combinational logic for its efficient testing has a rele-

vant impact on FSMs. In fact, their state registers are tested separately and

their current state signals feeding the combinational logic should be made

7.5 Baseline Switch Architecture 99

controllable to the TPG. In turn, the outputs and the next state signals from

the combinational logic should be made observable to the response analyzer.

For testing the registers, we adopted the most convenient standard approach

depending on the register type (state registers, configuration registers and

data registers).

The above design decisions paved the way for a test architecture for NoCs

aiming at competitive coverage of single stuck-at faults and unprecedented

test application times with respect to current literature at the cost of test

wrapper complexity. However, the choice of pseudo-random test patterns

and of their compaction poses the foundation for low-overhead TPGs and

response analyzers, thus partially counterbalancing the footprint of the test

wrapper. The achieved trade-off and its comparison with state-of-the-art so-

lutions will be quantified in the experimental results section.

5 Baseline Switch Architecture

A 5x5 xpipesLite switch [6] has been used in this chapter as the baseline

design point without any testing support. The main blocks of this switch

are illustrated in Figure 7.1. For each input port, a 2-slot input buffer and a

routing module are instantiated. We use logic-based distributed routing [22],

which computes target output ports by means of a simple combinational logic

for each packet head. In order to provide implementation support for different

routing algorithms, the logic is fed by 26 configuration bits per input port. For

each output port, a port arbiter and a 6-slot output buffer are instantiated.

Also, a 5x1 Multiplexer is placed in front of each output buffer, globally

building up the switch crossbar. The switch implements wormhole switching

and the stall/go flow control.

6 Testing Architecture

Next we present in detail all the changes applied to each block of the archi-

tecture. We will analyze respectively the testing scheme of the LBDR, Ar-

biter, Output buffer, Input buffer and Crossbar. After analyzing each block

standalone, we will perform an optimization by merging some test phases

100
Ultra-Low Latency NoC testing via Pseudo-Random Test Pattern

Compaction

Figure 7.1: Baseline Switch Architecture.

together.

6.1 LBDR testing

Each LBDR routing module is split into two main blocks in such a way to be

able to apply the key concept of our approach (see Fig. 7.2). The first block is

composed of the LBDR configuration registers (FF i blocks of fig.7.2), while

the second one is the LBDR combinational logic (Combinational block of

fig.7.2). Combinational logic computes the information contained in the con-

figuration registers. Configuration registers contain information about the

routing restrictions of the routing algorithm (Rbits), the connectivity of the

switch ports (Cbits), the local switch ID in the topology (Sid) and about

deroutes to be taken in some special cases (Dbits) [22]. In test mode, these

informations are randomized by the TPG, implementing the compacted vec-

tors. The LBDR logic reads also the destination address (11 bits) from the

head flit, which needs again to be randomized in test mode. The compacted

vectors codified in the TPG Optimized block of fig.7.2 are used to test the

combinational block of the LBDR. Before reaching the block under test, the

compact test set has to cross first the wrapper placed in front of it. Response

analysis is performed by comparators exploiting the output of the 5 switch

7.6.2 Arbiter testing 101

Figure 7.2: Lbdr Testing Architecture.

ports, but nothing prevents from using MISRs. In both cases, the faulty

routing module can be easily identified. All switch routing modules share the

same TPG.

The scan-chain approach has been adopted for testing the registers of the

LBDR. A 1 bit test pattern generator was used to inject a sequence of 0s/1s

along the scan chain. A response analyzer, placed at the end of the scan

chain, receives and analyzes the bit response after some amount of cycles

(depending on the number of registers to cross). The configuration registers

of the same LBDR modules are tested in a sequential manner. The testing of

the five LBDR configuration registers occurs in parallel; they share the same

TPG and counter but have different analyzers.

Finally, a BIST control engine drives the select bits of the test wrapper.

6.2 Arbiter testing

We distinguish between combinational logic and state registers also in the

arbiter FSM. The testing diagram is depicted in Fig.7.3.

The arbiter state registers are tested in the same way as those of the in-

102
Ultra-Low Latency NoC testing via Pseudo-Random Test Pattern

Compaction

Figure 7.3: Arbiter Testing Architecture.

put/output buffers (see Section 6.3).

For the combinational block, besides connecting its primary inputs to the

optimized TPG, we broke the feedback loop of the FSM in order to increase

the controllability of the block. A comparator is again used for response

analysis, thus exploiting the multiple instantiation of arbiters in the switch

and their concurrent testing.

6.3 Output buffer testing

The output buffer belongs to the data path of the switch but it internally

consists of an actual data path (data registers with selection input demux

and output mux) and of a control FSM driving the read and write pointers

of the mux and demux. For the sake of testing, these two internal blocks have

been separated. The test architecture is illustrated in Fig.7.4.

The combinational block of the control-path is tested with compacted vec-

tors generated by the Turbo Tester tool. State registers of the FSM could

7.6.4 Input buffer testing 103

Figure 7.4: Output Buffer Testing Architecture.

be tested as previously illustrated for the LBDR. However, here we present

a further opportunity consisting of feeding the combinational logic outputs

to the registers and analyzing their outputs by means of cycle-by-cycle com-

parators with the same outputs from the other switch buffers. Even in this

case, full coverage is guaranteed. In order to test the data path registers, we

used a 32 bit register where the outputs are inverted and connected back to

the inputs, thus generating a sequence of 0s and 1s. Due to the fact that the

output signals from the control-path are not random enough, we opted for a

small LFSR to drive the read/write pointers of the data path. Both pointers

are connected to the same LFSR outputs, so to coherently swap all register

banks.

6.4 Input buffer testing

The input buffer is tested exactly in the same way as the output buffer. The

testing diagram of this element is identical to the testing scheme of output

buffer as described in fig.7.4. The only difference is the number of slots (2 for

the input buffer and 6 for the output buffer).

104
Ultra-Low Latency NoC testing via Pseudo-Random Test Pattern

Compaction

Figure 7.5: Testing Architecture for Crossbar Multiplexers.

6.5 Testing Multiplexers of the Crossbar

The testing infrastructure adopted to test the multiplexers of the crossbar is

depicted in Fig. 7.5. The TPG is a 5 bits maximal-length LFSR. The 5 bits

LFSR generates all the patterns necessary to stimulate all the possible states

of the multiplexers in less than 32 cycles. In particular, the relevant patterns

for the testing of a 5x1 multiplexer are the following: 10000, 01111, 01000,

10111, 00100, 11011, 00010, 11101, 00001 & 11110. Each pattern generated

by the LFSR feeds a block called “select-mux“. This latter is able to select the

multiplexer input port carrying the logic value that is negated with respect

to the other 4 input values. Finally, the diagnosis is performed by means of

a comparator exploiting the output of the 5 multiplexers of the crossbar.

6.6 Testing Infrastructure Optimization

After testing each block independently, we cascaded the circuits under test

exploiting the synergies between them in order to cut down on test wrapper

and TPGs complexity.

7.6.6 Testing Infrastructure Optimization 105

Figure 7.6: Cascaded Testing Architecture.

The cascade is composed by the following modules:

• The Crossbar of the upstream switch

• The Output buffer of the upstream switch

• The Inter-switch link

• The Input buffer of the downstream switch

At the beginning of the cascade, we inserted a 5 bits LFSR (as described in

Figure 7.5). Since test responses of one block become test patterns for the

next one then the LFSR is responsible for the injection of test vectors for the

whole cascade.

Such optimization allowed us to remove the input/output TPGs based on

registers previously located in front of the input/output buffer. In the same

way, we removed both the comparators located after the multiplexer and

the output buffer. Finally, the comparator located after the input buffer in

the downstream switch is the only preserved. The cascade testing scheme is

presented in Fig.7.6.

To test the communication link, we synchronized the injection rate of some of

the test patterns generators. In this specific case, we have three independent

TPGs to synchronize:

-The TPG in front of the multiplexer input ports

106
Ultra-Low Latency NoC testing via Pseudo-Random Test Pattern

Compaction

-The two LFSRs of the read/write pointers of the input/output buffer

The synchronization must be performed in such a way to ensure the maximum

coverage of all the blocks that belong to the cascade.

The multiplexer TPG starts to inject the test data as soon as the test mode

is selected. The injection length depends on the number of cycles necessary

to maximize the coverage of the cascade. Meanwhile, both the LFSRs re-

spectively lying in the output buffer upstream switch and in the input buffer

downstream switch are clocked each 31 cycles. Clearly, they must be clocked

at least six times (i.e. the number of slots of the output buffer) in order to

allow the data tests to cross all the data-path registers.

7 Experimental results

This section presents the experimental results for a 5x5 NoC switch synthe-

sized at 600 MHz in a 65nm industrial technology library. For the sake of

comparison, two test architecture variants for the same baseline switch are

available from previous work and used in this chapter to assess the trade-offs

of the new design point proposed by this chapter. Therefore, our approach

with optimized pseudo-random patterns is contrasted with the handcrafted

deterministic test patterns used in [3] and with the non-compacted pseudo-

random patterns used in [50], and above all with their enabling test architec-

tures. In this comparison we do not consider ATPG generated test patterns

since it has been demonstrated in [3] that these latter are not competitive

with the handcrafted deterministic ones from a coverage viewpoint. This

chapter does not consider solutions providing less than 98% coverage on the

considered NoC architecture.

7.1 Area Overhead

Fig.7.7 illustrates the area overhead of three BIST solutions for the xpipesLite

switch (the one of this chapter, the one with handcrafted deterministic pat-

terns [3] and the one with non-compacted pseudo-random patterns [50]) nor-

malized with respect to the deterministic switch. As we can see, around 11%

7.7.1 Area Overhead 107

0

0,2

0,4

0,6

0,8

1

1,2

PSEUDO_RANDOM DETERMINISTIC PROPOSED

TPG

MISR

COMPARATOR

WRAPPER

SWITCH

A
re

a
O

ve
rh

ea
d

Figure 7.7: Area Overhead: Deterministic [3], Pseudo-Random [50] and Pro-

posed Compacted Pseudo-Random Approach.

of the area overhead of the deterministic approach comes from the wrapper,

needed because of the different test phases that this approach requires, in ad-

dition to switch sub-block isolation for the sake of testing. Another 7% comes

from TPGs, which encode the handcrafted test patterns, and marginally from

diagnosis logic and the BIST manager. Finally, the comparator tree used for

response analysis takes around 13% of the area.

When the test architecture is reconceived for non-compacted pseudo-random

patterns, then the area overhead is reduced by ∼26% in the considered 65nm

library. Interestingly, the breakdown is completely different. MISRs are used

for response analysis and account for most of the area overhead. LFSRs are

extremely compact TPGs while less than 3% of the area is devoted to the

test wrapper. In this architecture, block cascading was extensively used (i.e.,

test responses of some blocks are fed as test patterns to downstream blocks,

at least until cascading does not hurt coverage too much) thus cutting down

on the test wrapper overhead.

When it comes to the test architecture with test set compaction, the area

overhead is 9.8% with respect to the deterministic approach. The proposed

solution optimizes pseudo-random patterns thus incurring in a small area

overhead, while significantly improving test application time (see section 7.2).

Most of the area overhead is due to the multiple instantiation of comparators

and to the test wrapper, which needs to provide finer-grain circuit isolation in

test mode. The applied optimizations in the test infrastructure proved very

108
Ultra-Low Latency NoC testing via Pseudo-Random Test Pattern

Compaction

effective in reducing the area overhead, to the extent that it closely tracks

the overhead of the deterministic test architecture.

7.2 Testing time

Table 7.1: Test Application Time Per Block

TPGs Multiplexer Output LFSR Input LFSR

Injection period 1 cycle 31 cycles 31 cycles

#Vectors 239 8 (7.7) 8 (7.7)

Total Cycles 239 239 239

Table 7.1 contains the injection rates of the TPGs used to optimize the

cascade of Fig. 7.6. In fact, the TPG located at the beginning of the cascade

starts to inject the data test as soon as the test mode signal driven by the

BIST-engine is high. As mentioned in Table 7.1, this injection occurs for∼239

cycles. At the same time, the multiplexer TPG controls the select inputs of

the crossbar through the ”select-mux” block. Meanwhile, local LFSRs of

the output/input buffers in the upstream/downstream switch control the

read/write pointers of data-path registers. These local LFSRs continuously

inject patterns after each 31 cycles as mentioned in Table 7.1. Overall, the

test application time amounts to 239 cycles.

Table 7.2: Testing Cycles as function of the Testing Approach

Testing Technique Testing Time (cycles)

Compressed Pseudo-Random Testing Approach 239

Deterministic Testing Approach 1104

Pseudo-Random Testing Approach 10000

Table 7.2 compares this value with those of the alternative approaches, for the

same target coverage of approximately 99%. All approaches implement some

form of testing cooperation between neighboring switches and share the same

baseline switch architecture. However, test set compaction, proper choice of

the granularity of the circuits to test (and consequent compaction efficiency)

and merging of test phases make the approach of this chapter the fastest.

7.7.3 Coverage 109

Only handcrafted deterministic patterns can somehow approach the test-

ing time of this chapter with around 1104 cycles. Although non-compacted

pseudo-random patterns can achieve 96% of coverage in a comparable time

with handcrafted deterministic patterns, they take around 10000 cycles to

reach around 98% of coverage.

Table 7.3: Test application time and coverage of different testing methods

Test Cycle Coverage

Our 239 98.3%

[3] 864 - 1104 99.3%

[2] 3.88 x 102 - 2.89 x 103 97.79%

[20] 4.05 x 105 95.20%

[13] 2.74 x 103 99.89%

[14] 9.45 x 103 - 3.33 x 104 98.93%

[21] 5 x 104 - 1.24 x 108 N.A.

[11] 320 99.33%

[12] 200 x 103 full (no exact numbers)

Our test application time compares favorably with previous work, as Table

7.3 shows. Only [2] and [11] are somehow competitive. However, [2] does not

test the control path while [11] reports 320 cycles for a 3x3 mesh (made of

a simplified switch architecture) which however grow linearly with network

size. Also, this latter approach makes additional use of BIST logic for the

control path not accounted for in the statistics.

We feel that area overhead is hardly comparable with previous work since

whenever numbers are available, features of the testing frameworks are very

different (e.g., control path not tested [2], test patterns generated externally

[20, 14], diagnosis missing [20, 13, 14, 21], lack of similar test time scalability

[8, 11], NoC architecture with overly costly links [13]). Moreover, the impact

of synthesis constraints is never discussed.

110
Ultra-Low Latency NoC testing via Pseudo-Random Test Pattern

Compaction

Table 7.4: Coverage as function of the Testing Approach

Testing Technique Coverage (%)

Compacted Pseudo-Random Testing Approach 98.3%

Deterministic Testing Approach 99.30%

Pseudo-Random Testing Approach 98.24%

7.3 Coverage

The obtained coverage for single stuck-at faults is illustrated in Table 7.4. The

technique proposed in this chapter tracks the coverage of the pseudo-random

approach although does far better in terms of latency.

At the same time, our technique removes the burden of deriving handcrafted

test patterns and enables the use of test generation and compaction tools,

with one order of magnitude lower testing latency.

Table 7.5: Compaction Table

Combinational Random Random Compacted Compacted

Logic (#vectors) (coverage) (#vectors) (coverage)

FSM Input 1000 100.00% 10 100.00%

FSM Output 1000 100.00% 17 100.00%

LBDR 400000 93.04% 61 92.17%

ARBITER 170000 99.37% 42 99.37%

Table 7.5 shows the impact of the compaction tool on the pseudo-random

test set generated for each combinational block of the switch control logic.

The second and third columns of the table report the number of pseudo-

random vectors together with their coverage while the last columns show the

number of vectors with the respective coverage once they are compacted by

the tool. It is possible to notice that the compaction operation is efficient

and the compacted test set tracks the previously obtained coverage for each

tested module.

7.8 Conclusions 111

8 Conclusions

This chapter presents a testing methodology and architecture support for

NoCs that aim at the minimization of test application time, a requirement

that well matches the future requirements of lifetime testing frameworks.

In fact, while testing latency was not a concern for production testing, it

becomes such when the testing procedure is run at system bootstrap and/or

at runtime. We demonstrate NoC testing in less than 250 cycles. Above all, we

do not achieve this result with handcrafted deterministic test patterns, but

rather with an optimization methodology of pseudo-random patterns. The

guiding principle is test set compaction, although the low-latency requirement

forces a careful selection of the logic to test for best compaction efficiency.

The trade-off is therefore between test application time and test wrapper

overhead, although the final area footprint tracks that for a test architecture

with handcrafted deterministic patterns but with one order of magnitude

lower testing latency.

Chapter 8

Cost-effective Contention

Avoidance in a CMP with

Shared Memory Controllers

1 Abstract

Efficient CMP utilisation requires virtualisation. This forces multiple appli-

cations to contend for the same network resources and memory bandwidth.

In this chapter we study the cause and effect of network congestion with re-

spect to traffic local to the applications, and traffic caused by memory access.

This reveals that applications close to the memory controller suffer because

of congestion caused by memory controller traffic from other applications. We

present a simple mechanism to reduce head-of-line blocking in the switches,

which efficiently reduces network congestion, increases network performance,

and evens out the performance differences between the CMP applications.

2 Introduction

The access to the off-chip memory in large chip multiprocessors (CMPs)

based on a switched interconnect (NoC) consumes a significant portion of the

bandwidth in the on-chip network. Furthermore, this traffic is targeted to-

wards specific areas of the chip where the memory controllers are connected.

114
Cost-effective Contention Avoidance in a CMP with Shared Memory

Controllers

Previous studies [57] show that the placement of these memory controller

connections have a significant impact on the network load, but the authors

do not study how this impacts the performance of the applications them-

selves and the complex interaction between the local traffic (caused by cache

coherency protocols) and the memory controller traffic. The initial intuitive

understanding of the effect of memory controller access point placement on

application performance is that the applications located closest to the mem-

ory controller access points will experience better performance compared to

applications allocated further away [70]. However, we show that applications

that reside close to the memory controller might be more severely affected

by the interplay between local traffic and memory controller traffic.

Figure 8.1: CMP tile-based design with dynamic application domains

8.2 Introduction 115

Figure 8.2: Basic switch architecture

To ease development, the tiles in a CMP are usually homogeneous, with a

structure as displayed in Figure 8.1. Every tile has a private level I and (usu-

ally) a shared level II cache, together with the processing core and a switch

to access the on chip network. Off-chip memory (DRAM) is accessed through

one or more memory controllers connected to the on-chip network, usually at

the edge of the chip, through one or more ports. The network on chip carries

cache coherency traffic between the level I and level II caches, and memory

access traffic to and from the memory controller. The two traffic types may

or may not be divided into two virtual networks (using virtual channels).

The interaction between these two traffic types is the core of the issue we

study in this chapter. Local traffic from one application (cache coherency

traffic) should not interfere with the local traffic from other applications,

as application isolation is a core concept of CMP virtualisation [59]. Most

applications will, however, be affected by the memory controller traffic from

other applications. In this chapter we study how and to what extent the local

and memory controller traffic contribute to network congestion and how this

affects application performance. Based on this study we present a mechanism

to reduce head-of-line blocking, and thus network congestion, both with and

without virtual channels. The structure of this chapter is as follows: Section 3

116
Cost-effective Contention Avoidance in a CMP with Shared Memory

Controllers

presents the NoC background and the related work. In Section 4 we describe

the congestion problem in on-chip networks and the causes behind it, and we

present our congestion control solution in Section 5. Next, in Section 6, we

detail the evaluation scenario and the results obtained, and finally in Section

7, we present some conclusions and future work.

3 NoC Background and Related work

There is significant ongoing research to study how application mapping and

basic properties of virtualisation is related to network performance. In [59],

the importance of traffic isolation and contiguous application mapping is

presented to demonstrate the foundations of virtualisation. Das et al. [70]

study application mapping mechanisms, and show that memory intensive

applications should be located close to the memory controller, but the authors

do not study the impact of application traffic and memory controller traffic

on the mapping. To simplify such mapping problems, Abts et al. [57] study

alternative memory controller placements by moving the memory controller

access points towards the centre of the chip. This breaks the regularity of the

chip, both in design and routing, so further study is required before these

strategies may realistically be employed. Finally, Sanchez et al. [64] describe

how different NoC topologies can impact on application performance, but do

not consider the location of the application relative to other applications and

the memory controllers in the CMP.

There is a number of solutions in [65, 66, 67] that attempt to reduce the

negative effect of shared resources through quality of service (QoS) based on

priority schemes. Although all these solutions can alleviate network conges-

tion by prioritising different traffic types, their objective is to differentiate

the traffic and they do not focus on the congestion problem itself. As a con-

sequence, there maybe congestion within each traffic class for unpredictable

traffic patterns.

A number of solutions for CMP NoCs are presented in [60, 61, 62, 63]. The

authors describe mechanisms that collect congestion information from the

neighbouring nodes through the routing process and buffer ingress/egress

monitoring. The idea is to offer an alternative path to route around a con-

8.4 NoC Congestion 117

gested area of the chip. However, this assumption will impact negatively

creating more congested resources, as it is impossible to avoid the congested

region if all the congested traffic has the same target (the memory controller).

Van den Brand et al. [2] and Thottethodi et al. [19] rely on a central controller

to gather congestion information from the network. Whereas the former uses

a guaranteed service traffic class to propagate congestion notifications to the

sources, the latter uses a separate control network for this purpose. Neither

solution offers great scalability because of the centralisation. There is still an

ongoing field of research on many aspects related to congestion management

in NoCs for CMPs, but we have found that the basic congestion problem in

a virtualised CMP is not well understood. Therefore, our objective with this

chapter is to present a study on how congestion problems arise in the event

of many concurrent applications with shared resources (memory controllers).

This work serves as a motivation and guide in the search for cost-effective

resource management solutions, and we present a solution to deal with the

congestion problems in these scenarios.

4 NoC Congestion

In this section we describe the concept of network on chip contention and how

this leads to network congestion. Furthermore, we examine the relationship

between the local traffic and memory controller traffic in order to determine

how this will affect application performance based on its location on the chip

relative to the memory controller access points.

4.1 NoC Contention

Whenever a NoC packet enters a switch, it is buffered, and the header infor-

mation is read to determine the output port for the packet from the switch

(see Figure 8.2). The packet must then wait until it reaches the head of the

queue and the appropriate output port is available (i.e. not receiving a packet

from another port in the switch and not blocked by flow control). NoCs em-

ploy flow control to ensure that packets are never dropped by guaranteeing

that there is buffer space available in the next hop switch before forwarding

118
Cost-effective Contention Avoidance in a CMP with Shared Memory

Controllers

the packet across the link [68]. Since multiple packets in different input ports

in the switch may have the same output port, a given packet might have to

wait for several scheduling rounds (output port contention) before it is al-

lowed access to the switch crossbar and can continue. During this time there

may be other packets in the same buffer with different output ports that are

available. However, these packets cannot proceed because they are blocked

by the first packet in the queue. This is known as head-of-line blocking.

Together with head-of-line blocking, the flow control mechanism causes con-

gestion trees to build up in the network. Whenever a packet is blocked, it will

block packets upstream, gradually expanding the congestion tree branches

from the tree root through this back-pressure mechanism. The root is the

switch without enough capacity to forward all incoming packets (the place

where the packets are first blocked). For the memory controller traffic, con-

gestion tree roots will typically be the cores that are the memory controller

access points. Output port contention and head-of-line blocking combined

with the back-pressure caused by the flow control mechanism leads to net-

work congestion at high network load, which has a significant impact on the

performance of the NoC.

4.2 Application Performance Relative to Memory Con-

troller Location

When using virtualisation to support multiple concurrent applications on a

CMP, the two traffic types (local traffic and memory controller traffic) may

or may not be separated into two different virtual networks using virtual

channels. If all the traffic runs on the same virtual channel (i.e. one virtual

channel) it is obvious that applications that suffer congested transit mem-

ory controller traffic will experience congestion in the local traffic as well.

However, using two virtual networks allows a separation of the traffic which

reduces the interaction between the two traffic types.

With two virtual channels, each channel is typically guaranteed 50% of the

physical channel bandwidth. Consequently, as long as neither of the two traf-

fic types have a demand greater than 50% of the channel bandwidth, there

is no significant interaction between the traffic. However, most applications

8.5 NoC Congestion Control 119

have a larger amount of local traffic than memory controller traffic. Thus, the

applications that are located far away from the memory controller and have

little transit memory controller traffic, the application is free to use more than

50% of the bandwidth for local traffic. For the applications located closer to

the memory controller the amount of transit memory controller traffic in-

creases drastically, which reduces the effective local traffic down to max 50%

and may introduce congestion problems for the local application traffic. Con-

sequently, applications located closer to the memory controller will exhibit

worse performance. This contradicts previous studies which concluded that

applications close to the memory controller had better performance [69, 70],

and we clearly see this effect in the evaluation section.

This discussion has shown that even though a large degree of traffic isolation

can be achieved using virtual channels, there is still interaction which can ad-

versely affect application performance as we will see in the evaluation section

(Section 6). We will also see that not separating the traffic has even more

adverse effects on application performance. Efficient resource management

in terms of congestion control is therefore required, both to increase overall

efficiency of the chip and fairness between the running applications.

5 NoC Congestion Control

For congestion management, we propose HACS (Head-of-line Avoidance Con-

gestion Skip-ahead), a head-of-line blocking observation mechanism that al-

lows buffered packets to bypass the packet that is at the head of the queue.

The core mechanism is presented in Figure 8.3. Note that this mechanism

is supported under virtual cut-through packet switching. Whenever a packet

is stalled for a given time period at the head of a buffer, HACS will search

further back in the queue for the first packet that is routed to a free out-

put port, because of a different destination, and let this skip to the head of

the queue. This effectively reduces head-of-line blocking with the result of

reduced congestion.

We now discuss the implementation of HACS in xpipesLite [68]. All packets

are assumed to be 4 flits long by padding shorter ones and by splitting longer

messages into multiple packets. The network guarantees in-order delivery

120
Cost-effective Contention Avoidance in a CMP with Shared Memory

Controllers

of packets headed to the same destination. An arbiter is instantiated for

each output port to perform round robin arbitration among all inputs with

valid asserted and presenting a head flit. The switch implements the LBDR

mechanism [71].

Assume two packets ”A” and ”B” are stored in an input buffer (see Fig-

ure 8.3), and let the arbiter of the output port requested by ”A” be stalled

(blocked), thus preventing packet forwarding. In the HACS switch, a timer

is activated upon snooping such a stall condition. If the stall signal changes

during the count-down, the timer will be reset till the generation of the next

stall. If the stall is still high at the time-out, the control logic shifts the

read pointer to the head flit of the second packet. Before computing the

destination of ”B”, the LBDR routing logic saves the destination of ”A” in

backup registers (Lbdr-out-A in the figure) for further comparison with the

target output of packet ”B”. A XOR comparator compares the two target

ports required by ”A” and ”B”. If they are different and the port requested

by ”B” is available, the stall goes down and ”B” is forwarded. If not, the

read pointer shifts once again to packet ”A” till the stall is deasserted. If

the stall signal is removed while performing the target port comparison, the

valid signal is driven low to avoid sampling ”B” before ”A”, thus preserving

the order on each output port. In this unfortunate and very unlikely case,

the switch experiments one (1) cycle overhead before being able to forward

”A”. HACS can also be applied to each virtual layer of a network with vir-

tual channel support. As previously illustrated, 2 VCs may be considered

for memory controller traffic separation. In practical terms, we followed the

strategy proposed in [72]. Essentially, the HACS switch is replicated twice,

while placing a demux in front of each input port and a mux with associated

arbiter after each output port. The link is enhanced with a virtual channel

identifier and with a flow control signal for each virtual channel. This is done

to exploit logic synthesis optimisations for the sake of area efficiency.

6 Evaluation

In this section we first describe the simulation environment we used for the

evaluations, followed by a discussion of the results obtained, including the

8.6.1 System configuration 121

Figure 8.3: Switch architecture

results obtained with HACS and its implementation costs after synthesis.

6.1 System configuration

Our simulation framework is a combination of tools chosen to simulate a

CMP system as closely as possible. Multi2sim [73] is a simulation framework

for heterogeneous computing that allows one or more applications to run

on top of it in CMP-like scenarios. It is able to model a complete memory

hierarchy system integrated into the CMP and its connection to the respec-

tive processor cores. We combined Multi2sim with a cycle-accurate flit-level

network-on-chip simulator called gNoCsim (developed by Universidad Po-

litecnica de Valencia, and being used in the NaNoC project [74] by different

partners). GNoCsim is able to simulate the network between all the resources

in the chip; caches, memory controllers, and processor cores. For the evalua-

tion process, we modelled a CMP that resembles current chip configurations

like in Figure 8.1. This configuration implements a tile-based system, and

122
Cost-effective Contention Avoidance in a CMP with Shared Memory

Controllers

each tile is composed of a processor core, a private L1 cache, a bank of a L2

shared cache, a memory directory bank to be used with the directory-based

MOESI cache coherency protocol, and different configurations of memory

controllers. Each memory controller is connected to the main memory with 2

channels (each memory controller has two access points). A detailed overview

of the chip configuration is shown in Table 8.1.

Parameter Configuration Parameter Configuration

Core x86 Topology 10× 10 2-D mesh

L1 cache 16 KBytes Instructions Routing mechanism LBDR + SR

16 KBytes Data

Total 32 KBytes per core

2 cycles latency

2-way associativity

64 bytes block size

L2 cache 256 Kbytes per core Packet switching Virtual cut-through

20 cycles latency (VCTlite) [75]

4-way associativity

64 bytes block size

Main memory 1 Gbyte total Buffer queue size 12 flits

200 cycles latency

Coherence protocol MOESI CMP, directory-based Flit-size 8 bytes

Table 8.1: CMP configuration.

A 10 × 10 2-D regular mesh topology was used for the CMP system. The

LBDR [71] mechanism was used for the routing purposes allowing for routing-

contained application domains in combination with the Segment-Based Rout-

ing algorithm (SR) [76]. Virtual networks are used for different levels of traffic

of the memory hierarchy system, implemented as multiple virtual channels (a

total of two virtual channels are used) except for Figure 8.8 were no virtual

channels are used.

For the evaluations we used a collection of applications from the SPLASH-2

benchmark with the default parameters defined in [77]. The applications are

statically mapped to the chip when the experiment is set up. Applications are

mapped to completely fill the chip, giving a fair share of cores to each appli-

cation. Every batch consists of a single application type from the benchmark

suite rather than being composed of a collection of mixed applications. This

regularity makes it significantly easier to generate relevant statistics and spot

8.6.2 Results 123

trends in the results, such as to get averaged results for the execution time

comparison. Running a mix of applications will introduce spikes in the com-

munication, but this will be evened out by the number of applications over

time, so the conclusions will still be the same. See Figure 8.4 for an example

of the mapping of 32 concurrent applications with 4 memory controllers.

Figure 8.4: 32 concurrent applications mapped on the system

6.2 Results

We have evaluated several combinations of number of concurrent applications

and memory controllers for a 10 × 10 mesh. Specifically, we have evaluated

6, 8, and 12 applications with one memory controller, 12 and 16 applica-

tions with two memory controllers, and 32 applications with four memory

controllers. Due to space constraints we report the results for 12 applica-

tions with one memory controller and 32 applications with four memory

controllers. The general trend from the results is that network performance

124
Cost-effective Contention Avoidance in a CMP with Shared Memory

Controllers

decreases and unfairness (the difference in runtime based on application lo-

cation, with two virtual channels) increases as the number of concurrent

applications increases for a given number of memory controllers.

We have plotted the execution time distribution for 12 applications (ocean

workload) with a single memory controller both with (Figure 8.7) and with-

out (Figure 8.8) virtual channels. The memory controller is located in the

uppermost corner. The figure with virtual channels clearly shows how the

threads that are located closer to the memory controller have a longer ex-

ecution time (as much as 7.5% longer than when running alone) than the

thread located farther away. The picture is more chaotic without the use of

virtual channels. There is no clear unfairness, however, the overall increase

in execution time (8.1%) is larger than with virtual channels.

In Figure 8.5 we display the mean squared error between injected and ac-

cepted traffic for different applications in the scenario with 32 concurrent ap-

plications with 4 memory controllers, with and without HACS implemented.

In the figure, HACS2 is allowed to skip ahead the second packet, while HACS3

may skip ahead the second or third packet. The figure shows how the impact

of performance degradation due to congestion for the different applications.

HACS2 and HACS3 are able to reduce the penalty to only 2.5% in average.

Note that there is negligible difference between HACS2 and HACS3. The per-

formance degradation is significantly worse with fewer memory controllers.

Figure 8.6 shows network throughput as a function of time for the ocean

workload. The uppermost plot is the injected traffic, and the bottom plot is

the accepted traffic without congestion control, a clear case of a congested

network. HACS2 and HACS3 solutions almost remove all the congestion,

handling almost all the injected traffic. The second to bottom line is HACS

without virtual channels. This still increases averaged network throughput

by around 40%, although the result is poorer than with virtual channels. The

designer has to assess the trade-off between performance and implementation

costs.

Summarising, the objective of these evaluation cases was to reproduce scenar-

ios that try to reflect current chip configurations, and realistically illustrate

the effect of multiple simultaneous applications. The cost/performance trade-

off depends on how much resources are available (in our case, the amount of

8.6.3 Hardware breakdown 125

Figure 8.5: 32 concurrent applications mapped on the system (MSE between

injected and accepted traffic)

memory controllers) and there is a need for congestion management strate-

gies that can alleviate the problem with minimal impact on the design of

the chip. In the next section we evaluate the cost of the congestion control

mechanism we have developed.

6.3 Hardware breakdown

This subsection characterises area and critical path delay overhead of the

HACS switch compared to a baseline one taken from the xpipesLite NoC

library [68]. The reference switch implements input buffering, stall/go flow

control and virtual cut-through switching. Baseline and HACS switches were

synthesised for a target speed of 500 MHz in a 65nm industrial technology

library. Normalised post-synthesis area results are illustrated in Figure 8.9.

The area of the HACS switch without virtual channels is about 5.34% larger

compared to the baseline switch. The implementation with virtual channels

results in 2.09x the area of the virtual channel-less switch. Observe in the

126
Cost-effective Contention Avoidance in a CMP with Shared Memory

Controllers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300av
er

ag
e

ne
tw

or
k

th
ro

ug
hp

ut
 (f

lit
s/

cy
cl

e/
ni

c)

time (cyclesx1000)

oceaninjected32.pt
oceanaccepted32.pt

Figure 8.6: 32 concurrent applications mapped on the system (Averaged net-

work throughput, ocean workload)

figure that the baseline input buffer features approximately the same area

of the input buffer with the new logic to shift the read and write pointers,

thus denoting the marginal impact on control logic. On the other hand, most

of the area overhead is due to the timer inserted in the switch and is about

4.09%. This could be improved in future solutions by using buffer thresholds

instead of a timer. After synthesis, the critical path of the new switch without

VCs was proved to be degraded by less than 1% with respect to the baseline

one. The virtual channel implementation contributes an additional 3% of

critical path degradation, associated with the arbiters in the switch output

ports selecting which virtual channel to move forward.

7 Conclusions

We have studied the effects of shared memory access in a CMP with multi-

ple concurrent applications. It is often assumed that network congestion is

8.7 Conclusions 127

Figure 8.7: Execution time distribution, 1 memory controller, ocean workload

(With virtual channels)

not an issue for CMP systems because of the abundant bandwidth in the

network on chip. Our evaluations show that network congestion may indeed

be a problem when multiple applications access shared memory through the

memory controllers available on a typical CMP, and we developed a simple

solution, HACS, to remove this congestion. We have observed some effects

from our experimental results. First, the hotspots formed by the memory

controller traffic lead to network congestion, which can degrade the perfor-

mance of applications by 15% in average in our scenarios. Second, if there

is a high degree of local traffic (which is often the case), the applications

allocated close to the memory controller will have less bandwidth for local

traffic than applications located further away. The applications closest to the

memory controllers are therefore penalised and have longer execution times

compared to the others. Further work includes evaluating a wide variety of

network controller configurations and workloads.

128
Cost-effective Contention Avoidance in a CMP with Shared Memory

Controllers

Figure 8.8: Execution time distribution, 1 memory controller, ocean workload

(No virtual channels)

���

�

���

�
	
�
�

�

�
	
�
�
�
�
�
�

����������	�

����������	�

�����������������

��	�������

������������������

��	��

�������� ������������� ����������

�

���

�

�
�
�
�
�
�
�
	

�

���

��������

���������

 �������!!��

Figure 8.9: Switch area at 500 MHz

Chapter 9

Final FPGA Prototyping of

Homogeneous Multicores.

1 Abstract

This chapter reports about the prototyping of design methods mentioned in

the previous chapters on a Xilinx Virtex-7 FPGA. Boot-time testing and con-

figuration, runtime detection of faults, runtime reconfiguration of the routing

function, dynamic virtualization of the interconnect fabric are especially val-

idated on the FPGA prototype, where a 4x4 multi-core system has been im-

plemented and managed. The advanced form of platform control is achieved

via hardware/software co-design and co-optimization.

2 Introduction

NoC design principles have recently reached a stage where they start to sta-

bilize, in correspondence to their industrial uptake. A key property that novel

NoCs cannot miss is to guarantee a potentially fast path to industry, since

NoC deployment is today a reality. An important requirement for this pur-

pose is the efficient testability of candidate NoC architectures. This property

is very challenging due to the distributed nature of NoCs and to the diffi-

cult controllability and observability of its internal components. When we

also consider the pin count limitations of current chips, we derive that NoCs

will be most probably tested in the future via builtin self-testing (BIST)

130 Final FPGA Prototyping of Homogeneous Multicores.

strategies.

Finally, there is an increasing need in embedded systems for implementing

multiple functionalities upon a single shared computing platform. The main

motivation for this are the constraints set for systems size, power consump-

tion and/or weight. This chapter reports on the first-time prototyping of

a Network-on-Chip capable of supporting all of the advanced features de-

scribed above, and represents a prove of the validation of the industry-ready

NoC. The presented prototype builds on the first switch variant mentioned

in chapter 1. Then, it validates the (re-) configuration capabilities that pre-

serve safe network operation in the presence of wanted (e.g., virtualization)

and unwanted (e.g., manufacturing defects, intermittent faults) effects. The

prototyping platform is represented by the Xilinx Virtex-7 evaluation board

named VC707, described in section3. The prototyped system implemented

inside the FPGA is a homogeneous multicore processor, which resembles

programmable hardware accelerators of hierarchical, high-end embedded sys-

tems, or basic computation clusters of many-core processors. The validated

design methods include:

1. boot-time testing and diagnosis of the 4x4 2D mesh NoC, targeting

permanent faults;

2. switch-level and network-level fault-tolerance, targeting transient faults

and intermittent faults (i.e., those faults that rapidly anticipate the

breakdown of links or switch components;

3. runtime reconfiguration of the network routing function, with logic-

based distributed routing as the underlying routing mechanism. The

validated reconfiguration procedures are twofold: at boot-time, without

background traffic, and at runtime, with background traffic.

4. Dynamic virtualization, i.e., partitioning of the whole NoC into iso-

lated partitions running different applications. As such, this chapter

validates:

5. the design methods for supporting NoC static irregularities (routing

methods, testing and diagnosis methods);

9.3 FPGA Platform 131

Figure 9.1: VC707 baseline prototyping board.

6. the design methods for supporting dynamically virtualized NoCs (error

detection and signaling mechanisms, runtime reconfiguration methods,

virtualization methodology);

7. methodologies for seamless integration of NoC topologies within IP

cores.

3 FPGA Platform

The target system to prototype is overly complex, hence calling for high-end

FPGAs and development boards, not to incur integration capacity limits.

The Virtex-7 FPGA VC707 Evaluation Kit was selected for that. It is a full-

featured, highly-flexible, high-speed serial base platform using the Virtex-7

XC7VX485T-2FFG1761C and includes basic components of hardware, design

tools, IP, and pre-verified reference designs for system designs that demand

high-performance, serial connectivity and advanced memory interfacing. The

included pre-verified reference designs and industry-standard FPGA Mezza-

nine Connectors (FMC) allow scaling and customization with daughter cards.

The XC7VX485T FPGA features 485760 logic cells, 75900 CLB slices, 2800

DSP slices, 37080 kb of block RAM, 14 total I/O banks and 700 max. user

I/O. The key features of the evaluation board (see Figure9.1) are as follows:

132 Final FPGA Prototyping of Homogeneous Multicores.

. GA VC707 Evaluation Kit: ROHS compliant VC707 kit including the

XC7VX485T-2FFG1761 FPGA

. Configuration: Onboard JTAG configuration circuitry to enable configura-

tion over USB, JTAG header provided for use with Xilinx download cables

such as the Platform Cable USB II, 128MB (1024Mb) Linear BPI Flash for

PCIe Configuration, 16MB (128Mb) Quad SPI Flash.

. Memory: 1GB DDR3 SODIMM 800MHz / 1600Mbps, 128MB (1024Mb)

Linear BPI Flash for PCIe Configuration, SD Card Slot, 8Kb IIC EEP-

ROM.

. Communication and Networking: GigE Ethernet RGMII/GMII,SGMII, SFP+

transceiver connector, GTX port (TX,RX) with four SMA connectors, UART

To USB Bridge, PCI Express x8gen2 Edge Connector (lay out for Gen3).

. Display: HDMI Video OUT, 2 x16 LCD display, 8X LEDs.

. Expansion Connectors: FMC1 - HPC (8 XCVR, 160 single ended or 80

differential, user-defined pins), FMC2 - HPC (8 XCVR, 116 single ended or

58 differential user-defined pins), Vadj supports 1.8V, IIC.

.Clocking: Fixed Oscillator with differential 200MHz output used as the sys-

tem clock for the FPGA, programmable oscillator with 156.250 MHz as the

default output, default frequency targeted for Ethernet applications but os-

cillator is programmable for many end uses, differential SMA clock input,

differential SMA GTX reference clock input, Jitter attenuated clock used

to support CPRI/OBSAI applications that perform clock recovery from a

user-supplied SFP/SFP+ module.

.Control and I/O: 5X Push Buttons, 8X DIP Switches, Rotary Encoder

Switch (3 I/O), AMS FAN Header (2 I/O).

.Power: 12V wall adapter or ATX, Voltage and Current measurement capa-

bility.

9.4 The System Under Test 133

Figure 9.2: FPGA platform overview

. Debug and Analog Input: 8 GPIO Header, 9 pin removable LCD, Analog

Mixed Signal (AMS) Port.

4 The System Under Test

The high-level view of the design can be found in Figure 9.2. The system

comprises a large number of components within the FPGA. As can be seen

on the left side of the diagram, a relatively standard Xilinx subsystem is

instantiated first; this comprises an AXI interconnect linking together a Mi-

croBlaze (to run the supervision software), a small memory and an external

DRAM controller, and several peripheral controllers required to run software

on the MicroBlaze and to communicate with a laptop. The right side of the

diagram depicts the designed components. This part of the system is the

”Device Under Test” (DUT) of the platform, whose functionality is to be

verified. It comprises mainly:

134 Final FPGA Prototyping of Homogeneous Multicores.

. The main NoC, built as a 4x4 mesh of the first variant switches.

. The dual NoC, built as a chain that follows the topology of the main NoC.

The dual NoC is in charge of configuring the main NoC and of collecting

status information (e.g. fault detections) from the main NoC.

. At each node of the main NoC (see also Figure 9.3), a MicroBlaze and

a memory (by Xilinx) are connected to the switch by means of Network

Interfaces.

. Two special blocks, based on AXI NIs, have been designed to connect the

dual NoC to the supervision subsystem. These blocks allow the supervision

MicroBlaze to receive notifications by the dual NoC, and to reprogram it.

. A sniffer module, monitors traffic along all links of the main NoC mesh,

computing link utilization. It is designed so that the supervision subsystem

can probe it at regular intervals and transfer its contents towards a userâs

laptop.

. A fault injection module has been instantiated along a mesh link. This sim-

ple module, connected to a physical button on the FPGA board, provides

a method to inject faults on that link to test the platformâs fault tolerance

and the NoC reconfiguration capability. To build this platform, we proceed in

steps (Figure 9.4). First, we instantiate within Xilinx Platform Studio (XPS)

a complete design comprising all the supervision subsystem, the 16 additional

MicroBlazes, and the corresponding 16 memories. At this stage, no NoC is

instantiated yet. Using XPS for this task allows us to efficiently connect and

configure all the Xilinx blocks, and facilitates the instantiation of the toplevel

HDL files. Additionally, this makes it possible to subsequently load the ap-

plications into all 17 MicroBlazes’ memories, and to debug those processor

step-by-step, directly through the Xilinx toolchain, which is Eclipse-based.

After the first pass of synthesis, however, we remove from the design the Xil-

inx AXI subsystem which is connecting the 16 additional MicroBlazes and

memories, and swap in the NoC (main and dual) in its place. We then proceed

to finish the implementation flow within Xilinx ISE by performing mapping,

9.4 The System Under Test 135

placement and routing, and generating the final bitstream. We leverage some

key features of the Virtex 7 board, apart from the FPGA chip. The on-board

DRAM is used to provide sufficient space for the software running on the

supervision MicroBlaze to work. Physical buttons and switches of the board

are connected to an on-chip GPIO controller to allow the user to interact

with the platform. Finally, a laptop can be connected to the board by means

of two cables to monitor the platform’s operation; one cable carries serial

port signals (piggybacked onto a USB port) and the other carries JTAG sig-

nals (also piggybacked onto a USB port). The former is used to read the

board’s outputs, while the latter allows for programming the board and in-

teractively debugging the on-FPGA MicroBlazes. Custom-written software

runs in three locations of the system: on the supervision MicroBlaze, on the

16 MicroBlazes connected to the main NoC, and on the external laptop.

. The software on the supervision MicroBlaze is tasked with oversight of the

main NoC and data NoC, with regular polling of the Traffic Sniffers, and

with interfacing with the external world through the serial interface.

. The 16 MicroBlazes connected to the mesh run micro-benchmarks. These

micro-benchmarks have the main role of generating traffic on the mesh, so

that the various platform features can be tested. Real functional behaviour

was implemented: the nodes perform pipelined matrix multiplications, ex-

changing data in producer-consumer fashion. More advanced applications

could not be implemented due to the lack of I/O interfaces on these nodes

and due to lack of memory to instantiate a full C library.

. The user’s laptop is connected to the board through a JTAG-over-USB

cable and a serial-over-USB cable. The former can be leveraged mainly by the

Xilinx toolchain, allowing for board programming and debugging. The latter

is monitored by a GUI that displays in real-time the platform status and

link utilization. This GUI allows the user to analyze the impact of running

different software on the system and the behaviour upon fault injection or

virtualization implementation.

136 Final FPGA Prototyping of Homogeneous Multicores.

5 Basic components: the on-chip network

A 4x4 mesh with one core and one memory per switch has been chosen

as target on-chip network of the FPGA platform. In particular, Figure9.3

represents the basic components instantiated to realize the 4x4 mesh. A Mi-

croBlaze and a memory are connected to each switch through two Network

Interfaces. Finally, a sniffer is placed on each bidirectional network link to

monitor the network traffic. The sniffers collect information about the traffic

crossing the switch-to-switch and NI-to-switch links and deliver such infor-

mation to the global manager (i.e., the supervision MicroBlaze). Both the

NIs and the switches have been designed ad-hoc to support the target on-

chip network where fault-tolerance, testing capability and reconfigurability

features are guaranteed. Note that the MicroBlaze also includes a directly-

connected BRAM of 128kB (not shown in the figure) to store its application

software.

5.1 The Network Interfaces

We instantiate two types of Network Interfaces NIs: an AXI initiator NI

to interface with the MicroBlaze, and an AHB target NI to interface with

the memory. This choice was deliberate (e.g., both could have been AXI)

to demonstrate interoperability among the two. Due to the relatively simple

needs of the MicroBlaze core, which does not support multiple transaction

IDs, we save area by instantiating a small AXI initiator NI with support for

only one such ID. However, the NI is still supporting all AXI features. Both

AXI and AHB NIs, and their interoperability, were extensively tested in RTL

and on the FPGA. For integration into the platform, a few tweaks to the NI

were needed:

. NIs embed routing tables to statically perform source routing. In this plat-

form, routing is distributed and reconfigurable to work around faults or to

enforce virtualization. Therefore, the routing tables are modified to instead

encode the XY coordinates of the destination core; these will be processed

at the switches. The coordinates are expressed as strings of 9 bits: 4 bits

9.6 Basic components: the supervision subsystem 137

for each coordinate (slightly overprovisioned for a 4x4 mesh) plus one bit

to differentiate among the two local cores at each node, i.e. MicroBlaze and

memory.

. The input and output buffers of the NIs are extended to support the NACK-

GO flow control protocol used by their switches, instead of STALL-GO.

. The AXI initiator NIs are extended with two extra pins, directly connected

to FPGA pads, in turn connected to physical switches of the FPGA board.

This means that the user, manually flipping those switches, can change the

value of two bits inside each NI. The NI in turn exposes these two bits to the

MicroBlaze at the reserved address 0x11000000. The MicroBlaze can poll this

location to change among operating modes, e.g. staying idle, or executing one

of multiple pre-programmed applications. As can be inferred from Figure3,

note that in the platform, the 16 MicroBlazes attached to the mesh have no

way to communicate with the external world except for this facility.

6 Basic components: the supervision subsys-

tem

In order to demonstrate the NoC functionality, a supervision subsystem is

required. We choose to instantiate it within Xilinx Platform Studio, and us-

ing as many Xilinx IP cores as possible, for convenience; we integrate it with

custom designed IP when suitable. The subsystem (see Figure3) includes a

Xilinx AXI interconnect, with two masters (a Microblaze and the Dual NoC

Receiver) and numerous AXI, AXI Lite and AHB slaves. At the heart of this

subsystem is a Microblaze running software. This software is tasked with:

. Probing the status of the NoC, e.g. after BIST and upon fault occurrences.

. In response to the above, configuring or reconfiguring the NoC.

. Awaiting for possible user requests to reconfigure the NoC in a virtualized

manner.

138 Final FPGA Prototyping of Homogeneous Multicores.

. In response to the above, reconfiguring the NoC.

. Polling the link sniffers periodically to monitor activity on the NoC links.

. Transferring key information about the platform’s functioning outside the

FPGA through the serial port (or, potentially, an Ethernet port).

To perform these actions, multiple support controllers and devices are needed.

First of all, since the supervision software and the required underlying C

library have a non-negligible footprint, incompatible with on-chip resources,

a DRAM controller is advisable to be able to store the software. To support

the basic functionality of the Xilinx C library, a timer and an interrupt

controller must also be present. (Note that, in contrast, the 16 Microblazes

connected to the NoC mesh do not have access to external memory, timer or

interrupt controller; this limits the capabilities of the software that can be

run on those).

In order to monitor the NoC, it is necessary for the Microblaze to be able

to access the dual NoC. This is done via three components plugged to the

AXI bus: a Dual NoC Driver, a Dual NoC Receiver, and a memory. The

Microblaze can directly write to the Dual NoC Driver, which is a slave on

the AXI bus, to program the main NoC. Due to the way the dual NoC

was designed, the reverse operation cannot be done with a read to the same

device; instead, whenever there is a message requiring attention (e.g., upon

BIST completion or fault detection), the dual NoC sends a packet to the

Dual NoC Receiver, which converts it into an AXI transaction directed at

the on-bus memory (a standard Xilinx core). The Microblaze can periodically

poll this memory to check all notifications. To supervise the NoC activity, the

Microblaze can also poll the Traffic Sniffers. These blocks can be connected

to up to 16 links of the main NoC on one side, and to the AXI bus on

the other. For maximum thoroughness, we choose to monitor as many as

80 links of the NoC (almost all, disregarding just a few whose information is

redundant), with five Traffic Sniffers in parallel. The sniffers include a counter

that is incremented at the passage of any flit; whenever the counter is read

by the MicroBlaze, it automatically resets itself. A simple division yields a

utilization metric. Finally, the FPGA needs external interfaces. First of all,

a GPIO controller allows the Microblaze to periodically check the status of a

9.7 Basic components: the reconfiguration algorithm 139

few physical buttons and switches on the FPGA board. This allows the user

to change operating modes of the platform; for example, we use this feature to

instruct the software on the Microblaze to initiate the reconfiguration to get

into virtualized application mode. Two extra blocks are used to communicate

with the user’s computer. A UART controller is an output-only interface

that allows the platform to transfer information to the laptop, where the

GUI by UPV can visualize it. A debug module, relying on a JTAG-over-USB

electrical connection, allows for bidirectional communication: the user can

program the supervision Microblaze, step through its software, and check

the content of certain on-FPGA registers and memories. Since the debug

module allows for monitoring of up to 8 Microblazes, we connect it to the

supervision Microblazes and to selected 7 other Microblazes out of the 16

attached to the main NoC mesh.

7 Basic components: the reconfiguration al-

gorithm

The supervisor MicroBlaze is constantly monitoring the status of the NoC

through the dual NoC. Whenever a notification is received about a fault on

a link, if deemed necessary (e.g. unless it is assumed to be a transient), the

supervisor triggers the reconfiguration algorithm. This algorithm computes

the required changes in the LBDR bits at specific switches in order to mi-

grate from the current routing algorithm to a new one that avoids the use

of the notified link. Those bits are encoded and transmitted through the

dual NoC together with a triggering notification to switches to launch the

reconfiguration process.

8 The application

The MicroBlazes have been programmed in order to start their application

after the 4x4 mesh is configured, upon flipping a physical switch on the board.

The application run by the MicroBlazes is a matrix multiplication consisting

of the product of a pair of matrices. The MicroBlazes sequentially forward

140 Final FPGA Prototyping of Homogeneous Multicores.

the results to each other in a pipelined producer-consumer fashion. Each

MicroBlaze performs the multiplication of a private matrix and a matrix de-

livered by the previous MicroBlaze of the sequence. Once the matrix product

is computed the resulting matrix is forwarded to the next MicroBlaze. The

lack of I/O interfaces and memory does not allow the implementation of

more advanced applications. The private matrix (mat private) is stored by

each Microblaze into its local (pertaining to its local switch) AHB scratch

memory of 4kB.

The AHB memory is used as storage and for inter-processor communication

in the application. Indeed the incoming matrix from the previous Microblaze

(mat input) is stored in the AHB memory connected to the local switch.

Each MicroBlaze stores its matrix product result (mat output) into the AHB

memory connected to the switch to which the next MicroBlaze of the sequence

is connected. The first MicroBlaze of the pipeline initializes its own local

AHB memory before performing the matrix product. Each MicroBlaze has

local registers storing the address of the local AHB memory, the addreses

of the remote AHB memory of the next MicroBlaze, the position within the

pipeline, and the pipeline length.

In order to guarantee the synchronism between the MicroBlazes, custom

semaphores are implemented. Interestingly, these are purely software and

do not need dedicated hardware support. Such a solution slightly increases

the complexity of the code but clearly simplifies the hardware design effort

and the area overhead. Of course this approach is possible only since the

application is fixed and known upfront; more sophisticated synchronization

capabilities would demand hardware-level atomicity support. The goal of

these semaphores is to avoid reading the same incoming matrix multiple

times, and to avoid overwriting output matrices before the next MicroBlaze

has been able to process them. Each MicroBlaze has been enhanced with 4

semaphores. Notice that semaphores to be polled have been placed in the

local AHB memory in order to reduce congestion in the network.

9.9 The physical platform implementation 141

9 The physical platform implementation

Some steps of the implementation flow described in Figure 9.4 can be par-

allelized; for example, the initial platform description involves several blocks

which can be independently synthesized in parallel. Even after joining all the

pieces together, the mapping stage can be run on two threads in the Xilinx

toolchain, and the placement and routing in four.

The platform fills the FPGA almost completely, as can be seen in Table 9.1.

The left column reports the utilization when the template system generated

in XPS is implemented, the right one is for the same system where the NoC,

dual NoC and associated designed IP (e.g. sniffers, dual NoC interface blocks,

etc.) have been instantiated to replace the simple AXI interconnect. It can be

seen that the NoC represents approximately 17% of the FPGAâs sequential

resources and 72% of the combinational resources (or a little bit more, since

this is the overhead on top of the default bus); it does not occupy any BRAM

nor require external pins. Due to development timing constraints, no specific

optimizations could be taken to reduce the area of the design; given the

large number of blocks and the redundancy features (e.g. triplication of some

components, BIST, datapath encoding) built into the NoC, we perceive the

resource utilization figures as very positive. Note that triplicated logic in the

switch has to be marked with special annotations embedded in the RTL,

otherwise the Xilinx synthesis tools would detect it as redundant and prune

it away. The design is not aimed at, and not optimized for, high performance.

The very high resource utilization features also impose a significant timing

overhead as routing necessarily becomes more convoluted and less efficient.

We record a maximum operating frequency of 38 MHz; the critical path is

in the BIST logic of the switch.

10 Validating Built-in Self-Testing and NoC

configuration

In order to validate the Built-in Self-Testing implemented in the 4x4 mesh,

a permanent failure was forced in the network by hard-wiring to zero a link

wire. In this implementation, the failure was injected in the link between

142 Final FPGA Prototyping of Homogeneous Multicores.

switch 11 and 10. However, it could have been freely injected in different

locations since the 4x4 mesh has been based on a switch that guarantees

around 97% of stuck-at-fault coverage.

As soon as the FPGA board is booted the BIST automatically starts and

the switches cooperatively exchange test patterns as shown in Figure 9.5.

When the BIST procedure is completed, the BIST managers integrated in

each switch send to the dual NoC the diagnosis information related to the

switch they belong to. In the FPGA platform under test, the BIST manager

of Switch 10 reveals an error on its East input channel where the error has

been injected. Thus it notifies the dual NoC, which takes care of delivering all

the BIST di- agnosis information to the global manager (i.e., the supervision

MicroBlaze). In particular, the diagnosis information crosses the dual NoC

and the Dual NoC Receiver before being stored in the memory connected

to the supervision subsystem (Figure 9.6). The supervision MicroBlaze has

been programmed to periodically check for dual NoC notifications by polling

the control bus memory (Figure 9.7). It recognizes when the BIST notifica-

tion information has been stored in the memory (i.e., the BIST procedure is

completed) and it runs the configuration algorithm. Thus, it computes con-

figuration bits able to guarantee deadlock-free routes despite the failed link.

The configuration bits are sent to the Dual NoC Driver through the AXI

bus. They cross the dual NoC and configure the routing mechanism of each

switch (Figure 9.8).

11 Validating Fault Detection and NoC Re-

configuration

Once the network has been tested and permanent faults have been detected

and tackled by the off-line configuration, the system can be still affected by

run-time transient and intermittent faults. Such faults cannot be handled by

off-line strategies as they appear and disappear unpredictably. As a result,

the network has been designed as fault tolerant to satisfy the high reliabil-

ity constraints imposed by modern systems. In particular, the fault-tolerant

flow control protocol (NACK/GO) is used on the data path to notify error

9.11 Validating Fault Detection and NoC Reconfiguration 143

detection and trigger data retransmissions. Although this protocol has been

primarily designed to tackle SEUs (Single Event Upset), the system is also

able to tackle physical effects such as wear-out. Indeed wear-out effects end

up in permanent faults but they are known to have a gradual onset. In prac-

tice, frequent transient faults affecting the same circuitry denote the possible

onset of a permanent fault. Before this happens, the network routing function

could be modified to exclude the affected circuit from communication traffic.

NACK/GO lends itself to such a policy, since its retransmission and/or vot-

ing events may be notified to the supervision MicroBlaze which may monitor

the distribution and frequency of transient faults over time and eventually

take the proper course of recovery action. This exact policy is supported and

validated by the FPGA platform. Physical buttons and switches of the board

are connected to an on-chip GPIO controller to allow the user to interact with

the platform. The physical buttons have been leveraged to inject transient

faults in the network and validate the above mentioned fault tolerance policy.

For this purpose, a fault injection module has been instantiated along the

link routed from switch 4 to 5. This module is connected to a physical button

on the FPGA board and provides a method to inject transient faults on that

link (see Figure 9.9). Since the link may be idle when the button is pressed,

the fault injection module integrates a simple FSM that waits until a valid

flit is crossing the link to inject the fault, ensuring that actual important

information is corrupted. Therefore, every time the button is pushed, the

error is revealed and notified to the supervision MicroBlaze (Figure 9.10).

Similarly to the procedure followed by the BIST notification, the transient

notification crosses the dual NoC and it is stored into the control bus mem-

ory. The supervision MicroBlaze periodically polls the memory also during

run-time operations. Thus it reads the transient notification and updates its

register with distribution and frequency of transient faults over time. Only

when the number of transient notifications from the same link reaches a

threshold is recovery action taken. For the sake of the demonstration, the

MicroBlaze’s software is set to run its reconfiguration procedure after three

notifications (i.e., after the button has been pushed three times). Note that

the 4x4 mesh at this stage is irregular since a link has been already disabled

due to a previously detected permanent failure. Thus, the algorithm com-

144 Final FPGA Prototyping of Homogeneous Multicores.

putes the reconfiguration bits for this irregular network and delivers them

to the dual NoC (Figure 9.11). The new reconfiguration bits coming from

the dual NoC cannot directly update the existing routing strategy, as during

off-line operations, since applications are now running. Thus, the network

implements the OSR-Lite reconfiguration mechanism which avoids stopping

or draining network traffic during the transition from one network configu-

ration to another. The switches of the FPGA platform start to inject tokens

into the network. The tokens follow the channel dependency graph of the

old routing function and progressively drain the network from old packets,

as represented in Figure 9.12.

Resource Utilization Supervisor Subsystem only Full Platform (fJ/bit)

Slice Registers 5% 22%

Slice LUTs 16% 88%

IOs 20% 20%

36-bit BRAMs 61% 61%

Table 9.1: Resource utilization of the Virtex 7 chip.

12 Conclusion

This chapter reports on the prototyping of a 16-core homogeneous multi-

core processor with a fault-tolerant, runtime reconfigurable and dynamically

virtualizable on-chip network. The prototyped system has been successfully

validated in its capability of boot-time testing and configuration, transient or

intermittent fault detection, runtime reconfiguration of the routing function,

and dynamic partitioning and isolation. The validated NoC prototype is a

key enabler for the future evolution of embedded systems. First, it enables

the integration of multiple software functions on a single multi- and many-

core processor (multifunction integration). This is the most efficient way of

utilizing the available computing power. Finally, a comprehensive reliability

framework has been set into place, from switch- level to network-level, while

covering all design aspects (e.g., reliable control signaling) and effectively co-

optimizing different architectural features together (fault-tolerance, testing,

9.12 Conclusion 145

Figure 9.3: Basic components of the on-chip network.

Figure 9.4: Design flow for platform implementation.

146 Final FPGA Prototyping of Homogeneous Multicores.

Figure 9.5: Built-In-Self-Testing at work (a).

Figure 9.6: Built-In-Self-Testing at work (b).

9.12 Conclusion 147

Figure 9.7: Built-In-Self-Testing at work (c).

Figure 9.8: Built-In-Self-Testing at work (d).

148 Final FPGA Prototyping of Homogeneous Multicores.

Figure 9.9: Transient fault detection and reconfiguration (a).

Figure 9.10: Transient fault detection and reconfiguration (b).

9.12 Conclusion 149

Figure 9.11: Transient fault detection and reconfiguration (c).

Figure 9.12: Transient fault detection and reconfiguration (d).

150 Final FPGA Prototyping of Homogeneous Multicores.

runtime reconfiguration, control signaling) 1.

1This chapter has included contents that are referred to a cooperative and interdisci-

plinary work where furher details are in[74].

Chapter 10

Power Characterization of

Optical NoC Interfaces

1 Introduction

The objective of this chapter is to characterize the power consumptions of

an optical network interface with respect to the electronic one. Every elec-

tronic component has been synthesized, placed and routed using a Low-Power

40nm industrial technology library, in order to provide realistic power mea-

surements (not derived from optimistic or ideal estimations). Power metrics

have been calculated by backannotating the switching activity of block inter-

nal nets, and then importing waveforms in the PrimeTime Tool. It is worth

observing that we have applied clock gating for the sake of realistic measure-

ment of static power. Energy per Bit has been computed by removing the

Static Power by the Total power on a component-basis, under 50% switching

activity assumption.

2 Optical Network Interface Architecture

This section describes, to the best of our knowledge, the first complete net-

work interface architecture for optical networks as depicted in figure 10.1.

As a consequence, the objective is not to present the best possible design

point, but rather to start considering the basic components, and indicating

which one deserves the most intensive optimization effort for prime time of

152 Power Characterization of Optical NoC Interfaces

optical interconnect technology. To avoid message-dependent deadlock, every

network interface needs separate buffering resources for each one of the three

message classes of the MOESI protocol. This should be combined with the

requirements of wavelength routing: each initiator needs an output for each

possible target, and each target needs an input for each possible source. As

a result, in the baseline version of the NI, each initiator comes with 3 FIFOs

for each potential target, and each target with 3 FIFOs for each potential ini-

tiator. In a more energy-efficient version of the NI (the one in Figure 10.1),

all destinations share the same 3 FIFOs and the flits are sent to different

paths afterwards (all logic components after 1x15 demuxes are replicated for

each destination). All the FIFOs at both the transmission and the reception

side must be dual-clock FIFOs to move data between the processor frequency

domain (1.2GHz) and the one used inside the NI. The serializers are respon-

sible for translating the flit into a 10 GHz bit stream. The reception side

is specular: flits must follow the deserialization process and another set of

dual-clock FIFOs. Clearly, ONoCs move most of their complexity to the NIs,

which should therefore not be overlooked by means of overly abstract mod-

els. Another key issue to be considered in NIs concerns the resynchronization

of received optical pulses with the clock signal of the electronic receiver. In

this chapter we assume source-synchronous communication, which implies

that each point-to-point communication requires a strobe signal to be trans-

mitted along with the data on a separate wavelength, and used to correctly

sample received data. Optical transmission of clock signals is an active re-

search field: see for instance [114]. This strobe signal is generated starting

from the electrical clock of the transmitter, and removes the need for phase-

locked loops (PLLs) or delay-locked loops (DLLs). In this work, we assume

that a form of clock gating is implemented, therefore when no data is trans-

mitted, the clock signal is gated. Another typically overlooked issue consists

of the backpressure mechanism. We opt for credit-based flow control because

it does not rely on timing assumptions, and credit tokens can reuse the ex-

isting communication paths, thus avoiding any waveguide, and resulting in a

milder impact over static power.

10.3 Power Characterization 153

Figure 10.1: Optical Network Interface Architecture.

3 Power Characterization

Electronic NI buffering and frequency converters (dual-clock FIFOs) con-

tribute around 11.5mW (see Fig.10.2 and Fig.10.3). The static power dissi-

pated (Idle power) by the entire network (16 switches), is around 286 mW

(see 10.4 and 10.5, only the top-level clock tree is omitted). Similarly, the

power dissipation of Optical Network Interfaces is computed by composing

the power consumption of each of its sub-blocks (DC FIFOs at the transmis-

sion sides, Demultiplexers, SERs, Synchronizers, DESERs, DC FIFOs at the

reception sides, Multiplexers, and Credit counters).

The static power contribution of all optical components is given by: Laser

sources, Thermal tuning, Transmitter (i.e.the driver-ring modulator couple),

Receiver (i.e., Photodetector, Trans-Impedence Amplifier, and Comparator)

and the source-synchronous clock. The latter addendum is internally com-

posed by further laser sources, Transmitters, Receivers, and MRRs as well.

For these parameters we assume values derived from the literature[113], [112].

These resources must be replicated as many times as the target bit paral-

lelism, and also for the optical clock support. Power metrics of all basic blocks

of our architectures are summarized in Table10.1. The derived static power

values for electronic and optical components are illustrated in figures 10.4

154 Power Characterization of Optical NoC Interfaces

and 10.5.

Electronic Devices Static Power (mW) Dynamic Energy (fJ/bit)

DC FIFO TX 5 //3 0.12 10.65

DC FIFO RX 5 //3 0.12 8.54

DC FIFO TX 22 //3 0.12 39

DC FIFO RX 15 //3 0.12 26.50

MUX4x1 ARB //3 0.08 0.36

MUX45x1 ARB //3 0.9 5.09

SERIALIZER //3 0.0475 9.41

DESERIALIZER //3 0.0289 7.74

MESO SYNCH //3 0.082 8

BRUTE FORCE //3 0.004234 1.4

DC FIFO TX 5 //4 0.12 12.72

DC FIFO RX 5 //4 0.12 10.2

DC FIFO TX 22 //4 0.12 46.41

DC FIFO RX 15 //4 0.12 31.65

MUX4x1 ARB //4 0.11 0.49

MUX45x1 ARB //4 0.9 5.09

SERIALIZER //4 0.0417 2.63

DESERIALIZER //4 0.0281 6.12

MESO SYNCH //4 0.113 11.1

BRUTE FORCE //4 0.00503 1.66

DEMUX1x3 //4 0.000725 0.92

DEMUX1x15 //4 0.0021 25.21

DEMUX1x4 //4 0.00056 6.72

COUNTER@4bits //4 0.02964 1.014

TSV / 2.5

TRANSMITTER (aggr) 0.025 20

TRANSMITTER (real) 0.100 50

RECEIVER (aggr) 0.050 10

RECEIVER (real) 0.150 25

THERMAL. T @20K 0.020 /

E-SWITCH (3VC) 5.844 193

Table 10.1: Static and Dynamic Power Of Electronic Devices.

4 Analysis and Discussion

Network interfaces are typically oversimplified, and end up being abstracted

by simple input/output FIFOs of infinite length. Similarly, the blocking effect

of the backpressure mechanism is overlooked. As a consequence, the ONoC

easily proves much more performance-efficient than the electronic counter-

part. Moreover, the lack of a layout analysis in addition to a physical-layer

analysis in ONoC design is another important source of optimism in previous

10.5 Conclusion 155

evaluations. In contrast, the key strength of this research (AMF methodol-

ogy) consists of a careful exploration of E/O and O/E interfaces, accounting

for the contributions and effects of every building block: routing, buffering,

serialization and deserialization processes, as well as optical transmitters and

receivers, clock domain synchronizer, backpressure cost.

5 Conclusion

This chapter aims at a high level of practical relevance in the power charac-

terization of an optical NoC vs. its electronic counterpart. The key novelty

consists of the use of an electronic baseline aggressively optimized for low-

power. With conservative projections for optical component parameters, the

major role played by static power is apparent. This calls for new power gat-

ing techniques. With more aggressive projections, the network interface turns

out to be the clear bottleneck to achieve the break-even point with low-power

ENoCs, hence it should be thoroughly analyzed for optimization. In future

work, we will investigate more communication-dominated scenarios, in an at-

tempt to capitalize on the far lower dynamic power consumption of ONoCs.
1

1This chapter has included contents that are referred to a cooperative and interdisci-

plinary work where furher details are in[115].

156 Power Characterization of Optical NoC Interfaces

Figure 10.2: Static Power of Electronic Network Interface vs. Optical Network

Interface@//3.

Figure 10.3: Static Power of Electronic Network Interface vs. Optical Network

Interface@//4.

10.5 Conclusion 157

Figure 10.4: Total Static Power of Electronic Network vs. Optical Network

@//3.

Figure 10.5: Total Static Power of Electronic Network vs. Optical Network

@//4.

Conclusions

This study is focused on the next generation of homogeneous many-core

systems. In particularly it deals with cross-layer design, optimization and

prototyping of interconnection on-chips. The main goals of this thesis were

to design, optimize, test and prototype an on-chip interconnection network.

To achieve these objectives, we first analyzed two architectural variants of

a mesh and we made an architectural study of three types of interconnec-

tion on chip to better understand the various trade-offs (Power consump-

tion, area and performance) between synchronous, mesochronous and multi-

synchronous NoCs. Subsequently, we designed various testing infrastructures

and we assessed the coverage, the area overhead and the testing cycles. More-

over, we designed an ultra-low latency network-on chip testing infrastructure,

suitable for online testing. In addition, we design a new congestion avoidance

mechanism named HACS to reduce congestion in the network with inter-

esting results. The most important of all was the validation of some of the

ideas of this thesis on a FPGA prototyping. Finally, our goals were achieved

and we started to pave the way for emerging technologies such as optical in-

terconnect technology by providing a key enabler for the characterization of

power consumption of optical network interfaces. Overall, the thesis is a com-

prehensive contribution to the advance in the field of manycore NoC-based

system design.

Bibliography

[1] Simone Terenzi, Alessandro Strano, Davide Bertozzi.

”Optimizing Built-In Pseudo-Random Self-Testing for Network-on-Chip

Switches” - INA-OCMC 2012

[2] S.Y.Lin, C.C.Hsu, A.Y.Wu.

”A Scalable Built-In Self-Test/Self-Diagnosis Architecture for 2D-mesh

Based Chip Multiprocessor Systems”

IEEE Int. Symp. on Circuits and Systems - 2009

[3] A. Strano, C. Gómez, D. Ludovici, M. Favalli, M.E. Gómez, D. Bertozzi.

”Exploiting Network-on-Chip Structural Redundancy for A Cooperative

and Scalable Built-In Self-Test Architecture” - DATE -2011

[4] Markus, A.; Raik, J.; Ubar, R.

”Fast and Efficient Static Compaction of Test Sequences Using Bipartite

Graph Representation”

Proc. of the Second Electronic Circuits and Systems Conference (ECS’99)

[5] Sheng Zhang, Sharad C seth, Bhargab B, Bhattacharya.

”Efficient Test Compaction for Pseudo-Random Testing”

Proc. of the 14th Asian Test Symposium (ATS ’05)

[6] S.Stergiou et al.

”Xpipes Lite: a Synthesis Oriented Design Library for Networks on

Chips” - DAC - 2005

[7] D.Wentzlaff et al.

”On-Chip Interconnection Architecture of the Tile Processor”

-IEEE Micro 2005

162 Bibliography

[8] J.Raik, V.Govind, R.Ubar.

”An External Test Approach for Network-on-a-Chip Switches”

Proc. of the IEEE Asian Test Symposium - 2006”

[9] J.Raik, V.Govind, R.Ubar.

”Test Configurations for Diagnosing Faulty Links in NoC Switches”

Proc. ETS - 2007

[10] D. A. IIitzky, J. D. Hoffman, A. Chun and B. P. Esparza

”Architecture of the Scalable Communications Core’s Network on Chip”

IEEE MICRO - 2007

[11] J.Raik, V.Govind, R.Ubar

”DfT-based External Test and Diagnosis of Mesh-like NoCs”

IET Computers and Digital Techniques - 2009

[12] V.Bertacco, D.Fick, A.DeOrio, J.Hu, D.Blaauw, D.Sylvester

”VICIS: A Reliable Network for Unreliable Silicon”

DAC - 2009

[13] K.Peterson, J.Oberg

”Toward a Scalable Test Methodology for 2D-mesh Network-on-Chip”

DATE - 2007

[14] A.M. Amory, E.Briao, E.Cota, M.Lubaszewski, F.G.Moraes

”A Scalable Test Strategy for Network-on-Chip Routers”

Proc. of ITC-2005

[15] K.Arabi

”Logic BIST and Scan Test Techniques for Multiple Identical Blocks”

IEEE VLSI Test Symnposium 2002

[16] C.Grecu, P.Pande, B.Wang, A.Ivanov, R.Saleh.

”Logic BIST and Scan Test Techniques for Multiple Identical Blocks”

IEEE DFT - 2005

[17] R.Ubar, J.Raik

”Testing Strategies for Network on Chip” ”- book edited by A.Jantsch

and H.Tenhunen, Kluwer Academic Publisher” IEEE DFT - 2003

Bibliography 163

[18] C.Aktouf

”Testing Strategies for Network on Chip”

IEEE Design and Test of Computers - 2002

[19] Y.Lin, C.C.Hsu, A.Y.Wu ”A Scalable Built-In Self-Test/Self-Diagnosis

Architecture for 2D-mesh Based Chip Multiprocessor Systems”

IEEE Int. Symp. on Circuits and Systems - 2009

[20] M.Hosseinabady, A.Banaiyan, M.N.Bojnordi, Z.Navabi

”A Concurrent Testing Method for NoC Switches”

DATE - 2006

[21] C.Grecu, P.Pande, A.Ivanov, R.Saleh

”BIST for Network-on-Chip Interconnect Infrastructures”

VLSI Test Symposium-2006

[22] S.Rodrigo, J.Flich, A.Roca, S.Medardoni, D.Bertozzi, J.Camacho,

F.Silla, J.Duato

”Addressing Manufacturing Challenges with Cost-Effective Fault Tolerant

Routing”

NOCS-2010

[23] Antti Markus, Jaan Raik, Raimund Ubar

”Fast and Efficient Static Compaction of Test Sequences Using Bipartite

Graph Representation”

Proc. of the Second Electronic Circuits and Systems Conference,(ECS)-

1999

[24] F.Clermidy, R.Lemaire, X.Popon, D.Ktenas, Y.Thonnart

Euromicro Conference on Digital System Design-2009

”An Open and Reconfigurable Platform for 4G Telecommunication: Con-

cepts and Application”

[25] F.Clermidy, C.Bernard, R.Lemaire, J.Martin, I.Miro-Panades,

Y.Thonnart, P.Vivet, N.Wehn

”A 477mW NoC-based Digital Baseband for MIMO 4G SDR”

ISSCC-2010

164 Bibliography

[26] Y.Thonnart, P.Vivet, F.Clermidy

”A Fully-Asynchronous Low-Power Framework for GALS NoC Integra-

tion”

DATE-2010

[27] R.Dobkin, V.Vishnyakov, E.Friedman, R.Ginosar

”An Asynchronous Router for Multiple Service Levels Networks on Chip”

Proc. of ASYNC -2005

[28] T.Bjerregaard, J.Sparso

”A Router Architecture for Connection-Oriented Service Guarantees in

the MANGO Clockless Network-on-Chip”

DATE-2005

[29] W.Kim, M.S.Gupta, G.Y.Wei and D.Brooks

”System Level Analysis of Fast, Per-Core DVFS using On-Chip Switching

Regulators”

Int. Symp. on High-Performance Computer Architecture-2008

[30] W.Kim, M.S.Gupta, G.Y.Wei and D.Brooks

”System Level Analysis of Fast, Per-Core DVFS using On-Chip Switching

Regulators”

Int. Symp. on High-Performance Computer Architecture-2008

[31] C.Cummings, P.Alfke

”Simulation and Synthesis Techniques for Asynchronous FIFO Design

with Asynchronous Pointer Comparison”

SNUG-2002, San Jose-2002

[32] I.M.Panades, A.Greiner

”Bi-Synchronous FIFO for Synchronous Circuit Communication Well

Suited for Network-on-Chip in GALS Architectures”

Int. Symp. on Networks-on-Chip-2007

[33] T.Ono, M.Greenstreet

”A Modular Synchronizing FIFO for NOCs”

International Network-on-Chip Symposium-2009

Bibliography 165

[34] D.Verbitsky, R.R.Dobkin, R.Ginosar

”A Four-Stage Mesochronous Synchronizer with Back-Pressure and

Buffering for Short and Long Range Communications”

International Network-on-Chip Symposium

http://webee.technion.ac.il/ ran/papers

[35] M.Alshaikh,D.Kinniment, A.Yakovlev

”Robust Synchronization using the Wagging Technique”

Technical Report. TR NCL EECE-MSD-TR

[36] F.Mu, C.Svensson

”Self-Tested Self-Synchronization Circuit for Mesochronous Clocking”

”IEEE Trans. on Circuits and Systems II: Analog and Digital Signal

Processing-2001”

[37] A.Sheibanyrad, I.M.Panades, A.Greiner

”Multisynchronous and Fully Asynchronous NoCs for GALS Architec-

tures”

IEEE Design and Test of Computers-2008

[38] M.N.Horak, S.M.Nowick, M.Carlberg, U.Vishkin

”A Low-Overhead Asynchronous Interconnection Network for GALS Chip

Multiprocessors”

ACM/IEEE Int. Symp. on Networks-on-Chip-2010

[39] J.Bainbridge, S.Furber

”CHAIN: a Delay-Insensitive Chip Area Interconnect”

IEEE Micro-2002

[40] L.A.Plana, S.B.Furber, S.Temple, M.Khan, Y.Shi, J.Wu, S.Yang

”A GALS Infrastructure for a Massively Parallel Multiprocessor”

IEEE Design and Test of Computers-2007

[41] E.Beigne, F.Clermidy, P.Vivet, A.Clouard, M.Renaudin

”An Asynchronous NoC Architecture Providing Low Latency Service and

Its Multilevel Design Framework”

IEEE Asynch. Symp.-2005

166 Bibliography

[42] D. Lattard, E. Beigne, F. Clermidy, Y. Durand, R. Lemaire, P. Vivet,

F. Berens

”A Reconfigurable Baseband Platform Based on an Asynchronous

Network-on-Chip”

IEEE Journal Of Solid State Circuits-2008

[43] B.Quinton, M.Greenstreet, S.Wilton

”Practical Asynchronous Interconnect Network Design”

IEEE Trans. on VLSI-2008

[44] S.Hollis, S.W.Moore

”Rasp: an Area-Efficient, on-Chip Network”

IEEE Int. Conf. on Computer Design-2006

[45] W.J. Dally and J.W. Poulton

”Digital Systems Engineering”

Cambridge University Press-1998

[46] F.Vitullo, N.E.L’Insalata et al.

”Low-Complexity Link Microarchitecture for Mesochronous Communica-

tion in Networks-on-Chip”

”IEEE Trans. on Computers-2008

[47] I.M.Panades, F.Clermidy, P.Vivet, A.Greiner

”Physical Implementation of the DSPIN Network-on-Chip in the FAUST

Architecture”

ACM/IEEE Int. Symp. on Networks-on-Chip-2008

[48] D.Wentzlaff et al.

book chapter from ”Designing Network On-Chip Architectures in the

Nanoscale Era, edited by J.Flich and D.Bertozzi, CRC Press”

Networks of the Tilera Multicore Processor-2011

[49] S.Murali et al.

”NoC Synthesis Flow for Customized Domain Specific Multiprocessor

Systems-on-Chip”

IEEE Trans. on Parallel and Distributed Systems-2005

Bibliography 167

[50] D. Ludovici, A. Strano, G. N. Gaydadjiev and D. Bertozzi

”Mesochronous NoC Technology for Power-Efficient GALS MPSoCs”

INAOCMC-2011

[51] S.Beer, R.Ginosar, M.Priel, R.R.Dobkin, A.Kolodny

”The Devolution of Synchronizers”

ASYNCH-2010

[52] A.Strano, D.Ludovici, D.Bertozzi

”A Library of Dual-Clock FIFOs for Cost-Effective and Flexible MP-

SoCs”

Proc. of SAMOS-2010

[53] D. Ludovici and A. Strano and G. N. Gaydadjiev and L. Benini and D.

Bertozzi

”Design Space Exploration of a Mesochronous Link for Cost-Effective and

Flexible GALS NOCs”

Proceedings of Design, Automation and Test in Europe-2010

[54] D. Ludovici, A. Strano, D. Bertozzi

”Architecture design principles for the integration of synchronization in-

terfaces into Network-on-Chip switches”

NoCArc: Proceedings of the 2nd International Workshop on Network on

Chip Architectures-2009

[55] Kakoee, M.R. and Loi, I. and Benini, L.

”A New Physical Routing Approach for Robust Bundled Signaling on NoC

Links”

Proceedings of the 20th Great Lakes Symposium on VLSI-2010

[56] M. Krstic, X. Fan, C. Wolf, A. Strano, D. Bertozzi

”A New Physical Routing Approach for Robust Bundled Signaling on NoC

Links”

Deliverable D29 - Test and Measurement Report of Moonrake Chip,

Galaxy Project-2010

www.galaxy-project.org

168 Bibliography

[57] Abts, D., Enright Jerger, N.D., Kim, J., Gibson, D., Lipasti, M.H.

”Achieving predictable performance through better memory controller

placement in many-core CMPs”

ACM SIGARCH Computer Architecture News 37(3), 451 (Jun 2009)

http://portal.acm.org/citation.cfmdoid=1555815.1555810

[58] Das, R., Mutlu, O., Kumar, A., Azimi, M.

”Application-to-core mapping policies to reduce interference in on-chip

networks”

Tech. rep., SAFARI Technical Report No. 2011 (2011)

http://www.ece.cmu.edu/omutlu/pub/interference-aware-noc-mapping-

TR-SAFARI-2011-001.pdf

[59] Trivino, F., Sanchez, J.L., Alfaro, F.J., Flich, J.

” Virtualizing network-on-chip resources in chip-multiprocessors”

Microprocessors and Microsystems 35(2), 230245 (Mar 2011)

http://linkinghub.elsevier.com/retrieve/pii/S0141933110000712

[60] Gratz, P., Grot, B., Keckler, S.W.

”Regional congestion awareness for load balance in networks-on-chip”

HPCA. pp. 203214. IEEE Computer Society (2008)

[61] Li, M., Zeng, Q.A., Jone, W.B.

”DyXY: a proximity congestion-aware deadlock-free dynamic routing

method for network on chip.”

”Proceedings of the 43rd annual Design Automation Conference. pp.

849852. DAC 06, ACM, New York,2006

http://doi.acm.org/10.1145/1146909.1147125

[62] Marescaux, T., Rangevall, A., Nollet, V., Bartic, A., Corporaal, H.

”Distributed congestion control for packet switched networks on chip”

Proceedings of the International Conference of Parallel Computing:

Current Future Issues of High-End Computing. vol. 33, pp. 761768-2005

http://citeseerx.ist.psu.edu

Bibliography 169

[63] Wu, D., Al-Hashimi, B.M., Schmitz, M.T.

”Improving routing efficiency for network-on-chip through contention-

aware input selection”

Proceedings of the 2006 Asia and South Pacific Design Automation

Conference. pp. 3641:

ASP- DAC 06, IEEE Press, Piscataway, NJ, USA (2006),

http://dx.doi.org

[64] Sanchez, D., Michelogiannakis, G., Kozyrakis, C.

”An analysis of on-chip interconnection networks for large-scale chip mul-

tiprocessors”

ACM Transactions on Architecture and Code Optimization (TACO) 7(1),

4 (2010)

http://portal.acm.org/citation.cfmid=1736069

[65] Das, R., Mutlu, O., Moscibroda, T., Das, C.R.

”Application-aware prioritization mechanisms for on-chip networks”

Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture - Micro-42 p. 280 (2009)

http://portal.acm.org/citation.cfmdoid=1669112.1669150

[66] Grot, B., Keckler, S., Mutlu, O.

”Preemptive virtual clock: a flexible, efficient, and cost-effective QOS

scheme for networks-on-chip”

Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture. pp. 268279. ACM (2009)

http://portal.acm.org/citation.cfmid=1669149

[67] Iyer, R., Zhao, L., Guo, F., Illikkal, R., Makineni, S., Newell, D., Soli-

hin, Y., Hsu, L., Reinhardt, S.

”QoS policies and architecture for cache/memory in CMP platforms.”

ACM SIGMETRICS Performance Evaluation Review 35(1), 25 (Jun

2007)

http://portal.acm.org/citation.cfmdoid=1269899.1254886

170 Bibliography

[68] Flich, J., Bertozzi, D.

”Designing Network On-Chip Architectures in the Nanoscale Era.”

Chapman & Hall/CRC (2010)

[69] Chen, G., Li, F., Son, S.W., Kandemir, M.

”Application mapping for chip multiprocessors.” Proceedings of the 45th

annual conference on Design automation - DAC 08 p. 620 (2008)

http://portal.acm.org/citation.cfmdoid=1391469.1391628

[70] Das, R., Mutlu, O., Kumar, A., Azimi, M.

”Application-to-core mapping policies to reduce interference in on-chip

networks”

Tech. rep., SAFARI Technical Report No. 2011 (2011)

http://www.ece.cmu.edu/omutlu/pub/interference-aware-noc-mapping-

TR-SAFARI-2011-001.pdf

[71] Rodrigo, S., Flich, J., Roca, A., Medardoni, S., Bertozzi, D., Camacho,

J., Silla, F., Duato, J.

”Addressing manufacturing challenges with cost-efficient fault tolerant

routing.”

NOCS 10: Proceedings of the 4th ACM/IEEE International Symposium

on Networks-on-Chip. pp. 2532 (2010)

[72] Gilabert, F., Gomez, M.E., Medardoni, S., Bertozzi, D.

”Improved utilization of noc channel bandwidth by switch replication for

cost-effective multi-processor systems-on-chip”

”Proceedings of the 2010 Fourth ACM/IEEE International Symposium

on Networks-on-Chip. pp. 165172.”

IEEE Computer Society, Washington, DC, USA (2010)

http://dx.doi.org/10.1109/NOCS.2010.25

[73] Ubal, R., Sahuquillo, J., Petit, S., Lopez, P.

”Multi2Sim: A Simulation Framework to Evaluate Multicore-

Multithreaded Processors”

Proc. of the 19th Intl Symposium on Computer Architecture and High

Performance Computing (2007)

Bibliography 171

[74] ”NaNoC: NaNoC design platform.”

http://www.nanoc-project.eu

[75] ”Roca, S., Flich, J., Silla, F., Duato, J.”

”VCTlite: Towards an efficient implementation of virtual cut-through

switching in on-chip networks”

International Conference on High Performance Computing (HiPC). pp.

112 (2010)

[76] Mejia A., Flich, J., Duato, J., Reinemo, S.A., Skeie, T.

”Segment-based routing: An efficient fault-tolerant routing algorithm for

meshes and tori”

International Parallel and Distributed Processing Symposium 0, 84 (2006)

[77] ”Multi2sim Wiki: SPLASH2 execution commands.”

http://www.multi2sim.org/wiki/index.php5/SPLASH2 Execution Com-

mands

[78] Rijpkema, E.; Goossens, K.; Radulescu, A.

”Trade Offs in the Design of a Router with Both Guaranteed and Best-

Effort Services for Networks on Chip.”

DATE03, Mar. 2003, pp. 350-355.

[79] Jose Flich, Davide Bertozzi.

”Designing Network On-Chip Architectures in the Nanoscale Era”

by Chapman and Hall/CRC (2010).

[80] Diego Melpignano, Luca Benini, Eric Flamand, L. Benini, Bruno Jego,

Thierry Lepley, Germain Haugou, Fabien Clermidy , Denis Dutoit.

”Platform 2012, a Many-Core Computing Accelerator for Embedded

SoCs: Performance Evaluation of Visual Analytics Applications”

DAC 2012, June 3-7, 2012, San Francisco, California, USA.

[81] Peter Mandl, Udeepta Bordoloi

”General-purpose Graphics Processing Units Deliver New Capabilities to

the Embedded Market”

http://www.amd.com/tw/Documents/GPGPU-Embedded.pdf

172 Bibliography

[82] S.Stergiou et al.

”Xpipes Lite: a Synthesis Oriented Design Library for Networks on

Chips”

DAC, pp.559-564, 2005.

[83] A.Strano, F.Trivino, Jose L. Sanchez, Jose Flich, D.Bertozzi

”OSR-Lite: Fast and Deadlock-Free NoC Reconguration Framework

SAMOS 2012.

[84] ”S.Rodrigo et Al.”

”Addressing Manufacturing Challenges with Cost-Effective Fault Tolerant

Routing”

NOCS 2010, pp.35-32, 2010.

[85] S.Terenzi, A.Strano, D.Bertozzi

”Optimizing Built-In Pseudo-Random Self-Testing for Network-on-Chip

Switches”

INA-OCMC 2012.

[86] M.Radetzki, C.Feng, X.Zhao, and A.Jantsch.

”Methods for fault tolerance in networks on chip.

ACM Computing Surveys - 2012.

[87] A.Ghiribaldi, A.Strano, M.Favalli, D.Bertozzi.

”Power Efficiency of Switch Architecture Extensions for Fault Tolerant

NoC Design.”

IGCC12, 2012, California, USA.

[88] O. Lysne, et Al.

”An efficient and deadlock-free network reconfiguration protocol”

IEEE Transactions of Computers, pp.762779, 2008.

[89] A. Ghiribaldi, D. Ludovici, M. Favalli, D. Bertozzi.

”System-Level Infrastructure for Boot-time Testing and Configuration of

Networks-on-Chip with Programmable Routing Logic”.

VLSI-SoC, 2011

Bibliography 173

[90] Jared C. Smolens, Brian T. Gold, James C. Hoe, Babak Falsafi, and

Ken Mai

”Detecting Emerging Wearout Faults” SELSE, 2007.

[91] D.Wentzlaff et al.

IEEE Micro, vol.27, no.5, pp.15-31, 2007.

[92] D. A. IIitzky, J. D. Hoffman, A. Chun and B. P. Esparza

”Architecture of the Scalable Communications Cores Network on Chip”.

IEEE Micro, vol.27, Issue 5, pp.62 - 74,2007.

[93] S.Vangal et al.,

”An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS”.

IEEE Journal of Solid-State Circuits, Vol.43, Issue 1, pp.29-41,2008.

[94] E. Flamand

”Strategic Directions Towards Multicore Application Specific Computing”.

Proc. of DATE, pp.1266, 2009.

[95] M. Krstic et al;

”Globally Asynchronous, Locally Synchronous Circuits: Overview and

Outlook”.

IEEE Design and Test of Computers, vol. 24, no. 5, pp. 430-441, 2007.

[96] S.Borkar

”Design Perspectives on 22nm CMOS and Beyond”

Proc. of DAC 2009.

[97] R.Dobkin, V.Vishnyakov, E.Friedman, R.Ginosar

”An Asynchronous Router for Multiple Service Levels Networks on Chip”

Proc. of ASYNC, pp.44-53, 2005.

[98] T.Bjerregaard, J.Sparso

”A Router Architecture for Connection-Oriented Service Guarantees in

the MANGO Clockless Network-on-Chip”

Proc. of DATE, pp.1226-1231, 2005.

174 Bibliography

[99] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, D. Bertozzi, G. De Micheli

”xpipes Lite: a Synthesis Oriented Design Library for Networks on Chips”

Proc. of DATE, pp.11881193, 2005.

[100] Kakoee, M.R. and Loi, I. and Benini, L.

”A New Physical Routing Approach for Robust Bundled Signaling on NoC

Links”

Proc. of GLSVLSI, pp.3-8, 2010.

[101] D. Ludovici and A. Strano and G. N. Gaydadjiev and L. Benini and

D. Bertozzi

”Design Space Exploration of a Mesochronous Link for Cost-Effective and

Flexible GALS NOCs”

Proc. of DATE, pp.679-684, 2010.

[102] D. Ludovici, A. Strano, D. Bertozzi

”Architecture design principles for the integration of synchronization in-

terfaces into Network-on-Chip switches”

Proc. of NoCArc, pp.31-36, 2009.

[103] D. Ludovici, A. Strano, D. Bertozzi, L. Benini, G.N. Gaydadjiev

”Comparing tightly and loosely coupled mesochronous synchronizers in a

NoC switch architecture”

Proc. of NOCS, pp.244-249, 2009.

[104] A. Strano and D. Ludovici and D. Bertozzi

”A Library of Dual-Clock FIFOs for Cost-Effective and Flexible MPSoCs

Design”

Proc. of SAMOS, 2010.

[105] T.N.K.Jain

”Asynchronous Bypass Channels: Improving Performance for Multi-

Synchronous NoCs”

Proc. of NOCS, pp.51-58, 2010.

[106] F.Vitullo et al.

”Low-Complexity Link Microarchitecture for Mesochronous Communica-

Bibliography 175

tion in Networks-on-Chip”

IEEE Trans. on Computers, Vol.57, issue 9, pp.1196-1201, 2008.

[107] D. Mangano, R. Locatelli, A. Scandurra, C. Pistritto, M. Coppola, L.

Fanucci, F. Vitullo, D. Zandri

”Skew Insensitive Physical Links for Network on Chip”

Proc of NANO-NET, 2006.

[108] I.M.Panades, F.Clermidy, P.Vivet, A.Greiner

”Physical Implementation of the DSPIN Network-on-Chip in the FAUST

Architecture”

Proc. of NOCS, pp.139-148, 2008.

[109] F.Clermidy, R.Lemaire, X.Popon, D.Ktenas, Y.Thonnart

”An Open and Reconfigurable Platform for 4G Telecommunication: Con-

cepts and Application”

Proc of DSD, pp.62-74,2009.

[110] F.Clermidy, C.Bernard, R.Lemaire, J.Martin, I.Miro-Panades,

Y.Thonnart, P.Vivet, N.Wehn

”A 477mW NoC-based Digital Baseband for MIMO 4G SDR”

ISSCC2010, pp.278-279, 2010.

[111] Y.Thonnart, P.Vivet, F.Clermidy

”A Fully-Asynchronous Low-Power Framework for GALS NoC Integra-

tion”

Proc. of DATE, pp.33-38, 2010.

[112] C. Batten, A. Joshi, V. Stojanovic, K. Asanovic.

”Designing chiplevel nanophotonic interconnection networks.”

Emerging and Selected Topics in Circuits and Systems, IEEE Journal.

vol. 2, no. 2, pp. 137-153, 2012.

[113] S. Beamer, C. Sun, Y. Kwon, A. Joshi, C. Batten, V. Stojanovic, K.

Asanovic.

”Re-architecting DRAM memory systems with monolithically integrated

silicon photonics.”

ISCA 2010.

176 Bibliography

[114] J. Leu, V. Stojanovic.

” Injection-locked clock receiver for monolithic optical link in 45nm SOI.”

(A-SSCC), 2011 IEEE Asian, 2011, pp. 149-152.

[115] Luca Ramini Paolo Grani, Herve Tatenguem Fankem, A.Ghiribaldi,

S.Bartolini, D.Bertozzi

Assessing the Energy Break-Even Point between an Optical NoC Archi-

tecture and an Aggressive Electronic Baseline

DATE-2014, Dresden-Germany

