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TOWARDS SUCCESSFUL APPLICATION OF PHASE CHANGE MEMORIES:

ADDRESSING CHALLENGES FROM WRITE OPERATIONS

Ping Zhou, PhD

University of Pittsburgh, 2012

The emerging Phase Change Memory (PCM) technology is drawing increasing attention due to

its advantages in non-volatility, byte-addressability and scalability. It is regarded as a promising

candidate for future main memory. However, PCM’s write operation has some limitations that

pose challenges to its application in memory. The disadvantages include long write latency, high

write power and limited write endurance.

In this thesis, I present my effort towards successful application of PCM memory. My research

consists of several optimizing techniques at both the circuit and architecture level. First, at the

circuit level, I propose Differential Write to remove unnecessary bit changes in PCM writes. This is

not only beneficial to endurance but also to the energy and latency of writes. Second, I propose two

memory scheduling enhancements (AWP and RAWP) for a non-blocking bank design. My memory

scheduling enhancements can exploit intra-bank parallelism provided by non-blocking bank design,

and achieve significant throughput improvement. Third, I propose Bit Level Power Budgeting

(BPB), a fine-grained power budgeting technique that leverages the information from Differential

Write to achieve even higher memory throughput under the same power budget. Fourth, I propose

techniques to improve the QoS tuning ability of high-priority applications when running on PCM

memory.

In summary, the techniques I propose effectively address the challenges of PCM’s write opera-

tions. In addition, I present the experimental infrastructure in this work and my visions of potential

future research topics, which could be helpful to other researchers in the area.
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1.0 INTRODUCTION

The call for large and low power memory systems is continuing its pace especially in Chip Multi-

processors (CMP) due to the growing memory requirements of new applications and the increasing

number of processing cores. As the technology enters the nanoscale regime, large DRAM-based

main memory faces serious leakage and scalability limitations. For example, in a mid-range IBM

eServer machine, 40% of the power was reported to be consumed by its main memory system [51].

Recent studies have shown that memory energy conservation should focus on leakage energy reduc-

tion since leakage grows with the memory capacity, and the main memory can dissipate as much

leakage energy as dynamic energy [93]. DRAM is also facing serious problems scaling to 40nm or

beyond, as it is constrained by the limitation in cell-bitline capacitance ratio [43, 61]. As a result,

people have resorted to several non-volatile memory technologies as alternatives to conventional

DRAM. Examples include NAND Flash, Phase Change Memory (PCM) and Spin-Transfer Torque

RAM (STT-RAM).

Among these non-volatile memory technologies, NAND Flash a has very limited number of

write/erase cycles: 105 rewrites [25] as opposed to 1016 for DRAM. NAND Flash also requires

a block to be erased before writing into that block, which introduces considerably extra delay

and energy. Moreover, NAND Flash can only be accessed in blocks and is not byte-addressable.

Therefore, NAND flash has been proposed as a disk cache [9, 42] or a replacement for disks [97]

where writes are relatively infrequent, and happen mostly in blocks.

Besides NAND Flash, two emerging memory technologies, PCM and STT-RAM, are regarded

as promising candidates for next-generation memory technology. Both of them share the common

advantages of non-volatility, byte-addressability and scalability, and are backed by key industry

manufacturers such as Intel, ST-Microelectronics, Samsung, IBM and TDK [30, 38]. STT-RAM

is faster than PCM, and has nearly the same endurance as DRAM (1015 [92] vs. 1016 rewrites).

PCM, on the other hand, is much denser than STT-RAM. The cell area for DRAM, PCM and
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STT-RAM are 6F 2 [93], 5∼8F 2 [47], and 37∼40F 2 [20] respectively, where F is the feature size.

PCM also has excellent scalability within current CMOS fabrication methodology [13,44,47,74,82].

PCM’s attributes, along with the common advantages of emerging memory technologies, make it

a promising candidate as part of main memory [48,80,103].

For a better understanding of the differences among memory technologies, I summarize their

basic attributes in Table 1.

Table 1: Basic attributes of emerging memory technologies [20,27,39,47,52,67,92,93,103]

Read Speed Write Speed Cell Area Endurance Byte-addressable

DRAM 20∼50ns 20∼50ns 6F 2 1015 Yes

SRAM ∼2ns ∼2ns 146F 2 1015 ∼ 1016 Yes

NAND Flash 25us [a] 500us [b] 5F 2 104 ∼ 105 No

STT-RAM ∼2ns ∼10ns 37 ∼ 40F 2 1012 Yes

PCM 30∼50ns ∼1us[c] 5∼8F 2 ∼ 108 Yes

a Page read.

b Page write, block erasure required before write.

c Per-access (page write) time. For cell-access time (writing of single PCM cell), the

number is typically 50∼150ns [48].

In this thesis, I assume PCM is used in main memory along with an optional DRAM buffer to

form a hybrid memory system, as shown in Figure 1.

Despite PCM memory’s low leakage and good scalability, however, a PCM-based memory system

still has several issues to solve. The issues are mainly caused by PCM’s write operation, which has

several disadvantages:

Write endurance. PCM write is a thermally-driven process that involves heating and cooling

(details of PCM operations are discussed in Chapter 2). Due to the repeated heat stress in this

process, a PCM cell can be written for a limited number of times (typically 108 ∼ 109 times [25,39,

99]). While this is better than the write endurance of NAND Flash (i.e., 105 times), it is worse than

that of a DRAM cell (i.e., 1015) times and is a big concern when PCM is used in main memory.

Write power. PCM write incurs high current injection (e.g., 0.6∼1mA [50]), resulting in high

write power (e.g., 2.88∼4.8mW per bit [50]). Large numbers of concurrent PCM bit writes can
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Figure 1: Potential application of PCM in memory hierarchy.

raise concern of transient write power and write current. For example, Kang et al. reported in

their prototype that designing charge pumps for the write driver was challenging because they

have to supply high current and sustain high voltage at same time [40]. Moreover, transient high

current causes noise on the power line, and therefore the number of cells written in parallel has to

be restricted [40]. Due to the same reason, Chung et al. used a scheme in which cell writes are

skewed in time to avoid transient high current [15]. Hence, a practical PCM memory will typically

have some limitation on the number of concurrent bit writes. This limitation is called a “power

budget” in this thesis.

Write latency. PCM’s write operation is much slower than its read operation. A typical

latency of writing a single-level PCM cell is 90ns∼150ns [48, 103] (the write latency is worse in

multi-level cells). Moreover, because of PCM’s high write power and write current injection, writing

a PCM memory line (e.g., 512-bit line) is usually completed in several rounds, with each round

writing part of the line. This makes PCM’s per-access write latency even longer. For example,

Numonyx reported a 1us (1000ns) page write latency in their PCM prototype [67].

These disadvantages of PCM’s write operation lead to several major challenges to the application

of PCM memory. In addition to the lifetime issue caused by PCM’s limited write endurance, PCM’s

long write latency also causes low memory throughput, as an active write request can block a bank

and make subsequent requests wait for a long time. In order to improve throughput of PCM

memory, more parallelism must be exploited. However, PCM’s high write power makes this effort

even more challenging, as practical PCM memory is typically designed with a limit on the number
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of concurrent bit writes. When multiple applications are running concurrently, each application

will experience longer read access latencies. For some high-priority applications, it is often desirable

to be able to tune this “memory slowdown”. Unfortunately, PCM’s long write latency increases

the interference among multiple concurrent applications and degrades this QoS tuning ability on

high-priority applications.

Successful application of PCM memory demands techniques to address these challenges caused

by PCM’s disadvantageous write operations. In the next section, I will present an overview of my

research work on this topic.

1.1 RESEARCH OVERVIEW

My research is a comprehensive effort towards successful application of PCM memory. It consists

of the following building blocks and components at the circuit and architecture levels. An overview

of my research is illustrated in Figure 2.

Differential Write, wear-leveling and 

architectural modeling of PCM memory

Memory scheduling 

enhancements

Fine-grained power 

budgeting

QoS tuning ability improvement

Figure 2: Overview of my research.

First, I propose a circuit-level technique Differential Write to remove unnecessary bit changes

in PCM writes. Differential Write performs read and compare before each PCM write, and only

writes the cells that are actually changed. By using Differential Write along with a set of simple

wear-leveling techniques I propose, I extend PCM memory’s lifetime significantly, addressing the

major concern on PCM’s write endurance. In addition, Differential Write helps reduce write power

and opens new opportunities to the upper level (memory scheduling). The modeling and evaluation

I did also demonstrates the energy efficiency of PCM-based memory.
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Second, I propose my memory scheduling enhancements for a novel non-blocking bank de-

sign [105]. Although Differential Write is beneficial for write power and endurance, it does not help

PCM’s write latency a lot. A PCM write still takes a long time unless new data and old data are

completely identical (i.e., every bit of the write is redundant). In conventional bank design, each

logic bank serves one request at a time. This means an active PCM write can block subsequent

requests for a long time, hurting both latency and throughput. Existing memory scheduling en-

hancements like write-cancelation and write-pausing [76] only help read latency but not throughput,

as requests are still served in serial in each bank. In order to improve PCM memory’s throughput,

a non-blocking bank design is developed in which each logic bank can serve up to two reads and

two writes simultaneously. However, throughput improvement is found to be limited if the memory

scheduler is not aware of this new bank design. To exploit more throughput improvement from the

non-blocking bank design, I propose two scheduling enhancements, Aggressive Write Precedence

Reordering (AWP) and Row-Hit Aware Write Precedence Reordering (RAWP). Both techniques

can achieve more throughput improvement than the baseline, and RAWP can achieve similar read

row buffer hit rate to the baseline at the same time.

Third, I leverage the information provided by Differential Write and extend memory scheduling

with a fine-grained power budgeting technique for better utilization of power budgets [105]. Due

to PCM’s high write power and write current, a practical PCM memory is typically designed with

a limit on the number of concurrent writes [15, 40] (termed “power budget” in this thesis). The

increased parallelism achieved by non-blocking bank design and my memory scheduling enhance-

ments may result in higher total write power and exceed the original power budget of the baseline

bank design. Simply increasing the power budget to accommodate this increased parallelism is

expensive, because supplying high write current and voltage is challenging to the charge pumps of

the write drivers, and the transient high current causes noise on the power line [15, 40]. On the

other hand, keeping the original power budget as in the baseline bank design may require limiting

the number of concurrent PCM write requests, which contradicts the throughput improvement

techniques I have proposed. To preserve the benefits I gain from memory scheduling enhancements

without increasing the power budget, I propose Bit Level Power Budgeting (BPB) technique. BPB

leverages the information from Differential Write to get a better estimation of power demands and

to choose write configurations flexibly. As a result, BPB shows more throughput improvement

under the same power budgets, showing its better utilization of power budgets.

5



Fourth, I propose techniques to improve QoS tuning ability on high-priority applications [102],

which are conceptually at higher levels than the memory scheduling enhancements and power bud-

geting techniques I propose. When multiple applications are running concurrently, their memory

requests can interfere with each other and cause longer read latencies. It is often desirable to be

able to control this “memory slowdown” for high-priority applications. However, PCM’s long write

latency worsens the interference and degrades this tuning ability. A high-priority application can

still suffer from significant read latency increases, even if its requests are given highest priority.

Hence the tunable range of high-priority application’s read latency increase is limited, indicating

poor QoS tuning ability. I propose two techniques, Request Preemption and Row Buffer Partition-

ing, to mitigate this issue. Experiments show that my techniques can extend the tunable range

of high-priority application’s read latency increase by 1.7× ∼10×, indicating better QoS tuning

ability.

1.2 CONTRIBUTION

In summary, the contributions of this thesis are as follows:

• I propose Differential Write, a circuit-level technique to remove unnecessary (redundant) bit

changes in PCM writes. Simple and effective, Differential Write can remove 85% of total PCM

bit writes and is beneficial for both endurance and energy. With Differential Write and two

simple wear-leveling techniques, I demonstrate that PCM-based main memory is practical in

terms of lifetime. This is one of the first attempts to use PCM in main memory and study

its feasibility. Moreover, Differential Write opens new opportunities to upper level (memory

scheduling) techniques.

• I evaluate the energy-delay savings of PCM-based main memory through modeling, and describe

the considerations on peripheral logic selection. This is among the first work that provides

energy/delay modeling of PCM memory as well as its architectural evaluation.

• I identify the challenges to PCM memory that are caused by its disadvantageous write oper-

ations. Based on my circuit-level technique Differential Write, I propose a series of memory

scheduling techniques for PCM memory to address these challenges. These techniques include
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memory scheduling enhancements, fine-grained power budgeting and QoS tuning ability im-

provement schemes. They form a comprehensive effort towards successful application of PCM

memory.

• I evaluate the effectiveness of my proposed techniques with detailed simulations. I describe my

experimental infrastructure which could be helpful to further research in this area.

1.3 THESIS ORGANIZATION

The rest of this thesis is organized as follows: Chapter 2 presents background information. Chap-

ter 3 discusses the related work. Proposed techniques are presented in Chapter 4 through Chapter 7.

Chapter 8 presents my experimental infrastructure. Chapter 9 describes future research directions

and concludes the thesis.
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2.0 BACKGROUND

2.1 PHASE CHANGE MEMORY (PCM)

Phase Change Memory, or PCM, is one type of non-volatile memory that exploits the unique

behavior of phase change material to store information. Although the technology emerged recently,

the theory of phase change material has its origins early in 1960s when Ovshinsky reported a

reversible change in resistivity upon a change in phase in certain glasses [71]. The first Phase

Change Memory device was announced in the September 28th, 1970 issue of Electronics by Neale

et al [64,66]. In the following years, the advance of semiconductor manufacturing technology enabled

the development and application of PCM. For example, phase change material is already widely

used in rewritable CDs and DVDs, in which the same alloy is used as the PCM memory developed

by Numonyx [66]. By exploiting the electrical resistivity of phase change material, PCM is drawing

increasing interest recently, as it can be used as a memory cell and organized into memory array

similar to DRAM.

Electrodes

Phase Change Material 

(Chalcogenide)

Joule heater

Isolator

Figure 3: Structure of PCM cell.

A conventional DRAM cell uses a capacitor to store a bit of information. Analogously, a PCM

cell uses phase change material to remember a bit. The phase change material is one type of
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chalcogenide alloy, such as Ge2Sb2Te5 (or GST in short), which has two stable physical states:

amorphous and crystalline. In the amorphous state, the material is highly disordered and exhibits

high resistivity. In the crystalline state, the material has a regular crystalline structure and exhibits

low resistivity. PCM exploits the difference in resistivity between these two states of the material

to store data. Typically, a cell in the amorphous state (high resistance) is regarded as a logic “0”

(a.k.a. RESET state), and a cell in crystalline state (low resistance) is regarded as a logic “1”

(a.k.a. SET state). Unlike DRAM that relies on constant refresh to retain its data, the state of

GST is preserved even after the cell is powered off, meaning that PCM is non-volatile. PCM also

has good data retention time. In a prototype by Bedeschi et al., a ten-year data retention was

reported [3].

Figure 3 illustrates the structure of a typical PCM cell. A layer of chalcogenide (GST) is sand-

wiched between two electrodes. A joule heater is placed between GST and the bottom electrode.

The structure forms a PCM cell, which appears as a resistance in the circuit.

Reading data from a PCM cell involves sensing the resistance level of the cell. This is done by

applying a small voltage across the two electrodes so that the resistance of GST can be measured.

This process is non-destructive and has negligible heat stress compared to write operations.

Temperature

Melting point (~600 °C)

Time

tRESET
tSET

Glass transition 

temperature (~300 °C)

Figure 4: Write operation of PCM cell.

Writing a PCM cell, on the other hand, requires changing the physical state of its GST material.

This is done by injecting current into the junction of the GST and the heater to induce phase change

through joule heating. When heated above its crystallization temperature (∼ 300◦C) but below its

melting temperature (∼ 600◦C) over a period of time, GST turns into a low-resistance crystalline

state (which corresponds to logic “1” or SET state). When heated above its melting point and
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quenched quickly, GST turns into a high-resistance state (which corresponds to logic “0” or RESET

state). Figure 4 illustrates the two process of PCM write operations. Though writing a PCM cell

incurs high operating temperature, the thermal cross-talk between adjacent cells at 65nm is shown

to be negligible even without thermal insulation material [74]. Similar to the multi-level flash

memory, the phase change material can also be programmed into four or more distinct states,

forming a multi-level PCM cell that can represent four or more values [39,74].

Despite the differences with DRAM cells, PCM can still use a similar array structure as DRAM

arrays. It can use the same peripheral logic such as decoders, row buffers, request/reply networks

etc. as the DRAM array [50, 60]. Figure 5 illustrates a typical structure of a 2×2 PCM cell array.

Each PCM cell is connected between an access transistor and a bitline (BL). The access transistor

is controlled by the wordline (WL). In order to access a PCM cell, its wordline is selected to enable

the access transistor, which forms a path between the cell’s bitline and ground. Read or write

operations on the PCM cell are then done by applying different voltage pulses on the bitline. Also,

as can be seen from Figure 5, selecting a wordline enables the access transistor of a series (“row”)

of PCM cells. By controlling the bitlines using a column mux, read or write operations can be

performed on selected cells in that row. For example, in Figure 5, if the bottom WL is selected, the

access transistors of the bottom two cells are enabled. And if the bitline on the right side is selected

by a column mux (i.e., the other bitline is left floating), read or write operations are performed on

the bottom-right cell (circled out in the figure).

WL

BL

WL

BL

Figure 5: PCM cell array [40,50,60].
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There are two main options for the access of the device in a PCM cell: a transistor or a diode.

A diode has a simpler structure, and hence it is good for cell density. However, a diode cannot

satisfy the high write current requirement beyond sub-100nm technology [14]. Also the scaling rule

of a diode is not so clear as NMOS [74]. Lastly, the diode-based cell has been reported to be more

vulnerable to errors induced by writing data to adjacent cells because of bipolar turn-on of the

nearest-neighbor cells [68]. Taking all of the above, especially the scalability, into consideration, I

assume transistor-based PCM cells in my experiments. My assumption was also confirmed by Li

et al. in a later work [54].

PCM’s advantages. Like DRAM, PCM memory is byte-addressable, giving it an big advan-

tage over current NAND Flash technology that only supports block accesses. PCM offers compa-

rable read latency (∼50ns) as DRAM [67]. Typical area size of PCM cell is 5∼8F 2 [47], meaning

that PCM has similar density to DRAM.

With shrinking feature size, DRAM is facing serious scaling problems as it is bounded by the

limitation in cell-bitline capacitance ratio. DRAM has been found to be difficult to scale below

40nm [61]. PCM, on the other hand, offers much better scalability: When a PCM cell shrinks,

the volume of the GST material shrinks as well, resulting in less write current [66]. Hence PCM

provides a truly scalable solution compared to conventional DRAM. A recent prototype by Liang

et al. demonstrated the viability of the PCM cell reaching 2.5nm technology node [55].

Like NAND Flash, PCM is non-volatile. In theory, a PCM cell only consumes energy when it

is accessed (read or write). This makes it possible to build memory chips with low leakage, which

is crucial to meet the low-power requirements of future memory systems. Moreover, PCM uses

physical states instead of electrical charge to represent data, making it much less vulnerable to the

soft errors caused by alpha particles or cosmic radiation [66].

PCM’s disadvantages. Due to repeated heat stress applied to the phase change material,

PCM has limited number of write cycles (i.e., write endurance). A single cell can typically sustain

108 ∼ 109 [25,39,99] writes before a failure can occur. While this is much better than NAND Flash,

it could be a big concern if PCM is used in main memory. As we will see in Chapter 4, a PCM

memory without any lifetime improvement technique may last only ∼100 days running a typical

SPEC CPU program.

PCM’s write operation is also slower than its read operation due to the heating/cooling process

during a write. A typical latency of writing a PCM cell is 90ns∼150ns [48,103]. What makes things

worse is that PCM write incurs high current injection (e.g., 0.6∼1mA [50]), resulting in high write

11



power (2.88∼4.8mW per bit [50]). When PCM is used as memory, a multi-bit memory write (e.g.,

writing a 512-bit memory line) is usually completed in several rounds, with each round writing

part of the line. This makes PCM’s per-access write latency even longer. For example, Numonyx

reported a 1us (1000ns) page write latency for its PCM prototype [67]. This long per-access write

latency and high write power have created some major issues when using PCM in main memory,

as I have discussed in Chapter 1.

Another issue that has recently drawn attention is the resistance drift in multi-level cells

(MLC) [11, 29]. After a multi-level PCM cell is programmed, its resistance may increase and

saturate over time, which is termed “resistance drift” [101]. Previous studies have indicated that

the phenomena is caused by the structural relaxation of chalcogenide material, which is a thermally-

activated, atomic rearrangement of the amorphous structure [11]. Resistance drift can cause a PCM

cell to change to another state at runtime, causing a soft error. A study by Awasthi et al. has

shown that the drift may occur as soon as 1.81 seconds after a cell is programmed [2]. In response

to this problem, architectural techniques have been proposed to mitigate the issue without high

overhead, such as [101] and [2]. In this thesis, I assume a single-level cell PCM which does not

have the resistance drift issue. However, the techniques proposed in this thesis are independent of

PCM cell technology. They can be extended to multi-level cell (MLC) and are orthogonal to the

drift-mitigating schemes.
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2.2 MEMORY SCHEDULING

2.2.1 Memory Scheduling Basics

Core Core

Core Core

Memory Controller

Last Level Cache
Memory

Bank 0

Bank 7

......

Request Queue ......

Bank queues

Bank 1

Memory

scheduler

issue 

requests

Figure 6: Overview of memory controller and memory scheduling.

A memory controller is a key unit that determines how memory requests from the last level

cache are dispatched to individual memory banks and get served. In a typical design, memory

requests arriving at memory controller are first buffered in a request queue (as shown in Figure 6).

To achieve high throughput, main memory can typically serve multiple outstanding requests at

a time. Hence it can be viewed as having multiple logic banks that can work concurrently. The

memory controller dispatches the requests from the request queue to the logic banks according

to certain memory scheduling policies. To hold the dispatched requests, each logic bank has a

corresponding small bank queue in the memory controller. When a request is dispatched by the

memory controller, it is moved from the request queue to the corresponding bank queue. Requests

in a bank queue are then issued and served in order.

When a logic bank is actively serving a request, the request at the head of its bank queue cannot

be issued until the logic bank becomes idle (ready). Due to the shared command bus, the memory

controller can issue up to one request in each memory cycle (for DDR2-800, a memory cycle is

2.5ns). Hence if more than one logic bank are idle (ready), their head-of-bank-queue requests are

issued in a round-robin fashion.
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2.2.2 Parallelism-Aware Batch Scheduling

In this section, I introduce the parallelism-aware batching scheme (PAR-BS) [63] developed by

Mutlu et al. as it is used as the baseline scheduler in my memory scheduling-related techniques.

PAR-BS aims at promoting inter-thread and inter-bank parallelism. The scheduling scheme includes

two parts: Request Batching and Parallelism-Aware Within Batch Scheduling.

Request Batching. PAR-BS organizes memory requests into batches and ensures all requests

in the current batch are served before the next batch is formed. When forming a new batch, PAR-BS

marks up to Marking-Cap requests per (logical) bank per thread. This batch forming procedure

ensures fairness and promotes both inter-thread and inter-bank parallelism (as the number of

requests from each bank or thread tends to be balanced).

Parallelism-Aware Within Batch Scheduling. Within each batch, PAR-BS strives to

promote both row buffer hits and parallelism. It employs a ranking system and put requests with

higher rank first. Request ranking is determined as follows (in the order of significance):

1. Batched – Requests that are in the current batch (i.e., marked requests) are prioritized over

requests that are not.

2. Row-hit – Requests that will get a row hit are prioritized over requests that will get row miss.

3. Thread-rank – Requests from threads with higher ranks (which will be explained later) are

prioritized over requests from lower-ranked threads.

4. FCFS – Finally, older requests are prioritized over younger requests.

PAR-BS uses a Max-Total rule to determine thread ranks. For each thread, PAR-BS finds the

maximum number of marked requests to any given bank, called “max-bank-load”. Thread ranks

are determined with the following rules:

1. Max rule: A thread with a lower max-bank-load is ranked higher than a thread with a higher

max-bank-load.

2. Tie-breaker total rule: For each thread, the scheduler keeps track of the total number of marked

requests, called “total-load”. If threads are ranked the same under Max rule, the thread with

lower total-load is ranked higher than a thread with higher total-load.

3. Finally, all remaining ties are broken randomly.

By combining the above techniques, PAR-BS achieves the goals of parallelism, starvation-free

and row buffer hit promotion. The batching mechanism in PAR-BS ensures fairness and avoids
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starvation. The Marking-Cap limitation of its batch forming procedure helps promote inter-bank

and inter-thread parallelism. The within batch scheduling (request ranking) promotes row buffer

hits.

PAR-BS is used as the baseline scheduler in my PCM memory designs. My memory scheduling

enhancements are developed on top of PAR-BS to improve throughput (Chapter 5) and QoS tuning

ability (Chapter 7). My power budgeting technique (Chapter 6) is also evaluated with an enhanced

PAR-BS scheduler.

15



3.0 RELATED WORK

3.1 PROTOTYPING, CHARACTERIZATION AND MODELING OF PCM

Much device-level work related to PCM has been conducted, including device characterization,

prototyping and modeling.

Device prototyping. Various prototypes have been fabricated to verify and demonstrate the

feasibility of PCM. In [14], Cho et al. presented a 64Mb 1T1R PRAM using 0.18-µm technology.

A 64Mb PRAM with confined cell structure was presented in [13], which shows good potential

for high density. In [99], Yeung et al. adopted the Ge2Sb2Te5 confined structure to their 64Mb

PRAM to achieve low reset currents. Large sensing margin and reasonable endurance (109 cycles)

were demonstrated by their prototype. Chen et al. proposed an ultra-thin phase-change bridge

(PCB) memory cell which simplifies scaling and offers potential for both fast write and good data

retention [10]. In [69], a cell current regulator scheme and multiple step-down pulse generators

were employed to improve write performance of PRAM. And in [68], a 512Mb PRAM with 5.8F 2

cell size, fabricated using 90nm technology was demonstrated. In [50], Lee et al. presented a

512Mb diode-switch PRAM with 266MB/s read throughput. Bedeschi et al. presented a 256Mb

multi-level cell (MLC) test-chip using 90nm PCM technology [3]. In [39], Kang et al. reported two

key factors of two-bit (four-level) cell operation in PCM, namely write-and-verify and moderate-

quenched writing.

Annunziata et al. presented a 90nm embedded PCM (ePCM) technology in [1]. In this work,

a 4Mb ePCM is integrated in CMOS platform with few additional masks and minimum process

tuning. This confirms the technology as a viable solution for replacing conventional floating gate

non-volatile memory (Flash) in embedded systems. In follow-up work in [18], Sandre et al. pre-

sented a prototype with a cell size of 0.29µm2, 1.2V 12ns read access time and 1MB/s write

throughput.
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A 58nm 1.8V 1Gb PCM prototype with 6.4MB/s programing bandwidth was presented by

Chung et al. in [15]. The prototype was implemented in a 58mn PRAM process with a low power

double-data-rate non-volatile memory (LPDDR2-N) interface. Notably, this prototype has built-in

Flip-N-Write [12] technique (which was called data comparison write with inversion flag, or DCWI

in their work).

In [16], a fully-integrated 512Mb PCM chip using 90nm CMOS technology is presented. The

prototype demonstrates a multi-level cell PCM, in which each cell represents 2 bits.

Li et al. proposed a reconfigurable sensing scheme with the flexibility to change reading precision

of analog resistance levels for a multi-level PCM cell [53]. A 2M-cell chip was fabricated in 90nm

CMOS technology as a proof-of-concept. This prototype employs a single dynamic reference voltage

and fixed WL voltage, eliminating the complicated multiple reference circuits. The sensing scheme

allows for the changing of sensing precision, and can be applied as a built-in self-test (BIST) unit.

Liang et al. presented a cross-point PCM cell working close to its scaling limit with the ultra

low reset current of 1.4uA [55]. The prototype utilized a carbon nanotube as the bottom electrode,

and demonstrated potential viability of PCM for highly scaled ultra-dense memory at the 2.5nm

node.

Wen et al. presented a non-volatile lookup-up table (LUT) using PCM cells [96]. The LUT,

fabricated in IBM 90nm CMOS technology, can perform programmable and non-volatile logic

functions with 1V supply. A 453.4ps average propagation delay (i.e., read latency of the LUT) was

measured in their test.

Characterization and modeling. In [47], Lai et al. reviewed the device structure and char-

acteristics of phase-change memory. Pirovano et al. studied the scalability of PCM and indicated

that reset current scales down with the device size [74]. Thermal cross-talk between adjacent bits

was also investigated in this work [74]. Mohammad et al. studied PCM failure modes and defective

behaviors, and developed fault models for PCM [60].

Braga et al. studied the stability of multi-level PCM cell’s intermediate states programmed by

partial-SET [7]. Their study observed significant dependence of retention properties upon the pulse

duration and amplitude of a partial-SET pulse.

E. Bozorg-Grayeli et al. studied the thermal properties of the electrode materials used in

PCM [6]. In many designs, significant heat loss occurs through the electrodes. This work proposed

a multilayer electrode stack and investigated its thermal properties. The multilayer electrode stack
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offers greater thermal resistance than single-material electrodes due to the presence of multiple

thermal boundary resistances, reducing heat loss from the device and may potentially lower the

programming current [6].

Li et al. studied the relative advantages of different driving (access) devices for PCM [54].

According to the study, a diode is more advantageous for larger technology nodes, but the MOSFET

shows potential superiority in many aspects when scaling to the 65nm technology node and beyond.

Papandreou proposed a novel iterative write-and-verify programming scheme that uses both

partial-SET and partial-RESET pulses [72]. Their scheme allows PCM’s resistance to be changed

in both directions, and can achieve favorable trade-offs between latency and robustness.

Faraclas et al. studied the SET and RESET operations of PCM using 2-D finite-element

simulations with rotational symmetry [22]. Their simulation results predict voltage/current levels

which are comparable to experimental data.

Prior art and my work. Previous device-level work has provided me with important insights

into the mechanism of PCM operations (e.g., PCM write operation), as well as key device param-

eters that are used in my experiments (e.g., latency, power), either directly or indirectly. A recent

prototype presented by Chung et al. [15] incorporated the Flip-N-Write [12] technique. I adopted

the technique in my power budgeting scheme to further improve the utilization of power budgets.

While my Differential Write idea was developed independently, it was also confirmed by a Samsung

prototype in [49].

3.2 ARCHITECTURAL INNOVATIONS ON PCM MEMORY

System architecture. Wu et al. explored the design space of hybrid cache architecture (HCA) us-

ing different memory technologies in [98]. Embedded DRAM (EDRAM), Magnetic RAM (MRAM)

and PCM (PRAM) were explored in both 2D and 3D cache architectures. Two types of hybrid

cache architectures (HCA) were evaluated:

• inter cache level HCA (LHCA), in which the levels of cache hierarchy can be made of different

memory technologies.

• intra cache level or cache region-based HCA (RHCA), where a single level of cache can be

partitioned into multiple regions, each using different memory technology.
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An LRU-based cache line migration scheme was proposed for RHCA, and drowsy mode was pro-

posed to be used in the slow region of a cache level to save power. Their experiments showed that

LHCA, RHCA and 3D-RHCA achieved IPC improvements of 7%, 12% and 18% respectively.

In [80], Qureshi et al. proposed a PCM/DRAM hybrid memory system. The system used PCM

along with DRAM buffer as main memory, which is similar to my architecture. Four techniques

were proposed in this architecture:

• Lazy-Write: On a page fault, a page loaded from hard disk is only written to the DRAM buffer

to avoid slow PCM write. The page is written to PCM only when it is evicted from the DRAM

buffer.

• Line-Level Write Back (LLWB): Instead of writing PCM in page granularity, LLWB only writes

back dirty lines within a page. This requires adding a dirty bit to each line of a page.

• Fine-Grained Wear-Leveling (FGWL): Lines in each page are stored in the PCM in a rotated

manner. A pointer called WearLevelShift is generated randomly to decide how the lines are

shifted (e.g., WearLevelShift=1 means Line 0 is stored at physical address of Line 1 and so on).

• Page Level Bypass (PLB): In case of streaming applications, the OS can enable PLB to avoid

storing pages in PCM to preserve PCM lifetime.

Lee et al. proposed area-neutral architectural enhancements to make PCM competitive with

DRAM [48]. This work proposed an important idea of row buffer organization in PCM memory:

use a narrow row buffer entry to mitigate per-access PCM write energy, and use multiple row buffer

entries to improve locality and write coalescing. In this design, the row buffer of PCM memory

is organized like a small cache with multiple entries instead of a single long entry. Experiments

showed that this narrow, multi-entry row buffer organization is beneficial for both latency and

energy. This idea is also adopted in my architecture. In addition, this work proposed a partial

write scheme to improve lifetime of PCM memory. Partial write marks dirty words of each memory

write and only writes the dirty words of the request. Since a dirty word may still contain many

redundant bit changes, partial write cannot fully exploit the opportunity of value locality.

In [75], a Morphable Memory System (MMS) was proposed by Qureshi et al. The scheme

was based on observation that memory requirements varies between workloads, and systems are

typically over-provisioned in terms of memory capacity. During a phase of low memory usage, MMS

allows some of the multi-level cell bits to be used as single-level cells (which have lower latency).

And when the workload requires high memory capacity, these cells can be restored to multi-level
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cells to obtain high density. Their experiments showed that 95% of all memory requests were served

in low latency mode by MMS, resulting in 40% better performance.

Performance. In [36], Joshi et al. proposed a scheme called Mercury to improve write speed

and energy in PCM multi-level cells. Mercury used a state-aware adaptive programming scheme

when writing a multi-level PCM cell. The idea is similar to the bi-directional programming in [72].

Programming a cell from SET to RESET (S2R) was achieved by a SET pulse followed by multiple

short RESET pulses (which gradually increase the cell resistance). Programming from RESET to

SET (R2S) was achieved by a short RESET pulse followed by multiple short pulses with step down

amplitude (which gradually decreases cell resistance). The S2R method has latency advantage if

target resistance is low, while R2S method has the advantage of programming reliability (better

distribution of resistances). Mercury selects R2S and S2R based on the target resistance level to

achieve fast and energy efficient MLC writes.

To mitigate PCM’s long write latency, Qureshi et al. proposed write-cancelation and write-

pausing schemes [76]. In these schemes, an on-going write request on a bank can be canceled or

paused, giving way to a subsequent read request to improve read latencies. The write request is

restarted (in case of write-cancelation) or resumed (in case of write-pausing) afterwards. Write-

cancelation can be implemented with both single-level cells and multi-level cells. Write-pausing,

on the other hand, only applies to multi-level cells because it assumes an iterative write-and-verify

process which is used in multi-level cell programming. In write-pausing, an on-going PCM write

can be paused between its two iterations (meaning that the cell is left in an intermediate state).

The paused write is then resumed from the intermediate state it was left off. In both techniques,

only one request is served in each bank at a time. Writes and reads are still in serial but not in

parallel. Hence, they do not help to improve the throughput of the PCM memory.

Lifetime. In [77], Qureshi et al. proposed Start-Gap wear-leveling for hybrid memory system.

In Start-Gap, memory is augmented with an extra line (GapLine) which contains no useful data and

two registers (Start and Gap). All lines can be regarded as forming a circular buffer. Start indicates

the location of first logical line in the memory, and Gap always points to GapLine. GapLine is

moved by 1 location periodically, which is accomplished simply by copying the contents at location

[Gap-1] to GapLine and decrementing Gap. Everytime when Gap reaches Start, it means all lines in

memory are shifted by 1 location and hence Start is incremented by 1. The procedure is illustrated

in Figure 7.

20



A

B

C

D

start

gap

A

B

C

D

start

gap

A

B

C

D

start
gap

A

B

C

D

start

gap

(a) (b) (c) (d)

Figure 7: Start-Gap wear-leveling in a memory containing 4 lines [77].

Start-Gap has the advantage of low storage and computation overhead (as logical-physical

address mapping can be calculated using simple arithmetic operations). However, it has the short-

coming of slow line movements. If a memory contains a large number of lines, it takes a long time

for every line to be shifted. This means that Start-Gap is only effective in small memory regions.

To overcome this shortcoming, the author partitioned the large memory into smaller regions, each

running Start-Gap independently. This forms the Region-Based Start-Gap (RGSG). The scheme

can be further augmented with address space randomization, in which addresses are randomly

shuffled before reaching PCM memory. Randomized Start-Gap was reported to achieve 97% of

the theoretical maximum lifetime. Experiments also showed that RBSG can make PCM memory

robust to malicious attacks.

Seong et al. proposed Security Refresh [90], which is more robust against malicious attack than

Start-Gap. Security Refresh exploits the property of XOR function to perform address remapping.

A Memory Address (MA) is XORed with current key to generate the Remapped Memory Address

(RMA). When the key is changed, memory address mappings are swapped in pairs. For example,

if the key is changed from 00 to 01, address 00 will be remapped to 01 and address 01 will be

remapped to 00. Hence, Security Refresh can support randomized address mapping without high

computation or storage overhead.

Qureshi et al. also presented an improvement to his Start-Gap scheme in [79] called Adap-

tive Wear-Leveling. Adaptive Wear-Leveling used an online attack detector to detect malicious

behaviors. An attack was indicated by the Intra Write Distance, which is the number of writes

between two consecutive writes to a same line. In normal applications, this number was found to

be much larger than 1000. In order to detect an Intra Write Distance less than 1000, a small LRU

stack was used to approximate the 1K-entry write access history. The gap movement frequency was
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made adaptive to application behavior: for normal applications it is less frequent, and for malicious

applications it is more frequent to make it more difficult for an attacker to wear out the memory.

In [24], Ferreira et al. presented a set of techniques to improve the lifetime of PCM memory.

Their architecture also assumed a DRAM buffer (which is organized as a page cache) before PCM

memory. Several techniques were proposed in this work to improve PCM lifetime:

• N-Chance page replacement policy: When evicting a page from the DRAM buffer, try to find

a clean page among the N least recently used pages. If such a page does not exist, then LRU

page is evicted.

• Page partitioning and Read-Write-Read (RWR): A page is partitioned into sub-pages, each

having its own dirty bit. When a page is written back to PCM, only the dirty sub-pages are

written. Within sub-pages, RWR is applied to further avoid unnecessary bit changes. RWR

performs a read before write to compare the old value with new value, and only writes the bits

that are actually changed. A read is then performed after the write for fault detection.

• Page swapping: Pages are swapped on DRAM page cache writebacks. A global write counter

is used to determine the swap condition (whether a swap is needed), and the target page for

swapping is selected randomly. The advantage of swapping pages on a writeback is that it only

introduces one additional page write.

In [19], Dong et al. proposed Wear Rate Leveling which takes endurance variation into consid-

eration. Instead of using write counts only, they use “wear rate” (write counts over endurance, or

Wi/Ei) to accommodate the different endurance between strong and weak cells in wear-leveling.

A naive solution to generate the address mapping is to sort the write counts and endurance rates.

However, this may generate lots of swaps during a remap. To reduce the number of swaps, the

author formulated the problem into a Maximum Weight Perfect Matching Problem in a bipartite

graph, which can be solved using the Hungarian Algorithm. As a result, their scheme achieved the

same optimal wear rate as a naive implementation with 68% less swapping.

Bock et al. studies an interesting phenomena called useless write-backs [4]. A useless write-back

occurs when a dirty cache line that belongs to a dead memory region (a memory region that is no

longer used by the program) is evicted. Since the evicted data is not used by the program again,

such write-backs can be safely avoided to improve endurance and energy consumption. The author
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proposed algorithms for counting useless write-backs in different memory regions: heap, global data

and stack. Experiments showed that avoiding useless write-backs can save up to 19.8% of energy

consumption and improve endurance by up to 26.2%.

In [23], Ferreira et al. presented modeling techniques to analyze the trade-offs for endurance

management based on the anticipated distribution of cell lifetimes. Two general endurance strate-

gies are considered: physical capacity degradation (PCD) and physical sparing (PS). In PCD, all

memory is used and, as cells wear out, usable memory size is reduced. In PS, damaged cells are re-

placed with operational spare cells from excessive capacity. The authors studied the two strategies

under four different distribution of cell lifetime: constant, linear, normal and bimodal. The models

presented in this work can be used to determine how much redundancy is needed when a sparing

endurance strategy is adopted.

Kong et al. proposed to use counter-mode encryption in PCM for privacy protection [46].

However, encryption can significantly reduce the effectiveness of partial writes [48] and Differential

Writes [103]. To mitigate the problem, the authors added several block-level counters beneath each

line-level counter and tracked dirty blocks within the line. Upon a write-back, only the block-

level counters of dirty blocks are incremented (meaning that only dirty blocks are re-encrypted).

The line-level counter is incremented when any of its block-level counter overflows (causing the

entire line to be re-encrypted). This simple extension made partial write to be effective again,

which is beneficial for endurance. Another scheme proposed in this work is the adaptive ECC

management. Instead of applying ECC with fixed strength, the authors proposed to track memory

wear-out using encryption counters and gradually increase ECC strength as memory wears out.

Experiments showed that adaptive ECC can extend the lifetime of PCM with low storage overhead

and performance penalty.

Jiang et al. proposed LLS, a cooperative integration of wear-leveling and salvaging technique

for PCM memory [33]. Salvaging schemes are used to remap failed PCM lines with spare lines to

extend the lifetime of PCM memory. Current wear-leveling and salvaging schemes have not been

designed to work cooperatively. Salvaging causes non-contiguous PCM space, which complicates

wear-leveling and incurs large overhead. To solve this issue, the authors proposed Line-Level

mapping and Salvaging design that can provide a contiguous PCM address to OS and applications.

Experiments showed that LLS achieves 24% longer lifetime with negligible overhead.

In [34], Jiang et al. studied the over-RESET problem in PCM memory. PCM cell endurance

was found to be heavily dependent on the RESET current. To accommodate process variation,
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larger-than-optimal RESET current is typically used, resulting shortened lifetime. In this work, the

authors proposed to leave a small number of hard-to-reset cells unused (dormant) and use ECC to

rescue these cells. This results in smaller RESET current and longer cell lifetime. When weak cells

start to wear out, these dormant cells are used as replacement (which requires voltage upscaling

due to their larger RESET current). Experiments showed that their scheme can reduce PCM write

power by 33% and extend lifetime by up to 102%.

Power. In [12], Cho et al. proposed Flip-N-Write technique to limit PCM write power. When

writing a line, Flip-N-Write (FnW) writes either the original value or its inversion, whichever

results in fewer bit flips. Therefore, Flip-N-Write guarantees that no more than half of the bits in

each write are changed. This means that under the same power budget (number of concurrent bit

writes), Flip-N-Write can finish a write faster because it doubles the write width. For example, if

the current power budget allows 64 concurrent bit writes, a 512-bit write request will take 8 rounds

to finish in baseline (each round writing 64 bits). Flip-N-Write, on the other hand, can finish the

same write in 4 rounds because it can write 128 bits per round (in which up to 64 bits are actually

changed). This results in better performance under same power budget.

Park et al. proposed a power management scheme for DRAM/PCM hybrid memory [73]. The

scheme mainly focused on reducing refresh power of the DRAM buffer. Each line in DRAM buffer

was associated with a time-out counter to control its eviction. An evicted line no longer received

refresh to reduce refresh power. The authors proposed a runtime-adaptive time out control scheme

to minimize total energy consumption of DRAM and PCM. In addition, DRAM is bypassed for

the first read access to filter out accesses with low spatial locality. And dirty data in DRAM are

assigned with larger time out values in order to keep them longer in DRAM to reduce PCM writes.

In recent work by Hay et al., a power budgeting technique called “power token” was pro-

posed [26]. The technique aims at PCM’s high write power, and ensures that the number of

concurrent bit writes do not exceed a power budget (which is defined by the DDR interface they

used). The authors tried to count the number of bit changes in each write request for estimation

of power demands. In order to avoid transmitting information between memory DIMM and the

memory controller, their scheme made two approximations: 1) They use the data in last-level cache

to track bit changes, which means it is only accurate on the first write back to the last-level cache.

In case of multiple write backs to last-level cache, the number of bit changes are accumulated,
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forming a conservative estimation. 2) They reduce the granularity of bit change counters to 3 bits

to reduce overhead, which also reduces accuracy. Essentially, the power token scheme is a power

gating technique enhanced with conservative bit change estimations.

Reliability. Unlike DRAM, PCM is less susceptible to transient faults (soft errors). Instead,

hard errors (due to endurance) are more important in PCM. Schechter et al. proposed a new

approach to error correction optimized for PCM called Error Correct Pointer (ECP) [85]. ECP

exploits the nature of hard errors (permanent and immediately detectable at write time). It corrects

errors by permanently encoding the locations of failed cells into a table and assigning cells to

replace them. ECP was reported to provide longer lifetimes than previously proposed solutions

with equivalent overhead.

In [86], a hardware-efficient multi-bit stuck-at fault error recovery scheme called SAFER was

proposed. SAFER exploits the key attribute that a failed cell with a stuck-at value is still readable,

making it possible to continue to use the failed cell to store data and reduce hardware overhead for

error recovery. SAFER dynamically partitions a data block and ensures that there is at most one

fail bit per partition. It then uses single error correction techniques per partition for error recovery.

Comparing to ECP, SAFER was reported to increase the number of recoverable fails and achieves

better lifetime improvement with smaller hardware overhead.

Yoon et al. proposed another improved scheme called FREE-p to handle both hard error and

soft error [100]. In contrast to coarse-grained approaches, FREE-p used fine-grained remapping

(FR) for failed blocks. Based on a key observation that even a deemed dead block still has many

functional bits that can store useful information, FREE-p embeds a remapping pointer in it. Hence

the mapped-out block itself (which is otherwise useless) is used as free storage for remapping

information. And to mitigate the penalty of accessing remapped blocks, a remapped pointer cache

was proposed. FREE-p was reported to improve lifetime over ECP by up to 26%, with less than

2% performance overhead.

Zhang et al. proposed a resistance drift resilient architecture for multi-level cell PCM called

Helmet [101]. The scheme was motivated by observation that resistance drift has a strong corre-

lation with data patterns. Through adaptive data inversion and rotation, Helmet tried to store

the majority of values in their drift-insensitive formats (e.g., 00 or 11) rather than drift-sensitive

formats (e.g., 01 or 10). Experiments showed that Helmet can reduce error rates by 87%.

Platform evaluation tools. Caulfield et al. presented an architecture of prototype PCIe-

attached storage array built from emulated PCM storage called Moneta [8]. Moneta was imple-
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mented using PCIe-attached array of FPGAs and DRAM. The authors used FPGA to implement

scheduler and a set of configurable memory controllers, allowing them to emulate non-volatile

memory (such as PCM) accesses. As the prototype used interface PCIe, it was targeted for storage

applications instead of as main memory.

In a later work from Jung et al., a Persistent RAM Storage Monitor called PRISM was pro-

posed [37]. PRISM provided a useful tool for studying Persistent RAM (PRAM) storage behavior,

and could be used to guide the design of PRAM storage device (PSD). When a user application

generates read or write system calls, PRISM traces the calls and generates statistics of low-level

access activities occurring at the storage subsystem. PRISM consists of two parts: the frontend

tracer and the backend PSD simulator (PSDSim). The frontend tracer captures I/O system calls

and passes them to the PSDSim. PSDSim then simulates the behavior of PSD based on its con-

figuration (e.g., PRAM technology, storage capacity, etc.), and generates the statistics which can

be used for further analysis. PRSIM was demonstrated to be a versatile and useful tool for study-

ing interactions between application/OS and PRAM device accesses, and is extensible through

user-defined tracers.

Prior art and my work. My proposed technique, Differential Write, was one of the early

attempts of applying PCM in main memory [103]. Using Differential Write along with simple wear-

leveling techniques, I demonstrated that PCM-based main memory is feasible in terms of lifetime.

Many other wear-leveling techniques were proposed later on, each with different advantages such

as lower overhead or better resilience against attack.

My memory scheduling techniques are developed on a PCM memory with a similar architecture

to [80] and [24]. I also adopted the multi-entry row buffer design proposed in [48] and developed

techniques on top of it. My power budgeting technique incorporates both Differential Write and

Flip-N-Write [12] to achieve better utilization of power budgets. The memory scheduling enhance-

ments proposed in my thesis aim at improving throughput and QoS tuning ability of PCM memory.

Although they use some ideas that are similar to write-cancelation and write-pausing [76], they are

very different schemes that address different problems. Write-cancelation and write-pausing only

improve read latency, while my techniques address the throughput and QoS tuning ability problems.

The power token technique [26] proposed by Hay et al. aims at a similar issue to my BPB

technique: PCM’s write power. However, my BPB technique is significantly different than power

token in the following aspects:
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• Although power token is enhanced with estimations of bit changes in write requests, it still only

serves as a power gating technique. It only ensures that PCM write power does not exceed a

pre-defined limit. On the contrary, BPB has the ability of choosing write configurations for

write requests and skipping redundant rounds in addition to the simple power gating function.

• BPB makes more accurate estimation of bit changes as it collects and processes information

locally. On the contrary, power token make estimations by conservatively accumulating the

number of bit changes in last-level cache. BPB also has finer granularity in its estimations (bit

level) than the 3-bit approximation used by power token.

My techniques are also orthogonal and additive to other architecture schemes for PCM memory,

as they target different problems. For example, my memory scheduling enhancements can be applied

on top of a PCM memory using reliability improvement techniques.

3.3 MEMORY SCHEDULING POLICIES

Memory scheduling policy is a crucial part of the memory controller to determine how memory

requests are dispatched. Different memory scheduling policies could have different design goals,

e.g., throughput or fairness. And to achieve their design goals, memory scheduling policies may

need to reorder their requests. This implies that data dependencies among memory requests have

been resolved before they arrive at memory controller.

FCFS and FR-FCFS. The simplest memory scheduling policy is first-come-first-serve (FCFS),

meaning that requests are dispatched in the order as they arrive at the memory controller. Old

requests are always dispatched earlier than young requests. Apparently, this simple policy cannot

achieve good throughput. A simple enhancement is called first-ready FCFS (FR-FCFS) [83, 84].

Instead of dispatching requests in order, FR-FCFS prioritizes requests that will get row buffer hits

to improve bandwidth utilization and memory system performance [83,84]. The problem with FR-

FCFS is starvation: it is possible that an application with high locality is always served first because

its memory requests are row hits, causing starvation of applications with low locality. Hence many

of the recent memory scheduling polices are designed with fairness or starvation avoidance in mind.

NFQ. Nesbit et al. proposed a network fair queuing (NFQ) scheme to achieve QoS and fairness

in scheduling memory requests from multiple applications [65]. In NFQ, each thread i is allocated

with a fraction φi of memory system’s bandwidth. This is accomplished by using virtual clocks for
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each thread and making each virtual clock run φi times slower than the memory frequency. When

scheduling requests, NFQ always prioritizes requests with earliest virtual finish-time, which is the

virtual time when a memory request will finish in its thread’s virtual clock. However, NFQ has a

potential starvation problem when there are threads with bursty behavior [62,81]. As discussed in

by Rafique et al. in [81], NFQ delays the calculation of the finish-time of memory requests to just

before they are about to be issued. This could cause finish-time tags to be out-of-order, meaning

that a younger request might receive a smaller finish-time than an older request. In the worst case,

younger requests can keep getting issued, causing starvation or long latencies for some of the older

requests.

SFQ. To solve the possible starvation problem in NFQ, Rafique et al. proposed the start-time

fair queuing instead of the virtual finish time fair queuing [81]. Instead of calculating exact finish

times, SFQ abstracts memory transactions into units (which greatly reduces complexity) and uses

start-time when scheduling outstanding requests. SFQ assumes each memory request takes one unit

of service time. Each thread is assigned with a service interval which is the reciprocal of its weight.

SFQ always selects the request from the thread with earliest scheduled service time (start-time).

Experiments showed that SFQ achieves performance improvements of 21% over NFQ.

STFM. Mutlu and Moscibroda proposed the stall-time fair memory (STFM) scheduling policy

in [62]. The goal of STFM is to equalize the DRAM-related slowdown experienced by each thread

due to interference with other threads. STFM uses stall-time to compute fairness metrics instead of

finish-time to improve fairness and throughput over the NFQ scheme [62]. The memory slowdown

in STFM is defined as Tshared/Talone. Tshared is the memory-related stall-time experienced by a

thread when it is running along with other threads. Talone is the estimated memory-related stall-

time the thread would have if it had run alone. STFM tracks Tshared for each thread, and estimates

Talone as Tshared − Tinterference. The Tinterference is the extra stall-time the thread experiences

due to service of requests from other threads. STFM then computes unfairness index as the ratio

between maximum slowdown and minimum slowdown. At runtime, STFM sets an unfairness cap

α on unfairness index. When unfairness is below α, STFM uses FR-FCFS for high performance.

And when unfairness exceeds α, STFM turns to a fairness-oriented scheduling policy, picking the

requests from maximum slowdown first. STFM was reported to reduce unfairness on memory

slowdown from 5.26× to 1.4×, with an average system throughput improvement of 7.6%.

PAR-BS. In a more recent work, Mutlu et al. proposed parallelism-aware batching scheme

(PAR-BS) [63]. PAR-BS organizes incoming requests into batches, and schedules the requests
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within a batch to exploit inter-thread and inter-bank parallelism. The scheme consists of two

parts: Request Batching and Within-Batch Scheduling. Request Batching marks Marking-Cap of

requests per thread per bank to form a new batch. And Within-Batch Scheduling uses request

ranking policy to schedule requests within a batch. By combining the two techniques, PAR-BS

achieves the goals of parallelism, starvation-free and row buffer hit promotion. PAR-BS is used

as baseline scheduler in my memory scheduling techniques, hence I discuss more of its details in

Background chapter (Section 2.2.2).

TCM. In a later work in [45], Kim et al. proposed Thread Cluster Memory scheduling (TCM).

The TCM scheme categorizes threads into two “clusters”, memory intensive and non-intensive, ac-

cording to their miss-per-kilo-instructions (MPKI). It then divides bandwidth between two clusters,

and employ different policies in them. In non-intensive cluster, TCM prioritizes low MPKI threads

to improve system throughput; while in memory-intensive cluster, TCM uses a rank shuffling mech-

anism to ensure fairness. According their experiments, TCM further improved performance and

fairness over PAR-BS by 7.6% and 4.6% respectively.

Read-While-Write. The concept of parallelizing a read with a long write was first imple-

mented as a read-while-write (RWW) operation in NOR flash [94], where Flash memory on a chip

is divided into code and data areas. A RWW NOR flash device is essentially two or more flash

memories on a chip. One memory is used to store data and the other is for code. When the data

memory is written, code can be read out from the other memory. The concept is also adopted in re-

cent PCM prototypes [95], where a PCM chip is divided into smaller partitions, and two partitions

can be simultaneously active, one being read and the other being written.

Prior art and my work. Existing memory scheduling policies are designed for DRAM-

based memory systems, which do not consider the properties of PCM. My memory scheduling

enhancements proposed in Chapter 5 extends existing memory scheduler by exploiting intra-bank

parallelism on non-blocking PCM bank. Since my memory scheduling enhancements are designed

as extensions to existing memory scheduler, they are orthogonal and additive to other existing

memory scheduling schemes. For example, my memory scheduling enhancements can be applied on

top of TCM [45] to get more throughput improvement. My Bit Level Power Budgeting technique

(Chapter 6) can also work with other existing memory schedulers without complex firmware changes

due to its decoupled design.

Comparing to the non-blocking bank design used by my memory scheduling enhancements, the

RWW concept allows one write in each bank and shows much less throughput improvement in my
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experiments, as PCM’s throughput is mainly limited by its write requests. My experiments also

show that memory scheduling enhancements are necessary to enjoy the benefit of more parallelism

provided by non-blocking bank design.

3.4 ASYMMETRIC READ/WRITE ACCESSES

PCM’s asymmetric read/write speed is analogous to a property of Flash, in which write operations

are much more expensive than read operations. There have been techniques proposed for Flash to

deal with this asymmetric read/write access property.

In [28], Hu et al. proposed a scheme to reduce Flash write operations on embedded system. They

assumed an embedded CMP with scratch-pad memories (SPM) and a Flash-based main memory.

Two techniques were proposed to reduce Flash write operations. 1) Data migration: when evicting

dirty data from a scratch-pad memory, they try to move the data to another scratch-pad memory

with free space instead of writing back to Flash-based main memory. 2) Data recomputation: if

data to be written back to main memory will be read back by another task later, they discard this

write-back operation and recompute the data when it is used again. In other words, they are trying

to reduce write operations in the expense of more computation at runtime. Their experiments

show that the number of writes was reduced by 59% on average. However, their scheme was based

on an embedded system with a special configuration (using scratch-pad memories and Flash-based

main memory). So it may not be suitable for the large scale, byte-addressable memory on general

purpose computer.

On et al. proposed Lazy-Update B+ tree for Flash drives [70]. B+ tree is a commonly used

index-structure to expedite query processing in database systems. The purpose of their scheme is

to optimize the update (write) operations of B+ tree. In Lazy-Update, update requests to B+ tree

are deferred and buffered in an update pool, and committed later in groups. Their experiments

show that Lazy-Update can reduce the number of page writes by half while preserving the query

efficiency.

Flash drives usually have an internal write buffer. Improving the management of write buffer

can help mitigate the expensive Flash write operations. In [35], Jin et al. proposed a write-aware

buffer management scheme. The scheme uses a state transition diagram to identify write-intensive

pages, and tries to retain the write-intensive pages in the write buffer. Their experiments showed
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that number of writes was reduced by up to 30%. Shi et al. proposed a cooperating scheme [87] in

which virtual memory and write buffer are managed in a cooperating way: When virtual memory

manager tries to write back a dirty page, it prefers to write back the pages that are in the write

buffer. The cooperating management scheme reduced the number of erase and write operations by

44.7% and 28.6% respectively.

Another research area on mitigating Flash write costs is the coding scheme. In a multi-level cell

Flash memory, each cell can store multi-bit data. When writing a multi-level Flash cell, its value

can only be changed from a lower state to a higher state (e.g., 0→1, 1→2). Resetting a cell back to

0 requires an erase operation, which is very expensive. This property of multi-level Flash memory

can be formulated into a Write-Asymmetric Memory (WAM) model [32]. For a WAM with multiple

variables (cells), coding schemes were proposed to improve the number of times the variables can

be written or rewritten in order to avoid the high cost of erase operations. For example, Jiang et al.

proposed floating codes in [32]. And in [5], a buffer coding scheme was proposed by Bohossian et al.

These coding schemes were developed for multi-level cell Flash with irreversible transit properties,

and may not be suitable for PCM memory.

Prior art and my work. Since Flash memories are usually used as storage devices, many of

the schemes for mitigating the asymmetric read/write costs in Flash are at different levels than my

memory scheduling techniques. Hence they are mostly orthogonal to my techniques. For example,

the data migration/recomputation scheme and the Lazy-Update scheme are at the system software

level, and can be used along with my memory scheduling enhancements. The buffer management

schemes for Flash memory can inspire useful ideas to improve the management of the DRAM buffer

above PCM memory. However, improving throughput of PCM memory is still necessary because

1) A memory with lower throughput would require a much larger cache/buffer in order to achieve

equivalent system performance (as I will discuss in Section 6.7); 2) Caching may not be effective

when the working set of the workload is large, or when running streaming workloads.
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4.0 LIFETIME IMPROVEMENT OF PCM MEMORY

In this chapter, I propose a circuit-level technique called Differential Write to remove unnecessary

(redundant) bit changes in PCM writes (Figure 8). Combining Differential Write and two simple

wear-leveling techniques, I demonstrate that PCM-based main memory is practical in terms of

lifetime [103]. Differential Write is not only beneficial for endurance and energy, but also opens

new opportunities for upper level memory scheduling. Architectural modeling and evaluation of

PCM memory are also conducted. My work is among the first attempts to use PCM in main

memory, and forms the base of other components in my research.

Differential Write, wear-leveling and 

architectural modeling of PCM memory

Memory scheduling 

enhancements

Fine-grained power 

budgeting

QoS tuning ability improvement

Figure 8: Overview of my research – Differential Write.

4.1 LIFETIME PROBLEM OF PCM MEMORY

PCM’s limited write endurance raises the concerns of its lifetime when used in main memory. To

illustrate the problem, I test the “unprotected” lifetimes of a PCM main memory using a variety

of benchmarks including SPEC2K, SPEC2006, and SPECWeb. The memory lifetime running each

benchmark is estimated assuming the PCM main memory is constantly accessed at a rate generated
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by this benchmark. Figure 9 shows the projected lifetime of PCM memory when no lifetime

enhancement techniques are employed. In reality, such rate may vary with different workloads

running in the system. The number of rewrite cycles for a PCM cell is assumed to be 108. As

shown in Figure 9, the results range from 25 days for mcf to 777 days for specweb-banking, and

the average is only 171 days. Hence in order to make PCM memory practical, lifetime improvement

techniques are needed to extend PCM lifetime to an acceptable level.

Figure 9: Lifetime of PCM memory when used without any lifetime improvement techniques.

4.2 REDUNDANT BIT WRITES

To improve the lifetime of PCM memory, my first step is to reduce the total number of bit writes.

In a conventional memory write, every bit in the request is written once. However, I observed that

a great portion of these bit writes are redundant. That is, in most cases, a write into a cell did not

change its value. I term this “redundant bit writes”. These bit writes are hence unnecessary, and

removing them can greatly reduce the write frequency of the corresponding cells. Fig. 10 shows the

percentages of redundant bit writes for different benchmarks. They are calculated as the number

of redundant bit writes over the total number of bits in write accesses. The ‘SLC’ series represents

redundant bit-writes in a single level PCM cell, i.e., each cell stores either ‘0’ or ‘1’. The ‘MLC-2’

and ‘MLC-4’ series represent 2-bit and 4-bit multi-level PCM cells. That is, each cell stores 4

(MLC-2) or 16 (MLC-4) binary values. The number of rewrite cycles for both SLC and MLC’s are

assumed to be 108.

From the results, it it clear that all benchmarks exhibit high percentages of redundant bit

writes. For single-level cells, the statistical bit-write redundancy is 50% if writing a ‘0’ and ‘1’
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Figure 10: Percentage of redundant bit writes for single-level and multi-level cells.

is equally likely. For MLC-2 and MLC-4 cells, the redundancy probabilities are 25% and 6.25%

(12
4
) respectively. However, the measured redundancies for real workloads are much higher than

the theoretic values, showing interesting value locality. The redundancy ranges for SLC, MLC-

2, and MLC-4 cells are 68∼99%, 52∼99%, and 38∼99%, with an average of 85%, 77% and 71%

respectively. Avoiding these unnecessary bit writes can reduce the total number of bit writes to

PCM memory, which is beneficial for its lifetime. This inspired me with the idea of removing

redundant bit writes, which leads to the Differential Write technique.

4.3 DIFFERENTIAL WRITE

Differential Write removes redundant bit writes by performing read and compare before each write

access. In PCM operations, reads are much faster than writes, so the delay increase here is less

than doubling the latency of a write. Also, write operations are typically less critical than read

operations, so increasing write latency has less negative impact on the performance of the workload.

The comparison logic can be simply implemented by adding an XNOR gate on the write path of

a cell, as illustrated in Figure 11. The XNOR output is connected to a transistor which can block

the write current when the write data equals the currently stored data. Delay and power overhead

of the XNOR gate were measured to be 75ps and 199µW, and were counted in my evaluations.

After applying the Differential Write technique, the lifetime of PCM memory is extended to

770/592/510 days, or 2.1/1.6/1.4 years, for SLC/MLC-2/MLC-4 respectively on average, as shown
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in Figure 12. Moreover, Differential Write results in localized bit changes inside each row. This

provides more room for wear-leveling and new opportunities for upper level memory scheduling

(which will be discussed in following Chapters).

Write 
circuit

Shifter

Read 

circuit

Column MuxOffset

shift amount

col. addr.

write data read data

cell 
array

shift

write
current

Figure 11: Implementation of Differential Write and row shifting.

4.4 WEAR LEVELING

Even though redundant bit-write removal achieved up to 5 times lifetime extension, the resulting

1.4∼2.1 years of lifetime is still too short for main memory. The reason is that the memory

updates happen too locally: the bulk of writes are destined to only a small number bits, creating

an extremely unbalanced write distribution. Therefore, those “hot” cells fail much sooner than the

rest of the cells. For this reason, the next step I take is wear leveling.

4.4.1 Row Shifting

Each PCM memory write contains a line, or a “row” of bits (512 bits in my experiments). After

applying Differential Write, the bits that are written most in a row tend to be localized, rather

than spread out. Hence, I apply a simple shift mechanism to even out the writes in a row to all cells

instead of a few cells. Simulation results indicate that it is not beneficial to shift on bit granularity,
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Figure 12: Lifetime (days) after applying Differential Write.

because hot cells tend to cluster together. For example, least significant bits are written more often

than most significant bits. Shifting on too coarse a granularity is also not helpful since cold cells

might be left out. For those reasons, I found that shifting by one byte at a time is most effective.

In addition, my simulation results also indicate that it is not advantageous to shift on every write

because once a line is shifted, writing it back may incur more bit changes than without the shift.

Hence, I perform the shift periodically to amortize its cost. Moreover, a workload does not have

equal accesses to every memory pages. Some pages are “hotter” than others, and some pages are

accessed more balanced for every line than others. The best shift interval varies significantly from

page to page. Hence, I select two representative memory pages from each of the four categories:

hot, medium hot, medium balanced and unbalanced pages for a workload. They are selected based

on the write counts of the pages, and the standard deviations of writes among all lines in a page.

I do not consider cold pages as their lifetimes are much longer and tuning the shift interval should

not be disturbed by statistics from them.

I varied the row shift interval from 0 (no shift) to 256 (shift one byte on every 256 writes),

and collected the resulting lifetimes averaged from all selected sample pages. We found that the

results from each individual benchmark varies greatly. For example, the specweb-banking favors an

interval of 16 writes while this interval generated the lowest lifetime for mcf. Hence, I summarized
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the lifetime for different shift intervals averaging over all benchmarks. I used not only arithmetic

mean, but also geometric mean and harmonic mean to give more weight to low-lifetime workloads.

The results are plotted in Figure 13.
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Figure 13: Lifetime with different row shift interval averaged over all benchmarks.

As can be seen from the figure, the best shift interval is 256 writes, as it generates the highest

lifetime for all means. However, there is no need to increase the interval as 1) both geometric and

harmonic means have leveled off, and 2) longer interval incurs more counter bits and hardware

overhead corresponding to each line. With such a wear leveling for each row, the lifetime of PCM

memory increased to 5.9/4.5/3.9 years for SLC/MLC-2/MLC-4 respectively (as shown in Figure 14),

which is still not sufficient for commodity systems.
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Figure 14: Lifetime (years) after applying Differential Write and Row Shifting.

Row shifting can be implemented with an additional row shifter, along with a 6-bit shift offset

per 64B line, as shown in Figure 11. The shifter, together with the column mux and the shift
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offset, performs the complete shift of a line. On a read access, the data is reset to its original

position before being sent out. On a write access, new data is first shifted in the pre-write read for

comparison. Delay and power introduced by the shifter in each memory access were measured to

be 400ps and 795µW respectively. Both these overheads are considered in my simulation results.

4.4.2 Segment Swapping

The next step of wear leveling I took is at a coarser granularity. Row shifting rotates the bytes

inside each memory line. However, write distribution in some workloads can be highly unbalanced,

meaning that some hot pages are written more often than others. For example, Figure 15 shows

the distribution of memory writes for benchmark mcf in 10 seconds of simulated time. The X-

axis is the memory space in unit of 1MB segment, and the y-axis denotes the number of writes

in logarithmic scale in each segment. Row shifting has only limited effect on hot pages that have

significant amount of writes than others. Those pages will still fail sooner even though each line

in it has balanced writes. Therefore, I develop a coarse granularity wear leveling mechanism that

periodically swaps memory segments of high and low write accesses.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

W
rit

e 
C

ou
nt

s

Memory Space (in unit of 1MB segment)

Figure 15: Memory write distribution for mcf in 10 seconds of simulated time.

The main parameters I need to determine for segment swapping are segment size and swap

interval. To select a proper segment size, I experimented with small sizes such as one, or several

pages. The main difficulty is that the metadata to keep track of the page writes would be too

big. For example, for a 4GB memory with 4KB page size, 1M of page write counters need to be

maintained. This is not only a big storage overhead but also it requires long latency at runtime for

sorting the counters to find cold pages for swapping. Therefore, I enlarged the segment sizes and
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experimented with a number of options. For each segment size, I varied the the swap intervals in

number of writes, and collected the resulting lifetime improvement factors as depicted in Figure 16.
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Figure 16: Effect of segment size and swap interval on lifetime (Hmean).

The X-axis shows different swap intervals in unit of a base interval (‘X’). This is because larger

segments should use larger intervals so different segment sizes have different base intervals. The

Y-axis shows the lifetime improvement factors averaged over all benchmarks under test. The goal of

wear-leveling is to distribute memory writes more evenly in the memory space. Its effectiveness can

be measured by the maximum number of writes to any memory segment (Wmax), lower is better.

The lifetime improvement factor is computed as the ratio of Wmax values between with and without

wear-leveling. I used lifetime improvement factor in the results because 1) it is a direct result of

wear-leveling; 2) estimating absolute lifetime for wear-leveling scheme requires tracking number of

writes at per-bit granularity in the entire memory space, which is too expensive to experiment.

The results in Figure 16 clearly show that larger segment sizes do not benefit from wear leveling.

This is because swapping larger segments introduces higher overhead in terms of extra writes. For

example, the overhead for 1MB, 4MB, and 16MB segments on their base swap intervals are 2.8%,

5.6% and 5.2% respectively. Therefore, the best option is the 1MB segment size with 2X swap

interval which corresponds to 2×106 writes. Note that segment swaps bring overhead mostly in

performance. Endurance wise, each cell involved in the swapping is written only for one more time,

which has negligible impact on the lifetime.

Segment swapping should be implemented in the memory controller. A mapping table between

the “virtual” segment number generated by the core and the “true” segment number for the actually

location of the requested segment is maintained. The size of this table depends on the capacity of
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the main memory. For a 4GB main memory, the 1MB segment size results 4K entries in the table,

and each entry stores A− 20 bits where A is the width of the physical memory address.

For each segment, two control data are tracked: 1) write count which counts the number of

writes to the segment; and 2) last swapped which remembers when this segment was swapped last

time. A cold segment may be picked multiple times for swapping in a short period of time. Keeping

last swapped can prevent the cold segment from being selected again too soon. In addition, the

segment swap should not happen too frequently within a short amount of time. If there are many

swap requests, the controller can delay them because the time a swap should happen is not very

critical. Such a design can even out segment swaps so that they do not have significant impact

on system performance. I set a global constant swap throttle as the threshold of the number of

swaps that can happen in a fixed period of time. A swap queue is used to record the awaiting swap

requests if they cannot be serviced promptly.

segment size 1M
swap interval 2M writes

# of swaps simulation time (sec) # swaps/sec
ammp 1565 1800 0.86944444
art 4519 1800 2.51055556
lucas 3700 1800 2.05555556
mcf 3851 1800 2.13944444
mgrid 2104 1800 1.16888889
milc 2870 1800 1.59444444
ocean 2028 1800 1.12666667
sphinx 401 1800 0.22277778
swim 2189 1800 1.21611111
specweb-ba 26 1800 0.01444444
specweb-ec 806 1800 0.44777778
specweb-su 420 1800 0.23333333
Average 1.13328704
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Figure 17: Frequency of segment swapping.

For the swap configuration I selected — 1MB segment swapped on every 2×106 writes, I found

the average number of swaps occurred per second is 1.13, as shown in Figure 17. When a swap

occurs, the memory has to stall for 2×1MB/64B PCM writes, assuming each PCM write is 64B.

As I will show in Section 4.6, each PCM write takes up to 156.55ns (36.28ns for pre-write read +

120.27ns for write). Therefore, the memory is unavailable for 1.13 × 156.55ns × 2× 1MB/64B =

5.76ms per second. This amounts to 0.576% performance degradation to the running workloads in

the worst case. This overhead can be decreased by using two row buffers in the memory controller

to read and write the exchanging lines in parallel, reducing the overhead by half to 0.288%.
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4.5 LIFETIME IMPROVEMENTS

After applying all three techniques I proposed (Differential Write, Row Shifting and Segment Swap-

ping), the lifetime of a PCM main memory can be extended greatly. I assumed 4GB PCM main

memory in the test and 108 of cell write endurance. As shown in Figure 18, average lifetime of

PCM memory is extended to 13∼22 years. Detailed results are listed in Table 4.5. These results

indicate that with my Differential Write and wear-leveling techniques, PCM memory is practical

in terms of lifetime.

Note that all three techniques are necessary to extend the lifetime of PCM memory because their

effects are multiplied. As I have already shown in Figure 12 and Figure 14, applying Differential

Write and Row Shifting can extend lifetime to 5.9 years. If Segment Swapping is applied alone

(without Differential Write or Row Shifting), it can only extend lifetime to 1.7 years by harmonic

mean (the 2nd column of Table 4.5). These results prove that each technique is an essential

component of my scheme.

Figure 18: PCM memory lifetime after applying all three techniques.

4.6 ARCHITECTURAL MODELING AND EVALUATION

As one of the early attempts of using PCM in main memory, I developed an energy and delay

model for architectural evaluation of PCM memory.

PCM has been implemented using the same architecture as DRAMs [40, 50, 69]. They share

similar peripheral circuits but differ in the implementation of cells. Hence, the methodology I
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Table 2: Lifetime (years) after applying Differential Write, Row Shifting and Segment Swapping.

Benchmarks SLC(segment swap only) SLC MLC-2 MLC-4

ammp 4.9 32.5 22.7 19.3

art 1.3 24.8 18.2 15.4

lucas 1.1 15.0 12.7 11.2

mgrid 1.8 26.7 20.0 16.2

milc 2.3 36.3 32.8 31.5

ocean 52.8 224.4 161.2 133.1

sphinx3 5.5 586.2 583.3 580.9

swim 0.3 3.9 3.0 2.1

mcf 3.3 1285.4 889.0 719.5

specweb-banking 4.4 22.1 17.5 15.2

specweb-ecommerce 8.0 42.9 34.1 27.9

specweb-support 10.2 83.9 69.1 62.7

Amean 8.0 198.7 155.3 136.3

Hmean 1.7 22.1 17.1 13.4
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used is to simulate the essential circuits such as the cell, bitlines, wordlines, read/write circuits

etc. in HSPICE, and then replace the CACTI results related to those essential circuits with our

HSPICE results. In other words, I only use the skeleton of the CACTI DRAM model, and fill in

the contents with HSPICE PCM model. 1 This method also provides a fair comparison because

PCM and DRAM will use the same floor plan. Feature size used in my model is 45nm, and memory

capacity is 4GB. The numbers produced by these simulations were then applied in my architectural

model for evaluation of PCM memory.

4.6.1 Peripheral Device Type

CACTI-D provides three types of devices defined by ITRS: high performance (HP), low standby

power (LSTP), and low operating power (LOP). These devices are used in the peripheral and global

support circuitry such as input/output network, decoders, sense amplifiers etc. The HP devices

have the highest operating speed. They have short gate length, thin gate oxide, and low Vth. The

downside is that HP devices have high dynamic and leakage power. The LSTP devices on the other

hand are designed for low leakage power. They have longer gate length, thicker gate oxides, and

higher Vth. Naturally, these devices are slower than for HP devices. The LOP devices are between

HP and LSTP devices in terms of performance. The advantage is that LOP devices provide lowest

dynamic power among the three.

DRAM typically uses Low Standby Power (LSTP) transistors for the peripheral circuitry to

lower its leakage energy. However, it may not be a good choice for PCM because LSTP yields worst

performance among the three choices. More importantly, PCM does not require LSTP devices to

lower its leakage because it is non-volatile. When the memory is idle, much of the peripheral

circuitry can be powered down without losing the stored data. This is the most distinct benefit of

using PCM with performance advantageous peripheral circuitry, which is feasible for DRAM.

Between HP and LOP, HP transistors are faster but consume more energy, in both dynamic

and leakage energy. LOP transistors are slower but consume less total energy. My experiments

showed that HP devices have too high leakage at runtime to be acceptable even for PCM. Hence

LOP devices were chosen for the peripheral circuits in my model.

1 Circuit design and CACTI/HSPICE simulation were done by Bo Zhao (boz7@pitt.edu) at ECE department,
University of Pittsburgh.
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4.6.2 Energy/Delay Model

Table 3 lists the latency and energy parameters used in my architectural model for PCM memory

evaluation. The numbers were derived from CACTI and HSPICE simulation. In the table, PCM’s

burst read is a little faster than DRAM. This is mainly because of two reasons. First, the peripheral

logic of PCM (LOP devices) are faster than that of the DRAM (LSTP devices). I have discussed

the trade-offs of these choices earlier. Second, the DRAM reads are destructive. DRAM needs to

restore (write back) the data to cells before the next access to the same bank. This is a process to

regenerate full-rail values on the high capacitive bitlines, which takes some time. These operations

increase the DRAM memory’s random access time. In contrast, PCM-based memory can easily

handle burst reads by nature because PCM reads are not destructive.

Table 3: Latency and energy parameters used in my architectural model.

Latency (ns) Energy (nJ)

PCM DRAM PCM DRAM

Read 36.28 (row miss) 20.04 (row miss) 10.68 (row miss) 12.17 (row miss)

6.47 (row hit) 9.33 (row hit) 3.77 (row hit) 12.06 (row hit)

Write 90.27 (0) 20.04 0.0268 (0) 14.48 per row (64B)

120.27 (1) 0.013733 (1)

Write latency. With Differential Write, PCM’s write latency is not fixed. If a write request is

completely redundant (i.e., every bit of the line to be written is same as the old data in memory),

then this PCM write request can be terminated after the pre-write read and comparison operations,

resulting in shorter latency. This is the major difference in PCM’s latency model.

Write energy. With Differential Write, the per access write energy of PCM is also not fixed.

It is calculated as follows:

Epcmwrite = Efixed + Eread + Ebitchange

Efixed is the “fixed” portion of energy charged for each PCM write including row selecting,

decoding, XNOR gates, etc. This part is 4.1nJ per access as measured from HSPICE simulation.

Eread is the energy to read out the wordline for comparison. This part is approximately 1.075nJ

which includes the energy spent in the row shifter as shown in Figure 11.
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The Ebitchange part depends on the proportion of updated bits (0 → 1 or 1 → 0): Ebitchange =

E1→0N1→0 + E0→1N0→1. As listed in Table 3, E1→0 and E0→1 are 0.0268nJ and 0.013733nJ

respectively. Therefore, per access write energy for PCM (nJ) can be expressed as:

Epcmwrite = 5.175 + 0.0268×N1→0 + 0.013733×N0→1

What can be seen from here is that Differential Write can significantly reduce PCM’s write

energy, in addition to its benefits of endurance. For example, from the statistics in Figure 10, 85%

of bit writes are removed (for SLC). If we assume writing a ‘0’ or ‘1’ is equally likely, the total

write energy per “row” is 6.73nJ including the energy on the circuit illustrated in Figure 11. This

is significantly lower than the per access write energy of DRAM.

4.6.3 Experimental Setup

I evaluated PCM-based main memory with a 4-core CMP (with parameters listed in Table 4)

in Simics [56] simulation environment. I set the core frequency as 1GHz because I assumed a

3D architecture (discussed below) which is subject to tight thermal constraints. Trace-driven

simulation was used for lifetime analysis and execution-driven simulation was used for studying

energy and performance. For the latter, I used the GEMS [57] simulator with both Ruby (detailed

cache and memory simulator) and Opal (out-of-order core simulator) activated. I enhanced the

memory module to model both the latency and energy consumption of PCM and DRAM. Due to

the limitation of Simics g-cache module (which is discussed in Section 8.2.1), my traces include

memory accesses generated by user applications and operating system, but they do not include

memory accesses that are generated by DMA operations.

I assumed that the memory is stacked onto the 4-core chip, similar to the PicoServer architec-

ture [41]. I chose a 3D architecture to evaluate PCM because if it was used as an off-chip memory,

the latency on the CPU-memory bus would diminish the latency problem of PCM. The memory is

organized as one memory module with 4 ranks, assuming each rank is one layer in a 3D stack. The

3D architecture used in my experiments does not include a DRAM buffer. Hence my lifetime results

can be regarded as the “worst-case” scenario in which PCM is used as main memory directly. I

implemented burst read mode in the row buffer. The parameter for PCM and DRAM are taken

from the HSPICE simulations and rounded to integer numbers of memory cycles.
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Table 4: Hardware parameters of a 4-core CMP.

Processor core 4-OOO-core, each core runs at 1GHz

L1 Cache Private L1 cache (32K I-cache and 32K D-cache), 64-byte lines, 4-

way set associative, 3 cycles access time

L2 Cache Shared L2 cache, 4MB, 64-byte lines, 16-way set associative, 6 cycles

access time

Memory controller one controller, next to core 0

Memory size 4GB memory

Memory organization 1 DIMM, 4 Ranks/DIMM, 16 Banks/Rank; use top 16 bits as row

number; each rank is a layer of 3D stacking of on-chip memory

Interconnect Network 2×2 mesh network

4.6.4 Evaluation Results

4.6.4.1 Energy savings Figure 19 shows the dynamic energy of DRAM (left bar) and PCM

(right bar). They are further broken down to initial reads, burst reads, writes and refreshes.

PCM’s dynamic energy is only 47% of the DRAM’s dynamic energy, achieving a 53% reduction.

The greatest reductions come from 1) the write energy because of Differential Write; and 2) the

burst read energy due to PCM’s non-destructive read. Moreover, PCM-based memory does not

require refresh logic and the associated energy costs because of its non-volatile nature.

Figure 19: Breakdown of dynamic energy savings.
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The leakage savings come from two sources: 1) cell leakage reduction due to the non-volatility

of PCM cells; and 2) the power gating of peripheral circuits when the memory is idle. During this

time I power down the peripheral circuits because I will not lose contents in the memory. This can

save significant energy in the peripheral circuits because PCM uses LOP devices which have higher

leakage when active than the LSTP devices for the DRAM peripheral circuits. Note that even for

memory intensive workloads such as mcf, the leakage saving is nearly 40%. The combined effect

results in large leakage energy reductions, as illustrated in Figure 20. On average, PCM-based main

memory achieved 74% savings, when compared with a DRAM-based memory that has already been

optimized for low leakage.

leakage

页 1

workload PCM (DDR-400) DRAM (DDR-400) Leakage Saving %
ammp 165948.1 6865340.205 97.5828132
art 5295241.7 14047918.64 62.305863
lucas 969025.5 8637414.903 88.7810704
mcf 8022788.7 13034248.01 38.4483961
mgrid 1444309.1 7775662.738 81.4252605
milc 704324.7 3904229.831 81.959958
ocean 2285603.3 7805150.264 70.716729
sphinx3 1100879.3 7598241.58 85.5113938
swim 2252226.9 7019874.745 67.9164233
Average 2471149.7 8520897.88 74.9608786

workload PCM (DDR-800) DRAM (DDR-800) Leakage Saving %
ammp 161782.8862 6863002.214 97.6426805
art 4588673.979 12800982.31 64.1537355
lucas 834339.2056 8554364.452 90.2466254
mcf 5664634.524 9787677.764 42.1248363
mgrid 1275001.809 7744599.386 83.5368914
milc 618647.5597 3808515.85 83.7562036
ocean 1788872.382 6962807.273 74.3081732
sphinx3 958236.7666 7502537.356 87.2278308
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Figure 20: Leakage energy savings.

With dynamic and leakage energy savings combined, the total energy savings PCM-based main

memory achieved is 65% averaged over all programs, as shown in Figure 21.

4.6.4.2 Performance Although PCM has slower read and write operations, I found their im-

pact on program performance is quite mild. Similar observations have also been made in [93] where

the long latency of the last-level cache implemented using commodity DRAM and LSTP periph-

eral did not have much impact on the performance of the chip. That is, programs are relatively

insensitive to the performance of memory hierarchical levels that are far from the CPU. Note that

my platform is 3D stacked chip, meaning that the sensitivity of the performance to the memory

latency should be higher than having an off-chip main memory. In other words, if PCM is used

as an off-chip main memory, its latency effect on the overall system performance would be even
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ED2

页 1

 cpi Total Energy (nJ) cpi(dram) E (dram) PCM (DDR-400)
ammp 2.5524 292401.6167 2.54389 7058893.75 1904922.193
art 6.60635 16865791.74 5.19938 32527300.5 736088258.9
lucas 3.27558 2948789.47 3.22244 12838062 31638813.5
mcf 4.94196 20237748.73 4.92438 39844883.9 494265902.6
mgrid 2.92644 3694324.053 2.86595 11990738 31638379.87
milc 1.54897 2481069.804 1.38345 6109666.68 5952850.78
ocean 2.78935 6347353.317 2.72492 16641749.1 49385413.79
sphinx3 2.79934 3776657.248 2.67208 11155972 29595035.94
swim 2.59041 4926946.915 2.57884 12389284.7 33060917.28
Average 3.33675556 6841231.433 3.12392556 16728505.6 76169844.13
Hmean 2.86635965 1741885.991 2.72762457 11953541.3

0.591043481
0.854278666

PCM(DDR-800)
workload  cpi Total Energy (nJ) cpi(dram) E (dram) PCM (DDR-800)
ammp 2.55098 288257.8862 2.54227 7056313.01 1875837.895
art 6.17861 16166353.98 4.73338 31531784 617154144.6
lucas 3.23704 2837019.206 3.19325 12753109 29727501.38
mcf 3.75686 17904924.52 3.75352 36226422.4 252710052
mgrid 2.91264 3537640.809 2.85518 11957008.8 30011475.93
milc 1.49479 2396850.66 1.35013 6011902.45 5355516.27
ocean 2.59198 5841152.382 2.54184 15693233 39242966.39
sphinx3 2.75305 3631472.867 2.63905 11058627.6 27523965.3
swim 2.58786 4729828.376 2.57801 12376833.9 31675752.3
Average 3.11820111 6370388.965 2.90962556 16073914.9 61940426.92
Hmean 2.74663325 1699014.671 2.61982948 11774523.5

0.603681555
0.855704167
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Figure 21: Total energy savings.

smaller, indicating that reducing energy consumption is more important than reducing the latency.

My results show that the CPI increase ranges from 0.3% for ammp to 27% for art with an average

of 5.7%, as shown in Figure 22.

cpi

页 1

workload PCM (DDR-400) PCM HP (DDR-400) DRAM (DDR-400) PCM DRAM
ammp 2.5524 2.54389 1.003 1
art 6.60635 5.19938 1.271 1
lucas 3.27558 3.22244 1.016 1
mcf 4.94196 4.92438 1.004 1
mgrid 2.92644 2.86595 1.021 1
milc 1.54897 1.38345 1.120 1
ocean 2.78935 2.72492 1.024 1
sphinx3 2.79934 2.67208 1.048 1
swim 2.59041 2.57884 1.004 1
Average 3.336755556 3.123925556 1.057 1
Hmean 2.866359654 2.727624574 1.051 1

workload PCM (DDR-800) PCM HP (DDR-800) DRAM (DDR-800) PCM (DDR-800) DRAM (DDR-800)
ammp 2.55098 2.54227 1.003 1
art 6.17861 4.73338 1.305 1
lucas 3.23704 3.19325 1.014 1
mcf 3.75686 3.75352 1.001 1
mgrid 2.91264 2.85518 1.020 1
milc 1.49479 1.35013 1.107 1
ocean 2.59198 2.54184 1.020 1
sphinx3 2.75305 2.63905 1.043 1
swim 2.58786 2.57801 1.004 1
Average 3.118201111 2.909625556 1.072 1
Hmean 2.74663325 2.619829482 1.048 1
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Figure 22: PCM memory latency impact on CPI.

4.6.4.3 Energy-Delay2 savings I present the results for ED2 in Figure 23. Due to the great

savings in the total energy, and mild increase in execution time, the ED2 values all showed positive

savings, ranging from 96% for ammp to 16% for art. The average savings achieved is 60%. These

results show that using PCM-based main memory in 3D stacked architectures has a great advantage

in achieving energy-efficiency.
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Figure 23: Energy-Delay2 of PCM memory normalized to DRAM.

4.7 REMARKS

My Differential Write technique and architectural modeling of PCM memory are among the first

attempts to use PCM in main memory [103]. Differential Write is not only an effective technique to

improve the lifetime of PCM memory, but also opens new opportunities for research in upper level

architecture design (e.g., the memory controller) as I will present in the following chapters. The

idea of Differential Write was also applied to STT-RAM cache (with a different implementation) to

reduce its energy consumption [104]. Several other wear-leveling techniques were proposed for PCM

later, each focusing on different goals such as lower overhead or better resilience against malicious

programs [77,79,90].
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5.0 THROUGHPUT IMPROVEMENT OF PCM MEMORY

Although Differential Write is beneficial for endurance and energy, it does not help a lot in PCM’s

write latency. A PCM write still takes long time to finish, unless every bit in the write request is

redundant. In a conventional memory bank design (in which each bank can serve one request a

time), this means an active PCM write could block subsequent requests for long time, hurting both

latency and throughput. For example, a recent PCM prototype reported by Villa et al. can only

achieve 9MB/s write throughput per chip [95]. This could be a big concern as throughput is one of

the most important considerations for main memory. Existing schemes such as write-cancelation or

write-pausing helps reducing read latency, but does not help throughput. In this chapter, I propose

my memory scheduling enhancements at the memory controller level to improve the throughput of

PCM memory [105] (Figure 24).

Differential Write, wear-leveling and 

architectural modeling of PCM memory

Memory scheduling 

enhancements

Fine-grained power 

budgeting

QoS tuning ability improvement

Figure 24: Overview of my research – memory scheduling enhancements.

The novelty of my memory scheduling enhancements is: Existing DRAM-based memory sched-

uler usually prioritizes read requests over write requests or treats them equally. Once memory

requests are dispatched by memory scheduler to bank queues, they are then issued in order. My

memory scheduling enhancements, on the contrary, further reorder the requests in bank queues by

prioritizing write requests over read requests. This non-conventional design is based on the obser-

vation that the throughput of PCM memory is mainly limited by write requests. It also relies on a
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non-blocking bank design (which will be discussed in following sections) to prioritize write requests

without blocking the read requests for a long time. As I will show in my experiment results, my

memory scheduling enhancements can achieve 61% throughput improvement over a baseline bank

design.

5.1 BASELINE ARCHITECTURE

Core Core

Core Core

Memory Controller

DRAM buffer

Last Level Cache Phase Change 

Memory

Bank 0

Bank 7

......

Request Queue ......

Bank queues

Bank 1

Memory Controller

PCM

scheduler
issue 

requests

Figure 25: Baseline architecture.

The baseline architecture used in my study is a typical 4-core CMP with private L1 cache and

shared L2 cache (as shown in Figure 25). A 128MB DRAM buffer resides between the processor

and PCM main memory to mitigate PCM’s long latency and limited write endurance. The 4GB

PCM memory is organized in a similar way as 8× DRAM DIMM [59] (8 banks per chip, 8 chips

per DIMM, single channel DDR2-800 interface). Each memory request is 64-bytes wide, which is

the same as the L2 cache block size. Like in DRAM, the PCM memory uses a banking technique

51



to allow concurrent accesses. In my baseline architecture, I assume the PCM memory supports 8

concurrent accesses. Hence the PCM memory can be viewed as having 8 logic banks, each serves

requests independently and is indexed by bits 8∼10 of the memory address.

Memory requests arriving at the memory controller are first buffered in a request queue, waiting

to be dispatched by the memory scheduler. The scheduler dispatches memory requests to logic

banks according to certain policy, typically to maximize bank-level parallelism. In my baseline

architecture, I adopt the PAR-BS [63] as the baseline scheduler.

The memory controller also has a row buffer for each logic bank. The row buffers in PCM

memory are organized differently than DRAM. Previous research has shown that it is more advan-

tageous to use multiple narrow row buffers for PCM banks [48], since writing a wide row buffer

incurs high dynamic power. I use the same architecture in this study: each logic bank’s row buffer

has 8 256B row buffer entries, managed using LRU policy. The total capacity of each row buffer

is 8×256B=2KB, which is comparable to a conventional DRAM row buffer. This multiple narrow

row buffer entry design is also natural for concurrent intra-bank reads and writes.

My multi-entry row buffer uses a write-through policy, i.e., writing into a logic bank and the

corresponding row buffer entry occurs simultaneously. This is because, if I use a write-back policy, a

read operation may be held for long time due to slow write back, harming the average read latency.

Although write-back policy may reduce the total number of PCM writes, I found this advantage to

be diminished: Each 256B row buffer entry contains 4 64B lines, meaning that each write back of

an entry would generate at most 4 PCM writes. If each line inside a row buffer entry gets only one

write hit, the writing back of this entry would not reduce the total number of PCM writes. Hence

a write-back row buffer can reduce total number of PCM writes only when it gets multiple write

hits on a same line inside a row buffer entry. However, this opportunity is found to be diminished

due to the narrow row buffer entries and the cache/buffer that sits above the PCM memory In fact,

no write hits on the same line was observed in my experiments.

5.2 NON-BLOCKING BANK DESIGN

As discussed in the previous section, a logic bank can serve one request a time in the baseline

architecture. Due to PCM’s long write latency, a request at the head of the bank queue may wait
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a long time if the bank is actively serving a write request. This severely impacts PCM memory’s

throughput, even though PCM has comparable read speed as DRAM. Hence, it is natural to

consider parallelizing more concurrent writes in each logic bank to alleviate the problem.

My scheduling enhancements are based on a novel PCM memory bank design, Non-Blocking

Bank Design, which allows each logic bank to serve up to two reads and two writes simultane-

ously (with some restrictions). 1 Non-blocking bank design has an area overhead of 5% (a very

conservative estimation), which is much more lightweight than simply having more banks (whose

area overhead is estimated to be 10.9%). The basic concept of non-blocking bank is that each

logic bank is divided into two “halves”, each can be regarded as having 4×8 “regions” (as shown

in Figure 26). Each half of a bank can serve one read and one write concurrently, provided that

these two requests do not fall into the regions that are on the same “column”. As illustrated in

Figure 26, when a region is active (in white), regions on the same column of the matrix (in shadow)

become unavailable. If a request falls into an unavailable (or active region), it must wait until its

region becomes idle. In this thesis, I term this request to be conflicting with the on-going request.

W

W

R

R

Left half Right half

Idle regions

Unavailable regions

Active regions

Figure 26: Conceptual view of non-blocking PCM memory bank design.

In summary, there are 3 types of conflicts in this Non-Blocking Bank Design:

• Write-Write Conflict. Each half of a logic bank can serve one write a time. Hence if two

writes fall into same half of a logic bank, they form a “Write-Write Conflict” and cannot be

parallelized.

1The non-blocking PCM bank design was created by Bo Zhao (boz7@pitt.edu) at ECE department, University of
Pittsburgh.
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• Read-Read Conflict. Similar to the previous case, if two reads fall into the same half of a

logic bank, they form a “Read-Read Conflict” and cannot be parallelized.

• Read-Write Conflict. As discussed above, each half of a logic bank can serve one read and

one write concurrently, provided that they do not fall into the regions that are on the same

column. Hence if a half is serving a read request, a write request that falls into the region that

is on the same column as the on-going read must wait for the read to finish, and vice versa.

This is termed “Read-Write Conflict”.

As we can see, this new bank design provides a new opportunity for intra-bank parallelism

for throughput improvements. And since PCM’s throughput challenge is mainly caused by its long

write latency, this new bank design has much greater potential than previous Read-While-Write

(RWW) designs due to its ability of parallelizing two writes in each logic bank. However, the

final throughput improvement also depends on whether the scheduler can fully take advantage of

this new opportunity. My experiments have shown that directly applying this new bank design

without any scheduling modification only achieves limited throughput improvement. Therefore,

enhancements to memory scheduling are needed to exploit the new opportunity.

5.3 INTRA-BANK REORDERING: A MOTIVATING EXAMPLE

Non-blocking bank design provides more concurrency inside each bank. However, in many cases

this intra-bank parallelism is not utilized if the requests in the bank queue are issued in order.

This is mainly due to the conflicts between requests in the bank queue. Consider a bank queue

containing the request sequence {W1, R1, R2, R3, R4, W2, R5, R6} (Figure 27(a)). Among these

requests, {W1, R1, R3, R4, R6} access the left half, and {W2, R2, R5} access the right half of the

logic bank. W1 conflicts with R4 and R2 conflicts with W2. I assume 1000ns and 50ns for write

and read respectively [67].

• Figure 27(a). In the baseline (blocking) bank design, each bank can only serve one request at

a time. Requests are issued in order. Total time to finish the sequence is ∼2300ns.

• Figure 27(b). We use non-blocking bank design without any scheduling enhancement. Re-

quests in the bank queue are still issued in order. Since R4 conflicts with W1, it cannot be

issued until W1 finishes. This delays all subsequent requests, including W2 which could have
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(a) Baseline (blocking) bank design.

W1

R1 R3 R4 R6

time

R2 W2

R5

Left half

Right half

(b) Non-blocking bank design, no reordering.

W1

R1

R2

R3 R4R6

time

R5

Left half

Right half
W2

(c) Non-blocking bank design, requests reordered.

W1

R1

R2

R3 R4R6

time

R5

Left half

Right half
W2

W3

(d) Pushing back R4 makes it possible to parallelize with another write (W3).

Figure 27: The impact of intra-bank reordering on request completion time. Assume W1 conflicts

with R4 and R2 conflicts with W2.
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been served in parallel with W1. Also, it might be desirable to issue R6 sooner (than R4) as

it does not conflict with W1. Nevertheless, the total completion time is approximately 1000ns

(W1) + 1000ns (W2) = 2000ns, a 13% improvement over the baseline.

• Figure 27(c). We reorder the requests in the bank queue to exploit intra-bank parallelism,

assuming dependencies among them have been resolved earlier. In this sequence, W1 and W2

are parallelized. All read requests except R2 and R4 are parallelized with writes. The total time

spent by this sequence is approximately 1000ns (W1 and W2) + 50ns (R2 and R4) = 1050ns.

Comparing to the baseline, the completion time is reduced by more than 54%.

A key point shown in this example is that in the new non-blocking bank design, reordering

requests in the bank queue can effectively improve overall throughput. Also, due to the significant

gap between read and write latency, it is important to overlap writes as much as possible to shorten

the total latency of the entire sequence. This often requires us to move writes ahead of many reads.

But such moves will not hurt the reads too much because they can be parallelized with writes most

of the time. If a read conflicts with a write, then I prefer to issue the write first, since the read may

have a chance to overlap with another write. For example, in Figure 27(d), R4 follows W1 since

R4 may be able to overlap with another write W3 (e.g., another write request in the bank queue).

Scheduling R4 before W1 would lose such opportunity for more parallelism unless W3 is also moved

ahead of W1 to run concurrently with R4. Either case shows that a write-precedence scheduling

policy generates more parallelism. This is also confirmed by my experiments in Section 5.8.2:

Comparing the scheme of putting read requests first and my proposed write-precedence scheme,

the latter achieves 15% more throughput improvement on average. Therefore, I develop several

enhancements of intra-bank reordering that usually favors writes over reads to exploit intra-bank

parallelism. These are non-conventional, as most existing DRAM-based policies prioritize reads

over writes. My algorithm is thus designed for the unique properties of PCM operations.

Since my enhancements target requests inside bank queues to exploit intra-bank parallelism,

they can be easily integrated with existing schedulers that target requests inside the memory input

queue (exploiting inter-bank parallelism). I use PAR-BS [63] as the inter-bank scheduler, followed

by my proposed scheduling enhancements as described below.
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5.4 OVERVIEW OF INTRA-BANK REORDERING
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Figure 28: Integration of Intra-Bank Reordering.

My intra-bank reordering enhancements are designed as extensions to existing memory sched-

uler like PAR-BS. As illustrated in Figure 25, the memory scheduler is responsible for dispatching

memory requests to individual bank queues under certain policies. My intra-bank reordering en-

hancements take place in the bank queues after dispatching, as shown in Figure 28. This decoupled

design allows my enhancements to work with existing memory schedulers without complex changes

to the memory controller. It also enables them to inherit some key scheduling mechanisms from

the memory scheduler. For example, the Aggressive Write-Precedence Reordering (AWP) enhance-

ment described in Section 5.5 naturally inherits the batching mechanism from PAR-BS, which is

crucial to avoiding starvation. And the Row-Hit Aware Write-Precedence Reordering (RAWP)

enhancement (Section 5.6) takes a further step by preserving much of the read row hits promoted

by PAR-BS.
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5.5 AGGRESSIVE WRITE-PRECEDENCE REORDERING (AWP)

The initial algorithm is directly derived from the intuition developed above. I term this algorithm

aggressive write-precedence (AWP) reordering since it aggressively reorders requests in bank queues.

The basic idea is to move requests that can be parallelized with on-going requests to the front of a

bank queue, so that they can be issued right away.

With non-blocking bank design, one logic bank can serve up to 4 requests at the same time (2

writes and 2 reads), which are termed slots of the bank in the following discussion. AWP always

tries to fill free slots with suitable (non-conflicting) requests. The algorithm can be described as

follows:

Algorithm 1 The AWP algorithm.

for all free slot (start with free write slots if available) do

Look for a request that does not conflict with any on-going or selected requests;

if request found then

Mark the request as selected;

end if

end for

if one or more requests selected then

Move the selected requests to the front of bank queue, in the order that they were selected;

end if

When there are both free write slot(s) and free read slot(s), AWP will try to fill write slot(s)

first as shown in Algorithm 1. This means that writes are prioritized over reads, hence the term

“write-precedence”.

5.5.1 Working with PAR-BS

Since my scheduling algorithm gives priority to writes over reads, there is a chance for a read

to be pushed back infinitely. The PAR-BS [63] I use already avoids starvation through request

batching: all requests in the previous batch must be issued to the bank before a new batch starts.

AWP follows this by reordering only among those requests that are in one batch. Therefore, the

starvation avoidance mechanism of PAR-BS is naturally inherited by AWP (as well as my other

enhancements).
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The original PAR-BS marks up to N requests per thread per bank when creating a new batch.

This implies that there might be an imbalanced number of requests for each half bank in a batch,

which could harm the parallelism between the two halves. I made a simple revision to PAR-BS

by marking up to N/2 requests per thread per half bank to balance the requests dispatched to the

two halves. I term this simple revision PAR-BS/Half. As we will see in Section 5.8, this simple

optimization improves throughput over the original PAR-BS by about 30%.

5.5.2 Problems with AWP

With aggressive request reordering in the bank queue, AWP introduces a severe side effect: reduced

row buffer hit rate. When requests are dispatched by the memory scheduler (PAR-BS in my case),

they are typically ordered to achieve high row buffer hit rate, in addition to improving memory

throughput. AWP clearly destroys such locality. My experiments show that the read row buffer

hit rate is degraded by up to 65% using AWP (as shown in Section 5.8). Although throughput

is important for main memory, the row buffer hit rate affects read access latency, and hence the

performance of a workload. Next, I will develop an improved AWP that does not harm the row

buffer hit rate that much, but still achieves high memory throughput.
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5.6 ROW-HIT AWARE WRITE-PRECEDENCE REORDERING (RAWP)

To overcome the problem of AWP, I develop an improved reordering scheme that maintains row

buffer hits while still achieving high throughput – Row-Hit Aware Write-Precedence Reordering

(RAWP). To achieve both goals, RAWP follows two principles when reordering requests in a bank

queue:

1. Reorder write requests in a similar way as in AWP to achieve high throughput.

2. Issue read requests in similar way as in PAR-BS to maintain row buffer hits.

5.6.1 Read Insertion

The first challenge of RAWP is that when issuing read requests in a similar order as in PAR-BS,

some of them may conflict with on-going writes and be blocked for a long time. To address this

challenge, I develop a technique called Read Insertion to resolve the conflict and preserve the row

buffer hit.

Due to PCM cell’s high write power and write current, a write access is typically completed in

several rounds of partial writes [40,50]. For example, a 512-bit write can be divided into 8 rounds,

each round finishing 64 bits. Read Insertion simply allows a read to be “inserted” between two

rounds of an on-going write (Figure 29). The on-going write is paused and necessary information is

saved so that it can resume properly. The hardware requirement is analogous to the “write pausing”

technique [76] which pauses a write for a multi-level cell (which has a different write mechanism

from a single-level cell) and resumes it later.

R

Write

R R R

inserted read

......

Figure 29: Read Insertion.

With Read Insertion, I can arrange the read sequence in a similar order as in PAR-BS to

preserve row buffer hit rate. If a read in the sequence conflicts with an on-going write, it can be

inserted in the middle of the on-going write instead of being reordered. Note that Read Insertion
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may impact the memory throughput as some parallelizable reads give way to conflicting reads for

row buffer hits. As shown in Figure 29, inserting reads increases the latency of the on-going write

request, which negatively impacts throughput. However, as I will show in Section 5.8, such an

impact is quite limited.

5.6.2 The RAWP Algorithm

With read insertion, RAWP uses a two-step approach to reorder the requests in a bank queue: 1)

select issue candidates from the bank queue; 2) form an “issue group” from the candidates in 1)

and move them to the head of the bank queue.

Step 1. Selecting issue candidates. In this step, RAWP picks candidates for each free “slot”

of the bank. It first ranks the requests. The request with the highest rank will be marked as

the issue candidate. Like in AWP which tries to fill write slot(s) first, RAWP starts ranking with

free write slot(s). For a write slot, the ranking criteria with decreasing weight are: 1) batched; 2)

row hit; 3) thread load; 4) number of reads this write conflicts with, the fewer the better. The

information of first 3 criteria are checked and set by PAR-BS. Then for each free read slot, the

criteria are: 1) batched; 2) row hit; 3) not conflicting with on-going writes or any write candidates

that have already been marked; 4) thread load (information of criteria 1, 2, 4 are checked and set

by PAR-BS). For example, a read satisfying the first 3 criteria will have a higher rank than one

satisfying first 2 criteria. With the Read Insertion technique, a read that conflicts with an on-going

write may still be regarded as “non-conflicting” if the next insertion point of the write is within

THRdIns cycles. In my experiments, this threshold is 20 memory cycles (50ns). The procedure of

selecting issue candidates is described in Algorithm 2.

Once candidates are selected for all free slots, they form an “issue group” that will be moved to

the head of bank queue. My next step is to determine the relative order among these candidates

before moving them to the head of bank queue.

Step 2. Forming an issue group from issue candidates. In this step, RAWP forms an

issue group from the candidates picked in the previous step and moves them to the head of bank

queue. Depending on their types and row buffer hit status (the RowHit bit set by PAR-BS), the

candidates can be classified into four categories: 1) write row hit; 2) write row miss; 3) read row hit
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Algorithm 2 RAWP selecting issue candidates from a bank queue

for all free write slots do

for all write requests that can be served by this slot do

calculate its rank;

end for

mark the write request with highest rank as “write candidate” for the write slot;

end for

for all free read slots do

for all read requests that can be served by this slot do

calculate its rank;

end for

mark the read request with highest rank as “read candidate” for the read slot;

end for

and 4) read row miss. RAWP determines the relative order of these candidates according to their

categories. In implementation, this can be done by treating the issue group as an “issue queue”

and appending candidates to the queue incrementally (starting from an empty queue), as described

in Algorithm 3.

RAWP places write hits in the first place since they are beneficial to both throughput and row

buffer hit rate. Between read row hits and write row misses, I prefer read row hits because reads

are very fast, and they may be parallelized with previous writes. So a subsequent write does not

need to wait long. In addition, if we let a write row miss candidate go first, then it may evict a

row buffer which may cause the original read row hit candidate to become a miss. Finally, if a

read row miss is selected as a candidate, it is not included in the issue group because it does not

help throughput, nor row hit rate. Therefore, read row miss candidate(s) will not be moved to the

head of the bank queue. Instead, they will will stay at where they were (which was determined

by PAR-BS), and will be executed in the order determined by PAR-BS. Once an issue group is

formed, all requests must be issued before forming a new issue group.

An example. I now use an example to finish the discussion of the RAWP algorithm. Suppose

there is a sequence of requests Ŵ ∗1 , R2, R̂
∗
3, R̂4, W5, R

∗
6, R̂7, R8 (ˆmeans a request to left half,

∗ indicates a row buffer hit currently). Assuming that all slots are available, and suppose RAWP

picks one candidate for each slot: {Ŵ ∗1 , R̂∗3} and {W5, R
∗
6} for left and right half respectively.
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Algorithm 3 RAWP forming issue group

Start from an empty issue group (queue);

for all Write row hit candidate(s) do

Append the candidate to the end of issue group (queue);

end for

for all Read row hit candidate(s) do

Append the candidate to the end of issue group (queue);

end for

for all Write row miss candidate(s) do

Append the candidate to the end of issue group (queue);

end for

Move all candidates to head of bank queue, in the order as they are in the issue group (queue);

Next, RAWP forms an issue group from these requests following Algorithm 3: Ŵ ∗1 , R̂∗3, R∗6, W5.

This is because Ŵ ∗1 , R̂∗3 and R∗6 are all row hits, and W5 is a miss. As we can see, all row hit requests

are preserved in this issue group, illustrating the effectiveness of RAWP. Moreover, after this issue

group, the row hit/miss status will change since the write miss will update the row buffer. Hence,

there might be new row hits for the remaining reads because of this change. This is the reason why

sometimes RAWP can result in a little higher row buffer hit rate than the original PAR-BS.

5.7 IMPLEMENTATION AND OVERHEAD CONSIDERATIONS

Due to the complexity of PAR-BS algorithm, my baseline scheduler is likely to be implemented with

a microcontroller running a firmware. My intra-bank reordering techniques (AWP and RAWP)

are enhancements to the memory scheduler. Therefore they can be implemented as additional

subroutines in the PAR-BS firmware.

The computation overhead of AWP and RAWP is relatively small compared to the PAR-BS

algorithm. For example, PAR-BS needs to scan the request queue (up to 1024 entries) when

forming a new batch. It also uses a complex ranking system when dispatching the requests. AWP

and RAWP, on the other hand, only need to scan small bank queues (up to 32 entries). During

an intra-bank reordering procedure, AWP only needs to check conflicts. RAWP needs to rank the
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requests to determine the issue candidates, but it reuses most of the ranking information from

PAR-BS. Moreover, AWP and RAWP are enhancements to memory scheduler, so they are optional

steps in memory scheduling and are not on the critical path. Memory scheduler may delay or skip

the intra-bank reordering step when it is busy.

5.8 EVALUATION

5.8.1 Experimental Setup

I experimented with various hardware designs (baseline blocking design, Read-While-Write design,

proposed non-blocking design) and scheduling enhancements (AWP, RAWP). The notations and

explanations are listed in Table 5. 2

Table 5: Notations of bank designs and scheduling schemes used in experiments.

Notations of Bank Designs

RWW Read-While-Write hardware, 1 read, 1 write per logic bank

NB Non-Blocking Bank Design, 2 reads, 2 writes per logic bank

Notations of Scheduling Enhancements

PAR-BS/Half PAR-BS with half-bank marking, no intra-bank re-ordering

AWP PAR-BS/Half enhanced with Aggressive Write-Precedence reordering

RAWP PAR-BS/Half enhanced with Row-hit Aware Write-Precedence reordering

I collected memory access traces and fed them to a detailed memory model to measure the

memory throughput. I ran memory intensive benchmarks from SPEC2006, SPLASH2 [88], and

STREAM [58] on a 4-core CMP simulator in Simics [56]. Each core runs at 3.2GHZ with 4MB

shared L2 cache, a 128MB DRAM buffer and 4GB main memory. The memory module I used

was developed in the GEMS [57] framework. I heavily modified the memory controller module

to model more details such as bank/half busy counters, bus contention, row decoder contention,

column conflicts, channel contention, etc. I then implemented my non-blocking reordering schemes

based on this model. Further parameters are listed in Table 6.

2The non-blocking bank design is developed by Bo Zhao (boz6@pitt.edu) at ECE department, University of
Pittsburgh.
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Table 6: Parameter used in experiments.

Platform

Cache 32K private L1 cache, 4MB shared L2 cache, 64-byte cache lines

PCM settings

Interface Single DIMM, 8 chips, 8 banks, single channel DDR2-800 interface, 6.4GB/s

peak bandwidth

Read 50ns (row buffer miss) / 10ns (row buffer hit)

Write 8–round setting: 1000ns (200ns + 8 rounds × 100ns)

4–round setting: 600ns (200ns + 4 rounds × 100ns)

Row Buffer Multiple-entry row buffer, 8 × 256-byte entries

The parameters adopted in PCM write have significant impact on overall throughput and the

effectiveness of scheduling policies. For example, PCM write latency affects how much throughput

improvement I can get, and the number of “write rounds” in each PCM write determines the

number of “insertion points” that Read Insertion can exploit. For completeness, I experimented

with both 8-round PCM write (which is the default setting) and 4-round PCM write configurations

when comparing the throughput of different scheduling schemes.

5.8.2 Throughput Improvement

The first set of results I present is memory throughput (Number of Requests Served/Total T ime)

improvement for various schemes. Figure 30(a) and 30(b) show results for 4-round and 8-round

settings respectively. The results are normalized to blocking design that also uses PAR-BS sched-

uler.

As we can see, RWW achieves 3∼5% throughput improvement on average because of its limited

hardware capability. Using NB without any scheduling enhancement (NB + PAR-BS) improves

throughput to 24% because my hardware provides much more parallelism. Although the proposed

hardware design is quite effective, much more parallelism can be achieved through scheduling en-

hancement. PAR-BS/Half does a simple change to balance batch size between two halves inside

each bank, resulting 30∼35% throughput increase. AWP achieves the highest improvement (57∼61%
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on average) because of its aggressive reordering algorithm. RAWP not surprisingly has smaller im-

provement (51%) than AWP because of a carefully crafted algorithm that preserves row buffer hit

rate.
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Figure 30: Throughput improvement.

As I have discussed in Section 5.3, AWP often prioritizes write requests over read requests.

In Figure 31, I compare the throughput improvement between NB+AWP and a scheme that puts

read requests first (NB+RP). On average, my proposed write-precedence scheme achieves 15%

more throughput improvement over the baseline. These results back my motivation of applying

write-precedence reordering on non-blocking bank design.

5.8.3 Preserving Row Buffer Hits

As discussed earlier, RAWP overcomes the shortcomings of AWP and preserves row buffer hit

rates. Figure 32 shows the read row hit rates for AWP and RAWP respectively. The results are

normalized to non-blocking circuit with PAR-BS (NB + PAR-BS). AWP dramatically degrades
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Figure 31: Why write-precedence: comparing throughput improvements with a scheme that puts

read requests first (NB+RP).

row buffer hit rate by up to 65% (35% on average) due to its aggressive reordering design. On

contrary, RAWP preserves row buffer hit while achieving a comparable throughput improvement

to AWP.
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Figure 32: Read row hit rate under different scheduling enhancements.
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5.8.4 Performance

I estimated system performance improvements under different scheduling enhancements, as shown

in Figure 33. The performance metric I used is Weighted Speedup [89], which is commonly used

to measure the performance improvement for multiprogrammed systems. Weighted Speedup is

calculated as follows:

Weighted Speedup =
∑
i

IPCshared
i

IPCalone
i

IPCshared
i and IPCalone

i are the instruction-per-cycle metrics of each thread when running

along with other threads and when running alone respectively.

As shown in Figure 33, using non-blocking bank design without any intra-bank reordering

(NB+PAR-BS and NB+PAR-BS/Half) results in 5.9/5.2% improvement. With scheduling enhance-

ments, AWP and RAWP achieve 9.5% and 9.6% improvement respectively. Although AWP can

achieve higher throughput improvement, its low read row buffer hit rate hurts read latency. As a

result, AWP achieves slightly lower performance improvement than RAWP on average.
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Figure 33: Weighted Speedup [89] for different scheduling enhancements.

5.8.5 Comparing with Write Cancelation and Write Pausing

I compare the performance (weighted speedup) of RAWP with Write-Cancelation and Write Paus-

ing [76]. When a read is blocked by an on-going write, write-cancelation allows the write to be

canceled and issues the read first. The canceled write request is restarted later, meaning that the

time that is already spent is wasted. Write pausing uses a similar idea to optimize read latency,

except that the write operation is resumed from the point it was interrupted, saving the time it
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already spent. As we can see, both techniques only optimize read latency but not memory through-

put. I built these techniques on top of non-blocking bank design and PAR-BS/Half to perform a

fair comparison (NB+WC and NB+WP). The results are shown in Figure 34. The average performance

improvement for write-cancelation, write-pausing and RAWP are 4.7%, 5.1% and 9.6% respectively.

RAWP aims to produce request parallelism, including read-read parallelism which is particularly

helpful in reducing the average read latency. Write-cancelation and write-pausing, however, only

preempt a write when a read comes in, so they cannot exploit the benefits produced by parallelism.
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Figure 34: Weighted Speedup [89] for Write Cancelation, Write Pausing [76] and RAWP.
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6.0 THROUGHPUT IMPROVEMENT UNDER POWER BUDGETS

In this chapter, I propose my technique for fine-grained power budgeting for PCM memory [105]

(Figure 35).

Differential Write, wear-leveling and 

architectural modeling of PCM memory

Memory scheduling 

enhancements

Fine-grained power 

budgeting

QoS tuning ability improvement

Figure 35: Overview of my research – fine-grained power budgeting.

Due to PCM’s high write power and write current, PCM memory typically uses charge pumps

in its write drivers [40]. This is expensive and challenging because charge pumps have to supply

high current while sustaining high voltage at same time [40]. Moreover, the transient high current

generated by multiple concurrent bit writes can cause noise on the power line, which may hurt

stability [40]. As a result, practical PCM memory is usually designed with some limitation on the

number of concurrent bit writes [15,40], which is termed its “power budget” here.

For example, the baseline PCM bank discussed in the previous chapter has 8 logic banks,

allowing up to 8 concurrent PCM write requests. Assuming each 512-bit write request is completed

in 8 rounds (meaning that each round writes 64 bits concurrently), the 8 concurrent write requests

generate 8×64 concurrent bit writes. Hence the power budget of the baseline bank design is

8×64=512 concurrent bit writes.

The increased parallelism achieved by non-blocking bank design and my memory scheduling

enhancements leads to a larger number of concurrent PCM write requests. For a non-blocking

PCM memory also with 8 logic banks, there could be up to 16 concurrent write requests, resulting
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in up to 16×64 concurrent bit writes. Apparently, it may exceed the original power budget used

by baseline bank design. Due to the reasons I have just discussed, simply raising the power budget

of PCM memory is expensive and unfavorable. Hence, a technique is needed to preserve the

throughput improvement from my scheduling enhancements without having to raise the power

budget.

6.1 OPPORTUNITIES FROM DIFFERENTIAL WRITE

In order to improve PCM memory throughput without raising its power budget, an intuitive ap-

proach is to improve the utilization of the power budget. This can be accomplished by reducing

the number of bit writes in each write request, so that more write requests can be served concur-

rently under same power budget. The Differential Write (or “DW” in short) technique proposed

in Chapter 4 offers a great opportunity here: With DW, about 85% of bit writes can be avoided

in PCM write requests. Moreover, Differential Write provides important information that can be

leveraged by power budgeting techniques for better estimation of power demands. For instance,

the original power budget used by the baseline bank design (8×64 concurrent bit writes) allows

only 8 concurrent write requests. After applying Differential Write, many of the write requests

will have power demands less than 64 bit writes. So, if the power budgeting technique has the bit

change information provided by the Differential Write, more than 8 concurrent write requests can

be served at the same time, as long as their total power demand does not exceed 8×64 concurrent

bit writes.

Another scheme that can reduce the number of bit writes in each write request is Flip-N-Write

(or “FnW” in short) [12]. Unlike DW that writes only those bits that are changed in each write,

the FnW technique writes either the original value or its inversion, whichever results in fewer bit

flips. Between DW and FnW, DW could result in fewer bit flips than FnW sometimes, but does

not have an upper bound on the bits being written. FnW, on the other hand, can guarantee that

the number of bits being written is no more than half of the total write width. Both schemes are

beneficial for the reduction of power demand in write requests. My experiments will show that

incorporating both schemes into my power budgeting technique can yield better results.
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6.2 OVERVIEW OF BIT LEVEL POWER BUDGETING

The goal of my power budgeting technique is to achieve better throughput under the same power

budget and the same memory scheduler. In order to achieve flexibility, I use a decoupled design in

my power budgeting technique (as shown in Figure 36). The key component of my technique is the

Power Budgeting Controller (PBC), which is responsible for the power gating of PCM memory. If

PBC thinks a write request issued by the memory scheduler will cause a violation of power budget,

it will hold this issued request (i.e., it will not activate it) until there is adequate power budget.

Note that the power budget is defined as the number of concurrent bit writes. Hence my power

budgeting technique only restricts write requests and does not restrict read requests.

Core Core

Core Core

Memory Controller

DRAM buffer

Last Level Cache Phase Change 

Memory

Bank 0

Bank 7

......

Request Queue ......

Bank queues

Bank 1

Memory Controller

PCM

scheduler

Intra-Bank 

Reordering

Power 

Budgeting 

Controller

Figure 36: Overview of Power Budgeting enhancement.

In my proposed BPB design, PBC is extended with the ability of choosing write configurations

for issued write requests. For each issued write request, its write configuration determines how many

rounds it will take to finish. Instead of a fixed write configuration, BPB supports flexible write

configurations. For example, a write request may choose an 8-round configuration, meaning that

it will finish in 8 rounds (with each round writing 64 bits), or it may pick a 4-round configuration

which finishes in 4 rounds (with each round writing 128 bits).
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The basic idea of my Bit Level Power Budgeting (BPB) technique is to leverage the fine-grained

bit-change information provided by Differential Write to get better estimation of a write request’s

power demand, and to facilitate the decisions of write configuration at runtime.

With Differential Write, the number of bit changes in each write request is no longer fixed.

Splitting a write request into 4 rounds or 8 rounds may result in different power demand (due to

different widths of each round) and different latency (due to different number of rounds). And

depending on the distribution of bit-changes in the write request, power demand of each round

could also be different. I assume that the power demand of a write configuration is determined

by the round with most number of bit changes, then a 4-round configuration tends to have higher

power demand than an 8-round configuration. As illustrated in the example in Figure 37, the 4-

round configuration has power demand of 18 bit changes while the 8-round configuration has power

demand of 10 bit changes. Under the same power budget, this means the 4-round configuration

for this write request may start later because it may be held for a longer time by the PBC. On

the other hand, however, the 4-round configuration can result in shorter latency due to its fewer

number of rounds. Hence the completion time of the two write configurations is decided by both

factors, i.e., the start time (Tstart) and latency (Tlatency). PBC needs to evaluate this trade-off in

order to pick a better configuration. Details of this procedure will be discussed in the following

sections.
φ φ φ φ

4 bit flips 5 bit flips 8 bit flips 10 bit flips

(a) 8-round configuration

φ

4 bit flips 5 bit flips 8+10 = 18 bit flips

(b) 4-round configuration

Figure 37: Power demand of different write configurations.

In summary, the PBC in my BPB scheme has several enhancements in addition to simple “power

gating” tasks:

• Keep track of power consumption at fine granularity (e.g., number of concurrent bit writes);

• Collect fine-grained (bit-level) information of each write request’s power demand by leveraging

the information from Differential Write (e.g. number of bit changes and their distributions);
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• Instead of using a fixed write configuration for all write requests, PBC can assign individual

write configuration for each issued write request to improve the overall throughput under the

same power budget.

My BPB technique chooses a decoupled design that works independently with the memory

scheduler. PBC may throttle some of the issued requests from the memory scheduler, yet it does

not change the request order in each bank queue (which is determined by the memory scheduler).

The major reason I choose this design is to ensure flexibility and simpleness of integration:

• A decoupled design makes BPB able to easily work with different memory schedulers. System

with the existing memory scheduler can add the BPB extension without complex changes in

the memory controller firmware. This flexibility makes my BPB technique more feasible for

adoption in existing systems.

• The decoupled BPB does not need the knowledge of the memory scheduler, but focuses on the

power information of PCM memory. This means the PBC can collect and track information

locally on the memory module. On the contrary, a closely-coupled design requires PBC to

transmit power information between the memory module and the memory controller, increasing

latency and bandwidth overhead.

In the following sections, I will describe the details of my BPB technique.

6.3 TRADE-OFFS IN FLEXIBLE WRITE CONFIGURATION

Conceptually, a 64-byte write request is chopped into several parts and written sequentially in

several rounds. A write configuration determines how the line is chopped and how many rounds

the write request will take to finish. For example, an 8-round configuration means a 64-byte write

request is chopped into 8 64-bit parts and will finish in 8 rounds, with each round writing 64 bits.

In this thesis, I assume four possible write configurations (8-, 4-, 2- and 1- round), and the 64-byte

line is chopped evenly.

With Differential Write (DW), the number of bit changes in a write request is not fixed. De-

pending on the distribution of bit changes in the line, the number of of bit changes is also different

in each round of the write request. In BPB, I use the round with most number of bit changes to
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estimate the power demand of the whole write request. As shown in the example in Figure 37, the

4-round configuration has a power demand of 18 bit writes, and the 8-round configuration has a

power demand of 10 bit writes for the same write request.

As we can see from the example, configurations with fewer number of rounds tend to have higher

power demands than those with a larger number of rounds. When the available power budget is

low, this means the former configurations may be held by PBC for a longer time to wait for enough

power budget. On the other hand, fewer number of rounds results in shorter latency. This brings up

the trade-off between less power demand and shorter latency: Choosing a configuration with fewer

number of rounds can results in shorter latency, but the write request may be held for longer and

starts later. Choosing a configuration with a larger number of rounds results in longer latency, but

the write request may start earlier due to lower power demand. PBC must evaluate the trade-off

to pick a better configuration. Essentially, it should look at the completion time, which is the sum

of the request’s projected start time (Tstart) and latency (Tlatency).
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Figure 38: Comparing different write configurations. Boxes containing φ are redundant rounds

that can be skipped. Dark parts are bit changes. Those rounds must be performed.

Another flexibility introduced by my BPB scheme is the variable number of rounds by skipping

redundant rounds. Previous work has shown that on average, 85% of bit writes are redundant in

memory [103]. When a line is chopped into several parts and written in several rounds, it is possible

that some of the parts are entirely redundant (i.e., do not have any bit changes at all). BPB allows

skipping of these “redundant rounds” to reduce the actual number of rounds and latency. Figure 38

shows an example of this technique. In this example, the actual number of rounds in the 8-round

configuration is 4, and the actual number of rounds performed in the 4-round configuration is 3.
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With this technique, a write configuration determines the upper bound of its number of rounds

instead of a fixed one (e.g., an 8-round configuration means a write request will finish in up to

8 rounds). Also it can be seen from the example that: Comparing the actual number of rounds

performed, the 4-round configuration is only 1 round less than the 8-round configuration, but the

4-round configuration has a much higher power demand. When evaluating the trade-off between

less power demand and shorter latency, PBC must also take this new variable into consideration.

6.4 THE BPB ALGORITHM

As I have discussed in the previous section, my BPB algorithm picks a write configuration for each

write request by looking at its completion time. The criteria can be expressed as:

Tfinish = Tstart + Tlatency

Tstart is the time in the future when there is enough power budget for this write configuration.

In reality, this number is affected by many other factors in addition to power budget, such as

channel busy status, command bus availability, etc. Tlatency is the time required to serve the write

request. This is mainly determined by how many rounds are actually performed. Since my BPB

scheme allows skipping redundant rounds, this number is variable depending on the distribution of

bit changes. If Read Insertion is enabled, an on-going write request may have several read requests

inserted, adding more uncertainty to this value. Hence, it is difficult to calculate the Tfinish value

accurately at runtime. In my scheme, instead of trying to calculate Tfinish accurately, I use its

lower bound – the “earliest possible finish time” – as a simple approximation.

For a particular write configuration, T̂start is defined as its “earliest possible start time”. In other

words, I try to answer the question: If no new request is activated from now on, when will there be

enough power budget for this write configuration? Under this assumption, power consumption of

the PCM memory goes down over time as more and more on-going requests finish (as illustrated in

Figure 39). By adding a “remaining cycles” counter to each on-going request, I can calculate this

curve and determine the earliest possible time when available power budget will be enough for this

write configuration.

T̂latency is the “shortest possible” latency for the write configuration. It can be calculated from

the number of non-redundant rounds in this write configuration, assuming no read is inserted.
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Figure 39: Computing the “earliest possible start time” of a write configuration. Assuming no new

requests are activated from now on, power consumption will go down over time as more and more

requests finish.

Algorithm 4 BPB algorithm: picking write configuration for a write request.

Initialize MinTfinish to a large number;

Initialize WriteConf to the default configuration (8-round configuration);

for all possible write configurations do

Calculate the earliest possible finish time T̂finish for this write configuration;

Calculate the power demand Pdemand for this write configuration;

if Pdemand > DemandCap then

Skip this configuration;

else

if T̂finish < MinTfinish then

MinTfinish = T̂finish;

WriteConf = current write configuration;

end if

end if

end for

Return WriteConf as the picked write configuration;
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With T̂start and T̂latency, BPB can compute the “earliest possible finish time” (T̂finish) for a

given write configuration: T̂finish = T̂start + T̂latency. When choosing a write configuration for

an issue write request, BPB iterates on each possible write configuration and picks the one that

generates the minimum T̂finish.

The “greedy” nature of this procedure tends to grab as much power budget as it can to reduce

latency. This could sometimes lead to a situation that a few write requests with high power demand

use up most of the available power budgets and cause other issued requests to be held. This is

undesirable as there might be low-demand requests that could be otherwise served in parallel.

To avoid this side effect, I add a simple constraint DemandCap to the iteration to limit power

demand of the picked write configuration. Based on my experiments, I set DemandCap to 64

in my evaluation. The revised procedure of selecting a write configuration for a write request is

described in Algorithm 4.

6.5 IMPLEMENTATION AND OVERHEAD CONSIDERATIONS

Computing T̂start and T̂latency requires the knowledge of number of changing bits and their distri-

bution in the current write. When a write request is issued, BPB leverages Differential Write to do

the pre-write read and compare to obtain such information. During the pre-write read operation,

the read circuit is occupied by DW and cannot serve other read requests. This extra blocking time

is also modeled in my simulation. BPB then uses the information to pick a write configuration

from four possible options (8-round, 4-round, 2-round and 1-round) for the write request.

Choosing write configuration requires the calculation of T̂start. A possible implementation to

calculate T̂start is to maintain a sorted list, “T-P list”, for all on-going write request:

< T0, PD0 >,< T1, PD1 >,< T2, PD2 >, ...

Where Ti and PDi are the finish time and power demand (number of bit changes) of each on-going

write request. The list is sorted by Ti.

The “T-P list” is maintained incrementally at runtime. Once an issued write request is activated,

PBC inserts a new entry into the T-P list for it. In the new entry, the Ti value is the current time

plus the latency of the write request, and the PDi value (power demand) was calculated earlier
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when the write request was issued and assigned with a write configuration. When a write request

finishes, PBC removes the corresponding entry from the T-P list. In the case of Read Insertion,

PBC updates the Ti value of the paused write request.

The size of the T-P list is determined by the number of concurrent write requests. For the

8-bank configuration used in my experiments, the maximum size of T-P list is 16 entries (as there

could be up to 16 concurrent writes).

For a given write configuration of a given write request, PBC can use the T-P list to calculate

T̂start for it (described in Algorithm 5). Essentially, PBC walks through the T-P list, accumulates

the PDi values and stops when the power demand of the given write configuration is met.

Algorithm 5 BPB algorithm: calculation of T̂start.

Suppose currently available power budget is Pavail (in number of bit changes);

Suppose power demand of the write configuration is Pdemand;

Pcur = Pavail;

if Pcur ≥ Pdemand then

Return current time;

else

for all entry < Ti, PDi >, start from head of list do

Pcur = Pcur + PDi;

if Pcur ≥ Pdemand then

Break the loop and return Ti;

end if

end for

end if

For a given write request, PBC needs to evaluate T̂start for each of the four write configurations

(8-round, 4-round, 2-round and 1-round). This can be further optimized into only one scan of the

T-P list. For a same write request, a configuration with fewer number of rounds will always have a

higher or equal power demand than a configuration with a larger number of rounds. For example,

the power demand of a 4-round configuration will never be lower than the power demand of an

8-round configuration for the same write request. Therefore, scanning of the T-P list (Algorithm 5)

for the 4-round configuration will never stop earlier than the 8-round configuration, and so on.

I can leverage this “inclusive” property to optimize the procedure into one scan: For the given

write request, I only scan the T-P list for the 1-round configuration and remember the additional
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T̂start results for the 8-round, 4-round and 2-round configurations during the process. Once the

T̂start values are ready, PBC can choose the write configuration for the given write request. This is

essentially a process of picking 1 out of (up to) 4 choices.

With T-P list and above optimization, choosing a write configuration for an issued write request

is essentially an accumulate-and-comparison loop with up to 16 iterations. Since the write configu-

ration is picked when a write request is issued, and the write request often needs to wait for enough

power budget before it can be activated, the time to perform this accumulate-and-comparison loop

may overlap with the time the write request waits for its activation. In my experiments, however, I

charge a constant 100ns penalty for each write request. My experiment results show that it is still

worthwhile to apply BPB to improve throughput under power budget.

6.6 EVALUATION

6.6.1 Experimental Settings

My evaluation of BPB is based on a similar experimental platform as used in the previous chapter

(Section 5.8), with my extensions of BPB scheme in the simulator. I assume the write power to be

1.22mW per bit, which is scaled from a Samsung prototype [40]. In addition to the original power

budget of baseline bank design (8×64 concurrent bit writes), I also experimented with several other

power budget settings (4×64, 12×64 and 16×64 bit writes) for completeness. PAR-BS with RAWP

enhancement (discussed in Chapter 5) is used as memory scheduler in my experiments.

Baseline. My baseline scheme is RAWP with simple power gating without Differential Write

or Flip-N-Write functions. As described in Section 6.2, PBC estimates power demand for each write

request, checks it against current available power budgets and throttles the request if it thinks it

will violate the power budget. In the baseline, PBC does not have bit change information from

Differential Write, meaning that it assumes every bit will be changed in each round. Baseline also

does not have other enhancements like flexible write configurations, skipping redundant rounds as

I proposed in BPB.

Besides the baseline, three different schemes are compared in my experiments:

• FnW-only, which simply adds Flip-N-Write function to the baseline. With Flip-N-Write (which

guarantees that up to half of the bits are changed), PBC always estimates that half of the bits
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in each round will be changed when checking against available power budget. Hence it has

limited flexibility to choose between 8-round and 4-round configurations. FnW-only does not

skip redundant rounds as it does not retrieve and process bit change information in PBC.

• BPB, which is my Bit Level Power Budgeting scheme using bit change information from Differ-

ential Write. In this scheme, PBC leverages the information from Differential Write to estimate

power demand for each write request. It supports flexible write configurations and can skip

redundant rounds.

• BPB+FnW, which is my Bit Level Power Budgeting with a combination of Differential Write and

Flip-N-Write. As I discussed earlier, DW can provide fine-grained bit change information, but

does not have an upper bound of how many bits are changed. In some cases when write requests

have a high number of bit changes, using DW alone could result in high power demand and hurt

throughput improvement (as I will show shortly). By combining both techniques with BPB, I

can effectively avoid this shortcoming.

6.6.2 Throughput Improvement Under Power Budgets
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Figure 40: Average throughput under different power budgets, normalized to baseline (RAWP with

simple power gating).

I now present throughput improvements for different power budgeting schemes. All results are

normalized to the baseline. I summarize the average results for different power budgets in Figure 40,

and detailed results are presented in Figure 41.

FnW-only reduces power demand by having an upper bound of bit changes, and may choose

between 8-round and 4-round configurations. As a result, FnW-only improves throughput over

baseline (simple power gating) by 32%∼41%. In general, both BPB and BPB+FnW bring forth addi-

tional throughput improvement (27%∼103%, 44%∼111%), because they can leverage fine-grained
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Figure 41: Comparing throughput improvement under different power budgets. RAWP is used as

scheduler. Results are normalized to a baseline using RAWP with simple power gating.
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bit change information and have more flexibility choosing write configurations. Of the two schemes,

combining DW and FnW (BPB+FnW) is more effective because it further lowers number of bit changes

(i.e., power demand) in each request.

φ φ
20 bit flips 25 bit flips 38 bit flips 30 bit flips33 bit flips13 bit flips

13 bit flips 53 bit flips 25 bit flips 68 bit flips

Figure 42: Example: DW with high number of bit changes.

BPB with DW alone (BPB) yields less average throughput improvement than FnW-only in one

case (16×64 in Figure 40). The reason is that DW does not have an upper bound on bit changes.

When dealing with requests that have a high number of bit changes, BPB could have higher power

demand than FnW-only. Moreover, BPB is subject to the DemandCap limitation. These cause BPB

to have less opportunity to choose configurations with fewer number of rounds. On the other hand,

FnW-only has more chance of using the 4-round configuration when power budget is abundant.

Moreover, BPB needs to pay extra overhead to compute T̂start and pick the write configuration.

These factors cause BPB to perform slightly worse than FnW-only under high power budget. Similar

trends can also be seen workload-wise, as shown in Figure 41. I illustrate this case with an example.

Consider a high bit change request as in Figure 42, and suppose available power budget is 64 bit

writes. BPB would not choose 4-round configuration because its power demand for the 4-round

configuration (68 bit writes) would exceed the available power budget. FnW-only, on the other

hand, always assumes power demand of 64 bit writes for a 4-round configuration, so it can fit in the

available power budget using a 4-round configuration. Although BPB can skip redundant rounds,

it would still take longer time than FnW-only. Now if I lower the power budget to 40 bit writes,

then both BPB and FnW-only can only choose the 8-round configuration. BPB is advantageous in

this case as it can skip redundant rounds (which also explains why it performs better under lower

power budgets).

By combining DW and FnW together in BPB, I effectively solved the above shortcoming and

mitigated the problem (as shown in Figure 40 and Figure 41). In summary, my combined scheme

(BPB+FnW) achieves 44% to 111% throughput improvement over a simple power gating scheme under

different power budgets, and up to 70% more improvement than FnW-only.
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An interesting observation from the experiments is that both BPB and BPB+FnW schemes become

more and more effective when the power budget is decreasing. Note that the absolute numbers

of throughput are decreasing as power budget gets lower, but the improvement I gain from BPB

over the baseline increases. This is because, when available power budget is low, the baseline’s

parallelism is more severely limited as it assumes each round changes every bit. On the other hand,

BPB and BPB+FnW leverage the fine-grained bit change information, so they can skip redundant

rounds and can utilize the limited power budget more efficiently. This leads to more concurrent

write requests at runtime and better throughput.

6.7 REMARKS ON THROUGHPUT IMPROVEMENTS

The throughput improvements achieved by RAWP in Figure 30(b) (Section 5.8.2) are based on an

experiment in which power budgeting is disabled. Since the experiment uses a fixed 8-round config-

uration, the maximum number of concurrent bit writes that could be generated in this experiment

is 16×64. If the power budget is set to 16×64 or more, the results in Figure 30(b) are same as

using RAWP with a simple power gating scheme, which is the baseline in Figure 41(d). Therefore,

the combined throughput improvements using RAWP and BPB+FnW over baseline blocking bank

design (under the power budget of 16×64 concurrent bit writes) will be the multiplication of the

improvements in Figure 30(b) and Figure 41(d), as shown in Figure 43.
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Figure 43: Combined throughput improvements over blocking bank design using RAWP and

BPB+FnW. Power budget is 16×64 concurrent bit writes.
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Another interesting question is: Instead of improving the throughput of PCM memory, can

we just add more cache to achieve the equivalent performance? To answer this question, I use an

analytical model from Moguls [91] to estimate the cache size increase if no throughput improvement

technique is applied. The model approximates the correlation between cache size and its bandwidth

requirement to next level. Essentially, a larger cache will have lower miss rate and will require

lower throughput to the next level. To achieve the equivalent performance of a system with higher

memory throughput, a system with lower memory throughput will need larger cache to reduce the

bandwidth requirement to the memory. Figure 44 illustrates the estimated cache size increase if no

throughput improvement technique is applied, compared to the case when RAWP and BPB+FnW

are used. On average, we need a 4.8× larger cache if we do not improve the throughput of PCM

memory. Note that I do not include streaming workloads in the figure, because increasing cache

size does not help in these cases. These results help explain why improving throughput of PCM

memory is necessary.
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Figure 44: Estimated cache size increase if no throughput improvement technique is used.
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7.0 IMPROVING QOS TUNING ABILITY

The techniques I proposed in previous two chapters aim at a lower level scheduling and are not

aware of application priorities. In this chapter, I propose my techniques to improve QoS tuning

ability for high-priority applications in PCM memory [102] (Figure 45).

Differential Write, wear-leveling and 

architectural modeling of PCM memory

Memory scheduling 

enhancements

Fine-grained power 

budgeting

QoS tuning ability improvement

Figure 45: Overview of my research – QoS tuning ability improvement.

When multiple applications are running concurrently, their memory requests can interfere with

each other and cause longer read latencies. For high-priority applications, it is often desirable

by operating system or administrator to have the ability of controlling this “memory slowdown”.

However, PCM’s long write latency worsens the interference and degrades this tuning ability. As

I will show in this chapter, a high-priority application can still suffer from significant read latency

increase when running concurrently with other applications, even its requests are given highest

priority. Hence the tunable range of its read latency increase is limited, indicating poor QoS

tuning ability. In this chapter I propose two techniques, Request Preemption and Row Buffer

Partitioning, to mitigate this issue and extend the tunable range of high-priority applications’ read

latency increase.
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7.1 QOS TUNING ABILITY ISSUE IN PCM MEMORY

In modern chip multiprocessor (CMP) systems, main memory is a critical shared resource for serv-

ing multiple applications running concurrently. The applications, ranging from high performance

scientific computations, to streaming video processing, to data intensive data mining, often have

large memory capacity requirements but different runtime memory access behaviors. The memory

footprint of modern applications is usually large (e.g., a database application) requires large main

memory to hold the index file for efficient query processing; and a web application requires large

main memory to cache its recent accessed files. However the memory access behaviors are quite

different at runtime. For example, a computation intensive application often has bursty memory

accesses and low overall memory bandwidth requirement. Its performance is usually sensitive to

the average processing latency of its memory accesses. In contrast, a memory intensive application

has continuous accesses during the execution. Its performance is more sensitive to its acquired

memory bandwidth at runtime.

When multiple applications are running concurrently, each application suffers longer memory

access time and performance loss caused by interferences among the concurrently running applica-

tions. For some computation-intensive (memory non-intensive) applications, it is often desirable for

the operating system or administrator to have some control over this kind of “memory slowdown”.

In other words, operating system or administrator should be able to tune the access latency increase

of these computation-intensive applications. I term the range of tunable memory slowdown the QoS

Tuning Range of these applications. A larger tuning range provides better QoS tuning ability, giv-

ing operating system or administrator better control over memory slowdown. Intuitively, tuning

memory slowdown can be achieved by applying priorities to the memory accesses from different

applications.

However, PCM’s long write latency can greatly degrade QoS tuning ability when scheduling

a mix of applications of different priority levels. For example, read requests from a high-priority

application may arrive at the memory controller but find the bank is busy servicing requests from

other applications. Due to PCM’s long write latency, the high-priority application may still suffer

from significant memory slowdown even though each of its requests is granted high priority by

scheduler. Figure 46 illustrates the average read latency of computation-intensive applications

(which are given high priority) when running concurrently with other applications (details of the

mixes are explained in Section 7.4). The numbers are normalized to their average read latency when
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Figure 46: Average read latency of high-priority applications when running concurrently with other

applications, results are normalized to their read latency when running alone.

running alone. I choose average read latency as it is a good indicator of the performance impact

from the memory system – for computation-intensive applications, their write operations are not

on the critical path due to the DRAM buffer before PCM memory. Each application mix has four

applications while one or two applications are assigned to be of the highest priority. As we can

see from the figure, the high-priority applications still suffers significant memory slowdown (70%

on average) even though their requests are granted high priority in memory scheduling. Existing

memory scheduling schemes [62, 63, 65] focus on fairness and overall throughput when scheduling

requests from multiple applications. They were designed for DRAM systems that have different

physical characteristics, and lack the ability to tune the scheduling to meet the QoS requirement

in a PCM memory system.

7.2 ARCHITECTURE OVERVIEW

I use a similar 4-core CMP architecture as in previous chapters. PCM memory is used along with

a DRAM buffer to mitigate its write latency and endurance. I assume 8 logic banks in PCM

memory (meaning that it can serve 8 requests concurrently), each with a multi-entry row buffer.

The multi-entry row buffer in my design is organized as a fully associative cache managed by LRU

policy. Due to the same reason as explained in Section 5.1, I employ a write-through policy in this
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row buffer design. Figure 47 shows an overview of my architecture. While the data of multi-entry

row buffer may reside on either PCM DIMM or the memory controller, its tag array should reside

on the memory controller for scheduling purposes.

PCM Memory

Bank 1 Request Queue

Memory Controller

Bank 2 Request Queue

Bank 7 Request Queue

Bank 0

Row buffer

Memory Scheduler

Bank 7

Row buffer

… ...

… ...

Request Queue

Bank 0

Row buffer

… ...

Figure 47: Baseline architecture used in my study.

The procedure of serving memory request is similar to previous chapters as well: Memory

requests arriving at the memory controller are first buffered in the request queue. The memory

scheduler then dispatches the requests to bank queues according to certain policy (e.g., PAR-

BS [63]). Requests are then issued from the bank queues to corresponding logic banks.

I use parallelism-aware batch scheduling (PAR-BS) [63] as my baseline scheduler. PAR-BS

groups a number of memory requests into a batch and ensures that all requests from the current

batch are serviced before the next batch is formed. When forming a batch, PAR-BS marks up

to Marking-Cap requests per each bank to promote fairness and bank-level parallelism. Requests

within a same batch are ordering according to their ranks (details of PAR-BS are discussed in

Chapter 2).

7.3 FINE-GRAINED QOS TUNING FOR PCM MEMORY

7.3.1 Problem Analysis

The PAR-BS used in my baseline has simple priority scheduling tuning ability. When scheduling

a mix of applications with different priority levels, PAR-BS enhances the scheduling by allowing

requests from high-priority applications to be dispatched before other requests in the batch.
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Figure 48: Breakdown of high-priority applications’ average read latency when running concurrently

with other applications.

Unfortunately, PCM’s long write latency greatly degrades this tuning ability. Requests from

high-priority applications still suffers from significant latency increase as I have shown in Figure 46.

I analyzed the results and break down the increase of average read latency into two parts, access

latency and queuing latency, as shown in Figure 48. The access latency is the time to serve the

actual request, and the queuing latency is the time request spent in the queues. As we can see, the

increase of average read latency comes from two sources:

• Increased queuing time. When running concurrently with other applications, requests from

high-priority applications spend more time in the queues to wait for previous requests to finish.

And since PCM write is slow, this increases queuing latency significantly (4.72× on average).

• Increased row buffer misses. When multiple applications are running concurrently, requests

from multiple applications compete for the small multi-entry row buffer and cause more row

buffer miss to high-priority applications. This accounts for 6% increase in average read latency.

This significant memory slowdown of high-priority applications limits QoS tuning range, and

degrades QoS tuning ability that operating system or administrator could have. In order to address

this challenge, I need to reduce latency increase from both sources. In the following sections I

propose two techniques, Request Preemption and Row Buffer Partitioning, to reduce queuing time

and improve row buffer hit rates for high-priority applications.
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7.3.2 Request Preemption

Based on the above observation, my first design targets at reducing the queuing time of high-priority

requests. Since the priority-based batch scheduling still needs to complete the current batch before

the next batch is formed, a high-priority request, when it arrives at the memory controller, may

experience a long queuing time. If this request can preempt the current being serviced requests,

then the queuing time could be greatly reduced. I only allow read requests to preempt other

requests as they are the requests on the critical path.

Batch preemption. A simple preemption is to insert incoming high-priority requests into

the current batch (i.e., the current batch can dynamically accept grow and mark more requests).

Within the batch, the incoming requests are scheduled behind those with the same or higher priority

levels. If no such request exists, then the incoming requests are serviced right after the completion

of the current request.

Batch preemption may starve low priority requests if they are blindly scheduled after the high-

priority requests, and there may be continuous incoming high-priority requests. To avoid this side

effect, my batch preemption adopt a similar idea as the “Empty-Slot Batching” in PAR-BS [63].

For high-priority threads, I allow their requests to be “inserted” into the current batch even they

arrive after the batch is formed, as long as they do not exceed their Marking-Cap limitation (in

PAR-BS, each thread can have up to Marking-Cap requests per bank in a batch). Note that the

issued requests in current batch are not regarded as empty slots, hence high priority threads will

not be able to insert requests indefinitely as they will eventually use up their Marking-Cap quota.

Access preemption. Even with batch preemption, high-priority requests still need to wait

for the completion of the current PCM access even if the batch has no other high priority request.

Since PCM write accesses are much slower than DRAM, the effect of using batch preemption alone

is limited – I still observe significant performance loss in high-priority applications.

To further reduce the request queuing time of high-priority applications, I exploit the non-

volatility of PCM cells and allow a high priority request preempting the current low priority PCM

access. That is, the memory controller sends a preempt command to stop the ongoing PCM access,

and then an activate/write command starts a new one. As a comparison, it is impossible to preempt

a DRAM access due to its destructive read — DRAM read destroys the contents of a whole row.

Moreover, preempting requests in DRAM does not have much motivation as DRAM’s read and

write have symmetric speed.
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The current access can be one of row buffer hit, row buffer read miss (i.e., PCM read), or

PCM write operations. The memory controller never preempts a row buffer hit due to its low

latency. Since PCM reads are non-destructive, preempting a PCM read leaves no change to the

PCM cells. The preempted read can be restarted at a later time. Preempting a PCM write is a

bit complicated. With the incorporation of Differential Write technique [103], a write operation

includes a pre-write read of the cells for comparison. The cells are unchanged if preemption happens

before real write operation starts, and left in undetermined states if preemption happens when the

cells are being modified. In my current design, I adopted the pessimistic assumption — the cell

states are undetermined, and the memory controller needs to resend the line data to restart.

1 0 1 0

New data

Cell data

Bit change mask

(a) With Differential Write, bit
change masks are generated.

1 0 1 0

X X

New data

Cell data

Bit change mask

(b) PCM write preempted, bit
change masks and new data are
saved.

1 0 1 0

New data

Cell data

Bit change mask

(c) PCM write is restarted, only
the cells that might be in unde-
termined state are rewritten.

Figure 49: Preemption of a PCM write request.

When a PCM write is preempted, the cells that are being written may be left in undetermined

state. Hence its new data and bit change mask (generated by Differential Write) are saved for

the request to restart later. The saved bit change mask allows us to write only the cells that are

previously written (and may be in undetermined state) when the write request is restarted, instead

of writing the whole line. This procedure is illustrated in Figure 49. In other words, I inherit the

benefits of Differential Write in my technique.

While it is safe to preempt a PCM read or write at any time, it is not always a better decision,

in particular, preempting a PCM access that is close to finish introduces both performance and

energy overheads. Another drawback is, a write operation may be preempted and restarted several

times before its completion, which reduces the write endurance of affected cells. In my design, I

set a threshold T and disable preemption if the current access can finish in T cycles. A preemption

threshold helps to tune the trade-off between overheads and performance impacts to the high-

priority applications.
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7.3.3 Row Buffer Partitioning
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Figure 50: Read latency breakdown of high-priority applications with request preemption enabled.

While preemption helps to reduce the long queuing time of high-priority applications, the in-

creased contention of requests from multiple applications destroys the row buffer locality and results

in more row buffer misses. Figure 50 illustrates the read latency breakdown of high-priority ap-

plications when Request Preemption is enabled. We can see that Request Preemption effectively

reduce the queuing time increase when multiple applications are running concurrently. However,

the reordering of high-priority requests increases row buffer miss, resulting in more access time

increase (9%) for high-priority applications. The increase was 6% when using the priority-based

batch scheduling. With the reduction of queuing time, the increased access time contributes more

portion in memory slowdown of high-priority applications. Hence a technique to control the row

buffer miss rate is needed as well.

To provide fine-grained QoS tuning ability, I propose to control row buffer misses by dynamically

partitioning the row buffer entries among concurrent applications. My design is motivated by the

utility based partitioning for caches [78].

7.3.3.1 Utility-based partitioning. Suppose a cache (or multi-entry row buffer in my case)

is partitioned between two groups (Group A and Group B). Utility-based cache partitioning [78]

(UCP) scheme tries to answer the question: If I grab one entry from group A and give it to group

B, how much gain and loss will I get?

In order to answer this question, UCP maintains two tag arrays, one per each group. Both

groups manage their tag array using LRU policy. In addition, each tag has a hit counter. The hit

counters count the number of hits at each position for each group at runtime, and thus provide the

utility information when different number of entries are allocated to each group. Since data array
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is not doubled (meaning that each data entry either belongs to group A or group B), a “P” bit

is added to each tag to indicate whether actual data presents for this tag (i.e., whether there is a

data entry allocated for this tag). Apparently, “P” bits represent the current partitioning of the

cache, and the number of P=1 tags in both tag arrays should equal to the size of the cache set.

Figure 51(a) shows an example of partitioning in a cache with 4 entries. As shown in the figure,

each group has its tag array and hit counters.

By having two tag arrays with hit counters, UCP can track the utility information from both

groups. Due to the inclusive property of LRU replacement policy, that is, an access hit in a 2-entry

cache is also a hit in a 3-entry cache, UCP can evaluate the gain and loss by comparing the hit

counters from both groups. As shown in Figure 51(b), it answers the above question by comparing

the two hit counters from group A and group B: 1) the hit counter of group A’s LRU entry whose

P bit is 1; 2) the hit counter of group B’s MRU entry whose P bit is 0. In this example, removing

one entry from group A would lose 3 hits, but giving it to group B would increase hits by 4. So

UCP would predict that this repartitioning is beneficial.
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Figure 51: Utility-based cache partitioning between group A and B.

7.3.3.2 Row buffer partitioning in my design. I adopted similar idea as UCP in my row

buffer partitioning scheme. I divide the applications into two groups: the prioritized group (PG)

that contains high-priority applications; and the normal group (NG) that contains all other appli-

cations. Each row buffer entry belongs to one group at a time while the number of entries allocated
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to each group is dynamically determined by evaluating their utility of the entries. In order to

support the tuning of PG’s row buffer miss, I assign weights to both groups and use the weights

when evaluating the gain and loss on repartitioning.

CounterTag
MRU

LRU

Prioritized Group

CounterTag
MRU

LRU

Normal Group

Upartition= MAX (WeitghtPG x CounterPG
i + WeitghtNG x CounterNG

M-i)

for i= 0,1,2,...,M

... ... ... ...

Figure 52: Partitioning the row buffer entries between normal group and priority group based on

their utility and weights.

Figure 52 illustrates the monitoring logic in my design. For an M-entry row buffer, each group

maintains an M-entry tag array and an M-entry counter array. Both are ordered according to their

recency positions, i.e., from MRU (most recent used) to LRU (least recent used). For the example

in Figure 52, there are M+1 possible cases: one group gets 0,1,2, ..., and M entries respectively

while the other group has all the rest entries. I divide the execution into epochs and periodically

adjust the partition for the next epoch based on the utility of the past epoch. To simplify the

computation at runtime, each repartitioning involves one step (i.e., grab one entry from a group to

another each time).

7.4 EVALUATION

7.4.1 Experimental Settings

I evaluated my proposed scheme through trace-driven and execution-driven simulations. Traces

are collected from a Simics-based simulator [56] and processed to resemble the effects of load-

store queue and write buffer. I used an in-house trace-driven simulator to evaluate the MCPI

(memory cycles per instruction), average read latency and unfairness indexes of different schemes.

A GEMS/Simics-based execution-driven simulator [57] was then used to evaluate the average IPC
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(instruction per cycle). The settings are summarized in Table 7. I assumed a similar 3D stacked

PCM memory as in Chapter 4, but my techniques can be applied to off-chip PCM memory as well.

The PCM write latency is conservative to my results, as longer PCM write latency could worsen

the interference and result in more significant improvements.

Table 7: Experimental platform used in my evaluation.

Components Parameters

Processor Core 4 cores, each core is 4-issue, out-of-order, run at 1GHz

L1 Cache 32K I-cache and 32K D-cache, 64B cacheline size, 4-way set associative,

3-cycle cache hit latency

L2 Cache 512KB per core, 64B cacheline size, 16-way set associative, 6-cycle hit latency

Main Memory 4GB PCM memory, 8 logic banks

read latency: 10ns (row hit) or 30ns (row miss), write latency: 100ns

I assembled a set of applications with different memory bandwidth requirements from SPEC

SPEC2006 [17], SPLASH2 [88], and STREAM [58] benchmark suites. For each application, I

skipped its warm-up phase, and simulated 100 million instructions for memory access and IPC

studies. Table 8 lists the characteristics of the simulated phase for each application. They are

categorized into two groups based on MCPI (memory cycles per instruction): the computation-

intensive applications that include bzip2, fmm, and raytrace, and the memory intensive applications

that include others. Memory intensive applications have much higher MCPI than memory non-

intensive ones.

I then mixed these applications to construct a set of multiprogramming workloads to evaluate

scheduling effectiveness. As shown in Table 9, each mix contains 4 applications. Applications are

picked based on their memory-intensiveness (MCPI). Three groups of mixes are formed. For each

mix1-* workload, there is one high-priority application while for each mix2-* mix, there are two

high-priority applications. The high-priority applications are in bold font in the figure. While

high-priority programs are usually computation-intensive (memory non-intensive) in practical, I

also evaluated the cases in which high-priority applications are also memory-intensive (mix3-*).

To evaluate the effectiveness of my proposed scheduling scheme, I implemented and compared

the following three approaches in my experiments.
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Table 8: Benchmark characteristics.

Benchmark MCPI Type Comment

bzip2 0.085 Int SPEC2006, non memory-intensive

fmm 0.297 FP SPLASH2, non memory-intensive

raytrace 0.044 Int SPLASH2, non memory-intensive

gemsfdtd 1.190 FP SPEC2006, memory-intensive

lbm 3.618 FP SPEC2006, memory-intensive

leslie3d 1.281 FP SPEC2006, memory-intensive

mcf 3.927 Int SPEC2006, memory-intensive

milc 9.816 FP SPEC2006, memory-intensive

stream 2.534 Int STREAM, memory-intensive

Table 9: Workload mixes.

Mix Applications (high-priority ones are in bold font)

mix1-1 mcf, milc, stream, raytrace

mix1-2 mcf, milc, stream, bzip2

mix1-3 mcf, milc, stream, fmm

mix1-4 lbm, leslie3d, gemsfdtd, bzip2

mix1-5 lbm, leslie3d, gemsfdtd, fmm

mix2-1 milc, lbm, raytrace, bzip2

mix2-2 lbm, milc, fmm, raytrace

mix2-3 lbm, milc, fmm, bzip2

mix2-4 gemsfdtd, milc, fmm, raytrace

mix3-1 mcf, stream, gemsfdtd, leslie3d

mix3-2 mcf, milc, stream, gemsfdtd
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• PAR-BS (baseline). This implements the PAR-BS scheduling scheme [63] without priority

levels (i.e., all applications have same priority, no QoS tuning enhancements).

• PAR-BS/P. This implements the PAR-BS scheduling with priority levels. I assign the highest

priority level to the high-priority application(s) such that within each batch, the requests from

high-priority programs are serviced before those from other applications.

• BatchP. This scheduling scheme enables Batch Preemption. It allows the insertion of high-

priority requests into the current batch as long as its thread does not exceed Marking-Cap limit

(similar to the Empty-Slot Batching idea in [63]).

• FullP. This scheduling scheme implements Batch Preemption, Access Preemption, and row-

buffer partitioning. I restricted the number of times a request can be preempted to avoid

excessive impact on low-priority applications.

I focused on evaluating the read access latency as it determines the memory impact on appli-

cation performance. With the DRAM buffer between the last level cache and the PCM memory,

the write operations are usually less critical for computation-intensive applications. Similar to the

techniques I proposed in previous chapters, I used Weighted Speedup [63, 89] as the performance

metrics.

7.4.2 Parameters

There are two important parameters in my scheme that can be used to tune the slowdown of high-

priority applications. The first parameter is preemption threshold T. In Access Preemption,

current PCM access cannot be preempted if it will finish in T cycles. Using a larger T value results

in less preemption while using a smaller T results in more aggressive preemption. In particular,

if T = 0, then the high-priority read can always preempt; if T equals write latency, then there is

no preemption at all. Note that instead of using “remaining percentage”, I use “remaining cycles”

for more accurate control. The reason is that PCM read and write have different latencies, and

therefore same remaining percentage means different remaining cycles for read and write.

The second parameter is row buffer partition weight ratio W. This is the weight ratio

between prioritized group (PG) and normal group (NG), that is:

W =
Weight of the Priority Group

Weight of the Normal Group
.
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By using these parameters, I can control the slowdown of high-priority application in fine

granularity (details of analysis are presented in Section 7.4.6 and Section 7.4.7). I also use these

analysis to decide the optimal settings (T=10, W=4 for mix1-* and W=2 for mix2-*) which are

used in rest of my experiments.

7.4.3 Tunable QoS Range

I first studied the tunable QoS ranges when using different memory scheduling enhancements. Since

memory read is more critical to application’s performance, I use increase of read access latency (read

slowdown) as the metrics for tunable QoS range. In other words, my goal is to achieve a broader

tunable range of high-priority application’s read latency increase. In Figure 53(a), I set the baseline

by using the PAR-BS without priority, and observed an average 92% increase of read latency for the

high-priority application. When the high-priority application is assigned with the highest priority,

PAR-BS/P reduces its slowdown to 81% on average. That is, PAR-BS/P has a tunable QoS range

[81%, 92%]. BatchP, and FullP reduce the average slowdown to 46% and 14%, and achieve tunable

QoS ranges [46%, 92%] and [14%, 92%] respectively. The tunable QoS range of FullP is 7× and

1.7× that of PAR-BS/P and BatchP respectively.

When there are two high-priority applications, PAR-BS/P, BatchP, and FullP have tunable QoS

ranges [67%,72%], [48%,72%], and [20%,72%] respectively. FullP’s range is 10× and 2.2× that of

PAR-BS/P and BatchP respectively. Using FullP, the high-priority applications still have perfor-

mance losses comparing to their stand-alone execution. The reason is that there are non-removed

interferences from other applications (e.g., a close-to-finish PCM request cannot be preempted due

to energy and overall performance efficiency considerations).

In summary, by providing a wider QoS tunable range, my scheme enables better system control

for the high-priority programs running in multiprogramming CMP environment.

7.4.4 Fairness and Throughput

Since the main memory is shared, improving the performance of high-priority applications tends

to slowdown other applications. Figure 54 presents the average read latencies for high-priority and

low-priority applications respectively. My scheme successfully reduces the read latency of high-

priority applications without incurring large overhead to other applications. For example, when

there is one high-priority application, the average read latency of the high-priority application
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Figure 53: Tunable ranges of read latency increase (for high-priority applications).
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Figure 54: Average read latency of high-priority and low-priority applications.

reduces 35% while that of the high-priority applications increases around 4%. This is because the

high-priority applications are not memory intensive in the mixes. My scheduling scheme did not

allocate more bandwidth than its preassigned share.

Figure 55, Figure 56 and compare the MCPI (memory cycle per instruction), weighted through-

put and IPC of individual applications in selected mixes. I normalized the MCPI to PAR-BS with-

out priority. My scheme has small impacts on MCPI of low-priority applications. The loss is within

2% for mix1-* and mix2-* workloads. The changes to the overall throughputs are also small.

As expected, FullP has a relatively large impact on fairness (shown in Figure 57). For example,

my fairness is worse than PAR-BS/P due to large performance improvement of the high-priority

application. When there are two applications, there is small fairness improvement since the two

high-priority applications amortize the improvement from each other.

7.4.5 Prioritizing Memory-Intensive Applications

While high-priority programs are typically memory non-intensive (i.e., computation-intensive), I

also evaluated the cases in which high-priority applications are also memory-intensive for com-

pleteness (Figure 58). Due to increased number of memory requests, prioritizing memory-intensive

application results in more significant impacts on low-priority applications. For example, MCPI of

low-priority application in mix3-1 is increased by 13% on average.

Another note is that from BatchP to FullP, high-priority application’s MCPI does not reduce

as much as its average read latency. Taking mix3-2 as example, high-priority application’s MCPI
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Figure 55: Comparing normalized MCPI using different scheduling enhancements.
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(a) Mix1-1 workload. (b) Mix1-2 workload.
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(a) Mix1-3 workload. (b) Mix1-4 workload.
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(c) Mix1-5 workload. (d) Mix2-1 workload.
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(e) Mix2-2 workload. (f) Mix2-3 workload.
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Figure 56: Comparing weighted throughput and IPC using different scheduling enhancements.
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Figure 57: Comparing unfairness using different scheduling enhancements.
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Figure 58: Comparing MCPI, read latency and unfairness when high-priority applications are also

memory-intensive.
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is reduced from 0.60 to 0.53, while its read latency is reduced from 0.77 to 0.58. The underlying

reason is that in FullP, only read requests from high-priority application can do Access Preemption,

meaning that write requests from high-priority application are still scheduled in the same way as

they are in BatchP. Since memory-intensive applications tend to have more write requests (e.g.,

42% of memory requests are writes in gemsfdtd), and PCM write takes much longer time than

read, the MCPI reduction from BatchP to FullP is not as significant as average read latency.

7.4.6 Preempt Threshold

As described in Section 7.4.2, preemption threshold T is used to determine the aggressiveness of

preemption. I assume one memory cycle penalty for each Access Preemption, so smaller preemption

threshold does not always result in best average latency. Therefore, the trade-off needs to be studied

to decide the optimal threshold value.

Figure 59 plots the normalized read latency of high-priority applications using different pre-

emption thresholds. From my experiments, I achieved best trade-off when T = 10 cycles, which

was the threshold I chose in other experiments. As a comparison, if T = 100 cycles (i.e., there is

no preemption), the normalized read latency of the high-priority application in mix1-2 workload

increases from 1.13 to 1.44.

7.4.7 Weight Sensitivity

The row buffer partition weight ratio W affects how row buffer is partitioned between Priority

Group and Normal Group. Figure 60 shows the average read latencies of all applications and high-

priority applications with different weight ratios. Figure 61 illustrates the normalized row buffer

hit rates for the high-priority application when using different weight ratios.

When there is one high-priority application (i.e., for the workloads mix1-*), W=4 gives the

best trade-off — the read latency averaged over all programs in each mix keeps low while the read

latency of high-priority applications has a drop for 3 out of 5 mixes. The row buffer hit rates jump

for 3 out of 5 mixes. When there are two high-priority applications (i.e., for the workloads mix2-*),

W=2 and W=4 are potential candidates. W=2 weights more on the overall system performance,

while W=4 weights more on high-priority applications. In my experiments, I chose W=4 for mix1-*

and W=2 for mix2-* workloads respectively.
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Figure 59: The normalized read latency changes for high-prority application(s) with different pre-

emption thresholds.
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Figure 60: Normalized average read latency with different weight ratio W.
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Figure 61: Normalized row buffer hit rates with different weight ratio W.
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7.4.8 Number of Entries
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Figure 62: Comparing different number of row buffer entries.

Next I studied the impact when having different number of row buffer entries. I assume same

row buffer storage budget in my study (i.e., keep the total storage of row buffer constant to 2KB).

If the row buffer has 4 entries, then each row is 512B, while if using 16 rows, then each row is

64B. Figure 62 shows the normalized read latency of high-priority applications when using different

settings of row buffer. I observed small improvements when more entries are used. In my other

experiments, I used 8-entry row buffer.

7.4.9 Overhead Estimation
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Figure 63: Preemption overhead estimation. Descriptions of mixes are summarized in Table 9.

Figure 63 plots read/write access and estimated energy overheads of my scheme. When a read

or write operation was preempted, it has to be issued again and thus wastes the energy that it
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has consumed. From the figure, I preempted <1% read and write operations in most cases. This

corresponds to about 1% energy increase on average. In this study I pessimistically assumed that

a preempted PCM access wasted the energy to perform a full read or write.

The storage overhead in my scheme comes mainly from supporting row buffer partition. I used

two priority groups, and added tag and counter array for each group. Since the PCM memory I

used in experiments can support 8 outstanding memory requests (8 logic banks), the buffer size is

8× 2 groups × 8 entries/group × (3B/tag-entry + 4B/counter-entry) = 896B. Hence the storage

overhead is negligible.

Similar to AWP and RAWP, my QoS improvement techniques can be implemented as additional

subroutines in PAR-BS firmware. The computation overhead is relatively small compared to the

PAR-BS algorithm.

7.5 REMARKS

The techniques I discussed in this chapter can improve the QoS tuning ability for PCM memory.

An interesting question is: What if the techniques are applied to other memory technologies? For

example, what if read requests and write requests are of the same speed? I estimate the QoS

tuning ranges for two hypothetical cases: 1) slower read requests (read requests are as slow as write

requests); 2) faster write requests (write requests are as fast as read requests). In the first case, I

set the read access latency to be the same as original write access latency. And in the second case,

I set the write access latency to be the same as original read access latency. My estimations of QoS

tuning range are shown in Figure 64. FullP still achieves larger QoS tuning range than PAR-BS/P

(3.3× and 2.7× larger respectively), although the gain is smaller due to the symmetric read and

write speed in these hypothetical cases.
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Figure 64: Estimated QoS tuning range for two hypothetical cases.
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8.0 EXPERIMENTAL INFRASTRUCTURE

In this chapter, I describe the experimental infrastructure I have built for my research as these

experiences could be helpful to other researchers in this area.

8.1 SIMULATOR SETUP

8.1.1 Simics

The simulator I used is Simics [56] 3.0.31. Simics is an efficient full-system simulator which can

simulate multiple instruction sets and platforms. The machine I simulated with Simics is Sun

UltraSparc running Solaris 9. Here are my steps to setup my Simics environment:

1. Extract the Simics 3.0.13 package (tarball).

2. Create a workspace folder, and execute the Simics setup command in the folder:

<simics folder>/bin/workspace-setup

3. Copy the state files into the workspace folder: abisko-sol9.state, abisko-sol9-p1.state, abisko-

sol9-p2.state.

4. Copy the Solaris 9 disk image (or create symbolic link) into the workspace folder.

5. Edit abisko-sol9.state, make sure that checkpoint path is pointed to workspace folder, and

sd0 image points to disk image file.

6. Create a Simics configuration file (.simics) under folder <simics folder>/targets/serengeti

to define a 4-core CMP system. The easiest way is to modify an existing configuration file.

7. Boot the simulated machine into Solaris:

cd <workspace_folder>

./simics targets/serengeti/<simics_config_file>
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8. After Solaris is started, I can interrupt the simulator using <Ctrl-C> at any time, and save

current state (checkpoint) using command:

write-configuration <checkpoint_file>

9. The saved checkpoint can be resumed using the “-c” option of simics command:

./simics -c <checkpoint_file>

Simics also allows setting breakpoints in programs. This is achieved by adding “magic instruc-

tions” into the source code and recompiling the code.

8.1.2 GEMS

The Multifacet General Execution-driven Multiprocessor Simulator (GEMS) [57] provides detailed

models for cache, memory, out-of-order core and interconnects. GEMS is not a standalone sim-

ulator. Instead, it runs under Simics framework. (Simics also has a cache/memory model but it

is rather simple.) GEMS consists of several modules: Ruby (cache/memory model), Opal (out-

of-order core model), Garnet (interconnect model). My steps to setup GEMS under Simics is as

follows.

1. Extract GEMS package, setup a Simics workspace under the GEMS folder.

2. Edit <gems folder>/scripts/makesymlinks.sh and modify following line:

ln -s <simics_folder>/import import

3. Run makesymlinks.sh under the workspace folder.

cd <gems_folder>/workspace

../scripts/makesymlinks.sh

4. Edit <gems folder>/common/Makefile.simics version, set version to 3.0.

5. Edit <gems folder>/common/Makefile.common and make following modifications:

• set HOST TYPE to amd64-linux

• set CC to g++

• set GEMS ROOT to <gems folder>

• set SIMICS ROOT to <simics folder>

• set SIMICS INCLUDE ROOT to <simics folder>/src/include
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6. Edit <gems folder>/ruby/module/Makefile and make following modifications:

• set GEMS ROOT to <gems folder>

• set CC VERSION to the gcc version on system

• set HOST TYPE to amd64-linux

7. Edit <gems folder>/opal/module/Makefile and make following modifications:

• set GEMS ROOT to <gems folder>

• set CC VERSION to the gcc version on system

• set HOST TYPE to amd64-linux

8. Edit <gems folder>/tourmaline/module/Makefile and make following modifications:

• set GEMS ROOT to <gems folder>

• set CC VERSION to the gcc version on system

• set HOST TYPE to amd64-linux

9. Build GEMS code:

cd <gems_folder>/ruby

make PROTOCOL=MESI_SCMP_bankdirectory_m DESTINATION=MESI_SCMP_bankdirectory_m

cd <gems_folder>/opal

make module DESTINATION=MESI_SCMP_bankdirectory_m

After GEMS code is built, it can be executed under the workspace folder (which was created

at first step):

cd <gems_folder>/workspace/home/MESI_SCMP_bankdirectory_m

./simics <options>
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8.2 DEVELOPMENT AND METHODOLOGY

8.2.1 Simics g-cache Module

The cache/memory model provided by Simics is mostly in its “g-cache” module. Source code of

the module can be copied to current workspace by using the “–copy-device” option:

<simics_folder>/bin/workspace-setup --copy-device=g-cache

This will copy the g-cache module code into <workspace folder>/modules/g-cache.

G-cache provides a simple cache model using LRU policy. In case of multiprocessors, g-cache

includes a sample snoop-based MESI implementation. Although g-cache is not a detailed model, it

can be a good start point due to its simpleness. G-cache is also much faster than GEMS, making

it very helpful for quick profiling or collecting long memory traces for further study. For example,

the traces I used in my memory controller works were collected with Simics and g-cache.

The source code of g-cache is easy to understand. Most of the cache operations are handled in

functions defined in gc-specialize.c. For example, cache read and write operations are handled

by function handle read() and handle write() in the file. Researcher can also define custom

attributes in file gc-attributes.c.

I remark that g-cache does not maintain the cache data in its data structure (i.e., it only tracks

tags). Hence if researcher wants to analyze the data being read or written in memory hierarchy

(e.g., study the bit changes for endurance research), g-cache module needs to be extended to track

the data. In my implementation, I found two Simics calls to be crucial for serving this purpose:

• SIM_c_get_mem_op_value_buf()

In case of a memory write instruction, this function retrieves the operand, which is the actual

data to be written.

• gc_read_from_phys_mem()

This function retrieves the data from the “physical memory” of the simulated machine.

I used these two functions in g-cache to track data flow in memory hierarchy when collecting

traces for the endurance and memory controller studies.

A limitation of using Simics g-cache module to collect memory traces is that it does not include

the memory accesses caused by DMA operations. Therefore the collected trace will only include

the memory accesses generated by user applications and operating system.
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8.2.2 GEMS Memory Model

The cache/memory model in GEMS (called Ruby) is much more detailed (and complicated) than

Simics g-cache.

GEMS provides a framework for cache coherence protocols (in <gems folder>/protocols)

under which researchers can define their own protocols. I found the interface to be difficult to

understand and debug, so it may not be a good idea to write a new coherence protocol. Fortunately,

GEMS provides lots of sample coherence protocols that have been tested. In the most cases,

researcher can use one of the sample protocols in GEMS. For example, I used their MESI protocol

(MESI SCMP bankdirectory) in my memory controller studies.

GEMS also provides a model of the memory controller with DDR2 interface. The implemen-

tation is written in C++. Majority of the model is implemented in two files, MemoryControl.C

and MemoryControl.h, under <gems folder>/ruby/system folder. The procedure of processing a

memory request in GEMS is as follows.

• Memory requests from cores or last-level cache are enqueued by enqueue() function into the

request queue (the m input queue member of the class).

• The bank queues are implemented as an array of queues, corresponding to the m bankQueues

member in the MemoryControl class.

• The key function of GEMS memory model is MemoryControl::executeCycle(), which executes

a memory cycle. In this function, requests are dispatched from request queue (m input queue)

to individual bank queues. Hence GEMS employs a simple first-come-first-serve (FCFS) schedul-

ing policy, meaning that requests are dispatched in the order as they arrive. As I described

previously, MemoryControl::executeCycle() issues up to one request per memory cycle. This

is done by checking each bank’s readiness (MemoryControl::queueReady()) and issuing request

to a “ready” bank. If multiple banks are ready, MemoryControl::executeCycle() will issue

the requests in round-robin fashion.

In my research, I modified the GEMS memory code to add my PCM model, my scheduling

enhancements and power budgeting techniques.

In addition to execution-driven mode, I also found a way to run GEMS in trace-driven mode.

This is achieved by making an infinite loop in MemoryControl::executeCycle(). Once simulator

goes into MemoryControl::executeCycle(), it falls into my infinite loop which reads traces from

file and execute the executeCycle() function without giving control back to Simics. Once the trace
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is finished, I use exit() system call to break the loop and exit to command line. This method has

the advantage of trace-driven simulation (fast, deterministic and platform-independent), and allows

me to make use of the many data structures and functions provided by GEMS. I can still compile

my code under GEMS using the same set of scripts, instead of writing all of them from scratch.

I think this could be a helpful experience to other researchers who want to use Simics/GEMS in

their works.
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9.0 FUTURE DIRECTIONS AND CONCLUSION

In this chapter, I will discuss some future research directions and conclude the dissertation.

9.1 FUTURE DIRECTIONS FOR RESEARCH

Although the techniques I proposed in my research have made significant improvements on PCM

memory, there are still some areas that are worth exploration in the future.

9.1.1 Multi-Level Cells

One future research direction is the impact of multi-level cells on my techniques. In my proposed

techniques, I assumed single-level cells (SLC) in my PCM memory design. Although my techniques

are independent from PCM cell technologies, applying multi-level cell (MLC) does introduce new

research opportunities.

As previous work has revealed, a write operation in MLC is even more expensive than in SLC

because it is an iterative write-and-verify process [36]. This would make existing latency mitigation

schemes like write-cancelation [76] less effective. It also makes PCM write latency to be even

more non-deterministic, because writing a single PCM cell may take any number of iterations.

This opens a new research opportunity for memory scheduling. Considering a write request that

consists of several rounds, each cell in a single round may take drastically different times to write.

Conservatively using the time of the slowest cell write as the latency of the round is clearly not

efficient.

One possible way to improve this is to group cell writes with similar latencies in one round, so

that the total write latency can be reduced. This may be achieved through encoding techniques

in the memory controller (e.g., predefine a set of encodings and select one of them that yields the
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best result at runtime). Another possible improvement is to allow write drivers that finish early to

advance to next round early. This may require some changes in bank design as well as scheduling

schemes in the memory controller.

9.1.2 Power Demand Estimation

The Bit Level Power Budgeting (BPB) technique I proposed utilizes the information from Differen-

tial Write to estimate power demand of each write request. While it is much better than assuming

every bit will be changed, it is still a little conservative in that it assumes the round with the most

number of bit changes as the power demand of the entire write request, but different rounds in a

single write request could still have very different power demands. So a possible improvement to

BPB is to make a disparate power demand estimation for each round. However, this could increase

the complexity of calculating T̂start at runtime (which is the reason I choose the conservative as-

sumption). An improved BPB design should therefore include techniques to reduce the runtime

overhead when exploiting this opportunity of more accurate power demand estimation.

9.1.3 Memory Controller Architecture

With the advances of memory scheduling, the memory controller is becoming more and more com-

plex. Memory schedulers like PAR-BS [63] are too complex to be implemented using ASIC. Hence

these sophisticated memory schedulers are likely to be be implemented as microcontrollers running

firmware. The usage of wear-leveling algorithms in PCM memory also requires a microcontroller

on the memory module.

With this trend, I believe that some of the scheduling tasks that could be done locally would be

off-loaded to the memory module. As I have proposed in my BPB technique, I chose a decoupled

design for more flexibility, which is an example of this idea. Fang et al. also proposed a similar

idea in [21]. This would require significant changes to the architecture of the memory controller,

which could be a high-impact topic in the future.

9.1.4 Convergence of Memory and Storage

Another more general and farther consideration is the possible convergence of memory and storage

using PCM. PCM is widely regarded as having some advantages of both memory and storage.
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For example, it is byte-addressable and has comparable read speed to DRAM, and it is also non-

volatile which is similar to storage devices like Flash or hard disk. Hence PCM is also referred

to as a “storage-class memory” (SCM). This gives PCM unique opportunity to make memory and

storage converge with each other, forming a single uniform address space for operating systems

and applications. In order to benefit from this different, flat memory hierarchy, both the operating

system and the programming model need to be changed.
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9.2 CONCLUSION

With the growing demand for large capacity main memory and the shrinking of feature sizes,

DRAM-based main memory is facing serious leakage and scalability issues. Phase Change Mem-

ory (PCM) has emerged as a promising alternative due to its high density, low leakage, byte-

addressability and good scalability. However, the application of PCM memory still faces challenges

caused by PCM’s disadvantageous write operations.

This thesis describes my effort towards the successful application of Phase Change Memory. I

proposed Differential Write at the circuit level to remove unnecessary bit changes in PCM writes.

Along with a set of simple wear-leveling techniques, the lifetime of PCM memory was extended

to 22 years on average. To address the throughput issue of PCM memory, I proposed memory

scheduling enhancements (AWP and RAWP) for non-blocking PCM bank design. A fine-grained

power budgeting technique (BPB) was then proposed to improve throughput under power budgets.

Finally, I proposed my techniques to extend the QoS tuning range of high-priority applications when

running on PCM memory. In addition to the experiment results, I also presented my experimental

infrastructure and my visions of potential topics, which could be helpful for future research.

What I learned from my dissertation research is that throughput is still one of the biggest

challenges to PCM memory. While there have been many wear-leveling techniques to extend PCM

memory’s lifetime with low overhead, no other significant work, to the best of my knowledge, has

been done on improving its throughput. And although my memory scheduling enhancements can

achieve 50% ∼ 60% of throughput improvement, the throughput gap between PCM and DRAM

is still large. Consider a PCM memory with 8 logic banks and 1000ns write access latency, its

theoretical peak write bandwidth would be 64B per write request × 1000000 write requests per

second × 8 logic banks = 512MB/s. On the contrary, peak bandwidth supported by DDR2-800

is 6.4GB/s [31]. This indicates more than 12× gap between the throughput of PCM and DRAM.

Non-blocking bank design and my memory scheduling enhancements may close this gap to about

7.6× (assuming a 60% average throughput improvement), but there is still much space for further

improvement. This issue can get worse with the wide adoption of multi-level PCM cells, whose

write operations are even slower.

Moreover, such throughput improvement efforts on PCM must also take power into consider-

ation, because improving throughput requires increasing parallelism, and raising power budget of

PCM memory is expensive. When a power budget exists, it is important to improve its utilization
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so that more parallelism can be exploited without having to raise the power budget. I found that

reducing power demand (number of bit writes) of each write request is an effective way to achieve

this goal.

In summary, I believe that PCM memory’s throughput issue cannot be simply addressed by

individual schemes. Instead, it requires a comprehensive solution that consists of several collaborat-

ing techniques from different levels. The method I took in my dissertation research is an example in

this direction: It combines circuit level techniques like Differential Write and non-blocking bank de-

sign with architectural techniques like AWP/RAWP and power budgeting. It will not be surprising

that more techniques from different levels are incorporated into this effort in the future.
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